Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel timekeeping code and accessor functions. Based on code from
   4 *  timer.c, moved in commit 8524070b7982.
 
 
 
 
 
   5 */
   6#include <linux/timekeeper_internal.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/percpu.h>
  10#include <linux/init.h>
  11#include <linux/mm.h>
  12#include <linux/nmi.h>
  13#include <linux/sched.h>
  14#include <linux/sched/loadavg.h>
  15#include <linux/sched/clock.h>
  16#include <linux/syscore_ops.h>
  17#include <linux/clocksource.h>
  18#include <linux/jiffies.h>
  19#include <linux/time.h>
  20#include <linux/timex.h>
  21#include <linux/tick.h>
  22#include <linux/stop_machine.h>
  23#include <linux/pvclock_gtod.h>
  24#include <linux/compiler.h>
  25#include <linux/audit.h>
  26#include <linux/random.h>
  27
  28#include "tick-internal.h"
  29#include "ntp_internal.h"
  30#include "timekeeping_internal.h"
  31
  32#define TK_CLEAR_NTP		(1 << 0)
  33#define TK_MIRROR		(1 << 1)
  34#define TK_CLOCK_WAS_SET	(1 << 2)
  35
  36enum timekeeping_adv_mode {
  37	/* Update timekeeper when a tick has passed */
  38	TK_ADV_TICK,
  39
  40	/* Update timekeeper on a direct frequency change */
  41	TK_ADV_FREQ
  42};
  43
  44DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45
  46/*
  47 * The most important data for readout fits into a single 64 byte
  48 * cache line.
  49 */
  50static struct {
  51	seqcount_raw_spinlock_t	seq;
  52	struct timekeeper	timekeeper;
  53} tk_core ____cacheline_aligned = {
  54	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
  55};
  56
  57static struct timekeeper shadow_timekeeper;
  58
  59/* flag for if timekeeping is suspended */
  60int __read_mostly timekeeping_suspended;
  61
  62/**
  63 * struct tk_fast - NMI safe timekeeper
  64 * @seq:	Sequence counter for protecting updates. The lowest bit
  65 *		is the index for the tk_read_base array
  66 * @base:	tk_read_base array. Access is indexed by the lowest bit of
  67 *		@seq.
  68 *
  69 * See @update_fast_timekeeper() below.
  70 */
  71struct tk_fast {
  72	seqcount_latch_t	seq;
  73	struct tk_read_base	base[2];
  74};
  75
  76/* Suspend-time cycles value for halted fast timekeeper. */
  77static u64 cycles_at_suspend;
  78
  79static u64 dummy_clock_read(struct clocksource *cs)
  80{
  81	if (timekeeping_suspended)
  82		return cycles_at_suspend;
  83	return local_clock();
  84}
  85
  86static struct clocksource dummy_clock = {
  87	.read = dummy_clock_read,
  88};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89
  90/*
  91 * Boot time initialization which allows local_clock() to be utilized
  92 * during early boot when clocksources are not available. local_clock()
  93 * returns nanoseconds already so no conversion is required, hence mult=1
  94 * and shift=0. When the first proper clocksource is installed then
  95 * the fast time keepers are updated with the correct values.
  96 */
  97#define FAST_TK_INIT						\
  98	{							\
  99		.clock		= &dummy_clock,			\
 100		.mask		= CLOCKSOURCE_MASK(64),		\
 101		.mult		= 1,				\
 102		.shift		= 0,				\
 103	}
 104
 105static struct tk_fast tk_fast_mono ____cacheline_aligned = {
 106	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
 107	.base[0] = FAST_TK_INIT,
 108	.base[1] = FAST_TK_INIT,
 109};
 110
 111static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
 112	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
 113	.base[0] = FAST_TK_INIT,
 114	.base[1] = FAST_TK_INIT,
 115};
 116
 117static inline void tk_normalize_xtime(struct timekeeper *tk)
 118{
 119	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 120		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 121		tk->xtime_sec++;
 122	}
 123	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 124		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 125		tk->raw_sec++;
 126	}
 127}
 128
 129static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 130{
 131	struct timespec64 ts;
 132
 133	ts.tv_sec = tk->xtime_sec;
 134	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 135	return ts;
 136}
 137
 138static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 139{
 140	tk->xtime_sec = ts->tv_sec;
 141	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 142}
 143
 144static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 145{
 146	tk->xtime_sec += ts->tv_sec;
 147	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 148	tk_normalize_xtime(tk);
 149}
 150
 151static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 152{
 153	struct timespec64 tmp;
 154
 155	/*
 156	 * Verify consistency of: offset_real = -wall_to_monotonic
 157	 * before modifying anything
 158	 */
 159	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 160					-tk->wall_to_monotonic.tv_nsec);
 161	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 162	tk->wall_to_monotonic = wtm;
 163	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 164	tk->offs_real = timespec64_to_ktime(tmp);
 165	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 166}
 167
 168static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 169{
 170	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 171	/*
 172	 * Timespec representation for VDSO update to avoid 64bit division
 173	 * on every update.
 174	 */
 175	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
 176}
 177
 178/*
 179 * tk_clock_read - atomic clocksource read() helper
 180 *
 181 * This helper is necessary to use in the read paths because, while the
 182 * seqcount ensures we don't return a bad value while structures are updated,
 183 * it doesn't protect from potential crashes. There is the possibility that
 184 * the tkr's clocksource may change between the read reference, and the
 185 * clock reference passed to the read function.  This can cause crashes if
 186 * the wrong clocksource is passed to the wrong read function.
 187 * This isn't necessary to use when holding the timekeeper_lock or doing
 188 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 189 * and update logic).
 190 */
 191static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 192{
 193	struct clocksource *clock = READ_ONCE(tkr->clock);
 194
 195	return clock->read(clock);
 196}
 197
 198#ifdef CONFIG_DEBUG_TIMEKEEPING
 199#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 200
 201static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 202{
 203
 204	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 205	const char *name = tk->tkr_mono.clock->name;
 206
 207	if (offset > max_cycles) {
 208		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 209				offset, name, max_cycles);
 210		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 211	} else {
 212		if (offset > (max_cycles >> 1)) {
 213			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 214					offset, name, max_cycles >> 1);
 215			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 216		}
 217	}
 218
 219	if (tk->underflow_seen) {
 220		if (jiffies - tk->last_warning > WARNING_FREQ) {
 221			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 222			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 223			printk_deferred("         Your kernel is probably still fine.\n");
 224			tk->last_warning = jiffies;
 225		}
 226		tk->underflow_seen = 0;
 227	}
 228
 229	if (tk->overflow_seen) {
 230		if (jiffies - tk->last_warning > WARNING_FREQ) {
 231			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 232			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 233			printk_deferred("         Your kernel is probably still fine.\n");
 234			tk->last_warning = jiffies;
 235		}
 236		tk->overflow_seen = 0;
 237	}
 238}
 239
 240static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 241{
 242	struct timekeeper *tk = &tk_core.timekeeper;
 243	u64 now, last, mask, max, delta;
 244	unsigned int seq;
 245
 246	/*
 247	 * Since we're called holding a seqcount, the data may shift
 248	 * under us while we're doing the calculation. This can cause
 249	 * false positives, since we'd note a problem but throw the
 250	 * results away. So nest another seqcount here to atomically
 251	 * grab the points we are checking with.
 252	 */
 253	do {
 254		seq = read_seqcount_begin(&tk_core.seq);
 255		now = tk_clock_read(tkr);
 256		last = tkr->cycle_last;
 257		mask = tkr->mask;
 258		max = tkr->clock->max_cycles;
 259	} while (read_seqcount_retry(&tk_core.seq, seq));
 260
 261	delta = clocksource_delta(now, last, mask);
 262
 263	/*
 264	 * Try to catch underflows by checking if we are seeing small
 265	 * mask-relative negative values.
 266	 */
 267	if (unlikely((~delta & mask) < (mask >> 3))) {
 268		tk->underflow_seen = 1;
 269		delta = 0;
 270	}
 271
 272	/* Cap delta value to the max_cycles values to avoid mult overflows */
 273	if (unlikely(delta > max)) {
 274		tk->overflow_seen = 1;
 275		delta = tkr->clock->max_cycles;
 276	}
 277
 278	return delta;
 279}
 280#else
 281static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 282{
 283}
 284static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 285{
 286	u64 cycle_now, delta;
 287
 288	/* read clocksource */
 289	cycle_now = tk_clock_read(tkr);
 290
 291	/* calculate the delta since the last update_wall_time */
 292	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 293
 294	return delta;
 295}
 296#endif
 297
 298/**
 299 * tk_setup_internals - Set up internals to use clocksource clock.
 300 *
 301 * @tk:		The target timekeeper to setup.
 302 * @clock:		Pointer to clocksource.
 303 *
 304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 305 * pair and interval request.
 306 *
 307 * Unless you're the timekeeping code, you should not be using this!
 308 */
 309static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 310{
 311	u64 interval;
 312	u64 tmp, ntpinterval;
 313	struct clocksource *old_clock;
 314
 315	++tk->cs_was_changed_seq;
 316	old_clock = tk->tkr_mono.clock;
 317	tk->tkr_mono.clock = clock;
 318	tk->tkr_mono.mask = clock->mask;
 319	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 320
 321	tk->tkr_raw.clock = clock;
 322	tk->tkr_raw.mask = clock->mask;
 323	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 324
 325	/* Do the ns -> cycle conversion first, using original mult */
 326	tmp = NTP_INTERVAL_LENGTH;
 327	tmp <<= clock->shift;
 328	ntpinterval = tmp;
 329	tmp += clock->mult/2;
 330	do_div(tmp, clock->mult);
 331	if (tmp == 0)
 332		tmp = 1;
 333
 334	interval = (u64) tmp;
 335	tk->cycle_interval = interval;
 336
 337	/* Go back from cycles -> shifted ns */
 338	tk->xtime_interval = interval * clock->mult;
 339	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 340	tk->raw_interval = interval * clock->mult;
 341
 342	 /* if changing clocks, convert xtime_nsec shift units */
 343	if (old_clock) {
 344		int shift_change = clock->shift - old_clock->shift;
 345		if (shift_change < 0) {
 346			tk->tkr_mono.xtime_nsec >>= -shift_change;
 347			tk->tkr_raw.xtime_nsec >>= -shift_change;
 348		} else {
 349			tk->tkr_mono.xtime_nsec <<= shift_change;
 350			tk->tkr_raw.xtime_nsec <<= shift_change;
 351		}
 352	}
 353
 354	tk->tkr_mono.shift = clock->shift;
 355	tk->tkr_raw.shift = clock->shift;
 356
 357	tk->ntp_error = 0;
 358	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 359	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 360
 361	/*
 362	 * The timekeeper keeps its own mult values for the currently
 363	 * active clocksource. These value will be adjusted via NTP
 364	 * to counteract clock drifting.
 365	 */
 366	tk->tkr_mono.mult = clock->mult;
 367	tk->tkr_raw.mult = clock->mult;
 368	tk->ntp_err_mult = 0;
 369	tk->skip_second_overflow = 0;
 370}
 371
 372/* Timekeeper helper functions. */
 373
 374static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 375{
 376	u64 nsec;
 377
 378	nsec = delta * tkr->mult + tkr->xtime_nsec;
 379	nsec >>= tkr->shift;
 380
 381	return nsec;
 382}
 383
 384static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 385{
 386	u64 delta;
 387
 388	delta = timekeeping_get_delta(tkr);
 389	return timekeeping_delta_to_ns(tkr, delta);
 390}
 391
 392static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 393{
 394	u64 delta;
 395
 396	/* calculate the delta since the last update_wall_time */
 397	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 398	return timekeeping_delta_to_ns(tkr, delta);
 399}
 400
 401/**
 402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 403 * @tkr: Timekeeping readout base from which we take the update
 404 * @tkf: Pointer to NMI safe timekeeper
 405 *
 406 * We want to use this from any context including NMI and tracing /
 407 * instrumenting the timekeeping code itself.
 408 *
 409 * Employ the latch technique; see @raw_write_seqcount_latch.
 410 *
 411 * So if a NMI hits the update of base[0] then it will use base[1]
 412 * which is still consistent. In the worst case this can result is a
 413 * slightly wrong timestamp (a few nanoseconds). See
 414 * @ktime_get_mono_fast_ns.
 415 */
 416static void update_fast_timekeeper(const struct tk_read_base *tkr,
 417				   struct tk_fast *tkf)
 418{
 419	struct tk_read_base *base = tkf->base;
 420
 421	/* Force readers off to base[1] */
 422	raw_write_seqcount_latch(&tkf->seq);
 423
 424	/* Update base[0] */
 425	memcpy(base, tkr, sizeof(*base));
 426
 427	/* Force readers back to base[0] */
 428	raw_write_seqcount_latch(&tkf->seq);
 429
 430	/* Update base[1] */
 431	memcpy(base + 1, base, sizeof(*base));
 432}
 433
 434static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
 435{
 436	u64 delta, cycles = tk_clock_read(tkr);
 437
 438	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 439	return timekeeping_delta_to_ns(tkr, delta);
 440}
 441
 442static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 443{
 444	struct tk_read_base *tkr;
 445	unsigned int seq;
 446	u64 now;
 447
 448	do {
 449		seq = raw_read_seqcount_latch(&tkf->seq);
 450		tkr = tkf->base + (seq & 0x01);
 451		now = ktime_to_ns(tkr->base);
 452		now += fast_tk_get_delta_ns(tkr);
 453	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
 454
 455	return now;
 456}
 457
 458/**
 459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 460 *
 461 * This timestamp is not guaranteed to be monotonic across an update.
 462 * The timestamp is calculated by:
 463 *
 464 *	now = base_mono + clock_delta * slope
 465 *
 466 * So if the update lowers the slope, readers who are forced to the
 467 * not yet updated second array are still using the old steeper slope.
 468 *
 469 * tmono
 470 * ^
 471 * |    o  n
 472 * |   o n
 473 * |  u
 474 * | o
 475 * |o
 476 * |12345678---> reader order
 477 *
 478 * o = old slope
 479 * u = update
 480 * n = new slope
 481 *
 482 * So reader 6 will observe time going backwards versus reader 5.
 483 *
 484 * While other CPUs are likely to be able to observe that, the only way
 485 * for a CPU local observation is when an NMI hits in the middle of
 486 * the update. Timestamps taken from that NMI context might be ahead
 487 * of the following timestamps. Callers need to be aware of that and
 488 * deal with it.
 489 */
 490u64 notrace ktime_get_mono_fast_ns(void)
 491{
 492	return __ktime_get_fast_ns(&tk_fast_mono);
 493}
 494EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 495
 496/**
 497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
 498 *
 499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
 500 * conversion factor is not affected by NTP/PTP correction.
 501 */
 502u64 notrace ktime_get_raw_fast_ns(void)
 503{
 504	return __ktime_get_fast_ns(&tk_fast_raw);
 505}
 506EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 507
 508/**
 509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 510 *
 511 * To keep it NMI safe since we're accessing from tracing, we're not using a
 512 * separate timekeeper with updates to monotonic clock and boot offset
 513 * protected with seqcounts. This has the following minor side effects:
 514 *
 515 * (1) Its possible that a timestamp be taken after the boot offset is updated
 516 * but before the timekeeper is updated. If this happens, the new boot offset
 517 * is added to the old timekeeping making the clock appear to update slightly
 518 * earlier:
 519 *    CPU 0                                        CPU 1
 520 *    timekeeping_inject_sleeptime64()
 521 *    __timekeeping_inject_sleeptime(tk, delta);
 522 *                                                 timestamp();
 523 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 524 *
 525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 526 * partially updated.  Since the tk->offs_boot update is a rare event, this
 527 * should be a rare occurrence which postprocessing should be able to handle.
 528 *
 529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
 530 * apply as well.
 531 */
 532u64 notrace ktime_get_boot_fast_ns(void)
 533{
 534	struct timekeeper *tk = &tk_core.timekeeper;
 535
 536	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
 537}
 538EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 539
 540/**
 541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
 542 *
 543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
 544 * mono time and the TAI offset are not read atomically which may yield wrong
 545 * readouts. However, an update of the TAI offset is an rare event e.g., caused
 546 * by settime or adjtimex with an offset. The user of this function has to deal
 547 * with the possibility of wrong timestamps in post processing.
 548 */
 549u64 notrace ktime_get_tai_fast_ns(void)
 550{
 551	struct timekeeper *tk = &tk_core.timekeeper;
 552
 553	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
 554}
 555EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
 556
 557static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
 558{
 559	struct tk_read_base *tkr;
 560	u64 basem, baser, delta;
 561	unsigned int seq;
 562
 563	do {
 564		seq = raw_read_seqcount_latch(&tkf->seq);
 565		tkr = tkf->base + (seq & 0x01);
 566		basem = ktime_to_ns(tkr->base);
 567		baser = ktime_to_ns(tkr->base_real);
 568		delta = fast_tk_get_delta_ns(tkr);
 569	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
 570
 571	if (mono)
 572		*mono = basem + delta;
 573	return baser + delta;
 574}
 575
 576/**
 577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 578 *
 579 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
 580 */
 581u64 ktime_get_real_fast_ns(void)
 582{
 583	return __ktime_get_real_fast(&tk_fast_mono, NULL);
 584}
 585EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 586
 587/**
 588 * ktime_get_fast_timestamps: - NMI safe timestamps
 589 * @snapshot:	Pointer to timestamp storage
 590 *
 591 * Stores clock monotonic, boottime and realtime timestamps.
 592 *
 593 * Boot time is a racy access on 32bit systems if the sleep time injection
 594 * happens late during resume and not in timekeeping_resume(). That could
 595 * be avoided by expanding struct tk_read_base with boot offset for 32bit
 596 * and adding more overhead to the update. As this is a hard to observe
 597 * once per resume event which can be filtered with reasonable effort using
 598 * the accurate mono/real timestamps, it's probably not worth the trouble.
 599 *
 600 * Aside of that it might be possible on 32 and 64 bit to observe the
 601 * following when the sleep time injection happens late:
 602 *
 603 * CPU 0				CPU 1
 604 * timekeeping_resume()
 605 * ktime_get_fast_timestamps()
 606 *	mono, real = __ktime_get_real_fast()
 607 *					inject_sleep_time()
 608 *					   update boot offset
 609 *	boot = mono + bootoffset;
 610 *
 611 * That means that boot time already has the sleep time adjustment, but
 612 * real time does not. On the next readout both are in sync again.
 613 *
 614 * Preventing this for 64bit is not really feasible without destroying the
 615 * careful cache layout of the timekeeper because the sequence count and
 616 * struct tk_read_base would then need two cache lines instead of one.
 617 *
 618 * Access to the time keeper clock source is disabled across the innermost
 619 * steps of suspend/resume. The accessors still work, but the timestamps
 620 * are frozen until time keeping is resumed which happens very early.
 621 *
 622 * For regular suspend/resume there is no observable difference vs. sched
 623 * clock, but it might affect some of the nasty low level debug printks.
 624 *
 625 * OTOH, access to sched clock is not guaranteed across suspend/resume on
 626 * all systems either so it depends on the hardware in use.
 627 *
 628 * If that turns out to be a real problem then this could be mitigated by
 629 * using sched clock in a similar way as during early boot. But it's not as
 630 * trivial as on early boot because it needs some careful protection
 631 * against the clock monotonic timestamp jumping backwards on resume.
 632 */
 633void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
 634{
 635	struct timekeeper *tk = &tk_core.timekeeper;
 636
 637	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
 638	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
 639}
 640
 641/**
 642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 643 * @tk: Timekeeper to snapshot.
 644 *
 645 * It generally is unsafe to access the clocksource after timekeeping has been
 646 * suspended, so take a snapshot of the readout base of @tk and use it as the
 647 * fast timekeeper's readout base while suspended.  It will return the same
 648 * number of cycles every time until timekeeping is resumed at which time the
 649 * proper readout base for the fast timekeeper will be restored automatically.
 650 */
 651static void halt_fast_timekeeper(const struct timekeeper *tk)
 652{
 653	static struct tk_read_base tkr_dummy;
 654	const struct tk_read_base *tkr = &tk->tkr_mono;
 655
 656	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 657	cycles_at_suspend = tk_clock_read(tkr);
 658	tkr_dummy.clock = &dummy_clock;
 659	tkr_dummy.base_real = tkr->base + tk->offs_real;
 660	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 661
 662	tkr = &tk->tkr_raw;
 663	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 664	tkr_dummy.clock = &dummy_clock;
 665	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 666}
 667
 668static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 669
 670static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 671{
 672	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 673}
 674
 675/**
 676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 677 * @nb: Pointer to the notifier block to register
 678 */
 679int pvclock_gtod_register_notifier(struct notifier_block *nb)
 680{
 681	struct timekeeper *tk = &tk_core.timekeeper;
 682	unsigned long flags;
 683	int ret;
 684
 685	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 686	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 687	update_pvclock_gtod(tk, true);
 688	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 689
 690	return ret;
 
 
 691}
 692EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 693
 694/**
 695 * pvclock_gtod_unregister_notifier - unregister a pvclock
 696 * timedata update listener
 697 * @nb: Pointer to the notifier block to unregister
 698 */
 699int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 700{
 701	unsigned long flags;
 702	int ret;
 703
 704	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 705	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 706	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 707
 708	return ret;
 709}
 710EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 711
 712/*
 713 * tk_update_leap_state - helper to update the next_leap_ktime
 714 */
 715static inline void tk_update_leap_state(struct timekeeper *tk)
 716{
 717	tk->next_leap_ktime = ntp_get_next_leap();
 718	if (tk->next_leap_ktime != KTIME_MAX)
 719		/* Convert to monotonic time */
 720		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 721}
 722
 723/*
 724 * Update the ktime_t based scalar nsec members of the timekeeper
 725 */
 726static inline void tk_update_ktime_data(struct timekeeper *tk)
 727{
 728	u64 seconds;
 729	u32 nsec;
 730
 731	/*
 732	 * The xtime based monotonic readout is:
 733	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 734	 * The ktime based monotonic readout is:
 735	 *	nsec = base_mono + now();
 736	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 737	 */
 738	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 739	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 740	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 741
 742	/*
 743	 * The sum of the nanoseconds portions of xtime and
 744	 * wall_to_monotonic can be greater/equal one second. Take
 745	 * this into account before updating tk->ktime_sec.
 746	 */
 747	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 748	if (nsec >= NSEC_PER_SEC)
 749		seconds++;
 750	tk->ktime_sec = seconds;
 751
 752	/* Update the monotonic raw base */
 753	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 754}
 755
 756/* must hold timekeeper_lock */
 757static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 758{
 759	if (action & TK_CLEAR_NTP) {
 760		tk->ntp_error = 0;
 761		ntp_clear();
 762	}
 763
 764	tk_update_leap_state(tk);
 765	tk_update_ktime_data(tk);
 766
 767	update_vsyscall(tk);
 768	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 769
 770	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 771	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 772	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 773
 774	if (action & TK_CLOCK_WAS_SET)
 775		tk->clock_was_set_seq++;
 776	/*
 777	 * The mirroring of the data to the shadow-timekeeper needs
 778	 * to happen last here to ensure we don't over-write the
 779	 * timekeeper structure on the next update with stale data
 780	 */
 781	if (action & TK_MIRROR)
 782		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 783		       sizeof(tk_core.timekeeper));
 784}
 785
 
 786/**
 787 * timekeeping_forward_now - update clock to the current time
 788 * @tk:		Pointer to the timekeeper to update
 789 *
 790 * Forward the current clock to update its state since the last call to
 791 * update_wall_time(). This is useful before significant clock changes,
 792 * as it avoids having to deal with this time offset explicitly.
 793 */
 794static void timekeeping_forward_now(struct timekeeper *tk)
 795{
 796	u64 cycle_now, delta;
 
 
 
 
 
 
 
 797
 798	cycle_now = tk_clock_read(&tk->tkr_mono);
 799	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 800	tk->tkr_mono.cycle_last = cycle_now;
 801	tk->tkr_raw.cycle_last  = cycle_now;
 802
 803	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 804	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 805
 806	tk_normalize_xtime(tk);
 
 
 
 807}
 808
 809/**
 810 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 811 * @ts:		pointer to the timespec to be set
 812 *
 813 * Returns the time of day in a timespec64 (WARN if suspended).
 814 */
 815void ktime_get_real_ts64(struct timespec64 *ts)
 816{
 817	struct timekeeper *tk = &tk_core.timekeeper;
 818	unsigned int seq;
 819	u64 nsecs;
 820
 821	WARN_ON(timekeeping_suspended);
 822
 823	do {
 824		seq = read_seqcount_begin(&tk_core.seq);
 825
 826		ts->tv_sec = tk->xtime_sec;
 827		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 828
 829	} while (read_seqcount_retry(&tk_core.seq, seq));
 
 830
 831	ts->tv_nsec = 0;
 832	timespec64_add_ns(ts, nsecs);
 
 833}
 834EXPORT_SYMBOL(ktime_get_real_ts64);
 835
 836ktime_t ktime_get(void)
 837{
 838	struct timekeeper *tk = &tk_core.timekeeper;
 839	unsigned int seq;
 840	ktime_t base;
 841	u64 nsecs;
 842
 843	WARN_ON(timekeeping_suspended);
 844
 845	do {
 846		seq = read_seqcount_begin(&tk_core.seq);
 847		base = tk->tkr_mono.base;
 848		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 849
 850	} while (read_seqcount_retry(&tk_core.seq, seq));
 
 
 
 851
 852	return ktime_add_ns(base, nsecs);
 
 
 
 
 
 853}
 854EXPORT_SYMBOL_GPL(ktime_get);
 855
 856u32 ktime_get_resolution_ns(void)
 857{
 858	struct timekeeper *tk = &tk_core.timekeeper;
 859	unsigned int seq;
 860	u32 nsecs;
 861
 862	WARN_ON(timekeeping_suspended);
 863
 864	do {
 865		seq = read_seqcount_begin(&tk_core.seq);
 866		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 867	} while (read_seqcount_retry(&tk_core.seq, seq));
 868
 869	return nsecs;
 870}
 871EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 872
 873static ktime_t *offsets[TK_OFFS_MAX] = {
 874	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 875	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 876	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 877};
 878
 879ktime_t ktime_get_with_offset(enum tk_offsets offs)
 880{
 881	struct timekeeper *tk = &tk_core.timekeeper;
 882	unsigned int seq;
 883	ktime_t base, *offset = offsets[offs];
 884	u64 nsecs;
 885
 886	WARN_ON(timekeeping_suspended);
 887
 888	do {
 889		seq = read_seqcount_begin(&tk_core.seq);
 890		base = ktime_add(tk->tkr_mono.base, *offset);
 891		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 892
 893	} while (read_seqcount_retry(&tk_core.seq, seq));
 894
 895	return ktime_add_ns(base, nsecs);
 896
 897}
 898EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 899
 900ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 901{
 902	struct timekeeper *tk = &tk_core.timekeeper;
 903	unsigned int seq;
 904	ktime_t base, *offset = offsets[offs];
 905	u64 nsecs;
 906
 907	WARN_ON(timekeeping_suspended);
 908
 909	do {
 910		seq = read_seqcount_begin(&tk_core.seq);
 911		base = ktime_add(tk->tkr_mono.base, *offset);
 912		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 913
 914	} while (read_seqcount_retry(&tk_core.seq, seq));
 915
 916	return ktime_add_ns(base, nsecs);
 917}
 918EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 919
 920/**
 921 * ktime_mono_to_any() - convert monotonic time to any other time
 922 * @tmono:	time to convert.
 923 * @offs:	which offset to use
 924 */
 925ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 926{
 927	ktime_t *offset = offsets[offs];
 928	unsigned int seq;
 929	ktime_t tconv;
 930
 931	do {
 932		seq = read_seqcount_begin(&tk_core.seq);
 933		tconv = ktime_add(tmono, *offset);
 934	} while (read_seqcount_retry(&tk_core.seq, seq));
 935
 936	return tconv;
 937}
 938EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 939
 940/**
 941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 942 */
 943ktime_t ktime_get_raw(void)
 944{
 945	struct timekeeper *tk = &tk_core.timekeeper;
 946	unsigned int seq;
 947	ktime_t base;
 948	u64 nsecs;
 949
 950	do {
 951		seq = read_seqcount_begin(&tk_core.seq);
 952		base = tk->tkr_raw.base;
 953		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 954
 955	} while (read_seqcount_retry(&tk_core.seq, seq));
 956
 957	return ktime_add_ns(base, nsecs);
 958}
 959EXPORT_SYMBOL_GPL(ktime_get_raw);
 960
 961/**
 962 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 963 * @ts:		pointer to timespec variable
 964 *
 965 * The function calculates the monotonic clock from the realtime
 966 * clock and the wall_to_monotonic offset and stores the result
 967 * in normalized timespec64 format in the variable pointed to by @ts.
 968 */
 969void ktime_get_ts64(struct timespec64 *ts)
 970{
 971	struct timekeeper *tk = &tk_core.timekeeper;
 972	struct timespec64 tomono;
 973	unsigned int seq;
 974	u64 nsec;
 975
 976	WARN_ON(timekeeping_suspended);
 977
 978	do {
 979		seq = read_seqcount_begin(&tk_core.seq);
 980		ts->tv_sec = tk->xtime_sec;
 981		nsec = timekeeping_get_ns(&tk->tkr_mono);
 982		tomono = tk->wall_to_monotonic;
 
 
 983
 984	} while (read_seqcount_retry(&tk_core.seq, seq));
 985
 986	ts->tv_sec += tomono.tv_sec;
 987	ts->tv_nsec = 0;
 988	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 989}
 990EXPORT_SYMBOL_GPL(ktime_get_ts64);
 991
 992/**
 993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 994 *
 995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 997 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 998 * covers ~136 years of uptime which should be enough to prevent
 999 * premature wrap arounds.
1000 */
1001time64_t ktime_get_seconds(void)
1002{
1003	struct timekeeper *tk = &tk_core.timekeeper;
1004
1005	WARN_ON(timekeeping_suspended);
1006	return tk->ktime_sec;
1007}
1008EXPORT_SYMBOL_GPL(ktime_get_seconds);
1009
1010/**
1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1012 *
1013 * Returns the wall clock seconds since 1970.
1014 *
1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016 * 32bit systems the access must be protected with the sequence
1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1018 * value.
1019 */
1020time64_t ktime_get_real_seconds(void)
1021{
1022	struct timekeeper *tk = &tk_core.timekeeper;
1023	time64_t seconds;
1024	unsigned int seq;
1025
1026	if (IS_ENABLED(CONFIG_64BIT))
1027		return tk->xtime_sec;
1028
1029	do {
1030		seq = read_seqcount_begin(&tk_core.seq);
1031		seconds = tk->xtime_sec;
1032
1033	} while (read_seqcount_retry(&tk_core.seq, seq));
1034
1035	return seconds;
1036}
1037EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1038
1039/**
1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041 * but without the sequence counter protect. This internal function
1042 * is called just when timekeeping lock is already held.
1043 */
1044noinstr time64_t __ktime_get_real_seconds(void)
1045{
1046	struct timekeeper *tk = &tk_core.timekeeper;
1047
1048	return tk->xtime_sec;
1049}
1050
1051/**
1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 
 
 
 
 
1054 */
1055void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1056{
1057	struct timekeeper *tk = &tk_core.timekeeper;
1058	unsigned int seq;
1059	ktime_t base_raw;
1060	ktime_t base_real;
1061	u64 nsec_raw;
1062	u64 nsec_real;
1063	u64 now;
1064
1065	WARN_ON_ONCE(timekeeping_suspended);
1066
1067	do {
1068		seq = read_seqcount_begin(&tk_core.seq);
1069		now = tk_clock_read(&tk->tkr_mono);
1070		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1071		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1072		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1073		base_real = ktime_add(tk->tkr_mono.base,
1074				      tk_core.timekeeper.offs_real);
1075		base_raw = tk->tkr_raw.base;
1076		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1077		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1078	} while (read_seqcount_retry(&tk_core.seq, seq));
1079
1080	systime_snapshot->cycles = now;
1081	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1082	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1083}
1084EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1085
1086/* Scale base by mult/div checking for overflow */
1087static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1088{
1089	u64 tmp, rem;
1090
1091	tmp = div64_u64_rem(*base, div, &rem);
1092
1093	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1094	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1095		return -EOVERFLOW;
1096	tmp *= mult;
1097
1098	rem = div64_u64(rem * mult, div);
1099	*base = tmp + rem;
1100	return 0;
1101}
1102
1103/**
1104 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1105 * @history:			Snapshot representing start of history
1106 * @partial_history_cycles:	Cycle offset into history (fractional part)
1107 * @total_history_cycles:	Total history length in cycles
1108 * @discontinuity:		True indicates clock was set on history period
1109 * @ts:				Cross timestamp that should be adjusted using
1110 *	partial/total ratio
1111 *
1112 * Helper function used by get_device_system_crosststamp() to correct the
1113 * crosstimestamp corresponding to the start of the current interval to the
1114 * system counter value (timestamp point) provided by the driver. The
1115 * total_history_* quantities are the total history starting at the provided
1116 * reference point and ending at the start of the current interval. The cycle
1117 * count between the driver timestamp point and the start of the current
1118 * interval is partial_history_cycles.
1119 */
1120static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1121					 u64 partial_history_cycles,
1122					 u64 total_history_cycles,
1123					 bool discontinuity,
1124					 struct system_device_crosststamp *ts)
1125{
1126	struct timekeeper *tk = &tk_core.timekeeper;
1127	u64 corr_raw, corr_real;
1128	bool interp_forward;
1129	int ret;
1130
1131	if (total_history_cycles == 0 || partial_history_cycles == 0)
1132		return 0;
1133
1134	/* Interpolate shortest distance from beginning or end of history */
1135	interp_forward = partial_history_cycles > total_history_cycles / 2;
1136	partial_history_cycles = interp_forward ?
1137		total_history_cycles - partial_history_cycles :
1138		partial_history_cycles;
1139
1140	/*
1141	 * Scale the monotonic raw time delta by:
1142	 *	partial_history_cycles / total_history_cycles
1143	 */
1144	corr_raw = (u64)ktime_to_ns(
1145		ktime_sub(ts->sys_monoraw, history->raw));
1146	ret = scale64_check_overflow(partial_history_cycles,
1147				     total_history_cycles, &corr_raw);
1148	if (ret)
1149		return ret;
1150
1151	/*
1152	 * If there is a discontinuity in the history, scale monotonic raw
1153	 *	correction by:
1154	 *	mult(real)/mult(raw) yielding the realtime correction
1155	 * Otherwise, calculate the realtime correction similar to monotonic
1156	 *	raw calculation
1157	 */
1158	if (discontinuity) {
1159		corr_real = mul_u64_u32_div
1160			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1161	} else {
1162		corr_real = (u64)ktime_to_ns(
1163			ktime_sub(ts->sys_realtime, history->real));
1164		ret = scale64_check_overflow(partial_history_cycles,
1165					     total_history_cycles, &corr_real);
1166		if (ret)
1167			return ret;
1168	}
1169
1170	/* Fixup monotonic raw and real time time values */
1171	if (interp_forward) {
1172		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1173		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1174	} else {
1175		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1176		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1177	}
1178
1179	return 0;
1180}
 
1181
1182/*
1183 * timestamp_in_interval - true if ts is chronologically in [start, end]
 
 
 
1184 *
1185 * True if ts occurs chronologically at or after start, and before or at end.
1186 */
1187static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1188{
1189	if (ts >= start && ts <= end)
1190		return true;
1191	if (start > end && (ts >= start || ts <= end))
1192		return true;
1193	return false;
1194}
1195
1196/**
1197 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1198 * @get_time_fn:	Callback to get simultaneous device time and
1199 *	system counter from the device driver
1200 * @ctx:		Context passed to get_time_fn()
1201 * @history_begin:	Historical reference point used to interpolate system
1202 *	time when counter provided by the driver is before the current interval
1203 * @xtstamp:		Receives simultaneously captured system and device time
1204 *
1205 * Reads a timestamp from a device and correlates it to system time
1206 */
1207int get_device_system_crosststamp(int (*get_time_fn)
1208				  (ktime_t *device_time,
1209				   struct system_counterval_t *sys_counterval,
1210				   void *ctx),
1211				  void *ctx,
1212				  struct system_time_snapshot *history_begin,
1213				  struct system_device_crosststamp *xtstamp)
1214{
1215	struct system_counterval_t system_counterval;
1216	struct timekeeper *tk = &tk_core.timekeeper;
1217	u64 cycles, now, interval_start;
1218	unsigned int clock_was_set_seq = 0;
1219	ktime_t base_real, base_raw;
1220	u64 nsec_real, nsec_raw;
1221	u8 cs_was_changed_seq;
1222	unsigned int seq;
1223	bool do_interp;
1224	int ret;
1225
1226	do {
1227		seq = read_seqcount_begin(&tk_core.seq);
1228		/*
1229		 * Try to synchronously capture device time and a system
1230		 * counter value calling back into the device driver
1231		 */
1232		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1233		if (ret)
1234			return ret;
1235
1236		/*
1237		 * Verify that the clocksource ID associated with the captured
1238		 * system counter value is the same as for the currently
1239		 * installed timekeeper clocksource
1240		 */
1241		if (system_counterval.cs_id == CSID_GENERIC ||
1242		    tk->tkr_mono.clock->id != system_counterval.cs_id)
1243			return -ENODEV;
1244		cycles = system_counterval.cycles;
1245
1246		/*
1247		 * Check whether the system counter value provided by the
1248		 * device driver is on the current timekeeping interval.
1249		 */
1250		now = tk_clock_read(&tk->tkr_mono);
1251		interval_start = tk->tkr_mono.cycle_last;
1252		if (!timestamp_in_interval(interval_start, now, cycles)) {
1253			clock_was_set_seq = tk->clock_was_set_seq;
1254			cs_was_changed_seq = tk->cs_was_changed_seq;
1255			cycles = interval_start;
1256			do_interp = true;
1257		} else {
1258			do_interp = false;
1259		}
1260
1261		base_real = ktime_add(tk->tkr_mono.base,
1262				      tk_core.timekeeper.offs_real);
1263		base_raw = tk->tkr_raw.base;
1264
1265		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1266		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1267	} while (read_seqcount_retry(&tk_core.seq, seq));
1268
1269	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1270	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1271
1272	/*
1273	 * Interpolate if necessary, adjusting back from the start of the
1274	 * current interval
1275	 */
1276	if (do_interp) {
1277		u64 partial_history_cycles, total_history_cycles;
1278		bool discontinuity;
1279
1280		/*
1281		 * Check that the counter value is not before the provided
1282		 * history reference and that the history doesn't cross a
1283		 * clocksource change
1284		 */
1285		if (!history_begin ||
1286		    !timestamp_in_interval(history_begin->cycles,
1287					   cycles, system_counterval.cycles) ||
1288		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1289			return -EINVAL;
1290		partial_history_cycles = cycles - system_counterval.cycles;
1291		total_history_cycles = cycles - history_begin->cycles;
1292		discontinuity =
1293			history_begin->clock_was_set_seq != clock_was_set_seq;
1294
1295		ret = adjust_historical_crosststamp(history_begin,
1296						    partial_history_cycles,
1297						    total_history_cycles,
1298						    discontinuity, xtstamp);
1299		if (ret)
1300			return ret;
1301	}
1302
1303	return 0;
1304}
1305EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1306
1307/**
1308 * do_settimeofday64 - Sets the time of day.
1309 * @ts:     pointer to the timespec64 variable containing the new time
1310 *
1311 * Sets the time of day to the new time and update NTP and notify hrtimers
1312 */
1313int do_settimeofday64(const struct timespec64 *ts)
1314{
1315	struct timekeeper *tk = &tk_core.timekeeper;
1316	struct timespec64 ts_delta, xt;
1317	unsigned long flags;
1318	int ret = 0;
1319
1320	if (!timespec64_valid_settod(ts))
1321		return -EINVAL;
1322
1323	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1324	write_seqcount_begin(&tk_core.seq);
1325
1326	timekeeping_forward_now(tk);
1327
1328	xt = tk_xtime(tk);
1329	ts_delta = timespec64_sub(*ts, xt);
1330
1331	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1332		ret = -EINVAL;
1333		goto out;
1334	}
1335
1336	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1337
1338	tk_set_xtime(tk, ts);
1339out:
1340	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1341
1342	write_seqcount_end(&tk_core.seq);
1343	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1344
1345	/* Signal hrtimers about time change */
1346	clock_was_set(CLOCK_SET_WALL);
1347
1348	if (!ret) {
1349		audit_tk_injoffset(ts_delta);
1350		add_device_randomness(ts, sizeof(*ts));
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(do_settimeofday64);
 
1356
1357/**
1358 * timekeeping_inject_offset - Adds or subtracts from the current time.
1359 * @ts:		Pointer to the timespec variable containing the offset
1360 *
1361 * Adds or subtracts an offset value from the current time.
1362 */
1363static int timekeeping_inject_offset(const struct timespec64 *ts)
1364{
1365	struct timekeeper *tk = &tk_core.timekeeper;
1366	unsigned long flags;
1367	struct timespec64 tmp;
1368	int ret = 0;
1369
1370	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1371		return -EINVAL;
1372
1373	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1374	write_seqcount_begin(&tk_core.seq);
1375
1376	timekeeping_forward_now(tk);
1377
1378	/* Make sure the proposed value is valid */
1379	tmp = timespec64_add(tk_xtime(tk), *ts);
1380	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1381	    !timespec64_valid_settod(&tmp)) {
1382		ret = -EINVAL;
1383		goto error;
1384	}
1385
1386	tk_xtime_add(tk, ts);
1387	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
 
1388
1389error: /* even if we error out, we forwarded the time, so call update */
1390	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1391
1392	write_seqcount_end(&tk_core.seq);
1393	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1394
1395	/* Signal hrtimers about time change */
1396	clock_was_set(CLOCK_SET_WALL);
1397
1398	return ret;
1399}
 
1400
1401/*
1402 * Indicates if there is an offset between the system clock and the hardware
1403 * clock/persistent clock/rtc.
1404 */
1405int persistent_clock_is_local;
1406
1407/*
1408 * Adjust the time obtained from the CMOS to be UTC time instead of
1409 * local time.
1410 *
1411 * This is ugly, but preferable to the alternatives.  Otherwise we
1412 * would either need to write a program to do it in /etc/rc (and risk
1413 * confusion if the program gets run more than once; it would also be
1414 * hard to make the program warp the clock precisely n hours)  or
1415 * compile in the timezone information into the kernel.  Bad, bad....
1416 *
1417 *						- TYT, 1992-01-01
1418 *
1419 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1420 * as real UNIX machines always do it. This avoids all headaches about
1421 * daylight saving times and warping kernel clocks.
1422 */
1423void timekeeping_warp_clock(void)
1424{
1425	if (sys_tz.tz_minuteswest != 0) {
1426		struct timespec64 adjust;
1427
1428		persistent_clock_is_local = 1;
1429		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1430		adjust.tv_nsec = 0;
1431		timekeeping_inject_offset(&adjust);
1432	}
1433}
1434
1435/*
1436 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1437 */
1438static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1439{
1440	tk->tai_offset = tai_offset;
1441	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1442}
1443
1444/*
1445 * change_clocksource - Swaps clocksources if a new one is available
1446 *
1447 * Accumulates current time interval and initializes new clocksource
1448 */
1449static int change_clocksource(void *data)
1450{
1451	struct timekeeper *tk = &tk_core.timekeeper;
1452	struct clocksource *new, *old = NULL;
1453	unsigned long flags;
1454	bool change = false;
1455
1456	new = (struct clocksource *) data;
1457
1458	/*
1459	 * If the cs is in module, get a module reference. Succeeds
1460	 * for built-in code (owner == NULL) as well.
1461	 */
1462	if (try_module_get(new->owner)) {
1463		if (!new->enable || new->enable(new) == 0)
1464			change = true;
1465		else
1466			module_put(new->owner);
1467	}
1468
1469	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1470	write_seqcount_begin(&tk_core.seq);
1471
1472	timekeeping_forward_now(tk);
1473
1474	if (change) {
1475		old = tk->tkr_mono.clock;
1476		tk_setup_internals(tk, new);
1477	}
1478
1479	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1480
1481	write_seqcount_end(&tk_core.seq);
1482	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1483
1484	if (old) {
1485		if (old->disable)
1486			old->disable(old);
1487
1488		module_put(old->owner);
1489	}
 
 
 
1490
1491	return 0;
1492}
1493
1494/**
1495 * timekeeping_notify - Install a new clock source
1496 * @clock:		pointer to the clock source
1497 *
1498 * This function is called from clocksource.c after a new, better clock
1499 * source has been registered. The caller holds the clocksource_mutex.
1500 */
1501int timekeeping_notify(struct clocksource *clock)
1502{
1503	struct timekeeper *tk = &tk_core.timekeeper;
1504
1505	if (tk->tkr_mono.clock == clock)
1506		return 0;
1507	stop_machine(change_clocksource, clock, NULL);
1508	tick_clock_notify();
1509	return tk->tkr_mono.clock == clock ? 0 : -1;
1510}
1511
1512/**
1513 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1514 * @ts:		pointer to the timespec64 to be set
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515 *
1516 * Returns the raw monotonic time (completely un-modified by ntp)
1517 */
1518void ktime_get_raw_ts64(struct timespec64 *ts)
1519{
1520	struct timekeeper *tk = &tk_core.timekeeper;
1521	unsigned int seq;
1522	u64 nsecs;
1523
1524	do {
1525		seq = read_seqcount_begin(&tk_core.seq);
1526		ts->tv_sec = tk->raw_sec;
1527		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1528
1529	} while (read_seqcount_retry(&tk_core.seq, seq));
1530
1531	ts->tv_nsec = 0;
1532	timespec64_add_ns(ts, nsecs);
1533}
1534EXPORT_SYMBOL(ktime_get_raw_ts64);
1535
1536
1537/**
1538 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1539 */
1540int timekeeping_valid_for_hres(void)
1541{
1542	struct timekeeper *tk = &tk_core.timekeeper;
1543	unsigned int seq;
1544	int ret;
1545
1546	do {
1547		seq = read_seqcount_begin(&tk_core.seq);
1548
1549		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1550
1551	} while (read_seqcount_retry(&tk_core.seq, seq));
1552
1553	return ret;
1554}
1555
1556/**
1557 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1558 */
1559u64 timekeeping_max_deferment(void)
1560{
1561	struct timekeeper *tk = &tk_core.timekeeper;
1562	unsigned int seq;
1563	u64 ret;
1564
1565	do {
1566		seq = read_seqcount_begin(&tk_core.seq);
1567
1568		ret = tk->tkr_mono.clock->max_idle_ns;
1569
1570	} while (read_seqcount_retry(&tk_core.seq, seq));
1571
1572	return ret;
1573}
1574
1575/**
1576 * read_persistent_clock64 -  Return time from the persistent clock.
1577 * @ts: Pointer to the storage for the readout value
1578 *
1579 * Weak dummy function for arches that do not yet support it.
1580 * Reads the time from the battery backed persistent clock.
1581 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1582 *
1583 *  XXX - Do be sure to remove it once all arches implement it.
1584 */
1585void __weak read_persistent_clock64(struct timespec64 *ts)
1586{
1587	ts->tv_sec = 0;
1588	ts->tv_nsec = 0;
1589}
1590
1591/**
1592 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1593 *                                        from the boot.
1594 * @wall_time:	  current time as returned by persistent clock
1595 * @boot_offset:  offset that is defined as wall_time - boot_time
1596 *
1597 * Weak dummy function for arches that do not yet support it.
 
 
1598 *
1599 * The default function calculates offset based on the current value of
1600 * local_clock(). This way architectures that support sched_clock() but don't
1601 * support dedicated boot time clock will provide the best estimate of the
1602 * boot time.
1603 */
1604void __weak __init
1605read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1606				     struct timespec64 *boot_offset)
1607{
1608	read_persistent_clock64(wall_time);
1609	*boot_offset = ns_to_timespec64(local_clock());
1610}
1611
1612/*
1613 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1614 *
1615 * The flag starts of false and is only set when a suspend reaches
1616 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1617 * timekeeper clocksource is not stopping across suspend and has been
1618 * used to update sleep time. If the timekeeper clocksource has stopped
1619 * then the flag stays true and is used by the RTC resume code to decide
1620 * whether sleeptime must be injected and if so the flag gets false then.
1621 *
1622 * If a suspend fails before reaching timekeeping_resume() then the flag
1623 * stays false and prevents erroneous sleeptime injection.
1624 */
1625static bool suspend_timing_needed;
1626
1627/* Flag for if there is a persistent clock on this platform */
1628static bool persistent_clock_exists;
1629
1630/*
1631 * timekeeping_init - Initializes the clocksource and common timekeeping values
1632 */
1633void __init timekeeping_init(void)
1634{
1635	struct timespec64 wall_time, boot_offset, wall_to_mono;
1636	struct timekeeper *tk = &tk_core.timekeeper;
1637	struct clocksource *clock;
1638	unsigned long flags;
 
1639
1640	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1641	if (timespec64_valid_settod(&wall_time) &&
1642	    timespec64_to_ns(&wall_time) > 0) {
1643		persistent_clock_exists = true;
1644	} else if (timespec64_to_ns(&wall_time) != 0) {
1645		pr_warn("Persistent clock returned invalid value");
1646		wall_time = (struct timespec64){0};
1647	}
1648
1649	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1650		boot_offset = (struct timespec64){0};
 
 
 
 
 
1651
1652	/*
1653	 * We want set wall_to_mono, so the following is true:
1654	 * wall time + wall_to_mono = boot time
1655	 */
1656	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1657
1658	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1659	write_seqcount_begin(&tk_core.seq);
1660	ntp_init();
1661
 
1662	clock = clocksource_default_clock();
1663	if (clock->enable)
1664		clock->enable(clock);
1665	tk_setup_internals(tk, clock);
1666
1667	tk_set_xtime(tk, &wall_time);
1668	tk->raw_sec = 0;
1669
1670	tk_set_wall_to_mono(tk, wall_to_mono);
 
 
 
 
 
 
 
 
 
 
 
1671
1672	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 
1673
1674	write_seqcount_end(&tk_core.seq);
1675	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 
 
1676}
1677
1678/* time in seconds when suspend began for persistent clock */
1679static struct timespec64 timekeeping_suspend_time;
1680
1681/**
1682 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1683 * @tk:		Pointer to the timekeeper to be updated
1684 * @delta:	Pointer to the delta value in timespec64 format
1685 *
1686 * Takes a timespec offset measuring a suspend interval and properly
1687 * adds the sleep offset to the timekeeping variables.
1688 */
1689static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1690					   const struct timespec64 *delta)
1691{
1692	if (!timespec64_valid_strict(delta)) {
1693		printk_deferred(KERN_WARNING
1694				"__timekeeping_inject_sleeptime: Invalid "
1695				"sleep delta value!\n");
1696		return;
1697	}
1698	tk_xtime_add(tk, delta);
1699	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1700	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1701	tk_debug_account_sleep_time(delta);
1702}
1703
1704#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1705/*
1706 * We have three kinds of time sources to use for sleep time
1707 * injection, the preference order is:
1708 * 1) non-stop clocksource
1709 * 2) persistent clock (ie: RTC accessible when irqs are off)
1710 * 3) RTC
1711 *
1712 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1713 * If system has neither 1) nor 2), 3) will be used finally.
1714 *
1715 *
1716 * If timekeeping has injected sleeptime via either 1) or 2),
1717 * 3) becomes needless, so in this case we don't need to call
1718 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1719 * means.
1720 */
1721bool timekeeping_rtc_skipresume(void)
1722{
1723	return !suspend_timing_needed;
1724}
1725
1726/*
1727 * 1) can be determined whether to use or not only when doing
1728 * timekeeping_resume() which is invoked after rtc_suspend(),
1729 * so we can't skip rtc_suspend() surely if system has 1).
1730 *
1731 * But if system has 2), 2) will definitely be used, so in this
1732 * case we don't need to call rtc_suspend(), and this is what
1733 * timekeeping_rtc_skipsuspend() means.
1734 */
1735bool timekeeping_rtc_skipsuspend(void)
1736{
1737	return persistent_clock_exists;
1738}
1739
1740/**
1741 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1742 * @delta: pointer to a timespec64 delta value
1743 *
1744 * This hook is for architectures that cannot support read_persistent_clock64
1745 * because their RTC/persistent clock is only accessible when irqs are enabled.
1746 * and also don't have an effective nonstop clocksource.
1747 *
1748 * This function should only be called by rtc_resume(), and allows
1749 * a suspend offset to be injected into the timekeeping values.
1750 */
1751void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1752{
1753	struct timekeeper *tk = &tk_core.timekeeper;
1754	unsigned long flags;
 
1755
1756	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1757	write_seqcount_begin(&tk_core.seq);
 
 
1758
1759	suspend_timing_needed = false;
1760
1761	timekeeping_forward_now(tk);
1762
1763	__timekeeping_inject_sleeptime(tk, delta);
1764
1765	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1766
1767	write_seqcount_end(&tk_core.seq);
1768	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1769
1770	/* Signal hrtimers about time change */
1771	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1772}
1773#endif
1774
1775/**
1776 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 
 
 
 
1777 */
1778void timekeeping_resume(void)
1779{
1780	struct timekeeper *tk = &tk_core.timekeeper;
1781	struct clocksource *clock = tk->tkr_mono.clock;
1782	unsigned long flags;
1783	struct timespec64 ts_new, ts_delta;
1784	u64 cycle_now, nsec;
1785	bool inject_sleeptime = false;
1786
1787	read_persistent_clock64(&ts_new);
1788
1789	clockevents_resume();
1790	clocksource_resume();
1791
1792	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1793	write_seqcount_begin(&tk_core.seq);
1794
1795	/*
1796	 * After system resumes, we need to calculate the suspended time and
1797	 * compensate it for the OS time. There are 3 sources that could be
1798	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1799	 * device.
1800	 *
1801	 * One specific platform may have 1 or 2 or all of them, and the
1802	 * preference will be:
1803	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1804	 * The less preferred source will only be tried if there is no better
1805	 * usable source. The rtc part is handled separately in rtc core code.
1806	 */
1807	cycle_now = tk_clock_read(&tk->tkr_mono);
1808	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1809	if (nsec > 0) {
1810		ts_delta = ns_to_timespec64(nsec);
1811		inject_sleeptime = true;
1812	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1813		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1814		inject_sleeptime = true;
1815	}
1816
1817	if (inject_sleeptime) {
1818		suspend_timing_needed = false;
1819		__timekeeping_inject_sleeptime(tk, &ts_delta);
1820	}
1821
1822	/* Re-base the last cycle value */
1823	tk->tkr_mono.cycle_last = cycle_now;
1824	tk->tkr_raw.cycle_last  = cycle_now;
1825
1826	tk->ntp_error = 0;
1827	timekeeping_suspended = 0;
1828	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1829	write_seqcount_end(&tk_core.seq);
1830	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1831
1832	touch_softlockup_watchdog();
1833
1834	/* Resume the clockevent device(s) and hrtimers */
1835	tick_resume();
1836	/* Notify timerfd as resume is equivalent to clock_was_set() */
1837	timerfd_resume();
1838}
1839
1840int timekeeping_suspend(void)
1841{
1842	struct timekeeper *tk = &tk_core.timekeeper;
1843	unsigned long flags;
1844	struct timespec64		delta, delta_delta;
1845	static struct timespec64	old_delta;
1846	struct clocksource *curr_clock;
1847	u64 cycle_now;
1848
1849	read_persistent_clock64(&timekeeping_suspend_time);
1850
1851	/*
1852	 * On some systems the persistent_clock can not be detected at
1853	 * timekeeping_init by its return value, so if we see a valid
1854	 * value returned, update the persistent_clock_exists flag.
1855	 */
1856	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1857		persistent_clock_exists = true;
1858
1859	suspend_timing_needed = true;
1860
1861	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1862	write_seqcount_begin(&tk_core.seq);
1863	timekeeping_forward_now(tk);
1864	timekeeping_suspended = 1;
1865
1866	/*
1867	 * Since we've called forward_now, cycle_last stores the value
1868	 * just read from the current clocksource. Save this to potentially
1869	 * use in suspend timing.
1870	 */
1871	curr_clock = tk->tkr_mono.clock;
1872	cycle_now = tk->tkr_mono.cycle_last;
1873	clocksource_start_suspend_timing(curr_clock, cycle_now);
1874
1875	if (persistent_clock_exists) {
1876		/*
1877		 * To avoid drift caused by repeated suspend/resumes,
1878		 * which each can add ~1 second drift error,
1879		 * try to compensate so the difference in system time
1880		 * and persistent_clock time stays close to constant.
1881		 */
1882		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1883		delta_delta = timespec64_sub(delta, old_delta);
1884		if (abs(delta_delta.tv_sec) >= 2) {
1885			/*
1886			 * if delta_delta is too large, assume time correction
1887			 * has occurred and set old_delta to the current delta.
1888			 */
1889			old_delta = delta;
1890		} else {
1891			/* Otherwise try to adjust old_system to compensate */
1892			timekeeping_suspend_time =
1893				timespec64_add(timekeeping_suspend_time, delta_delta);
1894		}
1895	}
 
1896
1897	timekeeping_update(tk, TK_MIRROR);
1898	halt_fast_timekeeper(tk);
1899	write_seqcount_end(&tk_core.seq);
1900	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1901
1902	tick_suspend();
1903	clocksource_suspend();
1904	clockevents_suspend();
1905
1906	return 0;
1907}
1908
1909/* sysfs resume/suspend bits for timekeeping */
1910static struct syscore_ops timekeeping_syscore_ops = {
1911	.resume		= timekeeping_resume,
1912	.suspend	= timekeeping_suspend,
1913};
1914
1915static int __init timekeeping_init_ops(void)
1916{
1917	register_syscore_ops(&timekeeping_syscore_ops);
1918	return 0;
1919}
 
1920device_initcall(timekeeping_init_ops);
1921
1922/*
1923 * Apply a multiplier adjustment to the timekeeper
 
1924 */
1925static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1926							 s64 offset,
1927							 s32 mult_adj)
1928{
1929	s64 interval = tk->cycle_interval;
 
 
1930
1931	if (mult_adj == 0) {
1932		return;
1933	} else if (mult_adj == -1) {
1934		interval = -interval;
1935		offset = -offset;
1936	} else if (mult_adj != 1) {
1937		interval *= mult_adj;
1938		offset *= mult_adj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940
1941	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942	 * So the following can be confusing.
1943	 *
1944	 * To keep things simple, lets assume mult_adj == 1 for now.
1945	 *
1946	 * When mult_adj != 1, remember that the interval and offset values
1947	 * have been appropriately scaled so the math is the same.
1948	 *
1949	 * The basic idea here is that we're increasing the multiplier
1950	 * by one, this causes the xtime_interval to be incremented by
1951	 * one cycle_interval. This is because:
1952	 *	xtime_interval = cycle_interval * mult
1953	 * So if mult is being incremented by one:
1954	 *	xtime_interval = cycle_interval * (mult + 1)
1955	 * Its the same as:
1956	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1957	 * Which can be shortened to:
1958	 *	xtime_interval += cycle_interval
1959	 *
1960	 * So offset stores the non-accumulated cycles. Thus the current
1961	 * time (in shifted nanoseconds) is:
1962	 *	now = (offset * adj) + xtime_nsec
1963	 * Now, even though we're adjusting the clock frequency, we have
1964	 * to keep time consistent. In other words, we can't jump back
1965	 * in time, and we also want to avoid jumping forward in time.
1966	 *
1967	 * So given the same offset value, we need the time to be the same
1968	 * both before and after the freq adjustment.
1969	 *	now = (offset * adj_1) + xtime_nsec_1
1970	 *	now = (offset * adj_2) + xtime_nsec_2
1971	 * So:
1972	 *	(offset * adj_1) + xtime_nsec_1 =
1973	 *		(offset * adj_2) + xtime_nsec_2
1974	 * And we know:
1975	 *	adj_2 = adj_1 + 1
1976	 * So:
1977	 *	(offset * adj_1) + xtime_nsec_1 =
1978	 *		(offset * (adj_1+1)) + xtime_nsec_2
1979	 *	(offset * adj_1) + xtime_nsec_1 =
1980	 *		(offset * adj_1) + offset + xtime_nsec_2
1981	 * Canceling the sides:
1982	 *	xtime_nsec_1 = offset + xtime_nsec_2
1983	 * Which gives us:
1984	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1985	 * Which simplifies to:
1986	 *	xtime_nsec -= offset
1987	 */
1988	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1989		/* NTP adjustment caused clocksource mult overflow */
1990		WARN_ON_ONCE(1);
1991		return;
1992	}
1993
1994	tk->tkr_mono.mult += mult_adj;
1995	tk->xtime_interval += interval;
1996	tk->tkr_mono.xtime_nsec -= offset;
1997}
1998
1999/*
2000 * Adjust the timekeeper's multiplier to the correct frequency
2001 * and also to reduce the accumulated error value.
2002 */
2003static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2004{
2005	u32 mult;
2006
2007	/*
2008	 * Determine the multiplier from the current NTP tick length.
2009	 * Avoid expensive division when the tick length doesn't change.
2010	 */
2011	if (likely(tk->ntp_tick == ntp_tick_length())) {
2012		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2013	} else {
2014		tk->ntp_tick = ntp_tick_length();
2015		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2016				 tk->xtime_remainder, tk->cycle_interval);
2017	}
2018
2019	/*
2020	 * If the clock is behind the NTP time, increase the multiplier by 1
2021	 * to catch up with it. If it's ahead and there was a remainder in the
2022	 * tick division, the clock will slow down. Otherwise it will stay
2023	 * ahead until the tick length changes to a non-divisible value.
2024	 */
2025	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2026	mult += tk->ntp_err_mult;
2027
2028	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2029
2030	if (unlikely(tk->tkr_mono.clock->maxadj &&
2031		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2032			> tk->tkr_mono.clock->maxadj))) {
2033		printk_once(KERN_WARNING
2034			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2035			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2036			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2037	}
2038
2039	/*
2040	 * It may be possible that when we entered this function, xtime_nsec
2041	 * was very small.  Further, if we're slightly speeding the clocksource
2042	 * in the code above, its possible the required corrective factor to
2043	 * xtime_nsec could cause it to underflow.
2044	 *
2045	 * Now, since we have already accumulated the second and the NTP
2046	 * subsystem has been notified via second_overflow(), we need to skip
2047	 * the next update.
2048	 */
2049	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2050		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2051							tk->tkr_mono.shift;
2052		tk->xtime_sec--;
2053		tk->skip_second_overflow = 1;
2054	}
2055}
2056
2057/*
2058 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2059 *
2060 * Helper function that accumulates the nsecs greater than a second
2061 * from the xtime_nsec field to the xtime_secs field.
2062 * It also calls into the NTP code to handle leapsecond processing.
2063 */
2064static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2065{
2066	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2067	unsigned int clock_set = 0;
2068
2069	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2070		int leap;
2071
2072		tk->tkr_mono.xtime_nsec -= nsecps;
2073		tk->xtime_sec++;
2074
2075		/*
2076		 * Skip NTP update if this second was accumulated before,
2077		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2078		 */
2079		if (unlikely(tk->skip_second_overflow)) {
2080			tk->skip_second_overflow = 0;
2081			continue;
2082		}
2083
2084		/* Figure out if its a leap sec and apply if needed */
2085		leap = second_overflow(tk->xtime_sec);
2086		if (unlikely(leap)) {
2087			struct timespec64 ts;
2088
2089			tk->xtime_sec += leap;
2090
2091			ts.tv_sec = leap;
2092			ts.tv_nsec = 0;
2093			tk_set_wall_to_mono(tk,
2094				timespec64_sub(tk->wall_to_monotonic, ts));
2095
2096			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2097
2098			clock_set = TK_CLOCK_WAS_SET;
2099		}
2100	}
2101	return clock_set;
2102}
2103
2104/*
2105 * logarithmic_accumulation - shifted accumulation of cycles
2106 *
2107 * This functions accumulates a shifted interval of cycles into
2108 * a shifted interval nanoseconds. Allows for O(log) accumulation
2109 * loop.
2110 *
2111 * Returns the unconsumed cycles.
2112 */
2113static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2114				    u32 shift, unsigned int *clock_set)
2115{
2116	u64 interval = tk->cycle_interval << shift;
2117	u64 snsec_per_sec;
2118
2119	/* If the offset is smaller than a shifted interval, do nothing */
2120	if (offset < interval)
2121		return offset;
2122
2123	/* Accumulate one shifted interval */
2124	offset -= interval;
2125	tk->tkr_mono.cycle_last += interval;
2126	tk->tkr_raw.cycle_last  += interval;
2127
2128	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2129	*clock_set |= accumulate_nsecs_to_secs(tk);
 
 
 
 
 
 
 
 
 
2130
2131	/* Accumulate raw time */
2132	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2133	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2134	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2135		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2136		tk->raw_sec++;
 
2137	}
 
2138
2139	/* Accumulate error between NTP and clock interval */
2140	tk->ntp_error += tk->ntp_tick << shift;
2141	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2142						(tk->ntp_error_shift + shift);
 
2143
2144	return offset;
2145}
2146
2147/*
2148 * timekeeping_advance - Updates the timekeeper to the current time and
2149 * current NTP tick length
 
2150 */
2151static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2152{
2153	struct timekeeper *real_tk = &tk_core.timekeeper;
2154	struct timekeeper *tk = &shadow_timekeeper;
2155	u64 offset;
2156	int shift = 0, maxshift;
2157	unsigned int clock_set = 0;
2158	unsigned long flags;
2159
2160	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2161
2162	/* Make sure we're fully resumed: */
2163	if (unlikely(timekeeping_suspended))
2164		goto out;
2165
2166	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2167				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2168
 
 
 
 
 
2169	/* Check if there's really nothing to do */
2170	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2171		goto out;
2172
2173	/* Do some additional sanity checking */
2174	timekeeping_check_update(tk, offset);
2175
2176	/*
2177	 * With NO_HZ we may have to accumulate many cycle_intervals
2178	 * (think "ticks") worth of time at once. To do this efficiently,
2179	 * we calculate the largest doubling multiple of cycle_intervals
2180	 * that is smaller than the offset.  We then accumulate that
2181	 * chunk in one go, and then try to consume the next smaller
2182	 * doubled multiple.
2183	 */
2184	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2185	shift = max(0, shift);
2186	/* Bound shift to one less than what overflows tick_length */
2187	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2188	shift = min(shift, maxshift);
2189	while (offset >= tk->cycle_interval) {
2190		offset = logarithmic_accumulation(tk, offset, shift,
2191							&clock_set);
2192		if (offset < tk->cycle_interval<<shift)
2193			shift--;
2194	}
2195
2196	/* Adjust the multiplier to correct NTP error */
2197	timekeeping_adjust(tk, offset);
2198
2199	/*
2200	 * Finally, make sure that after the rounding
2201	 * xtime_nsec isn't larger than NSEC_PER_SEC
 
 
 
 
 
 
 
 
 
 
 
 
2202	 */
2203	clock_set |= accumulate_nsecs_to_secs(tk);
 
 
 
 
 
2204
2205	write_seqcount_begin(&tk_core.seq);
2206	/*
2207	 * Update the real timekeeper.
2208	 *
2209	 * We could avoid this memcpy by switching pointers, but that
2210	 * requires changes to all other timekeeper usage sites as
2211	 * well, i.e. move the timekeeper pointer getter into the
2212	 * spinlocked/seqcount protected sections. And we trade this
2213	 * memcpy under the tk_core.seq against one before we start
2214	 * updating.
2215	 */
2216	timekeeping_update(tk, clock_set);
2217	memcpy(real_tk, tk, sizeof(*tk));
2218	/* The memcpy must come last. Do not put anything here! */
2219	write_seqcount_end(&tk_core.seq);
2220out:
2221	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2222
2223	return !!clock_set;
2224}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226/**
2227 * update_wall_time - Uses the current clocksource to increment the wall time
2228 *
2229 */
2230void update_wall_time(void)
2231{
2232	if (timekeeping_advance(TK_ADV_TICK))
2233		clock_was_set_delayed();
2234}
2235
2236/**
2237 * getboottime64 - Return the real time of system boot.
2238 * @ts:		pointer to the timespec64 to be set
2239 *
2240 * Returns the wall-time of boot in a timespec64.
2241 *
2242 * This is based on the wall_to_monotonic offset and the total suspend
2243 * time. Calls to settimeofday will affect the value returned (which
2244 * basically means that however wrong your real time clock is at boot time,
2245 * you get the right time here).
2246 */
2247void getboottime64(struct timespec64 *ts)
2248{
2249	struct timekeeper *tk = &tk_core.timekeeper;
2250	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
 
 
 
 
2251
2252	*ts = ktime_to_timespec64(t);
2253}
2254EXPORT_SYMBOL_GPL(getboottime64);
 
2255
2256void ktime_get_coarse_real_ts64(struct timespec64 *ts)
 
 
 
 
 
 
 
 
 
2257{
2258	struct timekeeper *tk = &tk_core.timekeeper;
2259	unsigned int seq;
 
 
 
2260
2261	do {
2262		seq = read_seqcount_begin(&tk_core.seq);
 
 
 
 
2263
2264		*ts = tk_xtime(tk);
2265	} while (read_seqcount_retry(&tk_core.seq, seq));
 
 
2266}
2267EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2268
2269void ktime_get_coarse_ts64(struct timespec64 *ts)
 
 
 
 
 
 
 
 
2270{
2271	struct timekeeper *tk = &tk_core.timekeeper;
2272	struct timespec64 now, mono;
2273	unsigned int seq;
2274
2275	do {
2276		seq = read_seqcount_begin(&tk_core.seq);
 
 
2277
2278		now = tk_xtime(tk);
2279		mono = tk->wall_to_monotonic;
2280	} while (read_seqcount_retry(&tk_core.seq, seq));
 
 
 
 
 
 
2281
2282	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2283				now.tv_nsec + mono.tv_nsec);
 
2284}
2285EXPORT_SYMBOL(ktime_get_coarse_ts64);
2286
2287/*
2288 * Must hold jiffies_lock
2289 */
2290void do_timer(unsigned long ticks)
2291{
2292	jiffies_64 += ticks;
2293	calc_global_load();
2294}
2295
2296/**
2297 * ktime_get_update_offsets_now - hrtimer helper
2298 * @cwsseq:	pointer to check and store the clock was set sequence number
2299 * @offs_real:	pointer to storage for monotonic -> realtime offset
2300 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2301 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2302 *
2303 * Returns current monotonic time and updates the offsets if the
2304 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2305 * different.
2306 *
2307 * Called from hrtimer_interrupt() or retrigger_next_event()
2308 */
2309ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2310				     ktime_t *offs_boot, ktime_t *offs_tai)
2311{
2312	struct timekeeper *tk = &tk_core.timekeeper;
2313	unsigned int seq;
2314	ktime_t base;
2315	u64 nsecs;
2316
2317	do {
2318		seq = read_seqcount_begin(&tk_core.seq);
2319
2320		base = tk->tkr_mono.base;
2321		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2322		base = ktime_add_ns(base, nsecs);
2323
2324		if (*cwsseq != tk->clock_was_set_seq) {
2325			*cwsseq = tk->clock_was_set_seq;
2326			*offs_real = tk->offs_real;
2327			*offs_boot = tk->offs_boot;
2328			*offs_tai = tk->offs_tai;
2329		}
2330
2331		/* Handle leapsecond insertion adjustments */
2332		if (unlikely(base >= tk->next_leap_ktime))
2333			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2334
2335	} while (read_seqcount_retry(&tk_core.seq, seq));
 
2336
2337	return base;
2338}
 
2339
2340/*
2341 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2342 */
2343static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2344{
2345	if (txc->modes & ADJ_ADJTIME) {
2346		/* singleshot must not be used with any other mode bits */
2347		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2348			return -EINVAL;
2349		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2350		    !capable(CAP_SYS_TIME))
2351			return -EPERM;
2352	} else {
2353		/* In order to modify anything, you gotta be super-user! */
2354		if (txc->modes && !capable(CAP_SYS_TIME))
2355			return -EPERM;
2356		/*
2357		 * if the quartz is off by more than 10% then
2358		 * something is VERY wrong!
2359		 */
2360		if (txc->modes & ADJ_TICK &&
2361		    (txc->tick <  900000/USER_HZ ||
2362		     txc->tick > 1100000/USER_HZ))
2363			return -EINVAL;
2364	}
2365
2366	if (txc->modes & ADJ_SETOFFSET) {
2367		/* In order to inject time, you gotta be super-user! */
2368		if (!capable(CAP_SYS_TIME))
2369			return -EPERM;
2370
2371		/*
2372		 * Validate if a timespec/timeval used to inject a time
2373		 * offset is valid.  Offsets can be positive or negative, so
2374		 * we don't check tv_sec. The value of the timeval/timespec
2375		 * is the sum of its fields,but *NOTE*:
2376		 * The field tv_usec/tv_nsec must always be non-negative and
2377		 * we can't have more nanoseconds/microseconds than a second.
2378		 */
2379		if (txc->time.tv_usec < 0)
2380			return -EINVAL;
2381
2382		if (txc->modes & ADJ_NANO) {
2383			if (txc->time.tv_usec >= NSEC_PER_SEC)
2384				return -EINVAL;
2385		} else {
2386			if (txc->time.tv_usec >= USEC_PER_SEC)
2387				return -EINVAL;
2388		}
2389	}
2390
2391	/*
2392	 * Check for potential multiplication overflows that can
2393	 * only happen on 64-bit systems:
2394	 */
2395	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2396		if (LLONG_MIN / PPM_SCALE > txc->freq)
2397			return -EINVAL;
2398		if (LLONG_MAX / PPM_SCALE < txc->freq)
2399			return -EINVAL;
2400	}
2401
2402	return 0;
 
 
 
 
 
 
 
 
 
2403}
2404
2405/**
2406 * random_get_entropy_fallback - Returns the raw clock source value,
2407 * used by random.c for platforms with no valid random_get_entropy().
 
 
 
2408 */
2409unsigned long random_get_entropy_fallback(void)
 
2410{
2411	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2412	struct clocksource *clock = READ_ONCE(tkr->clock);
2413
2414	if (unlikely(timekeeping_suspended || !clock))
2415		return 0;
2416	return clock->read(clock);
 
 
 
2417}
2418EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2419
 
2420/**
2421 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 
 
 
 
 
2422 */
2423int do_adjtimex(struct __kernel_timex *txc)
2424{
2425	struct timekeeper *tk = &tk_core.timekeeper;
2426	struct audit_ntp_data ad;
2427	bool clock_set = false;
2428	struct timespec64 ts;
2429	unsigned long flags;
2430	s32 orig_tai, tai;
2431	int ret;
2432
2433	/* Validate the data before disabling interrupts */
2434	ret = timekeeping_validate_timex(txc);
2435	if (ret)
2436		return ret;
2437	add_device_randomness(txc, sizeof(*txc));
2438
2439	if (txc->modes & ADJ_SETOFFSET) {
2440		struct timespec64 delta;
2441		delta.tv_sec  = txc->time.tv_sec;
2442		delta.tv_nsec = txc->time.tv_usec;
2443		if (!(txc->modes & ADJ_NANO))
2444			delta.tv_nsec *= 1000;
2445		ret = timekeeping_inject_offset(&delta);
2446		if (ret)
2447			return ret;
2448
2449		audit_tk_injoffset(delta);
2450	}
2451
2452	audit_ntp_init(&ad);
2453
2454	ktime_get_real_ts64(&ts);
2455	add_device_randomness(&ts, sizeof(ts));
2456
2457	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2458	write_seqcount_begin(&tk_core.seq);
2459
2460	orig_tai = tai = tk->tai_offset;
2461	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2462
2463	if (tai != orig_tai) {
2464		__timekeeping_set_tai_offset(tk, tai);
2465		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2466		clock_set = true;
2467	}
2468	tk_update_leap_state(tk);
2469
2470	write_seqcount_end(&tk_core.seq);
2471	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2472
2473	audit_ntp_log(&ad);
2474
2475	/* Update the multiplier immediately if frequency was set directly */
2476	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2477		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2478
2479	if (clock_set)
2480		clock_was_set(CLOCK_REALTIME);
2481
2482	ntp_notify_cmos_timer();
 
 
 
 
 
 
 
 
2483
2484	return ret;
 
 
2485}
 
2486
2487#ifdef CONFIG_NTP_PPS
2488/**
2489 * hardpps() - Accessor function to NTP __hardpps function
2490 */
2491void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2492{
2493	unsigned long flags;
 
2494
2495	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2496	write_seqcount_begin(&tk_core.seq);
 
 
 
 
 
 
2497
2498	__hardpps(phase_ts, raw_ts);
2499
2500	write_seqcount_end(&tk_core.seq);
2501	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 
 
 
 
 
 
 
 
 
2502}
2503EXPORT_SYMBOL(hardpps);
2504#endif /* CONFIG_NTP_PPS */
v3.5.6
 
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/interrupt.h>
  13#include <linux/percpu.h>
  14#include <linux/init.h>
  15#include <linux/mm.h>
 
  16#include <linux/sched.h>
 
 
  17#include <linux/syscore_ops.h>
  18#include <linux/clocksource.h>
  19#include <linux/jiffies.h>
  20#include <linux/time.h>
 
  21#include <linux/tick.h>
  22#include <linux/stop_machine.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24/* Structure holding internal timekeeping values. */
  25struct timekeeper {
  26	/* Current clocksource used for timekeeping. */
  27	struct clocksource *clock;
  28	/* NTP adjusted clock multiplier */
  29	u32	mult;
  30	/* The shift value of the current clocksource. */
  31	int	shift;
  32
  33	/* Number of clock cycles in one NTP interval. */
  34	cycle_t cycle_interval;
  35	/* Number of clock shifted nano seconds in one NTP interval. */
  36	u64	xtime_interval;
  37	/* shifted nano seconds left over when rounding cycle_interval */
  38	s64	xtime_remainder;
  39	/* Raw nano seconds accumulated per NTP interval. */
  40	u32	raw_interval;
  41
  42	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  43	u64	xtime_nsec;
  44	/* Difference between accumulated time and NTP time in ntp
  45	 * shifted nano seconds. */
  46	s64	ntp_error;
  47	/* Shift conversion between clock shifted nano seconds and
  48	 * ntp shifted nano seconds. */
  49	int	ntp_error_shift;
  50
  51	/* The current time */
  52	struct timespec xtime;
  53	/*
  54	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  55	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
  56	 * at zero at system boot time, so wall_to_monotonic will be negative,
  57	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
  58	 * the usual normalization.
  59	 *
  60	 * wall_to_monotonic is moved after resume from suspend for the
  61	 * monotonic time not to jump. We need to add total_sleep_time to
  62	 * wall_to_monotonic to get the real boot based time offset.
  63	 *
  64	 * - wall_to_monotonic is no longer the boot time, getboottime must be
  65	 * used instead.
  66	 */
  67	struct timespec wall_to_monotonic;
  68	/* time spent in suspend */
  69	struct timespec total_sleep_time;
  70	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
  71	struct timespec raw_time;
  72
  73	/* Offset clock monotonic -> clock realtime */
  74	ktime_t offs_real;
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76	/* Offset clock monotonic -> clock boottime */
  77	ktime_t offs_boot;
 
 
 
  78
  79	/* Seqlock for all timekeeper values */
  80	seqlock_t lock;
 
 
  81};
  82
  83static struct timekeeper timekeeper;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84
  85/*
  86 * This read-write spinlock protects us from races in SMP while
  87 * playing with xtime.
 
 
 
 
 
 
 
 
 
  88 */
  89__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92/* flag for if timekeeping is suspended */
  93int __read_mostly timekeeping_suspended;
 
 
 
 
 
 
 
 
 
 
  94
 
 
  95
 
 
 
  96
  97/**
  98 * timekeeper_setup_internals - Set up internals to use clocksource clock.
  99 *
 
 100 * @clock:		Pointer to clocksource.
 101 *
 102 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 103 * pair and interval request.
 104 *
 105 * Unless you're the timekeeping code, you should not be using this!
 106 */
 107static void timekeeper_setup_internals(struct clocksource *clock)
 108{
 109	cycle_t interval;
 110	u64 tmp, ntpinterval;
 
 111
 112	timekeeper.clock = clock;
 113	clock->cycle_last = clock->read(clock);
 
 
 
 
 
 
 
 114
 115	/* Do the ns -> cycle conversion first, using original mult */
 116	tmp = NTP_INTERVAL_LENGTH;
 117	tmp <<= clock->shift;
 118	ntpinterval = tmp;
 119	tmp += clock->mult/2;
 120	do_div(tmp, clock->mult);
 121	if (tmp == 0)
 122		tmp = 1;
 123
 124	interval = (cycle_t) tmp;
 125	timekeeper.cycle_interval = interval;
 126
 127	/* Go back from cycles -> shifted ns */
 128	timekeeper.xtime_interval = (u64) interval * clock->mult;
 129	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
 130	timekeeper.raw_interval =
 131		((u64) interval * clock->mult) >> clock->shift;
 
 
 
 
 
 
 
 
 
 
 
 132
 133	timekeeper.xtime_nsec = 0;
 134	timekeeper.shift = clock->shift;
 135
 136	timekeeper.ntp_error = 0;
 137	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 
 138
 139	/*
 140	 * The timekeeper keeps its own mult values for the currently
 141	 * active clocksource. These value will be adjusted via NTP
 142	 * to counteract clock drifting.
 143	 */
 144	timekeeper.mult = clock->mult;
 
 
 
 145}
 146
 147/* Timekeeper helper functions. */
 148static inline s64 timekeeping_get_ns(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149{
 150	cycle_t cycle_now, cycle_delta;
 151	struct clocksource *clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	/* read clocksource: */
 154	clock = timekeeper.clock;
 155	cycle_now = clock->read(clock);
 
 
 
 
 
 
 156
 157	/* calculate the delta since the last update_wall_time: */
 158	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
 
 
 159
 160	/* return delta convert to nanoseconds using ntp adjusted mult. */
 161	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
 162				  timekeeper.shift);
 163}
 
 164
 165static inline s64 timekeeping_get_ns_raw(void)
 
 
 
 
 
 166{
 167	cycle_t cycle_now, cycle_delta;
 168	struct clocksource *clock;
 169
 170	/* read clocksource: */
 171	clock = timekeeper.clock;
 172	cycle_now = clock->read(clock);
 173
 174	/* calculate the delta since the last update_wall_time: */
 175	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
 
 176
 177	/* return delta convert to nanoseconds. */
 178	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
 
 
 
 
 
 
 
 179}
 180
 181static void update_rt_offset(void)
 
 
 
 182{
 183	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184
 185	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
 186	timekeeper.offs_real = timespec_to_ktime(tmp);
 187}
 188
 189/* must hold write on timekeeper.lock */
 190static void timekeeping_update(bool clearntp)
 191{
 192	if (clearntp) {
 193		timekeeper.ntp_error = 0;
 194		ntp_clear();
 195	}
 196	update_rt_offset();
 197	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
 198			 timekeeper.clock, timekeeper.mult);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199}
 200
 201
 202/**
 203 * timekeeping_forward_now - update clock to the current time
 
 204 *
 205 * Forward the current clock to update its state since the last call to
 206 * update_wall_time(). This is useful before significant clock changes,
 207 * as it avoids having to deal with this time offset explicitly.
 208 */
 209static void timekeeping_forward_now(void)
 210{
 211	cycle_t cycle_now, cycle_delta;
 212	struct clocksource *clock;
 213	s64 nsec;
 214
 215	clock = timekeeper.clock;
 216	cycle_now = clock->read(clock);
 217	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
 218	clock->cycle_last = cycle_now;
 219
 220	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
 221				  timekeeper.shift);
 
 
 222
 223	/* If arch requires, add in gettimeoffset() */
 224	nsec += arch_gettimeoffset();
 225
 226	timespec_add_ns(&timekeeper.xtime, nsec);
 227
 228	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
 229	timespec_add_ns(&timekeeper.raw_time, nsec);
 230}
 231
 232/**
 233 * getnstimeofday - Returns the time of day in a timespec
 234 * @ts:		pointer to the timespec to be set
 235 *
 236 * Returns the time of day in a timespec.
 237 */
 238void getnstimeofday(struct timespec *ts)
 239{
 240	unsigned long seq;
 241	s64 nsecs;
 
 242
 243	WARN_ON(timekeeping_suspended);
 244
 245	do {
 246		seq = read_seqbegin(&timekeeper.lock);
 247
 248		*ts = timekeeper.xtime;
 249		nsecs = timekeeping_get_ns();
 250
 251		/* If arch requires, add in gettimeoffset() */
 252		nsecs += arch_gettimeoffset();
 253
 254	} while (read_seqretry(&timekeeper.lock, seq));
 255
 256	timespec_add_ns(ts, nsecs);
 257}
 258EXPORT_SYMBOL(getnstimeofday);
 259
 260ktime_t ktime_get(void)
 261{
 
 262	unsigned int seq;
 263	s64 secs, nsecs;
 
 264
 265	WARN_ON(timekeeping_suspended);
 266
 267	do {
 268		seq = read_seqbegin(&timekeeper.lock);
 269		secs = timekeeper.xtime.tv_sec +
 270				timekeeper.wall_to_monotonic.tv_sec;
 271		nsecs = timekeeper.xtime.tv_nsec +
 272				timekeeper.wall_to_monotonic.tv_nsec;
 273		nsecs += timekeeping_get_ns();
 274		/* If arch requires, add in gettimeoffset() */
 275		nsecs += arch_gettimeoffset();
 276
 277	} while (read_seqretry(&timekeeper.lock, seq));
 278	/*
 279	 * Use ktime_set/ktime_add_ns to create a proper ktime on
 280	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
 281	 */
 282	return ktime_add_ns(ktime_set(secs, 0), nsecs);
 283}
 284EXPORT_SYMBOL_GPL(ktime_get);
 285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286/**
 287 * ktime_get_ts - get the monotonic clock in timespec format
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288 * @ts:		pointer to timespec variable
 289 *
 290 * The function calculates the monotonic clock from the realtime
 291 * clock and the wall_to_monotonic offset and stores the result
 292 * in normalized timespec format in the variable pointed to by @ts.
 293 */
 294void ktime_get_ts(struct timespec *ts)
 295{
 296	struct timespec tomono;
 
 297	unsigned int seq;
 298	s64 nsecs;
 299
 300	WARN_ON(timekeeping_suspended);
 301
 302	do {
 303		seq = read_seqbegin(&timekeeper.lock);
 304		*ts = timekeeper.xtime;
 305		tomono = timekeeper.wall_to_monotonic;
 306		nsecs = timekeeping_get_ns();
 307		/* If arch requires, add in gettimeoffset() */
 308		nsecs += arch_gettimeoffset();
 309
 310	} while (read_seqretry(&timekeeper.lock, seq));
 311
 312	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 313				ts->tv_nsec + tomono.tv_nsec + nsecs);
 
 314}
 315EXPORT_SYMBOL_GPL(ktime_get_ts);
 316
 317#ifdef CONFIG_NTP_PPS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319/**
 320 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 321 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 322 * @ts_real:	pointer to the timespec to be set to the time of day
 323 *
 324 * This function reads both the time of day and raw monotonic time at the
 325 * same time atomically and stores the resulting timestamps in timespec
 326 * format.
 327 */
 328void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 329{
 330	unsigned long seq;
 331	s64 nsecs_raw, nsecs_real;
 
 
 
 
 
 332
 333	WARN_ON_ONCE(timekeeping_suspended);
 334
 335	do {
 336		u32 arch_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337
 338		seq = read_seqbegin(&timekeeper.lock);
 
 
 
 339
 340		*ts_raw = timekeeper.raw_time;
 341		*ts_real = timekeeper.xtime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343		nsecs_raw = timekeeping_get_ns_raw();
 344		nsecs_real = timekeeping_get_ns();
 345
 346		/* If arch requires, add in gettimeoffset() */
 347		arch_offset = arch_gettimeoffset();
 348		nsecs_raw += arch_offset;
 349		nsecs_real += arch_offset;
 
 350
 351	} while (read_seqretry(&timekeeper.lock, seq));
 
 
 
 
 
 
 
 
 
 352
 353	timespec_add_ns(ts_raw, nsecs_raw);
 354	timespec_add_ns(ts_real, nsecs_real);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355}
 356EXPORT_SYMBOL(getnstime_raw_and_real);
 357
 358#endif /* CONFIG_NTP_PPS */
 359
 360/**
 361 * do_gettimeofday - Returns the time of day in a timeval
 362 * @tv:		pointer to the timeval to be set
 363 *
 364 * NOTE: Users should be converted to using getnstimeofday()
 365 */
 366void do_gettimeofday(struct timeval *tv)
 367{
 368	struct timespec now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370	getnstimeofday(&now);
 371	tv->tv_sec = now.tv_sec;
 372	tv->tv_usec = now.tv_nsec/1000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373}
 374EXPORT_SYMBOL(do_gettimeofday);
 375
 376/**
 377 * do_settimeofday - Sets the time of day
 378 * @tv:		pointer to the timespec variable containing the new time
 379 *
 380 * Sets the time of day to the new time and update NTP and notify hrtimers
 381 */
 382int do_settimeofday(const struct timespec *tv)
 383{
 384	struct timespec ts_delta;
 
 385	unsigned long flags;
 
 386
 387	if (!timespec_valid_strict(tv))
 388		return -EINVAL;
 389
 390	write_seqlock_irqsave(&timekeeper.lock, flags);
 
 
 
 
 
 
 391
 392	timekeeping_forward_now();
 
 
 
 393
 394	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
 395	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
 396	timekeeper.wall_to_monotonic =
 397			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
 
 398
 399	timekeeper.xtime = *tv;
 400	timekeeping_update(true);
 401
 402	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 
 403
 404	/* signal hrtimers about time change */
 405	clock_was_set();
 
 
 406
 407	return 0;
 408}
 409EXPORT_SYMBOL(do_settimeofday);
 410
 411
 412/**
 413 * timekeeping_inject_offset - Adds or subtracts from the current time.
 414 * @tv:		pointer to the timespec variable containing the offset
 415 *
 416 * Adds or subtracts an offset value from the current time.
 417 */
 418int timekeeping_inject_offset(struct timespec *ts)
 419{
 
 420	unsigned long flags;
 421	struct timespec tmp;
 422	int ret = 0;
 423
 424	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
 425		return -EINVAL;
 426
 427	write_seqlock_irqsave(&timekeeper.lock, flags);
 
 428
 429	timekeeping_forward_now();
 430
 431	tmp = timespec_add(timekeeper.xtime,  *ts);
 432	if (!timespec_valid_strict(&tmp)) {
 
 
 433		ret = -EINVAL;
 434		goto error;
 435	}
 436
 437	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
 438	timekeeper.wall_to_monotonic =
 439				timespec_sub(timekeeper.wall_to_monotonic, *ts);
 440
 441error: /* even if we error out, we forwarded the time, so call update */
 442	timekeeping_update(true);
 443
 444	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 
 445
 446	/* signal hrtimers about time change */
 447	clock_was_set();
 448
 449	return ret;
 450}
 451EXPORT_SYMBOL(timekeeping_inject_offset);
 452
 453/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454 * change_clocksource - Swaps clocksources if a new one is available
 455 *
 456 * Accumulates current time interval and initializes new clocksource
 457 */
 458static int change_clocksource(void *data)
 459{
 460	struct clocksource *new, *old;
 
 461	unsigned long flags;
 
 462
 463	new = (struct clocksource *) data;
 464
 465	write_seqlock_irqsave(&timekeeper.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467	timekeeping_forward_now();
 468	if (!new->enable || new->enable(new) == 0) {
 469		old = timekeeper.clock;
 470		timekeeper_setup_internals(new);
 
 
 471		if (old->disable)
 472			old->disable(old);
 
 
 473	}
 474	timekeeping_update(true);
 475
 476	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 477
 478	return 0;
 479}
 480
 481/**
 482 * timekeeping_notify - Install a new clock source
 483 * @clock:		pointer to the clock source
 484 *
 485 * This function is called from clocksource.c after a new, better clock
 486 * source has been registered. The caller holds the clocksource_mutex.
 487 */
 488void timekeeping_notify(struct clocksource *clock)
 489{
 490	if (timekeeper.clock == clock)
 491		return;
 
 
 492	stop_machine(change_clocksource, clock, NULL);
 493	tick_clock_notify();
 
 494}
 495
 496/**
 497 * ktime_get_real - get the real (wall-) time in ktime_t format
 498 *
 499 * returns the time in ktime_t format
 500 */
 501ktime_t ktime_get_real(void)
 502{
 503	struct timespec now;
 504
 505	getnstimeofday(&now);
 506
 507	return timespec_to_ktime(now);
 508}
 509EXPORT_SYMBOL_GPL(ktime_get_real);
 510
 511/**
 512 * getrawmonotonic - Returns the raw monotonic time in a timespec
 513 * @ts:		pointer to the timespec to be set
 514 *
 515 * Returns the raw monotonic time (completely un-modified by ntp)
 516 */
 517void getrawmonotonic(struct timespec *ts)
 518{
 519	unsigned long seq;
 520	s64 nsecs;
 
 521
 522	do {
 523		seq = read_seqbegin(&timekeeper.lock);
 524		nsecs = timekeeping_get_ns_raw();
 525		*ts = timekeeper.raw_time;
 526
 527	} while (read_seqretry(&timekeeper.lock, seq));
 528
 529	timespec_add_ns(ts, nsecs);
 
 530}
 531EXPORT_SYMBOL(getrawmonotonic);
 532
 533
 534/**
 535 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 536 */
 537int timekeeping_valid_for_hres(void)
 538{
 539	unsigned long seq;
 
 540	int ret;
 541
 542	do {
 543		seq = read_seqbegin(&timekeeper.lock);
 544
 545		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 546
 547	} while (read_seqretry(&timekeeper.lock, seq));
 548
 549	return ret;
 550}
 551
 552/**
 553 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 554 */
 555u64 timekeeping_max_deferment(void)
 556{
 557	unsigned long seq;
 
 558	u64 ret;
 
 559	do {
 560		seq = read_seqbegin(&timekeeper.lock);
 561
 562		ret = timekeeper.clock->max_idle_ns;
 563
 564	} while (read_seqretry(&timekeeper.lock, seq));
 565
 566	return ret;
 567}
 568
 569/**
 570 * read_persistent_clock -  Return time from the persistent clock.
 
 571 *
 572 * Weak dummy function for arches that do not yet support it.
 573 * Reads the time from the battery backed persistent clock.
 574 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 575 *
 576 *  XXX - Do be sure to remove it once all arches implement it.
 577 */
 578void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
 579{
 580	ts->tv_sec = 0;
 581	ts->tv_nsec = 0;
 582}
 583
 584/**
 585 * read_boot_clock -  Return time of the system start.
 
 
 
 586 *
 587 * Weak dummy function for arches that do not yet support it.
 588 * Function to read the exact time the system has been started.
 589 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 590 *
 591 *  XXX - Do be sure to remove it once all arches implement it.
 592 */
 593void __attribute__((weak)) read_boot_clock(struct timespec *ts)
 
 
 
 
 
 594{
 595	ts->tv_sec = 0;
 596	ts->tv_nsec = 0;
 597}
 598
 599/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600 * timekeeping_init - Initializes the clocksource and common timekeeping values
 601 */
 602void __init timekeeping_init(void)
 603{
 
 
 604	struct clocksource *clock;
 605	unsigned long flags;
 606	struct timespec now, boot;
 607
 608	read_persistent_clock(&now);
 609	if (!timespec_valid_strict(&now)) {
 610		pr_warn("WARNING: Persistent clock returned invalid value!\n"
 611			"         Check your CMOS/BIOS settings.\n");
 612		now.tv_sec = 0;
 613		now.tv_nsec = 0;
 
 614	}
 615
 616	read_boot_clock(&boot);
 617	if (!timespec_valid_strict(&boot)) {
 618		pr_warn("WARNING: Boot clock returned invalid value!\n"
 619			"         Check your CMOS/BIOS settings.\n");
 620		boot.tv_sec = 0;
 621		boot.tv_nsec = 0;
 622	}
 623
 624	seqlock_init(&timekeeper.lock);
 
 
 
 
 625
 
 
 626	ntp_init();
 627
 628	write_seqlock_irqsave(&timekeeper.lock, flags);
 629	clock = clocksource_default_clock();
 630	if (clock->enable)
 631		clock->enable(clock);
 632	timekeeper_setup_internals(clock);
 633
 634	timekeeper.xtime.tv_sec = now.tv_sec;
 635	timekeeper.xtime.tv_nsec = now.tv_nsec;
 636	timekeeper.raw_time.tv_sec = 0;
 637	timekeeper.raw_time.tv_nsec = 0;
 638	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
 639		boot.tv_sec = timekeeper.xtime.tv_sec;
 640		boot.tv_nsec = timekeeper.xtime.tv_nsec;
 641	}
 642	set_normalized_timespec(&timekeeper.wall_to_monotonic,
 643				-boot.tv_sec, -boot.tv_nsec);
 644	update_rt_offset();
 645	timekeeper.total_sleep_time.tv_sec = 0;
 646	timekeeper.total_sleep_time.tv_nsec = 0;
 647	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 648}
 649
 650/* time in seconds when suspend began */
 651static struct timespec timekeeping_suspend_time;
 652
 653static void update_sleep_time(struct timespec t)
 654{
 655	timekeeper.total_sleep_time = t;
 656	timekeeper.offs_boot = timespec_to_ktime(t);
 657}
 658
 
 
 
 659/**
 660 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 661 * @delta: pointer to a timespec delta value
 
 662 *
 663 * Takes a timespec offset measuring a suspend interval and properly
 664 * adds the sleep offset to the timekeeping variables.
 665 */
 666static void __timekeeping_inject_sleeptime(struct timespec *delta)
 
 667{
 668	if (!timespec_valid_strict(delta)) {
 669		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
 670					"sleep delta value!\n");
 
 671		return;
 672	}
 
 
 
 
 
 673
 674	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
 675	timekeeper.wall_to_monotonic =
 676			timespec_sub(timekeeper.wall_to_monotonic, *delta);
 677	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678}
 679
 
 
 
 
 
 
 
 
 
 
 
 
 
 680
 681/**
 682 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 683 * @delta: pointer to a timespec delta value
 684 *
 685 * This hook is for architectures that cannot support read_persistent_clock
 686 * because their RTC/persistent clock is only accessible when irqs are enabled.
 
 687 *
 688 * This function should only be called by rtc_resume(), and allows
 689 * a suspend offset to be injected into the timekeeping values.
 690 */
 691void timekeeping_inject_sleeptime(struct timespec *delta)
 692{
 
 693	unsigned long flags;
 694	struct timespec ts;
 695
 696	/* Make sure we don't set the clock twice */
 697	read_persistent_clock(&ts);
 698	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
 699		return;
 700
 701	write_seqlock_irqsave(&timekeeper.lock, flags);
 702
 703	timekeeping_forward_now();
 704
 705	__timekeeping_inject_sleeptime(delta);
 706
 707	timekeeping_update(true);
 708
 709	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 
 710
 711	/* signal hrtimers about time change */
 712	clock_was_set();
 713}
 714
 715
 716/**
 717 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 718 *
 719 * This is for the generic clocksource timekeeping.
 720 * xtime/wall_to_monotonic/jiffies/etc are
 721 * still managed by arch specific suspend/resume code.
 722 */
 723static void timekeeping_resume(void)
 724{
 
 
 725	unsigned long flags;
 726	struct timespec ts;
 
 
 727
 728	read_persistent_clock(&ts);
 729
 
 730	clocksource_resume();
 731
 732	write_seqlock_irqsave(&timekeeper.lock, flags);
 
 733
 734	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
 735		ts = timespec_sub(ts, timekeeping_suspend_time);
 736		__timekeeping_inject_sleeptime(&ts);
 737	}
 738	/* re-base the last cycle value */
 739	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
 740	timekeeper.ntp_error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741	timekeeping_suspended = 0;
 742	timekeeping_update(false);
 743	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 
 744
 745	touch_softlockup_watchdog();
 746
 747	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
 748
 749	/* Resume hrtimers */
 750	hrtimers_resume();
 751}
 752
 753static int timekeeping_suspend(void)
 754{
 
 755	unsigned long flags;
 756	struct timespec		delta, delta_delta;
 757	static struct timespec	old_delta;
 
 
 758
 759	read_persistent_clock(&timekeeping_suspend_time);
 760
 761	write_seqlock_irqsave(&timekeeper.lock, flags);
 762	timekeeping_forward_now();
 
 
 
 
 
 
 
 
 
 
 
 763	timekeeping_suspended = 1;
 764
 765	/*
 766	 * To avoid drift caused by repeated suspend/resumes,
 767	 * which each can add ~1 second drift error,
 768	 * try to compensate so the difference in system time
 769	 * and persistent_clock time stays close to constant.
 770	 */
 771	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
 772	delta_delta = timespec_sub(delta, old_delta);
 773	if (abs(delta_delta.tv_sec)  >= 2) {
 
 774		/*
 775		 * if delta_delta is too large, assume time correction
 776		 * has occured and set old_delta to the current delta.
 
 
 777		 */
 778		old_delta = delta;
 779	} else {
 780		/* Otherwise try to adjust old_system to compensate */
 781		timekeeping_suspend_time =
 782			timespec_add(timekeeping_suspend_time, delta_delta);
 
 
 
 
 
 
 
 
 783	}
 784	write_sequnlock_irqrestore(&timekeeper.lock, flags);
 785
 786	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
 
 
 
 
 
 787	clocksource_suspend();
 
 788
 789	return 0;
 790}
 791
 792/* sysfs resume/suspend bits for timekeeping */
 793static struct syscore_ops timekeeping_syscore_ops = {
 794	.resume		= timekeeping_resume,
 795	.suspend	= timekeeping_suspend,
 796};
 797
 798static int __init timekeeping_init_ops(void)
 799{
 800	register_syscore_ops(&timekeeping_syscore_ops);
 801	return 0;
 802}
 803
 804device_initcall(timekeeping_init_ops);
 805
 806/*
 807 * If the error is already larger, we look ahead even further
 808 * to compensate for late or lost adjustments.
 809 */
 810static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
 811						 s64 *offset)
 
 812{
 813	s64 tick_error, i;
 814	u32 look_ahead, adj;
 815	s32 error2, mult;
 816
 817	/*
 818	 * Use the current error value to determine how much to look ahead.
 819	 * The larger the error the slower we adjust for it to avoid problems
 820	 * with losing too many ticks, otherwise we would overadjust and
 821	 * produce an even larger error.  The smaller the adjustment the
 822	 * faster we try to adjust for it, as lost ticks can do less harm
 823	 * here.  This is tuned so that an error of about 1 msec is adjusted
 824	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
 825	 */
 826	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
 827	error2 = abs(error2);
 828	for (look_ahead = 0; error2 > 0; look_ahead++)
 829		error2 >>= 2;
 830
 831	/*
 832	 * Now calculate the error in (1 << look_ahead) ticks, but first
 833	 * remove the single look ahead already included in the error.
 834	 */
 835	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
 836	tick_error -= timekeeper.xtime_interval >> 1;
 837	error = ((error - tick_error) >> look_ahead) + tick_error;
 838
 839	/* Finally calculate the adjustment shift value.  */
 840	i = *interval;
 841	mult = 1;
 842	if (error < 0) {
 843		error = -error;
 844		*interval = -*interval;
 845		*offset = -*offset;
 846		mult = -1;
 847	}
 848	for (adj = 0; error > i; adj++)
 849		error >>= 1;
 850
 851	*interval <<= adj;
 852	*offset <<= adj;
 853	return mult << adj;
 854}
 855
 856/*
 857 * Adjust the multiplier to reduce the error value,
 858 * this is optimized for the most common adjustments of -1,0,1,
 859 * for other values we can do a bit more work.
 860 */
 861static void timekeeping_adjust(s64 offset)
 862{
 863	s64 error, interval = timekeeper.cycle_interval;
 864	int adj;
 865
 866	/*
 867	 * The point of this is to check if the error is greater than half
 868	 * an interval.
 869	 *
 870	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
 871	 *
 872	 * Note we subtract one in the shift, so that error is really error*2.
 873	 * This "saves" dividing(shifting) interval twice, but keeps the
 874	 * (error > interval) comparison as still measuring if error is
 875	 * larger than half an interval.
 876	 *
 877	 * Note: It does not "save" on aggravation when reading the code.
 878	 */
 879	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
 880	if (error > interval) {
 881		/*
 882		 * We now divide error by 4(via shift), which checks if
 883		 * the error is greater than twice the interval.
 884		 * If it is greater, we need a bigadjust, if its smaller,
 885		 * we can adjust by 1.
 886		 */
 887		error >>= 2;
 888		/*
 889		 * XXX - In update_wall_time, we round up to the next
 890		 * nanosecond, and store the amount rounded up into
 891		 * the error. This causes the likely below to be unlikely.
 892		 *
 893		 * The proper fix is to avoid rounding up by using
 894		 * the high precision timekeeper.xtime_nsec instead of
 895		 * xtime.tv_nsec everywhere. Fixing this will take some
 896		 * time.
 897		 */
 898		if (likely(error <= interval))
 899			adj = 1;
 900		else
 901			adj = timekeeping_bigadjust(error, &interval, &offset);
 902	} else if (error < -interval) {
 903		/* See comment above, this is just switched for the negative */
 904		error >>= 2;
 905		if (likely(error >= -interval)) {
 906			adj = -1;
 907			interval = -interval;
 908			offset = -offset;
 909		} else
 910			adj = timekeeping_bigadjust(error, &interval, &offset);
 911	} else /* No adjustment needed */
 912		return;
 913
 914	if (unlikely(timekeeper.clock->maxadj &&
 915			(timekeeper.mult + adj >
 916			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
 917		printk_once(KERN_WARNING
 918			"Adjusting %s more than 11%% (%ld vs %ld)\n",
 919			timekeeper.clock->name, (long)timekeeper.mult + adj,
 920			(long)timekeeper.clock->mult +
 921				timekeeper.clock->maxadj);
 922	}
 923	/*
 924	 * So the following can be confusing.
 925	 *
 926	 * To keep things simple, lets assume adj == 1 for now.
 927	 *
 928	 * When adj != 1, remember that the interval and offset values
 929	 * have been appropriately scaled so the math is the same.
 930	 *
 931	 * The basic idea here is that we're increasing the multiplier
 932	 * by one, this causes the xtime_interval to be incremented by
 933	 * one cycle_interval. This is because:
 934	 *	xtime_interval = cycle_interval * mult
 935	 * So if mult is being incremented by one:
 936	 *	xtime_interval = cycle_interval * (mult + 1)
 937	 * Its the same as:
 938	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
 939	 * Which can be shortened to:
 940	 *	xtime_interval += cycle_interval
 941	 *
 942	 * So offset stores the non-accumulated cycles. Thus the current
 943	 * time (in shifted nanoseconds) is:
 944	 *	now = (offset * adj) + xtime_nsec
 945	 * Now, even though we're adjusting the clock frequency, we have
 946	 * to keep time consistent. In other words, we can't jump back
 947	 * in time, and we also want to avoid jumping forward in time.
 948	 *
 949	 * So given the same offset value, we need the time to be the same
 950	 * both before and after the freq adjustment.
 951	 *	now = (offset * adj_1) + xtime_nsec_1
 952	 *	now = (offset * adj_2) + xtime_nsec_2
 953	 * So:
 954	 *	(offset * adj_1) + xtime_nsec_1 =
 955	 *		(offset * adj_2) + xtime_nsec_2
 956	 * And we know:
 957	 *	adj_2 = adj_1 + 1
 958	 * So:
 959	 *	(offset * adj_1) + xtime_nsec_1 =
 960	 *		(offset * (adj_1+1)) + xtime_nsec_2
 961	 *	(offset * adj_1) + xtime_nsec_1 =
 962	 *		(offset * adj_1) + offset + xtime_nsec_2
 963	 * Canceling the sides:
 964	 *	xtime_nsec_1 = offset + xtime_nsec_2
 965	 * Which gives us:
 966	 *	xtime_nsec_2 = xtime_nsec_1 - offset
 967	 * Which simplfies to:
 968	 *	xtime_nsec -= offset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	 *
 970	 * XXX - TODO: Doc ntp_error calculation.
 
 
 971	 */
 972	timekeeper.mult += adj;
 973	timekeeper.xtime_interval += interval;
 974	timekeeper.xtime_nsec -= offset;
 975	timekeeper.ntp_error -= (interval - offset) <<
 976				timekeeper.ntp_error_shift;
 
 977}
 978
 
 
 
 
 
 
 
 
 
 
 
 979
 980/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981 * logarithmic_accumulation - shifted accumulation of cycles
 982 *
 983 * This functions accumulates a shifted interval of cycles into
 984 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 985 * loop.
 986 *
 987 * Returns the unconsumed cycles.
 988 */
 989static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
 
 990{
 991	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
 992	u64 raw_nsecs;
 993
 994	/* If the offset is smaller than a shifted interval, do nothing */
 995	if (offset < timekeeper.cycle_interval<<shift)
 996		return offset;
 997
 998	/* Accumulate one shifted interval */
 999	offset -= timekeeper.cycle_interval << shift;
1000	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
 
1001
1002	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1003	while (timekeeper.xtime_nsec >= nsecps) {
1004		int leap;
1005		timekeeper.xtime_nsec -= nsecps;
1006		timekeeper.xtime.tv_sec++;
1007		leap = second_overflow(timekeeper.xtime.tv_sec);
1008		timekeeper.xtime.tv_sec += leap;
1009		timekeeper.wall_to_monotonic.tv_sec -= leap;
1010		if (leap)
1011			clock_was_set_delayed();
1012	}
1013
1014	/* Accumulate raw time */
1015	raw_nsecs = timekeeper.raw_interval << shift;
1016	raw_nsecs += timekeeper.raw_time.tv_nsec;
1017	if (raw_nsecs >= NSEC_PER_SEC) {
1018		u64 raw_secs = raw_nsecs;
1019		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1020		timekeeper.raw_time.tv_sec += raw_secs;
1021	}
1022	timekeeper.raw_time.tv_nsec = raw_nsecs;
1023
1024	/* Accumulate error between NTP and clock interval */
1025	timekeeper.ntp_error += ntp_tick_length() << shift;
1026	timekeeper.ntp_error -=
1027	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1028				(timekeeper.ntp_error_shift + shift);
1029
1030	return offset;
1031}
1032
1033
1034/**
1035 * update_wall_time - Uses the current clocksource to increment the wall time
1036 *
1037 */
1038static void update_wall_time(void)
1039{
1040	struct clocksource *clock;
1041	cycle_t offset;
 
1042	int shift = 0, maxshift;
 
1043	unsigned long flags;
1044
1045	write_seqlock_irqsave(&timekeeper.lock, flags);
1046
1047	/* Make sure we're fully resumed: */
1048	if (unlikely(timekeeping_suspended))
1049		goto out;
1050
1051	clock = timekeeper.clock;
 
1052
1053#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1054	offset = timekeeper.cycle_interval;
1055#else
1056	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1057#endif
1058	/* Check if there's really nothing to do */
1059	if (offset < timekeeper.cycle_interval)
1060		goto out;
1061
1062	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1063						timekeeper.shift;
1064
1065	/*
1066	 * With NO_HZ we may have to accumulate many cycle_intervals
1067	 * (think "ticks") worth of time at once. To do this efficiently,
1068	 * we calculate the largest doubling multiple of cycle_intervals
1069	 * that is smaller than the offset.  We then accumulate that
1070	 * chunk in one go, and then try to consume the next smaller
1071	 * doubled multiple.
1072	 */
1073	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1074	shift = max(0, shift);
1075	/* Bound shift to one less than what overflows tick_length */
1076	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1077	shift = min(shift, maxshift);
1078	while (offset >= timekeeper.cycle_interval) {
1079		offset = logarithmic_accumulation(offset, shift);
1080		if(offset < timekeeper.cycle_interval<<shift)
 
1081			shift--;
1082	}
1083
1084	/* correct the clock when NTP error is too big */
1085	timekeeping_adjust(offset);
1086
1087	/*
1088	 * Since in the loop above, we accumulate any amount of time
1089	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1090	 * xtime_nsec to be fairly small after the loop. Further, if we're
1091	 * slightly speeding the clocksource up in timekeeping_adjust(),
1092	 * its possible the required corrective factor to xtime_nsec could
1093	 * cause it to underflow.
1094	 *
1095	 * Now, we cannot simply roll the accumulated second back, since
1096	 * the NTP subsystem has been notified via second_overflow. So
1097	 * instead we push xtime_nsec forward by the amount we underflowed,
1098	 * and add that amount into the error.
1099	 *
1100	 * We'll correct this error next time through this function, when
1101	 * xtime_nsec is not as small.
1102	 */
1103	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1104		s64 neg = -(s64)timekeeper.xtime_nsec;
1105		timekeeper.xtime_nsec = 0;
1106		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1107	}
1108
1109
 
1110	/*
1111	 * Store full nanoseconds into xtime after rounding it up and
1112	 * add the remainder to the error difference.
 
 
 
 
 
 
1113	 */
1114	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1115						timekeeper.shift) + 1;
1116	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1117						timekeeper.shift;
1118	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1119				timekeeper.ntp_error_shift;
1120
1121	/*
1122	 * Finally, make sure that after the rounding
1123	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1124	 */
1125	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1126		int leap;
1127		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1128		timekeeper.xtime.tv_sec++;
1129		leap = second_overflow(timekeeper.xtime.tv_sec);
1130		timekeeper.xtime.tv_sec += leap;
1131		timekeeper.wall_to_monotonic.tv_sec -= leap;
1132		if (leap)
1133			clock_was_set_delayed();
1134	}
1135
1136	timekeeping_update(false);
1137
1138out:
1139	write_sequnlock_irqrestore(&timekeeper.lock, flags);
1140
 
 
 
 
 
 
 
 
1141}
1142
1143/**
1144 * getboottime - Return the real time of system boot.
1145 * @ts:		pointer to the timespec to be set
1146 *
1147 * Returns the wall-time of boot in a timespec.
1148 *
1149 * This is based on the wall_to_monotonic offset and the total suspend
1150 * time. Calls to settimeofday will affect the value returned (which
1151 * basically means that however wrong your real time clock is at boot time,
1152 * you get the right time here).
1153 */
1154void getboottime(struct timespec *ts)
1155{
1156	struct timespec boottime = {
1157		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1158				timekeeper.total_sleep_time.tv_sec,
1159		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1160				timekeeper.total_sleep_time.tv_nsec
1161	};
1162
1163	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1164}
1165EXPORT_SYMBOL_GPL(getboottime);
1166
1167
1168/**
1169 * get_monotonic_boottime - Returns monotonic time since boot
1170 * @ts:		pointer to the timespec to be set
1171 *
1172 * Returns the monotonic time since boot in a timespec.
1173 *
1174 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1175 * includes the time spent in suspend.
1176 */
1177void get_monotonic_boottime(struct timespec *ts)
1178{
1179	struct timespec tomono, sleep;
1180	unsigned int seq;
1181	s64 nsecs;
1182
1183	WARN_ON(timekeeping_suspended);
1184
1185	do {
1186		seq = read_seqbegin(&timekeeper.lock);
1187		*ts = timekeeper.xtime;
1188		tomono = timekeeper.wall_to_monotonic;
1189		sleep = timekeeper.total_sleep_time;
1190		nsecs = timekeeping_get_ns();
1191
1192	} while (read_seqretry(&timekeeper.lock, seq));
1193
1194	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1195			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1196}
1197EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1198
1199/**
1200 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1201 *
1202 * Returns the monotonic time since boot in a ktime
1203 *
1204 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1205 * includes the time spent in suspend.
1206 */
1207ktime_t ktime_get_boottime(void)
1208{
1209	struct timespec ts;
 
 
1210
1211	get_monotonic_boottime(&ts);
1212	return timespec_to_ktime(ts);
1213}
1214EXPORT_SYMBOL_GPL(ktime_get_boottime);
1215
1216/**
1217 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1218 * @ts:		pointer to the timespec to be converted
1219 */
1220void monotonic_to_bootbased(struct timespec *ts)
1221{
1222	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
1223}
1224EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1225
1226unsigned long get_seconds(void)
1227{
1228	return timekeeper.xtime.tv_sec;
1229}
1230EXPORT_SYMBOL(get_seconds);
1231
1232struct timespec __current_kernel_time(void)
 
 
 
1233{
1234	return timekeeper.xtime;
 
1235}
1236
1237struct timespec current_kernel_time(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238{
1239	struct timespec now;
1240	unsigned long seq;
 
 
1241
1242	do {
1243		seq = read_seqbegin(&timekeeper.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244
1245		now = timekeeper.xtime;
1246	} while (read_seqretry(&timekeeper.lock, seq));
1247
1248	return now;
1249}
1250EXPORT_SYMBOL(current_kernel_time);
1251
1252struct timespec get_monotonic_coarse(void)
 
 
 
1253{
1254	struct timespec now, mono;
1255	unsigned long seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	do {
1258		seq = read_seqbegin(&timekeeper.lock);
 
 
 
 
 
 
 
 
1259
1260		now = timekeeper.xtime;
1261		mono = timekeeper.wall_to_monotonic;
1262	} while (read_seqretry(&timekeeper.lock, seq));
 
 
 
 
 
1263
1264	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1265				now.tv_nsec + mono.tv_nsec);
1266	return now;
1267}
 
 
 
 
 
 
1268
1269/*
1270 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1271 * without sampling the sequence number in xtime_lock.
1272 * jiffies is defined in the linker script...
1273 */
1274void do_timer(unsigned long ticks)
1275{
1276	jiffies_64 += ticks;
1277	update_wall_time();
1278	calc_global_load(ticks);
1279}
1280
1281/**
1282 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1283 *    and sleep offsets.
1284 * @xtim:	pointer to timespec to be set with xtime
1285 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1286 * @sleep:	pointer to timespec to be set with time in suspend
1287 */
1288void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1289				struct timespec *wtom, struct timespec *sleep)
1290{
1291	unsigned long seq;
 
1292
1293	do {
1294		seq = read_seqbegin(&timekeeper.lock);
1295		*xtim = timekeeper.xtime;
1296		*wtom = timekeeper.wall_to_monotonic;
1297		*sleep = timekeeper.total_sleep_time;
1298	} while (read_seqretry(&timekeeper.lock, seq));
1299}
 
1300
1301#ifdef CONFIG_HIGH_RES_TIMERS
1302/**
1303 * ktime_get_update_offsets - hrtimer helper
1304 * @offs_real:	pointer to storage for monotonic -> realtime offset
1305 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1306 *
1307 * Returns current monotonic time and updates the offsets
1308 * Called from hrtimer_interupt() or retrigger_next_event()
1309 */
1310ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1311{
1312	ktime_t now;
1313	unsigned int seq;
1314	u64 secs, nsecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315
1316	do {
1317		seq = read_seqbegin(&timekeeper.lock);
1318
1319		secs = timekeeper.xtime.tv_sec;
1320		nsecs = timekeeper.xtime.tv_nsec;
1321		nsecs += timekeeping_get_ns();
1322		/* If arch requires, add in gettimeoffset() */
1323		nsecs += arch_gettimeoffset();
1324
1325		*offs_real = timekeeper.offs_real;
1326		*offs_boot = timekeeper.offs_boot;
1327	} while (read_seqretry(&timekeeper.lock, seq));
1328
1329	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1330	now = ktime_sub(now, *offs_real);
1331	return now;
1332}
1333#endif
1334
 
1335/**
1336 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1337 */
1338ktime_t ktime_get_monotonic_offset(void)
1339{
1340	unsigned long seq;
1341	struct timespec wtom;
1342
1343	do {
1344		seq = read_seqbegin(&timekeeper.lock);
1345		wtom = timekeeper.wall_to_monotonic;
1346	} while (read_seqretry(&timekeeper.lock, seq));
1347
1348	return timespec_to_ktime(wtom);
1349}
1350EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1351
 
1352
1353/**
1354 * xtime_update() - advances the timekeeping infrastructure
1355 * @ticks:	number of ticks, that have elapsed since the last call.
1356 *
1357 * Must be called with interrupts disabled.
1358 */
1359void xtime_update(unsigned long ticks)
1360{
1361	write_seqlock(&xtime_lock);
1362	do_timer(ticks);
1363	write_sequnlock(&xtime_lock);
1364}