Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#include "ubifs.h"
  24#include <linux/list_sort.h>
  25#include <crypto/hash.h>
  26
  27/**
  28 * struct replay_entry - replay list entry.
  29 * @lnum: logical eraseblock number of the node
  30 * @offs: node offset
  31 * @len: node length
  32 * @deletion: non-zero if this entry corresponds to a node deletion
  33 * @sqnum: node sequence number
  34 * @list: links the replay list
  35 * @key: node key
  36 * @nm: directory entry name
  37 * @old_size: truncation old size
  38 * @new_size: truncation new size
  39 *
  40 * The replay process first scans all buds and builds the replay list, then
  41 * sorts the replay list in nodes sequence number order, and then inserts all
  42 * the replay entries to the TNC.
  43 */
  44struct replay_entry {
  45	int lnum;
  46	int offs;
  47	int len;
  48	u8 hash[UBIFS_HASH_ARR_SZ];
  49	unsigned int deletion:1;
  50	unsigned long long sqnum;
  51	struct list_head list;
  52	union ubifs_key key;
  53	union {
  54		struct fscrypt_name nm;
  55		struct {
  56			loff_t old_size;
  57			loff_t new_size;
  58		};
  59	};
  60};
  61
  62/**
  63 * struct bud_entry - entry in the list of buds to replay.
  64 * @list: next bud in the list
  65 * @bud: bud description object
  66 * @sqnum: reference node sequence number
  67 * @free: free bytes in the bud
  68 * @dirty: dirty bytes in the bud
  69 */
  70struct bud_entry {
  71	struct list_head list;
  72	struct ubifs_bud *bud;
  73	unsigned long long sqnum;
  74	int free;
  75	int dirty;
  76};
  77
  78/**
  79 * set_bud_lprops - set free and dirty space used by a bud.
  80 * @c: UBIFS file-system description object
  81 * @b: bud entry which describes the bud
  82 *
  83 * This function makes sure the LEB properties of bud @b are set correctly
  84 * after the replay. Returns zero in case of success and a negative error code
  85 * in case of failure.
  86 */
  87static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  88{
  89	const struct ubifs_lprops *lp;
  90	int err = 0, dirty;
  91
  92	ubifs_get_lprops(c);
  93
  94	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  95	if (IS_ERR(lp)) {
  96		err = PTR_ERR(lp);
  97		goto out;
  98	}
  99
 100	dirty = lp->dirty;
 101	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 102		/*
 103		 * The LEB was added to the journal with a starting offset of
 104		 * zero which means the LEB must have been empty. The LEB
 105		 * property values should be @lp->free == @c->leb_size and
 106		 * @lp->dirty == 0, but that is not the case. The reason is that
 107		 * the LEB had been garbage collected before it became the bud,
 108		 * and there was no commit in between. The garbage collector
 109		 * resets the free and dirty space without recording it
 110		 * anywhere except lprops, so if there was no commit then
 111		 * lprops does not have that information.
 112		 *
 113		 * We do not need to adjust free space because the scan has told
 114		 * us the exact value which is recorded in the replay entry as
 115		 * @b->free.
 116		 *
 117		 * However we do need to subtract from the dirty space the
 118		 * amount of space that the garbage collector reclaimed, which
 119		 * is the whole LEB minus the amount of space that was free.
 120		 */
 121		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 122			lp->free, lp->dirty);
 123		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 124			lp->free, lp->dirty);
 125		dirty -= c->leb_size - lp->free;
 126		/*
 127		 * If the replay order was perfect the dirty space would now be
 128		 * zero. The order is not perfect because the journal heads
 129		 * race with each other. This is not a problem but is does mean
 130		 * that the dirty space may temporarily exceed c->leb_size
 131		 * during the replay.
 132		 */
 133		if (dirty != 0)
 134			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 135				b->bud->lnum, lp->free, lp->dirty, b->free,
 136				b->dirty);
 137	}
 138	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 139			     lp->flags | LPROPS_TAKEN, 0);
 140	if (IS_ERR(lp)) {
 141		err = PTR_ERR(lp);
 142		goto out;
 143	}
 144
 145	/* Make sure the journal head points to the latest bud */
 146	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 147				     b->bud->lnum, c->leb_size - b->free);
 148
 149out:
 150	ubifs_release_lprops(c);
 151	return err;
 152}
 153
 154/**
 155 * set_buds_lprops - set free and dirty space for all replayed buds.
 156 * @c: UBIFS file-system description object
 157 *
 158 * This function sets LEB properties for all replayed buds. Returns zero in
 159 * case of success and a negative error code in case of failure.
 160 */
 161static int set_buds_lprops(struct ubifs_info *c)
 162{
 163	struct bud_entry *b;
 164	int err;
 165
 166	list_for_each_entry(b, &c->replay_buds, list) {
 167		err = set_bud_lprops(c, b);
 168		if (err)
 169			return err;
 170	}
 171
 172	return 0;
 173}
 174
 175/**
 176 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 177 * @c: UBIFS file-system description object
 178 * @r: replay entry of truncation
 179 */
 180static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 181{
 182	unsigned min_blk, max_blk;
 183	union ubifs_key min_key, max_key;
 184	ino_t ino;
 185
 186	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 187	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 188		min_blk += 1;
 189
 190	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 191	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 192		max_blk -= 1;
 193
 194	ino = key_inum(c, &r->key);
 195
 196	data_key_init(c, &min_key, ino, min_blk);
 197	data_key_init(c, &max_key, ino, max_blk);
 198
 199	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 200}
 201
 202/**
 203 * inode_still_linked - check whether inode in question will be re-linked.
 204 * @c: UBIFS file-system description object
 205 * @rino: replay entry to test
 206 *
 207 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
 208 * This case needs special care, otherwise all references to the inode will
 209 * be removed upon the first replay entry of an inode with link count 0
 210 * is found.
 211 */
 212static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
 213{
 214	struct replay_entry *r;
 215
 216	ubifs_assert(c, rino->deletion);
 217	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
 218
 219	/*
 220	 * Find the most recent entry for the inode behind @rino and check
 221	 * whether it is a deletion.
 222	 */
 223	list_for_each_entry_reverse(r, &c->replay_list, list) {
 224		ubifs_assert(c, r->sqnum >= rino->sqnum);
 225		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
 226		    key_type(c, &r->key) == UBIFS_INO_KEY)
 227			return r->deletion == 0;
 228
 229	}
 230
 231	ubifs_assert(c, 0);
 232	return false;
 233}
 234
 235/**
 236 * apply_replay_entry - apply a replay entry to the TNC.
 237 * @c: UBIFS file-system description object
 238 * @r: replay entry to apply
 239 *
 240 * Apply a replay entry to the TNC.
 241 */
 242static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 243{
 244	int err;
 245
 246	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 247		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 248
 249	if (is_hash_key(c, &r->key)) {
 250		if (r->deletion)
 251			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 252		else
 253			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 254					       r->len, r->hash, &r->nm);
 255	} else {
 256		if (r->deletion)
 257			switch (key_type(c, &r->key)) {
 258			case UBIFS_INO_KEY:
 259			{
 260				ino_t inum = key_inum(c, &r->key);
 261
 262				if (inode_still_linked(c, r)) {
 263					err = 0;
 264					break;
 265				}
 266
 267				err = ubifs_tnc_remove_ino(c, inum);
 268				break;
 269			}
 270			case UBIFS_TRUN_KEY:
 271				err = trun_remove_range(c, r);
 272				break;
 273			default:
 274				err = ubifs_tnc_remove(c, &r->key);
 275				break;
 276			}
 277		else
 278			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 279					    r->len, r->hash);
 280		if (err)
 281			return err;
 282
 283		if (c->need_recovery)
 284			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 285						       r->new_size);
 286	}
 287
 288	return err;
 289}
 290
 291/**
 292 * replay_entries_cmp - compare 2 replay entries.
 293 * @priv: UBIFS file-system description object
 294 * @a: first replay entry
 295 * @b: second replay entry
 296 *
 297 * This is a comparios function for 'list_sort()' which compares 2 replay
 298 * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
 299 * greater sequence number and %-1 otherwise.
 300 */
 301static int replay_entries_cmp(void *priv, const struct list_head *a,
 302			      const struct list_head *b)
 303{
 304	struct ubifs_info *c = priv;
 305	struct replay_entry *ra, *rb;
 306
 307	cond_resched();
 308	if (a == b)
 309		return 0;
 310
 311	ra = list_entry(a, struct replay_entry, list);
 312	rb = list_entry(b, struct replay_entry, list);
 313	ubifs_assert(c, ra->sqnum != rb->sqnum);
 314	if (ra->sqnum > rb->sqnum)
 315		return 1;
 316	return -1;
 317}
 318
 319/**
 320 * apply_replay_list - apply the replay list to the TNC.
 321 * @c: UBIFS file-system description object
 322 *
 323 * Apply all entries in the replay list to the TNC. Returns zero in case of
 324 * success and a negative error code in case of failure.
 325 */
 326static int apply_replay_list(struct ubifs_info *c)
 327{
 328	struct replay_entry *r;
 329	int err;
 330
 331	list_sort(c, &c->replay_list, &replay_entries_cmp);
 332
 333	list_for_each_entry(r, &c->replay_list, list) {
 334		cond_resched();
 335
 336		err = apply_replay_entry(c, r);
 337		if (err)
 338			return err;
 339	}
 340
 341	return 0;
 342}
 343
 344/**
 345 * destroy_replay_list - destroy the replay.
 346 * @c: UBIFS file-system description object
 347 *
 348 * Destroy the replay list.
 349 */
 350static void destroy_replay_list(struct ubifs_info *c)
 351{
 352	struct replay_entry *r, *tmp;
 353
 354	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 355		if (is_hash_key(c, &r->key))
 356			kfree(fname_name(&r->nm));
 357		list_del(&r->list);
 358		kfree(r);
 359	}
 360}
 361
 362/**
 363 * insert_node - insert a node to the replay list
 364 * @c: UBIFS file-system description object
 365 * @lnum: node logical eraseblock number
 366 * @offs: node offset
 367 * @len: node length
 368 * @hash: node hash
 369 * @key: node key
 370 * @sqnum: sequence number
 371 * @deletion: non-zero if this is a deletion
 372 * @used: number of bytes in use in a LEB
 373 * @old_size: truncation old size
 374 * @new_size: truncation new size
 375 *
 376 * This function inserts a scanned non-direntry node to the replay list. The
 377 * replay list contains @struct replay_entry elements, and we sort this list in
 378 * sequence number order before applying it. The replay list is applied at the
 379 * very end of the replay process. Since the list is sorted in sequence number
 380 * order, the older modifications are applied first. This function returns zero
 381 * in case of success and a negative error code in case of failure.
 382 */
 383static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 384		       const u8 *hash, union ubifs_key *key,
 385		       unsigned long long sqnum, int deletion, int *used,
 386		       loff_t old_size, loff_t new_size)
 387{
 388	struct replay_entry *r;
 389
 390	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 391
 392	if (key_inum(c, key) >= c->highest_inum)
 393		c->highest_inum = key_inum(c, key);
 394
 395	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 396	if (!r)
 397		return -ENOMEM;
 398
 399	if (!deletion)
 400		*used += ALIGN(len, 8);
 401	r->lnum = lnum;
 402	r->offs = offs;
 403	r->len = len;
 404	ubifs_copy_hash(c, hash, r->hash);
 405	r->deletion = !!deletion;
 406	r->sqnum = sqnum;
 407	key_copy(c, key, &r->key);
 408	r->old_size = old_size;
 409	r->new_size = new_size;
 410
 411	list_add_tail(&r->list, &c->replay_list);
 412	return 0;
 413}
 414
 415/**
 416 * insert_dent - insert a directory entry node into the replay list.
 417 * @c: UBIFS file-system description object
 418 * @lnum: node logical eraseblock number
 419 * @offs: node offset
 420 * @len: node length
 421 * @hash: node hash
 422 * @key: node key
 423 * @name: directory entry name
 424 * @nlen: directory entry name length
 425 * @sqnum: sequence number
 426 * @deletion: non-zero if this is a deletion
 427 * @used: number of bytes in use in a LEB
 428 *
 429 * This function inserts a scanned directory entry node or an extended
 430 * attribute entry to the replay list. Returns zero in case of success and a
 431 * negative error code in case of failure.
 432 */
 433static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 434		       const u8 *hash, union ubifs_key *key,
 435		       const char *name, int nlen, unsigned long long sqnum,
 436		       int deletion, int *used)
 437{
 438	struct replay_entry *r;
 439	char *nbuf;
 440
 441	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 442	if (key_inum(c, key) >= c->highest_inum)
 443		c->highest_inum = key_inum(c, key);
 444
 445	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 446	if (!r)
 447		return -ENOMEM;
 448
 449	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 450	if (!nbuf) {
 451		kfree(r);
 452		return -ENOMEM;
 453	}
 454
 455	if (!deletion)
 456		*used += ALIGN(len, 8);
 457	r->lnum = lnum;
 458	r->offs = offs;
 459	r->len = len;
 460	ubifs_copy_hash(c, hash, r->hash);
 461	r->deletion = !!deletion;
 462	r->sqnum = sqnum;
 463	key_copy(c, key, &r->key);
 464	fname_len(&r->nm) = nlen;
 465	memcpy(nbuf, name, nlen);
 466	nbuf[nlen] = '\0';
 467	fname_name(&r->nm) = nbuf;
 468
 469	list_add_tail(&r->list, &c->replay_list);
 470	return 0;
 471}
 472
 473/**
 474 * ubifs_validate_entry - validate directory or extended attribute entry node.
 475 * @c: UBIFS file-system description object
 476 * @dent: the node to validate
 477 *
 478 * This function validates directory or extended attribute entry node @dent.
 479 * Returns zero if the node is all right and a %-EINVAL if not.
 480 */
 481int ubifs_validate_entry(struct ubifs_info *c,
 482			 const struct ubifs_dent_node *dent)
 483{
 484	int key_type = key_type_flash(c, dent->key);
 485	int nlen = le16_to_cpu(dent->nlen);
 486
 487	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 488	    dent->type >= UBIFS_ITYPES_CNT ||
 489	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 490	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 491	    le64_to_cpu(dent->inum) > MAX_INUM) {
 492		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 493			  "directory entry" : "extended attribute entry");
 494		return -EINVAL;
 495	}
 496
 497	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 498		ubifs_err(c, "bad key type %d", key_type);
 499		return -EINVAL;
 500	}
 501
 502	return 0;
 503}
 504
 505/**
 506 * is_last_bud - check if the bud is the last in the journal head.
 507 * @c: UBIFS file-system description object
 508 * @bud: bud description object
 509 *
 510 * This function checks if bud @bud is the last bud in its journal head. This
 511 * information is then used by 'replay_bud()' to decide whether the bud can
 512 * have corruptions or not. Indeed, only last buds can be corrupted by power
 513 * cuts. Returns %1 if this is the last bud, and %0 if not.
 514 */
 515static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 516{
 517	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 518	struct ubifs_bud *next;
 519	uint32_t data;
 520	int err;
 521
 522	if (list_is_last(&bud->list, &jh->buds_list))
 523		return 1;
 524
 525	/*
 526	 * The following is a quirk to make sure we work correctly with UBIFS
 527	 * images used with older UBIFS.
 528	 *
 529	 * Normally, the last bud will be the last in the journal head's list
 530	 * of bud. However, there is one exception if the UBIFS image belongs
 531	 * to older UBIFS. This is fairly unlikely: one would need to use old
 532	 * UBIFS, then have a power cut exactly at the right point, and then
 533	 * try to mount this image with new UBIFS.
 534	 *
 535	 * The exception is: it is possible to have 2 buds A and B, A goes
 536	 * before B, and B is the last, bud B is contains no data, and bud A is
 537	 * corrupted at the end. The reason is that in older versions when the
 538	 * journal code switched the next bud (from A to B), it first added a
 539	 * log reference node for the new bud (B), and only after this it
 540	 * synchronized the write-buffer of current bud (A). But later this was
 541	 * changed and UBIFS started to always synchronize the write-buffer of
 542	 * the bud (A) before writing the log reference for the new bud (B).
 543	 *
 544	 * But because older UBIFS always synchronized A's write-buffer before
 545	 * writing to B, we can recognize this exceptional situation but
 546	 * checking the contents of bud B - if it is empty, then A can be
 547	 * treated as the last and we can recover it.
 548	 *
 549	 * TODO: remove this piece of code in a couple of years (today it is
 550	 * 16.05.2011).
 551	 */
 552	next = list_entry(bud->list.next, struct ubifs_bud, list);
 553	if (!list_is_last(&next->list, &jh->buds_list))
 554		return 0;
 555
 556	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 557	if (err)
 558		return 0;
 559
 560	return data == 0xFFFFFFFF;
 561}
 562
 563/* authenticate_sleb_hash is split out for stack usage */
 564static int noinline_for_stack
 565authenticate_sleb_hash(struct ubifs_info *c,
 566		       struct shash_desc *log_hash, u8 *hash)
 567{
 568	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
 569
 570	hash_desc->tfm = c->hash_tfm;
 571
 572	ubifs_shash_copy_state(c, log_hash, hash_desc);
 573	return crypto_shash_final(hash_desc, hash);
 574}
 575
 576/**
 577 * authenticate_sleb - authenticate one scan LEB
 578 * @c: UBIFS file-system description object
 579 * @sleb: the scan LEB to authenticate
 580 * @log_hash:
 581 * @is_last: if true, this is the last LEB
 582 *
 583 * This function iterates over the buds of a single LEB authenticating all buds
 584 * with the authentication nodes on this LEB. Authentication nodes are written
 585 * after some buds and contain a HMAC covering the authentication node itself
 586 * and the buds between the last authentication node and the current
 587 * authentication node. It can happen that the last buds cannot be authenticated
 588 * because a powercut happened when some nodes were written but not the
 589 * corresponding authentication node. This function returns the number of nodes
 590 * that could be authenticated or a negative error code.
 591 */
 592static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 593			     struct shash_desc *log_hash, int is_last)
 594{
 595	int n_not_auth = 0;
 596	struct ubifs_scan_node *snod;
 597	int n_nodes = 0;
 598	int err;
 599	u8 hash[UBIFS_HASH_ARR_SZ];
 600	u8 hmac[UBIFS_HMAC_ARR_SZ];
 601
 602	if (!ubifs_authenticated(c))
 603		return sleb->nodes_cnt;
 604
 605	list_for_each_entry(snod, &sleb->nodes, list) {
 606
 607		n_nodes++;
 608
 609		if (snod->type == UBIFS_AUTH_NODE) {
 610			struct ubifs_auth_node *auth = snod->node;
 611
 612			err = authenticate_sleb_hash(c, log_hash, hash);
 613			if (err)
 614				goto out;
 615
 616			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
 617						      c->hash_len, hmac);
 618			if (err)
 619				goto out;
 620
 621			err = ubifs_check_hmac(c, auth->hmac, hmac);
 622			if (err) {
 623				err = -EPERM;
 624				goto out;
 625			}
 626			n_not_auth = 0;
 627		} else {
 628			err = crypto_shash_update(log_hash, snod->node,
 629						  snod->len);
 630			if (err)
 631				goto out;
 632			n_not_auth++;
 633		}
 634	}
 635
 636	/*
 637	 * A powercut can happen when some nodes were written, but not yet
 638	 * the corresponding authentication node. This may only happen on
 639	 * the last bud though.
 640	 */
 641	if (n_not_auth) {
 642		if (is_last) {
 643			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
 644				n_not_auth, sleb->lnum);
 645			err = 0;
 646		} else {
 647			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
 648				n_not_auth, sleb->lnum);
 649			err = -EPERM;
 650		}
 651	} else {
 652		err = 0;
 653	}
 654out:
 655	return err ? err : n_nodes - n_not_auth;
 656}
 657
 658/**
 659 * replay_bud - replay a bud logical eraseblock.
 660 * @c: UBIFS file-system description object
 661 * @b: bud entry which describes the bud
 662 *
 663 * This function replays bud @bud, recovers it if needed, and adds all nodes
 664 * from this bud to the replay list. Returns zero in case of success and a
 665 * negative error code in case of failure.
 666 */
 667static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 668{
 669	int is_last = is_last_bud(c, b->bud);
 670	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 671	int n_nodes, n = 0;
 672	struct ubifs_scan_leb *sleb;
 673	struct ubifs_scan_node *snod;
 674
 675	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 676		lnum, b->bud->jhead, offs, is_last);
 677
 678	if (c->need_recovery && is_last)
 679		/*
 680		 * Recover only last LEBs in the journal heads, because power
 681		 * cuts may cause corruptions only in these LEBs, because only
 682		 * these LEBs could possibly be written to at the power cut
 683		 * time.
 684		 */
 685		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 686	else
 687		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 688	if (IS_ERR(sleb))
 689		return PTR_ERR(sleb);
 690
 691	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
 692	if (n_nodes < 0) {
 693		err = n_nodes;
 694		goto out;
 695	}
 696
 697	ubifs_shash_copy_state(c, b->bud->log_hash,
 698			       c->jheads[b->bud->jhead].log_hash);
 699
 700	/*
 701	 * The bud does not have to start from offset zero - the beginning of
 702	 * the 'lnum' LEB may contain previously committed data. One of the
 703	 * things we have to do in replay is to correctly update lprops with
 704	 * newer information about this LEB.
 705	 *
 706	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 707	 * bytes of free space because it only contain information about
 708	 * committed data.
 709	 *
 710	 * But we know that real amount of free space is 'c->leb_size -
 711	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 712	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 713	 * how much of these data are dirty and update lprops with this
 714	 * information.
 715	 *
 716	 * The dirt in that LEB region is comprised of padding nodes, deletion
 717	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 718	 * nodes in this LEB. So instead of calculating clean space, we
 719	 * calculate used space ('used' variable).
 720	 */
 721
 722	list_for_each_entry(snod, &sleb->nodes, list) {
 723		u8 hash[UBIFS_HASH_ARR_SZ];
 724		int deletion = 0;
 725
 726		cond_resched();
 727
 728		if (snod->sqnum >= SQNUM_WATERMARK) {
 729			ubifs_err(c, "file system's life ended");
 730			goto out_dump;
 731		}
 732
 733		ubifs_node_calc_hash(c, snod->node, hash);
 734
 735		if (snod->sqnum > c->max_sqnum)
 736			c->max_sqnum = snod->sqnum;
 737
 738		switch (snod->type) {
 739		case UBIFS_INO_NODE:
 740		{
 741			struct ubifs_ino_node *ino = snod->node;
 742			loff_t new_size = le64_to_cpu(ino->size);
 743
 744			if (le32_to_cpu(ino->nlink) == 0)
 745				deletion = 1;
 746			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 747					  &snod->key, snod->sqnum, deletion,
 748					  &used, 0, new_size);
 749			break;
 750		}
 751		case UBIFS_DATA_NODE:
 752		{
 753			struct ubifs_data_node *dn = snod->node;
 754			loff_t new_size = le32_to_cpu(dn->size) +
 755					  key_block(c, &snod->key) *
 756					  UBIFS_BLOCK_SIZE;
 757
 758			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 759					  &snod->key, snod->sqnum, deletion,
 760					  &used, 0, new_size);
 761			break;
 762		}
 763		case UBIFS_DENT_NODE:
 764		case UBIFS_XENT_NODE:
 765		{
 766			struct ubifs_dent_node *dent = snod->node;
 767
 768			err = ubifs_validate_entry(c, dent);
 769			if (err)
 770				goto out_dump;
 771
 772			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
 773					  &snod->key, dent->name,
 774					  le16_to_cpu(dent->nlen), snod->sqnum,
 775					  !le64_to_cpu(dent->inum), &used);
 776			break;
 777		}
 778		case UBIFS_TRUN_NODE:
 779		{
 780			struct ubifs_trun_node *trun = snod->node;
 781			loff_t old_size = le64_to_cpu(trun->old_size);
 782			loff_t new_size = le64_to_cpu(trun->new_size);
 783			union ubifs_key key;
 784
 785			/* Validate truncation node */
 786			if (old_size < 0 || old_size > c->max_inode_sz ||
 787			    new_size < 0 || new_size > c->max_inode_sz ||
 788			    old_size <= new_size) {
 789				ubifs_err(c, "bad truncation node");
 790				goto out_dump;
 791			}
 792
 793			/*
 794			 * Create a fake truncation key just to use the same
 795			 * functions which expect nodes to have keys.
 796			 */
 797			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 798			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 799					  &key, snod->sqnum, 1, &used,
 800					  old_size, new_size);
 801			break;
 802		}
 803		case UBIFS_AUTH_NODE:
 804			break;
 805		default:
 806			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 807				  snod->type, lnum, snod->offs);
 808			err = -EINVAL;
 809			goto out_dump;
 810		}
 811		if (err)
 812			goto out;
 813
 814		n++;
 815		if (n == n_nodes)
 816			break;
 817	}
 818
 819	ubifs_assert(c, ubifs_search_bud(c, lnum));
 820	ubifs_assert(c, sleb->endpt - offs >= used);
 821	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
 822
 823	b->dirty = sleb->endpt - offs - used;
 824	b->free = c->leb_size - sleb->endpt;
 825	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 826		lnum, b->dirty, b->free);
 827
 828out:
 829	ubifs_scan_destroy(sleb);
 830	return err;
 831
 832out_dump:
 833	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 834	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 835	ubifs_scan_destroy(sleb);
 836	return -EINVAL;
 837}
 838
 839/**
 840 * replay_buds - replay all buds.
 841 * @c: UBIFS file-system description object
 842 *
 843 * This function returns zero in case of success and a negative error code in
 844 * case of failure.
 845 */
 846static int replay_buds(struct ubifs_info *c)
 847{
 848	struct bud_entry *b;
 849	int err;
 850	unsigned long long prev_sqnum = 0;
 851
 852	list_for_each_entry(b, &c->replay_buds, list) {
 853		err = replay_bud(c, b);
 854		if (err)
 855			return err;
 856
 857		ubifs_assert(c, b->sqnum > prev_sqnum);
 858		prev_sqnum = b->sqnum;
 859	}
 860
 861	return 0;
 862}
 863
 864/**
 865 * destroy_bud_list - destroy the list of buds to replay.
 866 * @c: UBIFS file-system description object
 867 */
 868static void destroy_bud_list(struct ubifs_info *c)
 869{
 870	struct bud_entry *b;
 871
 872	while (!list_empty(&c->replay_buds)) {
 873		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 874		list_del(&b->list);
 875		kfree(b);
 876	}
 877}
 878
 879/**
 880 * add_replay_bud - add a bud to the list of buds to replay.
 881 * @c: UBIFS file-system description object
 882 * @lnum: bud logical eraseblock number to replay
 883 * @offs: bud start offset
 884 * @jhead: journal head to which this bud belongs
 885 * @sqnum: reference node sequence number
 886 *
 887 * This function returns zero in case of success and a negative error code in
 888 * case of failure.
 889 */
 890static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 891			  unsigned long long sqnum)
 892{
 893	struct ubifs_bud *bud;
 894	struct bud_entry *b;
 895	int err;
 896
 897	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 898
 899	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 900	if (!bud)
 901		return -ENOMEM;
 902
 903	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 904	if (!b) {
 905		err = -ENOMEM;
 906		goto out;
 907	}
 908
 909	bud->lnum = lnum;
 910	bud->start = offs;
 911	bud->jhead = jhead;
 912	bud->log_hash = ubifs_hash_get_desc(c);
 913	if (IS_ERR(bud->log_hash)) {
 914		err = PTR_ERR(bud->log_hash);
 915		goto out;
 916	}
 917
 918	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
 919
 920	ubifs_add_bud(c, bud);
 921
 922	b->bud = bud;
 923	b->sqnum = sqnum;
 924	list_add_tail(&b->list, &c->replay_buds);
 925
 926	return 0;
 927out:
 928	kfree(bud);
 929	kfree(b);
 930
 931	return err;
 932}
 933
 934/**
 935 * validate_ref - validate a reference node.
 936 * @c: UBIFS file-system description object
 937 * @ref: the reference node to validate
 938 *
 939 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 940 * returned if the reference node is new, otherwise %-EINVAL is returned if
 941 * validation failed.
 942 */
 943static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 944{
 945	struct ubifs_bud *bud;
 946	int lnum = le32_to_cpu(ref->lnum);
 947	unsigned int offs = le32_to_cpu(ref->offs);
 948	unsigned int jhead = le32_to_cpu(ref->jhead);
 949
 950	/*
 951	 * ref->offs may point to the end of LEB when the journal head points
 952	 * to the end of LEB and we write reference node for it during commit.
 953	 * So this is why we require 'offs > c->leb_size'.
 954	 */
 955	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 956	    lnum < c->main_first || offs > c->leb_size ||
 957	    offs & (c->min_io_size - 1))
 958		return -EINVAL;
 959
 960	/* Make sure we have not already looked at this bud */
 961	bud = ubifs_search_bud(c, lnum);
 962	if (bud) {
 963		if (bud->jhead == jhead && bud->start <= offs)
 964			return 1;
 965		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 966		return -EINVAL;
 967	}
 968
 969	return 0;
 970}
 971
 972/**
 973 * replay_log_leb - replay a log logical eraseblock.
 974 * @c: UBIFS file-system description object
 975 * @lnum: log logical eraseblock to replay
 976 * @offs: offset to start replaying from
 977 * @sbuf: scan buffer
 978 *
 979 * This function replays a log LEB and returns zero in case of success, %1 if
 980 * this is the last LEB in the log, and a negative error code in case of
 981 * failure.
 982 */
 983static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 984{
 985	int err;
 986	struct ubifs_scan_leb *sleb;
 987	struct ubifs_scan_node *snod;
 988	const struct ubifs_cs_node *node;
 989
 990	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 991	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 992	if (IS_ERR(sleb)) {
 993		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 994			return PTR_ERR(sleb);
 995		/*
 996		 * Note, the below function will recover this log LEB only if
 997		 * it is the last, because unclean reboots can possibly corrupt
 998		 * only the tail of the log.
 999		 */
1000		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1001		if (IS_ERR(sleb))
1002			return PTR_ERR(sleb);
1003	}
1004
1005	if (sleb->nodes_cnt == 0) {
1006		err = 1;
1007		goto out;
1008	}
1009
1010	node = sleb->buf;
1011	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1012	if (c->cs_sqnum == 0) {
1013		/*
1014		 * This is the first log LEB we are looking at, make sure that
1015		 * the first node is a commit start node. Also record its
1016		 * sequence number so that UBIFS can determine where the log
1017		 * ends, because all nodes which were have higher sequence
1018		 * numbers.
1019		 */
1020		if (snod->type != UBIFS_CS_NODE) {
1021			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1022				  lnum, offs);
1023			goto out_dump;
1024		}
1025		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1026			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1027				  lnum, offs,
1028				  (unsigned long long)le64_to_cpu(node->cmt_no),
1029				  c->cmt_no);
1030			goto out_dump;
1031		}
1032
1033		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1034		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1035
1036		err = ubifs_shash_init(c, c->log_hash);
1037		if (err)
1038			goto out;
1039
1040		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1041		if (err < 0)
1042			goto out;
1043	}
1044
1045	if (snod->sqnum < c->cs_sqnum) {
1046		/*
1047		 * This means that we reached end of log and now
1048		 * look to the older log data, which was already
1049		 * committed but the eraseblock was not erased (UBIFS
1050		 * only un-maps it). So this basically means we have to
1051		 * exit with "end of log" code.
1052		 */
1053		err = 1;
1054		goto out;
1055	}
1056
1057	/* Make sure the first node sits at offset zero of the LEB */
1058	if (snod->offs != 0) {
1059		ubifs_err(c, "first node is not at zero offset");
1060		goto out_dump;
1061	}
1062
1063	list_for_each_entry(snod, &sleb->nodes, list) {
1064		cond_resched();
1065
1066		if (snod->sqnum >= SQNUM_WATERMARK) {
1067			ubifs_err(c, "file system's life ended");
1068			goto out_dump;
1069		}
1070
1071		if (snod->sqnum < c->cs_sqnum) {
1072			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1073				  snod->sqnum, c->cs_sqnum);
1074			goto out_dump;
1075		}
1076
1077		if (snod->sqnum > c->max_sqnum)
1078			c->max_sqnum = snod->sqnum;
1079
1080		switch (snod->type) {
1081		case UBIFS_REF_NODE: {
1082			const struct ubifs_ref_node *ref = snod->node;
1083
1084			err = validate_ref(c, ref);
1085			if (err == 1)
1086				break; /* Already have this bud */
1087			if (err)
1088				goto out_dump;
1089
1090			err = ubifs_shash_update(c, c->log_hash, ref,
1091						 UBIFS_REF_NODE_SZ);
1092			if (err)
1093				goto out;
1094
1095			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1096					     le32_to_cpu(ref->offs),
1097					     le32_to_cpu(ref->jhead),
1098					     snod->sqnum);
1099			if (err)
1100				goto out;
1101
1102			break;
1103		}
1104		case UBIFS_CS_NODE:
1105			/* Make sure it sits at the beginning of LEB */
1106			if (snod->offs != 0) {
1107				ubifs_err(c, "unexpected node in log");
1108				goto out_dump;
1109			}
1110			break;
1111		default:
1112			ubifs_err(c, "unexpected node in log");
1113			goto out_dump;
1114		}
1115	}
1116
1117	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1118		c->lhead_lnum = lnum;
1119		c->lhead_offs = sleb->endpt;
1120	}
1121
1122	err = !sleb->endpt;
1123out:
1124	ubifs_scan_destroy(sleb);
1125	return err;
1126
1127out_dump:
1128	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1129		  lnum, offs + snod->offs);
1130	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1131	ubifs_scan_destroy(sleb);
1132	return -EINVAL;
1133}
1134
1135/**
1136 * take_ihead - update the status of the index head in lprops to 'taken'.
1137 * @c: UBIFS file-system description object
1138 *
1139 * This function returns the amount of free space in the index head LEB or a
1140 * negative error code.
1141 */
1142static int take_ihead(struct ubifs_info *c)
1143{
1144	const struct ubifs_lprops *lp;
1145	int err, free;
1146
1147	ubifs_get_lprops(c);
1148
1149	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1150	if (IS_ERR(lp)) {
1151		err = PTR_ERR(lp);
1152		goto out;
1153	}
1154
1155	free = lp->free;
1156
1157	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1158			     lp->flags | LPROPS_TAKEN, 0);
1159	if (IS_ERR(lp)) {
1160		err = PTR_ERR(lp);
1161		goto out;
1162	}
1163
1164	err = free;
1165out:
1166	ubifs_release_lprops(c);
1167	return err;
1168}
1169
1170/**
1171 * ubifs_replay_journal - replay journal.
1172 * @c: UBIFS file-system description object
1173 *
1174 * This function scans the journal, replays and cleans it up. It makes sure all
1175 * memory data structures related to uncommitted journal are built (dirty TNC
1176 * tree, tree of buds, modified lprops, etc).
1177 */
1178int ubifs_replay_journal(struct ubifs_info *c)
1179{
1180	int err, lnum, free;
1181
1182	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1183
1184	/* Update the status of the index head in lprops to 'taken' */
1185	free = take_ihead(c);
1186	if (free < 0)
1187		return free; /* Error code */
1188
1189	if (c->ihead_offs != c->leb_size - free) {
1190		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1191			  c->ihead_offs);
1192		return -EINVAL;
1193	}
1194
1195	dbg_mnt("start replaying the journal");
1196	c->replaying = 1;
1197	lnum = c->ltail_lnum = c->lhead_lnum;
1198
1199	do {
1200		err = replay_log_leb(c, lnum, 0, c->sbuf);
1201		if (err == 1) {
1202			if (lnum != c->lhead_lnum)
1203				/* We hit the end of the log */
1204				break;
1205
1206			/*
1207			 * The head of the log must always start with the
1208			 * "commit start" node on a properly formatted UBIFS.
1209			 * But we found no nodes at all, which means that
1210			 * something went wrong and we cannot proceed mounting
1211			 * the file-system.
1212			 */
1213			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1214				  lnum, 0);
1215			err = -EINVAL;
1216		}
1217		if (err)
1218			goto out;
1219		lnum = ubifs_next_log_lnum(c, lnum);
1220	} while (lnum != c->ltail_lnum);
1221
1222	err = replay_buds(c);
1223	if (err)
1224		goto out;
1225
1226	err = apply_replay_list(c);
1227	if (err)
1228		goto out;
1229
1230	err = set_buds_lprops(c);
1231	if (err)
1232		goto out;
1233
1234	/*
1235	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1236	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1237	 * depend on it. This means we have to initialize it to make sure
1238	 * budgeting works properly.
1239	 */
1240	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1241	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1242
1243	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1244	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1245		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1246		(unsigned long)c->highest_inum);
1247out:
1248	destroy_replay_list(c);
1249	destroy_bud_list(c);
1250	c->replaying = 0;
1251	return err;
1252}
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36#include <linux/list_sort.h>
  37
  38/**
  39 * struct replay_entry - replay list entry.
  40 * @lnum: logical eraseblock number of the node
  41 * @offs: node offset
  42 * @len: node length
  43 * @deletion: non-zero if this entry corresponds to a node deletion
  44 * @sqnum: node sequence number
  45 * @list: links the replay list
  46 * @key: node key
  47 * @nm: directory entry name
  48 * @old_size: truncation old size
  49 * @new_size: truncation new size
  50 *
  51 * The replay process first scans all buds and builds the replay list, then
  52 * sorts the replay list in nodes sequence number order, and then inserts all
  53 * the replay entries to the TNC.
  54 */
  55struct replay_entry {
  56	int lnum;
  57	int offs;
  58	int len;
  59	unsigned int deletion:1;
  60	unsigned long long sqnum;
  61	struct list_head list;
  62	union ubifs_key key;
  63	union {
  64		struct qstr nm;
  65		struct {
  66			loff_t old_size;
  67			loff_t new_size;
  68		};
  69	};
  70};
  71
  72/**
  73 * struct bud_entry - entry in the list of buds to replay.
  74 * @list: next bud in the list
  75 * @bud: bud description object
  76 * @sqnum: reference node sequence number
  77 * @free: free bytes in the bud
  78 * @dirty: dirty bytes in the bud
  79 */
  80struct bud_entry {
  81	struct list_head list;
  82	struct ubifs_bud *bud;
  83	unsigned long long sqnum;
  84	int free;
  85	int dirty;
  86};
  87
  88/**
  89 * set_bud_lprops - set free and dirty space used by a bud.
  90 * @c: UBIFS file-system description object
  91 * @b: bud entry which describes the bud
  92 *
  93 * This function makes sure the LEB properties of bud @b are set correctly
  94 * after the replay. Returns zero in case of success and a negative error code
  95 * in case of failure.
  96 */
  97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  98{
  99	const struct ubifs_lprops *lp;
 100	int err = 0, dirty;
 101
 102	ubifs_get_lprops(c);
 103
 104	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 105	if (IS_ERR(lp)) {
 106		err = PTR_ERR(lp);
 107		goto out;
 108	}
 109
 110	dirty = lp->dirty;
 111	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 112		/*
 113		 * The LEB was added to the journal with a starting offset of
 114		 * zero which means the LEB must have been empty. The LEB
 115		 * property values should be @lp->free == @c->leb_size and
 116		 * @lp->dirty == 0, but that is not the case. The reason is that
 117		 * the LEB had been garbage collected before it became the bud,
 118		 * and there was not commit inbetween. The garbage collector
 119		 * resets the free and dirty space without recording it
 120		 * anywhere except lprops, so if there was no commit then
 121		 * lprops does not have that information.
 122		 *
 123		 * We do not need to adjust free space because the scan has told
 124		 * us the exact value which is recorded in the replay entry as
 125		 * @b->free.
 126		 *
 127		 * However we do need to subtract from the dirty space the
 128		 * amount of space that the garbage collector reclaimed, which
 129		 * is the whole LEB minus the amount of space that was free.
 130		 */
 131		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 132			lp->free, lp->dirty);
 133		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 134			lp->free, lp->dirty);
 135		dirty -= c->leb_size - lp->free;
 136		/*
 137		 * If the replay order was perfect the dirty space would now be
 138		 * zero. The order is not perfect because the journal heads
 139		 * race with each other. This is not a problem but is does mean
 140		 * that the dirty space may temporarily exceed c->leb_size
 141		 * during the replay.
 142		 */
 143		if (dirty != 0)
 144			dbg_msg("LEB %d lp: %d free %d dirty "
 145				"replay: %d free %d dirty", b->bud->lnum,
 146				lp->free, lp->dirty, b->free, b->dirty);
 147	}
 148	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 149			     lp->flags | LPROPS_TAKEN, 0);
 150	if (IS_ERR(lp)) {
 151		err = PTR_ERR(lp);
 152		goto out;
 153	}
 154
 155	/* Make sure the journal head points to the latest bud */
 156	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 157				     b->bud->lnum, c->leb_size - b->free);
 158
 159out:
 160	ubifs_release_lprops(c);
 161	return err;
 162}
 163
 164/**
 165 * set_buds_lprops - set free and dirty space for all replayed buds.
 166 * @c: UBIFS file-system description object
 167 *
 168 * This function sets LEB properties for all replayed buds. Returns zero in
 169 * case of success and a negative error code in case of failure.
 170 */
 171static int set_buds_lprops(struct ubifs_info *c)
 172{
 173	struct bud_entry *b;
 174	int err;
 175
 176	list_for_each_entry(b, &c->replay_buds, list) {
 177		err = set_bud_lprops(c, b);
 178		if (err)
 179			return err;
 180	}
 181
 182	return 0;
 183}
 184
 185/**
 186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 187 * @c: UBIFS file-system description object
 188 * @r: replay entry of truncation
 189 */
 190static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 191{
 192	unsigned min_blk, max_blk;
 193	union ubifs_key min_key, max_key;
 194	ino_t ino;
 195
 196	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 197	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 198		min_blk += 1;
 199
 200	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 201	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 202		max_blk -= 1;
 203
 204	ino = key_inum(c, &r->key);
 205
 206	data_key_init(c, &min_key, ino, min_blk);
 207	data_key_init(c, &max_key, ino, max_blk);
 208
 209	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 210}
 211
 212/**
 213 * apply_replay_entry - apply a replay entry to the TNC.
 214 * @c: UBIFS file-system description object
 215 * @r: replay entry to apply
 216 *
 217 * Apply a replay entry to the TNC.
 218 */
 219static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 220{
 221	int err;
 222
 223	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 224		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 225
 226	/* Set c->replay_sqnum to help deal with dangling branches. */
 227	c->replay_sqnum = r->sqnum;
 228
 229	if (is_hash_key(c, &r->key)) {
 230		if (r->deletion)
 231			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 232		else
 233			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 234					       r->len, &r->nm);
 235	} else {
 236		if (r->deletion)
 237			switch (key_type(c, &r->key)) {
 238			case UBIFS_INO_KEY:
 239			{
 240				ino_t inum = key_inum(c, &r->key);
 241
 242				err = ubifs_tnc_remove_ino(c, inum);
 243				break;
 244			}
 245			case UBIFS_TRUN_KEY:
 246				err = trun_remove_range(c, r);
 247				break;
 248			default:
 249				err = ubifs_tnc_remove(c, &r->key);
 250				break;
 251			}
 252		else
 253			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 254					    r->len);
 255		if (err)
 256			return err;
 257
 258		if (c->need_recovery)
 259			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 260						       r->new_size);
 261	}
 262
 263	return err;
 264}
 265
 266/**
 267 * replay_entries_cmp - compare 2 replay entries.
 268 * @priv: UBIFS file-system description object
 269 * @a: first replay entry
 270 * @a: second replay entry
 271 *
 272 * This is a comparios function for 'list_sort()' which compares 2 replay
 273 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 274 * greater sequence number and %-1 otherwise.
 275 */
 276static int replay_entries_cmp(void *priv, struct list_head *a,
 277			      struct list_head *b)
 278{
 279	struct replay_entry *ra, *rb;
 280
 281	cond_resched();
 282	if (a == b)
 283		return 0;
 284
 285	ra = list_entry(a, struct replay_entry, list);
 286	rb = list_entry(b, struct replay_entry, list);
 287	ubifs_assert(ra->sqnum != rb->sqnum);
 288	if (ra->sqnum > rb->sqnum)
 289		return 1;
 290	return -1;
 291}
 292
 293/**
 294 * apply_replay_list - apply the replay list to the TNC.
 295 * @c: UBIFS file-system description object
 296 *
 297 * Apply all entries in the replay list to the TNC. Returns zero in case of
 298 * success and a negative error code in case of failure.
 299 */
 300static int apply_replay_list(struct ubifs_info *c)
 301{
 302	struct replay_entry *r;
 303	int err;
 304
 305	list_sort(c, &c->replay_list, &replay_entries_cmp);
 306
 307	list_for_each_entry(r, &c->replay_list, list) {
 308		cond_resched();
 309
 310		err = apply_replay_entry(c, r);
 311		if (err)
 312			return err;
 313	}
 314
 315	return 0;
 316}
 317
 318/**
 319 * destroy_replay_list - destroy the replay.
 320 * @c: UBIFS file-system description object
 321 *
 322 * Destroy the replay list.
 323 */
 324static void destroy_replay_list(struct ubifs_info *c)
 325{
 326	struct replay_entry *r, *tmp;
 327
 328	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 329		if (is_hash_key(c, &r->key))
 330			kfree(r->nm.name);
 331		list_del(&r->list);
 332		kfree(r);
 333	}
 334}
 335
 336/**
 337 * insert_node - insert a node to the replay list
 338 * @c: UBIFS file-system description object
 339 * @lnum: node logical eraseblock number
 340 * @offs: node offset
 341 * @len: node length
 342 * @key: node key
 343 * @sqnum: sequence number
 344 * @deletion: non-zero if this is a deletion
 345 * @used: number of bytes in use in a LEB
 346 * @old_size: truncation old size
 347 * @new_size: truncation new size
 348 *
 349 * This function inserts a scanned non-direntry node to the replay list. The
 350 * replay list contains @struct replay_entry elements, and we sort this list in
 351 * sequence number order before applying it. The replay list is applied at the
 352 * very end of the replay process. Since the list is sorted in sequence number
 353 * order, the older modifications are applied first. This function returns zero
 354 * in case of success and a negative error code in case of failure.
 355 */
 356static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 357		       union ubifs_key *key, unsigned long long sqnum,
 358		       int deletion, int *used, loff_t old_size,
 359		       loff_t new_size)
 360{
 361	struct replay_entry *r;
 362
 363	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 364
 365	if (key_inum(c, key) >= c->highest_inum)
 366		c->highest_inum = key_inum(c, key);
 367
 368	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 369	if (!r)
 370		return -ENOMEM;
 371
 372	if (!deletion)
 373		*used += ALIGN(len, 8);
 374	r->lnum = lnum;
 375	r->offs = offs;
 376	r->len = len;
 377	r->deletion = !!deletion;
 378	r->sqnum = sqnum;
 379	key_copy(c, key, &r->key);
 380	r->old_size = old_size;
 381	r->new_size = new_size;
 382
 383	list_add_tail(&r->list, &c->replay_list);
 384	return 0;
 385}
 386
 387/**
 388 * insert_dent - insert a directory entry node into the replay list.
 389 * @c: UBIFS file-system description object
 390 * @lnum: node logical eraseblock number
 391 * @offs: node offset
 392 * @len: node length
 393 * @key: node key
 394 * @name: directory entry name
 395 * @nlen: directory entry name length
 396 * @sqnum: sequence number
 397 * @deletion: non-zero if this is a deletion
 398 * @used: number of bytes in use in a LEB
 399 *
 400 * This function inserts a scanned directory entry node or an extended
 401 * attribute entry to the replay list. Returns zero in case of success and a
 402 * negative error code in case of failure.
 403 */
 404static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 405		       union ubifs_key *key, const char *name, int nlen,
 406		       unsigned long long sqnum, int deletion, int *used)
 407{
 408	struct replay_entry *r;
 409	char *nbuf;
 410
 411	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 412	if (key_inum(c, key) >= c->highest_inum)
 413		c->highest_inum = key_inum(c, key);
 414
 415	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 416	if (!r)
 417		return -ENOMEM;
 418
 419	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 420	if (!nbuf) {
 421		kfree(r);
 422		return -ENOMEM;
 423	}
 424
 425	if (!deletion)
 426		*used += ALIGN(len, 8);
 427	r->lnum = lnum;
 428	r->offs = offs;
 429	r->len = len;
 430	r->deletion = !!deletion;
 431	r->sqnum = sqnum;
 432	key_copy(c, key, &r->key);
 433	r->nm.len = nlen;
 434	memcpy(nbuf, name, nlen);
 435	nbuf[nlen] = '\0';
 436	r->nm.name = nbuf;
 437
 438	list_add_tail(&r->list, &c->replay_list);
 439	return 0;
 440}
 441
 442/**
 443 * ubifs_validate_entry - validate directory or extended attribute entry node.
 444 * @c: UBIFS file-system description object
 445 * @dent: the node to validate
 446 *
 447 * This function validates directory or extended attribute entry node @dent.
 448 * Returns zero if the node is all right and a %-EINVAL if not.
 449 */
 450int ubifs_validate_entry(struct ubifs_info *c,
 451			 const struct ubifs_dent_node *dent)
 452{
 453	int key_type = key_type_flash(c, dent->key);
 454	int nlen = le16_to_cpu(dent->nlen);
 455
 456	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 457	    dent->type >= UBIFS_ITYPES_CNT ||
 458	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 459	    strnlen(dent->name, nlen) != nlen ||
 460	    le64_to_cpu(dent->inum) > MAX_INUM) {
 461		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
 462			  "directory entry" : "extended attribute entry");
 463		return -EINVAL;
 464	}
 465
 466	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 467		ubifs_err("bad key type %d", key_type);
 468		return -EINVAL;
 469	}
 470
 471	return 0;
 472}
 473
 474/**
 475 * is_last_bud - check if the bud is the last in the journal head.
 476 * @c: UBIFS file-system description object
 477 * @bud: bud description object
 478 *
 479 * This function checks if bud @bud is the last bud in its journal head. This
 480 * information is then used by 'replay_bud()' to decide whether the bud can
 481 * have corruptions or not. Indeed, only last buds can be corrupted by power
 482 * cuts. Returns %1 if this is the last bud, and %0 if not.
 483 */
 484static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 485{
 486	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 487	struct ubifs_bud *next;
 488	uint32_t data;
 489	int err;
 490
 491	if (list_is_last(&bud->list, &jh->buds_list))
 492		return 1;
 493
 494	/*
 495	 * The following is a quirk to make sure we work correctly with UBIFS
 496	 * images used with older UBIFS.
 497	 *
 498	 * Normally, the last bud will be the last in the journal head's list
 499	 * of bud. However, there is one exception if the UBIFS image belongs
 500	 * to older UBIFS. This is fairly unlikely: one would need to use old
 501	 * UBIFS, then have a power cut exactly at the right point, and then
 502	 * try to mount this image with new UBIFS.
 503	 *
 504	 * The exception is: it is possible to have 2 buds A and B, A goes
 505	 * before B, and B is the last, bud B is contains no data, and bud A is
 506	 * corrupted at the end. The reason is that in older versions when the
 507	 * journal code switched the next bud (from A to B), it first added a
 508	 * log reference node for the new bud (B), and only after this it
 509	 * synchronized the write-buffer of current bud (A). But later this was
 510	 * changed and UBIFS started to always synchronize the write-buffer of
 511	 * the bud (A) before writing the log reference for the new bud (B).
 512	 *
 513	 * But because older UBIFS always synchronized A's write-buffer before
 514	 * writing to B, we can recognize this exceptional situation but
 515	 * checking the contents of bud B - if it is empty, then A can be
 516	 * treated as the last and we can recover it.
 517	 *
 518	 * TODO: remove this piece of code in a couple of years (today it is
 519	 * 16.05.2011).
 520	 */
 521	next = list_entry(bud->list.next, struct ubifs_bud, list);
 522	if (!list_is_last(&next->list, &jh->buds_list))
 523		return 0;
 524
 525	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 526	if (err)
 527		return 0;
 528
 529	return data == 0xFFFFFFFF;
 530}
 531
 532/**
 533 * replay_bud - replay a bud logical eraseblock.
 534 * @c: UBIFS file-system description object
 535 * @b: bud entry which describes the bud
 536 *
 537 * This function replays bud @bud, recovers it if needed, and adds all nodes
 538 * from this bud to the replay list. Returns zero in case of success and a
 539 * negative error code in case of failure.
 540 */
 541static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 542{
 543	int is_last = is_last_bud(c, b->bud);
 544	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 545	struct ubifs_scan_leb *sleb;
 546	struct ubifs_scan_node *snod;
 547
 548	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 549		lnum, b->bud->jhead, offs, is_last);
 550
 551	if (c->need_recovery && is_last)
 552		/*
 553		 * Recover only last LEBs in the journal heads, because power
 554		 * cuts may cause corruptions only in these LEBs, because only
 555		 * these LEBs could possibly be written to at the power cut
 556		 * time.
 557		 */
 558		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 559	else
 560		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 561	if (IS_ERR(sleb))
 562		return PTR_ERR(sleb);
 563
 564	/*
 565	 * The bud does not have to start from offset zero - the beginning of
 566	 * the 'lnum' LEB may contain previously committed data. One of the
 567	 * things we have to do in replay is to correctly update lprops with
 568	 * newer information about this LEB.
 569	 *
 570	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 571	 * bytes of free space because it only contain information about
 572	 * committed data.
 573	 *
 574	 * But we know that real amount of free space is 'c->leb_size -
 575	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 576	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 577	 * how much of these data are dirty and update lprops with this
 578	 * information.
 579	 *
 580	 * The dirt in that LEB region is comprised of padding nodes, deletion
 581	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 582	 * nodes in this LEB. So instead of calculating clean space, we
 583	 * calculate used space ('used' variable).
 584	 */
 585
 586	list_for_each_entry(snod, &sleb->nodes, list) {
 587		int deletion = 0;
 588
 589		cond_resched();
 590
 591		if (snod->sqnum >= SQNUM_WATERMARK) {
 592			ubifs_err("file system's life ended");
 593			goto out_dump;
 594		}
 595
 596		if (snod->sqnum > c->max_sqnum)
 597			c->max_sqnum = snod->sqnum;
 598
 599		switch (snod->type) {
 600		case UBIFS_INO_NODE:
 601		{
 602			struct ubifs_ino_node *ino = snod->node;
 603			loff_t new_size = le64_to_cpu(ino->size);
 604
 605			if (le32_to_cpu(ino->nlink) == 0)
 606				deletion = 1;
 607			err = insert_node(c, lnum, snod->offs, snod->len,
 608					  &snod->key, snod->sqnum, deletion,
 609					  &used, 0, new_size);
 610			break;
 611		}
 612		case UBIFS_DATA_NODE:
 613		{
 614			struct ubifs_data_node *dn = snod->node;
 615			loff_t new_size = le32_to_cpu(dn->size) +
 616					  key_block(c, &snod->key) *
 617					  UBIFS_BLOCK_SIZE;
 618
 619			err = insert_node(c, lnum, snod->offs, snod->len,
 620					  &snod->key, snod->sqnum, deletion,
 621					  &used, 0, new_size);
 622			break;
 623		}
 624		case UBIFS_DENT_NODE:
 625		case UBIFS_XENT_NODE:
 626		{
 627			struct ubifs_dent_node *dent = snod->node;
 628
 629			err = ubifs_validate_entry(c, dent);
 630			if (err)
 631				goto out_dump;
 632
 633			err = insert_dent(c, lnum, snod->offs, snod->len,
 634					  &snod->key, dent->name,
 635					  le16_to_cpu(dent->nlen), snod->sqnum,
 636					  !le64_to_cpu(dent->inum), &used);
 637			break;
 638		}
 639		case UBIFS_TRUN_NODE:
 640		{
 641			struct ubifs_trun_node *trun = snod->node;
 642			loff_t old_size = le64_to_cpu(trun->old_size);
 643			loff_t new_size = le64_to_cpu(trun->new_size);
 644			union ubifs_key key;
 645
 646			/* Validate truncation node */
 647			if (old_size < 0 || old_size > c->max_inode_sz ||
 648			    new_size < 0 || new_size > c->max_inode_sz ||
 649			    old_size <= new_size) {
 650				ubifs_err("bad truncation node");
 651				goto out_dump;
 652			}
 653
 654			/*
 655			 * Create a fake truncation key just to use the same
 656			 * functions which expect nodes to have keys.
 657			 */
 658			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 659			err = insert_node(c, lnum, snod->offs, snod->len,
 660					  &key, snod->sqnum, 1, &used,
 661					  old_size, new_size);
 662			break;
 663		}
 664		default:
 665			ubifs_err("unexpected node type %d in bud LEB %d:%d",
 666				  snod->type, lnum, snod->offs);
 667			err = -EINVAL;
 668			goto out_dump;
 669		}
 670		if (err)
 671			goto out;
 672	}
 673
 674	ubifs_assert(ubifs_search_bud(c, lnum));
 675	ubifs_assert(sleb->endpt - offs >= used);
 676	ubifs_assert(sleb->endpt % c->min_io_size == 0);
 677
 678	b->dirty = sleb->endpt - offs - used;
 679	b->free = c->leb_size - sleb->endpt;
 680	dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
 681
 682out:
 683	ubifs_scan_destroy(sleb);
 684	return err;
 685
 686out_dump:
 687	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
 688	ubifs_dump_node(c, snod->node);
 689	ubifs_scan_destroy(sleb);
 690	return -EINVAL;
 691}
 692
 693/**
 694 * replay_buds - replay all buds.
 695 * @c: UBIFS file-system description object
 696 *
 697 * This function returns zero in case of success and a negative error code in
 698 * case of failure.
 699 */
 700static int replay_buds(struct ubifs_info *c)
 701{
 702	struct bud_entry *b;
 703	int err;
 704	unsigned long long prev_sqnum = 0;
 705
 706	list_for_each_entry(b, &c->replay_buds, list) {
 707		err = replay_bud(c, b);
 708		if (err)
 709			return err;
 710
 711		ubifs_assert(b->sqnum > prev_sqnum);
 712		prev_sqnum = b->sqnum;
 713	}
 714
 715	return 0;
 716}
 717
 718/**
 719 * destroy_bud_list - destroy the list of buds to replay.
 720 * @c: UBIFS file-system description object
 721 */
 722static void destroy_bud_list(struct ubifs_info *c)
 723{
 724	struct bud_entry *b;
 725
 726	while (!list_empty(&c->replay_buds)) {
 727		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 728		list_del(&b->list);
 729		kfree(b);
 730	}
 731}
 732
 733/**
 734 * add_replay_bud - add a bud to the list of buds to replay.
 735 * @c: UBIFS file-system description object
 736 * @lnum: bud logical eraseblock number to replay
 737 * @offs: bud start offset
 738 * @jhead: journal head to which this bud belongs
 739 * @sqnum: reference node sequence number
 740 *
 741 * This function returns zero in case of success and a negative error code in
 742 * case of failure.
 743 */
 744static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 745			  unsigned long long sqnum)
 746{
 747	struct ubifs_bud *bud;
 748	struct bud_entry *b;
 749
 750	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 751
 752	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 753	if (!bud)
 754		return -ENOMEM;
 755
 756	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 757	if (!b) {
 758		kfree(bud);
 759		return -ENOMEM;
 760	}
 761
 762	bud->lnum = lnum;
 763	bud->start = offs;
 764	bud->jhead = jhead;
 765	ubifs_add_bud(c, bud);
 766
 767	b->bud = bud;
 768	b->sqnum = sqnum;
 769	list_add_tail(&b->list, &c->replay_buds);
 770
 771	return 0;
 772}
 773
 774/**
 775 * validate_ref - validate a reference node.
 776 * @c: UBIFS file-system description object
 777 * @ref: the reference node to validate
 778 * @ref_lnum: LEB number of the reference node
 779 * @ref_offs: reference node offset
 780 *
 781 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 782 * returned if the reference node is new, otherwise %-EINVAL is returned if
 783 * validation failed.
 784 */
 785static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 786{
 787	struct ubifs_bud *bud;
 788	int lnum = le32_to_cpu(ref->lnum);
 789	unsigned int offs = le32_to_cpu(ref->offs);
 790	unsigned int jhead = le32_to_cpu(ref->jhead);
 791
 792	/*
 793	 * ref->offs may point to the end of LEB when the journal head points
 794	 * to the end of LEB and we write reference node for it during commit.
 795	 * So this is why we require 'offs > c->leb_size'.
 796	 */
 797	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 798	    lnum < c->main_first || offs > c->leb_size ||
 799	    offs & (c->min_io_size - 1))
 800		return -EINVAL;
 801
 802	/* Make sure we have not already looked at this bud */
 803	bud = ubifs_search_bud(c, lnum);
 804	if (bud) {
 805		if (bud->jhead == jhead && bud->start <= offs)
 806			return 1;
 807		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
 808		return -EINVAL;
 809	}
 810
 811	return 0;
 812}
 813
 814/**
 815 * replay_log_leb - replay a log logical eraseblock.
 816 * @c: UBIFS file-system description object
 817 * @lnum: log logical eraseblock to replay
 818 * @offs: offset to start replaying from
 819 * @sbuf: scan buffer
 820 *
 821 * This function replays a log LEB and returns zero in case of success, %1 if
 822 * this is the last LEB in the log, and a negative error code in case of
 823 * failure.
 824 */
 825static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 826{
 827	int err;
 828	struct ubifs_scan_leb *sleb;
 829	struct ubifs_scan_node *snod;
 830	const struct ubifs_cs_node *node;
 831
 832	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 833	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 834	if (IS_ERR(sleb)) {
 835		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 836			return PTR_ERR(sleb);
 837		/*
 838		 * Note, the below function will recover this log LEB only if
 839		 * it is the last, because unclean reboots can possibly corrupt
 840		 * only the tail of the log.
 841		 */
 842		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 843		if (IS_ERR(sleb))
 844			return PTR_ERR(sleb);
 845	}
 846
 847	if (sleb->nodes_cnt == 0) {
 848		err = 1;
 849		goto out;
 850	}
 851
 852	node = sleb->buf;
 853	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 854	if (c->cs_sqnum == 0) {
 855		/*
 856		 * This is the first log LEB we are looking at, make sure that
 857		 * the first node is a commit start node. Also record its
 858		 * sequence number so that UBIFS can determine where the log
 859		 * ends, because all nodes which were have higher sequence
 860		 * numbers.
 861		 */
 862		if (snod->type != UBIFS_CS_NODE) {
 863			ubifs_err("first log node at LEB %d:%d is not CS node",
 864				  lnum, offs);
 865			goto out_dump;
 866		}
 867		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 868			ubifs_err("first CS node at LEB %d:%d has wrong "
 869				  "commit number %llu expected %llu",
 870				  lnum, offs,
 871				  (unsigned long long)le64_to_cpu(node->cmt_no),
 872				  c->cmt_no);
 873			goto out_dump;
 874		}
 875
 876		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 877		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 878	}
 879
 880	if (snod->sqnum < c->cs_sqnum) {
 881		/*
 882		 * This means that we reached end of log and now
 883		 * look to the older log data, which was already
 884		 * committed but the eraseblock was not erased (UBIFS
 885		 * only un-maps it). So this basically means we have to
 886		 * exit with "end of log" code.
 887		 */
 888		err = 1;
 889		goto out;
 890	}
 891
 892	/* Make sure the first node sits at offset zero of the LEB */
 893	if (snod->offs != 0) {
 894		ubifs_err("first node is not at zero offset");
 895		goto out_dump;
 896	}
 897
 898	list_for_each_entry(snod, &sleb->nodes, list) {
 899		cond_resched();
 900
 901		if (snod->sqnum >= SQNUM_WATERMARK) {
 902			ubifs_err("file system's life ended");
 903			goto out_dump;
 904		}
 905
 906		if (snod->sqnum < c->cs_sqnum) {
 907			ubifs_err("bad sqnum %llu, commit sqnum %llu",
 908				  snod->sqnum, c->cs_sqnum);
 909			goto out_dump;
 910		}
 911
 912		if (snod->sqnum > c->max_sqnum)
 913			c->max_sqnum = snod->sqnum;
 914
 915		switch (snod->type) {
 916		case UBIFS_REF_NODE: {
 917			const struct ubifs_ref_node *ref = snod->node;
 918
 919			err = validate_ref(c, ref);
 920			if (err == 1)
 921				break; /* Already have this bud */
 922			if (err)
 923				goto out_dump;
 924
 925			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 926					     le32_to_cpu(ref->offs),
 927					     le32_to_cpu(ref->jhead),
 928					     snod->sqnum);
 929			if (err)
 930				goto out;
 931
 932			break;
 933		}
 934		case UBIFS_CS_NODE:
 935			/* Make sure it sits at the beginning of LEB */
 936			if (snod->offs != 0) {
 937				ubifs_err("unexpected node in log");
 938				goto out_dump;
 939			}
 940			break;
 941		default:
 942			ubifs_err("unexpected node in log");
 943			goto out_dump;
 944		}
 945	}
 946
 947	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 948		c->lhead_lnum = lnum;
 949		c->lhead_offs = sleb->endpt;
 950	}
 951
 952	err = !sleb->endpt;
 953out:
 954	ubifs_scan_destroy(sleb);
 955	return err;
 956
 957out_dump:
 958	ubifs_err("log error detected while replaying the log at LEB %d:%d",
 959		  lnum, offs + snod->offs);
 960	ubifs_dump_node(c, snod->node);
 961	ubifs_scan_destroy(sleb);
 962	return -EINVAL;
 963}
 964
 965/**
 966 * take_ihead - update the status of the index head in lprops to 'taken'.
 967 * @c: UBIFS file-system description object
 968 *
 969 * This function returns the amount of free space in the index head LEB or a
 970 * negative error code.
 971 */
 972static int take_ihead(struct ubifs_info *c)
 973{
 974	const struct ubifs_lprops *lp;
 975	int err, free;
 976
 977	ubifs_get_lprops(c);
 978
 979	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 980	if (IS_ERR(lp)) {
 981		err = PTR_ERR(lp);
 982		goto out;
 983	}
 984
 985	free = lp->free;
 986
 987	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 988			     lp->flags | LPROPS_TAKEN, 0);
 989	if (IS_ERR(lp)) {
 990		err = PTR_ERR(lp);
 991		goto out;
 992	}
 993
 994	err = free;
 995out:
 996	ubifs_release_lprops(c);
 997	return err;
 998}
 999
1000/**
1001 * ubifs_replay_journal - replay journal.
1002 * @c: UBIFS file-system description object
1003 *
1004 * This function scans the journal, replays and cleans it up. It makes sure all
1005 * memory data structures related to uncommitted journal are built (dirty TNC
1006 * tree, tree of buds, modified lprops, etc).
1007 */
1008int ubifs_replay_journal(struct ubifs_info *c)
1009{
1010	int err, i, lnum, offs, free;
1011
1012	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1013
1014	/* Update the status of the index head in lprops to 'taken' */
1015	free = take_ihead(c);
1016	if (free < 0)
1017		return free; /* Error code */
1018
1019	if (c->ihead_offs != c->leb_size - free) {
1020		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1021			  c->ihead_offs);
1022		return -EINVAL;
1023	}
1024
1025	dbg_mnt("start replaying the journal");
1026	c->replaying = 1;
1027	lnum = c->ltail_lnum = c->lhead_lnum;
1028	offs = c->lhead_offs;
1029
1030	for (i = 0; i < c->log_lebs; i++, lnum++) {
1031		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1032			/*
1033			 * The log is logically circular, we reached the last
1034			 * LEB, switch to the first one.
1035			 */
1036			lnum = UBIFS_LOG_LNUM;
1037			offs = 0;
1038		}
1039		err = replay_log_leb(c, lnum, offs, c->sbuf);
1040		if (err == 1)
1041			/* We hit the end of the log */
1042			break;
1043		if (err)
1044			goto out;
1045		offs = 0;
1046	}
1047
1048	err = replay_buds(c);
1049	if (err)
1050		goto out;
1051
1052	err = apply_replay_list(c);
1053	if (err)
1054		goto out;
1055
1056	err = set_buds_lprops(c);
1057	if (err)
1058		goto out;
1059
1060	/*
1061	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1062	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1063	 * depend on it. This means we have to initialize it to make sure
1064	 * budgeting works properly.
1065	 */
1066	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1067	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1068
1069	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1070	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1071		"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1072		(unsigned long)c->highest_inum);
1073out:
1074	destroy_replay_list(c);
1075	destroy_bud_list(c);
1076	c->replaying = 0;
1077	return err;
1078}