Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/compat.h>
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/errno.h>
  25#include <linux/stat.h>
  26#include <linux/fcntl.h>
  27#include <linux/string.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/mm.h>
  31#include <linux/sunrpc/clnt.h>
  32#include <linux/nfs_fs.h>
  33#include <linux/nfs_mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/pagevec.h>
  36#include <linux/namei.h>
  37#include <linux/mount.h>
  38#include <linux/swap.h>
  39#include <linux/sched.h>
  40#include <linux/kmemleak.h>
  41#include <linux/xattr.h>
  42#include <linux/hash.h>
  43
  44#include "delegation.h"
  45#include "iostat.h"
  46#include "internal.h"
  47#include "fscache.h"
  48
  49#include "nfstrace.h"
  50
  51/* #define NFS_DEBUG_VERBOSE 1 */
  52
  53static int nfs_opendir(struct inode *, struct file *);
  54static int nfs_closedir(struct inode *, struct file *);
  55static int nfs_readdir(struct file *, struct dir_context *);
 
 
 
 
 
 
 
 
 
 
  56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  58static void nfs_readdir_clear_array(struct folio *);
  59
  60const struct file_operations nfs_dir_operations = {
  61	.llseek		= nfs_llseek_dir,
  62	.read		= generic_read_dir,
  63	.iterate_shared	= nfs_readdir,
  64	.open		= nfs_opendir,
  65	.release	= nfs_closedir,
  66	.fsync		= nfs_fsync_dir,
  67};
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69const struct address_space_operations nfs_dir_aops = {
  70	.free_folio = nfs_readdir_clear_array,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71};
  72
  73#define NFS_INIT_DTSIZE PAGE_SIZE
  74
  75static struct nfs_open_dir_context *
  76alloc_nfs_open_dir_context(struct inode *dir)
  77{
  78	struct nfs_inode *nfsi = NFS_I(dir);
  79	struct nfs_open_dir_context *ctx;
  80
  81	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
  82	if (ctx != NULL) {
  83		ctx->attr_gencount = nfsi->attr_gencount;
  84		ctx->dtsize = NFS_INIT_DTSIZE;
  85		spin_lock(&dir->i_lock);
  86		if (list_empty(&nfsi->open_files) &&
  87		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  88			nfs_set_cache_invalid(dir,
  89					      NFS_INO_INVALID_DATA |
  90						      NFS_INO_REVAL_FORCED);
  91		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
  92		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
  93		spin_unlock(&dir->i_lock);
  94		return ctx;
  95	}
  96	return  ERR_PTR(-ENOMEM);
  97}
  98
  99static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
 100{
 101	spin_lock(&dir->i_lock);
 102	list_del_rcu(&ctx->list);
 103	spin_unlock(&dir->i_lock);
 104	kfree_rcu(ctx, rcu_head);
 105}
 106
 107/*
 108 * Open file
 109 */
 110static int
 111nfs_opendir(struct inode *inode, struct file *filp)
 112{
 113	int res = 0;
 114	struct nfs_open_dir_context *ctx;
 
 115
 116	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 
 
 117
 118	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 119
 120	ctx = alloc_nfs_open_dir_context(inode);
 
 
 
 121	if (IS_ERR(ctx)) {
 122		res = PTR_ERR(ctx);
 123		goto out;
 124	}
 125	filp->private_data = ctx;
 
 
 
 
 
 
 
 126out:
 
 127	return res;
 128}
 129
 130static int
 131nfs_closedir(struct inode *inode, struct file *filp)
 132{
 133	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 134	return 0;
 135}
 136
 137struct nfs_cache_array_entry {
 138	u64 cookie;
 139	u64 ino;
 140	const char *name;
 141	unsigned int name_len;
 142	unsigned char d_type;
 143};
 144
 145struct nfs_cache_array {
 146	u64 change_attr;
 
 147	u64 last_cookie;
 148	unsigned int size;
 149	unsigned char folio_full : 1,
 150		      folio_is_eof : 1,
 151		      cookies_are_ordered : 1;
 152	struct nfs_cache_array_entry array[];
 153};
 154
 155struct nfs_readdir_descriptor {
 
 156	struct file	*file;
 157	struct folio	*folio;
 158	struct dir_context *ctx;
 159	pgoff_t		folio_index;
 160	pgoff_t		folio_index_max;
 161	u64		dir_cookie;
 162	u64		last_cookie;
 163	loff_t		current_index;
 
 164
 165	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 166	unsigned long	dir_verifier;
 167	unsigned long	timestamp;
 168	unsigned long	gencount;
 169	unsigned long	attr_gencount;
 170	unsigned int	cache_entry_index;
 171	unsigned int	buffer_fills;
 172	unsigned int	dtsize;
 173	bool clear_cache;
 174	bool plus;
 175	bool eob;
 176	bool eof;
 177};
 178
 179static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
 180{
 181	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
 182	unsigned int maxsize = server->dtsize;
 183
 184	if (sz > maxsize)
 185		sz = maxsize;
 186	if (sz < NFS_MIN_FILE_IO_SIZE)
 187		sz = NFS_MIN_FILE_IO_SIZE;
 188	desc->dtsize = sz;
 189}
 190
 191static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
 192{
 193	nfs_set_dtsize(desc, desc->dtsize >> 1);
 194}
 195
 196static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
 197{
 198	nfs_set_dtsize(desc, desc->dtsize << 1);
 
 
 
 
 
 
 199}
 200
 201static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
 202					 u64 change_attr)
 203{
 204	struct nfs_cache_array *array;
 205
 206	array = kmap_local_folio(folio, 0);
 207	array->change_attr = change_attr;
 208	array->last_cookie = last_cookie;
 209	array->size = 0;
 210	array->folio_full = 0;
 211	array->folio_is_eof = 0;
 212	array->cookies_are_ordered = 1;
 213	kunmap_local(array);
 214}
 215
 216/*
 217 * we are freeing strings created by nfs_add_to_readdir_array()
 218 */
 219static void nfs_readdir_clear_array(struct folio *folio)
 
 220{
 221	struct nfs_cache_array *array;
 222	unsigned int i;
 223
 224	array = kmap_local_folio(folio, 0);
 225	for (i = 0; i < array->size; i++)
 226		kfree(array->array[i].name);
 227	array->size = 0;
 228	kunmap_local(array);
 229}
 230
 231static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
 232					   u64 change_attr)
 233{
 234	nfs_readdir_clear_array(folio);
 235	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
 236}
 237
 238static struct folio *
 239nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 240{
 241	struct folio *folio = folio_alloc(gfp_flags, 0);
 242	if (folio)
 243		nfs_readdir_folio_init_array(folio, last_cookie, 0);
 244	return folio;
 245}
 246
 247static void nfs_readdir_folio_array_free(struct folio *folio)
 248{
 249	if (folio) {
 250		nfs_readdir_clear_array(folio);
 251		folio_put(folio);
 252	}
 253}
 254
 255static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
 256{
 257	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
 258}
 259
 260static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 261{
 262	array->folio_is_eof = 1;
 263	array->folio_full = 1;
 264}
 265
 266static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 267{
 268	return array->folio_full;
 269}
 270
 271/*
 272 * the caller is responsible for freeing qstr.name
 273 * when called by nfs_readdir_add_to_array, the strings will be freed in
 274 * nfs_clear_readdir_array()
 275 */
 276static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 
 277{
 278	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 279
 
 
 280	/*
 281	 * Avoid a kmemleak false positive. The pointer to the name is stored
 282	 * in a page cache page which kmemleak does not scan.
 283	 */
 284	if (ret != NULL)
 285		kmemleak_not_leak(ret);
 286	return ret;
 287}
 288
 289static size_t nfs_readdir_array_maxentries(void)
 290{
 291	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
 292	       sizeof(struct nfs_cache_array_entry);
 293}
 294
 295/*
 296 * Check that the next array entry lies entirely within the page bounds
 297 */
 298static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 299{
 300	if (array->folio_full)
 301		return -ENOSPC;
 302	if (array->size == nfs_readdir_array_maxentries()) {
 303		array->folio_full = 1;
 304		return -ENOSPC;
 305	}
 306	return 0;
 307}
 308
 309static int nfs_readdir_folio_array_append(struct folio *folio,
 310					  const struct nfs_entry *entry,
 311					  u64 *cookie)
 312{
 313	struct nfs_cache_array *array;
 314	struct nfs_cache_array_entry *cache_entry;
 315	const char *name;
 316	int ret = -ENOMEM;
 317
 318	name = nfs_readdir_copy_name(entry->name, entry->len);
 
 319
 320	array = kmap_local_folio(folio, 0);
 321	if (!name)
 322		goto out;
 323	ret = nfs_readdir_array_can_expand(array);
 324	if (ret) {
 325		kfree(name);
 326		goto out;
 327	}
 328
 329	cache_entry = &array->array[array->size];
 330	cache_entry->cookie = array->last_cookie;
 331	cache_entry->ino = entry->ino;
 332	cache_entry->d_type = entry->d_type;
 333	cache_entry->name_len = entry->len;
 334	cache_entry->name = name;
 
 335	array->last_cookie = entry->cookie;
 336	if (array->last_cookie <= cache_entry->cookie)
 337		array->cookies_are_ordered = 0;
 338	array->size++;
 339	if (entry->eof != 0)
 340		nfs_readdir_array_set_eof(array);
 341out:
 342	*cookie = array->last_cookie;
 343	kunmap_local(array);
 344	return ret;
 345}
 346
 347#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
 348/*
 349 * Hash algorithm allowing content addressible access to sequences
 350 * of directory cookies. Content is addressed by the value of the
 351 * cookie index of the first readdir entry in a page.
 352 *
 353 * We select only the first 18 bits to avoid issues with excessive
 354 * memory use for the page cache XArray. 18 bits should allow the caching
 355 * of 262144 pages of sequences of readdir entries. Since each page holds
 356 * 127 readdir entries for a typical 64-bit system, that works out to a
 357 * cache of ~ 33 million entries per directory.
 358 */
 359static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
 360{
 361	if (cookie == 0)
 362		return 0;
 363	return hash_64(cookie, 18);
 364}
 365
 366static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
 367				       u64 change_attr)
 368{
 369	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
 370	int ret = true;
 371
 372	if (array->change_attr != change_attr)
 373		ret = false;
 374	if (nfs_readdir_array_index_cookie(array) != last_cookie)
 375		ret = false;
 376	kunmap_local(array);
 377	return ret;
 378}
 379
 380static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
 381{
 382	folio_unlock(folio);
 383	folio_put(folio);
 384}
 385
 386static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
 387						u64 change_attr)
 388{
 389	if (folio_test_uptodate(folio)) {
 390		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
 391			return;
 392		nfs_readdir_clear_array(folio);
 393	}
 394	nfs_readdir_folio_init_array(folio, cookie, change_attr);
 395	folio_mark_uptodate(folio);
 396}
 397
 398static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
 399						  u64 cookie, u64 change_attr)
 400{
 401	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 402	struct folio *folio;
 403
 404	folio = filemap_grab_folio(mapping, index);
 405	if (IS_ERR(folio))
 406		return NULL;
 407	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 408	return folio;
 409}
 410
 411static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
 412{
 413	struct nfs_cache_array *array;
 414	u64 ret;
 415
 416	array = kmap_local_folio(folio, 0);
 417	ret = array->last_cookie;
 418	kunmap_local(array);
 419	return ret;
 420}
 421
 422static bool nfs_readdir_folio_needs_filling(struct folio *folio)
 423{
 424	struct nfs_cache_array *array;
 425	bool ret;
 426
 427	array = kmap_local_folio(folio, 0);
 428	ret = !nfs_readdir_array_is_full(array);
 429	kunmap_local(array);
 430	return ret;
 431}
 432
 433static void nfs_readdir_folio_set_eof(struct folio *folio)
 434{
 435	struct nfs_cache_array *array;
 436
 437	array = kmap_local_folio(folio, 0);
 438	nfs_readdir_array_set_eof(array);
 439	kunmap_local(array);
 440}
 441
 442static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
 443						u64 cookie, u64 change_attr)
 444{
 445	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 446	struct folio *folio;
 447
 448	folio = __filemap_get_folio(mapping, index,
 449			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 450			mapping_gfp_mask(mapping));
 451	if (IS_ERR(folio))
 452		return NULL;
 453	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 454	if (nfs_readdir_folio_last_cookie(folio) != cookie)
 455		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
 456	return folio;
 457}
 458
 459static inline
 460int is_32bit_api(void)
 461{
 462#ifdef CONFIG_COMPAT
 463	return in_compat_syscall();
 464#else
 465	return (BITS_PER_LONG == 32);
 466#endif
 467}
 468
 469static
 470bool nfs_readdir_use_cookie(const struct file *filp)
 471{
 472	if ((filp->f_mode & FMODE_32BITHASH) ||
 473	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 474		return false;
 475	return true;
 476}
 477
 478static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
 479					struct nfs_readdir_descriptor *desc)
 480{
 481	if (array->folio_full) {
 482		desc->last_cookie = array->last_cookie;
 483		desc->current_index += array->size;
 484		desc->cache_entry_index = 0;
 485		desc->folio_index++;
 486	} else
 487		desc->last_cookie = nfs_readdir_array_index_cookie(array);
 488}
 489
 490static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
 491{
 492	desc->current_index = 0;
 493	desc->last_cookie = 0;
 494	desc->folio_index = 0;
 495}
 496
 497static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 498				      struct nfs_readdir_descriptor *desc)
 499{
 500	loff_t diff = desc->ctx->pos - desc->current_index;
 501	unsigned int index;
 502
 503	if (diff < 0)
 504		goto out_eof;
 505	if (diff >= array->size) {
 506		if (array->folio_is_eof)
 507			goto out_eof;
 508		nfs_readdir_seek_next_array(array, desc);
 509		return -EAGAIN;
 510	}
 511
 512	index = (unsigned int)diff;
 513	desc->dir_cookie = array->array[index].cookie;
 514	desc->cache_entry_index = index;
 515	return 0;
 516out_eof:
 517	desc->eof = true;
 518	return -EBADCOOKIE;
 519}
 520
 521static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 522					      u64 cookie)
 523{
 524	if (!array->cookies_are_ordered)
 525		return true;
 526	/* Optimisation for monotonically increasing cookies */
 527	if (cookie >= array->last_cookie)
 528		return false;
 529	if (array->size && cookie < array->array[0].cookie)
 530		return false;
 531	return true;
 532}
 533
 534static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 535					 struct nfs_readdir_descriptor *desc)
 536{
 537	unsigned int i;
 
 538	int status = -EAGAIN;
 539
 540	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 541		goto check_eof;
 542
 543	for (i = 0; i < array->size; i++) {
 544		if (array->array[i].cookie == desc->dir_cookie) {
 545			if (nfs_readdir_use_cookie(desc->file))
 546				desc->ctx->pos = desc->dir_cookie;
 547			else
 548				desc->ctx->pos = desc->current_index + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549			desc->cache_entry_index = i;
 550			return 0;
 551		}
 552	}
 553check_eof:
 554	if (array->folio_is_eof) {
 555		status = -EBADCOOKIE;
 556		if (desc->dir_cookie == array->last_cookie)
 557			desc->eof = true;
 558	} else
 559		nfs_readdir_seek_next_array(array, desc);
 560	return status;
 561}
 562
 563static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 
 564{
 565	struct nfs_cache_array *array;
 566	int status;
 567
 568	array = kmap_local_folio(desc->folio, 0);
 
 
 
 
 569
 570	if (desc->dir_cookie == 0)
 571		status = nfs_readdir_search_for_pos(array, desc);
 572	else
 573		status = nfs_readdir_search_for_cookie(array, desc);
 574
 575	kunmap_local(array);
 
 
 
 
 
 
 576	return status;
 577}
 578
 579/* Fill a page with xdr information before transferring to the cache page */
 580static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 581				  __be32 *verf, u64 cookie,
 582				  struct page **pages, size_t bufsize,
 583				  __be32 *verf_res)
 584{
 585	struct inode *inode = file_inode(desc->file);
 586	struct nfs_readdir_arg arg = {
 587		.dentry = file_dentry(desc->file),
 588		.cred = desc->file->f_cred,
 589		.verf = verf,
 590		.cookie = cookie,
 591		.pages = pages,
 592		.page_len = bufsize,
 593		.plus = desc->plus,
 594	};
 595	struct nfs_readdir_res res = {
 596		.verf = verf_res,
 597	};
 598	unsigned long	timestamp, gencount;
 599	int		error;
 600
 601 again:
 602	timestamp = jiffies;
 603	gencount = nfs_inc_attr_generation_counter();
 604	desc->dir_verifier = nfs_save_change_attribute(inode);
 605	error = NFS_PROTO(inode)->readdir(&arg, &res);
 606	if (error < 0) {
 607		/* We requested READDIRPLUS, but the server doesn't grok it */
 608		if (error == -ENOTSUPP && desc->plus) {
 609			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 610			desc->plus = arg.plus = false;
 
 611			goto again;
 612		}
 613		goto error;
 614	}
 615	desc->timestamp = timestamp;
 616	desc->gencount = gencount;
 617error:
 618	return error;
 619}
 620
 621static int xdr_decode(struct nfs_readdir_descriptor *desc,
 622		      struct nfs_entry *entry, struct xdr_stream *xdr)
 623{
 624	struct inode *inode = file_inode(desc->file);
 625	int error;
 626
 627	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 628	if (error)
 629		return error;
 630	entry->fattr->time_start = desc->timestamp;
 631	entry->fattr->gencount = desc->gencount;
 632	return 0;
 633}
 634
 635/* Match file and dirent using either filehandle or fileid
 636 * Note: caller is responsible for checking the fsid
 637 */
 638static
 639int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 640{
 641	struct inode *inode;
 642	struct nfs_inode *nfsi;
 643
 644	if (d_really_is_negative(dentry))
 645		return 0;
 646
 647	inode = d_inode(dentry);
 648	if (is_bad_inode(inode) || NFS_STALE(inode))
 649		return 0;
 650
 651	nfsi = NFS_I(inode);
 652	if (entry->fattr->fileid != nfsi->fileid)
 653		return 0;
 654	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 655		return 0;
 656	return 1;
 
 
 657}
 658
 659#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
 660
 661static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
 662				unsigned int cache_hits,
 663				unsigned int cache_misses)
 664{
 665	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 666		return false;
 667	if (ctx->pos == 0 ||
 668	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
 
 669		return true;
 670	return false;
 671}
 672
 673/*
 674 * This function is called by the getattr code to request the
 675 * use of readdirplus to accelerate any future lookups in the same
 676 * directory.
 677 */
 678void nfs_readdir_record_entry_cache_hit(struct inode *dir)
 679{
 680	struct nfs_inode *nfsi = NFS_I(dir);
 681	struct nfs_open_dir_context *ctx;
 682
 683	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 684	    S_ISDIR(dir->i_mode)) {
 685		rcu_read_lock();
 686		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 687			atomic_inc(&ctx->cache_hits);
 688		rcu_read_unlock();
 689	}
 690}
 691
 692/*
 693 * This function is mainly for use by nfs_getattr().
 694 *
 695 * If this is an 'ls -l', we want to force use of readdirplus.
 696 */
 697void nfs_readdir_record_entry_cache_miss(struct inode *dir)
 698{
 699	struct nfs_inode *nfsi = NFS_I(dir);
 700	struct nfs_open_dir_context *ctx;
 701
 702	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 703	    S_ISDIR(dir->i_mode)) {
 704		rcu_read_lock();
 705		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 706			atomic_inc(&ctx->cache_misses);
 707		rcu_read_unlock();
 708	}
 709}
 710
 711static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
 712						unsigned int flags)
 713{
 714	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
 715		return;
 716	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
 717		return;
 718	nfs_readdir_record_entry_cache_miss(dir);
 719}
 720
 721static
 722void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 723		unsigned long dir_verifier)
 724{
 725	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 726	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 727	struct dentry *dentry;
 728	struct dentry *alias;
 
 729	struct inode *inode;
 730	int status;
 731
 732	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 733		return;
 734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 735		return;
 736	if (filename.len == 0)
 737		return;
 738	/* Validate that the name doesn't contain any illegal '\0' */
 739	if (strnlen(filename.name, filename.len) != filename.len)
 740		return;
 741	/* ...or '/' */
 742	if (strnchr(filename.name, filename.len, '/'))
 743		return;
 744	if (filename.name[0] == '.') {
 745		if (filename.len == 1)
 746			return;
 747		if (filename.len == 2 && filename.name[1] == '.')
 748			return;
 749	}
 750	filename.hash = full_name_hash(parent, filename.name, filename.len);
 751
 752	dentry = d_lookup(parent, &filename);
 753again:
 754	if (!dentry) {
 755		dentry = d_alloc_parallel(parent, &filename, &wq);
 756		if (IS_ERR(dentry))
 757			return;
 758	}
 759	if (!d_in_lookup(dentry)) {
 760		/* Is there a mountpoint here? If so, just exit */
 761		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 762					&entry->fattr->fsid))
 763			goto out;
 764		if (nfs_same_file(dentry, entry)) {
 765			if (!entry->fh->size)
 766				goto out;
 767			nfs_set_verifier(dentry, dir_verifier);
 768			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 769			if (!status)
 770				nfs_setsecurity(d_inode(dentry), entry->fattr);
 771			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
 772							    dentry, 0, status);
 773			goto out;
 774		} else {
 775			trace_nfs_readdir_lookup_revalidate_failed(
 776				d_inode(parent), dentry, 0);
 777			d_invalidate(dentry);
 778			dput(dentry);
 779			dentry = NULL;
 780			goto again;
 781		}
 782	}
 783	if (!entry->fh->size) {
 784		d_lookup_done(dentry);
 785		goto out;
 786	}
 787
 788	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 789	alias = d_splice_alias(inode, dentry);
 790	d_lookup_done(dentry);
 791	if (alias) {
 792		if (IS_ERR(alias))
 793			goto out;
 794		dput(dentry);
 795		dentry = alias;
 796	}
 797	nfs_set_verifier(dentry, dir_verifier);
 798	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
 799out:
 800	dput(dentry);
 801}
 802
 803static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
 804				    struct nfs_entry *entry,
 805				    struct xdr_stream *stream)
 806{
 807	int ret;
 
 
 
 808
 809	if (entry->fattr->label)
 810		entry->fattr->label->len = NFS4_MAXLABELLEN;
 811	ret = xdr_decode(desc, entry, stream);
 812	if (ret || !desc->plus)
 813		return ret;
 814	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
 815	return 0;
 816}
 817
 818/* Perform conversion from xdr to cache array */
 819static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
 820				    struct nfs_entry *entry,
 821				    struct page **xdr_pages, unsigned int buflen,
 822				    struct folio **arrays, size_t narrays,
 823				    u64 change_attr)
 824{
 825	struct address_space *mapping = desc->file->f_mapping;
 826	struct folio *new, *folio = *arrays;
 827	struct xdr_stream stream;
 828	struct page *scratch;
 829	struct xdr_buf buf;
 830	u64 cookie;
 
 
 831	int status;
 832
 833	scratch = alloc_page(GFP_KERNEL);
 834	if (scratch == NULL)
 835		return -ENOMEM;
 836
 837	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 838	xdr_set_scratch_page(&stream, scratch);
 839
 840	do {
 841		status = nfs_readdir_entry_decode(desc, entry, &stream);
 842		if (status != 0)
 
 
 843			break;
 
 844
 845		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 846		if (status != -ENOSPC)
 847			continue;
 848
 849		if (folio->mapping != mapping) {
 850			if (!--narrays)
 851				break;
 852			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
 853			if (!new)
 854				break;
 855			arrays++;
 856			*arrays = folio = new;
 857		} else {
 858			new = nfs_readdir_folio_get_next(mapping, cookie,
 859							 change_attr);
 860			if (!new)
 861				break;
 862			if (folio != *arrays)
 863				nfs_readdir_folio_unlock_and_put(folio);
 864			folio = new;
 865		}
 866		desc->folio_index_max++;
 867		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 868	} while (!status && !entry->eof);
 869
 870	switch (status) {
 871	case -EBADCOOKIE:
 872		if (!entry->eof)
 873			break;
 874		nfs_readdir_folio_set_eof(folio);
 875		fallthrough;
 876	case -EAGAIN:
 877		status = 0;
 878		break;
 879	case -ENOSPC:
 880		status = 0;
 881		if (!desc->plus)
 882			break;
 883		while (!nfs_readdir_entry_decode(desc, entry, &stream))
 884			;
 885	}
 886
 887	if (folio != *arrays)
 888		nfs_readdir_folio_unlock_and_put(folio);
 
 
 
 
 
 
 
 889
 890	put_page(scratch);
 891	return status;
 892}
 893
 894static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 
 895{
 896	while (npages--)
 897		put_page(pages[npages]);
 898	kfree(pages);
 
 
 
 
 
 
 
 899}
 900
 901/*
 902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 903 * to nfs_readdir_free_pages()
 904 */
 905static struct page **nfs_readdir_alloc_pages(size_t npages)
 
 906{
 907	struct page **pages;
 908	size_t i;
 909
 910	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 911	if (!pages)
 912		return NULL;
 913	for (i = 0; i < npages; i++) {
 914		struct page *page = alloc_page(GFP_KERNEL);
 915		if (page == NULL)
 916			goto out_freepages;
 917		pages[i] = page;
 918	}
 919	return pages;
 920
 921out_freepages:
 922	nfs_readdir_free_pages(pages, i);
 923	return NULL;
 924}
 925
 926static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 927				    __be32 *verf_arg, __be32 *verf_res,
 928				    struct folio **arrays, size_t narrays)
 929{
 930	u64 change_attr;
 931	struct page **pages;
 932	struct folio *folio = *arrays;
 933	struct nfs_entry *entry;
 934	size_t array_size;
 935	struct inode *inode = file_inode(desc->file);
 936	unsigned int dtsize = desc->dtsize;
 937	unsigned int pglen;
 938	int status = -ENOMEM;
 
 939
 940	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 941	if (!entry)
 942		return -ENOMEM;
 943	entry->cookie = nfs_readdir_folio_last_cookie(folio);
 944	entry->fh = nfs_alloc_fhandle();
 945	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
 946	entry->server = NFS_SERVER(inode);
 947	if (entry->fh == NULL || entry->fattr == NULL)
 948		goto out;
 949
 950	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 951	pages = nfs_readdir_alloc_pages(array_size);
 952	if (!pages)
 953		goto out;
 
 
 
 954
 955	change_attr = inode_peek_iversion_raw(inode);
 956	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
 957					dtsize, verf_res);
 958	if (status < 0)
 959		goto free_pages;
 
 
 
 960
 961	pglen = status;
 962	if (pglen != 0)
 963		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
 964						  arrays, narrays, change_attr);
 965	else
 966		nfs_readdir_folio_set_eof(folio);
 967	desc->buffer_fills++;
 
 
 
 968
 969free_pages:
 970	nfs_readdir_free_pages(pages, array_size);
 
 971out:
 972	nfs_free_fattr(entry->fattr);
 973	nfs_free_fhandle(entry->fh);
 974	kfree(entry);
 975	return status;
 976}
 977
 978static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
 
 
 
 
 
 
 
 979{
 980	folio_put(desc->folio);
 981	desc->folio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982}
 983
 984static void
 985nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 986{
 987	folio_unlock(desc->folio);
 988	nfs_readdir_folio_put(desc);
 
 
 989}
 990
 991static struct folio *
 992nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
 993{
 994	struct address_space *mapping = desc->file->f_mapping;
 995	u64 change_attr = inode_peek_iversion_raw(mapping->host);
 996	u64 cookie = desc->last_cookie;
 997	struct folio *folio;
 998
 999	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000	if (!folio)
1001		return NULL;
1002	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004	return folio;
1005}
1006
1007/*
1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009 * and locks the page to prevent removal from the page cache.
1010 */
1011static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 
1012{
1013	struct inode *inode = file_inode(desc->file);
1014	struct nfs_inode *nfsi = NFS_I(inode);
1015	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016	int res;
1017
1018	desc->folio = nfs_readdir_folio_get_cached(desc);
1019	if (!desc->folio)
1020		return -ENOMEM;
1021	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022		/* Grow the dtsize if we had to go back for more pages */
1023		if (desc->folio_index == desc->folio_index_max)
1024			nfs_grow_dtsize(desc);
1025		desc->folio_index_max = desc->folio_index;
1026		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027					     desc->last_cookie,
1028					     desc->folio->index, desc->dtsize);
1029		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030					       &desc->folio, 1);
1031		if (res < 0) {
1032			nfs_readdir_folio_unlock_and_put_cached(desc);
1033			trace_nfs_readdir_cache_fill_done(inode, res);
1034			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035				invalidate_inode_pages2(desc->file->f_mapping);
1036				nfs_readdir_rewind_search(desc);
1037				trace_nfs_readdir_invalidate_cache_range(
1038					inode, 0, MAX_LFS_FILESIZE);
1039				return -EAGAIN;
1040			}
1041			return res;
1042		}
1043		/*
1044		 * Set the cookie verifier if the page cache was empty
1045		 */
1046		if (desc->last_cookie == 0 &&
1047		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048			memcpy(nfsi->cookieverf, verf,
1049			       sizeof(nfsi->cookieverf));
1050			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051						      -1);
1052			trace_nfs_readdir_invalidate_cache_range(
1053				inode, 1, MAX_LFS_FILESIZE);
1054		}
1055		desc->clear_cache = false;
1056	}
1057	res = nfs_readdir_search_array(desc);
1058	if (res == 0)
1059		return 0;
1060	nfs_readdir_folio_unlock_and_put_cached(desc);
1061	return res;
1062}
1063
1064/* Search for desc->dir_cookie from the beginning of the page cache */
1065static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 
1066{
1067	int res;
1068
 
 
 
 
1069	do {
1070		res = find_and_lock_cache_page(desc);
1071	} while (res == -EAGAIN);
1072	return res;
1073}
1074
1075#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076
1077/*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
1080static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081			   const __be32 *verf)
 
1082{
1083	struct file	*file = desc->file;
1084	struct nfs_cache_array *array;
1085	unsigned int i;
1086	bool first_emit = !desc->dir_cookie;
 
 
 
 
 
 
 
1087
1088	array = kmap_local_folio(desc->folio, 0);
1089	for (i = desc->cache_entry_index; i < array->size; i++) {
1090		struct nfs_cache_array_entry *ent;
1091
1092		/*
1093		 * nfs_readdir_handle_cache_misses return force clear at
1094		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096		 * entries need be emitted here.
1097		 */
1098		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099			desc->eob = true;
1100			break;
1101		}
1102
1103		ent = &array->array[i];
1104		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106			desc->eob = true;
 
1107			break;
1108		}
1109		memcpy(desc->verf, verf, sizeof(desc->verf));
1110		if (i == array->size - 1) {
1111			desc->dir_cookie = array->last_cookie;
1112			nfs_readdir_seek_next_array(array, desc);
1113		} else {
1114			desc->dir_cookie = array->array[i + 1].cookie;
1115			desc->last_cookie = array->array[0].cookie;
1116		}
1117		if (nfs_readdir_use_cookie(file))
1118			desc->ctx->pos = desc->dir_cookie;
1119		else
1120			desc->ctx->pos++;
 
 
1121	}
1122	if (array->folio_is_eof)
1123		desc->eof = !desc->eob;
1124
1125	kunmap_local(array);
1126	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127			(unsigned long long)desc->dir_cookie);
 
 
 
1128}
1129
1130/*
1131 * If we cannot find a cookie in our cache, we suspect that this is
1132 * because it points to a deleted file, so we ask the server to return
1133 * whatever it thinks is the next entry. We then feed this to filldir.
1134 * If all goes well, we should then be able to find our way round the
1135 * cache on the next call to readdir_search_pagecache();
1136 *
1137 * NOTE: we cannot add the anonymous page to the pagecache because
1138 *	 the data it contains might not be page aligned. Besides,
1139 *	 we should already have a complete representation of the
1140 *	 directory in the page cache by the time we get here.
1141 */
1142static int uncached_readdir(struct nfs_readdir_descriptor *desc)
 
 
1143{
1144	struct folio	**arrays;
1145	size_t		i, sz = 512;
1146	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1147	int		status = -ENOMEM;
1148
1149	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150			(unsigned long long)desc->dir_cookie);
1151
1152	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153	if (!arrays)
1154		goto out;
1155	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156	if (!arrays[0])
1157		goto out;
 
1158
1159	desc->folio_index = 0;
1160	desc->cache_entry_index = 0;
1161	desc->last_cookie = desc->dir_cookie;
1162	desc->folio_index_max = 0;
1163
1164	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165				   -1, desc->dtsize);
 
1166
1167	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168	if (status < 0) {
1169		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170		goto out_free;
1171	}
1172
1173	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174		desc->folio = arrays[i];
1175		nfs_do_filldir(desc, verf);
1176	}
1177	desc->folio = NULL;
1178
1179	/*
1180	 * Grow the dtsize if we have to go back for more pages,
1181	 * or shrink it if we're reading too many.
1182	 */
1183	if (!desc->eof) {
1184		if (!desc->eob)
1185			nfs_grow_dtsize(desc);
1186		else if (desc->buffer_fills == 1 &&
1187			 i < (desc->folio_index_max >> 1))
1188			nfs_shrink_dtsize(desc);
1189	}
1190out_free:
1191	for (i = 0; i < sz && arrays[i]; i++)
1192		nfs_readdir_folio_array_free(arrays[i]);
1193out:
1194	if (!nfs_readdir_use_cookie(desc->file))
1195		nfs_readdir_rewind_search(desc);
1196	desc->folio_index_max = -1;
1197	kfree(arrays);
1198	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199	return status;
1200}
1201
1202static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203					    struct nfs_readdir_descriptor *desc,
1204					    unsigned int cache_misses,
1205					    bool force_clear)
1206{
1207	if (desc->ctx->pos == 0 || !desc->plus)
1208		return false;
1209	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210		return false;
1211	trace_nfs_readdir_force_readdirplus(inode);
1212	return true;
1213}
1214
1215/* The file offset position represents the dirent entry number.  A
1216   last cookie cache takes care of the common case of reading the
1217   whole directory.
1218 */
1219static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220{
1221	struct dentry	*dentry = file_dentry(file);
1222	struct inode	*inode = d_inode(dentry);
1223	struct nfs_inode *nfsi = NFS_I(inode);
1224	struct nfs_open_dir_context *dir_ctx = file->private_data;
1225	struct nfs_readdir_descriptor *desc;
1226	unsigned int cache_hits, cache_misses;
1227	bool force_clear;
1228	int res;
1229
1230	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231			file, (long long)ctx->pos);
 
1232	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233
1234	/*
1235	 * ctx->pos points to the dirent entry number.
1236	 * *desc->dir_cookie has the cookie for the next entry. We have
1237	 * to either find the entry with the appropriate number or
1238	 * revalidate the cookie.
1239	 */
1240	nfs_revalidate_mapping(inode, file->f_mapping);
1241
1242	res = -ENOMEM;
1243	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244	if (!desc)
1245		goto out;
1246	desc->file = file;
1247	desc->ctx = ctx;
1248	desc->folio_index_max = -1;
1249
1250	spin_lock(&file->f_lock);
1251	desc->dir_cookie = dir_ctx->dir_cookie;
1252	desc->folio_index = dir_ctx->page_index;
1253	desc->last_cookie = dir_ctx->last_cookie;
1254	desc->attr_gencount = dir_ctx->attr_gencount;
1255	desc->eof = dir_ctx->eof;
1256	nfs_set_dtsize(desc, dir_ctx->dtsize);
1257	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260	force_clear = dir_ctx->force_clear;
1261	spin_unlock(&file->f_lock);
1262
1263	if (desc->eof) {
1264		res = 0;
1265		goto out_free;
1266	}
1267
1268	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270						      force_clear);
1271	desc->clear_cache = force_clear;
 
 
 
 
 
1272
1273	do {
1274		res = readdir_search_pagecache(desc);
1275
1276		if (res == -EBADCOOKIE) {
1277			res = 0;
1278			/* This means either end of directory */
1279			if (desc->dir_cookie && !desc->eof) {
1280				/* Or that the server has 'lost' a cookie */
1281				res = uncached_readdir(desc);
1282				if (res == 0)
1283					continue;
1284				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285					res = 0;
1286			}
1287			break;
1288		}
1289		if (res == -ETOOSMALL && desc->plus) {
 
1290			nfs_zap_caches(inode);
1291			desc->plus = false;
1292			desc->eof = false;
 
1293			continue;
1294		}
1295		if (res < 0)
1296			break;
1297
1298		nfs_do_filldir(desc, nfsi->cookieverf);
1299		nfs_readdir_folio_unlock_and_put_cached(desc);
1300		if (desc->folio_index == desc->folio_index_max)
1301			desc->clear_cache = force_clear;
1302	} while (!desc->eob && !desc->eof);
1303
1304	spin_lock(&file->f_lock);
1305	dir_ctx->dir_cookie = desc->dir_cookie;
1306	dir_ctx->last_cookie = desc->last_cookie;
1307	dir_ctx->attr_gencount = desc->attr_gencount;
1308	dir_ctx->page_index = desc->folio_index;
1309	dir_ctx->force_clear = force_clear;
1310	dir_ctx->eof = desc->eof;
1311	dir_ctx->dtsize = desc->dtsize;
1312	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313	spin_unlock(&file->f_lock);
1314out_free:
1315	kfree(desc);
1316
1317out:
1318	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 
 
 
 
 
1319	return res;
1320}
1321
1322static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323{
 
 
1324	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325
1326	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327			filp, offset, whence);
1328
1329	switch (whence) {
1330	default:
1331		return -EINVAL;
1332	case SEEK_SET:
1333		if (offset < 0)
1334			return -EINVAL;
1335		spin_lock(&filp->f_lock);
1336		break;
1337	case SEEK_CUR:
1338		if (offset == 0)
1339			return filp->f_pos;
1340		spin_lock(&filp->f_lock);
1341		offset += filp->f_pos;
1342		if (offset < 0) {
1343			spin_unlock(&filp->f_lock);
1344			return -EINVAL;
1345		}
1346	}
1347	if (offset != filp->f_pos) {
1348		filp->f_pos = offset;
1349		dir_ctx->page_index = 0;
1350		if (!nfs_readdir_use_cookie(filp)) {
1351			dir_ctx->dir_cookie = 0;
1352			dir_ctx->last_cookie = 0;
1353		} else {
1354			dir_ctx->dir_cookie = offset;
1355			dir_ctx->last_cookie = offset;
1356		}
1357		dir_ctx->eof = false;
1358	}
1359	spin_unlock(&filp->f_lock);
 
1360	return offset;
1361}
1362
1363/*
1364 * All directory operations under NFS are synchronous, so fsync()
1365 * is a dummy operation.
1366 */
1367static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368			 int datasync)
1369{
1370	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 
1371
1372	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
 
 
 
 
 
 
1373	return 0;
1374}
1375
1376/**
1377 * nfs_force_lookup_revalidate - Mark the directory as having changed
1378 * @dir: pointer to directory inode
1379 *
1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381 * full lookup on all child dentries of 'dir' whenever a change occurs
1382 * on the server that might have invalidated our dcache.
1383 *
1384 * Note that we reserve bit '0' as a tag to let us know when a dentry
1385 * was revalidated while holding a delegation on its inode.
1386 *
1387 * The caller should be holding dir->i_lock
1388 */
1389void nfs_force_lookup_revalidate(struct inode *dir)
1390{
1391	NFS_I(dir)->cache_change_attribute += 2;
1392}
1393EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394
1395/**
1396 * nfs_verify_change_attribute - Detects NFS remote directory changes
1397 * @dir: pointer to parent directory inode
1398 * @verf: previously saved change attribute
1399 *
1400 * Return "false" if the verifiers doesn't match the change attribute.
1401 * This would usually indicate that the directory contents have changed on
1402 * the server, and that any dentries need revalidating.
1403 */
1404static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405{
1406	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407}
1408
1409static void nfs_set_verifier_delegated(unsigned long *verf)
1410{
1411	*verf |= 1UL;
1412}
1413
1414#if IS_ENABLED(CONFIG_NFS_V4)
1415static void nfs_unset_verifier_delegated(unsigned long *verf)
1416{
1417	*verf &= ~1UL;
1418}
1419#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420
1421static bool nfs_test_verifier_delegated(unsigned long verf)
1422{
1423	return verf & 1;
1424}
1425
1426static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427{
1428	return nfs_test_verifier_delegated(dentry->d_time);
1429}
1430
1431static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432{
1433	struct inode *inode = d_inode(dentry);
1434	struct inode *dir = d_inode_rcu(dentry->d_parent);
1435
1436	if (!dir || !nfs_verify_change_attribute(dir, verf))
1437		return;
1438	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439		nfs_set_verifier_delegated(&verf);
1440	dentry->d_time = verf;
1441}
1442
1443/**
1444 * nfs_set_verifier - save a parent directory verifier in the dentry
1445 * @dentry: pointer to dentry
1446 * @verf: verifier to save
1447 *
1448 * Saves the parent directory verifier in @dentry. If the inode has
1449 * a delegation, we also tag the dentry as having been revalidated
1450 * while holding a delegation so that we know we don't have to
1451 * look it up again after a directory change.
1452 */
1453void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454{
1455
1456	spin_lock(&dentry->d_lock);
1457	nfs_set_verifier_locked(dentry, verf);
1458	spin_unlock(&dentry->d_lock);
1459}
1460EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461
1462#if IS_ENABLED(CONFIG_NFS_V4)
1463/**
1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465 * @inode: pointer to inode
1466 *
1467 * Iterates through the dentries in the inode alias list and clears
1468 * the tag used to indicate that the dentry has been revalidated
1469 * while holding a delegation.
1470 * This function is intended for use when the delegation is being
1471 * returned or revoked.
1472 */
1473void nfs_clear_verifier_delegated(struct inode *inode)
1474{
1475	struct dentry *alias;
1476
1477	if (!inode)
1478		return;
1479	spin_lock(&inode->i_lock);
1480	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481		spin_lock(&alias->d_lock);
1482		nfs_unset_verifier_delegated(&alias->d_time);
1483		spin_unlock(&alias->d_lock);
1484	}
1485	spin_unlock(&inode->i_lock);
1486}
1487EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489
1490static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491{
1492	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493	    d_really_is_negative(dentry))
1494		return dentry->d_time == inode_peek_iversion_raw(dir);
1495	return nfs_verify_change_attribute(dir, dentry->d_time);
1496}
1497
1498/*
1499 * A check for whether or not the parent directory has changed.
1500 * In the case it has, we assume that the dentries are untrustworthy
1501 * and may need to be looked up again.
1502 * If rcu_walk prevents us from performing a full check, return 0.
1503 */
1504static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505			      int rcu_walk)
1506{
1507	if (IS_ROOT(dentry))
1508		return 1;
1509	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510		return 0;
1511	if (!nfs_dentry_verify_change(dir, dentry))
1512		return 0;
1513	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1514	if (nfs_mapping_need_revalidate_inode(dir)) {
1515		if (rcu_walk)
1516			return 0;
1517		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518			return 0;
1519	}
1520	if (!nfs_dentry_verify_change(dir, dentry))
1521		return 0;
1522	return 1;
1523}
1524
1525/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1526 * Use intent information to check whether or not we're going to do
1527 * an O_EXCL create using this path component.
1528 */
1529static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530{
1531	if (NFS_PROTO(dir)->version == 2)
1532		return 0;
1533	return flags & LOOKUP_EXCL;
1534}
1535
1536/*
1537 * Inode and filehandle revalidation for lookups.
1538 *
1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540 * or if the intent information indicates that we're about to open this
1541 * particular file and the "nocto" mount flag is not set.
1542 *
1543 */
1544static
1545int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546{
1547	struct nfs_server *server = NFS_SERVER(inode);
1548	int ret;
1549
1550	if (IS_AUTOMOUNT(inode))
1551		return 0;
1552
1553	if (flags & LOOKUP_OPEN) {
1554		switch (inode->i_mode & S_IFMT) {
1555		case S_IFREG:
1556			/* A NFSv4 OPEN will revalidate later */
1557			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558				goto out;
1559			fallthrough;
1560		case S_IFDIR:
1561			if (server->flags & NFS_MOUNT_NOCTO)
1562				break;
1563			/* NFS close-to-open cache consistency validation */
1564			goto out_force;
1565		}
1566	}
1567
1568	/* VFS wants an on-the-wire revalidation */
1569	if (flags & LOOKUP_REVAL)
1570		goto out_force;
1571out:
1572	if (inode->i_nlink > 0 ||
1573	    (inode->i_nlink == 0 &&
1574	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575		return 0;
1576	else
1577		return -ESTALE;
1578out_force:
1579	if (flags & LOOKUP_RCU)
1580		return -ECHILD;
1581	ret = __nfs_revalidate_inode(server, inode);
1582	if (ret != 0)
1583		return ret;
1584	goto out;
1585}
1586
1587static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588{
1589	spin_lock(&inode->i_lock);
1590	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591	spin_unlock(&inode->i_lock);
1592}
1593
1594/*
1595 * We judge how long we want to trust negative
1596 * dentries by looking at the parent inode mtime.
1597 *
1598 * If parent mtime has changed, we revalidate, else we wait for a
1599 * period corresponding to the parent's attribute cache timeout value.
1600 *
1601 * If LOOKUP_RCU prevents us from performing a full check, return 1
1602 * suggesting a reval is needed.
1603 *
1604 * Note that when creating a new file, or looking up a rename target,
1605 * then it shouldn't be necessary to revalidate a negative dentry.
1606 */
1607static inline
1608int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609		       unsigned int flags)
1610{
1611	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
 
1612		return 0;
1613	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614		return 1;
1615	/* Case insensitive server? Revalidate negative dentries */
1616	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617		return 1;
1618	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619}
1620
1621static int
1622nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623			   struct inode *inode, int error)
1624{
1625	switch (error) {
1626	case 1:
1627		break;
1628	case 0:
1629		/*
1630		 * We can't d_drop the root of a disconnected tree:
1631		 * its d_hash is on the s_anon list and d_drop() would hide
1632		 * it from shrink_dcache_for_unmount(), leading to busy
1633		 * inodes on unmount and further oopses.
1634		 */
1635		if (inode && IS_ROOT(dentry))
1636			error = 1;
1637		break;
1638	}
1639	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1640	return error;
1641}
1642
1643static int
1644nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1645			       unsigned int flags)
1646{
1647	int ret = 1;
1648	if (nfs_neg_need_reval(dir, dentry, flags)) {
1649		if (flags & LOOKUP_RCU)
1650			return -ECHILD;
1651		ret = 0;
1652	}
1653	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1654}
1655
1656static int
1657nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1658				struct inode *inode)
1659{
1660	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1662}
1663
1664static int nfs_lookup_revalidate_dentry(struct inode *dir,
1665					struct dentry *dentry,
1666					struct inode *inode, unsigned int flags)
1667{
1668	struct nfs_fh *fhandle;
1669	struct nfs_fattr *fattr;
1670	unsigned long dir_verifier;
1671	int ret;
1672
1673	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1674
1675	ret = -ENOMEM;
1676	fhandle = nfs_alloc_fhandle();
1677	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1678	if (fhandle == NULL || fattr == NULL)
1679		goto out;
1680
1681	dir_verifier = nfs_save_change_attribute(dir);
1682	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1683	if (ret < 0) {
1684		switch (ret) {
1685		case -ESTALE:
1686		case -ENOENT:
1687			ret = 0;
1688			break;
1689		case -ETIMEDOUT:
1690			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691				ret = 1;
1692		}
1693		goto out;
1694	}
1695
1696	/* Request help from readdirplus */
1697	nfs_lookup_advise_force_readdirplus(dir, flags);
1698
1699	ret = 0;
1700	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1701		goto out;
1702	if (nfs_refresh_inode(inode, fattr) < 0)
1703		goto out;
1704
1705	nfs_setsecurity(inode, fattr);
1706	nfs_set_verifier(dentry, dir_verifier);
1707
1708	ret = 1;
1709out:
1710	nfs_free_fattr(fattr);
1711	nfs_free_fhandle(fhandle);
1712
1713	/*
1714	 * If the lookup failed despite the dentry change attribute being
1715	 * a match, then we should revalidate the directory cache.
1716	 */
1717	if (!ret && nfs_dentry_verify_change(dir, dentry))
1718		nfs_mark_dir_for_revalidate(dir);
1719	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1720}
1721
1722/*
1723 * This is called every time the dcache has a lookup hit,
1724 * and we should check whether we can really trust that
1725 * lookup.
1726 *
1727 * NOTE! The hit can be a negative hit too, don't assume
1728 * we have an inode!
1729 *
1730 * If the parent directory is seen to have changed, we throw out the
1731 * cached dentry and do a new lookup.
1732 */
1733static int
1734nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1735			 unsigned int flags)
1736{
 
1737	struct inode *inode;
 
 
 
1738	int error;
1739
 
 
 
 
 
1740	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1741	inode = d_inode(dentry);
1742
1743	if (!inode)
1744		return nfs_lookup_revalidate_negative(dir, dentry, flags);
 
 
 
1745
1746	if (is_bad_inode(inode)) {
1747		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1748				__func__, dentry);
 
1749		goto out_bad;
1750	}
1751
1752	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1753	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1754		goto out_bad;
1755
1756	if (nfs_verifier_is_delegated(dentry))
1757		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1758
1759	/* Force a full look up iff the parent directory has changed */
1760	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1761	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1762		error = nfs_lookup_verify_inode(inode, flags);
1763		if (error) {
1764			if (error == -ESTALE)
1765				nfs_mark_dir_for_revalidate(dir);
1766			goto out_bad;
1767		}
1768		goto out_valid;
1769	}
1770
1771	if (flags & LOOKUP_RCU)
1772		return -ECHILD;
1773
1774	if (NFS_STALE(inode))
1775		goto out_bad;
1776
1777	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1778out_valid:
1779	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1780out_bad:
1781	if (flags & LOOKUP_RCU)
1782		return -ECHILD;
1783	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1784}
1785
1786static int
1787__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1788			int (*reval)(struct inode *, struct dentry *, unsigned int))
1789{
1790	struct dentry *parent;
1791	struct inode *dir;
1792	int ret;
1793
1794	if (flags & LOOKUP_RCU) {
1795		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1796			return -ECHILD;
1797		parent = READ_ONCE(dentry->d_parent);
1798		dir = d_inode_rcu(parent);
1799		if (!dir)
1800			return -ECHILD;
1801		ret = reval(dir, dentry, flags);
1802		if (parent != READ_ONCE(dentry->d_parent))
1803			return -ECHILD;
1804	} else {
1805		/* Wait for unlink to complete */
1806		wait_var_event(&dentry->d_fsdata,
1807			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1808		parent = dget_parent(dentry);
1809		ret = reval(d_inode(parent), dentry, flags);
1810		dput(parent);
1811	}
1812	return ret;
1813}
1814
1815static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816{
1817	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818}
1819
1820/*
1821 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1822 * when we don't really care about the dentry name. This is called when a
1823 * pathwalk ends on a dentry that was not found via a normal lookup in the
1824 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1825 *
1826 * In this situation, we just want to verify that the inode itself is OK
1827 * since the dentry might have changed on the server.
1828 */
1829static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831	struct inode *inode = d_inode(dentry);
1832	int error = 0;
1833
1834	/*
1835	 * I believe we can only get a negative dentry here in the case of a
1836	 * procfs-style symlink. Just assume it's correct for now, but we may
1837	 * eventually need to do something more here.
1838	 */
1839	if (!inode) {
1840		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1841				__func__, dentry);
1842		return 1;
1843	}
1844
1845	if (is_bad_inode(inode)) {
1846		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1847				__func__, dentry);
1848		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849	}
1850
1851	error = nfs_lookup_verify_inode(inode, flags);
1852	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1853			__func__, inode->i_ino, error ? "invalid" : "valid");
1854	return !error;
 
 
 
 
 
 
 
 
 
 
 
1855}
1856
1857/*
1858 * This is called from dput() when d_count is going to 0.
1859 */
1860static int nfs_dentry_delete(const struct dentry *dentry)
1861{
1862	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1863		dentry, dentry->d_flags);
 
1864
1865	/* Unhash any dentry with a stale inode */
1866	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1867		return 1;
1868
1869	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870		/* Unhash it, so that ->d_iput() would be called */
1871		return 1;
1872	}
1873	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1874		/* Unhash it, so that ancestors of killed async unlink
1875		 * files will be cleaned up during umount */
1876		return 1;
1877	}
1878	return 0;
1879
1880}
1881
1882/* Ensure that we revalidate inode->i_nlink */
1883static void nfs_drop_nlink(struct inode *inode)
1884{
1885	spin_lock(&inode->i_lock);
1886	/* drop the inode if we're reasonably sure this is the last link */
1887	if (inode->i_nlink > 0)
1888		drop_nlink(inode);
1889	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1890	nfs_set_cache_invalid(
1891		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1892			       NFS_INO_INVALID_NLINK);
1893	spin_unlock(&inode->i_lock);
1894}
1895
1896/*
1897 * Called when the dentry loses inode.
1898 * We use it to clean up silly-renamed files.
1899 */
1900static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1901{
 
 
 
 
1902	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
 
1903		nfs_complete_unlink(dentry, inode);
1904		nfs_drop_nlink(inode);
1905	}
1906	iput(inode);
1907}
1908
1909static void nfs_d_release(struct dentry *dentry)
1910{
1911	/* free cached devname value, if it survived that far */
1912	if (unlikely(dentry->d_fsdata)) {
1913		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1914			WARN_ON(1);
1915		else
1916			kfree(dentry->d_fsdata);
1917	}
1918}
1919
1920const struct dentry_operations nfs_dentry_operations = {
1921	.d_revalidate	= nfs_lookup_revalidate,
1922	.d_weak_revalidate	= nfs_weak_revalidate,
1923	.d_delete	= nfs_dentry_delete,
1924	.d_iput		= nfs_dentry_iput,
1925	.d_automount	= nfs_d_automount,
1926	.d_release	= nfs_d_release,
1927};
1928EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1929
1930struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1931{
1932	struct dentry *res;
 
1933	struct inode *inode = NULL;
1934	struct nfs_fh *fhandle = NULL;
1935	struct nfs_fattr *fattr = NULL;
1936	unsigned long dir_verifier;
1937	int error;
1938
1939	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
 
1940	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1941
1942	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1943		return ERR_PTR(-ENAMETOOLONG);
 
1944
1945	/*
1946	 * If we're doing an exclusive create, optimize away the lookup
1947	 * but don't hash the dentry.
1948	 */
1949	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1950		return NULL;
 
 
 
1951
1952	res = ERR_PTR(-ENOMEM);
1953	fhandle = nfs_alloc_fhandle();
1954	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1955	if (fhandle == NULL || fattr == NULL)
1956		goto out;
1957
1958	dir_verifier = nfs_save_change_attribute(dir);
1959	trace_nfs_lookup_enter(dir, dentry, flags);
1960	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1961	if (error == -ENOENT) {
1962		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1963			dir_verifier = inode_peek_iversion_raw(dir);
1964		goto no_entry;
1965	}
1966	if (error < 0) {
1967		res = ERR_PTR(error);
1968		goto out;
1969	}
1970	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1971	res = ERR_CAST(inode);
1972	if (IS_ERR(res))
1973		goto out;
1974
1975	/* Notify readdir to use READDIRPLUS */
1976	nfs_lookup_advise_force_readdirplus(dir, flags);
1977
1978no_entry:
1979	res = d_splice_alias(inode, dentry);
1980	if (res != NULL) {
1981		if (IS_ERR(res))
1982			goto out;
1983		dentry = res;
1984	}
1985	nfs_set_verifier(dentry, dir_verifier);
 
 
1986out:
1987	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1988	nfs_free_fattr(fattr);
1989	nfs_free_fhandle(fhandle);
1990	return res;
1991}
1992EXPORT_SYMBOL_GPL(nfs_lookup);
1993
1994void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1995{
1996	/* Case insensitive server? Revalidate dentries */
1997	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1998		d_prune_aliases(inode);
1999}
2000EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2001
2002#if IS_ENABLED(CONFIG_NFS_V4)
2003static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2004
2005const struct dentry_operations nfs4_dentry_operations = {
2006	.d_revalidate	= nfs4_lookup_revalidate,
2007	.d_weak_revalidate	= nfs_weak_revalidate,
2008	.d_delete	= nfs_dentry_delete,
2009	.d_iput		= nfs_dentry_iput,
2010	.d_automount	= nfs_d_automount,
2011	.d_release	= nfs_d_release,
2012};
2013EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2014
2015static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
 
 
 
 
2016{
2017	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018}
2019
2020static int do_open(struct inode *inode, struct file *filp)
2021{
2022	nfs_fscache_open_file(inode, filp);
2023	return 0;
2024}
2025
2026static int nfs_finish_open(struct nfs_open_context *ctx,
2027			   struct dentry *dentry,
2028			   struct file *file, unsigned open_flags)
2029{
2030	int err;
 
2031
2032	err = finish_open(file, dentry, do_open);
2033	if (err)
2034		goto out;
2035	if (S_ISREG(file_inode(file)->i_mode))
2036		nfs_file_set_open_context(file, ctx);
 
 
 
 
 
 
2037	else
2038		err = -EOPENSTALE;
2039out:
2040	return err;
 
2041}
2042
2043int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2044		    struct file *file, unsigned open_flags,
2045		    umode_t mode)
2046{
2047	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048	struct nfs_open_context *ctx;
2049	struct dentry *res;
2050	struct iattr attr = { .ia_valid = ATTR_OPEN };
2051	struct inode *inode;
2052	unsigned int lookup_flags = 0;
2053	unsigned long dir_verifier;
2054	bool switched = false;
2055	int created = 0;
2056	int err;
2057
2058	/* Expect a negative dentry */
2059	BUG_ON(d_inode(dentry));
2060
2061	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2062			dir->i_sb->s_id, dir->i_ino, dentry);
2063
2064	err = nfs_check_flags(open_flags);
2065	if (err)
2066		return err;
2067
2068	/* NFS only supports OPEN on regular files */
2069	if ((open_flags & O_DIRECTORY)) {
2070		if (!d_in_lookup(dentry)) {
2071			/*
2072			 * Hashed negative dentry with O_DIRECTORY: dentry was
2073			 * revalidated and is fine, no need to perform lookup
2074			 * again
2075			 */
2076			return -ENOENT;
2077		}
2078		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2079		goto no_open;
 
 
 
 
2080	}
2081
2082	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2083		return -ENAMETOOLONG;
 
 
 
 
2084
2085	if (open_flags & O_CREAT) {
2086		struct nfs_server *server = NFS_SERVER(dir);
2087
2088		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2089			mode &= ~current_umask();
 
 
2090
 
 
2091		attr.ia_valid |= ATTR_MODE;
2092		attr.ia_mode = mode;
2093	}
 
 
2094	if (open_flags & O_TRUNC) {
2095		attr.ia_valid |= ATTR_SIZE;
2096		attr.ia_size = 0;
2097	}
2098
2099	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2100		d_drop(dentry);
2101		switched = true;
2102		dentry = d_alloc_parallel(dentry->d_parent,
2103					  &dentry->d_name, &wq);
2104		if (IS_ERR(dentry))
2105			return PTR_ERR(dentry);
2106		if (unlikely(!d_in_lookup(dentry)))
2107			return finish_no_open(file, dentry);
2108	}
2109
2110	ctx = create_nfs_open_context(dentry, open_flags, file);
2111	err = PTR_ERR(ctx);
2112	if (IS_ERR(ctx))
2113		goto out;
2114
2115	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2116	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2117	if (created)
2118		file->f_mode |= FMODE_CREATED;
2119	if (IS_ERR(inode)) {
2120		err = PTR_ERR(inode);
2121		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2122		put_nfs_open_context(ctx);
2123		d_drop(dentry);
2124		switch (err) {
2125		case -ENOENT:
2126			d_splice_alias(NULL, dentry);
2127			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2128				dir_verifier = inode_peek_iversion_raw(dir);
2129			else
2130				dir_verifier = nfs_save_change_attribute(dir);
2131			nfs_set_verifier(dentry, dir_verifier);
2132			break;
2133		case -EISDIR:
2134		case -ENOTDIR:
2135			goto no_open;
2136		case -ELOOP:
2137			if (!(open_flags & O_NOFOLLOW))
2138				goto no_open;
2139			break;
 
 
2140			/* case -EINVAL: */
2141		default:
2142			break;
 
2143		}
2144		goto out;
2145	}
2146	file->f_mode |= FMODE_CAN_ODIRECT;
2147
2148	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2149	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2150	put_nfs_open_context(ctx);
2151out:
2152	if (unlikely(switched)) {
2153		d_lookup_done(dentry);
2154		dput(dentry);
2155	}
2156	return err;
2157
2158no_open:
2159	res = nfs_lookup(dir, dentry, lookup_flags);
2160	if (!res) {
2161		inode = d_inode(dentry);
2162		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2164			res = ERR_PTR(-ENOTDIR);
2165		else if (inode && S_ISREG(inode->i_mode))
2166			res = ERR_PTR(-EOPENSTALE);
2167	} else if (!IS_ERR(res)) {
2168		inode = d_inode(res);
2169		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2170		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2171			dput(res);
2172			res = ERR_PTR(-ENOTDIR);
2173		} else if (inode && S_ISREG(inode->i_mode)) {
2174			dput(res);
2175			res = ERR_PTR(-EOPENSTALE);
2176		}
2177	}
2178	if (switched) {
2179		d_lookup_done(dentry);
2180		if (!res)
2181			res = dentry;
2182		else
2183			dput(dentry);
2184	}
2185	if (IS_ERR(res))
2186		return PTR_ERR(res);
2187	return finish_no_open(file, res);
2188}
2189EXPORT_SYMBOL_GPL(nfs_atomic_open);
2190
2191static int
2192nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2193			  unsigned int flags)
2194{
 
2195	struct inode *inode;
 
 
2196
2197	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
 
2198
2199	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2200		goto full_reval;
2201	if (d_mountpoint(dentry))
2202		goto full_reval;
2203
2204	inode = d_inode(dentry);
 
2205
2206	/* We can't create new files in nfs_open_revalidate(), so we
2207	 * optimize away revalidation of negative dentries.
2208	 */
2209	if (inode == NULL)
2210		goto full_reval;
2211
2212	if (nfs_verifier_is_delegated(dentry))
2213		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2214
2215	/* NFS only supports OPEN on regular files */
2216	if (!S_ISREG(inode->i_mode))
2217		goto full_reval;
2218
2219	/* We cannot do exclusive creation on a positive dentry */
2220	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2221		goto reval_dentry;
2222
2223	/* Check if the directory changed */
2224	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2225		goto reval_dentry;
2226
2227	/* Let f_op->open() actually open (and revalidate) the file */
2228	return 1;
2229reval_dentry:
2230	if (flags & LOOKUP_RCU)
2231		return -ECHILD;
2232	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2233
2234full_reval:
2235	return nfs_do_lookup_revalidate(dir, dentry, flags);
 
 
 
 
 
 
2236}
2237
2238static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
 
2239{
2240	return __nfs_lookup_revalidate(dentry, flags,
2241			nfs4_do_lookup_revalidate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242}
2243
2244#endif /* CONFIG_NFSV4 */
2245
2246struct dentry *
2247nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
 
 
2248				struct nfs_fattr *fattr)
2249{
2250	struct dentry *parent = dget_parent(dentry);
2251	struct inode *dir = d_inode(parent);
2252	struct inode *inode;
2253	struct dentry *d;
2254	int error;
2255
2256	d_drop(dentry);
2257
 
 
 
2258	if (fhandle->size == 0) {
2259		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2260		if (error)
2261			goto out_error;
2262	}
2263	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2264	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2265		struct nfs_server *server = NFS_SB(dentry->d_sb);
2266		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2267				fattr, NULL);
2268		if (error < 0)
2269			goto out_error;
2270	}
2271	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2272	d = d_splice_alias(inode, dentry);
 
 
 
2273out:
2274	dput(parent);
2275	return d;
2276out_error:
2277	d = ERR_PTR(error);
2278	goto out;
2279}
2280EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2281
2282/*
2283 * Code common to create, mkdir, and mknod.
2284 */
2285int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2286				struct nfs_fattr *fattr)
2287{
2288	struct dentry *d;
2289
2290	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2291	if (IS_ERR(d))
2292		return PTR_ERR(d);
2293
2294	/* Callers don't care */
2295	dput(d);
2296	return 0;
 
 
 
 
2297}
2298EXPORT_SYMBOL_GPL(nfs_instantiate);
2299
2300/*
2301 * Following a failed create operation, we drop the dentry rather
2302 * than retain a negative dentry. This avoids a problem in the event
2303 * that the operation succeeded on the server, but an error in the
2304 * reply path made it appear to have failed.
2305 */
2306int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2307	       struct dentry *dentry, umode_t mode, bool excl)
2308{
2309	struct iattr attr;
2310	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2311	int error;
 
2312
2313	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2314			dir->i_sb->s_id, dir->i_ino, dentry);
2315
2316	attr.ia_mode = mode;
2317	attr.ia_valid = ATTR_MODE;
2318
2319	trace_nfs_create_enter(dir, dentry, open_flags);
2320	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2321	trace_nfs_create_exit(dir, dentry, open_flags, error);
 
2322	if (error != 0)
2323		goto out_err;
2324	return 0;
2325out_err:
2326	d_drop(dentry);
2327	return error;
2328}
2329EXPORT_SYMBOL_GPL(nfs_create);
2330
2331/*
2332 * See comments for nfs_proc_create regarding failed operations.
2333 */
2334int
2335nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2336	  struct dentry *dentry, umode_t mode, dev_t rdev)
2337{
2338	struct iattr attr;
2339	int status;
2340
2341	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2342			dir->i_sb->s_id, dir->i_ino, dentry);
 
 
 
2343
2344	attr.ia_mode = mode;
2345	attr.ia_valid = ATTR_MODE;
2346
2347	trace_nfs_mknod_enter(dir, dentry);
2348	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2349	trace_nfs_mknod_exit(dir, dentry, status);
2350	if (status != 0)
2351		goto out_err;
2352	return 0;
2353out_err:
2354	d_drop(dentry);
2355	return status;
2356}
2357EXPORT_SYMBOL_GPL(nfs_mknod);
2358
2359/*
2360 * See comments for nfs_proc_create regarding failed operations.
2361 */
2362int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2363	      struct dentry *dentry, umode_t mode)
2364{
2365	struct iattr attr;
2366	int error;
2367
2368	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2369			dir->i_sb->s_id, dir->i_ino, dentry);
2370
2371	attr.ia_valid = ATTR_MODE;
2372	attr.ia_mode = mode | S_IFDIR;
2373
2374	trace_nfs_mkdir_enter(dir, dentry);
2375	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2376	trace_nfs_mkdir_exit(dir, dentry, error);
2377	if (error != 0)
2378		goto out_err;
2379	return 0;
2380out_err:
2381	d_drop(dentry);
2382	return error;
2383}
2384EXPORT_SYMBOL_GPL(nfs_mkdir);
2385
2386static void nfs_dentry_handle_enoent(struct dentry *dentry)
2387{
2388	if (simple_positive(dentry))
2389		d_delete(dentry);
2390}
2391
2392static void nfs_dentry_remove_handle_error(struct inode *dir,
2393					   struct dentry *dentry, int error)
2394{
2395	switch (error) {
2396	case -ENOENT:
2397		if (d_really_is_positive(dentry))
2398			d_delete(dentry);
2399		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2400		break;
2401	case 0:
2402		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2403		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2404	}
2405}
2406
2407int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2408{
2409	int error;
2410
2411	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2412			dir->i_sb->s_id, dir->i_ino, dentry);
2413
2414	trace_nfs_rmdir_enter(dir, dentry);
2415	if (d_really_is_positive(dentry)) {
2416		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2417		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2418		/* Ensure the VFS deletes this inode */
2419		switch (error) {
2420		case 0:
2421			clear_nlink(d_inode(dentry));
2422			break;
2423		case -ENOENT:
2424			nfs_dentry_handle_enoent(dentry);
2425		}
2426		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2427	} else
2428		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2429	nfs_dentry_remove_handle_error(dir, dentry, error);
2430	trace_nfs_rmdir_exit(dir, dentry, error);
2431
2432	return error;
2433}
2434EXPORT_SYMBOL_GPL(nfs_rmdir);
2435
2436/*
2437 * Remove a file after making sure there are no pending writes,
2438 * and after checking that the file has only one user. 
2439 *
2440 * We invalidate the attribute cache and free the inode prior to the operation
2441 * to avoid possible races if the server reuses the inode.
2442 */
2443static int nfs_safe_remove(struct dentry *dentry)
2444{
2445	struct inode *dir = d_inode(dentry->d_parent);
2446	struct inode *inode = d_inode(dentry);
2447	int error = -EBUSY;
2448		
2449	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
 
2450
2451	/* If the dentry was sillyrenamed, we simply call d_delete() */
2452	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2453		error = 0;
2454		goto out;
2455	}
2456
2457	trace_nfs_remove_enter(dir, dentry);
2458	if (inode != NULL) {
2459		error = NFS_PROTO(dir)->remove(dir, dentry);
 
 
2460		if (error == 0)
2461			nfs_drop_nlink(inode);
 
2462	} else
2463		error = NFS_PROTO(dir)->remove(dir, dentry);
2464	if (error == -ENOENT)
2465		nfs_dentry_handle_enoent(dentry);
2466	trace_nfs_remove_exit(dir, dentry, error);
2467out:
2468	return error;
2469}
2470
2471/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2472 *  belongs to an active ".nfs..." file and we return -EBUSY.
2473 *
2474 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2475 */
2476int nfs_unlink(struct inode *dir, struct dentry *dentry)
2477{
2478	int error;
 
2479
2480	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2481		dir->i_ino, dentry);
2482
2483	trace_nfs_unlink_enter(dir, dentry);
2484	spin_lock(&dentry->d_lock);
2485	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2486					     &NFS_I(d_inode(dentry))->flags)) {
2487		spin_unlock(&dentry->d_lock);
2488		/* Start asynchronous writeout of the inode */
2489		write_inode_now(d_inode(dentry), 0);
2490		error = nfs_sillyrename(dir, dentry);
2491		goto out;
2492	}
2493	/* We must prevent any concurrent open until the unlink
2494	 * completes.  ->d_revalidate will wait for ->d_fsdata
2495	 * to clear.  We set it here to ensure no lookup succeeds until
2496	 * the unlink is complete on the server.
2497	 */
2498	error = -ETXTBSY;
2499	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2500	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2501		spin_unlock(&dentry->d_lock);
2502		goto out;
2503	}
2504	/* old devname */
2505	kfree(dentry->d_fsdata);
2506	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2507
2508	spin_unlock(&dentry->d_lock);
2509	error = nfs_safe_remove(dentry);
2510	nfs_dentry_remove_handle_error(dir, dentry, error);
2511	dentry->d_fsdata = NULL;
2512	wake_up_var(&dentry->d_fsdata);
2513out:
2514	trace_nfs_unlink_exit(dir, dentry, error);
2515	return error;
2516}
2517EXPORT_SYMBOL_GPL(nfs_unlink);
2518
2519/*
2520 * To create a symbolic link, most file systems instantiate a new inode,
2521 * add a page to it containing the path, then write it out to the disk
2522 * using prepare_write/commit_write.
2523 *
2524 * Unfortunately the NFS client can't create the in-core inode first
2525 * because it needs a file handle to create an in-core inode (see
2526 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2527 * symlink request has completed on the server.
2528 *
2529 * So instead we allocate a raw page, copy the symname into it, then do
2530 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2531 * now have a new file handle and can instantiate an in-core NFS inode
2532 * and move the raw page into its mapping.
2533 */
2534int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2535		struct dentry *dentry, const char *symname)
2536{
2537	struct folio *folio;
 
2538	char *kaddr;
2539	struct iattr attr;
2540	unsigned int pathlen = strlen(symname);
2541	int error;
2542
2543	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2544		dir->i_ino, dentry, symname);
2545
2546	if (pathlen > PAGE_SIZE)
2547		return -ENAMETOOLONG;
2548
2549	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2550	attr.ia_valid = ATTR_MODE;
2551
2552	folio = folio_alloc(GFP_USER, 0);
2553	if (!folio)
2554		return -ENOMEM;
2555
2556	kaddr = folio_address(folio);
2557	memcpy(kaddr, symname, pathlen);
2558	if (pathlen < PAGE_SIZE)
2559		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
 
2560
2561	trace_nfs_symlink_enter(dir, dentry);
2562	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2563	trace_nfs_symlink_exit(dir, dentry, error);
2564	if (error != 0) {
2565		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2566			dir->i_sb->s_id, dir->i_ino,
2567			dentry, symname, error);
2568		d_drop(dentry);
2569		folio_put(folio);
2570		return error;
2571	}
2572
2573	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2574
2575	/*
2576	 * No big deal if we can't add this page to the page cache here.
2577	 * READLINK will get the missing page from the server if needed.
2578	 */
2579	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2580							GFP_KERNEL) == 0) {
2581		folio_mark_uptodate(folio);
2582		folio_unlock(folio);
2583	}
 
 
 
 
2584
2585	folio_put(folio);
2586	return 0;
2587}
2588EXPORT_SYMBOL_GPL(nfs_symlink);
2589
2590int
2591nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2592{
2593	struct inode *inode = d_inode(old_dentry);
2594	int error;
2595
2596	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2597		old_dentry, dentry);
 
 
 
2598
2599	trace_nfs_link_enter(inode, dir, dentry);
2600	d_drop(dentry);
2601	if (S_ISREG(inode->i_mode))
2602		nfs_sync_inode(inode);
2603	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2604	if (error == 0) {
2605		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2606		ihold(inode);
2607		d_add(dentry, inode);
2608	}
2609	trace_nfs_link_exit(inode, dir, dentry, error);
2610	return error;
2611}
2612EXPORT_SYMBOL_GPL(nfs_link);
2613
2614static void
2615nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2616{
2617	struct dentry *new_dentry = data->new_dentry;
2618
2619	new_dentry->d_fsdata = NULL;
2620	wake_up_var(&new_dentry->d_fsdata);
2621}
2622
2623/*
2624 * RENAME
2625 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2626 * different file handle for the same inode after a rename (e.g. when
2627 * moving to a different directory). A fail-safe method to do so would
2628 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2629 * rename the old file using the sillyrename stuff. This way, the original
2630 * file in old_dir will go away when the last process iput()s the inode.
2631 *
2632 * FIXED.
2633 * 
2634 * It actually works quite well. One needs to have the possibility for
2635 * at least one ".nfs..." file in each directory the file ever gets
2636 * moved or linked to which happens automagically with the new
2637 * implementation that only depends on the dcache stuff instead of
2638 * using the inode layer
2639 *
2640 * Unfortunately, things are a little more complicated than indicated
2641 * above. For a cross-directory move, we want to make sure we can get
2642 * rid of the old inode after the operation.  This means there must be
2643 * no pending writes (if it's a file), and the use count must be 1.
2644 * If these conditions are met, we can drop the dentries before doing
2645 * the rename.
2646 */
2647int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2648	       struct dentry *old_dentry, struct inode *new_dir,
2649	       struct dentry *new_dentry, unsigned int flags)
2650{
2651	struct inode *old_inode = d_inode(old_dentry);
2652	struct inode *new_inode = d_inode(new_dentry);
2653	struct dentry *dentry = NULL;
2654	struct rpc_task *task;
2655	bool must_unblock = false;
2656	int error = -EBUSY;
2657
2658	if (flags)
2659		return -EINVAL;
2660
2661	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2662		 old_dentry, new_dentry,
2663		 d_count(new_dentry));
2664
2665	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2666	/*
2667	 * For non-directories, check whether the target is busy and if so,
2668	 * make a copy of the dentry and then do a silly-rename. If the
2669	 * silly-rename succeeds, the copied dentry is hashed and becomes
2670	 * the new target.
2671	 */
2672	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2673		/* We must prevent any concurrent open until the unlink
2674		 * completes.  ->d_revalidate will wait for ->d_fsdata
2675		 * to clear.  We set it here to ensure no lookup succeeds until
2676		 * the unlink is complete on the server.
2677		 */
2678		error = -ETXTBSY;
2679		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2680		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2681			goto out;
2682		if (new_dentry->d_fsdata) {
2683			/* old devname */
2684			kfree(new_dentry->d_fsdata);
2685			new_dentry->d_fsdata = NULL;
2686		}
2687
2688		spin_lock(&new_dentry->d_lock);
2689		if (d_count(new_dentry) > 2) {
2690			int err;
2691
2692			spin_unlock(&new_dentry->d_lock);
2693
2694			/* copy the target dentry's name */
2695			dentry = d_alloc(new_dentry->d_parent,
2696					 &new_dentry->d_name);
2697			if (!dentry)
2698				goto out;
2699
2700			/* silly-rename the existing target ... */
2701			err = nfs_sillyrename(new_dir, new_dentry);
2702			if (err)
2703				goto out;
2704
2705			new_dentry = dentry;
 
2706			new_inode = NULL;
2707		} else {
2708			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2709			must_unblock = true;
2710			spin_unlock(&new_dentry->d_lock);
2711		}
2712
2713	}
2714
2715	if (S_ISREG(old_inode->i_mode))
2716		nfs_sync_inode(old_inode);
2717	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2718				must_unblock ? nfs_unblock_rename : NULL);
2719	if (IS_ERR(task)) {
2720		error = PTR_ERR(task);
2721		goto out;
2722	}
2723
2724	error = rpc_wait_for_completion_task(task);
2725	if (error != 0) {
2726		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2727		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2728		smp_wmb();
2729	} else
2730		error = task->tk_status;
2731	rpc_put_task(task);
2732	/* Ensure the inode attributes are revalidated */
2733	if (error == 0) {
2734		spin_lock(&old_inode->i_lock);
2735		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2736		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2737							 NFS_INO_INVALID_CTIME |
2738							 NFS_INO_REVAL_FORCED);
2739		spin_unlock(&old_inode->i_lock);
2740	}
2741out:
2742	trace_nfs_rename_exit(old_dir, old_dentry,
2743			new_dir, new_dentry, error);
2744	if (!error) {
2745		if (new_inode != NULL)
2746			nfs_drop_nlink(new_inode);
2747		/*
2748		 * The d_move() should be here instead of in an async RPC completion
2749		 * handler because we need the proper locks to move the dentry.  If
2750		 * we're interrupted by a signal, the async RPC completion handler
2751		 * should mark the directories for revalidation.
2752		 */
2753		d_move(old_dentry, new_dentry);
2754		nfs_set_verifier(old_dentry,
2755					nfs_save_change_attribute(new_dir));
2756	} else if (error == -ENOENT)
2757		nfs_dentry_handle_enoent(old_dentry);
2758
2759	/* new dentry created? */
2760	if (dentry)
2761		dput(dentry);
2762	return error;
2763}
2764EXPORT_SYMBOL_GPL(nfs_rename);
2765
2766static DEFINE_SPINLOCK(nfs_access_lru_lock);
2767static LIST_HEAD(nfs_access_lru_list);
2768static atomic_long_t nfs_access_nr_entries;
2769
2770static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2771module_param(nfs_access_max_cachesize, ulong, 0644);
2772MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2773
2774static void nfs_access_free_entry(struct nfs_access_entry *entry)
2775{
2776	put_group_info(entry->group_info);
2777	kfree_rcu(entry, rcu_head);
2778	smp_mb__before_atomic();
2779	atomic_long_dec(&nfs_access_nr_entries);
2780	smp_mb__after_atomic();
2781}
2782
2783static void nfs_access_free_list(struct list_head *head)
2784{
2785	struct nfs_access_entry *cache;
2786
2787	while (!list_empty(head)) {
2788		cache = list_entry(head->next, struct nfs_access_entry, lru);
2789		list_del(&cache->lru);
2790		nfs_access_free_entry(cache);
2791	}
2792}
2793
2794static unsigned long
2795nfs_do_access_cache_scan(unsigned int nr_to_scan)
2796{
2797	LIST_HEAD(head);
2798	struct nfs_inode *nfsi, *next;
2799	struct nfs_access_entry *cache;
2800	long freed = 0;
 
 
 
 
2801
2802	spin_lock(&nfs_access_lru_lock);
2803	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2804		struct inode *inode;
2805
2806		if (nr_to_scan-- == 0)
2807			break;
2808		inode = &nfsi->vfs_inode;
2809		spin_lock(&inode->i_lock);
2810		if (list_empty(&nfsi->access_cache_entry_lru))
2811			goto remove_lru_entry;
2812		cache = list_entry(nfsi->access_cache_entry_lru.next,
2813				struct nfs_access_entry, lru);
2814		list_move(&cache->lru, &head);
2815		rb_erase(&cache->rb_node, &nfsi->access_cache);
2816		freed++;
2817		if (!list_empty(&nfsi->access_cache_entry_lru))
2818			list_move_tail(&nfsi->access_cache_inode_lru,
2819					&nfs_access_lru_list);
2820		else {
2821remove_lru_entry:
2822			list_del_init(&nfsi->access_cache_inode_lru);
2823			smp_mb__before_atomic();
2824			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2825			smp_mb__after_atomic();
2826		}
2827		spin_unlock(&inode->i_lock);
2828	}
2829	spin_unlock(&nfs_access_lru_lock);
2830	nfs_access_free_list(&head);
2831	return freed;
2832}
2833
2834unsigned long
2835nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2836{
2837	int nr_to_scan = sc->nr_to_scan;
2838	gfp_t gfp_mask = sc->gfp_mask;
2839
2840	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2841		return SHRINK_STOP;
2842	return nfs_do_access_cache_scan(nr_to_scan);
2843}
2844
2845
2846unsigned long
2847nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2848{
2849	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2850}
2851
2852static void
2853nfs_access_cache_enforce_limit(void)
2854{
2855	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2856	unsigned long diff;
2857	unsigned int nr_to_scan;
2858
2859	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2860		return;
2861	nr_to_scan = 100;
2862	diff = nr_entries - nfs_access_max_cachesize;
2863	if (diff < nr_to_scan)
2864		nr_to_scan = diff;
2865	nfs_do_access_cache_scan(nr_to_scan);
2866}
2867
2868static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2869{
2870	struct rb_root *root_node = &nfsi->access_cache;
2871	struct rb_node *n;
2872	struct nfs_access_entry *entry;
2873
2874	/* Unhook entries from the cache */
2875	while ((n = rb_first(root_node)) != NULL) {
2876		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2877		rb_erase(n, root_node);
2878		list_move(&entry->lru, head);
2879	}
2880	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2881}
2882
2883void nfs_access_zap_cache(struct inode *inode)
2884{
2885	LIST_HEAD(head);
2886
2887	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2888		return;
2889	/* Remove from global LRU init */
2890	spin_lock(&nfs_access_lru_lock);
2891	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2892		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2893
2894	spin_lock(&inode->i_lock);
2895	__nfs_access_zap_cache(NFS_I(inode), &head);
2896	spin_unlock(&inode->i_lock);
2897	spin_unlock(&nfs_access_lru_lock);
2898	nfs_access_free_list(&head);
2899}
2900EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2901
2902static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2903{
2904	struct group_info *ga, *gb;
2905	int g;
2906
2907	if (uid_lt(a->fsuid, b->fsuid))
2908		return -1;
2909	if (uid_gt(a->fsuid, b->fsuid))
2910		return 1;
2911
2912	if (gid_lt(a->fsgid, b->fsgid))
2913		return -1;
2914	if (gid_gt(a->fsgid, b->fsgid))
2915		return 1;
2916
2917	ga = a->group_info;
2918	gb = b->group_info;
2919	if (ga == gb)
2920		return 0;
2921	if (ga == NULL)
2922		return -1;
2923	if (gb == NULL)
2924		return 1;
2925	if (ga->ngroups < gb->ngroups)
2926		return -1;
2927	if (ga->ngroups > gb->ngroups)
2928		return 1;
2929
2930	for (g = 0; g < ga->ngroups; g++) {
2931		if (gid_lt(ga->gid[g], gb->gid[g]))
2932			return -1;
2933		if (gid_gt(ga->gid[g], gb->gid[g]))
2934			return 1;
2935	}
2936	return 0;
2937}
2938
2939static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2940{
2941	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
 
2942
2943	while (n != NULL) {
2944		struct nfs_access_entry *entry =
2945			rb_entry(n, struct nfs_access_entry, rb_node);
2946		int cmp = access_cmp(cred, entry);
2947
2948		if (cmp < 0)
2949			n = n->rb_left;
2950		else if (cmp > 0)
2951			n = n->rb_right;
2952		else
2953			return entry;
2954	}
2955	return NULL;
2956}
2957
2958static u64 nfs_access_login_time(const struct task_struct *task,
2959				 const struct cred *cred)
2960{
2961	const struct task_struct *parent;
2962	const struct cred *pcred;
2963	u64 ret;
2964
2965	rcu_read_lock();
2966	for (;;) {
2967		parent = rcu_dereference(task->real_parent);
2968		pcred = __task_cred(parent);
2969		if (parent == task || cred_fscmp(pcred, cred) != 0)
2970			break;
2971		task = parent;
2972	}
2973	ret = task->start_time;
2974	rcu_read_unlock();
2975	return ret;
2976}
2977
2978static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2979{
2980	struct nfs_inode *nfsi = NFS_I(inode);
2981	u64 login_time = nfs_access_login_time(current, cred);
2982	struct nfs_access_entry *cache;
2983	bool retry = true;
2984	int err;
2985
2986	spin_lock(&inode->i_lock);
2987	for(;;) {
2988		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2989			goto out_zap;
2990		cache = nfs_access_search_rbtree(inode, cred);
2991		err = -ENOENT;
2992		if (cache == NULL)
2993			goto out;
2994		/* Found an entry, is our attribute cache valid? */
2995		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2996			break;
2997		if (!retry)
2998			break;
2999		err = -ECHILD;
3000		if (!may_block)
3001			goto out;
3002		spin_unlock(&inode->i_lock);
3003		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3004		if (err)
3005			return err;
3006		spin_lock(&inode->i_lock);
3007		retry = false;
3008	}
3009	err = -ENOENT;
3010	if ((s64)(login_time - cache->timestamp) > 0)
3011		goto out;
3012	*mask = cache->mask;
 
 
 
 
 
3013	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3014	err = 0;
3015out:
3016	spin_unlock(&inode->i_lock);
3017	return err;
 
 
 
 
 
 
3018out_zap:
3019	spin_unlock(&inode->i_lock);
3020	nfs_access_zap_cache(inode);
3021	return -ENOENT;
3022}
3023
3024static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3025{
3026	/* Only check the most recently returned cache entry,
3027	 * but do it without locking.
3028	 */
3029	struct nfs_inode *nfsi = NFS_I(inode);
3030	u64 login_time = nfs_access_login_time(current, cred);
3031	struct nfs_access_entry *cache;
3032	int err = -ECHILD;
3033	struct list_head *lh;
3034
3035	rcu_read_lock();
3036	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3037		goto out;
3038	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3039	cache = list_entry(lh, struct nfs_access_entry, lru);
3040	if (lh == &nfsi->access_cache_entry_lru ||
3041	    access_cmp(cred, cache) != 0)
3042		cache = NULL;
3043	if (cache == NULL)
3044		goto out;
3045	if ((s64)(login_time - cache->timestamp) > 0)
3046		goto out;
3047	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3048		goto out;
3049	*mask = cache->mask;
3050	err = 0;
3051out:
3052	rcu_read_unlock();
3053	return err;
3054}
3055
3056int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3057			  u32 *mask, bool may_block)
3058{
3059	int status;
3060
3061	status = nfs_access_get_cached_rcu(inode, cred, mask);
3062	if (status != 0)
3063		status = nfs_access_get_cached_locked(inode, cred, mask,
3064		    may_block);
3065
3066	return status;
3067}
3068EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3069
3070static void nfs_access_add_rbtree(struct inode *inode,
3071				  struct nfs_access_entry *set,
3072				  const struct cred *cred)
3073{
3074	struct nfs_inode *nfsi = NFS_I(inode);
3075	struct rb_root *root_node = &nfsi->access_cache;
3076	struct rb_node **p = &root_node->rb_node;
3077	struct rb_node *parent = NULL;
3078	struct nfs_access_entry *entry;
3079	int cmp;
3080
3081	spin_lock(&inode->i_lock);
3082	while (*p != NULL) {
3083		parent = *p;
3084		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3085		cmp = access_cmp(cred, entry);
3086
3087		if (cmp < 0)
3088			p = &parent->rb_left;
3089		else if (cmp > 0)
3090			p = &parent->rb_right;
3091		else
3092			goto found;
3093	}
3094	rb_link_node(&set->rb_node, parent, p);
3095	rb_insert_color(&set->rb_node, root_node);
3096	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3097	spin_unlock(&inode->i_lock);
3098	return;
3099found:
3100	rb_replace_node(parent, &set->rb_node, root_node);
3101	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3102	list_del(&entry->lru);
3103	spin_unlock(&inode->i_lock);
3104	nfs_access_free_entry(entry);
3105}
3106
3107void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3108			  const struct cred *cred)
3109{
3110	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3111	if (cache == NULL)
3112		return;
3113	RB_CLEAR_NODE(&cache->rb_node);
3114	cache->fsuid = cred->fsuid;
3115	cache->fsgid = cred->fsgid;
3116	cache->group_info = get_group_info(cred->group_info);
3117	cache->mask = set->mask;
3118	cache->timestamp = ktime_get_ns();
3119
3120	/* The above field assignments must be visible
3121	 * before this item appears on the lru.  We cannot easily
3122	 * use rcu_assign_pointer, so just force the memory barrier.
3123	 */
3124	smp_wmb();
3125	nfs_access_add_rbtree(inode, cache, cred);
3126
3127	/* Update accounting */
3128	smp_mb__before_atomic();
3129	atomic_long_inc(&nfs_access_nr_entries);
3130	smp_mb__after_atomic();
3131
3132	/* Add inode to global LRU list */
3133	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3134		spin_lock(&nfs_access_lru_lock);
3135		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3136			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3137					&nfs_access_lru_list);
3138		spin_unlock(&nfs_access_lru_lock);
3139	}
3140	nfs_access_cache_enforce_limit();
3141}
3142EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3143
3144#define NFS_MAY_READ (NFS_ACCESS_READ)
3145#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3146		NFS_ACCESS_EXTEND | \
3147		NFS_ACCESS_DELETE)
3148#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3149		NFS_ACCESS_EXTEND)
3150#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3151#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3152#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3153static int
3154nfs_access_calc_mask(u32 access_result, umode_t umode)
3155{
3156	int mask = 0;
3157
3158	if (access_result & NFS_MAY_READ)
3159		mask |= MAY_READ;
3160	if (S_ISDIR(umode)) {
3161		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3162			mask |= MAY_WRITE;
3163		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3164			mask |= MAY_EXEC;
3165	} else if (S_ISREG(umode)) {
3166		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3167			mask |= MAY_WRITE;
3168		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3169			mask |= MAY_EXEC;
3170	} else if (access_result & NFS_MAY_WRITE)
3171			mask |= MAY_WRITE;
3172	return mask;
3173}
3174
3175void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3176{
3177	entry->mask = access_result;
3178}
3179EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3180
3181static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3182{
3183	struct nfs_access_entry cache;
3184	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3185	int cache_mask = -1;
3186	int status;
3187
3188	trace_nfs_access_enter(inode);
3189
3190	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3191	if (status == 0)
3192		goto out_cached;
3193
3194	status = -ECHILD;
3195	if (!may_block)
3196		goto out;
3197
3198	/*
3199	 * Determine which access bits we want to ask for...
3200	 */
3201	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3202		     nfs_access_xattr_mask(NFS_SERVER(inode));
3203	if (S_ISDIR(inode->i_mode))
3204		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3205	else
3206		cache.mask |= NFS_ACCESS_EXECUTE;
3207	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3208	if (status != 0) {
3209		if (status == -ESTALE) {
 
3210			if (!S_ISDIR(inode->i_mode))
3211				nfs_set_inode_stale(inode);
3212			else
3213				nfs_zap_caches(inode);
3214		}
3215		goto out;
3216	}
3217	nfs_access_add_cache(inode, &cache, cred);
3218out_cached:
3219	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3220	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3221		status = -EACCES;
3222out:
3223	trace_nfs_access_exit(inode, mask, cache_mask, status);
3224	return status;
 
3225}
3226
3227static int nfs_open_permission_mask(int openflags)
3228{
3229	int mask = 0;
3230
3231	if (openflags & __FMODE_EXEC) {
3232		/* ONLY check exec rights */
3233		mask = MAY_EXEC;
3234	} else {
3235		if ((openflags & O_ACCMODE) != O_WRONLY)
3236			mask |= MAY_READ;
3237		if ((openflags & O_ACCMODE) != O_RDONLY)
3238			mask |= MAY_WRITE;
3239	}
3240
3241	return mask;
3242}
3243
3244int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3245{
3246	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3247}
3248EXPORT_SYMBOL_GPL(nfs_may_open);
3249
3250static int nfs_execute_ok(struct inode *inode, int mask)
3251{
3252	struct nfs_server *server = NFS_SERVER(inode);
3253	int ret = 0;
3254
3255	if (S_ISDIR(inode->i_mode))
3256		return 0;
3257	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3258		if (mask & MAY_NOT_BLOCK)
3259			return -ECHILD;
3260		ret = __nfs_revalidate_inode(server, inode);
3261	}
3262	if (ret == 0 && !execute_ok(inode))
3263		ret = -EACCES;
3264	return ret;
3265}
3266
3267int nfs_permission(struct mnt_idmap *idmap,
3268		   struct inode *inode,
3269		   int mask)
3270{
3271	const struct cred *cred = current_cred();
3272	int res = 0;
3273
 
 
 
3274	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3275
3276	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3277		goto out;
3278	/* Is this sys_access() ? */
3279	if (mask & (MAY_ACCESS | MAY_CHDIR))
3280		goto force_lookup;
3281
3282	switch (inode->i_mode & S_IFMT) {
3283		case S_IFLNK:
3284			goto out;
3285		case S_IFREG:
3286			if ((mask & MAY_OPEN) &&
3287			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3288				return 0;
 
 
3289			break;
3290		case S_IFDIR:
3291			/*
3292			 * Optimize away all write operations, since the server
3293			 * will check permissions when we perform the op.
3294			 */
3295			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3296				goto out;
3297	}
3298
3299force_lookup:
3300	if (!NFS_PROTO(inode)->access)
3301		goto out_notsup;
3302
3303	res = nfs_do_access(inode, cred, mask);
 
 
 
 
 
3304out:
3305	if (!res && (mask & MAY_EXEC))
3306		res = nfs_execute_ok(inode, mask);
3307
3308	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3309		inode->i_sb->s_id, inode->i_ino, mask, res);
3310	return res;
3311out_notsup:
3312	if (mask & MAY_NOT_BLOCK)
3313		return -ECHILD;
3314
3315	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3316						  NFS_INO_INVALID_OTHER);
3317	if (res == 0)
3318		res = generic_permission(&nop_mnt_idmap, inode, mask);
3319	goto out;
3320}
3321EXPORT_SYMBOL_GPL(nfs_permission);
 
 
 
 
 
 
v3.5.6
 
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996	Added silly rename for unlink	--okir
   9 * 28 Sep 1996	Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  18 */
  19
 
 
  20#include <linux/time.h>
  21#include <linux/errno.h>
  22#include <linux/stat.h>
  23#include <linux/fcntl.h>
  24#include <linux/string.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/mm.h>
  28#include <linux/sunrpc/clnt.h>
  29#include <linux/nfs_fs.h>
  30#include <linux/nfs_mount.h>
  31#include <linux/pagemap.h>
  32#include <linux/pagevec.h>
  33#include <linux/namei.h>
  34#include <linux/mount.h>
 
  35#include <linux/sched.h>
  36#include <linux/kmemleak.h>
  37#include <linux/xattr.h>
 
  38
  39#include "delegation.h"
  40#include "iostat.h"
  41#include "internal.h"
  42#include "fscache.h"
  43
 
 
  44/* #define NFS_DEBUG_VERBOSE 1 */
  45
  46static int nfs_opendir(struct inode *, struct file *);
  47static int nfs_closedir(struct inode *, struct file *);
  48static int nfs_readdir(struct file *, void *, filldir_t);
  49static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
  50static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
  51static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
  52static int nfs_rmdir(struct inode *, struct dentry *);
  53static int nfs_unlink(struct inode *, struct dentry *);
  54static int nfs_symlink(struct inode *, struct dentry *, const char *);
  55static int nfs_link(struct dentry *, struct inode *, struct dentry *);
  56static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
  57static int nfs_rename(struct inode *, struct dentry *,
  58		      struct inode *, struct dentry *);
  59static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  60static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  61static void nfs_readdir_clear_array(struct page*);
  62
  63const struct file_operations nfs_dir_operations = {
  64	.llseek		= nfs_llseek_dir,
  65	.read		= generic_read_dir,
  66	.readdir	= nfs_readdir,
  67	.open		= nfs_opendir,
  68	.release	= nfs_closedir,
  69	.fsync		= nfs_fsync_dir,
  70};
  71
  72const struct inode_operations nfs_dir_inode_operations = {
  73	.create		= nfs_create,
  74	.lookup		= nfs_lookup,
  75	.link		= nfs_link,
  76	.unlink		= nfs_unlink,
  77	.symlink	= nfs_symlink,
  78	.mkdir		= nfs_mkdir,
  79	.rmdir		= nfs_rmdir,
  80	.mknod		= nfs_mknod,
  81	.rename		= nfs_rename,
  82	.permission	= nfs_permission,
  83	.getattr	= nfs_getattr,
  84	.setattr	= nfs_setattr,
  85};
  86
  87const struct address_space_operations nfs_dir_aops = {
  88	.freepage = nfs_readdir_clear_array,
  89};
  90
  91#ifdef CONFIG_NFS_V3
  92const struct inode_operations nfs3_dir_inode_operations = {
  93	.create		= nfs_create,
  94	.lookup		= nfs_lookup,
  95	.link		= nfs_link,
  96	.unlink		= nfs_unlink,
  97	.symlink	= nfs_symlink,
  98	.mkdir		= nfs_mkdir,
  99	.rmdir		= nfs_rmdir,
 100	.mknod		= nfs_mknod,
 101	.rename		= nfs_rename,
 102	.permission	= nfs_permission,
 103	.getattr	= nfs_getattr,
 104	.setattr	= nfs_setattr,
 105	.listxattr	= nfs3_listxattr,
 106	.getxattr	= nfs3_getxattr,
 107	.setxattr	= nfs3_setxattr,
 108	.removexattr	= nfs3_removexattr,
 109};
 110#endif  /* CONFIG_NFS_V3 */
 111
 112#ifdef CONFIG_NFS_V4
 113
 114static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
 115static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
 116const struct inode_operations nfs4_dir_inode_operations = {
 117	.create		= nfs_open_create,
 118	.lookup		= nfs_atomic_lookup,
 119	.link		= nfs_link,
 120	.unlink		= nfs_unlink,
 121	.symlink	= nfs_symlink,
 122	.mkdir		= nfs_mkdir,
 123	.rmdir		= nfs_rmdir,
 124	.mknod		= nfs_mknod,
 125	.rename		= nfs_rename,
 126	.permission	= nfs_permission,
 127	.getattr	= nfs_getattr,
 128	.setattr	= nfs_setattr,
 129	.getxattr	= generic_getxattr,
 130	.setxattr	= generic_setxattr,
 131	.listxattr	= generic_listxattr,
 132	.removexattr	= generic_removexattr,
 133};
 134
 135#endif /* CONFIG_NFS_V4 */
 136
 137static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
 
 138{
 
 139	struct nfs_open_dir_context *ctx;
 140	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 
 141	if (ctx != NULL) {
 142		ctx->duped = 0;
 143		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
 144		ctx->dir_cookie = 0;
 145		ctx->dup_cookie = 0;
 146		ctx->cred = get_rpccred(cred);
 
 
 
 
 
 
 147		return ctx;
 148	}
 149	return  ERR_PTR(-ENOMEM);
 150}
 151
 152static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
 153{
 154	put_rpccred(ctx->cred);
 155	kfree(ctx);
 
 
 156}
 157
 158/*
 159 * Open file
 160 */
 161static int
 162nfs_opendir(struct inode *inode, struct file *filp)
 163{
 164	int res = 0;
 165	struct nfs_open_dir_context *ctx;
 166	struct rpc_cred *cred;
 167
 168	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
 169			filp->f_path.dentry->d_parent->d_name.name,
 170			filp->f_path.dentry->d_name.name);
 171
 172	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 173
 174	cred = rpc_lookup_cred();
 175	if (IS_ERR(cred))
 176		return PTR_ERR(cred);
 177	ctx = alloc_nfs_open_dir_context(inode, cred);
 178	if (IS_ERR(ctx)) {
 179		res = PTR_ERR(ctx);
 180		goto out;
 181	}
 182	filp->private_data = ctx;
 183	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 184		/* This is a mountpoint, so d_revalidate will never
 185		 * have been called, so we need to refresh the
 186		 * inode (for close-open consistency) ourselves.
 187		 */
 188		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
 189	}
 190out:
 191	put_rpccred(cred);
 192	return res;
 193}
 194
 195static int
 196nfs_closedir(struct inode *inode, struct file *filp)
 197{
 198	put_nfs_open_dir_context(filp->private_data);
 199	return 0;
 200}
 201
 202struct nfs_cache_array_entry {
 203	u64 cookie;
 204	u64 ino;
 205	struct qstr string;
 
 206	unsigned char d_type;
 207};
 208
 209struct nfs_cache_array {
 210	int size;
 211	int eof_index;
 212	u64 last_cookie;
 213	struct nfs_cache_array_entry array[0];
 
 
 
 
 214};
 215
 216typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 217typedef struct {
 218	struct file	*file;
 219	struct page	*page;
 220	unsigned long	page_index;
 221	u64		*dir_cookie;
 
 
 222	u64		last_cookie;
 223	loff_t		current_index;
 224	decode_dirent_t	decode;
 225
 
 
 226	unsigned long	timestamp;
 227	unsigned long	gencount;
 
 228	unsigned int	cache_entry_index;
 229	unsigned int	plus:1;
 230	unsigned int	eof:1;
 231} nfs_readdir_descriptor_t;
 
 
 
 
 
 
 
 
 
 232
 233/*
 234 * The caller is responsible for calling nfs_readdir_release_array(page)
 235 */
 236static
 237struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 
 
 
 
 
 
 
 
 238{
 239	void *ptr;
 240	if (page == NULL)
 241		return ERR_PTR(-EIO);
 242	ptr = kmap(page);
 243	if (ptr == NULL)
 244		return ERR_PTR(-ENOMEM);
 245	return ptr;
 246}
 247
 248static
 249void nfs_readdir_release_array(struct page *page)
 250{
 251	kunmap(page);
 
 
 
 
 
 
 
 
 
 252}
 253
 254/*
 255 * we are freeing strings created by nfs_add_to_readdir_array()
 256 */
 257static
 258void nfs_readdir_clear_array(struct page *page)
 259{
 260	struct nfs_cache_array *array;
 261	int i;
 262
 263	array = kmap_atomic(page);
 264	for (i = 0; i < array->size; i++)
 265		kfree(array->array[i].string.name);
 266	kunmap_atomic(array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269/*
 270 * the caller is responsible for freeing qstr.name
 271 * when called by nfs_readdir_add_to_array, the strings will be freed in
 272 * nfs_clear_readdir_array()
 273 */
 274static
 275int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 276{
 277	string->len = len;
 278	string->name = kmemdup(name, len, GFP_KERNEL);
 279	if (string->name == NULL)
 280		return -ENOMEM;
 281	/*
 282	 * Avoid a kmemleak false positive. The pointer to the name is stored
 283	 * in a page cache page which kmemleak does not scan.
 284	 */
 285	kmemleak_not_leak(string->name);
 286	string->hash = full_name_hash(name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287	return 0;
 288}
 289
 290static
 291int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 
 292{
 293	struct nfs_cache_array *array = nfs_readdir_get_array(page);
 294	struct nfs_cache_array_entry *cache_entry;
 295	int ret;
 
 296
 297	if (IS_ERR(array))
 298		return PTR_ERR(array);
 299
 300	cache_entry = &array->array[array->size];
 301
 302	/* Check that this entry lies within the page bounds */
 303	ret = -ENOSPC;
 304	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 
 305		goto out;
 
 306
 307	cache_entry->cookie = entry->prev_cookie;
 
 308	cache_entry->ino = entry->ino;
 309	cache_entry->d_type = entry->d_type;
 310	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 311	if (ret)
 312		goto out;
 313	array->last_cookie = entry->cookie;
 
 
 314	array->size++;
 315	if (entry->eof != 0)
 316		array->eof_index = array->size;
 317out:
 318	nfs_readdir_release_array(page);
 
 319	return ret;
 320}
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322static
 323int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 
 
 
 
 
 
 
 
 
 324{
 325	loff_t diff = desc->file->f_pos - desc->current_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326	unsigned int index;
 327
 328	if (diff < 0)
 329		goto out_eof;
 330	if (diff >= array->size) {
 331		if (array->eof_index >= 0)
 332			goto out_eof;
 
 333		return -EAGAIN;
 334	}
 335
 336	index = (unsigned int)diff;
 337	*desc->dir_cookie = array->array[index].cookie;
 338	desc->cache_entry_index = index;
 339	return 0;
 340out_eof:
 341	desc->eof = 1;
 342	return -EBADCOOKIE;
 343}
 344
 345static
 346int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 347{
 348	int i;
 349	loff_t new_pos;
 350	int status = -EAGAIN;
 351
 
 
 
 352	for (i = 0; i < array->size; i++) {
 353		if (array->array[i].cookie == *desc->dir_cookie) {
 354			struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
 355			struct nfs_open_dir_context *ctx = desc->file->private_data;
 356
 357			new_pos = desc->current_index + i;
 358			if (ctx->attr_gencount != nfsi->attr_gencount
 359			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
 360				ctx->duped = 0;
 361				ctx->attr_gencount = nfsi->attr_gencount;
 362			} else if (new_pos < desc->file->f_pos) {
 363				if (ctx->duped > 0
 364				    && ctx->dup_cookie == *desc->dir_cookie) {
 365					if (printk_ratelimit()) {
 366						pr_notice("NFS: directory %s/%s contains a readdir loop."
 367								"Please contact your server vendor.  "
 368								"The file: %s has duplicate cookie %llu\n",
 369								desc->file->f_dentry->d_parent->d_name.name,
 370								desc->file->f_dentry->d_name.name,
 371								array->array[i].string.name,
 372								*desc->dir_cookie);
 373					}
 374					status = -ELOOP;
 375					goto out;
 376				}
 377				ctx->dup_cookie = *desc->dir_cookie;
 378				ctx->duped = -1;
 379			}
 380			desc->file->f_pos = new_pos;
 381			desc->cache_entry_index = i;
 382			return 0;
 383		}
 384	}
 385	if (array->eof_index >= 0) {
 
 386		status = -EBADCOOKIE;
 387		if (*desc->dir_cookie == array->last_cookie)
 388			desc->eof = 1;
 389	}
 390out:
 391	return status;
 392}
 393
 394static
 395int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 396{
 397	struct nfs_cache_array *array;
 398	int status;
 399
 400	array = nfs_readdir_get_array(desc->page);
 401	if (IS_ERR(array)) {
 402		status = PTR_ERR(array);
 403		goto out;
 404	}
 405
 406	if (*desc->dir_cookie == 0)
 407		status = nfs_readdir_search_for_pos(array, desc);
 408	else
 409		status = nfs_readdir_search_for_cookie(array, desc);
 410
 411	if (status == -EAGAIN) {
 412		desc->last_cookie = array->last_cookie;
 413		desc->current_index += array->size;
 414		desc->page_index++;
 415	}
 416	nfs_readdir_release_array(desc->page);
 417out:
 418	return status;
 419}
 420
 421/* Fill a page with xdr information before transferring to the cache page */
 422static
 423int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 424			struct nfs_entry *entry, struct file *file, struct inode *inode)
 425{
 426	struct nfs_open_dir_context *ctx = file->private_data;
 427	struct rpc_cred	*cred = ctx->cred;
 
 
 
 
 
 
 
 
 
 
 
 
 428	unsigned long	timestamp, gencount;
 429	int		error;
 430
 431 again:
 432	timestamp = jiffies;
 433	gencount = nfs_inc_attr_generation_counter();
 434	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 435					  NFS_SERVER(inode)->dtsize, desc->plus);
 436	if (error < 0) {
 437		/* We requested READDIRPLUS, but the server doesn't grok it */
 438		if (error == -ENOTSUPP && desc->plus) {
 439			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 440			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 441			desc->plus = 0;
 442			goto again;
 443		}
 444		goto error;
 445	}
 446	desc->timestamp = timestamp;
 447	desc->gencount = gencount;
 448error:
 449	return error;
 450}
 451
 452static int xdr_decode(nfs_readdir_descriptor_t *desc,
 453		      struct nfs_entry *entry, struct xdr_stream *xdr)
 454{
 
 455	int error;
 456
 457	error = desc->decode(xdr, entry, desc->plus);
 458	if (error)
 459		return error;
 460	entry->fattr->time_start = desc->timestamp;
 461	entry->fattr->gencount = desc->gencount;
 462	return 0;
 463}
 464
 
 
 
 465static
 466int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 467{
 468	if (dentry->d_inode == NULL)
 469		goto different;
 470	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
 471		goto different;
 
 
 
 
 
 
 
 
 
 
 
 472	return 1;
 473different:
 474	return 0;
 475}
 476
 477static
 478bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
 
 
 
 479{
 480	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 481		return false;
 482	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 483		return true;
 484	if (filp->f_pos == 0)
 485		return true;
 486	return false;
 487}
 488
 489/*
 490 * This function is called by the lookup code to request the use of
 491 * readdirplus to accelerate any future lookups in the same
 492 * directory.
 493 */
 494static
 495void nfs_advise_use_readdirplus(struct inode *dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496{
 497	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 
 
 
 
 498}
 499
 500static
 501void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 
 502{
 503	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 
 504	struct dentry *dentry;
 505	struct dentry *alias;
 506	struct inode *dir = parent->d_inode;
 507	struct inode *inode;
 
 508
 
 
 
 
 
 
 
 
 
 
 
 
 509	if (filename.name[0] == '.') {
 510		if (filename.len == 1)
 511			return;
 512		if (filename.len == 2 && filename.name[1] == '.')
 513			return;
 514	}
 515	filename.hash = full_name_hash(filename.name, filename.len);
 516
 517	dentry = d_lookup(parent, &filename);
 518	if (dentry != NULL) {
 
 
 
 
 
 
 
 
 
 
 519		if (nfs_same_file(dentry, entry)) {
 520			nfs_refresh_inode(dentry->d_inode, entry->fattr);
 
 
 
 
 
 
 
 521			goto out;
 522		} else {
 523			d_drop(dentry);
 
 
 524			dput(dentry);
 
 
 525		}
 526	}
 527
 528	dentry = d_alloc(parent, &filename);
 529	if (dentry == NULL)
 530		return;
 531
 532	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 533	if (IS_ERR(inode))
 534		goto out;
 
 
 
 
 
 
 
 
 
 
 
 535
 536	alias = d_materialise_unique(dentry, inode);
 537	if (IS_ERR(alias))
 538		goto out;
 539	else if (alias) {
 540		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 541		dput(alias);
 542	} else
 543		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 544
 545out:
 546	dput(dentry);
 
 
 
 
 
 547}
 548
 549/* Perform conversion from xdr to cache array */
 550static
 551int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 552				struct page **xdr_pages, struct page *page, unsigned int buflen)
 
 
 553{
 
 
 554	struct xdr_stream stream;
 
 555	struct xdr_buf buf;
 556	struct page *scratch;
 557	struct nfs_cache_array *array;
 558	unsigned int count = 0;
 559	int status;
 560
 561	scratch = alloc_page(GFP_KERNEL);
 562	if (scratch == NULL)
 563		return -ENOMEM;
 564
 565	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 566	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 567
 568	do {
 569		status = xdr_decode(desc, entry, &stream);
 570		if (status != 0) {
 571			if (status == -EAGAIN)
 572				status = 0;
 573			break;
 574		}
 575
 576		count++;
 
 
 577
 578		if (desc->plus != 0)
 579			nfs_prime_dcache(desc->file->f_path.dentry, entry);
 580
 581		status = nfs_readdir_add_to_array(entry, page);
 582		if (status != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583			break;
 584	} while (!entry->eof);
 
 
 585
 586	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 587		array = nfs_readdir_get_array(page);
 588		if (!IS_ERR(array)) {
 589			array->eof_index = array->size;
 590			status = 0;
 591			nfs_readdir_release_array(page);
 592		} else
 593			status = PTR_ERR(array);
 594	}
 595
 596	put_page(scratch);
 597	return status;
 598}
 599
 600static
 601void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 602{
 603	unsigned int i;
 604	for (i = 0; i < npages; i++)
 605		put_page(pages[i]);
 606}
 607
 608static
 609void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 610		unsigned int npages)
 611{
 612	nfs_readdir_free_pagearray(pages, npages);
 613}
 614
 615/*
 616 * nfs_readdir_large_page will allocate pages that must be freed with a call
 617 * to nfs_readdir_free_large_page
 618 */
 619static
 620int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 621{
 622	unsigned int i;
 
 623
 
 
 
 624	for (i = 0; i < npages; i++) {
 625		struct page *page = alloc_page(GFP_KERNEL);
 626		if (page == NULL)
 627			goto out_freepages;
 628		pages[i] = page;
 629	}
 630	return 0;
 631
 632out_freepages:
 633	nfs_readdir_free_pagearray(pages, i);
 634	return -ENOMEM;
 635}
 636
 637static
 638int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 639{
 640	struct page *pages[NFS_MAX_READDIR_PAGES];
 641	void *pages_ptr = NULL;
 642	struct nfs_entry entry;
 643	struct file	*file = desc->file;
 644	struct nfs_cache_array *array;
 
 
 
 
 645	int status = -ENOMEM;
 646	unsigned int array_size = ARRAY_SIZE(pages);
 647
 648	entry.prev_cookie = 0;
 649	entry.cookie = desc->last_cookie;
 650	entry.eof = 0;
 651	entry.fh = nfs_alloc_fhandle();
 652	entry.fattr = nfs_alloc_fattr();
 653	entry.server = NFS_SERVER(inode);
 654	if (entry.fh == NULL || entry.fattr == NULL)
 
 655		goto out;
 656
 657	array = nfs_readdir_get_array(page);
 658	if (IS_ERR(array)) {
 659		status = PTR_ERR(array);
 660		goto out;
 661	}
 662	memset(array, 0, sizeof(struct nfs_cache_array));
 663	array->eof_index = -1;
 664
 665	status = nfs_readdir_large_page(pages, array_size);
 
 
 666	if (status < 0)
 667		goto out_release_array;
 668	do {
 669		unsigned int pglen;
 670		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 671
 672		if (status < 0)
 673			break;
 674		pglen = status;
 675		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 676		if (status < 0) {
 677			if (status == -ENOSPC)
 678				status = 0;
 679			break;
 680		}
 681	} while (array->eof_index < 0);
 682
 683	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 684out_release_array:
 685	nfs_readdir_release_array(page);
 686out:
 687	nfs_free_fattr(entry.fattr);
 688	nfs_free_fhandle(entry.fh);
 
 689	return status;
 690}
 691
 692/*
 693 * Now we cache directories properly, by converting xdr information
 694 * to an array that can be used for lookups later.  This results in
 695 * fewer cache pages, since we can store more information on each page.
 696 * We only need to convert from xdr once so future lookups are much simpler
 697 */
 698static
 699int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 700{
 701	struct inode	*inode = desc->file->f_path.dentry->d_inode;
 702	int ret;
 703
 704	ret = nfs_readdir_xdr_to_array(desc, page, inode);
 705	if (ret < 0)
 706		goto error;
 707	SetPageUptodate(page);
 708
 709	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 710		/* Should never happen */
 711		nfs_zap_mapping(inode, inode->i_mapping);
 712	}
 713	unlock_page(page);
 714	return 0;
 715 error:
 716	unlock_page(page);
 717	return ret;
 718}
 719
 720static
 721void cache_page_release(nfs_readdir_descriptor_t *desc)
 722{
 723	if (!desc->page->mapping)
 724		nfs_readdir_clear_array(desc->page);
 725	page_cache_release(desc->page);
 726	desc->page = NULL;
 727}
 728
 729static
 730struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 731{
 732	return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
 733			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 
 
 
 
 
 
 
 
 
 734}
 735
 736/*
 737 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 
 738 */
 739static
 740int find_cache_page(nfs_readdir_descriptor_t *desc)
 741{
 
 
 
 742	int res;
 743
 744	desc->page = get_cache_page(desc);
 745	if (IS_ERR(desc->page))
 746		return PTR_ERR(desc->page);
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748	res = nfs_readdir_search_array(desc);
 749	if (res != 0)
 750		cache_page_release(desc);
 
 751	return res;
 752}
 753
 754/* Search for desc->dir_cookie from the beginning of the page cache */
 755static inline
 756int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 757{
 758	int res;
 759
 760	if (desc->page_index == 0) {
 761		desc->current_index = 0;
 762		desc->last_cookie = 0;
 763	}
 764	do {
 765		res = find_cache_page(desc);
 766	} while (res == -EAGAIN);
 767	return res;
 768}
 769
 
 
 770/*
 771 * Once we've found the start of the dirent within a page: fill 'er up...
 772 */
 773static 
 774int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
 775		   filldir_t filldir)
 776{
 777	struct file	*file = desc->file;
 778	int i = 0;
 779	int res = 0;
 780	struct nfs_cache_array *array = NULL;
 781	struct nfs_open_dir_context *ctx = file->private_data;
 782
 783	array = nfs_readdir_get_array(desc->page);
 784	if (IS_ERR(array)) {
 785		res = PTR_ERR(array);
 786		goto out;
 787	}
 788
 
 789	for (i = desc->cache_entry_index; i < array->size; i++) {
 790		struct nfs_cache_array_entry *ent;
 791
 
 
 
 
 
 
 
 
 
 
 
 792		ent = &array->array[i];
 793		if (filldir(dirent, ent->string.name, ent->string.len,
 794		    file->f_pos, nfs_compat_user_ino64(ent->ino),
 795		    ent->d_type) < 0) {
 796			desc->eof = 1;
 797			break;
 798		}
 799		file->f_pos++;
 800		if (i < (array->size-1))
 801			*desc->dir_cookie = array->array[i+1].cookie;
 
 
 
 
 
 
 
 802		else
 803			*desc->dir_cookie = array->last_cookie;
 804		if (ctx->duped != 0)
 805			ctx->duped = 1;
 806	}
 807	if (array->eof_index >= 0)
 808		desc->eof = 1;
 809
 810	nfs_readdir_release_array(desc->page);
 811out:
 812	cache_page_release(desc);
 813	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 814			(unsigned long long)*desc->dir_cookie, res);
 815	return res;
 816}
 817
 818/*
 819 * If we cannot find a cookie in our cache, we suspect that this is
 820 * because it points to a deleted file, so we ask the server to return
 821 * whatever it thinks is the next entry. We then feed this to filldir.
 822 * If all goes well, we should then be able to find our way round the
 823 * cache on the next call to readdir_search_pagecache();
 824 *
 825 * NOTE: we cannot add the anonymous page to the pagecache because
 826 *	 the data it contains might not be page aligned. Besides,
 827 *	 we should already have a complete representation of the
 828 *	 directory in the page cache by the time we get here.
 829 */
 830static inline
 831int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
 832		     filldir_t filldir)
 833{
 834	struct page	*page = NULL;
 835	int		status;
 836	struct inode *inode = desc->file->f_path.dentry->d_inode;
 837	struct nfs_open_dir_context *ctx = desc->file->private_data;
 838
 839	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 840			(unsigned long long)*desc->dir_cookie);
 841
 842	page = alloc_page(GFP_HIGHUSER);
 843	if (!page) {
 844		status = -ENOMEM;
 
 
 845		goto out;
 846	}
 847
 848	desc->page_index = 0;
 849	desc->last_cookie = *desc->dir_cookie;
 850	desc->page = page;
 851	ctx->duped = 0;
 852
 853	status = nfs_readdir_xdr_to_array(desc, page, inode);
 854	if (status < 0)
 855		goto out_release;
 856
 857	status = nfs_do_filldir(desc, dirent, filldir);
 
 
 
 
 858
 859 out:
 860	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 861			__func__, status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	return status;
 863 out_release:
 864	cache_page_release(desc);
 865	goto out;
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868/* The file offset position represents the dirent entry number.  A
 869   last cookie cache takes care of the common case of reading the
 870   whole directory.
 871 */
 872static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
 873{
 874	struct dentry	*dentry = filp->f_path.dentry;
 875	struct inode	*inode = dentry->d_inode;
 876	nfs_readdir_descriptor_t my_desc,
 877			*desc = &my_desc;
 878	struct nfs_open_dir_context *dir_ctx = filp->private_data;
 
 
 879	int res;
 880
 881	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
 882			dentry->d_parent->d_name.name, dentry->d_name.name,
 883			(long long)filp->f_pos);
 884	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 885
 886	/*
 887	 * filp->f_pos points to the dirent entry number.
 888	 * *desc->dir_cookie has the cookie for the next entry. We have
 889	 * to either find the entry with the appropriate number or
 890	 * revalidate the cookie.
 891	 */
 892	memset(desc, 0, sizeof(*desc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	desc->file = filp;
 895	desc->dir_cookie = &dir_ctx->dir_cookie;
 896	desc->decode = NFS_PROTO(inode)->decode_dirent;
 897	desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
 898
 899	nfs_block_sillyrename(dentry);
 900	res = nfs_revalidate_mapping(inode, filp->f_mapping);
 901	if (res < 0)
 902		goto out;
 903
 904	do {
 905		res = readdir_search_pagecache(desc);
 906
 907		if (res == -EBADCOOKIE) {
 908			res = 0;
 909			/* This means either end of directory */
 910			if (*desc->dir_cookie && desc->eof == 0) {
 911				/* Or that the server has 'lost' a cookie */
 912				res = uncached_readdir(desc, dirent, filldir);
 913				if (res == 0)
 914					continue;
 
 
 915			}
 916			break;
 917		}
 918		if (res == -ETOOSMALL && desc->plus) {
 919			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 920			nfs_zap_caches(inode);
 921			desc->page_index = 0;
 922			desc->plus = 0;
 923			desc->eof = 0;
 924			continue;
 925		}
 926		if (res < 0)
 927			break;
 928
 929		res = nfs_do_filldir(desc, dirent, filldir);
 930		if (res < 0)
 931			break;
 932	} while (!desc->eof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933out:
 934	nfs_unblock_sillyrename(dentry);
 935	if (res > 0)
 936		res = 0;
 937	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
 938			dentry->d_parent->d_name.name, dentry->d_name.name,
 939			res);
 940	return res;
 941}
 942
 943static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
 944{
 945	struct dentry *dentry = filp->f_path.dentry;
 946	struct inode *inode = dentry->d_inode;
 947	struct nfs_open_dir_context *dir_ctx = filp->private_data;
 948
 949	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
 950			dentry->d_parent->d_name.name,
 951			dentry->d_name.name,
 952			offset, origin);
 953
 954	mutex_lock(&inode->i_mutex);
 955	switch (origin) {
 956		case 1:
 957			offset += filp->f_pos;
 958		case 0:
 959			if (offset >= 0)
 960				break;
 961		default:
 962			offset = -EINVAL;
 963			goto out;
 
 
 
 
 
 964	}
 965	if (offset != filp->f_pos) {
 966		filp->f_pos = offset;
 967		dir_ctx->dir_cookie = 0;
 968		dir_ctx->duped = 0;
 
 
 
 
 
 
 
 969	}
 970out:
 971	mutex_unlock(&inode->i_mutex);
 972	return offset;
 973}
 974
 975/*
 976 * All directory operations under NFS are synchronous, so fsync()
 977 * is a dummy operation.
 978 */
 979static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 980			 int datasync)
 981{
 982	struct dentry *dentry = filp->f_path.dentry;
 983	struct inode *inode = dentry->d_inode;
 984
 985	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
 986			dentry->d_parent->d_name.name, dentry->d_name.name,
 987			datasync);
 988
 989	mutex_lock(&inode->i_mutex);
 990	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
 991	mutex_unlock(&inode->i_mutex);
 992	return 0;
 993}
 994
 995/**
 996 * nfs_force_lookup_revalidate - Mark the directory as having changed
 997 * @dir - pointer to directory inode
 998 *
 999 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1000 * full lookup on all child dentries of 'dir' whenever a change occurs
1001 * on the server that might have invalidated our dcache.
1002 *
 
 
 
1003 * The caller should be holding dir->i_lock
1004 */
1005void nfs_force_lookup_revalidate(struct inode *dir)
1006{
1007	NFS_I(dir)->cache_change_attribute++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008}
1009
1010/*
1011 * A check for whether or not the parent directory has changed.
1012 * In the case it has, we assume that the dentries are untrustworthy
1013 * and may need to be looked up again.
 
1014 */
1015static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 
1016{
1017	if (IS_ROOT(dentry))
1018		return 1;
1019	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1020		return 0;
1021	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1022		return 0;
1023	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1024	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1025		return 0;
1026	if (!nfs_verify_change_attribute(dir, dentry->d_time))
 
 
 
 
1027		return 0;
1028	return 1;
1029}
1030
1031/*
1032 * Return the intent data that applies to this particular path component
1033 *
1034 * Note that the current set of intents only apply to the very last
1035 * component of the path and none of them is set before that last
1036 * component.
1037 */
1038static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1039						unsigned int mask)
1040{
1041	return nd->flags & mask;
1042}
1043
1044/*
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1047 */
1048static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1049{
1050	if (NFS_PROTO(dir)->version == 2)
1051		return 0;
1052	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1053}
1054
1055/*
1056 * Inode and filehandle revalidation for lookups.
1057 *
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1061 *
1062 */
1063static inline
1064int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1065{
1066	struct nfs_server *server = NFS_SERVER(inode);
 
1067
1068	if (IS_AUTOMOUNT(inode))
1069		return 0;
1070	if (nd != NULL) {
1071		/* VFS wants an on-the-wire revalidation */
1072		if (nd->flags & LOOKUP_REVAL)
1073			goto out_force;
1074		/* This is an open(2) */
1075		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1076				!(server->flags & NFS_MOUNT_NOCTO) &&
1077				(S_ISREG(inode->i_mode) ||
1078				 S_ISDIR(inode->i_mode)))
 
 
 
1079			goto out_force;
 
 
 
 
 
 
 
 
 
 
1080		return 0;
1081	}
1082	return nfs_revalidate_inode(server, inode);
1083out_force:
1084	return __nfs_revalidate_inode(server, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087/*
1088 * We judge how long we want to trust negative
1089 * dentries by looking at the parent inode mtime.
1090 *
1091 * If parent mtime has changed, we revalidate, else we wait for a
1092 * period corresponding to the parent's attribute cache timeout value.
 
 
 
 
 
 
1093 */
1094static inline
1095int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1096		       struct nameidata *nd)
1097{
1098	/* Don't revalidate a negative dentry if we're creating a new file */
1099	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1100		return 0;
1101	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1102		return 1;
1103	return !nfs_check_verifier(dir, dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104}
1105
1106/*
1107 * This is called every time the dcache has a lookup hit,
1108 * and we should check whether we can really trust that
1109 * lookup.
1110 *
1111 * NOTE! The hit can be a negative hit too, don't assume
1112 * we have an inode!
1113 *
1114 * If the parent directory is seen to have changed, we throw out the
1115 * cached dentry and do a new lookup.
1116 */
1117static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
 
 
1118{
1119	struct inode *dir;
1120	struct inode *inode;
1121	struct dentry *parent;
1122	struct nfs_fh *fhandle = NULL;
1123	struct nfs_fattr *fattr = NULL;
1124	int error;
1125
1126	if (nd && (nd->flags & LOOKUP_RCU))
1127		return -ECHILD;
1128
1129	parent = dget_parent(dentry);
1130	dir = parent->d_inode;
1131	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1132	inode = dentry->d_inode;
1133
1134	if (!inode) {
1135		if (nfs_neg_need_reval(dir, dentry, nd))
1136			goto out_bad;
1137		goto out_valid_noent;
1138	}
1139
1140	if (is_bad_inode(inode)) {
1141		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1142				__func__, dentry->d_parent->d_name.name,
1143				dentry->d_name.name);
1144		goto out_bad;
1145	}
1146
1147	if (nfs_have_delegation(inode, FMODE_READ))
1148		goto out_set_verifier;
 
 
 
 
1149
1150	/* Force a full look up iff the parent directory has changed */
1151	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1152		if (nfs_lookup_verify_inode(inode, nd))
1153			goto out_zap_parent;
 
 
 
 
 
1154		goto out_valid;
1155	}
1156
 
 
 
1157	if (NFS_STALE(inode))
1158		goto out_bad;
1159
1160	error = -ENOMEM;
1161	fhandle = nfs_alloc_fhandle();
1162	fattr = nfs_alloc_fattr();
1163	if (fhandle == NULL || fattr == NULL)
1164		goto out_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
1166	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1167	if (error)
1168		goto out_bad;
1169	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1170		goto out_bad;
1171	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1172		goto out_bad;
 
 
 
1173
1174	nfs_free_fattr(fattr);
1175	nfs_free_fhandle(fhandle);
1176out_set_verifier:
1177	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1178 out_valid:
1179	/* Success: notify readdir to use READDIRPLUS */
1180	nfs_advise_use_readdirplus(dir);
1181 out_valid_noent:
1182	dput(parent);
1183	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1184			__func__, dentry->d_parent->d_name.name,
1185			dentry->d_name.name);
1186	return 1;
1187out_zap_parent:
1188	nfs_zap_caches(dir);
1189 out_bad:
1190	nfs_mark_for_revalidate(dir);
1191	if (inode && S_ISDIR(inode->i_mode)) {
1192		/* Purge readdir caches. */
1193		nfs_zap_caches(inode);
1194		/* If we have submounts, don't unhash ! */
1195		if (have_submounts(dentry))
1196			goto out_valid;
1197		if (dentry->d_flags & DCACHE_DISCONNECTED)
1198			goto out_valid;
1199		shrink_dcache_parent(dentry);
1200	}
1201	d_drop(dentry);
1202	nfs_free_fattr(fattr);
1203	nfs_free_fhandle(fhandle);
1204	dput(parent);
1205	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1206			__func__, dentry->d_parent->d_name.name,
1207			dentry->d_name.name);
1208	return 0;
1209out_error:
1210	nfs_free_fattr(fattr);
1211	nfs_free_fhandle(fhandle);
1212	dput(parent);
1213	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1214			__func__, dentry->d_parent->d_name.name,
1215			dentry->d_name.name, error);
1216	return error;
1217}
1218
1219/*
1220 * This is called from dput() when d_count is going to 0.
1221 */
1222static int nfs_dentry_delete(const struct dentry *dentry)
1223{
1224	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1225		dentry->d_parent->d_name.name, dentry->d_name.name,
1226		dentry->d_flags);
1227
1228	/* Unhash any dentry with a stale inode */
1229	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1230		return 1;
1231
1232	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1233		/* Unhash it, so that ->d_iput() would be called */
1234		return 1;
1235	}
1236	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1237		/* Unhash it, so that ancestors of killed async unlink
1238		 * files will be cleaned up during umount */
1239		return 1;
1240	}
1241	return 0;
1242
1243}
1244
 
1245static void nfs_drop_nlink(struct inode *inode)
1246{
1247	spin_lock(&inode->i_lock);
 
1248	if (inode->i_nlink > 0)
1249		drop_nlink(inode);
 
 
 
 
1250	spin_unlock(&inode->i_lock);
1251}
1252
1253/*
1254 * Called when the dentry loses inode.
1255 * We use it to clean up silly-renamed files.
1256 */
1257static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1258{
1259	if (S_ISDIR(inode->i_mode))
1260		/* drop any readdir cache as it could easily be old */
1261		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1262
1263	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1264		drop_nlink(inode);
1265		nfs_complete_unlink(dentry, inode);
 
1266	}
1267	iput(inode);
1268}
1269
1270static void nfs_d_release(struct dentry *dentry)
1271{
1272	/* free cached devname value, if it survived that far */
1273	if (unlikely(dentry->d_fsdata)) {
1274		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1275			WARN_ON(1);
1276		else
1277			kfree(dentry->d_fsdata);
1278	}
1279}
1280
1281const struct dentry_operations nfs_dentry_operations = {
1282	.d_revalidate	= nfs_lookup_revalidate,
 
1283	.d_delete	= nfs_dentry_delete,
1284	.d_iput		= nfs_dentry_iput,
1285	.d_automount	= nfs_d_automount,
1286	.d_release	= nfs_d_release,
1287};
 
1288
1289static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1290{
1291	struct dentry *res;
1292	struct dentry *parent;
1293	struct inode *inode = NULL;
1294	struct nfs_fh *fhandle = NULL;
1295	struct nfs_fattr *fattr = NULL;
 
1296	int error;
1297
1298	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1299		dentry->d_parent->d_name.name, dentry->d_name.name);
1300	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1301
1302	res = ERR_PTR(-ENAMETOOLONG);
1303	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1304		goto out;
1305
1306	/*
1307	 * If we're doing an exclusive create, optimize away the lookup
1308	 * but don't hash the dentry.
1309	 */
1310	if (nfs_is_exclusive_create(dir, nd)) {
1311		d_instantiate(dentry, NULL);
1312		res = NULL;
1313		goto out;
1314	}
1315
1316	res = ERR_PTR(-ENOMEM);
1317	fhandle = nfs_alloc_fhandle();
1318	fattr = nfs_alloc_fattr();
1319	if (fhandle == NULL || fattr == NULL)
1320		goto out;
1321
1322	parent = dentry->d_parent;
1323	/* Protect against concurrent sillydeletes */
1324	nfs_block_sillyrename(parent);
1325	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1326	if (error == -ENOENT)
 
1327		goto no_entry;
 
1328	if (error < 0) {
1329		res = ERR_PTR(error);
1330		goto out_unblock_sillyrename;
1331	}
1332	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1333	res = ERR_CAST(inode);
1334	if (IS_ERR(res))
1335		goto out_unblock_sillyrename;
1336
1337	/* Success: notify readdir to use READDIRPLUS */
1338	nfs_advise_use_readdirplus(dir);
1339
1340no_entry:
1341	res = d_materialise_unique(dentry, inode);
1342	if (res != NULL) {
1343		if (IS_ERR(res))
1344			goto out_unblock_sillyrename;
1345		dentry = res;
1346	}
1347	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1348out_unblock_sillyrename:
1349	nfs_unblock_sillyrename(parent);
1350out:
 
1351	nfs_free_fattr(fattr);
1352	nfs_free_fhandle(fhandle);
1353	return res;
1354}
 
 
 
 
 
 
 
 
 
1355
1356#ifdef CONFIG_NFS_V4
1357static int nfs4_lookup_revalidate(struct dentry *, struct nameidata *);
1358
1359const struct dentry_operations nfs4_dentry_operations = {
1360	.d_revalidate	= nfs4_lookup_revalidate,
 
1361	.d_delete	= nfs_dentry_delete,
1362	.d_iput		= nfs_dentry_iput,
1363	.d_automount	= nfs_d_automount,
1364	.d_release	= nfs_d_release,
1365};
 
1366
1367/*
1368 * Use intent information to determine whether we need to substitute
1369 * the NFSv4-style stateful OPEN for the LOOKUP call
1370 */
1371static int is_atomic_open(struct nameidata *nd)
1372{
1373	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1374		return 0;
1375	/* NFS does not (yet) have a stateful open for directories */
1376	if (nd->flags & LOOKUP_DIRECTORY)
1377		return 0;
1378	/* Are we trying to write to a read only partition? */
1379	if (__mnt_is_readonly(nd->path.mnt) &&
1380	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1381		return 0;
1382	return 1;
1383}
1384
1385static fmode_t flags_to_mode(int flags)
1386{
1387	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1388	if ((flags & O_ACCMODE) != O_WRONLY)
1389		res |= FMODE_READ;
1390	if ((flags & O_ACCMODE) != O_RDONLY)
1391		res |= FMODE_WRITE;
1392	return res;
1393}
1394
1395static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1396{
1397	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1398}
1399
1400static int do_open(struct inode *inode, struct file *filp)
1401{
1402	nfs_fscache_set_inode_cookie(inode, filp);
1403	return 0;
1404}
1405
1406static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
 
 
1407{
1408	struct file *filp;
1409	int ret = 0;
1410
1411	/* If the open_intent is for execute, we have an extra check to make */
1412	if (ctx->mode & FMODE_EXEC) {
1413		ret = nfs_may_open(ctx->dentry->d_inode,
1414				ctx->cred,
1415				nd->intent.open.flags);
1416		if (ret < 0)
1417			goto out;
1418	}
1419	filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1420	if (IS_ERR(filp))
1421		ret = PTR_ERR(filp);
1422	else
1423		nfs_file_set_open_context(filp, ctx);
1424out:
1425	put_nfs_open_context(ctx);
1426	return ret;
1427}
1428
1429static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
 
 
1430{
 
1431	struct nfs_open_context *ctx;
1432	struct iattr attr;
1433	struct dentry *res = NULL;
1434	struct inode *inode;
1435	int open_flags;
 
 
 
1436	int err;
1437
1438	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1439			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
 
 
 
 
 
 
 
1440
1441	/* Check that we are indeed trying to open this file */
1442	if (!is_atomic_open(nd))
 
 
 
 
 
 
 
 
 
1443		goto no_open;
1444
1445	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1446		res = ERR_PTR(-ENAMETOOLONG);
1447		goto out;
1448	}
1449
1450	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1451	 * the dentry. */
1452	if (nd->flags & LOOKUP_EXCL) {
1453		d_instantiate(dentry, NULL);
1454		goto out;
1455	}
1456
1457	open_flags = nd->intent.open.flags;
1458	attr.ia_valid = ATTR_OPEN;
1459
1460	ctx = create_nfs_open_context(dentry, open_flags);
1461	res = ERR_CAST(ctx);
1462	if (IS_ERR(ctx))
1463		goto out;
1464
1465	if (nd->flags & LOOKUP_CREATE) {
1466		attr.ia_mode = nd->intent.open.create_mode;
1467		attr.ia_valid |= ATTR_MODE;
1468		attr.ia_mode &= ~current_umask();
1469	} else
1470		open_flags &= ~(O_EXCL | O_CREAT);
1471
1472	if (open_flags & O_TRUNC) {
1473		attr.ia_valid |= ATTR_SIZE;
1474		attr.ia_size = 0;
1475	}
1476
1477	/* Open the file on the server */
1478	nfs_block_sillyrename(dentry->d_parent);
1479	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	if (IS_ERR(inode)) {
1481		nfs_unblock_sillyrename(dentry->d_parent);
 
1482		put_nfs_open_context(ctx);
1483		switch (PTR_ERR(inode)) {
1484			/* Make a negative dentry */
1485			case -ENOENT:
1486				d_add(dentry, NULL);
1487				res = NULL;
1488				goto out;
1489			/* This turned out not to be a regular file */
1490			case -EISDIR:
1491			case -ENOTDIR:
 
 
 
 
 
 
1492				goto no_open;
1493			case -ELOOP:
1494				if (!(nd->intent.open.flags & O_NOFOLLOW))
1495					goto no_open;
1496			/* case -EINVAL: */
1497			default:
1498				res = ERR_CAST(inode);
1499				goto out;
1500		}
 
1501	}
1502	res = d_add_unique(dentry, inode);
1503	nfs_unblock_sillyrename(dentry->d_parent);
1504	if (res != NULL) {
1505		dput(ctx->dentry);
1506		ctx->dentry = dget(res);
1507		dentry = res;
 
 
 
1508	}
1509	err = nfs_intent_set_file(nd, ctx);
1510	if (err < 0) {
1511		if (res != NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512			dput(res);
1513		return ERR_PTR(err);
 
1514	}
1515out:
1516	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1517	return res;
1518no_open:
1519	return nfs_lookup(dir, dentry, nd);
 
 
 
 
 
1520}
 
1521
1522static int nfs4_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
 
 
1523{
1524	struct dentry *parent = NULL;
1525	struct inode *inode;
1526	struct inode *dir;
1527	int openflags, ret = 0;
1528
1529	if (nd && (nd->flags & LOOKUP_RCU))
1530		return -ECHILD;
1531
1532	inode = dentry->d_inode;
1533	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1534		goto no_open;
 
1535
1536	parent = dget_parent(dentry);
1537	dir = parent->d_inode;
1538
1539	/* We can't create new files in nfs_open_revalidate(), so we
1540	 * optimize away revalidation of negative dentries.
1541	 */
1542	if (inode == NULL) {
1543		if (!nfs_neg_need_reval(dir, dentry, nd))
1544			ret = 1;
1545		goto out;
1546	}
1547
1548	/* NFS only supports OPEN on regular files */
1549	if (!S_ISREG(inode->i_mode))
1550		goto no_open_dput;
1551	openflags = nd->intent.open.flags;
1552	/* We cannot do exclusive creation on a positive dentry */
1553	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1554		goto no_open_dput;
 
 
 
 
1555
1556	/* Let f_op->open() actually open (and revalidate) the file */
1557	ret = 1;
 
 
 
 
1558
1559out:
1560	dput(parent);
1561	return ret;
1562
1563no_open_dput:
1564	dput(parent);
1565no_open:
1566	return nfs_lookup_revalidate(dentry, nd);
1567}
1568
1569static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1570		umode_t mode, struct nameidata *nd)
1571{
1572	struct nfs_open_context *ctx = NULL;
1573	struct iattr attr;
1574	int error;
1575	int open_flags = O_CREAT|O_EXCL;
1576
1577	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1578			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1579
1580	attr.ia_mode = mode;
1581	attr.ia_valid = ATTR_MODE;
1582
1583	if (nd)
1584		open_flags = nd->intent.open.flags;
1585
1586	ctx = create_nfs_open_context(dentry, open_flags);
1587	error = PTR_ERR(ctx);
1588	if (IS_ERR(ctx))
1589		goto out_err_drop;
1590
1591	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1592	if (error != 0)
1593		goto out_put_ctx;
1594	if (nd) {
1595		error = nfs_intent_set_file(nd, ctx);
1596		if (error < 0)
1597			goto out_err;
1598	} else {
1599		put_nfs_open_context(ctx);
1600	}
1601	return 0;
1602out_put_ctx:
1603	put_nfs_open_context(ctx);
1604out_err_drop:
1605	d_drop(dentry);
1606out_err:
1607	return error;
1608}
1609
1610#endif /* CONFIG_NFSV4 */
1611
1612/*
1613 * Code common to create, mkdir, and mknod.
1614 */
1615int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1616				struct nfs_fattr *fattr)
1617{
1618	struct dentry *parent = dget_parent(dentry);
1619	struct inode *dir = parent->d_inode;
1620	struct inode *inode;
1621	int error = -EACCES;
 
1622
1623	d_drop(dentry);
1624
1625	/* We may have been initialized further down */
1626	if (dentry->d_inode)
1627		goto out;
1628	if (fhandle->size == 0) {
1629		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1630		if (error)
1631			goto out_error;
1632	}
1633	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1634	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1635		struct nfs_server *server = NFS_SB(dentry->d_sb);
1636		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
 
1637		if (error < 0)
1638			goto out_error;
1639	}
1640	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1641	error = PTR_ERR(inode);
1642	if (IS_ERR(inode))
1643		goto out_error;
1644	d_add(dentry, inode);
1645out:
1646	dput(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647	return 0;
1648out_error:
1649	nfs_mark_for_revalidate(dir);
1650	dput(parent);
1651	return error;
1652}
 
1653
1654/*
1655 * Following a failed create operation, we drop the dentry rather
1656 * than retain a negative dentry. This avoids a problem in the event
1657 * that the operation succeeded on the server, but an error in the
1658 * reply path made it appear to have failed.
1659 */
1660static int nfs_create(struct inode *dir, struct dentry *dentry,
1661		umode_t mode, struct nameidata *nd)
1662{
1663	struct iattr attr;
 
1664	int error;
1665	int open_flags = O_CREAT|O_EXCL;
1666
1667	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1668			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1669
1670	attr.ia_mode = mode;
1671	attr.ia_valid = ATTR_MODE;
1672
1673	if (nd)
1674		open_flags = nd->intent.open.flags;
1675
1676	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1677	if (error != 0)
1678		goto out_err;
1679	return 0;
1680out_err:
1681	d_drop(dentry);
1682	return error;
1683}
 
1684
1685/*
1686 * See comments for nfs_proc_create regarding failed operations.
1687 */
1688static int
1689nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
 
1690{
1691	struct iattr attr;
1692	int status;
1693
1694	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1695			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1696
1697	if (!new_valid_dev(rdev))
1698		return -EINVAL;
1699
1700	attr.ia_mode = mode;
1701	attr.ia_valid = ATTR_MODE;
1702
 
1703	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
 
1704	if (status != 0)
1705		goto out_err;
1706	return 0;
1707out_err:
1708	d_drop(dentry);
1709	return status;
1710}
 
1711
1712/*
1713 * See comments for nfs_proc_create regarding failed operations.
1714 */
1715static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1716{
1717	struct iattr attr;
1718	int error;
1719
1720	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1721			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1722
1723	attr.ia_valid = ATTR_MODE;
1724	attr.ia_mode = mode | S_IFDIR;
1725
 
1726	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
 
1727	if (error != 0)
1728		goto out_err;
1729	return 0;
1730out_err:
1731	d_drop(dentry);
1732	return error;
1733}
 
1734
1735static void nfs_dentry_handle_enoent(struct dentry *dentry)
1736{
1737	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1738		d_delete(dentry);
1739}
1740
1741static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1742{
1743	int error;
1744
1745	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1746			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1747
1748	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1749	/* Ensure the VFS deletes this inode */
1750	if (error == 0 && dentry->d_inode != NULL)
1751		clear_nlink(dentry->d_inode);
1752	else if (error == -ENOENT)
1753		nfs_dentry_handle_enoent(dentry);
 
 
 
 
 
 
 
 
 
 
 
1754
1755	return error;
1756}
 
1757
1758/*
1759 * Remove a file after making sure there are no pending writes,
1760 * and after checking that the file has only one user. 
1761 *
1762 * We invalidate the attribute cache and free the inode prior to the operation
1763 * to avoid possible races if the server reuses the inode.
1764 */
1765static int nfs_safe_remove(struct dentry *dentry)
1766{
1767	struct inode *dir = dentry->d_parent->d_inode;
1768	struct inode *inode = dentry->d_inode;
1769	int error = -EBUSY;
1770		
1771	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1772		dentry->d_parent->d_name.name, dentry->d_name.name);
1773
1774	/* If the dentry was sillyrenamed, we simply call d_delete() */
1775	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1776		error = 0;
1777		goto out;
1778	}
1779
 
1780	if (inode != NULL) {
1781		nfs_inode_return_delegation(inode);
1782		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1783		/* The VFS may want to delete this inode */
1784		if (error == 0)
1785			nfs_drop_nlink(inode);
1786		nfs_mark_for_revalidate(inode);
1787	} else
1788		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1789	if (error == -ENOENT)
1790		nfs_dentry_handle_enoent(dentry);
 
1791out:
1792	return error;
1793}
1794
1795/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1796 *  belongs to an active ".nfs..." file and we return -EBUSY.
1797 *
1798 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1799 */
1800static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1801{
1802	int error;
1803	int need_rehash = 0;
1804
1805	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1806		dir->i_ino, dentry->d_name.name);
1807
 
1808	spin_lock(&dentry->d_lock);
1809	if (dentry->d_count > 1) {
 
1810		spin_unlock(&dentry->d_lock);
1811		/* Start asynchronous writeout of the inode */
1812		write_inode_now(dentry->d_inode, 0);
1813		error = nfs_sillyrename(dir, dentry);
1814		return error;
1815	}
1816	if (!d_unhashed(dentry)) {
1817		__d_drop(dentry);
1818		need_rehash = 1;
 
 
 
 
 
 
 
1819	}
 
 
 
 
1820	spin_unlock(&dentry->d_lock);
1821	error = nfs_safe_remove(dentry);
1822	if (!error || error == -ENOENT) {
1823		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1824	} else if (need_rehash)
1825		d_rehash(dentry);
 
1826	return error;
1827}
 
1828
1829/*
1830 * To create a symbolic link, most file systems instantiate a new inode,
1831 * add a page to it containing the path, then write it out to the disk
1832 * using prepare_write/commit_write.
1833 *
1834 * Unfortunately the NFS client can't create the in-core inode first
1835 * because it needs a file handle to create an in-core inode (see
1836 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1837 * symlink request has completed on the server.
1838 *
1839 * So instead we allocate a raw page, copy the symname into it, then do
1840 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1841 * now have a new file handle and can instantiate an in-core NFS inode
1842 * and move the raw page into its mapping.
1843 */
1844static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
1845{
1846	struct pagevec lru_pvec;
1847	struct page *page;
1848	char *kaddr;
1849	struct iattr attr;
1850	unsigned int pathlen = strlen(symname);
1851	int error;
1852
1853	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1854		dir->i_ino, dentry->d_name.name, symname);
1855
1856	if (pathlen > PAGE_SIZE)
1857		return -ENAMETOOLONG;
1858
1859	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1860	attr.ia_valid = ATTR_MODE;
1861
1862	page = alloc_page(GFP_HIGHUSER);
1863	if (!page)
1864		return -ENOMEM;
1865
1866	kaddr = kmap_atomic(page);
1867	memcpy(kaddr, symname, pathlen);
1868	if (pathlen < PAGE_SIZE)
1869		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1870	kunmap_atomic(kaddr);
1871
1872	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
 
 
1873	if (error != 0) {
1874		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1875			dir->i_sb->s_id, dir->i_ino,
1876			dentry->d_name.name, symname, error);
1877		d_drop(dentry);
1878		__free_page(page);
1879		return error;
1880	}
1881
 
 
1882	/*
1883	 * No big deal if we can't add this page to the page cache here.
1884	 * READLINK will get the missing page from the server if needed.
1885	 */
1886	pagevec_init(&lru_pvec, 0);
1887	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1888							GFP_KERNEL)) {
1889		pagevec_add(&lru_pvec, page);
1890		pagevec_lru_add_file(&lru_pvec);
1891		SetPageUptodate(page);
1892		unlock_page(page);
1893	} else
1894		__free_page(page);
1895
 
1896	return 0;
1897}
 
1898
1899static int 
1900nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1901{
1902	struct inode *inode = old_dentry->d_inode;
1903	int error;
1904
1905	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1906		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1907		dentry->d_parent->d_name.name, dentry->d_name.name);
1908
1909	nfs_inode_return_delegation(inode);
1910
 
1911	d_drop(dentry);
 
 
1912	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1913	if (error == 0) {
 
1914		ihold(inode);
1915		d_add(dentry, inode);
1916	}
 
1917	return error;
1918}
 
 
 
 
 
 
 
 
 
 
1919
1920/*
1921 * RENAME
1922 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1923 * different file handle for the same inode after a rename (e.g. when
1924 * moving to a different directory). A fail-safe method to do so would
1925 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1926 * rename the old file using the sillyrename stuff. This way, the original
1927 * file in old_dir will go away when the last process iput()s the inode.
1928 *
1929 * FIXED.
1930 * 
1931 * It actually works quite well. One needs to have the possibility for
1932 * at least one ".nfs..." file in each directory the file ever gets
1933 * moved or linked to which happens automagically with the new
1934 * implementation that only depends on the dcache stuff instead of
1935 * using the inode layer
1936 *
1937 * Unfortunately, things are a little more complicated than indicated
1938 * above. For a cross-directory move, we want to make sure we can get
1939 * rid of the old inode after the operation.  This means there must be
1940 * no pending writes (if it's a file), and the use count must be 1.
1941 * If these conditions are met, we can drop the dentries before doing
1942 * the rename.
1943 */
1944static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1945		      struct inode *new_dir, struct dentry *new_dentry)
1946{
1947	struct inode *old_inode = old_dentry->d_inode;
1948	struct inode *new_inode = new_dentry->d_inode;
1949	struct dentry *dentry = NULL, *rehash = NULL;
 
 
 
1950	int error = -EBUSY;
1951
1952	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1953		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1954		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1955		 new_dentry->d_count);
 
 
1956
 
1957	/*
1958	 * For non-directories, check whether the target is busy and if so,
1959	 * make a copy of the dentry and then do a silly-rename. If the
1960	 * silly-rename succeeds, the copied dentry is hashed and becomes
1961	 * the new target.
1962	 */
1963	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1964		/*
1965		 * To prevent any new references to the target during the
1966		 * rename, we unhash the dentry in advance.
 
1967		 */
1968		if (!d_unhashed(new_dentry)) {
1969			d_drop(new_dentry);
1970			rehash = new_dentry;
 
 
 
 
 
1971		}
1972
1973		if (new_dentry->d_count > 2) {
 
1974			int err;
1975
 
 
1976			/* copy the target dentry's name */
1977			dentry = d_alloc(new_dentry->d_parent,
1978					 &new_dentry->d_name);
1979			if (!dentry)
1980				goto out;
1981
1982			/* silly-rename the existing target ... */
1983			err = nfs_sillyrename(new_dir, new_dentry);
1984			if (err)
1985				goto out;
1986
1987			new_dentry = dentry;
1988			rehash = NULL;
1989			new_inode = NULL;
 
 
 
 
1990		}
 
 
 
 
 
 
 
 
 
 
1991	}
1992
1993	nfs_inode_return_delegation(old_inode);
1994	if (new_inode != NULL)
1995		nfs_inode_return_delegation(new_inode);
1996
1997	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1998					   new_dir, &new_dentry->d_name);
1999	nfs_mark_for_revalidate(old_inode);
 
 
 
 
 
 
 
 
 
 
2000out:
2001	if (rehash)
2002		d_rehash(rehash);
2003	if (!error) {
2004		if (new_inode != NULL)
2005			nfs_drop_nlink(new_inode);
 
 
 
 
 
 
2006		d_move(old_dentry, new_dentry);
2007		nfs_set_verifier(new_dentry,
2008					nfs_save_change_attribute(new_dir));
2009	} else if (error == -ENOENT)
2010		nfs_dentry_handle_enoent(old_dentry);
2011
2012	/* new dentry created? */
2013	if (dentry)
2014		dput(dentry);
2015	return error;
2016}
 
2017
2018static DEFINE_SPINLOCK(nfs_access_lru_lock);
2019static LIST_HEAD(nfs_access_lru_list);
2020static atomic_long_t nfs_access_nr_entries;
2021
 
 
 
 
2022static void nfs_access_free_entry(struct nfs_access_entry *entry)
2023{
2024	put_rpccred(entry->cred);
2025	kfree(entry);
2026	smp_mb__before_atomic_dec();
2027	atomic_long_dec(&nfs_access_nr_entries);
2028	smp_mb__after_atomic_dec();
2029}
2030
2031static void nfs_access_free_list(struct list_head *head)
2032{
2033	struct nfs_access_entry *cache;
2034
2035	while (!list_empty(head)) {
2036		cache = list_entry(head->next, struct nfs_access_entry, lru);
2037		list_del(&cache->lru);
2038		nfs_access_free_entry(cache);
2039	}
2040}
2041
2042int nfs_access_cache_shrinker(struct shrinker *shrink,
2043			      struct shrink_control *sc)
2044{
2045	LIST_HEAD(head);
2046	struct nfs_inode *nfsi, *next;
2047	struct nfs_access_entry *cache;
2048	int nr_to_scan = sc->nr_to_scan;
2049	gfp_t gfp_mask = sc->gfp_mask;
2050
2051	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2052		return (nr_to_scan == 0) ? 0 : -1;
2053
2054	spin_lock(&nfs_access_lru_lock);
2055	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2056		struct inode *inode;
2057
2058		if (nr_to_scan-- == 0)
2059			break;
2060		inode = &nfsi->vfs_inode;
2061		spin_lock(&inode->i_lock);
2062		if (list_empty(&nfsi->access_cache_entry_lru))
2063			goto remove_lru_entry;
2064		cache = list_entry(nfsi->access_cache_entry_lru.next,
2065				struct nfs_access_entry, lru);
2066		list_move(&cache->lru, &head);
2067		rb_erase(&cache->rb_node, &nfsi->access_cache);
 
2068		if (!list_empty(&nfsi->access_cache_entry_lru))
2069			list_move_tail(&nfsi->access_cache_inode_lru,
2070					&nfs_access_lru_list);
2071		else {
2072remove_lru_entry:
2073			list_del_init(&nfsi->access_cache_inode_lru);
2074			smp_mb__before_clear_bit();
2075			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2076			smp_mb__after_clear_bit();
2077		}
2078		spin_unlock(&inode->i_lock);
2079	}
2080	spin_unlock(&nfs_access_lru_lock);
2081	nfs_access_free_list(&head);
2082	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083}
2084
2085static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2086{
2087	struct rb_root *root_node = &nfsi->access_cache;
2088	struct rb_node *n;
2089	struct nfs_access_entry *entry;
2090
2091	/* Unhook entries from the cache */
2092	while ((n = rb_first(root_node)) != NULL) {
2093		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2094		rb_erase(n, root_node);
2095		list_move(&entry->lru, head);
2096	}
2097	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2098}
2099
2100void nfs_access_zap_cache(struct inode *inode)
2101{
2102	LIST_HEAD(head);
2103
2104	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2105		return;
2106	/* Remove from global LRU init */
2107	spin_lock(&nfs_access_lru_lock);
2108	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2109		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2110
2111	spin_lock(&inode->i_lock);
2112	__nfs_access_zap_cache(NFS_I(inode), &head);
2113	spin_unlock(&inode->i_lock);
2114	spin_unlock(&nfs_access_lru_lock);
2115	nfs_access_free_list(&head);
2116}
 
2117
2118static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119{
2120	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2121	struct nfs_access_entry *entry;
2122
2123	while (n != NULL) {
2124		entry = rb_entry(n, struct nfs_access_entry, rb_node);
 
 
2125
2126		if (cred < entry->cred)
2127			n = n->rb_left;
2128		else if (cred > entry->cred)
2129			n = n->rb_right;
2130		else
2131			return entry;
2132	}
2133	return NULL;
2134}
2135
2136static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137{
2138	struct nfs_inode *nfsi = NFS_I(inode);
 
2139	struct nfs_access_entry *cache;
2140	int err = -ENOENT;
 
2141
2142	spin_lock(&inode->i_lock);
2143	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2144		goto out_zap;
2145	cache = nfs_access_search_rbtree(inode, cred);
2146	if (cache == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147		goto out;
2148	if (!nfs_have_delegated_attributes(inode) &&
2149	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2150		goto out_stale;
2151	res->jiffies = cache->jiffies;
2152	res->cred = cache->cred;
2153	res->mask = cache->mask;
2154	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2155	err = 0;
2156out:
2157	spin_unlock(&inode->i_lock);
2158	return err;
2159out_stale:
2160	rb_erase(&cache->rb_node, &nfsi->access_cache);
2161	list_del(&cache->lru);
2162	spin_unlock(&inode->i_lock);
2163	nfs_access_free_entry(cache);
2164	return -ENOENT;
2165out_zap:
2166	spin_unlock(&inode->i_lock);
2167	nfs_access_zap_cache(inode);
2168	return -ENOENT;
2169}
2170
2171static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172{
2173	struct nfs_inode *nfsi = NFS_I(inode);
2174	struct rb_root *root_node = &nfsi->access_cache;
2175	struct rb_node **p = &root_node->rb_node;
2176	struct rb_node *parent = NULL;
2177	struct nfs_access_entry *entry;
 
2178
2179	spin_lock(&inode->i_lock);
2180	while (*p != NULL) {
2181		parent = *p;
2182		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
 
2183
2184		if (set->cred < entry->cred)
2185			p = &parent->rb_left;
2186		else if (set->cred > entry->cred)
2187			p = &parent->rb_right;
2188		else
2189			goto found;
2190	}
2191	rb_link_node(&set->rb_node, parent, p);
2192	rb_insert_color(&set->rb_node, root_node);
2193	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2194	spin_unlock(&inode->i_lock);
2195	return;
2196found:
2197	rb_replace_node(parent, &set->rb_node, root_node);
2198	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2199	list_del(&entry->lru);
2200	spin_unlock(&inode->i_lock);
2201	nfs_access_free_entry(entry);
2202}
2203
2204static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
 
2205{
2206	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2207	if (cache == NULL)
2208		return;
2209	RB_CLEAR_NODE(&cache->rb_node);
2210	cache->jiffies = set->jiffies;
2211	cache->cred = get_rpccred(set->cred);
 
2212	cache->mask = set->mask;
 
2213
2214	nfs_access_add_rbtree(inode, cache);
 
 
 
 
 
2215
2216	/* Update accounting */
2217	smp_mb__before_atomic_inc();
2218	atomic_long_inc(&nfs_access_nr_entries);
2219	smp_mb__after_atomic_inc();
2220
2221	/* Add inode to global LRU list */
2222	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2223		spin_lock(&nfs_access_lru_lock);
2224		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2225			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2226					&nfs_access_lru_list);
2227		spin_unlock(&nfs_access_lru_lock);
2228	}
 
2229}
 
2230
2231static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232{
2233	struct nfs_access_entry cache;
 
 
2234	int status;
2235
2236	status = nfs_access_get_cached(inode, cred, &cache);
 
 
2237	if (status == 0)
 
 
 
 
2238		goto out;
2239
2240	/* Be clever: ask server to check for all possible rights */
2241	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2242	cache.cred = cred;
2243	cache.jiffies = jiffies;
2244	status = NFS_PROTO(inode)->access(inode, &cache);
 
 
 
 
 
2245	if (status != 0) {
2246		if (status == -ESTALE) {
2247			nfs_zap_caches(inode);
2248			if (!S_ISDIR(inode->i_mode))
2249				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
 
 
2250		}
2251		return status;
2252	}
2253	nfs_access_add_cache(inode, &cache);
 
 
 
 
2254out:
2255	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2256		return 0;
2257	return -EACCES;
2258}
2259
2260static int nfs_open_permission_mask(int openflags)
2261{
2262	int mask = 0;
2263
2264	if ((openflags & O_ACCMODE) != O_WRONLY)
2265		mask |= MAY_READ;
2266	if ((openflags & O_ACCMODE) != O_RDONLY)
2267		mask |= MAY_WRITE;
2268	if (openflags & __FMODE_EXEC)
2269		mask |= MAY_EXEC;
 
 
 
 
2270	return mask;
2271}
2272
2273int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2274{
2275	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2276}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277
2278int nfs_permission(struct inode *inode, int mask)
 
 
2279{
2280	struct rpc_cred *cred;
2281	int res = 0;
2282
2283	if (mask & MAY_NOT_BLOCK)
2284		return -ECHILD;
2285
2286	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2287
2288	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2289		goto out;
2290	/* Is this sys_access() ? */
2291	if (mask & (MAY_ACCESS | MAY_CHDIR))
2292		goto force_lookup;
2293
2294	switch (inode->i_mode & S_IFMT) {
2295		case S_IFLNK:
2296			goto out;
2297		case S_IFREG:
2298			/* NFSv4 has atomic_open... */
2299			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2300					&& (mask & MAY_OPEN)
2301					&& !(mask & MAY_EXEC))
2302				goto out;
2303			break;
2304		case S_IFDIR:
2305			/*
2306			 * Optimize away all write operations, since the server
2307			 * will check permissions when we perform the op.
2308			 */
2309			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2310				goto out;
2311	}
2312
2313force_lookup:
2314	if (!NFS_PROTO(inode)->access)
2315		goto out_notsup;
2316
2317	cred = rpc_lookup_cred();
2318	if (!IS_ERR(cred)) {
2319		res = nfs_do_access(inode, cred, mask);
2320		put_rpccred(cred);
2321	} else
2322		res = PTR_ERR(cred);
2323out:
2324	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2325		res = -EACCES;
2326
2327	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2328		inode->i_sb->s_id, inode->i_ino, mask, res);
2329	return res;
2330out_notsup:
2331	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
 
 
 
 
2332	if (res == 0)
2333		res = generic_permission(inode, mask);
2334	goto out;
2335}
2336
2337/*
2338 * Local variables:
2339 *  version-control: t
2340 *  kept-new-versions: 5
2341 * End:
2342 */