Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78 struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300{
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338 kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365}
366
367void kfd_procfs_shutdown(void)
368{
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378{
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396{
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422{
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441}
442
443static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519{
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 WQ_FREEZABLE);
669
670 if (!kfd_process_wq || !kfd_restore_wq) {
671 kfd_process_destroy_wq();
672 return -ENOMEM;
673 }
674
675 return 0;
676}
677
678void kfd_process_destroy_wq(void)
679{
680 if (kfd_process_wq) {
681 destroy_workqueue(kfd_process_wq);
682 kfd_process_wq = NULL;
683 }
684 if (kfd_restore_wq) {
685 destroy_workqueue(kfd_restore_wq);
686 kfd_restore_wq = NULL;
687 }
688}
689
690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 struct kfd_process_device *pdd, void **kptr)
692{
693 struct kfd_node *dev = pdd->dev;
694
695 if (kptr && *kptr) {
696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 *kptr = NULL;
698 }
699
700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 NULL);
703}
704
705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 * This function should be only called right after the process
707 * is created and when kfd_processes_mutex is still being held
708 * to avoid concurrency. Because of that exclusiveness, we do
709 * not need to take p->mutex.
710 */
711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 uint64_t gpu_va, uint32_t size,
713 uint32_t flags, struct kgd_mem **mem, void **kptr)
714{
715 struct kfd_node *kdev = pdd->dev;
716 int err;
717
718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 pdd->drm_priv, mem, NULL,
720 flags, false);
721 if (err)
722 goto err_alloc_mem;
723
724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 pdd->drm_priv);
726 if (err)
727 goto err_map_mem;
728
729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 if (err) {
731 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 goto sync_memory_failed;
733 }
734
735 if (kptr) {
736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 (struct kgd_mem *)*mem, kptr, NULL);
738 if (err) {
739 pr_debug("Map GTT BO to kernel failed\n");
740 goto sync_memory_failed;
741 }
742 }
743
744 return err;
745
746sync_memory_failed:
747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749err_map_mem:
750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 NULL);
752err_alloc_mem:
753 *mem = NULL;
754 *kptr = NULL;
755 return err;
756}
757
758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 * process for IB usage The memory reserved is for KFD to submit
760 * IB to AMDGPU from kernel. If the memory is reserved
761 * successfully, ib_kaddr will have the CPU/kernel
762 * address. Check ib_kaddr before accessing the memory.
763 */
764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765{
766 struct qcm_process_device *qpd = &pdd->qpd;
767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 struct kgd_mem *mem;
772 void *kaddr;
773 int ret;
774
775 if (qpd->ib_kaddr || !qpd->ib_base)
776 return 0;
777
778 /* ib_base is only set for dGPU */
779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 &mem, &kaddr);
781 if (ret)
782 return ret;
783
784 qpd->ib_mem = mem;
785 qpd->ib_kaddr = kaddr;
786
787 return 0;
788}
789
790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791{
792 struct qcm_process_device *qpd = &pdd->qpd;
793
794 if (!qpd->ib_kaddr || !qpd->ib_base)
795 return;
796
797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798}
799
800struct kfd_process *kfd_create_process(struct task_struct *thread)
801{
802 struct kfd_process *process;
803 int ret;
804
805 if (!(thread->mm && mmget_not_zero(thread->mm)))
806 return ERR_PTR(-EINVAL);
807
808 /* Only the pthreads threading model is supported. */
809 if (thread->group_leader->mm != thread->mm) {
810 mmput(thread->mm);
811 return ERR_PTR(-EINVAL);
812 }
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 if (kfd_is_locked()) {
822 pr_debug("KFD is locked! Cannot create process");
823 process = ERR_PTR(-EINVAL);
824 goto out;
825 }
826
827 /* A prior open of /dev/kfd could have already created the process. */
828 process = find_process(thread, false);
829 if (process) {
830 pr_debug("Process already found\n");
831 } else {
832 /* If the process just called exec(3), it is possible that the
833 * cleanup of the kfd_process (following the release of the mm
834 * of the old process image) is still in the cleanup work queue.
835 * Make sure to drain any job before trying to recreate any
836 * resource for this process.
837 */
838 flush_workqueue(kfd_process_wq);
839
840 process = create_process(thread);
841 if (IS_ERR(process))
842 goto out;
843
844 if (!procfs.kobj)
845 goto out;
846
847 process->kobj = kfd_alloc_struct(process->kobj);
848 if (!process->kobj) {
849 pr_warn("Creating procfs kobject failed");
850 goto out;
851 }
852 ret = kobject_init_and_add(process->kobj, &procfs_type,
853 procfs.kobj, "%d",
854 (int)process->lead_thread->pid);
855 if (ret) {
856 pr_warn("Creating procfs pid directory failed");
857 kobject_put(process->kobj);
858 goto out;
859 }
860
861 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
862 "pasid");
863
864 process->kobj_queues = kobject_create_and_add("queues",
865 process->kobj);
866 if (!process->kobj_queues)
867 pr_warn("Creating KFD proc/queues folder failed");
868
869 kfd_procfs_add_sysfs_stats(process);
870 kfd_procfs_add_sysfs_files(process);
871 kfd_procfs_add_sysfs_counters(process);
872
873 init_waitqueue_head(&process->wait_irq_drain);
874 }
875out:
876 if (!IS_ERR(process))
877 kref_get(&process->ref);
878 mutex_unlock(&kfd_processes_mutex);
879 mmput(thread->mm);
880
881 return process;
882}
883
884struct kfd_process *kfd_get_process(const struct task_struct *thread)
885{
886 struct kfd_process *process;
887
888 if (!thread->mm)
889 return ERR_PTR(-EINVAL);
890
891 /* Only the pthreads threading model is supported. */
892 if (thread->group_leader->mm != thread->mm)
893 return ERR_PTR(-EINVAL);
894
895 process = find_process(thread, false);
896 if (!process)
897 return ERR_PTR(-EINVAL);
898
899 return process;
900}
901
902static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
903{
904 struct kfd_process *process;
905
906 hash_for_each_possible_rcu(kfd_processes_table, process,
907 kfd_processes, (uintptr_t)mm)
908 if (process->mm == mm)
909 return process;
910
911 return NULL;
912}
913
914static struct kfd_process *find_process(const struct task_struct *thread,
915 bool ref)
916{
917 struct kfd_process *p;
918 int idx;
919
920 idx = srcu_read_lock(&kfd_processes_srcu);
921 p = find_process_by_mm(thread->mm);
922 if (p && ref)
923 kref_get(&p->ref);
924 srcu_read_unlock(&kfd_processes_srcu, idx);
925
926 return p;
927}
928
929void kfd_unref_process(struct kfd_process *p)
930{
931 kref_put(&p->ref, kfd_process_ref_release);
932}
933
934/* This increments the process->ref counter. */
935struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
936{
937 struct task_struct *task = NULL;
938 struct kfd_process *p = NULL;
939
940 if (!pid) {
941 task = current;
942 get_task_struct(task);
943 } else {
944 task = get_pid_task(pid, PIDTYPE_PID);
945 }
946
947 if (task) {
948 p = find_process(task, true);
949 put_task_struct(task);
950 }
951
952 return p;
953}
954
955static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
956{
957 struct kfd_process *p = pdd->process;
958 void *mem;
959 int id;
960 int i;
961
962 /*
963 * Remove all handles from idr and release appropriate
964 * local memory object
965 */
966 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
967
968 for (i = 0; i < p->n_pdds; i++) {
969 struct kfd_process_device *peer_pdd = p->pdds[i];
970
971 if (!peer_pdd->drm_priv)
972 continue;
973 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
974 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
975 }
976
977 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
978 pdd->drm_priv, NULL);
979 kfd_process_device_remove_obj_handle(pdd, id);
980 }
981}
982
983/*
984 * Just kunmap and unpin signal BO here. It will be freed in
985 * kfd_process_free_outstanding_kfd_bos()
986 */
987static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
988{
989 struct kfd_process_device *pdd;
990 struct kfd_node *kdev;
991 void *mem;
992
993 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
994 if (!kdev)
995 return;
996
997 mutex_lock(&p->mutex);
998
999 pdd = kfd_get_process_device_data(kdev, p);
1000 if (!pdd)
1001 goto out;
1002
1003 mem = kfd_process_device_translate_handle(
1004 pdd, GET_IDR_HANDLE(p->signal_handle));
1005 if (!mem)
1006 goto out;
1007
1008 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009
1010out:
1011 mutex_unlock(&p->mutex);
1012}
1013
1014static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015{
1016 int i;
1017
1018 for (i = 0; i < p->n_pdds; i++)
1019 kfd_process_device_free_bos(p->pdds[i]);
1020}
1021
1022static void kfd_process_destroy_pdds(struct kfd_process *p)
1023{
1024 int i;
1025
1026 for (i = 0; i < p->n_pdds; i++) {
1027 struct kfd_process_device *pdd = p->pdds[i];
1028
1029 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030 pdd->dev->id, p->pasid);
1031
1032 kfd_process_device_destroy_cwsr_dgpu(pdd);
1033 kfd_process_device_destroy_ib_mem(pdd);
1034
1035 if (pdd->drm_file) {
1036 amdgpu_amdkfd_gpuvm_release_process_vm(
1037 pdd->dev->adev, pdd->drm_priv);
1038 fput(pdd->drm_file);
1039 }
1040
1041 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043 get_order(KFD_CWSR_TBA_TMA_SIZE));
1044
1045 idr_destroy(&pdd->alloc_idr);
1046
1047 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048
1049 if (pdd->dev->kfd->shared_resources.enable_mes)
1050 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051 pdd->proc_ctx_bo);
1052 /*
1053 * before destroying pdd, make sure to report availability
1054 * for auto suspend
1055 */
1056 if (pdd->runtime_inuse) {
1057 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059 pdd->runtime_inuse = false;
1060 }
1061
1062 kfree(pdd);
1063 p->pdds[i] = NULL;
1064 }
1065 p->n_pdds = 0;
1066}
1067
1068static void kfd_process_remove_sysfs(struct kfd_process *p)
1069{
1070 struct kfd_process_device *pdd;
1071 int i;
1072
1073 if (!p->kobj)
1074 return;
1075
1076 sysfs_remove_file(p->kobj, &p->attr_pasid);
1077 kobject_del(p->kobj_queues);
1078 kobject_put(p->kobj_queues);
1079 p->kobj_queues = NULL;
1080
1081 for (i = 0; i < p->n_pdds; i++) {
1082 pdd = p->pdds[i];
1083
1084 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086
1087 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089 sysfs_remove_file(pdd->kobj_stats,
1090 &pdd->attr_cu_occupancy);
1091 kobject_del(pdd->kobj_stats);
1092 kobject_put(pdd->kobj_stats);
1093 pdd->kobj_stats = NULL;
1094 }
1095
1096 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097 pdd = p->pdds[i];
1098
1099 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102 kobject_del(pdd->kobj_counters);
1103 kobject_put(pdd->kobj_counters);
1104 pdd->kobj_counters = NULL;
1105 }
1106
1107 kobject_del(p->kobj);
1108 kobject_put(p->kobj);
1109 p->kobj = NULL;
1110}
1111
1112/* No process locking is needed in this function, because the process
1113 * is not findable any more. We must assume that no other thread is
1114 * using it any more, otherwise we couldn't safely free the process
1115 * structure in the end.
1116 */
1117static void kfd_process_wq_release(struct work_struct *work)
1118{
1119 struct kfd_process *p = container_of(work, struct kfd_process,
1120 release_work);
1121 struct dma_fence *ef;
1122
1123 kfd_process_dequeue_from_all_devices(p);
1124 pqm_uninit(&p->pqm);
1125
1126 /* Signal the eviction fence after user mode queues are
1127 * destroyed. This allows any BOs to be freed without
1128 * triggering pointless evictions or waiting for fences.
1129 */
1130 synchronize_rcu();
1131 ef = rcu_access_pointer(p->ef);
1132 dma_fence_signal(ef);
1133
1134 kfd_process_remove_sysfs(p);
1135
1136 kfd_process_kunmap_signal_bo(p);
1137 kfd_process_free_outstanding_kfd_bos(p);
1138 svm_range_list_fini(p);
1139
1140 kfd_process_destroy_pdds(p);
1141 dma_fence_put(ef);
1142
1143 kfd_event_free_process(p);
1144
1145 kfd_pasid_free(p->pasid);
1146 mutex_destroy(&p->mutex);
1147
1148 put_task_struct(p->lead_thread);
1149
1150 kfree(p);
1151}
1152
1153static void kfd_process_ref_release(struct kref *ref)
1154{
1155 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156
1157 INIT_WORK(&p->release_work, kfd_process_wq_release);
1158 queue_work(kfd_process_wq, &p->release_work);
1159}
1160
1161static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162{
1163 int idx = srcu_read_lock(&kfd_processes_srcu);
1164 struct kfd_process *p = find_process_by_mm(mm);
1165
1166 srcu_read_unlock(&kfd_processes_srcu, idx);
1167
1168 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169}
1170
1171static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172{
1173 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174}
1175
1176static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177{
1178 int i;
1179
1180 cancel_delayed_work_sync(&p->eviction_work);
1181 cancel_delayed_work_sync(&p->restore_work);
1182
1183 for (i = 0; i < p->n_pdds; i++) {
1184 struct kfd_process_device *pdd = p->pdds[i];
1185
1186 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189 }
1190
1191 /* Indicate to other users that MM is no longer valid */
1192 p->mm = NULL;
1193 kfd_dbg_trap_disable(p);
1194
1195 if (atomic_read(&p->debugged_process_count) > 0) {
1196 struct kfd_process *target;
1197 unsigned int temp;
1198 int idx = srcu_read_lock(&kfd_processes_srcu);
1199
1200 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201 if (target->debugger_process && target->debugger_process == p) {
1202 mutex_lock_nested(&target->mutex, 1);
1203 kfd_dbg_trap_disable(target);
1204 mutex_unlock(&target->mutex);
1205 if (atomic_read(&p->debugged_process_count) == 0)
1206 break;
1207 }
1208 }
1209
1210 srcu_read_unlock(&kfd_processes_srcu, idx);
1211 }
1212
1213 mmu_notifier_put(&p->mmu_notifier);
1214}
1215
1216static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217 struct mm_struct *mm)
1218{
1219 struct kfd_process *p;
1220
1221 /*
1222 * The kfd_process structure can not be free because the
1223 * mmu_notifier srcu is read locked
1224 */
1225 p = container_of(mn, struct kfd_process, mmu_notifier);
1226 if (WARN_ON(p->mm != mm))
1227 return;
1228
1229 mutex_lock(&kfd_processes_mutex);
1230 /*
1231 * Do early return if table is empty.
1232 *
1233 * This could potentially happen if this function is called concurrently
1234 * by mmu_notifier and by kfd_cleanup_pocesses.
1235 *
1236 */
1237 if (hash_empty(kfd_processes_table)) {
1238 mutex_unlock(&kfd_processes_mutex);
1239 return;
1240 }
1241 hash_del_rcu(&p->kfd_processes);
1242 mutex_unlock(&kfd_processes_mutex);
1243 synchronize_srcu(&kfd_processes_srcu);
1244
1245 kfd_process_notifier_release_internal(p);
1246}
1247
1248static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249 .release = kfd_process_notifier_release,
1250 .alloc_notifier = kfd_process_alloc_notifier,
1251 .free_notifier = kfd_process_free_notifier,
1252};
1253
1254/*
1255 * This code handles the case when driver is being unloaded before all
1256 * mm_struct are released. We need to safely free the kfd_process and
1257 * avoid race conditions with mmu_notifier that might try to free them.
1258 *
1259 */
1260void kfd_cleanup_processes(void)
1261{
1262 struct kfd_process *p;
1263 struct hlist_node *p_temp;
1264 unsigned int temp;
1265 HLIST_HEAD(cleanup_list);
1266
1267 /*
1268 * Move all remaining kfd_process from the process table to a
1269 * temp list for processing. Once done, callback from mmu_notifier
1270 * release will not see the kfd_process in the table and do early return,
1271 * avoiding double free issues.
1272 */
1273 mutex_lock(&kfd_processes_mutex);
1274 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275 hash_del_rcu(&p->kfd_processes);
1276 synchronize_srcu(&kfd_processes_srcu);
1277 hlist_add_head(&p->kfd_processes, &cleanup_list);
1278 }
1279 mutex_unlock(&kfd_processes_mutex);
1280
1281 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282 kfd_process_notifier_release_internal(p);
1283
1284 /*
1285 * Ensures that all outstanding free_notifier get called, triggering
1286 * the release of the kfd_process struct.
1287 */
1288 mmu_notifier_synchronize();
1289}
1290
1291int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1292{
1293 unsigned long offset;
1294 int i;
1295
1296 if (p->has_cwsr)
1297 return 0;
1298
1299 for (i = 0; i < p->n_pdds; i++) {
1300 struct kfd_node *dev = p->pdds[i]->dev;
1301 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302
1303 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304 continue;
1305
1306 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309 MAP_SHARED, offset);
1310
1311 if (IS_ERR_VALUE(qpd->tba_addr)) {
1312 int err = qpd->tba_addr;
1313
1314 pr_err("Failure to set tba address. error %d.\n", err);
1315 qpd->tba_addr = 0;
1316 qpd->cwsr_kaddr = NULL;
1317 return err;
1318 }
1319
1320 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1321
1322 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1323
1324 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327 }
1328
1329 p->has_cwsr = true;
1330
1331 return 0;
1332}
1333
1334static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1335{
1336 struct kfd_node *dev = pdd->dev;
1337 struct qcm_process_device *qpd = &pdd->qpd;
1338 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1339 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1340 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1341 struct kgd_mem *mem;
1342 void *kaddr;
1343 int ret;
1344
1345 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1346 return 0;
1347
1348 /* cwsr_base is only set for dGPU */
1349 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1350 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1351 if (ret)
1352 return ret;
1353
1354 qpd->cwsr_mem = mem;
1355 qpd->cwsr_kaddr = kaddr;
1356 qpd->tba_addr = qpd->cwsr_base;
1357
1358 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1359
1360 kfd_process_set_trap_debug_flag(&pdd->qpd,
1361 pdd->process->debug_trap_enabled);
1362
1363 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1364 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1365 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1366
1367 return 0;
1368}
1369
1370static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1371{
1372 struct kfd_node *dev = pdd->dev;
1373 struct qcm_process_device *qpd = &pdd->qpd;
1374
1375 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1376 return;
1377
1378 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1379}
1380
1381void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1382 uint64_t tba_addr,
1383 uint64_t tma_addr)
1384{
1385 if (qpd->cwsr_kaddr) {
1386 /* KFD trap handler is bound, record as second-level TBA/TMA
1387 * in first-level TMA. First-level trap will jump to second.
1388 */
1389 uint64_t *tma =
1390 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1391 tma[0] = tba_addr;
1392 tma[1] = tma_addr;
1393 } else {
1394 /* No trap handler bound, bind as first-level TBA/TMA. */
1395 qpd->tba_addr = tba_addr;
1396 qpd->tma_addr = tma_addr;
1397 }
1398}
1399
1400bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1401{
1402 int i;
1403
1404 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1405 * boot time retry setting. Mixing processes with different
1406 * XNACK/retry settings can hang the GPU.
1407 *
1408 * Different GPUs can have different noretry settings depending
1409 * on HW bugs or limitations. We need to find at least one
1410 * XNACK mode for this process that's compatible with all GPUs.
1411 * Fortunately GPUs with retry enabled (noretry=0) can run code
1412 * built for XNACK-off. On GFXv9 it may perform slower.
1413 *
1414 * Therefore applications built for XNACK-off can always be
1415 * supported and will be our fallback if any GPU does not
1416 * support retry.
1417 */
1418 for (i = 0; i < p->n_pdds; i++) {
1419 struct kfd_node *dev = p->pdds[i]->dev;
1420
1421 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1422 * support the SVM APIs and don't need to be considered
1423 * for the XNACK mode selection.
1424 */
1425 if (!KFD_IS_SOC15(dev))
1426 continue;
1427 /* Aldebaran can always support XNACK because it can support
1428 * per-process XNACK mode selection. But let the dev->noretry
1429 * setting still influence the default XNACK mode.
1430 */
1431 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1432 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1433 pr_debug("SRIOV platform xnack not supported\n");
1434 return false;
1435 }
1436 continue;
1437 }
1438
1439 /* GFXv10 and later GPUs do not support shader preemption
1440 * during page faults. This can lead to poor QoS for queue
1441 * management and memory-manager-related preemptions or
1442 * even deadlocks.
1443 */
1444 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1445 return false;
1446
1447 if (dev->kfd->noretry)
1448 return false;
1449 }
1450
1451 return true;
1452}
1453
1454void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1455 bool enabled)
1456{
1457 if (qpd->cwsr_kaddr) {
1458 uint64_t *tma =
1459 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1460 tma[2] = enabled;
1461 }
1462}
1463
1464/*
1465 * On return the kfd_process is fully operational and will be freed when the
1466 * mm is released
1467 */
1468static struct kfd_process *create_process(const struct task_struct *thread)
1469{
1470 struct kfd_process *process;
1471 struct mmu_notifier *mn;
1472 int err = -ENOMEM;
1473
1474 process = kzalloc(sizeof(*process), GFP_KERNEL);
1475 if (!process)
1476 goto err_alloc_process;
1477
1478 kref_init(&process->ref);
1479 mutex_init(&process->mutex);
1480 process->mm = thread->mm;
1481 process->lead_thread = thread->group_leader;
1482 process->n_pdds = 0;
1483 process->queues_paused = false;
1484 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1485 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1486 process->last_restore_timestamp = get_jiffies_64();
1487 err = kfd_event_init_process(process);
1488 if (err)
1489 goto err_event_init;
1490 process->is_32bit_user_mode = in_compat_syscall();
1491 process->debug_trap_enabled = false;
1492 process->debugger_process = NULL;
1493 process->exception_enable_mask = 0;
1494 atomic_set(&process->debugged_process_count, 0);
1495 sema_init(&process->runtime_enable_sema, 0);
1496
1497 process->pasid = kfd_pasid_alloc();
1498 if (process->pasid == 0) {
1499 err = -ENOSPC;
1500 goto err_alloc_pasid;
1501 }
1502
1503 err = pqm_init(&process->pqm, process);
1504 if (err != 0)
1505 goto err_process_pqm_init;
1506
1507 /* init process apertures*/
1508 err = kfd_init_apertures(process);
1509 if (err != 0)
1510 goto err_init_apertures;
1511
1512 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1513 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1514
1515 err = svm_range_list_init(process);
1516 if (err)
1517 goto err_init_svm_range_list;
1518
1519 /* alloc_notifier needs to find the process in the hash table */
1520 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1521 (uintptr_t)process->mm);
1522
1523 /* Avoid free_notifier to start kfd_process_wq_release if
1524 * mmu_notifier_get failed because of pending signal.
1525 */
1526 kref_get(&process->ref);
1527
1528 /* MMU notifier registration must be the last call that can fail
1529 * because after this point we cannot unwind the process creation.
1530 * After this point, mmu_notifier_put will trigger the cleanup by
1531 * dropping the last process reference in the free_notifier.
1532 */
1533 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1534 if (IS_ERR(mn)) {
1535 err = PTR_ERR(mn);
1536 goto err_register_notifier;
1537 }
1538 BUG_ON(mn != &process->mmu_notifier);
1539
1540 kfd_unref_process(process);
1541 get_task_struct(process->lead_thread);
1542
1543 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1544
1545 return process;
1546
1547err_register_notifier:
1548 hash_del_rcu(&process->kfd_processes);
1549 svm_range_list_fini(process);
1550err_init_svm_range_list:
1551 kfd_process_free_outstanding_kfd_bos(process);
1552 kfd_process_destroy_pdds(process);
1553err_init_apertures:
1554 pqm_uninit(&process->pqm);
1555err_process_pqm_init:
1556 kfd_pasid_free(process->pasid);
1557err_alloc_pasid:
1558 kfd_event_free_process(process);
1559err_event_init:
1560 mutex_destroy(&process->mutex);
1561 kfree(process);
1562err_alloc_process:
1563 return ERR_PTR(err);
1564}
1565
1566struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1567 struct kfd_process *p)
1568{
1569 int i;
1570
1571 for (i = 0; i < p->n_pdds; i++)
1572 if (p->pdds[i]->dev == dev)
1573 return p->pdds[i];
1574
1575 return NULL;
1576}
1577
1578struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1579 struct kfd_process *p)
1580{
1581 struct kfd_process_device *pdd = NULL;
1582 int retval = 0;
1583
1584 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1585 return NULL;
1586 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1587 if (!pdd)
1588 return NULL;
1589
1590 pdd->dev = dev;
1591 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1592 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1593 pdd->qpd.dqm = dev->dqm;
1594 pdd->qpd.pqm = &p->pqm;
1595 pdd->qpd.evicted = 0;
1596 pdd->qpd.mapped_gws_queue = false;
1597 pdd->process = p;
1598 pdd->bound = PDD_UNBOUND;
1599 pdd->already_dequeued = false;
1600 pdd->runtime_inuse = false;
1601 pdd->vram_usage = 0;
1602 pdd->sdma_past_activity_counter = 0;
1603 pdd->user_gpu_id = dev->id;
1604 atomic64_set(&pdd->evict_duration_counter, 0);
1605
1606 if (dev->kfd->shared_resources.enable_mes) {
1607 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1608 AMDGPU_MES_PROC_CTX_SIZE,
1609 &pdd->proc_ctx_bo,
1610 &pdd->proc_ctx_gpu_addr,
1611 &pdd->proc_ctx_cpu_ptr,
1612 false);
1613 if (retval) {
1614 pr_err("failed to allocate process context bo\n");
1615 goto err_free_pdd;
1616 }
1617 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1618 }
1619
1620 p->pdds[p->n_pdds++] = pdd;
1621 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1622 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1623 pdd->dev->adev,
1624 false,
1625 0);
1626
1627 /* Init idr used for memory handle translation */
1628 idr_init(&pdd->alloc_idr);
1629
1630 return pdd;
1631
1632err_free_pdd:
1633 kfree(pdd);
1634 return NULL;
1635}
1636
1637/**
1638 * kfd_process_device_init_vm - Initialize a VM for a process-device
1639 *
1640 * @pdd: The process-device
1641 * @drm_file: Optional pointer to a DRM file descriptor
1642 *
1643 * If @drm_file is specified, it will be used to acquire the VM from
1644 * that file descriptor. If successful, the @pdd takes ownership of
1645 * the file descriptor.
1646 *
1647 * If @drm_file is NULL, a new VM is created.
1648 *
1649 * Returns 0 on success, -errno on failure.
1650 */
1651int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1652 struct file *drm_file)
1653{
1654 struct amdgpu_fpriv *drv_priv;
1655 struct amdgpu_vm *avm;
1656 struct kfd_process *p;
1657 struct dma_fence *ef;
1658 struct kfd_node *dev;
1659 int ret;
1660
1661 if (!drm_file)
1662 return -EINVAL;
1663
1664 if (pdd->drm_priv)
1665 return -EBUSY;
1666
1667 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1668 if (ret)
1669 return ret;
1670 avm = &drv_priv->vm;
1671
1672 p = pdd->process;
1673 dev = pdd->dev;
1674
1675 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1676 &p->kgd_process_info,
1677 &ef);
1678 if (ret) {
1679 pr_err("Failed to create process VM object\n");
1680 return ret;
1681 }
1682 RCU_INIT_POINTER(p->ef, ef);
1683 pdd->drm_priv = drm_file->private_data;
1684
1685 ret = kfd_process_device_reserve_ib_mem(pdd);
1686 if (ret)
1687 goto err_reserve_ib_mem;
1688 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1689 if (ret)
1690 goto err_init_cwsr;
1691
1692 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1693 if (ret)
1694 goto err_set_pasid;
1695
1696 pdd->drm_file = drm_file;
1697
1698 return 0;
1699
1700err_set_pasid:
1701 kfd_process_device_destroy_cwsr_dgpu(pdd);
1702err_init_cwsr:
1703 kfd_process_device_destroy_ib_mem(pdd);
1704err_reserve_ib_mem:
1705 pdd->drm_priv = NULL;
1706 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1707
1708 return ret;
1709}
1710
1711/*
1712 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1713 * to the device.
1714 * Unbinding occurs when the process dies or the device is removed.
1715 *
1716 * Assumes that the process lock is held.
1717 */
1718struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1719 struct kfd_process *p)
1720{
1721 struct kfd_process_device *pdd;
1722 int err;
1723
1724 pdd = kfd_get_process_device_data(dev, p);
1725 if (!pdd) {
1726 pr_err("Process device data doesn't exist\n");
1727 return ERR_PTR(-ENOMEM);
1728 }
1729
1730 if (!pdd->drm_priv)
1731 return ERR_PTR(-ENODEV);
1732
1733 /*
1734 * signal runtime-pm system to auto resume and prevent
1735 * further runtime suspend once device pdd is created until
1736 * pdd is destroyed.
1737 */
1738 if (!pdd->runtime_inuse) {
1739 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1740 if (err < 0) {
1741 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1742 return ERR_PTR(err);
1743 }
1744 }
1745
1746 /*
1747 * make sure that runtime_usage counter is incremented just once
1748 * per pdd
1749 */
1750 pdd->runtime_inuse = true;
1751
1752 return pdd;
1753}
1754
1755/* Create specific handle mapped to mem from process local memory idr
1756 * Assumes that the process lock is held.
1757 */
1758int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1759 void *mem)
1760{
1761 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1762}
1763
1764/* Translate specific handle from process local memory idr
1765 * Assumes that the process lock is held.
1766 */
1767void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1768 int handle)
1769{
1770 if (handle < 0)
1771 return NULL;
1772
1773 return idr_find(&pdd->alloc_idr, handle);
1774}
1775
1776/* Remove specific handle from process local memory idr
1777 * Assumes that the process lock is held.
1778 */
1779void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1780 int handle)
1781{
1782 if (handle >= 0)
1783 idr_remove(&pdd->alloc_idr, handle);
1784}
1785
1786/* This increments the process->ref counter. */
1787struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1788{
1789 struct kfd_process *p, *ret_p = NULL;
1790 unsigned int temp;
1791
1792 int idx = srcu_read_lock(&kfd_processes_srcu);
1793
1794 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1795 if (p->pasid == pasid) {
1796 kref_get(&p->ref);
1797 ret_p = p;
1798 break;
1799 }
1800 }
1801
1802 srcu_read_unlock(&kfd_processes_srcu, idx);
1803
1804 return ret_p;
1805}
1806
1807/* This increments the process->ref counter. */
1808struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1809{
1810 struct kfd_process *p;
1811
1812 int idx = srcu_read_lock(&kfd_processes_srcu);
1813
1814 p = find_process_by_mm(mm);
1815 if (p)
1816 kref_get(&p->ref);
1817
1818 srcu_read_unlock(&kfd_processes_srcu, idx);
1819
1820 return p;
1821}
1822
1823/* kfd_process_evict_queues - Evict all user queues of a process
1824 *
1825 * Eviction is reference-counted per process-device. This means multiple
1826 * evictions from different sources can be nested safely.
1827 */
1828int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1829{
1830 int r = 0;
1831 int i;
1832 unsigned int n_evicted = 0;
1833
1834 for (i = 0; i < p->n_pdds; i++) {
1835 struct kfd_process_device *pdd = p->pdds[i];
1836
1837 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1838 trigger);
1839
1840 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1841 &pdd->qpd);
1842 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1843 * we would like to set all the queues to be in evicted state to prevent
1844 * them been add back since they actually not be saved right now.
1845 */
1846 if (r && r != -EIO) {
1847 pr_err("Failed to evict process queues\n");
1848 goto fail;
1849 }
1850 n_evicted++;
1851 }
1852
1853 return r;
1854
1855fail:
1856 /* To keep state consistent, roll back partial eviction by
1857 * restoring queues
1858 */
1859 for (i = 0; i < p->n_pdds; i++) {
1860 struct kfd_process_device *pdd = p->pdds[i];
1861
1862 if (n_evicted == 0)
1863 break;
1864
1865 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1866
1867 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1868 &pdd->qpd))
1869 pr_err("Failed to restore queues\n");
1870
1871 n_evicted--;
1872 }
1873
1874 return r;
1875}
1876
1877/* kfd_process_restore_queues - Restore all user queues of a process */
1878int kfd_process_restore_queues(struct kfd_process *p)
1879{
1880 int r, ret = 0;
1881 int i;
1882
1883 for (i = 0; i < p->n_pdds; i++) {
1884 struct kfd_process_device *pdd = p->pdds[i];
1885
1886 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1887
1888 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1889 &pdd->qpd);
1890 if (r) {
1891 pr_err("Failed to restore process queues\n");
1892 if (!ret)
1893 ret = r;
1894 }
1895 }
1896
1897 return ret;
1898}
1899
1900int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1901{
1902 int i;
1903
1904 for (i = 0; i < p->n_pdds; i++)
1905 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1906 return i;
1907 return -EINVAL;
1908}
1909
1910int
1911kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1912 uint32_t *gpuid, uint32_t *gpuidx)
1913{
1914 int i;
1915
1916 for (i = 0; i < p->n_pdds; i++)
1917 if (p->pdds[i] && p->pdds[i]->dev == node) {
1918 *gpuid = p->pdds[i]->user_gpu_id;
1919 *gpuidx = i;
1920 return 0;
1921 }
1922 return -EINVAL;
1923}
1924
1925static int signal_eviction_fence(struct kfd_process *p)
1926{
1927 struct dma_fence *ef;
1928 int ret;
1929
1930 rcu_read_lock();
1931 ef = dma_fence_get_rcu_safe(&p->ef);
1932 rcu_read_unlock();
1933 if (!ef)
1934 return -EINVAL;
1935
1936 ret = dma_fence_signal(ef);
1937 dma_fence_put(ef);
1938
1939 return ret;
1940}
1941
1942static void evict_process_worker(struct work_struct *work)
1943{
1944 int ret;
1945 struct kfd_process *p;
1946 struct delayed_work *dwork;
1947
1948 dwork = to_delayed_work(work);
1949
1950 /* Process termination destroys this worker thread. So during the
1951 * lifetime of this thread, kfd_process p will be valid
1952 */
1953 p = container_of(dwork, struct kfd_process, eviction_work);
1954
1955 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1956 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1957 if (!ret) {
1958 /* If another thread already signaled the eviction fence,
1959 * they are responsible stopping the queues and scheduling
1960 * the restore work.
1961 */
1962 if (signal_eviction_fence(p) ||
1963 mod_delayed_work(kfd_restore_wq, &p->restore_work,
1964 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1965 kfd_process_restore_queues(p);
1966
1967 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1968 } else
1969 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1970}
1971
1972static int restore_process_helper(struct kfd_process *p)
1973{
1974 int ret = 0;
1975
1976 /* VMs may not have been acquired yet during debugging. */
1977 if (p->kgd_process_info) {
1978 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1979 p->kgd_process_info, &p->ef);
1980 if (ret)
1981 return ret;
1982 }
1983
1984 ret = kfd_process_restore_queues(p);
1985 if (!ret)
1986 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1987 else
1988 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1989
1990 return ret;
1991}
1992
1993static void restore_process_worker(struct work_struct *work)
1994{
1995 struct delayed_work *dwork;
1996 struct kfd_process *p;
1997 int ret = 0;
1998
1999 dwork = to_delayed_work(work);
2000
2001 /* Process termination destroys this worker thread. So during the
2002 * lifetime of this thread, kfd_process p will be valid
2003 */
2004 p = container_of(dwork, struct kfd_process, restore_work);
2005 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2006
2007 /* Setting last_restore_timestamp before successful restoration.
2008 * Otherwise this would have to be set by KGD (restore_process_bos)
2009 * before KFD BOs are unreserved. If not, the process can be evicted
2010 * again before the timestamp is set.
2011 * If restore fails, the timestamp will be set again in the next
2012 * attempt. This would mean that the minimum GPU quanta would be
2013 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2014 * functions)
2015 */
2016
2017 p->last_restore_timestamp = get_jiffies_64();
2018
2019 ret = restore_process_helper(p);
2020 if (ret) {
2021 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2022 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2023 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2024 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2025 kfd_process_restore_queues(p);
2026 }
2027}
2028
2029void kfd_suspend_all_processes(void)
2030{
2031 struct kfd_process *p;
2032 unsigned int temp;
2033 int idx = srcu_read_lock(&kfd_processes_srcu);
2034
2035 WARN(debug_evictions, "Evicting all processes");
2036 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2037 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2038 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2039 signal_eviction_fence(p);
2040 }
2041 srcu_read_unlock(&kfd_processes_srcu, idx);
2042}
2043
2044int kfd_resume_all_processes(void)
2045{
2046 struct kfd_process *p;
2047 unsigned int temp;
2048 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2049
2050 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2051 if (restore_process_helper(p)) {
2052 pr_err("Restore process %d failed during resume\n",
2053 p->pasid);
2054 ret = -EFAULT;
2055 }
2056 }
2057 srcu_read_unlock(&kfd_processes_srcu, idx);
2058 return ret;
2059}
2060
2061int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2062 struct vm_area_struct *vma)
2063{
2064 struct kfd_process_device *pdd;
2065 struct qcm_process_device *qpd;
2066
2067 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2068 pr_err("Incorrect CWSR mapping size.\n");
2069 return -EINVAL;
2070 }
2071
2072 pdd = kfd_get_process_device_data(dev, process);
2073 if (!pdd)
2074 return -EINVAL;
2075 qpd = &pdd->qpd;
2076
2077 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2078 get_order(KFD_CWSR_TBA_TMA_SIZE));
2079 if (!qpd->cwsr_kaddr) {
2080 pr_err("Error allocating per process CWSR buffer.\n");
2081 return -ENOMEM;
2082 }
2083
2084 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2085 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2086 /* Mapping pages to user process */
2087 return remap_pfn_range(vma, vma->vm_start,
2088 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2089 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2090}
2091
2092/* assumes caller holds process lock. */
2093int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2094{
2095 uint32_t irq_drain_fence[8];
2096 uint8_t node_id = 0;
2097 int r = 0;
2098
2099 if (!KFD_IS_SOC15(pdd->dev))
2100 return 0;
2101
2102 pdd->process->irq_drain_is_open = true;
2103
2104 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2105 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2106 KFD_IRQ_FENCE_CLIENTID;
2107 irq_drain_fence[3] = pdd->process->pasid;
2108
2109 /*
2110 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2111 */
2112 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2113 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2114 irq_drain_fence[3] |= node_id << 16;
2115 }
2116
2117 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2118 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2119 irq_drain_fence)) {
2120 pdd->process->irq_drain_is_open = false;
2121 return 0;
2122 }
2123
2124 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2125 !READ_ONCE(pdd->process->irq_drain_is_open));
2126 if (r)
2127 pdd->process->irq_drain_is_open = false;
2128
2129 return r;
2130}
2131
2132void kfd_process_close_interrupt_drain(unsigned int pasid)
2133{
2134 struct kfd_process *p;
2135
2136 p = kfd_lookup_process_by_pasid(pasid);
2137
2138 if (!p)
2139 return;
2140
2141 WRITE_ONCE(p->irq_drain_is_open, false);
2142 wake_up_all(&p->wait_irq_drain);
2143 kfd_unref_process(p);
2144}
2145
2146struct send_exception_work_handler_workarea {
2147 struct work_struct work;
2148 struct kfd_process *p;
2149 unsigned int queue_id;
2150 uint64_t error_reason;
2151};
2152
2153static void send_exception_work_handler(struct work_struct *work)
2154{
2155 struct send_exception_work_handler_workarea *workarea;
2156 struct kfd_process *p;
2157 struct queue *q;
2158 struct mm_struct *mm;
2159 struct kfd_context_save_area_header __user *csa_header;
2160 uint64_t __user *err_payload_ptr;
2161 uint64_t cur_err;
2162 uint32_t ev_id;
2163
2164 workarea = container_of(work,
2165 struct send_exception_work_handler_workarea,
2166 work);
2167 p = workarea->p;
2168
2169 mm = get_task_mm(p->lead_thread);
2170
2171 if (!mm)
2172 return;
2173
2174 kthread_use_mm(mm);
2175
2176 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2177
2178 if (!q)
2179 goto out;
2180
2181 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2182
2183 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2184 get_user(cur_err, err_payload_ptr);
2185 cur_err |= workarea->error_reason;
2186 put_user(cur_err, err_payload_ptr);
2187 get_user(ev_id, &csa_header->err_event_id);
2188
2189 kfd_set_event(p, ev_id);
2190
2191out:
2192 kthread_unuse_mm(mm);
2193 mmput(mm);
2194}
2195
2196int kfd_send_exception_to_runtime(struct kfd_process *p,
2197 unsigned int queue_id,
2198 uint64_t error_reason)
2199{
2200 struct send_exception_work_handler_workarea worker;
2201
2202 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2203
2204 worker.p = p;
2205 worker.queue_id = queue_id;
2206 worker.error_reason = error_reason;
2207
2208 schedule_work(&worker.work);
2209 flush_work(&worker.work);
2210 destroy_work_on_stack(&worker.work);
2211
2212 return 0;
2213}
2214
2215struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2216{
2217 int i;
2218
2219 if (gpu_id) {
2220 for (i = 0; i < p->n_pdds; i++) {
2221 struct kfd_process_device *pdd = p->pdds[i];
2222
2223 if (pdd->user_gpu_id == gpu_id)
2224 return pdd;
2225 }
2226 }
2227 return NULL;
2228}
2229
2230int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2231{
2232 int i;
2233
2234 if (!actual_gpu_id)
2235 return 0;
2236
2237 for (i = 0; i < p->n_pdds; i++) {
2238 struct kfd_process_device *pdd = p->pdds[i];
2239
2240 if (pdd->dev->id == actual_gpu_id)
2241 return pdd->user_gpu_id;
2242 }
2243 return -EINVAL;
2244}
2245
2246#if defined(CONFIG_DEBUG_FS)
2247
2248int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2249{
2250 struct kfd_process *p;
2251 unsigned int temp;
2252 int r = 0;
2253
2254 int idx = srcu_read_lock(&kfd_processes_srcu);
2255
2256 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2257 seq_printf(m, "Process %d PASID 0x%x:\n",
2258 p->lead_thread->tgid, p->pasid);
2259
2260 mutex_lock(&p->mutex);
2261 r = pqm_debugfs_mqds(m, &p->pqm);
2262 mutex_unlock(&p->mutex);
2263
2264 if (r)
2265 break;
2266 }
2267
2268 srcu_read_unlock(&kfd_processes_srcu, idx);
2269
2270 return r;
2271}
2272
2273#endif