Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_hw.c
   5 * Shared functions for accessing and configuring the MAC
   6 */
   7
   8#include <linux/bitfield.h>
   9#include "e1000.h"
  10
  11static s32 e1000_check_downshift(struct e1000_hw *hw);
  12static s32 e1000_check_polarity(struct e1000_hw *hw,
  13				e1000_rev_polarity *polarity);
  14static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  15static void e1000_clear_vfta(struct e1000_hw *hw);
  16static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  17					      bool link_up);
  18static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  19static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  20static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  21static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  22				  u16 *max_length);
  23static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  24static s32 e1000_id_led_init(struct e1000_hw *hw);
  25static void e1000_init_rx_addrs(struct e1000_hw *hw);
  26static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  27				  struct e1000_phy_info *phy_info);
  28static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  29				  struct e1000_phy_info *phy_info);
  30static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  31static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  32static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  33static s32 e1000_set_phy_type(struct e1000_hw *hw);
  34static void e1000_phy_init_script(struct e1000_hw *hw);
  35static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  36static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  37static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  38static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  39static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  40static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  41static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  42static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  43static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  44static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  45static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  46				  u16 words, u16 *data);
  47static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  48					u16 words, u16 *data);
  49static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  50static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  51static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  52static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  53static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  54				  u16 phy_data);
  55static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  56				 u16 *phy_data);
  57static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  58static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  59static void e1000_release_eeprom(struct e1000_hw *hw);
  60static void e1000_standby_eeprom(struct e1000_hw *hw);
  61static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  62static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  63static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  64static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  65				u16 *data);
  66static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  67				 u16 *data);
  68
  69/* IGP cable length table */
  70static const
  71u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  72	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  73	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  74	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  75	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
  76	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
  77	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
  78	    100,
  79	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
  80	    110, 110,
  81	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
  82	    120, 120
  83};
  84
  85static DEFINE_MUTEX(e1000_eeprom_lock);
  86static DEFINE_SPINLOCK(e1000_phy_lock);
  87
  88/**
  89 * e1000_set_phy_type - Set the phy type member in the hw struct.
  90 * @hw: Struct containing variables accessed by shared code
  91 */
  92static s32 e1000_set_phy_type(struct e1000_hw *hw)
  93{
 
 
  94	if (hw->mac_type == e1000_undefined)
  95		return -E1000_ERR_PHY_TYPE;
  96
  97	switch (hw->phy_id) {
  98	case M88E1000_E_PHY_ID:
  99	case M88E1000_I_PHY_ID:
 100	case M88E1011_I_PHY_ID:
 101	case M88E1111_I_PHY_ID:
 102	case M88E1118_E_PHY_ID:
 103		hw->phy_type = e1000_phy_m88;
 104		break;
 105	case IGP01E1000_I_PHY_ID:
 106		if (hw->mac_type == e1000_82541 ||
 107		    hw->mac_type == e1000_82541_rev_2 ||
 108		    hw->mac_type == e1000_82547 ||
 109		    hw->mac_type == e1000_82547_rev_2)
 110			hw->phy_type = e1000_phy_igp;
 111		break;
 112	case RTL8211B_PHY_ID:
 113		hw->phy_type = e1000_phy_8211;
 114		break;
 115	case RTL8201N_PHY_ID:
 116		hw->phy_type = e1000_phy_8201;
 117		break;
 118	default:
 119		/* Should never have loaded on this device */
 120		hw->phy_type = e1000_phy_undefined;
 121		return -E1000_ERR_PHY_TYPE;
 122	}
 123
 124	return E1000_SUCCESS;
 125}
 126
 127/**
 128 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 129 * @hw: Struct containing variables accessed by shared code
 130 */
 131static void e1000_phy_init_script(struct e1000_hw *hw)
 132{
 
 133	u16 phy_saved_data;
 134
 
 
 135	if (hw->phy_init_script) {
 136		msleep(20);
 137
 138		/* Save off the current value of register 0x2F5B to be restored
 139		 * at the end of this routine.
 140		 */
 141		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 142
 143		/* Disabled the PHY transmitter */
 144		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 145		msleep(20);
 146
 147		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 148		msleep(5);
 149
 150		switch (hw->mac_type) {
 151		case e1000_82541:
 152		case e1000_82547:
 153			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 154			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 155			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 156			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 157			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 158			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 159			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 160			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 161			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 162			break;
 163
 164		case e1000_82541_rev_2:
 165		case e1000_82547_rev_2:
 166			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 167			break;
 168		default:
 169			break;
 170		}
 171
 172		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 173		msleep(20);
 174
 175		/* Now enable the transmitter */
 176		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 177
 178		if (hw->mac_type == e1000_82547) {
 179			u16 fused, fine, coarse;
 180
 181			/* Move to analog registers page */
 182			e1000_read_phy_reg(hw,
 183					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 184					   &fused);
 185
 186			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 187				e1000_read_phy_reg(hw,
 188						   IGP01E1000_ANALOG_FUSE_STATUS,
 189						   &fused);
 190
 191				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 192				coarse =
 193				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 194
 195				if (coarse >
 196				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 197					coarse -=
 198					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 199					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 200				} else if (coarse ==
 201					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 202					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 203
 204				fused =
 205				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 206				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 207				    (coarse &
 208				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 209
 210				e1000_write_phy_reg(hw,
 211						    IGP01E1000_ANALOG_FUSE_CONTROL,
 212						    fused);
 213				e1000_write_phy_reg(hw,
 214						    IGP01E1000_ANALOG_FUSE_BYPASS,
 215						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 216			}
 217		}
 218	}
 219}
 220
 221/**
 222 * e1000_set_mac_type - Set the mac type member in the hw struct.
 223 * @hw: Struct containing variables accessed by shared code
 224 */
 225s32 e1000_set_mac_type(struct e1000_hw *hw)
 226{
 
 
 227	switch (hw->device_id) {
 228	case E1000_DEV_ID_82542:
 229		switch (hw->revision_id) {
 230		case E1000_82542_2_0_REV_ID:
 231			hw->mac_type = e1000_82542_rev2_0;
 232			break;
 233		case E1000_82542_2_1_REV_ID:
 234			hw->mac_type = e1000_82542_rev2_1;
 235			break;
 236		default:
 237			/* Invalid 82542 revision ID */
 238			return -E1000_ERR_MAC_TYPE;
 239		}
 240		break;
 241	case E1000_DEV_ID_82543GC_FIBER:
 242	case E1000_DEV_ID_82543GC_COPPER:
 243		hw->mac_type = e1000_82543;
 244		break;
 245	case E1000_DEV_ID_82544EI_COPPER:
 246	case E1000_DEV_ID_82544EI_FIBER:
 247	case E1000_DEV_ID_82544GC_COPPER:
 248	case E1000_DEV_ID_82544GC_LOM:
 249		hw->mac_type = e1000_82544;
 250		break;
 251	case E1000_DEV_ID_82540EM:
 252	case E1000_DEV_ID_82540EM_LOM:
 253	case E1000_DEV_ID_82540EP:
 254	case E1000_DEV_ID_82540EP_LOM:
 255	case E1000_DEV_ID_82540EP_LP:
 256		hw->mac_type = e1000_82540;
 257		break;
 258	case E1000_DEV_ID_82545EM_COPPER:
 259	case E1000_DEV_ID_82545EM_FIBER:
 260		hw->mac_type = e1000_82545;
 261		break;
 262	case E1000_DEV_ID_82545GM_COPPER:
 263	case E1000_DEV_ID_82545GM_FIBER:
 264	case E1000_DEV_ID_82545GM_SERDES:
 265		hw->mac_type = e1000_82545_rev_3;
 266		break;
 267	case E1000_DEV_ID_82546EB_COPPER:
 268	case E1000_DEV_ID_82546EB_FIBER:
 269	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 270		hw->mac_type = e1000_82546;
 271		break;
 272	case E1000_DEV_ID_82546GB_COPPER:
 273	case E1000_DEV_ID_82546GB_FIBER:
 274	case E1000_DEV_ID_82546GB_SERDES:
 275	case E1000_DEV_ID_82546GB_PCIE:
 276	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 277	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 278		hw->mac_type = e1000_82546_rev_3;
 279		break;
 280	case E1000_DEV_ID_82541EI:
 281	case E1000_DEV_ID_82541EI_MOBILE:
 282	case E1000_DEV_ID_82541ER_LOM:
 283		hw->mac_type = e1000_82541;
 284		break;
 285	case E1000_DEV_ID_82541ER:
 286	case E1000_DEV_ID_82541GI:
 287	case E1000_DEV_ID_82541GI_LF:
 288	case E1000_DEV_ID_82541GI_MOBILE:
 289		hw->mac_type = e1000_82541_rev_2;
 290		break;
 291	case E1000_DEV_ID_82547EI:
 292	case E1000_DEV_ID_82547EI_MOBILE:
 293		hw->mac_type = e1000_82547;
 294		break;
 295	case E1000_DEV_ID_82547GI:
 296		hw->mac_type = e1000_82547_rev_2;
 297		break;
 298	case E1000_DEV_ID_INTEL_CE4100_GBE:
 299		hw->mac_type = e1000_ce4100;
 300		break;
 301	default:
 302		/* Should never have loaded on this device */
 303		return -E1000_ERR_MAC_TYPE;
 304	}
 305
 306	switch (hw->mac_type) {
 307	case e1000_82541:
 308	case e1000_82547:
 309	case e1000_82541_rev_2:
 310	case e1000_82547_rev_2:
 311		hw->asf_firmware_present = true;
 312		break;
 313	default:
 314		break;
 315	}
 316
 317	/* The 82543 chip does not count tx_carrier_errors properly in
 318	 * FD mode
 319	 */
 320	if (hw->mac_type == e1000_82543)
 321		hw->bad_tx_carr_stats_fd = true;
 322
 323	if (hw->mac_type > e1000_82544)
 324		hw->has_smbus = true;
 325
 326	return E1000_SUCCESS;
 327}
 328
 329/**
 330 * e1000_set_media_type - Set media type and TBI compatibility.
 331 * @hw: Struct containing variables accessed by shared code
 332 */
 333void e1000_set_media_type(struct e1000_hw *hw)
 334{
 335	u32 status;
 336
 
 
 337	if (hw->mac_type != e1000_82543) {
 338		/* tbi_compatibility is only valid on 82543 */
 339		hw->tbi_compatibility_en = false;
 340	}
 341
 342	switch (hw->device_id) {
 343	case E1000_DEV_ID_82545GM_SERDES:
 344	case E1000_DEV_ID_82546GB_SERDES:
 345		hw->media_type = e1000_media_type_internal_serdes;
 346		break;
 347	default:
 348		switch (hw->mac_type) {
 349		case e1000_82542_rev2_0:
 350		case e1000_82542_rev2_1:
 351			hw->media_type = e1000_media_type_fiber;
 352			break;
 353		case e1000_ce4100:
 354			hw->media_type = e1000_media_type_copper;
 355			break;
 356		default:
 357			status = er32(STATUS);
 358			if (status & E1000_STATUS_TBIMODE) {
 359				hw->media_type = e1000_media_type_fiber;
 360				/* tbi_compatibility not valid on fiber */
 361				hw->tbi_compatibility_en = false;
 362			} else {
 363				hw->media_type = e1000_media_type_copper;
 364			}
 365			break;
 366		}
 367	}
 368}
 369
 370/**
 371 * e1000_reset_hw - reset the hardware completely
 372 * @hw: Struct containing variables accessed by shared code
 373 *
 374 * Reset the transmit and receive units; mask and clear all interrupts.
 375 */
 376s32 e1000_reset_hw(struct e1000_hw *hw)
 377{
 378	u32 ctrl;
 379	u32 ctrl_ext;
 
 380	u32 manc;
 381	u32 led_ctrl;
 382	s32 ret_val;
 383
 
 
 384	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 385	if (hw->mac_type == e1000_82542_rev2_0) {
 386		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 387		e1000_pci_clear_mwi(hw);
 388	}
 389
 390	/* Clear interrupt mask to stop board from generating interrupts */
 391	e_dbg("Masking off all interrupts\n");
 392	ew32(IMC, 0xffffffff);
 393
 394	/* Disable the Transmit and Receive units.  Then delay to allow
 395	 * any pending transactions to complete before we hit the MAC with
 396	 * the global reset.
 397	 */
 398	ew32(RCTL, 0);
 399	ew32(TCTL, E1000_TCTL_PSP);
 400	E1000_WRITE_FLUSH();
 401
 402	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 403	hw->tbi_compatibility_on = false;
 404
 405	/* Delay to allow any outstanding PCI transactions to complete before
 406	 * resetting the device
 407	 */
 408	msleep(10);
 409
 410	ctrl = er32(CTRL);
 411
 412	/* Must reset the PHY before resetting the MAC */
 413	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 414		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 415		E1000_WRITE_FLUSH();
 416		msleep(5);
 417	}
 418
 419	/* Issue a global reset to the MAC.  This will reset the chip's
 420	 * transmit, receive, DMA, and link units.  It will not effect
 421	 * the current PCI configuration.  The global reset bit is self-
 422	 * clearing, and should clear within a microsecond.
 423	 */
 424	e_dbg("Issuing a global reset to MAC\n");
 425
 426	switch (hw->mac_type) {
 427	case e1000_82544:
 428	case e1000_82540:
 429	case e1000_82545:
 430	case e1000_82546:
 431	case e1000_82541:
 432	case e1000_82541_rev_2:
 433		/* These controllers can't ack the 64-bit write when issuing the
 434		 * reset, so use IO-mapping as a workaround to issue the reset
 435		 */
 436		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 437		break;
 438	case e1000_82545_rev_3:
 439	case e1000_82546_rev_3:
 440		/* Reset is performed on a shadow of the control register */
 441		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 442		break;
 443	case e1000_ce4100:
 444	default:
 445		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 446		break;
 447	}
 448
 449	/* After MAC reset, force reload of EEPROM to restore power-on settings
 450	 * to device.  Later controllers reload the EEPROM automatically, so
 451	 * just wait for reload to complete.
 452	 */
 453	switch (hw->mac_type) {
 454	case e1000_82542_rev2_0:
 455	case e1000_82542_rev2_1:
 456	case e1000_82543:
 457	case e1000_82544:
 458		/* Wait for reset to complete */
 459		udelay(10);
 460		ctrl_ext = er32(CTRL_EXT);
 461		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 462		ew32(CTRL_EXT, ctrl_ext);
 463		E1000_WRITE_FLUSH();
 464		/* Wait for EEPROM reload */
 465		msleep(2);
 466		break;
 467	case e1000_82541:
 468	case e1000_82541_rev_2:
 469	case e1000_82547:
 470	case e1000_82547_rev_2:
 471		/* Wait for EEPROM reload */
 472		msleep(20);
 473		break;
 474	default:
 475		/* Auto read done will delay 5ms or poll based on mac type */
 476		ret_val = e1000_get_auto_rd_done(hw);
 477		if (ret_val)
 478			return ret_val;
 479		break;
 480	}
 481
 482	/* Disable HW ARPs on ASF enabled adapters */
 483	if (hw->mac_type >= e1000_82540) {
 484		manc = er32(MANC);
 485		manc &= ~(E1000_MANC_ARP_EN);
 486		ew32(MANC, manc);
 487	}
 488
 489	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 490		e1000_phy_init_script(hw);
 491
 492		/* Configure activity LED after PHY reset */
 493		led_ctrl = er32(LEDCTL);
 494		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 495		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 496		ew32(LEDCTL, led_ctrl);
 497	}
 498
 499	/* Clear interrupt mask to stop board from generating interrupts */
 500	e_dbg("Masking off all interrupts\n");
 501	ew32(IMC, 0xffffffff);
 502
 503	/* Clear any pending interrupt events. */
 504	er32(ICR);
 505
 506	/* If MWI was previously enabled, reenable it. */
 507	if (hw->mac_type == e1000_82542_rev2_0) {
 508		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 509			e1000_pci_set_mwi(hw);
 510	}
 511
 512	return E1000_SUCCESS;
 513}
 514
 515/**
 516 * e1000_init_hw - Performs basic configuration of the adapter.
 517 * @hw: Struct containing variables accessed by shared code
 518 *
 519 * Assumes that the controller has previously been reset and is in a
 520 * post-reset uninitialized state. Initializes the receive address registers,
 521 * multicast table, and VLAN filter table. Calls routines to setup link
 522 * configuration and flow control settings. Clears all on-chip counters. Leaves
 523 * the transmit and receive units disabled and uninitialized.
 524 */
 525s32 e1000_init_hw(struct e1000_hw *hw)
 526{
 527	u32 ctrl;
 528	u32 i;
 529	s32 ret_val;
 530	u32 mta_size;
 531	u32 ctrl_ext;
 532
 
 
 533	/* Initialize Identification LED */
 534	ret_val = e1000_id_led_init(hw);
 535	if (ret_val) {
 536		e_dbg("Error Initializing Identification LED\n");
 537		return ret_val;
 538	}
 539
 540	/* Set the media type and TBI compatibility */
 541	e1000_set_media_type(hw);
 542
 543	/* Disabling VLAN filtering. */
 544	e_dbg("Initializing the IEEE VLAN\n");
 545	if (hw->mac_type < e1000_82545_rev_3)
 546		ew32(VET, 0);
 547	e1000_clear_vfta(hw);
 548
 549	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 550	if (hw->mac_type == e1000_82542_rev2_0) {
 551		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 552		e1000_pci_clear_mwi(hw);
 553		ew32(RCTL, E1000_RCTL_RST);
 554		E1000_WRITE_FLUSH();
 555		msleep(5);
 556	}
 557
 558	/* Setup the receive address. This involves initializing all of the
 559	 * Receive Address Registers (RARs 0 - 15).
 560	 */
 561	e1000_init_rx_addrs(hw);
 562
 563	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 564	if (hw->mac_type == e1000_82542_rev2_0) {
 565		ew32(RCTL, 0);
 566		E1000_WRITE_FLUSH();
 567		msleep(1);
 568		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 569			e1000_pci_set_mwi(hw);
 570	}
 571
 572	/* Zero out the Multicast HASH table */
 573	e_dbg("Zeroing the MTA\n");
 574	mta_size = E1000_MC_TBL_SIZE;
 575	for (i = 0; i < mta_size; i++) {
 576		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 577		/* use write flush to prevent Memory Write Block (MWB) from
 578		 * occurring when accessing our register space
 579		 */
 580		E1000_WRITE_FLUSH();
 581	}
 582
 583	/* Set the PCI priority bit correctly in the CTRL register.  This
 584	 * determines if the adapter gives priority to receives, or if it
 585	 * gives equal priority to transmits and receives.  Valid only on
 586	 * 82542 and 82543 silicon.
 587	 */
 588	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 589		ctrl = er32(CTRL);
 590		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 591	}
 592
 593	switch (hw->mac_type) {
 594	case e1000_82545_rev_3:
 595	case e1000_82546_rev_3:
 596		break;
 597	default:
 598		/* Workaround for PCI-X problem when BIOS sets MMRBC
 599		 * incorrectly.
 600		 */
 601		if (hw->bus_type == e1000_bus_type_pcix &&
 602		    e1000_pcix_get_mmrbc(hw) > 2048)
 603			e1000_pcix_set_mmrbc(hw, 2048);
 604		break;
 605	}
 606
 607	/* Call a subroutine to configure the link and setup flow control. */
 608	ret_val = e1000_setup_link(hw);
 609
 610	/* Set the transmit descriptor write-back policy */
 611	if (hw->mac_type > e1000_82544) {
 612		ctrl = er32(TXDCTL);
 613		ctrl =
 614		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 615		    E1000_TXDCTL_FULL_TX_DESC_WB;
 616		ew32(TXDCTL, ctrl);
 617	}
 618
 619	/* Clear all of the statistics registers (clear on read).  It is
 620	 * important that we do this after we have tried to establish link
 621	 * because the symbol error count will increment wildly if there
 622	 * is no link.
 623	 */
 624	e1000_clear_hw_cntrs(hw);
 625
 626	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 627	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 628		ctrl_ext = er32(CTRL_EXT);
 629		/* Relaxed ordering must be disabled to avoid a parity
 630		 * error crash in a PCI slot.
 631		 */
 632		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 633		ew32(CTRL_EXT, ctrl_ext);
 634	}
 635
 636	return ret_val;
 637}
 638
 639/**
 640 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 641 * @hw: Struct containing variables accessed by shared code.
 642 */
 643static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 644{
 645	u16 eeprom_data;
 646	s32 ret_val;
 647
 
 
 648	if (hw->media_type != e1000_media_type_internal_serdes)
 649		return E1000_SUCCESS;
 650
 651	switch (hw->mac_type) {
 652	case e1000_82545_rev_3:
 653	case e1000_82546_rev_3:
 654		break;
 655	default:
 656		return E1000_SUCCESS;
 657	}
 658
 659	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 660				    &eeprom_data);
 661	if (ret_val)
 662		return ret_val;
 
 663
 664	if (eeprom_data != EEPROM_RESERVED_WORD) {
 665		/* Adjust SERDES output amplitude only. */
 666		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 667		ret_val =
 668		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 669		if (ret_val)
 670			return ret_val;
 671	}
 672
 673	return E1000_SUCCESS;
 674}
 675
 676/**
 677 * e1000_setup_link - Configures flow control and link settings.
 678 * @hw: Struct containing variables accessed by shared code
 679 *
 680 * Determines which flow control settings to use. Calls the appropriate media-
 681 * specific link configuration function. Configures the flow control settings.
 682 * Assuming the adapter has a valid link partner, a valid link should be
 683 * established. Assumes the hardware has previously been reset and the
 684 * transmitter and receiver are not enabled.
 685 */
 686s32 e1000_setup_link(struct e1000_hw *hw)
 687{
 688	u32 ctrl_ext;
 689	s32 ret_val;
 690	u16 eeprom_data;
 691
 
 
 692	/* Read and store word 0x0F of the EEPROM. This word contains bits
 693	 * that determine the hardware's default PAUSE (flow control) mode,
 694	 * a bit that determines whether the HW defaults to enabling or
 695	 * disabling auto-negotiation, and the direction of the
 696	 * SW defined pins. If there is no SW over-ride of the flow
 697	 * control setting, then the variable hw->fc will
 698	 * be initialized based on a value in the EEPROM.
 699	 */
 700	if (hw->fc == E1000_FC_DEFAULT) {
 701		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 702					    1, &eeprom_data);
 703		if (ret_val) {
 704			e_dbg("EEPROM Read Error\n");
 705			return -E1000_ERR_EEPROM;
 706		}
 707		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 708			hw->fc = E1000_FC_NONE;
 709		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 710			 EEPROM_WORD0F_ASM_DIR)
 711			hw->fc = E1000_FC_TX_PAUSE;
 712		else
 713			hw->fc = E1000_FC_FULL;
 714	}
 715
 716	/* We want to save off the original Flow Control configuration just
 717	 * in case we get disconnected and then reconnected into a different
 718	 * hub or switch with different Flow Control capabilities.
 719	 */
 720	if (hw->mac_type == e1000_82542_rev2_0)
 721		hw->fc &= (~E1000_FC_TX_PAUSE);
 722
 723	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 724		hw->fc &= (~E1000_FC_RX_PAUSE);
 725
 726	hw->original_fc = hw->fc;
 727
 728	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 729
 730	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 731	 * polarity value for the SW controlled pins, and setup the
 732	 * Extended Device Control reg with that info.
 733	 * This is needed because one of the SW controlled pins is used for
 734	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 735	 * or e1000_phy_setup() is called.
 736	 */
 737	if (hw->mac_type == e1000_82543) {
 738		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 739					    1, &eeprom_data);
 740		if (ret_val) {
 741			e_dbg("EEPROM Read Error\n");
 742			return -E1000_ERR_EEPROM;
 743		}
 744		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 745			    SWDPIO__EXT_SHIFT);
 746		ew32(CTRL_EXT, ctrl_ext);
 747	}
 748
 749	/* Call the necessary subroutine to configure the link. */
 750	ret_val = (hw->media_type == e1000_media_type_copper) ?
 751	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 752
 753	/* Initialize the flow control address, type, and PAUSE timer
 754	 * registers to their default values.  This is done even if flow
 755	 * control is disabled, because it does not hurt anything to
 756	 * initialize these registers.
 757	 */
 758	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 759
 760	ew32(FCT, FLOW_CONTROL_TYPE);
 761	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 762	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 763
 764	ew32(FCTTV, hw->fc_pause_time);
 765
 766	/* Set the flow control receive threshold registers.  Normally,
 767	 * these registers will be set to a default threshold that may be
 768	 * adjusted later by the driver's runtime code.  However, if the
 769	 * ability to transmit pause frames in not enabled, then these
 770	 * registers will be set to 0.
 771	 */
 772	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 773		ew32(FCRTL, 0);
 774		ew32(FCRTH, 0);
 775	} else {
 776		/* We need to set up the Receive Threshold high and low water
 777		 * marks as well as (optionally) enabling the transmission of
 778		 * XON frames.
 779		 */
 780		if (hw->fc_send_xon) {
 781			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 782			ew32(FCRTH, hw->fc_high_water);
 783		} else {
 784			ew32(FCRTL, hw->fc_low_water);
 785			ew32(FCRTH, hw->fc_high_water);
 786		}
 787	}
 788	return ret_val;
 789}
 790
 791/**
 792 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 793 * @hw: Struct containing variables accessed by shared code
 794 *
 795 * Manipulates Physical Coding Sublayer functions in order to configure
 796 * link. Assumes the hardware has been previously reset and the transmitter
 797 * and receiver are not enabled.
 798 */
 799static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 800{
 801	u32 ctrl;
 802	u32 status;
 803	u32 txcw = 0;
 804	u32 i;
 805	u32 signal = 0;
 806	s32 ret_val;
 807
 
 
 808	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 809	 * set when the optics detect a signal. On older adapters, it will be
 810	 * cleared when there is a signal.  This applies to fiber media only.
 811	 * If we're on serdes media, adjust the output amplitude to value
 812	 * set in the EEPROM.
 813	 */
 814	ctrl = er32(CTRL);
 815	if (hw->media_type == e1000_media_type_fiber)
 816		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 817
 818	ret_val = e1000_adjust_serdes_amplitude(hw);
 819	if (ret_val)
 820		return ret_val;
 821
 822	/* Take the link out of reset */
 823	ctrl &= ~(E1000_CTRL_LRST);
 824
 825	/* Adjust VCO speed to improve BER performance */
 826	ret_val = e1000_set_vco_speed(hw);
 827	if (ret_val)
 828		return ret_val;
 829
 830	e1000_config_collision_dist(hw);
 831
 832	/* Check for a software override of the flow control settings, and setup
 833	 * the device accordingly.  If auto-negotiation is enabled, then
 834	 * software will have to set the "PAUSE" bits to the correct value in
 835	 * the Tranmsit Config Word Register (TXCW) and re-start
 836	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 837	 * software will have to manually configure the two flow control enable
 838	 * bits in the CTRL register.
 839	 *
 840	 * The possible values of the "fc" parameter are:
 841	 *  0:  Flow control is completely disabled
 842	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 843	 *      not send pause frames).
 844	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 845	 *      not support receiving pause frames).
 846	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 847	 */
 848	switch (hw->fc) {
 849	case E1000_FC_NONE:
 850		/* Flow ctrl is completely disabled by a software over-ride */
 851		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 852		break;
 853	case E1000_FC_RX_PAUSE:
 854		/* Rx Flow control is enabled and Tx Flow control is disabled by
 855		 * a software over-ride. Since there really isn't a way to
 856		 * advertise that we are capable of Rx Pause ONLY, we will
 857		 * advertise that we support both symmetric and asymmetric Rx
 858		 * PAUSE. Later, we will disable the adapter's ability to send
 859		 * PAUSE frames.
 860		 */
 861		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 862		break;
 863	case E1000_FC_TX_PAUSE:
 864		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 865		 * by a software over-ride.
 866		 */
 867		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 868		break;
 869	case E1000_FC_FULL:
 870		/* Flow control (both Rx and Tx) is enabled by a software
 871		 * over-ride.
 872		 */
 873		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 874		break;
 875	default:
 876		e_dbg("Flow control param set incorrectly\n");
 877		return -E1000_ERR_CONFIG;
 
 878	}
 879
 880	/* Since auto-negotiation is enabled, take the link out of reset (the
 881	 * link will be in reset, because we previously reset the chip). This
 882	 * will restart auto-negotiation.  If auto-negotiation is successful
 883	 * then the link-up status bit will be set and the flow control enable
 884	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 885	 */
 886	e_dbg("Auto-negotiation enabled\n");
 887
 888	ew32(TXCW, txcw);
 889	ew32(CTRL, ctrl);
 890	E1000_WRITE_FLUSH();
 891
 892	hw->txcw = txcw;
 893	msleep(1);
 894
 895	/* If we have a signal (the cable is plugged in) then poll for a
 896	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 897	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 898	 * complete in less than 500 milliseconds even if the other end is doing
 899	 * it in SW). For internal serdes, we just assume a signal is present,
 900	 * then poll.
 901	 */
 902	if (hw->media_type == e1000_media_type_internal_serdes ||
 903	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 904		e_dbg("Looking for Link\n");
 905		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 906			msleep(10);
 907			status = er32(STATUS);
 908			if (status & E1000_STATUS_LU)
 909				break;
 910		}
 911		if (i == (LINK_UP_TIMEOUT / 10)) {
 912			e_dbg("Never got a valid link from auto-neg!!!\n");
 913			hw->autoneg_failed = 1;
 914			/* AutoNeg failed to achieve a link, so we'll call
 915			 * e1000_check_for_link. This routine will force the
 916			 * link up if we detect a signal. This will allow us to
 917			 * communicate with non-autonegotiating link partners.
 918			 */
 919			ret_val = e1000_check_for_link(hw);
 920			if (ret_val) {
 921				e_dbg("Error while checking for link\n");
 922				return ret_val;
 923			}
 924			hw->autoneg_failed = 0;
 925		} else {
 926			hw->autoneg_failed = 0;
 927			e_dbg("Valid Link Found\n");
 928		}
 929	} else {
 930		e_dbg("No Signal Detected\n");
 931	}
 932	return E1000_SUCCESS;
 933}
 934
 935/**
 936 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 937 * @hw: Struct containing variables accessed by shared code
 938 *
 939 * Commits changes to PHY configuration by calling e1000_phy_reset().
 940 */
 941static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 942{
 943	s32 ret_val;
 944
 945	/* SW reset the PHY so all changes take effect */
 946	ret_val = e1000_phy_reset(hw);
 947	if (ret_val) {
 948		e_dbg("Error Resetting the PHY\n");
 949		return ret_val;
 950	}
 951
 952	return E1000_SUCCESS;
 953}
 954
 955static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 956{
 957	s32 ret_val;
 958	u32 ctrl_aux;
 959
 960	switch (hw->phy_type) {
 961	case e1000_phy_8211:
 962		ret_val = e1000_copper_link_rtl_setup(hw);
 963		if (ret_val) {
 964			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 965			return ret_val;
 966		}
 967		break;
 968	case e1000_phy_8201:
 969		/* Set RMII mode */
 970		ctrl_aux = er32(CTL_AUX);
 971		ctrl_aux |= E1000_CTL_AUX_RMII;
 972		ew32(CTL_AUX, ctrl_aux);
 973		E1000_WRITE_FLUSH();
 974
 975		/* Disable the J/K bits required for receive */
 976		ctrl_aux = er32(CTL_AUX);
 977		ctrl_aux |= 0x4;
 978		ctrl_aux &= ~0x2;
 979		ew32(CTL_AUX, ctrl_aux);
 980		E1000_WRITE_FLUSH();
 981		ret_val = e1000_copper_link_rtl_setup(hw);
 982
 983		if (ret_val) {
 984			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 985			return ret_val;
 986		}
 987		break;
 988	default:
 989		e_dbg("Error Resetting the PHY\n");
 990		return E1000_ERR_PHY_TYPE;
 991	}
 992
 993	return E1000_SUCCESS;
 994}
 995
 996/**
 997 * e1000_copper_link_preconfig - early configuration for copper
 998 * @hw: Struct containing variables accessed by shared code
 999 *
1000 * Make sure we have a valid PHY and change PHY mode before link setup.
1001 */
1002static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1003{
1004	u32 ctrl;
1005	s32 ret_val;
1006	u16 phy_data;
1007
 
 
1008	ctrl = er32(CTRL);
1009	/* With 82543, we need to force speed and duplex on the MAC equal to
1010	 * what the PHY speed and duplex configuration is. In addition, we need
1011	 * to perform a hardware reset on the PHY to take it out of reset.
1012	 */
1013	if (hw->mac_type > e1000_82543) {
1014		ctrl |= E1000_CTRL_SLU;
1015		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1016		ew32(CTRL, ctrl);
1017	} else {
1018		ctrl |=
1019		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020		ew32(CTRL, ctrl);
1021		ret_val = e1000_phy_hw_reset(hw);
1022		if (ret_val)
1023			return ret_val;
1024	}
1025
1026	/* Make sure we have a valid PHY */
1027	ret_val = e1000_detect_gig_phy(hw);
1028	if (ret_val) {
1029		e_dbg("Error, did not detect valid phy.\n");
1030		return ret_val;
1031	}
1032	e_dbg("Phy ID = %x\n", hw->phy_id);
1033
1034	/* Set PHY to class A mode (if necessary) */
1035	ret_val = e1000_set_phy_mode(hw);
1036	if (ret_val)
1037		return ret_val;
1038
1039	if ((hw->mac_type == e1000_82545_rev_3) ||
1040	    (hw->mac_type == e1000_82546_rev_3)) {
1041		ret_val =
1042		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1043		phy_data |= 0x00000008;
1044		ret_val =
1045		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1046	}
1047
1048	if (hw->mac_type <= e1000_82543 ||
1049	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1050	    hw->mac_type == e1000_82541_rev_2 ||
1051	    hw->mac_type == e1000_82547_rev_2)
1052		hw->phy_reset_disable = false;
1053
1054	return E1000_SUCCESS;
1055}
1056
1057/**
1058 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1059 * @hw: Struct containing variables accessed by shared code
1060 */
1061static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062{
1063	u32 led_ctrl;
1064	s32 ret_val;
1065	u16 phy_data;
1066
 
 
1067	if (hw->phy_reset_disable)
1068		return E1000_SUCCESS;
1069
1070	ret_val = e1000_phy_reset(hw);
1071	if (ret_val) {
1072		e_dbg("Error Resetting the PHY\n");
1073		return ret_val;
1074	}
1075
1076	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1077	msleep(15);
1078	/* Configure activity LED after PHY reset */
1079	led_ctrl = er32(LEDCTL);
1080	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1081	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1082	ew32(LEDCTL, led_ctrl);
1083
1084	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1085	if (hw->phy_type == e1000_phy_igp) {
1086		/* disable lplu d3 during driver init */
1087		ret_val = e1000_set_d3_lplu_state(hw, false);
1088		if (ret_val) {
1089			e_dbg("Error Disabling LPLU D3\n");
1090			return ret_val;
1091		}
1092	}
1093
1094	/* Configure mdi-mdix settings */
1095	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1096	if (ret_val)
1097		return ret_val;
1098
1099	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1100		hw->dsp_config_state = e1000_dsp_config_disabled;
1101		/* Force MDI for earlier revs of the IGP PHY */
1102		phy_data &=
1103		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1104		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1105		hw->mdix = 1;
1106
1107	} else {
1108		hw->dsp_config_state = e1000_dsp_config_enabled;
1109		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1110
1111		switch (hw->mdix) {
1112		case 1:
1113			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1114			break;
1115		case 2:
1116			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1117			break;
1118		case 0:
1119		default:
1120			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1121			break;
1122		}
1123	}
1124	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1125	if (ret_val)
1126		return ret_val;
1127
1128	/* set auto-master slave resolution settings */
1129	if (hw->autoneg) {
1130		e1000_ms_type phy_ms_setting = hw->master_slave;
1131
1132		if (hw->ffe_config_state == e1000_ffe_config_active)
1133			hw->ffe_config_state = e1000_ffe_config_enabled;
1134
1135		if (hw->dsp_config_state == e1000_dsp_config_activated)
1136			hw->dsp_config_state = e1000_dsp_config_enabled;
1137
1138		/* when autonegotiation advertisement is only 1000Mbps then we
1139		 * should disable SmartSpeed and enable Auto MasterSlave
1140		 * resolution as hardware default.
1141		 */
1142		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1143			/* Disable SmartSpeed */
1144			ret_val =
1145			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1146					       &phy_data);
1147			if (ret_val)
1148				return ret_val;
1149			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150			ret_val =
1151			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1152						phy_data);
1153			if (ret_val)
1154				return ret_val;
1155			/* Set auto Master/Slave resolution process */
1156			ret_val =
1157			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158			if (ret_val)
1159				return ret_val;
1160			phy_data &= ~CR_1000T_MS_ENABLE;
1161			ret_val =
1162			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1163			if (ret_val)
1164				return ret_val;
1165		}
1166
1167		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1168		if (ret_val)
1169			return ret_val;
1170
1171		/* load defaults for future use */
1172		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1173		    ((phy_data & CR_1000T_MS_VALUE) ?
1174		     e1000_ms_force_master :
1175		     e1000_ms_force_slave) : e1000_ms_auto;
1176
1177		switch (phy_ms_setting) {
1178		case e1000_ms_force_master:
1179			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180			break;
1181		case e1000_ms_force_slave:
1182			phy_data |= CR_1000T_MS_ENABLE;
1183			phy_data &= ~(CR_1000T_MS_VALUE);
1184			break;
1185		case e1000_ms_auto:
1186			phy_data &= ~CR_1000T_MS_ENABLE;
1187			break;
1188		default:
1189			break;
1190		}
1191		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192		if (ret_val)
1193			return ret_val;
1194	}
1195
1196	return E1000_SUCCESS;
1197}
1198
1199/**
1200 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201 * @hw: Struct containing variables accessed by shared code
1202 */
1203static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204{
1205	s32 ret_val;
1206	u16 phy_data;
1207
 
 
1208	if (hw->phy_reset_disable)
1209		return E1000_SUCCESS;
1210
1211	/* Enable CRS on TX. This must be set for half-duplex operation. */
1212	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213	if (ret_val)
1214		return ret_val;
1215
1216	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217
1218	/* Options:
1219	 *   MDI/MDI-X = 0 (default)
1220	 *   0 - Auto for all speeds
1221	 *   1 - MDI mode
1222	 *   2 - MDI-X mode
1223	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224	 */
1225	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226
1227	switch (hw->mdix) {
1228	case 1:
1229		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230		break;
1231	case 2:
1232		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233		break;
1234	case 3:
1235		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236		break;
1237	case 0:
1238	default:
1239		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240		break;
1241	}
1242
1243	/* Options:
1244	 *   disable_polarity_correction = 0 (default)
1245	 *       Automatic Correction for Reversed Cable Polarity
1246	 *   0 - Disabled
1247	 *   1 - Enabled
1248	 */
1249	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250	if (hw->disable_polarity_correction == 1)
1251		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253	if (ret_val)
1254		return ret_val;
1255
1256	if (hw->phy_revision < M88E1011_I_REV_4) {
1257		/* Force TX_CLK in the Extended PHY Specific Control Register
1258		 * to 25MHz clock.
1259		 */
1260		ret_val =
1261		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262				       &phy_data);
1263		if (ret_val)
1264			return ret_val;
1265
1266		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267
1268		if ((hw->phy_revision == E1000_REVISION_2) &&
1269		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1270			/* Vidalia Phy, set the downshift counter to 5x */
1271			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273			ret_val = e1000_write_phy_reg(hw,
1274						      M88E1000_EXT_PHY_SPEC_CTRL,
1275						      phy_data);
1276			if (ret_val)
1277				return ret_val;
1278		} else {
1279			/* Configure Master and Slave downshift values */
1280			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284			ret_val = e1000_write_phy_reg(hw,
1285						      M88E1000_EXT_PHY_SPEC_CTRL,
1286						      phy_data);
1287			if (ret_val)
1288				return ret_val;
1289		}
1290	}
1291
1292	/* SW Reset the PHY so all changes take effect */
1293	ret_val = e1000_phy_reset(hw);
1294	if (ret_val) {
1295		e_dbg("Error Resetting the PHY\n");
1296		return ret_val;
1297	}
1298
1299	return E1000_SUCCESS;
1300}
1301
1302/**
1303 * e1000_copper_link_autoneg - setup auto-neg
1304 * @hw: Struct containing variables accessed by shared code
1305 *
1306 * Setup auto-negotiation and flow control advertisements,
1307 * and then perform auto-negotiation.
1308 */
1309static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310{
1311	s32 ret_val;
1312	u16 phy_data;
1313
 
 
1314	/* Perform some bounds checking on the hw->autoneg_advertised
1315	 * parameter.  If this variable is zero, then set it to the default.
1316	 */
1317	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318
1319	/* If autoneg_advertised is zero, we assume it was not defaulted
1320	 * by the calling code so we set to advertise full capability.
1321	 */
1322	if (hw->autoneg_advertised == 0)
1323		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324
1325	/* IFE/RTL8201N PHY only supports 10/100 */
1326	if (hw->phy_type == e1000_phy_8201)
1327		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328
1329	e_dbg("Reconfiguring auto-neg advertisement params\n");
1330	ret_val = e1000_phy_setup_autoneg(hw);
1331	if (ret_val) {
1332		e_dbg("Error Setting up Auto-Negotiation\n");
1333		return ret_val;
1334	}
1335	e_dbg("Restarting Auto-Neg\n");
1336
1337	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338	 * the Auto Neg Restart bit in the PHY control register.
1339	 */
1340	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341	if (ret_val)
1342		return ret_val;
1343
1344	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/* Does the user want to wait for Auto-Neg to complete here, or
1350	 * check at a later time (for example, callback routine).
1351	 */
1352	if (hw->wait_autoneg_complete) {
1353		ret_val = e1000_wait_autoneg(hw);
1354		if (ret_val) {
1355			e_dbg
1356			    ("Error while waiting for autoneg to complete\n");
1357			return ret_val;
1358		}
1359	}
1360
1361	hw->get_link_status = true;
1362
1363	return E1000_SUCCESS;
1364}
1365
1366/**
1367 * e1000_copper_link_postconfig - post link setup
1368 * @hw: Struct containing variables accessed by shared code
1369 *
1370 * Config the MAC and the PHY after link is up.
1371 *   1) Set up the MAC to the current PHY speed/duplex
1372 *      if we are on 82543.  If we
1373 *      are on newer silicon, we only need to configure
1374 *      collision distance in the Transmit Control Register.
1375 *   2) Set up flow control on the MAC to that established with
1376 *      the link partner.
1377 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378 */
1379static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380{
1381	s32 ret_val;
 
1382
1383	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384		e1000_config_collision_dist(hw);
1385	} else {
1386		ret_val = e1000_config_mac_to_phy(hw);
1387		if (ret_val) {
1388			e_dbg("Error configuring MAC to PHY settings\n");
1389			return ret_val;
1390		}
1391	}
1392	ret_val = e1000_config_fc_after_link_up(hw);
1393	if (ret_val) {
1394		e_dbg("Error Configuring Flow Control\n");
1395		return ret_val;
1396	}
1397
1398	/* Config DSP to improve Giga link quality */
1399	if (hw->phy_type == e1000_phy_igp) {
1400		ret_val = e1000_config_dsp_after_link_change(hw, true);
1401		if (ret_val) {
1402			e_dbg("Error Configuring DSP after link up\n");
1403			return ret_val;
1404		}
1405	}
1406
1407	return E1000_SUCCESS;
1408}
1409
1410/**
1411 * e1000_setup_copper_link - phy/speed/duplex setting
1412 * @hw: Struct containing variables accessed by shared code
1413 *
1414 * Detects which PHY is present and sets up the speed and duplex
1415 */
1416static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417{
1418	s32 ret_val;
1419	u16 i;
1420	u16 phy_data;
1421
 
 
1422	/* Check if it is a valid PHY and set PHY mode if necessary. */
1423	ret_val = e1000_copper_link_preconfig(hw);
1424	if (ret_val)
1425		return ret_val;
1426
1427	if (hw->phy_type == e1000_phy_igp) {
1428		ret_val = e1000_copper_link_igp_setup(hw);
1429		if (ret_val)
1430			return ret_val;
1431	} else if (hw->phy_type == e1000_phy_m88) {
1432		ret_val = e1000_copper_link_mgp_setup(hw);
1433		if (ret_val)
1434			return ret_val;
1435	} else {
1436		ret_val = gbe_dhg_phy_setup(hw);
1437		if (ret_val) {
1438			e_dbg("gbe_dhg_phy_setup failed!\n");
1439			return ret_val;
1440		}
1441	}
1442
1443	if (hw->autoneg) {
1444		/* Setup autoneg and flow control advertisement
1445		 * and perform autonegotiation
1446		 */
1447		ret_val = e1000_copper_link_autoneg(hw);
1448		if (ret_val)
1449			return ret_val;
1450	} else {
1451		/* PHY will be set to 10H, 10F, 100H,or 100F
1452		 * depending on value from forced_speed_duplex.
1453		 */
1454		e_dbg("Forcing speed and duplex\n");
1455		ret_val = e1000_phy_force_speed_duplex(hw);
1456		if (ret_val) {
1457			e_dbg("Error Forcing Speed and Duplex\n");
1458			return ret_val;
1459		}
1460	}
1461
1462	/* Check link status. Wait up to 100 microseconds for link to become
1463	 * valid.
1464	 */
1465	for (i = 0; i < 10; i++) {
1466		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467		if (ret_val)
1468			return ret_val;
1469		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470		if (ret_val)
1471			return ret_val;
1472
1473		if (phy_data & MII_SR_LINK_STATUS) {
1474			/* Config the MAC and PHY after link is up */
1475			ret_val = e1000_copper_link_postconfig(hw);
1476			if (ret_val)
1477				return ret_val;
1478
1479			e_dbg("Valid link established!!!\n");
1480			return E1000_SUCCESS;
1481		}
1482		udelay(10);
1483	}
1484
1485	e_dbg("Unable to establish link!!!\n");
1486	return E1000_SUCCESS;
1487}
1488
1489/**
1490 * e1000_phy_setup_autoneg - phy settings
1491 * @hw: Struct containing variables accessed by shared code
1492 *
1493 * Configures PHY autoneg and flow control advertisement settings
1494 */
1495s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496{
1497	s32 ret_val;
1498	u16 mii_autoneg_adv_reg;
1499	u16 mii_1000t_ctrl_reg;
1500
 
 
1501	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503	if (ret_val)
1504		return ret_val;
1505
1506	/* Read the MII 1000Base-T Control Register (Address 9). */
1507	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508	if (ret_val)
1509		return ret_val;
1510	else if (hw->phy_type == e1000_phy_8201)
1511		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512
1513	/* Need to parse both autoneg_advertised and fc and set up
1514	 * the appropriate PHY registers.  First we will parse for
1515	 * autoneg_advertised software override.  Since we can advertise
1516	 * a plethora of combinations, we need to check each bit
1517	 * individually.
1518	 */
1519
1520	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522	 * the  1000Base-T Control Register (Address 9).
1523	 */
1524	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526
1527	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528
1529	/* Do we want to advertise 10 Mb Half Duplex? */
1530	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531		e_dbg("Advertise 10mb Half duplex\n");
1532		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533	}
1534
1535	/* Do we want to advertise 10 Mb Full Duplex? */
1536	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537		e_dbg("Advertise 10mb Full duplex\n");
1538		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539	}
1540
1541	/* Do we want to advertise 100 Mb Half Duplex? */
1542	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543		e_dbg("Advertise 100mb Half duplex\n");
1544		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545	}
1546
1547	/* Do we want to advertise 100 Mb Full Duplex? */
1548	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549		e_dbg("Advertise 100mb Full duplex\n");
1550		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551	}
1552
1553	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555		e_dbg
1556		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1557	}
1558
1559	/* Do we want to advertise 1000 Mb Full Duplex? */
1560	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561		e_dbg("Advertise 1000mb Full duplex\n");
1562		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563	}
1564
1565	/* Check for a software override of the flow control settings, and
1566	 * setup the PHY advertisement registers accordingly.  If
1567	 * auto-negotiation is enabled, then software will have to set the
1568	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570	 * auto-negotiation.
1571	 *
1572	 * The possible values of the "fc" parameter are:
1573	 *      0:  Flow control is completely disabled
1574	 *      1:  Rx flow control is enabled (we can receive pause frames
1575	 *          but not send pause frames).
1576	 *      2:  Tx flow control is enabled (we can send pause frames
1577	 *          but we do not support receiving pause frames).
1578	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1579	 *  other:  No software override.  The flow control configuration
1580	 *          in the EEPROM is used.
1581	 */
1582	switch (hw->fc) {
1583	case E1000_FC_NONE:	/* 0 */
1584		/* Flow control (RX & TX) is completely disabled by a
1585		 * software over-ride.
1586		 */
1587		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588		break;
1589	case E1000_FC_RX_PAUSE:	/* 1 */
1590		/* RX Flow control is enabled, and TX Flow control is
1591		 * disabled, by a software over-ride.
1592		 */
1593		/* Since there really isn't a way to advertise that we are
1594		 * capable of RX Pause ONLY, we will advertise that we
1595		 * support both symmetric and asymmetric RX PAUSE.  Later
1596		 * (in e1000_config_fc_after_link_up) we will disable the
1597		 * hw's ability to send PAUSE frames.
1598		 */
1599		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600		break;
1601	case E1000_FC_TX_PAUSE:	/* 2 */
1602		/* TX Flow control is enabled, and RX Flow control is
1603		 * disabled, by a software over-ride.
1604		 */
1605		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607		break;
1608	case E1000_FC_FULL:	/* 3 */
1609		/* Flow control (both RX and TX) is enabled by a software
1610		 * over-ride.
1611		 */
1612		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613		break;
1614	default:
1615		e_dbg("Flow control param set incorrectly\n");
1616		return -E1000_ERR_CONFIG;
1617	}
1618
1619	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620	if (ret_val)
1621		return ret_val;
1622
1623	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624
1625	if (hw->phy_type == e1000_phy_8201) {
1626		mii_1000t_ctrl_reg = 0;
1627	} else {
1628		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629					      mii_1000t_ctrl_reg);
1630		if (ret_val)
1631			return ret_val;
1632	}
1633
1634	return E1000_SUCCESS;
1635}
1636
1637/**
1638 * e1000_phy_force_speed_duplex - force link settings
1639 * @hw: Struct containing variables accessed by shared code
1640 *
1641 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642 */
1643static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644{
1645	u32 ctrl;
1646	s32 ret_val;
1647	u16 mii_ctrl_reg;
1648	u16 mii_status_reg;
1649	u16 phy_data;
1650	u16 i;
1651
 
 
1652	/* Turn off Flow control if we are forcing speed and duplex. */
1653	hw->fc = E1000_FC_NONE;
1654
1655	e_dbg("hw->fc = %d\n", hw->fc);
1656
1657	/* Read the Device Control Register. */
1658	ctrl = er32(CTRL);
1659
1660	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662	ctrl &= ~(DEVICE_SPEED_MASK);
1663
1664	/* Clear the Auto Speed Detect Enable bit. */
1665	ctrl &= ~E1000_CTRL_ASDE;
1666
1667	/* Read the MII Control Register. */
1668	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669	if (ret_val)
1670		return ret_val;
1671
1672	/* We need to disable autoneg in order to force link and duplex. */
1673
1674	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675
1676	/* Are we forcing Full or Half Duplex? */
1677	if (hw->forced_speed_duplex == e1000_100_full ||
1678	    hw->forced_speed_duplex == e1000_10_full) {
1679		/* We want to force full duplex so we SET the full duplex bits
1680		 * in the Device and MII Control Registers.
1681		 */
1682		ctrl |= E1000_CTRL_FD;
1683		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684		e_dbg("Full Duplex\n");
1685	} else {
1686		/* We want to force half duplex so we CLEAR the full duplex bits
1687		 * in the Device and MII Control Registers.
1688		 */
1689		ctrl &= ~E1000_CTRL_FD;
1690		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691		e_dbg("Half Duplex\n");
1692	}
1693
1694	/* Are we forcing 100Mbps??? */
1695	if (hw->forced_speed_duplex == e1000_100_full ||
1696	    hw->forced_speed_duplex == e1000_100_half) {
1697		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698		ctrl |= E1000_CTRL_SPD_100;
1699		mii_ctrl_reg |= MII_CR_SPEED_100;
1700		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701		e_dbg("Forcing 100mb ");
1702	} else {
1703		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705		mii_ctrl_reg |= MII_CR_SPEED_10;
1706		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707		e_dbg("Forcing 10mb ");
1708	}
1709
1710	e1000_config_collision_dist(hw);
1711
1712	/* Write the configured values back to the Device Control Reg. */
1713	ew32(CTRL, ctrl);
1714
1715	if (hw->phy_type == e1000_phy_m88) {
1716		ret_val =
1717		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718		if (ret_val)
1719			return ret_val;
1720
1721		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722		 * MDI forced whenever speed are duplex are forced.
1723		 */
1724		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725		ret_val =
1726		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727		if (ret_val)
1728			return ret_val;
1729
1730		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731
1732		/* Need to reset the PHY or these changes will be ignored */
1733		mii_ctrl_reg |= MII_CR_RESET;
1734
1735		/* Disable MDI-X support for 10/100 */
1736	} else {
1737		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1738		 * forced whenever speed or duplex are forced.
1739		 */
1740		ret_val =
1741		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742		if (ret_val)
1743			return ret_val;
1744
1745		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747
1748		ret_val =
1749		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750		if (ret_val)
1751			return ret_val;
1752	}
1753
1754	/* Write back the modified PHY MII control register. */
1755	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756	if (ret_val)
1757		return ret_val;
1758
1759	udelay(1);
1760
1761	/* The wait_autoneg_complete flag may be a little misleading here.
1762	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763	 * But we do want to delay for a period while forcing only so we
1764	 * don't generate false No Link messages.  So we will wait here
1765	 * only if the user has set wait_autoneg_complete to 1, which is
1766	 * the default.
1767	 */
1768	if (hw->wait_autoneg_complete) {
1769		/* We will wait for autoneg to complete. */
1770		e_dbg("Waiting for forced speed/duplex link.\n");
1771		mii_status_reg = 0;
1772
1773		/* Wait for autoneg to complete or 4.5 seconds to expire */
1774		for (i = PHY_FORCE_TIME; i > 0; i--) {
1775			/* Read the MII Status Register and wait for Auto-Neg
1776			 * Complete bit to be set.
1777			 */
1778			ret_val =
1779			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780			if (ret_val)
1781				return ret_val;
1782
1783			ret_val =
1784			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785			if (ret_val)
1786				return ret_val;
1787
1788			if (mii_status_reg & MII_SR_LINK_STATUS)
1789				break;
1790			msleep(100);
1791		}
1792		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793			/* We didn't get link.  Reset the DSP and wait again
1794			 * for link.
1795			 */
1796			ret_val = e1000_phy_reset_dsp(hw);
1797			if (ret_val) {
1798				e_dbg("Error Resetting PHY DSP\n");
1799				return ret_val;
1800			}
1801		}
1802		/* This loop will early-out if the link condition has been
1803		 * met
1804		 */
1805		for (i = PHY_FORCE_TIME; i > 0; i--) {
1806			if (mii_status_reg & MII_SR_LINK_STATUS)
1807				break;
1808			msleep(100);
1809			/* Read the MII Status Register and wait for Auto-Neg
1810			 * Complete bit to be set.
1811			 */
1812			ret_val =
1813			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814			if (ret_val)
1815				return ret_val;
1816
1817			ret_val =
1818			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819			if (ret_val)
1820				return ret_val;
1821		}
1822	}
1823
1824	if (hw->phy_type == e1000_phy_m88) {
1825		/* Because we reset the PHY above, we need to re-force TX_CLK in
1826		 * the Extended PHY Specific Control Register to 25MHz clock.
1827		 * This value defaults back to a 2.5MHz clock when the PHY is
1828		 * reset.
1829		 */
1830		ret_val =
1831		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832				       &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837		ret_val =
1838		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839					phy_data);
1840		if (ret_val)
1841			return ret_val;
1842
1843		/* In addition, because of the s/w reset above, we need to
1844		 * enable CRS on Tx.  This must be set for both full and half
1845		 * duplex operation.
1846		 */
1847		ret_val =
1848		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849		if (ret_val)
1850			return ret_val;
1851
1852		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853		ret_val =
1854		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855		if (ret_val)
1856			return ret_val;
1857
1858		if ((hw->mac_type == e1000_82544 ||
1859		     hw->mac_type == e1000_82543) &&
1860		    (!hw->autoneg) &&
1861		    (hw->forced_speed_duplex == e1000_10_full ||
1862		     hw->forced_speed_duplex == e1000_10_half)) {
1863			ret_val = e1000_polarity_reversal_workaround(hw);
1864			if (ret_val)
1865				return ret_val;
1866		}
1867	}
1868	return E1000_SUCCESS;
1869}
1870
1871/**
1872 * e1000_config_collision_dist - set collision distance register
1873 * @hw: Struct containing variables accessed by shared code
1874 *
1875 * Sets the collision distance in the Transmit Control register.
1876 * Link should have been established previously. Reads the speed and duplex
1877 * information from the Device Status register.
1878 */
1879void e1000_config_collision_dist(struct e1000_hw *hw)
1880{
1881	u32 tctl, coll_dist;
1882
 
 
1883	if (hw->mac_type < e1000_82543)
1884		coll_dist = E1000_COLLISION_DISTANCE_82542;
1885	else
1886		coll_dist = E1000_COLLISION_DISTANCE;
1887
1888	tctl = er32(TCTL);
1889
1890	tctl &= ~E1000_TCTL_COLD;
1891	tctl |= coll_dist << E1000_COLD_SHIFT;
1892
1893	ew32(TCTL, tctl);
1894	E1000_WRITE_FLUSH();
1895}
1896
1897/**
1898 * e1000_config_mac_to_phy - sync phy and mac settings
1899 * @hw: Struct containing variables accessed by shared code
 
1900 *
1901 * Sets MAC speed and duplex settings to reflect the those in the PHY
1902 * The contents of the PHY register containing the needed information need to
1903 * be passed in.
1904 */
1905static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1906{
1907	u32 ctrl;
1908	s32 ret_val;
1909	u16 phy_data;
1910
 
 
1911	/* 82544 or newer MAC, Auto Speed Detection takes care of
1912	 * MAC speed/duplex configuration.
1913	 */
1914	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1915		return E1000_SUCCESS;
1916
1917	/* Read the Device Control Register and set the bits to Force Speed
1918	 * and Duplex.
1919	 */
1920	ctrl = er32(CTRL);
1921	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1922	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1923
1924	switch (hw->phy_type) {
1925	case e1000_phy_8201:
1926		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1927		if (ret_val)
1928			return ret_val;
1929
1930		if (phy_data & RTL_PHY_CTRL_FD)
1931			ctrl |= E1000_CTRL_FD;
1932		else
1933			ctrl &= ~E1000_CTRL_FD;
1934
1935		if (phy_data & RTL_PHY_CTRL_SPD_100)
1936			ctrl |= E1000_CTRL_SPD_100;
1937		else
1938			ctrl |= E1000_CTRL_SPD_10;
1939
1940		e1000_config_collision_dist(hw);
1941		break;
1942	default:
1943		/* Set up duplex in the Device Control and Transmit Control
1944		 * registers depending on negotiated values.
1945		 */
1946		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1947					     &phy_data);
1948		if (ret_val)
1949			return ret_val;
1950
1951		if (phy_data & M88E1000_PSSR_DPLX)
1952			ctrl |= E1000_CTRL_FD;
1953		else
1954			ctrl &= ~E1000_CTRL_FD;
1955
1956		e1000_config_collision_dist(hw);
1957
1958		/* Set up speed in the Device Control register depending on
1959		 * negotiated values.
1960		 */
1961		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1962			ctrl |= E1000_CTRL_SPD_1000;
1963		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1964			 M88E1000_PSSR_100MBS)
1965			ctrl |= E1000_CTRL_SPD_100;
1966	}
1967
1968	/* Write the configured values back to the Device Control Reg. */
1969	ew32(CTRL, ctrl);
1970	return E1000_SUCCESS;
1971}
1972
1973/**
1974 * e1000_force_mac_fc - force flow control settings
1975 * @hw: Struct containing variables accessed by shared code
1976 *
1977 * Forces the MAC's flow control settings.
1978 * Sets the TFCE and RFCE bits in the device control register to reflect
1979 * the adapter settings. TFCE and RFCE need to be explicitly set by
1980 * software when a Copper PHY is used because autonegotiation is managed
1981 * by the PHY rather than the MAC. Software must also configure these
1982 * bits when link is forced on a fiber connection.
1983 */
1984s32 e1000_force_mac_fc(struct e1000_hw *hw)
1985{
1986	u32 ctrl;
1987
 
 
1988	/* Get the current configuration of the Device Control Register */
1989	ctrl = er32(CTRL);
1990
1991	/* Because we didn't get link via the internal auto-negotiation
1992	 * mechanism (we either forced link or we got link via PHY
1993	 * auto-neg), we have to manually enable/disable transmit an
1994	 * receive flow control.
1995	 *
1996	 * The "Case" statement below enables/disable flow control
1997	 * according to the "hw->fc" parameter.
1998	 *
1999	 * The possible values of the "fc" parameter are:
2000	 *      0:  Flow control is completely disabled
2001	 *      1:  Rx flow control is enabled (we can receive pause
2002	 *          frames but not send pause frames).
2003	 *      2:  Tx flow control is enabled (we can send pause frames
2004	 *          but we do not receive pause frames).
2005	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2006	 *  other:  No other values should be possible at this point.
2007	 */
2008
2009	switch (hw->fc) {
2010	case E1000_FC_NONE:
2011		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2012		break;
2013	case E1000_FC_RX_PAUSE:
2014		ctrl &= (~E1000_CTRL_TFCE);
2015		ctrl |= E1000_CTRL_RFCE;
2016		break;
2017	case E1000_FC_TX_PAUSE:
2018		ctrl &= (~E1000_CTRL_RFCE);
2019		ctrl |= E1000_CTRL_TFCE;
2020		break;
2021	case E1000_FC_FULL:
2022		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2023		break;
2024	default:
2025		e_dbg("Flow control param set incorrectly\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	/* Disable TX Flow Control for 82542 (rev 2.0) */
2030	if (hw->mac_type == e1000_82542_rev2_0)
2031		ctrl &= (~E1000_CTRL_TFCE);
2032
2033	ew32(CTRL, ctrl);
2034	return E1000_SUCCESS;
2035}
2036
2037/**
2038 * e1000_config_fc_after_link_up - configure flow control after autoneg
2039 * @hw: Struct containing variables accessed by shared code
2040 *
2041 * Configures flow control settings after link is established
2042 * Should be called immediately after a valid link has been established.
2043 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2044 * and autonegotiation is enabled, the MAC flow control settings will be set
2045 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2046 * and RFCE bits will be automatically set to the negotiated flow control mode.
2047 */
2048static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2049{
2050	s32 ret_val;
2051	u16 mii_status_reg;
2052	u16 mii_nway_adv_reg;
2053	u16 mii_nway_lp_ability_reg;
2054	u16 speed;
2055	u16 duplex;
2056
 
 
2057	/* Check for the case where we have fiber media and auto-neg failed
2058	 * so we had to force link.  In this case, we need to force the
2059	 * configuration of the MAC to match the "fc" parameter.
2060	 */
2061	if (((hw->media_type == e1000_media_type_fiber) &&
2062	     (hw->autoneg_failed)) ||
2063	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2064	     (hw->autoneg_failed)) ||
2065	    ((hw->media_type == e1000_media_type_copper) &&
2066	     (!hw->autoneg))) {
2067		ret_val = e1000_force_mac_fc(hw);
2068		if (ret_val) {
2069			e_dbg("Error forcing flow control settings\n");
2070			return ret_val;
2071		}
2072	}
2073
2074	/* Check for the case where we have copper media and auto-neg is
2075	 * enabled.  In this case, we need to check and see if Auto-Neg
2076	 * has completed, and if so, how the PHY and link partner has
2077	 * flow control configured.
2078	 */
2079	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2080		/* Read the MII Status Register and check to see if AutoNeg
2081		 * has completed.  We read this twice because this reg has
2082		 * some "sticky" (latched) bits.
2083		 */
2084		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2085		if (ret_val)
2086			return ret_val;
2087		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2088		if (ret_val)
2089			return ret_val;
2090
2091		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2092			/* The AutoNeg process has completed, so we now need to
2093			 * read both the Auto Negotiation Advertisement Register
2094			 * (Address 4) and the Auto_Negotiation Base Page
2095			 * Ability Register (Address 5) to determine how flow
2096			 * control was negotiated.
2097			 */
2098			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2099						     &mii_nway_adv_reg);
2100			if (ret_val)
2101				return ret_val;
2102			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2103						     &mii_nway_lp_ability_reg);
2104			if (ret_val)
2105				return ret_val;
2106
2107			/* Two bits in the Auto Negotiation Advertisement
2108			 * Register (Address 4) and two bits in the Auto
2109			 * Negotiation Base Page Ability Register (Address 5)
2110			 * determine flow control for both the PHY and the link
2111			 * partner.  The following table, taken out of the IEEE
2112			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2113			 * PAUSE resolution bits and how flow control is
2114			 * determined based upon these settings.
2115			 * NOTE:  DC = Don't Care
2116			 *
2117			 *   LOCAL DEVICE  |   LINK PARTNER
2118			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2119			 *-------|---------|-------|---------|------------------
2120			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2121			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2122			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2123			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2124			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2125			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2126			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2127			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2128			 *
2129			 */
2130			/* Are both PAUSE bits set to 1?  If so, this implies
2131			 * Symmetric Flow Control is enabled at both ends.  The
2132			 * ASM_DIR bits are irrelevant per the spec.
2133			 *
2134			 * For Symmetric Flow Control:
2135			 *
2136			 *   LOCAL DEVICE  |   LINK PARTNER
2137			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2138			 *-------|---------|-------|---------|------------------
2139			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2140			 *
2141			 */
2142			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2143			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2144				/* Now we need to check if the user selected Rx
2145				 * ONLY of pause frames.  In this case, we had
2146				 * to advertise FULL flow control because we
2147				 * could not advertise Rx ONLY. Hence, we must
2148				 * now check to see if we need to turn OFF the
2149				 * TRANSMISSION of PAUSE frames.
2150				 */
2151				if (hw->original_fc == E1000_FC_FULL) {
2152					hw->fc = E1000_FC_FULL;
2153					e_dbg("Flow Control = FULL.\n");
2154				} else {
2155					hw->fc = E1000_FC_RX_PAUSE;
2156					e_dbg
2157					    ("Flow Control = RX PAUSE frames only.\n");
2158				}
2159			}
2160			/* For receiving PAUSE frames ONLY.
2161			 *
2162			 *   LOCAL DEVICE  |   LINK PARTNER
2163			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164			 *-------|---------|-------|---------|------------------
2165			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166			 *
2167			 */
2168			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2170				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2171				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2172				hw->fc = E1000_FC_TX_PAUSE;
2173				e_dbg
2174				    ("Flow Control = TX PAUSE frames only.\n");
2175			}
2176			/* For transmitting PAUSE frames ONLY.
2177			 *
2178			 *   LOCAL DEVICE  |   LINK PARTNER
2179			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180			 *-------|---------|-------|---------|------------------
2181			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2182			 *
2183			 */
2184			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2186				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2187				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2188				hw->fc = E1000_FC_RX_PAUSE;
2189				e_dbg
2190				    ("Flow Control = RX PAUSE frames only.\n");
2191			}
2192			/* Per the IEEE spec, at this point flow control should
2193			 * be disabled.  However, we want to consider that we
2194			 * could be connected to a legacy switch that doesn't
2195			 * advertise desired flow control, but can be forced on
2196			 * the link partner.  So if we advertised no flow
2197			 * control, that is what we will resolve to.  If we
2198			 * advertised some kind of receive capability (Rx Pause
2199			 * Only or Full Flow Control) and the link partner
2200			 * advertised none, we will configure ourselves to
2201			 * enable Rx Flow Control only.  We can do this safely
2202			 * for two reasons:  If the link partner really
2203			 * didn't want flow control enabled, and we enable Rx,
2204			 * no harm done since we won't be receiving any PAUSE
2205			 * frames anyway.  If the intent on the link partner was
2206			 * to have flow control enabled, then by us enabling Rx
2207			 * only, we can at least receive pause frames and
2208			 * process them. This is a good idea because in most
2209			 * cases, since we are predominantly a server NIC, more
2210			 * times than not we will be asked to delay transmission
2211			 * of packets than asking our link partner to pause
2212			 * transmission of frames.
2213			 */
2214			else if ((hw->original_fc == E1000_FC_NONE ||
2215				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2216				 hw->fc_strict_ieee) {
2217				hw->fc = E1000_FC_NONE;
2218				e_dbg("Flow Control = NONE.\n");
2219			} else {
2220				hw->fc = E1000_FC_RX_PAUSE;
2221				e_dbg
2222				    ("Flow Control = RX PAUSE frames only.\n");
2223			}
2224
2225			/* Now we need to do one last check...  If we auto-
2226			 * negotiated to HALF DUPLEX, flow control should not be
2227			 * enabled per IEEE 802.3 spec.
2228			 */
2229			ret_val =
2230			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2231			if (ret_val) {
2232				e_dbg
2233				    ("Error getting link speed and duplex\n");
2234				return ret_val;
2235			}
2236
2237			if (duplex == HALF_DUPLEX)
2238				hw->fc = E1000_FC_NONE;
2239
2240			/* Now we call a subroutine to actually force the MAC
2241			 * controller to use the correct flow control settings.
2242			 */
2243			ret_val = e1000_force_mac_fc(hw);
2244			if (ret_val) {
2245				e_dbg
2246				    ("Error forcing flow control settings\n");
2247				return ret_val;
2248			}
2249		} else {
2250			e_dbg
2251			    ("Copper PHY and Auto Neg has not completed.\n");
2252		}
2253	}
2254	return E1000_SUCCESS;
2255}
2256
2257/**
2258 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2259 * @hw: pointer to the HW structure
2260 *
2261 * Checks for link up on the hardware.  If link is not up and we have
2262 * a signal, then we need to force link up.
2263 */
2264static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2265{
2266	u32 rxcw;
2267	u32 ctrl;
2268	u32 status;
2269	s32 ret_val = E1000_SUCCESS;
2270
 
 
2271	ctrl = er32(CTRL);
2272	status = er32(STATUS);
2273	rxcw = er32(RXCW);
2274
2275	/* If we don't have link (auto-negotiation failed or link partner
 
2276	 * cannot auto-negotiate), and our link partner is not trying to
2277	 * auto-negotiate with us (we are receiving idles or data),
2278	 * we need to force link up. We also need to give auto-negotiation
2279	 * time to complete.
2280	 */
2281	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2282	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2283		if (hw->autoneg_failed == 0) {
2284			hw->autoneg_failed = 1;
2285			goto out;
2286		}
2287		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2288
2289		/* Disable auto-negotiation in the TXCW register */
2290		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2291
2292		/* Force link-up and also force full-duplex. */
2293		ctrl = er32(CTRL);
2294		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2295		ew32(CTRL, ctrl);
2296
2297		/* Configure Flow Control after forcing link up. */
2298		ret_val = e1000_config_fc_after_link_up(hw);
2299		if (ret_val) {
2300			e_dbg("Error configuring flow control\n");
2301			goto out;
2302		}
2303	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2304		/* If we are forcing link and we are receiving /C/ ordered
 
2305		 * sets, re-enable auto-negotiation in the TXCW register
2306		 * and disable forced link in the Device Control register
2307		 * in an attempt to auto-negotiate with our link partner.
2308		 */
2309		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2310		ew32(TXCW, hw->txcw);
2311		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2312
2313		hw->serdes_has_link = true;
2314	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2315		/* If we force link for non-auto-negotiation switch, check
 
2316		 * link status based on MAC synchronization for internal
2317		 * serdes media type.
2318		 */
2319		/* SYNCH bit and IV bit are sticky. */
2320		udelay(10);
2321		rxcw = er32(RXCW);
2322		if (rxcw & E1000_RXCW_SYNCH) {
2323			if (!(rxcw & E1000_RXCW_IV)) {
2324				hw->serdes_has_link = true;
2325				e_dbg("SERDES: Link up - forced.\n");
2326			}
2327		} else {
2328			hw->serdes_has_link = false;
2329			e_dbg("SERDES: Link down - force failed.\n");
2330		}
2331	}
2332
2333	if (E1000_TXCW_ANE & er32(TXCW)) {
2334		status = er32(STATUS);
2335		if (status & E1000_STATUS_LU) {
2336			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2337			udelay(10);
2338			rxcw = er32(RXCW);
2339			if (rxcw & E1000_RXCW_SYNCH) {
2340				if (!(rxcw & E1000_RXCW_IV)) {
2341					hw->serdes_has_link = true;
2342					e_dbg("SERDES: Link up - autoneg "
2343						 "completed successfully.\n");
2344				} else {
2345					hw->serdes_has_link = false;
2346					e_dbg("SERDES: Link down - invalid"
2347						 "codewords detected in autoneg.\n");
2348				}
2349			} else {
2350				hw->serdes_has_link = false;
2351				e_dbg("SERDES: Link down - no sync.\n");
2352			}
2353		} else {
2354			hw->serdes_has_link = false;
2355			e_dbg("SERDES: Link down - autoneg failed\n");
2356		}
2357	}
2358
2359      out:
2360	return ret_val;
2361}
2362
2363/**
2364 * e1000_check_for_link
2365 * @hw: Struct containing variables accessed by shared code
2366 *
2367 * Checks to see if the link status of the hardware has changed.
2368 * Called by any function that needs to check the link status of the adapter.
2369 */
2370s32 e1000_check_for_link(struct e1000_hw *hw)
2371{
 
 
2372	u32 status;
2373	u32 rctl;
2374	u32 icr;
 
2375	s32 ret_val;
2376	u16 phy_data;
2377
2378	er32(CTRL);
 
 
2379	status = er32(STATUS);
2380
2381	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2382	 * set when the optics detect a signal. On older adapters, it will be
2383	 * cleared when there is a signal.  This applies to fiber media only.
2384	 */
2385	if ((hw->media_type == e1000_media_type_fiber) ||
2386	    (hw->media_type == e1000_media_type_internal_serdes)) {
2387		er32(RXCW);
2388
2389		if (hw->media_type == e1000_media_type_fiber) {
 
 
 
2390			if (status & E1000_STATUS_LU)
2391				hw->get_link_status = false;
2392		}
2393	}
2394
2395	/* If we have a copper PHY then we only want to go out to the PHY
2396	 * registers to see if Auto-Neg has completed and/or if our link
2397	 * status has changed.  The get_link_status flag will be set if we
2398	 * receive a Link Status Change interrupt or we have Rx Sequence
2399	 * Errors.
2400	 */
2401	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2402		/* First we want to see if the MII Status Register reports
2403		 * link.  If so, then we want to get the current speed/duplex
2404		 * of the PHY.
2405		 * Read the register twice since the link bit is sticky.
2406		 */
2407		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2408		if (ret_val)
2409			return ret_val;
2410		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2411		if (ret_val)
2412			return ret_val;
2413
2414		if (phy_data & MII_SR_LINK_STATUS) {
2415			hw->get_link_status = false;
2416			/* Check if there was DownShift, must be checked
2417			 * immediately after link-up
2418			 */
2419			e1000_check_downshift(hw);
2420
2421			/* If we are on 82544 or 82543 silicon and speed/duplex
2422			 * are forced to 10H or 10F, then we will implement the
2423			 * polarity reversal workaround.  We disable interrupts
2424			 * first, and upon returning, place the devices
2425			 * interrupt state to its previous value except for the
2426			 * link status change interrupt which will
2427			 * happen due to the execution of this workaround.
2428			 */
2429
2430			if ((hw->mac_type == e1000_82544 ||
2431			     hw->mac_type == e1000_82543) &&
2432			    (!hw->autoneg) &&
2433			    (hw->forced_speed_duplex == e1000_10_full ||
2434			     hw->forced_speed_duplex == e1000_10_half)) {
2435				ew32(IMC, 0xffffffff);
2436				ret_val =
2437				    e1000_polarity_reversal_workaround(hw);
2438				icr = er32(ICR);
2439				ew32(ICS, (icr & ~E1000_ICS_LSC));
2440				ew32(IMS, IMS_ENABLE_MASK);
2441			}
2442
2443		} else {
2444			/* No link detected */
2445			e1000_config_dsp_after_link_change(hw, false);
2446			return 0;
2447		}
2448
2449		/* If we are forcing speed/duplex, then we simply return since
2450		 * we have already determined whether we have link or not.
2451		 */
2452		if (!hw->autoneg)
2453			return -E1000_ERR_CONFIG;
2454
2455		/* optimize the dsp settings for the igp phy */
2456		e1000_config_dsp_after_link_change(hw, true);
2457
2458		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2459		 * have Si on board that is 82544 or newer, Auto
2460		 * Speed Detection takes care of MAC speed/duplex
2461		 * configuration.  So we only need to configure Collision
2462		 * Distance in the MAC.  Otherwise, we need to force
2463		 * speed/duplex on the MAC to the current PHY speed/duplex
2464		 * settings.
2465		 */
2466		if ((hw->mac_type >= e1000_82544) &&
2467		    (hw->mac_type != e1000_ce4100))
2468			e1000_config_collision_dist(hw);
2469		else {
2470			ret_val = e1000_config_mac_to_phy(hw);
2471			if (ret_val) {
2472				e_dbg
2473				    ("Error configuring MAC to PHY settings\n");
2474				return ret_val;
2475			}
2476		}
2477
2478		/* Configure Flow Control now that Auto-Neg has completed.
2479		 * First, we need to restore the desired flow control settings
2480		 * because we may have had to re-autoneg with a different link
2481		 * partner.
2482		 */
2483		ret_val = e1000_config_fc_after_link_up(hw);
2484		if (ret_val) {
2485			e_dbg("Error configuring flow control\n");
2486			return ret_val;
2487		}
2488
2489		/* At this point we know that we are on copper and we have
2490		 * auto-negotiated link.  These are conditions for checking the
2491		 * link partner capability register.  We use the link speed to
2492		 * determine if TBI compatibility needs to be turned on or off.
2493		 * If the link is not at gigabit speed, then TBI compatibility
2494		 * is not needed.  If we are at gigabit speed, we turn on TBI
2495		 * compatibility.
2496		 */
2497		if (hw->tbi_compatibility_en) {
2498			u16 speed, duplex;
2499
2500			ret_val =
2501			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2502
2503			if (ret_val) {
2504				e_dbg
2505				    ("Error getting link speed and duplex\n");
2506				return ret_val;
2507			}
2508			if (speed != SPEED_1000) {
2509				/* If link speed is not set to gigabit speed, we
2510				 * do not need to enable TBI compatibility.
2511				 */
2512				if (hw->tbi_compatibility_on) {
2513					/* If we previously were in the mode,
2514					 * turn it off.
2515					 */
2516					rctl = er32(RCTL);
2517					rctl &= ~E1000_RCTL_SBP;
2518					ew32(RCTL, rctl);
2519					hw->tbi_compatibility_on = false;
2520				}
2521			} else {
2522				/* If TBI compatibility is was previously off,
2523				 * turn it on. For compatibility with a TBI link
2524				 * partner, we will store bad packets. Some
2525				 * frames have an additional byte on the end and
2526				 * will look like CRC errors to the hardware.
2527				 */
2528				if (!hw->tbi_compatibility_on) {
2529					hw->tbi_compatibility_on = true;
2530					rctl = er32(RCTL);
2531					rctl |= E1000_RCTL_SBP;
2532					ew32(RCTL, rctl);
2533				}
2534			}
2535		}
2536	}
2537
2538	if ((hw->media_type == e1000_media_type_fiber) ||
2539	    (hw->media_type == e1000_media_type_internal_serdes))
2540		e1000_check_for_serdes_link_generic(hw);
2541
2542	return E1000_SUCCESS;
2543}
2544
2545/**
2546 * e1000_get_speed_and_duplex
2547 * @hw: Struct containing variables accessed by shared code
2548 * @speed: Speed of the connection
2549 * @duplex: Duplex setting of the connection
2550 *
2551 * Detects the current speed and duplex settings of the hardware.
2552 */
2553s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2554{
2555	u32 status;
2556	s32 ret_val;
2557	u16 phy_data;
2558
 
 
2559	if (hw->mac_type >= e1000_82543) {
2560		status = er32(STATUS);
2561		if (status & E1000_STATUS_SPEED_1000) {
2562			*speed = SPEED_1000;
2563			e_dbg("1000 Mbs, ");
2564		} else if (status & E1000_STATUS_SPEED_100) {
2565			*speed = SPEED_100;
2566			e_dbg("100 Mbs, ");
2567		} else {
2568			*speed = SPEED_10;
2569			e_dbg("10 Mbs, ");
2570		}
2571
2572		if (status & E1000_STATUS_FD) {
2573			*duplex = FULL_DUPLEX;
2574			e_dbg("Full Duplex\n");
2575		} else {
2576			*duplex = HALF_DUPLEX;
2577			e_dbg(" Half Duplex\n");
2578		}
2579	} else {
2580		e_dbg("1000 Mbs, Full Duplex\n");
2581		*speed = SPEED_1000;
2582		*duplex = FULL_DUPLEX;
2583	}
2584
2585	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2586	 * even if it is operating at half duplex.  Here we set the duplex
2587	 * settings to match the duplex in the link partner's capabilities.
2588	 */
2589	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2590		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2591		if (ret_val)
2592			return ret_val;
2593
2594		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2595			*duplex = HALF_DUPLEX;
2596		else {
2597			ret_val =
2598			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2599			if (ret_val)
2600				return ret_val;
2601			if ((*speed == SPEED_100 &&
2602			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2603			    (*speed == SPEED_10 &&
2604			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2605				*duplex = HALF_DUPLEX;
2606		}
2607	}
2608
2609	return E1000_SUCCESS;
2610}
2611
2612/**
2613 * e1000_wait_autoneg
2614 * @hw: Struct containing variables accessed by shared code
2615 *
2616 * Blocks until autoneg completes or times out (~4.5 seconds)
2617 */
2618static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2619{
2620	s32 ret_val;
2621	u16 i;
2622	u16 phy_data;
2623
 
2624	e_dbg("Waiting for Auto-Neg to complete.\n");
2625
2626	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2627	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2628		/* Read the MII Status Register and wait for Auto-Neg
2629		 * Complete bit to be set.
2630		 */
2631		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2632		if (ret_val)
2633			return ret_val;
2634		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2635		if (ret_val)
2636			return ret_val;
2637		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2638			return E1000_SUCCESS;
2639
2640		msleep(100);
2641	}
2642	return E1000_SUCCESS;
2643}
2644
2645/**
2646 * e1000_raise_mdi_clk - Raises the Management Data Clock
2647 * @hw: Struct containing variables accessed by shared code
2648 * @ctrl: Device control register's current value
2649 */
2650static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2651{
2652	/* Raise the clock input to the Management Data Clock (by setting the
2653	 * MDC bit), and then delay 10 microseconds.
2654	 */
2655	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2656	E1000_WRITE_FLUSH();
2657	udelay(10);
2658}
2659
2660/**
2661 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2662 * @hw: Struct containing variables accessed by shared code
2663 * @ctrl: Device control register's current value
2664 */
2665static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2666{
2667	/* Lower the clock input to the Management Data Clock (by clearing the
2668	 * MDC bit), and then delay 10 microseconds.
2669	 */
2670	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2671	E1000_WRITE_FLUSH();
2672	udelay(10);
2673}
2674
2675/**
2676 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2677 * @hw: Struct containing variables accessed by shared code
2678 * @data: Data to send out to the PHY
2679 * @count: Number of bits to shift out
2680 *
2681 * Bits are shifted out in MSB to LSB order.
2682 */
2683static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2684{
2685	u32 ctrl;
2686	u32 mask;
2687
2688	/* We need to shift "count" number of bits out to the PHY. So, the value
2689	 * in the "data" parameter will be shifted out to the PHY one bit at a
2690	 * time. In order to do this, "data" must be broken down into bits.
2691	 */
2692	mask = 0x01;
2693	mask <<= (count - 1);
2694
2695	ctrl = er32(CTRL);
2696
2697	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2698	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2699
2700	while (mask) {
2701		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2702		 * "1" and then raising and lowering the Management Data Clock.
2703		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2704		 * "0" and then raising and lowering the clock.
2705		 */
2706		if (data & mask)
2707			ctrl |= E1000_CTRL_MDIO;
2708		else
2709			ctrl &= ~E1000_CTRL_MDIO;
2710
2711		ew32(CTRL, ctrl);
2712		E1000_WRITE_FLUSH();
2713
2714		udelay(10);
2715
2716		e1000_raise_mdi_clk(hw, &ctrl);
2717		e1000_lower_mdi_clk(hw, &ctrl);
2718
2719		mask = mask >> 1;
2720	}
2721}
2722
2723/**
2724 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2725 * @hw: Struct containing variables accessed by shared code
2726 *
2727 * Bits are shifted in MSB to LSB order.
2728 */
2729static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2730{
2731	u32 ctrl;
2732	u16 data = 0;
2733	u8 i;
2734
2735	/* In order to read a register from the PHY, we need to shift in a total
2736	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2737	 * used to avoid contention on the MDIO pin when a read operation is
2738	 * performed. These two bits are ignored by us and thrown away. Bits are
2739	 * "shifted in" by raising the input to the Management Data Clock
2740	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2741	 */
2742	ctrl = er32(CTRL);
2743
2744	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2745	 * input.
2746	 */
2747	ctrl &= ~E1000_CTRL_MDIO_DIR;
2748	ctrl &= ~E1000_CTRL_MDIO;
2749
2750	ew32(CTRL, ctrl);
2751	E1000_WRITE_FLUSH();
2752
2753	/* Raise and Lower the clock before reading in the data. This accounts
2754	 * for the turnaround bits. The first clock occurred when we clocked out
2755	 * the last bit of the Register Address.
2756	 */
2757	e1000_raise_mdi_clk(hw, &ctrl);
2758	e1000_lower_mdi_clk(hw, &ctrl);
2759
2760	for (data = 0, i = 0; i < 16; i++) {
2761		data = data << 1;
2762		e1000_raise_mdi_clk(hw, &ctrl);
2763		ctrl = er32(CTRL);
2764		/* Check to see if we shifted in a "1". */
2765		if (ctrl & E1000_CTRL_MDIO)
2766			data |= 1;
2767		e1000_lower_mdi_clk(hw, &ctrl);
2768	}
2769
2770	e1000_raise_mdi_clk(hw, &ctrl);
2771	e1000_lower_mdi_clk(hw, &ctrl);
2772
2773	return data;
2774}
2775
 
2776/**
2777 * e1000_read_phy_reg - read a phy register
2778 * @hw: Struct containing variables accessed by shared code
2779 * @reg_addr: address of the PHY register to read
2780 * @phy_data: pointer to the value on the PHY register
2781 *
2782 * Reads the value from a PHY register, if the value is on a specific non zero
2783 * page, sets the page first.
2784 */
2785s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2786{
2787	u32 ret_val;
2788	unsigned long flags;
2789
2790	spin_lock_irqsave(&e1000_phy_lock, flags);
2791
2792	if ((hw->phy_type == e1000_phy_igp) &&
2793	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2794		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2795						 (u16) reg_addr);
2796		if (ret_val)
2797			goto out;
2798	}
2799
2800	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2801					phy_data);
2802out:
2803	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2804
2805	return ret_val;
2806}
2807
2808static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2809				 u16 *phy_data)
2810{
2811	u32 i;
2812	u32 mdic = 0;
2813	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2814
 
 
2815	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2816		e_dbg("PHY Address %d is out of range\n", reg_addr);
2817		return -E1000_ERR_PARAM;
2818	}
2819
2820	if (hw->mac_type > e1000_82543) {
2821		/* Set up Op-code, Phy Address, and register address in the MDI
2822		 * Control register.  The MAC will take care of interfacing with
2823		 * the PHY to retrieve the desired data.
2824		 */
2825		if (hw->mac_type == e1000_ce4100) {
2826			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2827				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2828				(INTEL_CE_GBE_MDIC_OP_READ) |
2829				(INTEL_CE_GBE_MDIC_GO));
2830
2831			writel(mdic, E1000_MDIO_CMD);
2832
2833			/* Poll the ready bit to see if the MDI read
2834			 * completed
2835			 */
2836			for (i = 0; i < 64; i++) {
2837				udelay(50);
2838				mdic = readl(E1000_MDIO_CMD);
2839				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2840					break;
2841			}
2842
2843			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2844				e_dbg("MDI Read did not complete\n");
2845				return -E1000_ERR_PHY;
2846			}
2847
2848			mdic = readl(E1000_MDIO_STS);
2849			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2850				e_dbg("MDI Read Error\n");
2851				return -E1000_ERR_PHY;
2852			}
2853			*phy_data = (u16)mdic;
2854		} else {
2855			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2856				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2857				(E1000_MDIC_OP_READ));
2858
2859			ew32(MDIC, mdic);
2860
2861			/* Poll the ready bit to see if the MDI read
2862			 * completed
2863			 */
2864			for (i = 0; i < 64; i++) {
2865				udelay(50);
2866				mdic = er32(MDIC);
2867				if (mdic & E1000_MDIC_READY)
2868					break;
2869			}
2870			if (!(mdic & E1000_MDIC_READY)) {
2871				e_dbg("MDI Read did not complete\n");
2872				return -E1000_ERR_PHY;
2873			}
2874			if (mdic & E1000_MDIC_ERROR) {
2875				e_dbg("MDI Error\n");
2876				return -E1000_ERR_PHY;
2877			}
2878			*phy_data = (u16)mdic;
2879		}
2880	} else {
2881		/* We must first send a preamble through the MDIO pin to signal
2882		 * the beginning of an MII instruction.  This is done by sending
2883		 * 32 consecutive "1" bits.
2884		 */
2885		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2886
2887		/* Now combine the next few fields that are required for a read
2888		 * operation.  We use this method instead of calling the
2889		 * e1000_shift_out_mdi_bits routine five different times. The
2890		 * format of a MII read instruction consists of a shift out of
2891		 * 14 bits and is defined as follows:
2892		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2893		 * followed by a shift in of 18 bits.  This first two bits
2894		 * shifted in are TurnAround bits used to avoid contention on
2895		 * the MDIO pin when a READ operation is performed.  These two
2896		 * bits are thrown away followed by a shift in of 16 bits which
2897		 * contains the desired data.
2898		 */
2899		mdic = ((reg_addr) | (phy_addr << 5) |
2900			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2901
2902		e1000_shift_out_mdi_bits(hw, mdic, 14);
2903
2904		/* Now that we've shifted out the read command to the MII, we
2905		 * need to "shift in" the 16-bit value (18 total bits) of the
2906		 * requested PHY register address.
2907		 */
2908		*phy_data = e1000_shift_in_mdi_bits(hw);
2909	}
2910	return E1000_SUCCESS;
2911}
2912
2913/**
2914 * e1000_write_phy_reg - write a phy register
2915 *
2916 * @hw: Struct containing variables accessed by shared code
2917 * @reg_addr: address of the PHY register to write
2918 * @phy_data: data to write to the PHY
2919 *
2920 * Writes a value to a PHY register
2921 */
2922s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2923{
2924	u32 ret_val;
2925	unsigned long flags;
2926
2927	spin_lock_irqsave(&e1000_phy_lock, flags);
2928
2929	if ((hw->phy_type == e1000_phy_igp) &&
2930	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2931		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2932						 (u16)reg_addr);
2933		if (ret_val) {
2934			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2935			return ret_val;
2936		}
2937	}
2938
2939	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2940					 phy_data);
2941	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942
2943	return ret_val;
2944}
2945
2946static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2947				  u16 phy_data)
2948{
2949	u32 i;
2950	u32 mdic = 0;
2951	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2952
 
 
2953	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2954		e_dbg("PHY Address %d is out of range\n", reg_addr);
2955		return -E1000_ERR_PARAM;
2956	}
2957
2958	if (hw->mac_type > e1000_82543) {
2959		/* Set up Op-code, Phy Address, register address, and data
2960		 * intended for the PHY register in the MDI Control register.
2961		 * The MAC will take care of interfacing with the PHY to send
2962		 * the desired data.
2963		 */
2964		if (hw->mac_type == e1000_ce4100) {
2965			mdic = (((u32)phy_data) |
2966				(reg_addr << E1000_MDIC_REG_SHIFT) |
2967				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2968				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2969				(INTEL_CE_GBE_MDIC_GO));
2970
2971			writel(mdic, E1000_MDIO_CMD);
2972
2973			/* Poll the ready bit to see if the MDI read
2974			 * completed
2975			 */
2976			for (i = 0; i < 640; i++) {
2977				udelay(5);
2978				mdic = readl(E1000_MDIO_CMD);
2979				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2980					break;
2981			}
2982			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2983				e_dbg("MDI Write did not complete\n");
2984				return -E1000_ERR_PHY;
2985			}
2986		} else {
2987			mdic = (((u32)phy_data) |
2988				(reg_addr << E1000_MDIC_REG_SHIFT) |
2989				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2990				(E1000_MDIC_OP_WRITE));
2991
2992			ew32(MDIC, mdic);
2993
2994			/* Poll the ready bit to see if the MDI read
2995			 * completed
2996			 */
2997			for (i = 0; i < 641; i++) {
2998				udelay(5);
2999				mdic = er32(MDIC);
3000				if (mdic & E1000_MDIC_READY)
3001					break;
3002			}
3003			if (!(mdic & E1000_MDIC_READY)) {
3004				e_dbg("MDI Write did not complete\n");
3005				return -E1000_ERR_PHY;
3006			}
3007		}
3008	} else {
3009		/* We'll need to use the SW defined pins to shift the write
3010		 * command out to the PHY. We first send a preamble to the PHY
3011		 * to signal the beginning of the MII instruction.  This is done
3012		 * by sending 32 consecutive "1" bits.
3013		 */
3014		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3015
3016		/* Now combine the remaining required fields that will indicate
3017		 * a write operation. We use this method instead of calling the
3018		 * e1000_shift_out_mdi_bits routine for each field in the
3019		 * command. The format of a MII write instruction is as follows:
3020		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3021		 */
3022		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3023			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3024		mdic <<= 16;
3025		mdic |= (u32)phy_data;
3026
3027		e1000_shift_out_mdi_bits(hw, mdic, 32);
3028	}
3029
3030	return E1000_SUCCESS;
3031}
3032
3033/**
3034 * e1000_phy_hw_reset - reset the phy, hardware style
3035 * @hw: Struct containing variables accessed by shared code
3036 *
3037 * Returns the PHY to the power-on reset state
3038 */
3039s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3040{
3041	u32 ctrl, ctrl_ext;
3042	u32 led_ctrl;
3043
 
 
3044	e_dbg("Resetting Phy...\n");
3045
3046	if (hw->mac_type > e1000_82543) {
3047		/* Read the device control register and assert the
3048		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3049		 * For e1000 hardware, we delay for 10ms between the assert
3050		 * and de-assert.
3051		 */
3052		ctrl = er32(CTRL);
3053		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3054		E1000_WRITE_FLUSH();
3055
3056		msleep(10);
3057
3058		ew32(CTRL, ctrl);
3059		E1000_WRITE_FLUSH();
3060
3061	} else {
3062		/* Read the Extended Device Control Register, assert the
3063		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3064		 * out of reset.
3065		 */
3066		ctrl_ext = er32(CTRL_EXT);
3067		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3068		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3069		ew32(CTRL_EXT, ctrl_ext);
3070		E1000_WRITE_FLUSH();
3071		msleep(10);
3072		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3073		ew32(CTRL_EXT, ctrl_ext);
3074		E1000_WRITE_FLUSH();
3075	}
3076	udelay(150);
3077
3078	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3079		/* Configure activity LED after PHY reset */
3080		led_ctrl = er32(LEDCTL);
3081		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3082		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3083		ew32(LEDCTL, led_ctrl);
3084	}
3085
3086	/* Wait for FW to finish PHY configuration. */
3087	return e1000_get_phy_cfg_done(hw);
3088}
3089
3090/**
3091 * e1000_phy_reset - reset the phy to commit settings
3092 * @hw: Struct containing variables accessed by shared code
3093 *
3094 * Resets the PHY
3095 * Sets bit 15 of the MII Control register
3096 */
3097s32 e1000_phy_reset(struct e1000_hw *hw)
3098{
3099	s32 ret_val;
3100	u16 phy_data;
3101
 
 
3102	switch (hw->phy_type) {
3103	case e1000_phy_igp:
3104		ret_val = e1000_phy_hw_reset(hw);
3105		if (ret_val)
3106			return ret_val;
3107		break;
3108	default:
3109		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3110		if (ret_val)
3111			return ret_val;
3112
3113		phy_data |= MII_CR_RESET;
3114		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3115		if (ret_val)
3116			return ret_val;
3117
3118		udelay(1);
3119		break;
3120	}
3121
3122	if (hw->phy_type == e1000_phy_igp)
3123		e1000_phy_init_script(hw);
3124
3125	return E1000_SUCCESS;
3126}
3127
3128/**
3129 * e1000_detect_gig_phy - check the phy type
3130 * @hw: Struct containing variables accessed by shared code
3131 *
3132 * Probes the expected PHY address for known PHY IDs
3133 */
3134static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3135{
3136	s32 phy_init_status, ret_val;
3137	u16 phy_id_high, phy_id_low;
3138	bool match = false;
3139
 
 
3140	if (hw->phy_id != 0)
3141		return E1000_SUCCESS;
3142
3143	/* Read the PHY ID Registers to identify which PHY is onboard. */
3144	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3145	if (ret_val)
3146		return ret_val;
3147
3148	hw->phy_id = (u32)(phy_id_high << 16);
3149	udelay(20);
3150	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3151	if (ret_val)
3152		return ret_val;
3153
3154	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3155	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3156
3157	switch (hw->mac_type) {
3158	case e1000_82543:
3159		if (hw->phy_id == M88E1000_E_PHY_ID)
3160			match = true;
3161		break;
3162	case e1000_82544:
3163		if (hw->phy_id == M88E1000_I_PHY_ID)
3164			match = true;
3165		break;
3166	case e1000_82540:
3167	case e1000_82545:
3168	case e1000_82545_rev_3:
3169	case e1000_82546:
3170	case e1000_82546_rev_3:
3171		if (hw->phy_id == M88E1011_I_PHY_ID)
3172			match = true;
3173		break;
3174	case e1000_ce4100:
3175		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3176		    (hw->phy_id == RTL8201N_PHY_ID) ||
3177		    (hw->phy_id == M88E1118_E_PHY_ID))
3178			match = true;
3179		break;
3180	case e1000_82541:
3181	case e1000_82541_rev_2:
3182	case e1000_82547:
3183	case e1000_82547_rev_2:
3184		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3185			match = true;
3186		break;
3187	default:
3188		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3189		return -E1000_ERR_CONFIG;
3190	}
3191	phy_init_status = e1000_set_phy_type(hw);
3192
3193	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3194		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3195		return E1000_SUCCESS;
3196	}
3197	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3198	return -E1000_ERR_PHY;
3199}
3200
3201/**
3202 * e1000_phy_reset_dsp - reset DSP
3203 * @hw: Struct containing variables accessed by shared code
3204 *
3205 * Resets the PHY's DSP
3206 */
3207static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3208{
3209	s32 ret_val;
 
3210
3211	do {
3212		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3213		if (ret_val)
3214			break;
3215		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3216		if (ret_val)
3217			break;
3218		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3219		if (ret_val)
3220			break;
3221		ret_val = E1000_SUCCESS;
3222	} while (0);
3223
3224	return ret_val;
3225}
3226
3227/**
3228 * e1000_phy_igp_get_info - get igp specific registers
3229 * @hw: Struct containing variables accessed by shared code
3230 * @phy_info: PHY information structure
3231 *
3232 * Get PHY information from various PHY registers for igp PHY only.
3233 */
3234static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3235				  struct e1000_phy_info *phy_info)
3236{
3237	s32 ret_val;
3238	u16 phy_data, min_length, max_length, average;
3239	e1000_rev_polarity polarity;
3240
 
 
3241	/* The downshift status is checked only once, after link is established,
3242	 * and it stored in the hw->speed_downgraded parameter.
3243	 */
3244	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3245
3246	/* IGP01E1000 does not need to support it. */
3247	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3248
3249	/* IGP01E1000 always correct polarity reversal */
3250	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3251
3252	/* Check polarity status */
3253	ret_val = e1000_check_polarity(hw, &polarity);
3254	if (ret_val)
3255		return ret_val;
3256
3257	phy_info->cable_polarity = polarity;
3258
3259	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3260	if (ret_val)
3261		return ret_val;
3262
3263	phy_info->mdix_mode =
3264	    (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data);
 
3265
3266	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268		/* Local/Remote Receiver Information are only valid @ 1000
3269		 * Mbps
3270		 */
3271		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272		if (ret_val)
3273			return ret_val;
3274
3275		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3276					       phy_data) ?
3277		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3279						phy_data) ?
3280		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281
3282		/* Get cable length */
3283		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284		if (ret_val)
3285			return ret_val;
3286
3287		/* Translate to old method */
3288		average = (max_length + min_length) / 2;
3289
3290		if (average <= e1000_igp_cable_length_50)
3291			phy_info->cable_length = e1000_cable_length_50;
3292		else if (average <= e1000_igp_cable_length_80)
3293			phy_info->cable_length = e1000_cable_length_50_80;
3294		else if (average <= e1000_igp_cable_length_110)
3295			phy_info->cable_length = e1000_cable_length_80_110;
3296		else if (average <= e1000_igp_cable_length_140)
3297			phy_info->cable_length = e1000_cable_length_110_140;
3298		else
3299			phy_info->cable_length = e1000_cable_length_140;
3300	}
3301
3302	return E1000_SUCCESS;
3303}
3304
3305/**
3306 * e1000_phy_m88_get_info - get m88 specific registers
3307 * @hw: Struct containing variables accessed by shared code
3308 * @phy_info: PHY information structure
3309 *
3310 * Get PHY information from various PHY registers for m88 PHY only.
3311 */
3312static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313				  struct e1000_phy_info *phy_info)
3314{
3315	s32 ret_val;
3316	u16 phy_data;
3317	e1000_rev_polarity polarity;
3318
 
 
3319	/* The downshift status is checked only once, after link is established,
3320	 * and it stored in the hw->speed_downgraded parameter.
3321	 */
3322	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323
3324	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325	if (ret_val)
3326		return ret_val;
3327
3328	phy_info->extended_10bt_distance =
3329	    FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ?
 
3330	    e1000_10bt_ext_dist_enable_lower :
3331	    e1000_10bt_ext_dist_enable_normal;
3332
3333	phy_info->polarity_correction =
3334	    FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ?
 
3335	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3336
3337	/* Check polarity status */
3338	ret_val = e1000_check_polarity(hw, &polarity);
3339	if (ret_val)
3340		return ret_val;
3341	phy_info->cable_polarity = polarity;
3342
3343	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3344	if (ret_val)
3345		return ret_val;
3346
3347	phy_info->mdix_mode =
3348	    (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data);
 
3349
3350	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3351		/* Cable Length Estimation and Local/Remote Receiver Information
3352		 * are only valid at 1000 Mbps.
3353		 */
3354		phy_info->cable_length =
3355		    (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH,
3356						  phy_data);
 
3357
3358		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3359		if (ret_val)
3360			return ret_val;
3361
3362		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3363					       phy_data) ?
3364		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3365		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3366						phy_data) ?
3367		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3368	}
3369
3370	return E1000_SUCCESS;
3371}
3372
3373/**
3374 * e1000_phy_get_info - request phy info
3375 * @hw: Struct containing variables accessed by shared code
3376 * @phy_info: PHY information structure
3377 *
3378 * Get PHY information from various PHY registers
3379 */
3380s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3381{
3382	s32 ret_val;
3383	u16 phy_data;
3384
 
 
3385	phy_info->cable_length = e1000_cable_length_undefined;
3386	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3387	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3388	phy_info->downshift = e1000_downshift_undefined;
3389	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3390	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3391	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3392	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3393
3394	if (hw->media_type != e1000_media_type_copper) {
3395		e_dbg("PHY info is only valid for copper media\n");
3396		return -E1000_ERR_CONFIG;
3397	}
3398
3399	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3400	if (ret_val)
3401		return ret_val;
3402
3403	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404	if (ret_val)
3405		return ret_val;
3406
3407	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3408		e_dbg("PHY info is only valid if link is up\n");
3409		return -E1000_ERR_CONFIG;
3410	}
3411
3412	if (hw->phy_type == e1000_phy_igp)
3413		return e1000_phy_igp_get_info(hw, phy_info);
3414	else if ((hw->phy_type == e1000_phy_8211) ||
3415		 (hw->phy_type == e1000_phy_8201))
3416		return E1000_SUCCESS;
3417	else
3418		return e1000_phy_m88_get_info(hw, phy_info);
3419}
3420
3421s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3422{
 
 
3423	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3424		e_dbg("Invalid MDI setting detected\n");
3425		hw->mdix = 1;
3426		return -E1000_ERR_CONFIG;
3427	}
3428	return E1000_SUCCESS;
3429}
3430
3431/**
3432 * e1000_init_eeprom_params - initialize sw eeprom vars
3433 * @hw: Struct containing variables accessed by shared code
3434 *
3435 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3436 * is configured.
3437 */
3438s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3439{
3440	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441	u32 eecd = er32(EECD);
3442	s32 ret_val = E1000_SUCCESS;
3443	u16 eeprom_size;
3444
 
 
3445	switch (hw->mac_type) {
3446	case e1000_82542_rev2_0:
3447	case e1000_82542_rev2_1:
3448	case e1000_82543:
3449	case e1000_82544:
3450		eeprom->type = e1000_eeprom_microwire;
3451		eeprom->word_size = 64;
3452		eeprom->opcode_bits = 3;
3453		eeprom->address_bits = 6;
3454		eeprom->delay_usec = 50;
3455		break;
3456	case e1000_82540:
3457	case e1000_82545:
3458	case e1000_82545_rev_3:
3459	case e1000_82546:
3460	case e1000_82546_rev_3:
3461		eeprom->type = e1000_eeprom_microwire;
3462		eeprom->opcode_bits = 3;
3463		eeprom->delay_usec = 50;
3464		if (eecd & E1000_EECD_SIZE) {
3465			eeprom->word_size = 256;
3466			eeprom->address_bits = 8;
3467		} else {
3468			eeprom->word_size = 64;
3469			eeprom->address_bits = 6;
3470		}
3471		break;
3472	case e1000_82541:
3473	case e1000_82541_rev_2:
3474	case e1000_82547:
3475	case e1000_82547_rev_2:
3476		if (eecd & E1000_EECD_TYPE) {
3477			eeprom->type = e1000_eeprom_spi;
3478			eeprom->opcode_bits = 8;
3479			eeprom->delay_usec = 1;
3480			if (eecd & E1000_EECD_ADDR_BITS) {
3481				eeprom->page_size = 32;
3482				eeprom->address_bits = 16;
3483			} else {
3484				eeprom->page_size = 8;
3485				eeprom->address_bits = 8;
3486			}
3487		} else {
3488			eeprom->type = e1000_eeprom_microwire;
3489			eeprom->opcode_bits = 3;
3490			eeprom->delay_usec = 50;
3491			if (eecd & E1000_EECD_ADDR_BITS) {
3492				eeprom->word_size = 256;
3493				eeprom->address_bits = 8;
3494			} else {
3495				eeprom->word_size = 64;
3496				eeprom->address_bits = 6;
3497			}
3498		}
3499		break;
3500	default:
3501		break;
3502	}
3503
3504	if (eeprom->type == e1000_eeprom_spi) {
3505		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3506		 * 128B to 32KB (incremented by powers of 2).
3507		 */
3508		/* Set to default value for initial eeprom read. */
3509		eeprom->word_size = 64;
3510		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3511		if (ret_val)
3512			return ret_val;
3513		eeprom_size =
3514		    FIELD_GET(EEPROM_SIZE_MASK, eeprom_size);
3515		/* 256B eeprom size was not supported in earlier hardware, so we
3516		 * bump eeprom_size up one to ensure that "1" (which maps to
3517		 * 256B) is never the result used in the shifting logic below.
3518		 */
3519		if (eeprom_size)
3520			eeprom_size++;
3521
3522		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3523	}
3524	return ret_val;
3525}
3526
3527/**
3528 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3529 * @hw: Struct containing variables accessed by shared code
3530 * @eecd: EECD's current value
3531 */
3532static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3533{
3534	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3535	 * wait <delay> microseconds.
3536	 */
3537	*eecd = *eecd | E1000_EECD_SK;
3538	ew32(EECD, *eecd);
3539	E1000_WRITE_FLUSH();
3540	udelay(hw->eeprom.delay_usec);
3541}
3542
3543/**
3544 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3545 * @hw: Struct containing variables accessed by shared code
3546 * @eecd: EECD's current value
3547 */
3548static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3549{
3550	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3551	 * then wait 50 microseconds.
3552	 */
3553	*eecd = *eecd & ~E1000_EECD_SK;
3554	ew32(EECD, *eecd);
3555	E1000_WRITE_FLUSH();
3556	udelay(hw->eeprom.delay_usec);
3557}
3558
3559/**
3560 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3561 * @hw: Struct containing variables accessed by shared code
3562 * @data: data to send to the EEPROM
3563 * @count: number of bits to shift out
3564 */
3565static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3566{
3567	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3568	u32 eecd;
3569	u32 mask;
3570
3571	/* We need to shift "count" bits out to the EEPROM. So, value in the
3572	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3573	 * In order to do this, "data" must be broken down into bits.
3574	 */
3575	mask = 0x01 << (count - 1);
3576	eecd = er32(EECD);
3577	if (eeprom->type == e1000_eeprom_microwire)
3578		eecd &= ~E1000_EECD_DO;
3579	else if (eeprom->type == e1000_eeprom_spi)
3580		eecd |= E1000_EECD_DO;
3581
3582	do {
3583		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3584		 * "1", and then raising and then lowering the clock (the SK bit
3585		 * controls the clock input to the EEPROM).  A "0" is shifted
3586		 * out to the EEPROM by setting "DI" to "0" and then raising and
3587		 * then lowering the clock.
3588		 */
3589		eecd &= ~E1000_EECD_DI;
3590
3591		if (data & mask)
3592			eecd |= E1000_EECD_DI;
3593
3594		ew32(EECD, eecd);
3595		E1000_WRITE_FLUSH();
3596
3597		udelay(eeprom->delay_usec);
3598
3599		e1000_raise_ee_clk(hw, &eecd);
3600		e1000_lower_ee_clk(hw, &eecd);
3601
3602		mask = mask >> 1;
3603
3604	} while (mask);
3605
3606	/* We leave the "DI" bit set to "0" when we leave this routine. */
3607	eecd &= ~E1000_EECD_DI;
3608	ew32(EECD, eecd);
3609}
3610
3611/**
3612 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3613 * @hw: Struct containing variables accessed by shared code
3614 * @count: number of bits to shift in
3615 */
3616static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3617{
3618	u32 eecd;
3619	u32 i;
3620	u16 data;
3621
3622	/* In order to read a register from the EEPROM, we need to shift 'count'
3623	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3624	 * input to the EEPROM (setting the SK bit), and then reading the value
3625	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3626	 * should always be clear.
3627	 */
3628
3629	eecd = er32(EECD);
3630
3631	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3632	data = 0;
3633
3634	for (i = 0; i < count; i++) {
3635		data = data << 1;
3636		e1000_raise_ee_clk(hw, &eecd);
3637
3638		eecd = er32(EECD);
3639
3640		eecd &= ~(E1000_EECD_DI);
3641		if (eecd & E1000_EECD_DO)
3642			data |= 1;
3643
3644		e1000_lower_ee_clk(hw, &eecd);
3645	}
3646
3647	return data;
3648}
3649
3650/**
3651 * e1000_acquire_eeprom - Prepares EEPROM for access
3652 * @hw: Struct containing variables accessed by shared code
3653 *
3654 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655 * function should be called before issuing a command to the EEPROM.
3656 */
3657static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3658{
3659	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3660	u32 eecd, i = 0;
3661
 
 
3662	eecd = er32(EECD);
3663
3664	/* Request EEPROM Access */
3665	if (hw->mac_type > e1000_82544) {
3666		eecd |= E1000_EECD_REQ;
3667		ew32(EECD, eecd);
3668		eecd = er32(EECD);
3669		while ((!(eecd & E1000_EECD_GNT)) &&
3670		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3671			i++;
3672			udelay(5);
3673			eecd = er32(EECD);
3674		}
3675		if (!(eecd & E1000_EECD_GNT)) {
3676			eecd &= ~E1000_EECD_REQ;
3677			ew32(EECD, eecd);
3678			e_dbg("Could not acquire EEPROM grant\n");
3679			return -E1000_ERR_EEPROM;
3680		}
3681	}
3682
3683	/* Setup EEPROM for Read/Write */
3684
3685	if (eeprom->type == e1000_eeprom_microwire) {
3686		/* Clear SK and DI */
3687		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3688		ew32(EECD, eecd);
3689
3690		/* Set CS */
3691		eecd |= E1000_EECD_CS;
3692		ew32(EECD, eecd);
3693	} else if (eeprom->type == e1000_eeprom_spi) {
3694		/* Clear SK and CS */
3695		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3696		ew32(EECD, eecd);
3697		E1000_WRITE_FLUSH();
3698		udelay(1);
3699	}
3700
3701	return E1000_SUCCESS;
3702}
3703
3704/**
3705 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3706 * @hw: Struct containing variables accessed by shared code
3707 */
3708static void e1000_standby_eeprom(struct e1000_hw *hw)
3709{
3710	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3711	u32 eecd;
3712
3713	eecd = er32(EECD);
3714
3715	if (eeprom->type == e1000_eeprom_microwire) {
3716		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3717		ew32(EECD, eecd);
3718		E1000_WRITE_FLUSH();
3719		udelay(eeprom->delay_usec);
3720
3721		/* Clock high */
3722		eecd |= E1000_EECD_SK;
3723		ew32(EECD, eecd);
3724		E1000_WRITE_FLUSH();
3725		udelay(eeprom->delay_usec);
3726
3727		/* Select EEPROM */
3728		eecd |= E1000_EECD_CS;
3729		ew32(EECD, eecd);
3730		E1000_WRITE_FLUSH();
3731		udelay(eeprom->delay_usec);
3732
3733		/* Clock low */
3734		eecd &= ~E1000_EECD_SK;
3735		ew32(EECD, eecd);
3736		E1000_WRITE_FLUSH();
3737		udelay(eeprom->delay_usec);
3738	} else if (eeprom->type == e1000_eeprom_spi) {
3739		/* Toggle CS to flush commands */
3740		eecd |= E1000_EECD_CS;
3741		ew32(EECD, eecd);
3742		E1000_WRITE_FLUSH();
3743		udelay(eeprom->delay_usec);
3744		eecd &= ~E1000_EECD_CS;
3745		ew32(EECD, eecd);
3746		E1000_WRITE_FLUSH();
3747		udelay(eeprom->delay_usec);
3748	}
3749}
3750
3751/**
3752 * e1000_release_eeprom - drop chip select
3753 * @hw: Struct containing variables accessed by shared code
3754 *
3755 * Terminates a command by inverting the EEPROM's chip select pin
3756 */
3757static void e1000_release_eeprom(struct e1000_hw *hw)
3758{
3759	u32 eecd;
3760
 
 
3761	eecd = er32(EECD);
3762
3763	if (hw->eeprom.type == e1000_eeprom_spi) {
3764		eecd |= E1000_EECD_CS;	/* Pull CS high */
3765		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3766
3767		ew32(EECD, eecd);
3768		E1000_WRITE_FLUSH();
3769
3770		udelay(hw->eeprom.delay_usec);
3771	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3772		/* cleanup eeprom */
3773
3774		/* CS on Microwire is active-high */
3775		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3776
3777		ew32(EECD, eecd);
3778
3779		/* Rising edge of clock */
3780		eecd |= E1000_EECD_SK;
3781		ew32(EECD, eecd);
3782		E1000_WRITE_FLUSH();
3783		udelay(hw->eeprom.delay_usec);
3784
3785		/* Falling edge of clock */
3786		eecd &= ~E1000_EECD_SK;
3787		ew32(EECD, eecd);
3788		E1000_WRITE_FLUSH();
3789		udelay(hw->eeprom.delay_usec);
3790	}
3791
3792	/* Stop requesting EEPROM access */
3793	if (hw->mac_type > e1000_82544) {
3794		eecd &= ~E1000_EECD_REQ;
3795		ew32(EECD, eecd);
3796	}
3797}
3798
3799/**
3800 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3801 * @hw: Struct containing variables accessed by shared code
3802 */
3803static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3804{
3805	u16 retry_count = 0;
3806	u8 spi_stat_reg;
3807
 
 
3808	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3809	 * EEPROM will signal that the command has been completed by clearing
3810	 * bit 0 of the internal status register.  If it's not cleared within
3811	 * 5 milliseconds, then error out.
3812	 */
3813	retry_count = 0;
3814	do {
3815		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3816					hw->eeprom.opcode_bits);
3817		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3818		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3819			break;
3820
3821		udelay(5);
3822		retry_count += 5;
3823
3824		e1000_standby_eeprom(hw);
3825	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3826
3827	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3828	 * only 0-5mSec on 5V devices)
3829	 */
3830	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3831		e_dbg("SPI EEPROM Status error\n");
3832		return -E1000_ERR_EEPROM;
3833	}
3834
3835	return E1000_SUCCESS;
3836}
3837
3838/**
3839 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3840 * @hw: Struct containing variables accessed by shared code
3841 * @offset: offset of  word in the EEPROM to read
3842 * @data: word read from the EEPROM
3843 * @words: number of words to read
3844 */
3845s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3846{
3847	s32 ret;
3848
3849	mutex_lock(&e1000_eeprom_lock);
3850	ret = e1000_do_read_eeprom(hw, offset, words, data);
3851	mutex_unlock(&e1000_eeprom_lock);
3852	return ret;
3853}
3854
3855static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3856				u16 *data)
3857{
3858	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3859	u32 i = 0;
3860
 
 
3861	if (hw->mac_type == e1000_ce4100) {
3862		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3863				      data);
3864		return E1000_SUCCESS;
3865	}
3866
3867	/* A check for invalid values:  offset too large, too many words, and
3868	 * not enough words.
 
 
 
 
3869	 */
3870	if ((offset >= eeprom->word_size) ||
3871	    (words > eeprom->word_size - offset) ||
3872	    (words == 0)) {
3873		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3874		      "size = %d\n", offset, eeprom->word_size);
3875		return -E1000_ERR_EEPROM;
3876	}
3877
3878	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3879	 * directly. In this case, we need to acquire the EEPROM so that
3880	 * FW or other port software does not interrupt.
3881	 */
3882	/* Prepare the EEPROM for bit-bang reading */
3883	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3884		return -E1000_ERR_EEPROM;
3885
3886	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3887	 * acquired the EEPROM at this point, so any returns should release it
3888	 */
3889	if (eeprom->type == e1000_eeprom_spi) {
3890		u16 word_in;
3891		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3892
3893		if (e1000_spi_eeprom_ready(hw)) {
3894			e1000_release_eeprom(hw);
3895			return -E1000_ERR_EEPROM;
3896		}
3897
3898		e1000_standby_eeprom(hw);
3899
3900		/* Some SPI eeproms use the 8th address bit embedded in the
3901		 * opcode
3902		 */
3903		if ((eeprom->address_bits == 8) && (offset >= 128))
3904			read_opcode |= EEPROM_A8_OPCODE_SPI;
3905
3906		/* Send the READ command (opcode + addr)  */
3907		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3908		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3909					eeprom->address_bits);
3910
3911		/* Read the data.  The address of the eeprom internally
3912		 * increments with each byte (spi) being read, saving on the
3913		 * overhead of eeprom setup and tear-down.  The address counter
3914		 * will roll over if reading beyond the size of the eeprom, thus
3915		 * allowing the entire memory to be read starting from any
3916		 * offset.
3917		 */
3918		for (i = 0; i < words; i++) {
3919			word_in = e1000_shift_in_ee_bits(hw, 16);
3920			data[i] = (word_in >> 8) | (word_in << 8);
3921		}
3922	} else if (eeprom->type == e1000_eeprom_microwire) {
3923		for (i = 0; i < words; i++) {
3924			/* Send the READ command (opcode + addr)  */
3925			e1000_shift_out_ee_bits(hw,
3926						EEPROM_READ_OPCODE_MICROWIRE,
3927						eeprom->opcode_bits);
3928			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3929						eeprom->address_bits);
3930
3931			/* Read the data.  For microwire, each word requires the
3932			 * overhead of eeprom setup and tear-down.
3933			 */
3934			data[i] = e1000_shift_in_ee_bits(hw, 16);
3935			e1000_standby_eeprom(hw);
3936			cond_resched();
3937		}
3938	}
3939
3940	/* End this read operation */
3941	e1000_release_eeprom(hw);
3942
3943	return E1000_SUCCESS;
3944}
3945
3946/**
3947 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3948 * @hw: Struct containing variables accessed by shared code
3949 *
3950 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3951 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3952 * valid.
3953 */
3954s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3955{
3956	u16 checksum = 0;
3957	u16 i, eeprom_data;
3958
 
 
3959	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3960		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3961			e_dbg("EEPROM Read Error\n");
3962			return -E1000_ERR_EEPROM;
3963		}
3964		checksum += eeprom_data;
3965	}
3966
3967#ifdef CONFIG_PARISC
3968	/* This is a signature and not a checksum on HP c8000 */
3969	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3970		return E1000_SUCCESS;
3971
3972#endif
3973	if (checksum == (u16)EEPROM_SUM)
3974		return E1000_SUCCESS;
3975	else {
3976		e_dbg("EEPROM Checksum Invalid\n");
3977		return -E1000_ERR_EEPROM;
3978	}
3979}
3980
3981/**
3982 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3983 * @hw: Struct containing variables accessed by shared code
3984 *
3985 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3986 * Writes the difference to word offset 63 of the EEPROM.
3987 */
3988s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3989{
3990	u16 checksum = 0;
3991	u16 i, eeprom_data;
3992
 
 
3993	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3994		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995			e_dbg("EEPROM Read Error\n");
3996			return -E1000_ERR_EEPROM;
3997		}
3998		checksum += eeprom_data;
3999	}
4000	checksum = (u16)EEPROM_SUM - checksum;
4001	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4002		e_dbg("EEPROM Write Error\n");
4003		return -E1000_ERR_EEPROM;
4004	}
4005	return E1000_SUCCESS;
4006}
4007
4008/**
4009 * e1000_write_eeprom - write words to the different EEPROM types.
4010 * @hw: Struct containing variables accessed by shared code
4011 * @offset: offset within the EEPROM to be written to
4012 * @words: number of words to write
4013 * @data: 16 bit word to be written to the EEPROM
4014 *
4015 * If e1000_update_eeprom_checksum is not called after this function, the
4016 * EEPROM will most likely contain an invalid checksum.
4017 */
4018s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4019{
4020	s32 ret;
4021
4022	mutex_lock(&e1000_eeprom_lock);
4023	ret = e1000_do_write_eeprom(hw, offset, words, data);
4024	mutex_unlock(&e1000_eeprom_lock);
4025	return ret;
4026}
4027
4028static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4029				 u16 *data)
4030{
4031	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4032	s32 status = 0;
4033
 
 
4034	if (hw->mac_type == e1000_ce4100) {
4035		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4036				       data);
4037		return E1000_SUCCESS;
4038	}
4039
4040	/* A check for invalid values:  offset too large, too many words, and
4041	 * not enough words.
 
 
 
 
4042	 */
4043	if ((offset >= eeprom->word_size) ||
4044	    (words > eeprom->word_size - offset) ||
4045	    (words == 0)) {
4046		e_dbg("\"words\" parameter out of bounds\n");
4047		return -E1000_ERR_EEPROM;
4048	}
4049
4050	/* Prepare the EEPROM for writing  */
4051	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4052		return -E1000_ERR_EEPROM;
4053
4054	if (eeprom->type == e1000_eeprom_microwire) {
4055		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4056	} else {
4057		status = e1000_write_eeprom_spi(hw, offset, words, data);
4058		msleep(10);
4059	}
4060
4061	/* Done with writing */
4062	e1000_release_eeprom(hw);
4063
4064	return status;
4065}
4066
4067/**
4068 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4069 * @hw: Struct containing variables accessed by shared code
4070 * @offset: offset within the EEPROM to be written to
4071 * @words: number of words to write
4072 * @data: pointer to array of 8 bit words to be written to the EEPROM
4073 */
4074static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4075				  u16 *data)
4076{
4077	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4078	u16 widx = 0;
4079
 
 
4080	while (widx < words) {
4081		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4082
4083		if (e1000_spi_eeprom_ready(hw))
4084			return -E1000_ERR_EEPROM;
4085
4086		e1000_standby_eeprom(hw);
4087		cond_resched();
4088
4089		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4090		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4091					eeprom->opcode_bits);
4092
4093		e1000_standby_eeprom(hw);
4094
4095		/* Some SPI eeproms use the 8th address bit embedded in the
4096		 * opcode
4097		 */
4098		if ((eeprom->address_bits == 8) && (offset >= 128))
4099			write_opcode |= EEPROM_A8_OPCODE_SPI;
4100
4101		/* Send the Write command (8-bit opcode + addr) */
4102		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4103
4104		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4105					eeprom->address_bits);
4106
4107		/* Send the data */
4108
4109		/* Loop to allow for up to whole page write (32 bytes) of
4110		 * eeprom
4111		 */
4112		while (widx < words) {
4113			u16 word_out = data[widx];
4114
4115			word_out = (word_out >> 8) | (word_out << 8);
4116			e1000_shift_out_ee_bits(hw, word_out, 16);
4117			widx++;
4118
4119			/* Some larger eeprom sizes are capable of a 32-byte
4120			 * PAGE WRITE operation, while the smaller eeproms are
4121			 * capable of an 8-byte PAGE WRITE operation.  Break the
4122			 * inner loop to pass new address
4123			 */
4124			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4125				e1000_standby_eeprom(hw);
4126				break;
4127			}
4128		}
4129	}
4130
4131	return E1000_SUCCESS;
4132}
4133
4134/**
4135 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4136 * @hw: Struct containing variables accessed by shared code
4137 * @offset: offset within the EEPROM to be written to
4138 * @words: number of words to write
4139 * @data: pointer to array of 8 bit words to be written to the EEPROM
4140 */
4141static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4142					u16 words, u16 *data)
4143{
4144	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4145	u32 eecd;
4146	u16 words_written = 0;
4147	u16 i = 0;
4148
 
 
4149	/* Send the write enable command to the EEPROM (3-bit opcode plus
4150	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4151	 * the 11 of the dummy address as part of the opcode than it is to shift
4152	 * it over the correct number of bits for the address.  This puts the
4153	 * EEPROM into write/erase mode.
4154	 */
4155	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4156				(u16)(eeprom->opcode_bits + 2));
4157
4158	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4159
4160	/* Prepare the EEPROM */
4161	e1000_standby_eeprom(hw);
4162
4163	while (words_written < words) {
4164		/* Send the Write command (3-bit opcode + addr) */
4165		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4166					eeprom->opcode_bits);
4167
4168		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4169					eeprom->address_bits);
4170
4171		/* Send the data */
4172		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4173
4174		/* Toggle the CS line.  This in effect tells the EEPROM to
4175		 * execute the previous command.
4176		 */
4177		e1000_standby_eeprom(hw);
4178
4179		/* Read DO repeatedly until it is high (equal to '1').  The
4180		 * EEPROM will signal that the command has been completed by
4181		 * raising the DO signal. If DO does not go high in 10
4182		 * milliseconds, then error out.
4183		 */
4184		for (i = 0; i < 200; i++) {
4185			eecd = er32(EECD);
4186			if (eecd & E1000_EECD_DO)
4187				break;
4188			udelay(50);
4189		}
4190		if (i == 200) {
4191			e_dbg("EEPROM Write did not complete\n");
4192			return -E1000_ERR_EEPROM;
4193		}
4194
4195		/* Recover from write */
4196		e1000_standby_eeprom(hw);
4197		cond_resched();
4198
4199		words_written++;
4200	}
4201
4202	/* Send the write disable command to the EEPROM (3-bit opcode plus
4203	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4204	 * the 10 of the dummy address as part of the opcode than it is to shift
4205	 * it over the correct number of bits for the address.  This takes the
4206	 * EEPROM out of write/erase mode.
4207	 */
4208	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4209				(u16)(eeprom->opcode_bits + 2));
4210
4211	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4212
4213	return E1000_SUCCESS;
4214}
4215
4216/**
4217 * e1000_read_mac_addr - read the adapters MAC from eeprom
4218 * @hw: Struct containing variables accessed by shared code
4219 *
4220 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4221 * second function of dual function devices
4222 */
4223s32 e1000_read_mac_addr(struct e1000_hw *hw)
4224{
4225	u16 offset;
4226	u16 eeprom_data, i;
4227
 
 
4228	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4229		offset = i >> 1;
4230		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4231			e_dbg("EEPROM Read Error\n");
4232			return -E1000_ERR_EEPROM;
4233		}
4234		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4235		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4236	}
4237
4238	switch (hw->mac_type) {
4239	default:
4240		break;
4241	case e1000_82546:
4242	case e1000_82546_rev_3:
4243		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4244			hw->perm_mac_addr[5] ^= 0x01;
4245		break;
4246	}
4247
4248	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4249		hw->mac_addr[i] = hw->perm_mac_addr[i];
4250	return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_init_rx_addrs - Initializes receive address filters.
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Places the MAC address in receive address register 0 and clears the rest
4258 * of the receive address registers. Clears the multicast table. Assumes
4259 * the receiver is in reset when the routine is called.
4260 */
4261static void e1000_init_rx_addrs(struct e1000_hw *hw)
4262{
4263	u32 i;
4264	u32 rar_num;
4265
 
 
4266	/* Setup the receive address. */
4267	e_dbg("Programming MAC Address into RAR[0]\n");
4268
4269	e1000_rar_set(hw, hw->mac_addr, 0);
4270
4271	rar_num = E1000_RAR_ENTRIES;
4272
4273	/* Zero out the following 14 receive addresses. RAR[15] is for
4274	 * manageability
4275	 */
4276	e_dbg("Clearing RAR[1-14]\n");
4277	for (i = 1; i < rar_num; i++) {
4278		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4279		E1000_WRITE_FLUSH();
4280		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4281		E1000_WRITE_FLUSH();
4282	}
4283}
4284
4285/**
4286 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4287 * @hw: Struct containing variables accessed by shared code
4288 * @mc_addr: the multicast address to hash
4289 */
4290u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4291{
4292	u32 hash_value = 0;
4293
4294	/* The portion of the address that is used for the hash table is
4295	 * determined by the mc_filter_type setting.
4296	 */
4297	switch (hw->mc_filter_type) {
4298		/* [0] [1] [2] [3] [4] [5]
4299		 * 01  AA  00  12  34  56
4300		 * LSB                 MSB
4301		 */
4302	case 0:
4303		/* [47:36] i.e. 0x563 for above example address */
4304		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4305		break;
4306	case 1:
4307		/* [46:35] i.e. 0xAC6 for above example address */
4308		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4309		break;
4310	case 2:
4311		/* [45:34] i.e. 0x5D8 for above example address */
4312		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4313		break;
4314	case 3:
4315		/* [43:32] i.e. 0x634 for above example address */
4316		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4317		break;
4318	}
4319
4320	hash_value &= 0xFFF;
4321	return hash_value;
4322}
4323
4324/**
4325 * e1000_rar_set - Puts an ethernet address into a receive address register.
4326 * @hw: Struct containing variables accessed by shared code
4327 * @addr: Address to put into receive address register
4328 * @index: Receive address register to write
4329 */
4330void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4331{
4332	u32 rar_low, rar_high;
4333
4334	/* HW expects these in little endian so we reverse the byte order
4335	 * from network order (big endian) to little endian
4336	 */
4337	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4338		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4339	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4340
4341	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4342	 * unit hang.
4343	 *
4344	 * Description:
4345	 * If there are any Rx frames queued up or otherwise present in the HW
4346	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4347	 * hang.  To work around this issue, we have to disable receives and
4348	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4349	 * redirect all Rx traffic to manageability and then reset the HW.
4350	 * This flushes away Rx frames, and (since the redirections to
4351	 * manageability persists across resets) keeps new ones from coming in
4352	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4353	 * addresses and undo the re-direction to manageability.
4354	 * Now, frames are coming in again, but the MAC won't accept them, so
4355	 * far so good.  We now proceed to initialize RSS (if necessary) and
4356	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4357	 * on our merry way.
4358	 */
4359	switch (hw->mac_type) {
4360	default:
4361		/* Indicate to hardware the Address is Valid. */
4362		rar_high |= E1000_RAH_AV;
4363		break;
4364	}
4365
4366	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4367	E1000_WRITE_FLUSH();
4368	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4369	E1000_WRITE_FLUSH();
4370}
4371
4372/**
4373 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4374 * @hw: Struct containing variables accessed by shared code
4375 * @offset: Offset in VLAN filter table to write
4376 * @value: Value to write into VLAN filter table
4377 */
4378void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4379{
4380	u32 temp;
4381
4382	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4383		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4384		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4385		E1000_WRITE_FLUSH();
4386		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4387		E1000_WRITE_FLUSH();
4388	} else {
4389		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4390		E1000_WRITE_FLUSH();
4391	}
4392}
4393
4394/**
4395 * e1000_clear_vfta - Clears the VLAN filter table
4396 * @hw: Struct containing variables accessed by shared code
4397 */
4398static void e1000_clear_vfta(struct e1000_hw *hw)
4399{
4400	u32 offset;
 
 
 
4401
4402	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4403		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 
 
 
 
4404		E1000_WRITE_FLUSH();
4405	}
4406}
4407
4408static s32 e1000_id_led_init(struct e1000_hw *hw)
4409{
4410	u32 ledctl;
4411	const u32 ledctl_mask = 0x000000FF;
4412	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4413	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4414	u16 eeprom_data, i, temp;
4415	const u16 led_mask = 0x0F;
4416
 
 
4417	if (hw->mac_type < e1000_82540) {
4418		/* Nothing to do */
4419		return E1000_SUCCESS;
4420	}
4421
4422	ledctl = er32(LEDCTL);
4423	hw->ledctl_default = ledctl;
4424	hw->ledctl_mode1 = hw->ledctl_default;
4425	hw->ledctl_mode2 = hw->ledctl_default;
4426
4427	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4428		e_dbg("EEPROM Read Error\n");
4429		return -E1000_ERR_EEPROM;
4430	}
4431
4432	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4433	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4434		eeprom_data = ID_LED_DEFAULT;
4435	}
4436
4437	for (i = 0; i < 4; i++) {
4438		temp = (eeprom_data >> (i << 2)) & led_mask;
4439		switch (temp) {
4440		case ID_LED_ON1_DEF2:
4441		case ID_LED_ON1_ON2:
4442		case ID_LED_ON1_OFF2:
4443			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4444			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4445			break;
4446		case ID_LED_OFF1_DEF2:
4447		case ID_LED_OFF1_ON2:
4448		case ID_LED_OFF1_OFF2:
4449			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4450			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4451			break;
4452		default:
4453			/* Do nothing */
4454			break;
4455		}
4456		switch (temp) {
4457		case ID_LED_DEF1_ON2:
4458		case ID_LED_ON1_ON2:
4459		case ID_LED_OFF1_ON2:
4460			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4461			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4462			break;
4463		case ID_LED_DEF1_OFF2:
4464		case ID_LED_ON1_OFF2:
4465		case ID_LED_OFF1_OFF2:
4466			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4467			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4468			break;
4469		default:
4470			/* Do nothing */
4471			break;
4472		}
4473	}
4474	return E1000_SUCCESS;
4475}
4476
4477/**
4478 * e1000_setup_led
4479 * @hw: Struct containing variables accessed by shared code
4480 *
4481 * Prepares SW controlable LED for use and saves the current state of the LED.
4482 */
4483s32 e1000_setup_led(struct e1000_hw *hw)
4484{
4485	u32 ledctl;
4486	s32 ret_val = E1000_SUCCESS;
4487
 
 
4488	switch (hw->mac_type) {
4489	case e1000_82542_rev2_0:
4490	case e1000_82542_rev2_1:
4491	case e1000_82543:
4492	case e1000_82544:
4493		/* No setup necessary */
4494		break;
4495	case e1000_82541:
4496	case e1000_82547:
4497	case e1000_82541_rev_2:
4498	case e1000_82547_rev_2:
4499		/* Turn off PHY Smart Power Down (if enabled) */
4500		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4501					     &hw->phy_spd_default);
4502		if (ret_val)
4503			return ret_val;
4504		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505					      (u16)(hw->phy_spd_default &
4506						     ~IGP01E1000_GMII_SPD));
4507		if (ret_val)
4508			return ret_val;
4509		fallthrough;
4510	default:
4511		if (hw->media_type == e1000_media_type_fiber) {
4512			ledctl = er32(LEDCTL);
4513			/* Save current LEDCTL settings */
4514			hw->ledctl_default = ledctl;
4515			/* Turn off LED0 */
4516			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4517				    E1000_LEDCTL_LED0_BLINK |
4518				    E1000_LEDCTL_LED0_MODE_MASK);
4519			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4520				   E1000_LEDCTL_LED0_MODE_SHIFT);
4521			ew32(LEDCTL, ledctl);
4522		} else if (hw->media_type == e1000_media_type_copper)
4523			ew32(LEDCTL, hw->ledctl_mode1);
4524		break;
4525	}
4526
4527	return E1000_SUCCESS;
4528}
4529
4530/**
4531 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4532 * @hw: Struct containing variables accessed by shared code
4533 */
4534s32 e1000_cleanup_led(struct e1000_hw *hw)
4535{
4536	s32 ret_val = E1000_SUCCESS;
4537
 
 
4538	switch (hw->mac_type) {
4539	case e1000_82542_rev2_0:
4540	case e1000_82542_rev2_1:
4541	case e1000_82543:
4542	case e1000_82544:
4543		/* No cleanup necessary */
4544		break;
4545	case e1000_82541:
4546	case e1000_82547:
4547	case e1000_82541_rev_2:
4548	case e1000_82547_rev_2:
4549		/* Turn on PHY Smart Power Down (if previously enabled) */
4550		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551					      hw->phy_spd_default);
4552		if (ret_val)
4553			return ret_val;
4554		fallthrough;
4555	default:
4556		/* Restore LEDCTL settings */
4557		ew32(LEDCTL, hw->ledctl_default);
4558		break;
4559	}
4560
4561	return E1000_SUCCESS;
4562}
4563
4564/**
4565 * e1000_led_on - Turns on the software controllable LED
4566 * @hw: Struct containing variables accessed by shared code
4567 */
4568s32 e1000_led_on(struct e1000_hw *hw)
4569{
4570	u32 ctrl = er32(CTRL);
4571
 
 
4572	switch (hw->mac_type) {
4573	case e1000_82542_rev2_0:
4574	case e1000_82542_rev2_1:
4575	case e1000_82543:
4576		/* Set SW Defineable Pin 0 to turn on the LED */
4577		ctrl |= E1000_CTRL_SWDPIN0;
4578		ctrl |= E1000_CTRL_SWDPIO0;
4579		break;
4580	case e1000_82544:
4581		if (hw->media_type == e1000_media_type_fiber) {
4582			/* Set SW Defineable Pin 0 to turn on the LED */
4583			ctrl |= E1000_CTRL_SWDPIN0;
4584			ctrl |= E1000_CTRL_SWDPIO0;
4585		} else {
4586			/* Clear SW Defineable Pin 0 to turn on the LED */
4587			ctrl &= ~E1000_CTRL_SWDPIN0;
4588			ctrl |= E1000_CTRL_SWDPIO0;
4589		}
4590		break;
4591	default:
4592		if (hw->media_type == e1000_media_type_fiber) {
4593			/* Clear SW Defineable Pin 0 to turn on the LED */
4594			ctrl &= ~E1000_CTRL_SWDPIN0;
4595			ctrl |= E1000_CTRL_SWDPIO0;
4596		} else if (hw->media_type == e1000_media_type_copper) {
4597			ew32(LEDCTL, hw->ledctl_mode2);
4598			return E1000_SUCCESS;
4599		}
4600		break;
4601	}
4602
4603	ew32(CTRL, ctrl);
4604
4605	return E1000_SUCCESS;
4606}
4607
4608/**
4609 * e1000_led_off - Turns off the software controllable LED
4610 * @hw: Struct containing variables accessed by shared code
4611 */
4612s32 e1000_led_off(struct e1000_hw *hw)
4613{
4614	u32 ctrl = er32(CTRL);
4615
 
 
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620		/* Clear SW Defineable Pin 0 to turn off the LED */
4621		ctrl &= ~E1000_CTRL_SWDPIN0;
4622		ctrl |= E1000_CTRL_SWDPIO0;
4623		break;
4624	case e1000_82544:
4625		if (hw->media_type == e1000_media_type_fiber) {
4626			/* Clear SW Defineable Pin 0 to turn off the LED */
4627			ctrl &= ~E1000_CTRL_SWDPIN0;
4628			ctrl |= E1000_CTRL_SWDPIO0;
4629		} else {
4630			/* Set SW Defineable Pin 0 to turn off the LED */
4631			ctrl |= E1000_CTRL_SWDPIN0;
4632			ctrl |= E1000_CTRL_SWDPIO0;
4633		}
4634		break;
4635	default:
4636		if (hw->media_type == e1000_media_type_fiber) {
4637			/* Set SW Defineable Pin 0 to turn off the LED */
4638			ctrl |= E1000_CTRL_SWDPIN0;
4639			ctrl |= E1000_CTRL_SWDPIO0;
4640		} else if (hw->media_type == e1000_media_type_copper) {
4641			ew32(LEDCTL, hw->ledctl_mode1);
4642			return E1000_SUCCESS;
4643		}
4644		break;
4645	}
4646
4647	ew32(CTRL, ctrl);
4648
4649	return E1000_SUCCESS;
4650}
4651
4652/**
4653 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4654 * @hw: Struct containing variables accessed by shared code
4655 */
4656static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4657{
4658	er32(CRCERRS);
4659	er32(SYMERRS);
4660	er32(MPC);
4661	er32(SCC);
4662	er32(ECOL);
4663	er32(MCC);
4664	er32(LATECOL);
4665	er32(COLC);
4666	er32(DC);
4667	er32(SEC);
4668	er32(RLEC);
4669	er32(XONRXC);
4670	er32(XONTXC);
4671	er32(XOFFRXC);
4672	er32(XOFFTXC);
4673	er32(FCRUC);
4674
4675	er32(PRC64);
4676	er32(PRC127);
4677	er32(PRC255);
4678	er32(PRC511);
4679	er32(PRC1023);
4680	er32(PRC1522);
4681
4682	er32(GPRC);
4683	er32(BPRC);
4684	er32(MPRC);
4685	er32(GPTC);
4686	er32(GORCL);
4687	er32(GORCH);
4688	er32(GOTCL);
4689	er32(GOTCH);
4690	er32(RNBC);
4691	er32(RUC);
4692	er32(RFC);
4693	er32(ROC);
4694	er32(RJC);
4695	er32(TORL);
4696	er32(TORH);
4697	er32(TOTL);
4698	er32(TOTH);
4699	er32(TPR);
4700	er32(TPT);
4701
4702	er32(PTC64);
4703	er32(PTC127);
4704	er32(PTC255);
4705	er32(PTC511);
4706	er32(PTC1023);
4707	er32(PTC1522);
4708
4709	er32(MPTC);
4710	er32(BPTC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4711
4712	if (hw->mac_type < e1000_82543)
4713		return;
4714
4715	er32(ALGNERRC);
4716	er32(RXERRC);
4717	er32(TNCRS);
4718	er32(CEXTERR);
4719	er32(TSCTC);
4720	er32(TSCTFC);
4721
4722	if (hw->mac_type <= e1000_82544)
4723		return;
4724
4725	er32(MGTPRC);
4726	er32(MGTPDC);
4727	er32(MGTPTC);
4728}
4729
4730/**
4731 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4732 * @hw: Struct containing variables accessed by shared code
4733 *
4734 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4735 * hw->ifs_params_forced to true. However, you must initialize hw->
4736 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4737 * before calling this function.
4738 */
4739void e1000_reset_adaptive(struct e1000_hw *hw)
4740{
 
 
4741	if (hw->adaptive_ifs) {
4742		if (!hw->ifs_params_forced) {
4743			hw->current_ifs_val = 0;
4744			hw->ifs_min_val = IFS_MIN;
4745			hw->ifs_max_val = IFS_MAX;
4746			hw->ifs_step_size = IFS_STEP;
4747			hw->ifs_ratio = IFS_RATIO;
4748		}
4749		hw->in_ifs_mode = false;
4750		ew32(AIT, 0);
4751	} else {
4752		e_dbg("Not in Adaptive IFS mode!\n");
4753	}
4754}
4755
4756/**
4757 * e1000_update_adaptive - update adaptive IFS
4758 * @hw: Struct containing variables accessed by shared code
 
 
4759 *
4760 * Called during the callback/watchdog routine to update IFS value based on
4761 * the ratio of transmits to collisions.
4762 */
4763void e1000_update_adaptive(struct e1000_hw *hw)
4764{
 
 
4765	if (hw->adaptive_ifs) {
4766		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4767			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4768				hw->in_ifs_mode = true;
4769				if (hw->current_ifs_val < hw->ifs_max_val) {
4770					if (hw->current_ifs_val == 0)
4771						hw->current_ifs_val =
4772						    hw->ifs_min_val;
4773					else
4774						hw->current_ifs_val +=
4775						    hw->ifs_step_size;
4776					ew32(AIT, hw->current_ifs_val);
4777				}
4778			}
4779		} else {
4780			if (hw->in_ifs_mode &&
4781			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4782				hw->current_ifs_val = 0;
4783				hw->in_ifs_mode = false;
4784				ew32(AIT, 0);
4785			}
4786		}
4787	} else {
4788		e_dbg("Not in Adaptive IFS mode!\n");
4789	}
4790}
4791
4792/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793 * e1000_get_bus_info
4794 * @hw: Struct containing variables accessed by shared code
4795 *
4796 * Gets the current PCI bus type, speed, and width of the hardware
4797 */
4798void e1000_get_bus_info(struct e1000_hw *hw)
4799{
4800	u32 status;
4801
4802	switch (hw->mac_type) {
4803	case e1000_82542_rev2_0:
4804	case e1000_82542_rev2_1:
4805		hw->bus_type = e1000_bus_type_pci;
4806		hw->bus_speed = e1000_bus_speed_unknown;
4807		hw->bus_width = e1000_bus_width_unknown;
4808		break;
4809	default:
4810		status = er32(STATUS);
4811		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4812		    e1000_bus_type_pcix : e1000_bus_type_pci;
4813
4814		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4815			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4816			    e1000_bus_speed_66 : e1000_bus_speed_120;
4817		} else if (hw->bus_type == e1000_bus_type_pci) {
4818			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4819			    e1000_bus_speed_66 : e1000_bus_speed_33;
4820		} else {
4821			switch (status & E1000_STATUS_PCIX_SPEED) {
4822			case E1000_STATUS_PCIX_SPEED_66:
4823				hw->bus_speed = e1000_bus_speed_66;
4824				break;
4825			case E1000_STATUS_PCIX_SPEED_100:
4826				hw->bus_speed = e1000_bus_speed_100;
4827				break;
4828			case E1000_STATUS_PCIX_SPEED_133:
4829				hw->bus_speed = e1000_bus_speed_133;
4830				break;
4831			default:
4832				hw->bus_speed = e1000_bus_speed_reserved;
4833				break;
4834			}
4835		}
4836		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4837		    e1000_bus_width_64 : e1000_bus_width_32;
4838		break;
4839	}
4840}
4841
4842/**
4843 * e1000_write_reg_io
4844 * @hw: Struct containing variables accessed by shared code
4845 * @offset: offset to write to
4846 * @value: value to write
4847 *
4848 * Writes a value to one of the devices registers using port I/O (as opposed to
4849 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4850 */
4851static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4852{
4853	unsigned long io_addr = hw->io_base;
4854	unsigned long io_data = hw->io_base + 4;
4855
4856	e1000_io_write(hw, io_addr, offset);
4857	e1000_io_write(hw, io_data, value);
4858}
4859
4860/**
4861 * e1000_get_cable_length - Estimates the cable length.
4862 * @hw: Struct containing variables accessed by shared code
4863 * @min_length: The estimated minimum length
4864 * @max_length: The estimated maximum length
4865 *
4866 * returns: - E1000_ERR_XXX
4867 *            E1000_SUCCESS
4868 *
4869 * This function always returns a ranged length (minimum & maximum).
4870 * So for M88 phy's, this function interprets the one value returned from the
4871 * register to the minimum and maximum range.
4872 * For IGP phy's, the function calculates the range by the AGC registers.
4873 */
4874static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4875				  u16 *max_length)
4876{
4877	s32 ret_val;
4878	u16 agc_value = 0;
4879	u16 i, phy_data;
4880	u16 cable_length;
4881
 
 
4882	*min_length = *max_length = 0;
4883
4884	/* Use old method for Phy older than IGP */
4885	if (hw->phy_type == e1000_phy_m88) {
 
4886		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4887					     &phy_data);
4888		if (ret_val)
4889			return ret_val;
4890		cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
4891
4892		/* Convert the enum value to ranged values */
4893		switch (cable_length) {
4894		case e1000_cable_length_50:
4895			*min_length = 0;
4896			*max_length = e1000_igp_cable_length_50;
4897			break;
4898		case e1000_cable_length_50_80:
4899			*min_length = e1000_igp_cable_length_50;
4900			*max_length = e1000_igp_cable_length_80;
4901			break;
4902		case e1000_cable_length_80_110:
4903			*min_length = e1000_igp_cable_length_80;
4904			*max_length = e1000_igp_cable_length_110;
4905			break;
4906		case e1000_cable_length_110_140:
4907			*min_length = e1000_igp_cable_length_110;
4908			*max_length = e1000_igp_cable_length_140;
4909			break;
4910		case e1000_cable_length_140:
4911			*min_length = e1000_igp_cable_length_140;
4912			*max_length = e1000_igp_cable_length_170;
4913			break;
4914		default:
4915			return -E1000_ERR_PHY;
 
4916		}
4917	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4918		u16 cur_agc_value;
4919		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4920		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4921		       IGP01E1000_PHY_AGC_A,
4922		       IGP01E1000_PHY_AGC_B,
4923		       IGP01E1000_PHY_AGC_C,
4924		       IGP01E1000_PHY_AGC_D
4925		};
4926		/* Read the AGC registers for all channels */
4927		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
 
4928			ret_val =
4929			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4930			if (ret_val)
4931				return ret_val;
4932
4933			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4934
4935			/* Value bound check. */
4936			if ((cur_agc_value >=
4937			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4938			    (cur_agc_value == 0))
4939				return -E1000_ERR_PHY;
4940
4941			agc_value += cur_agc_value;
4942
4943			/* Update minimal AGC value. */
4944			if (min_agc_value > cur_agc_value)
4945				min_agc_value = cur_agc_value;
4946		}
4947
4948		/* Remove the minimal AGC result for length < 50m */
4949		if (agc_value <
4950		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4951			agc_value -= min_agc_value;
4952
4953			/* Get the average length of the remaining 3 channels */
4954			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4955		} else {
4956			/* Get the average length of all the 4 channels. */
4957			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4958		}
4959
4960		/* Set the range of the calculated length. */
4961		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4962				IGP01E1000_AGC_RANGE) > 0) ?
4963		    (e1000_igp_cable_length_table[agc_value] -
4964		     IGP01E1000_AGC_RANGE) : 0;
4965		*max_length = e1000_igp_cable_length_table[agc_value] +
4966		    IGP01E1000_AGC_RANGE;
4967	}
4968
4969	return E1000_SUCCESS;
4970}
4971
4972/**
4973 * e1000_check_polarity - Check the cable polarity
4974 * @hw: Struct containing variables accessed by shared code
4975 * @polarity: output parameter : 0 - Polarity is not reversed
4976 *                               1 - Polarity is reversed.
4977 *
4978 * returns: - E1000_ERR_XXX
4979 *            E1000_SUCCESS
4980 *
4981 * For phy's older than IGP, this function simply reads the polarity bit in the
4982 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4983 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4984 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4985 * IGP01E1000_PHY_PCS_INIT_REG.
4986 */
4987static s32 e1000_check_polarity(struct e1000_hw *hw,
4988				e1000_rev_polarity *polarity)
4989{
4990	s32 ret_val;
4991	u16 phy_data;
4992
 
 
4993	if (hw->phy_type == e1000_phy_m88) {
4994		/* return the Polarity bit in the Status register. */
4995		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4996					     &phy_data);
4997		if (ret_val)
4998			return ret_val;
4999		*polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ?
 
5000		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5001
5002	} else if (hw->phy_type == e1000_phy_igp) {
5003		/* Read the Status register to check the speed */
5004		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5005					     &phy_data);
5006		if (ret_val)
5007			return ret_val;
5008
5009		/* If speed is 1000 Mbps, must read the
5010		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5011		 */
5012		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5013		    IGP01E1000_PSSR_SPEED_1000MBPS) {
 
5014			/* Read the GIG initialization PCS register (0x00B4) */
5015			ret_val =
5016			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5017					       &phy_data);
5018			if (ret_val)
5019				return ret_val;
5020
5021			/* Check the polarity bits */
5022			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5023			    e1000_rev_polarity_reversed :
5024			    e1000_rev_polarity_normal;
5025		} else {
5026			/* For 10 Mbps, read the polarity bit in the status
5027			 * register. (for 100 Mbps this bit is always 0)
5028			 */
5029			*polarity =
5030			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5031			    e1000_rev_polarity_reversed :
5032			    e1000_rev_polarity_normal;
5033		}
5034	}
5035	return E1000_SUCCESS;
5036}
5037
5038/**
5039 * e1000_check_downshift - Check if Downshift occurred
5040 * @hw: Struct containing variables accessed by shared code
 
 
5041 *
5042 * returns: - E1000_ERR_XXX
5043 *            E1000_SUCCESS
5044 *
5045 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5046 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5047 * Link Health register.  In IGP this bit is latched high, so the driver must
5048 * read it immediately after link is established.
5049 */
5050static s32 e1000_check_downshift(struct e1000_hw *hw)
5051{
5052	s32 ret_val;
5053	u16 phy_data;
5054
 
 
5055	if (hw->phy_type == e1000_phy_igp) {
5056		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5057					     &phy_data);
5058		if (ret_val)
5059			return ret_val;
5060
5061		hw->speed_downgraded =
5062		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5063	} else if (hw->phy_type == e1000_phy_m88) {
5064		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5065					     &phy_data);
5066		if (ret_val)
5067			return ret_val;
5068
5069		hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT,
5070						 phy_data);
5071	}
5072
5073	return E1000_SUCCESS;
5074}
5075
5076static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5077	IGP01E1000_PHY_AGC_PARAM_A,
5078	IGP01E1000_PHY_AGC_PARAM_B,
5079	IGP01E1000_PHY_AGC_PARAM_C,
5080	IGP01E1000_PHY_AGC_PARAM_D
5081};
5082
5083static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5084{
5085	u16 min_length, max_length;
5086	u16 phy_data, i;
5087	s32 ret_val;
5088
5089	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5090	if (ret_val)
5091		return ret_val;
5092
5093	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5094		return 0;
5095
5096	if (min_length >= e1000_igp_cable_length_50) {
5097		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5098			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5099						     &phy_data);
5100			if (ret_val)
5101				return ret_val;
5102
5103			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5104
5105			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5106						      phy_data);
5107			if (ret_val)
5108				return ret_val;
5109		}
5110		hw->dsp_config_state = e1000_dsp_config_activated;
5111	} else {
5112		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5113		u32 idle_errs = 0;
5114
5115		/* clear previous idle error counts */
5116		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5117		if (ret_val)
5118			return ret_val;
5119
5120		for (i = 0; i < ffe_idle_err_timeout; i++) {
5121			udelay(1000);
5122			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5123						     &phy_data);
5124			if (ret_val)
5125				return ret_val;
5126
5127			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5128			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5129				hw->ffe_config_state = e1000_ffe_config_active;
5130
5131				ret_val = e1000_write_phy_reg(hw,
5132							      IGP01E1000_PHY_DSP_FFE,
5133							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5134				if (ret_val)
5135					return ret_val;
5136				break;
5137			}
5138
5139			if (idle_errs)
5140				ffe_idle_err_timeout =
5141					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5142		}
5143	}
5144
5145	return 0;
5146}
5147
5148/**
5149 * e1000_config_dsp_after_link_change
5150 * @hw: Struct containing variables accessed by shared code
5151 * @link_up: was link up at the time this was called
5152 *
5153 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5154 *            E1000_SUCCESS at any other case.
5155 *
5156 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5157 * gigabit link is achieved to improve link quality.
5158 */
5159
5160static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5161{
5162	s32 ret_val;
5163	u16 phy_data, phy_saved_data, speed, duplex, i;
5164
 
 
5165	if (hw->phy_type != e1000_phy_igp)
5166		return E1000_SUCCESS;
5167
5168	if (link_up) {
5169		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5170		if (ret_val) {
5171			e_dbg("Error getting link speed and duplex\n");
5172			return ret_val;
5173		}
5174
5175		if (speed == SPEED_1000) {
5176			ret_val = e1000_1000Mb_check_cable_length(hw);
5177			if (ret_val)
5178				return ret_val;
5179		}
5180	} else {
5181		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5182			/* Save off the current value of register 0x2F5B to be
5183			 * restored at the end of the routines.
5184			 */
5185			ret_val =
5186			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5187
5188			if (ret_val)
5189				return ret_val;
5190
5191			/* Disable the PHY transmitter */
5192			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5193
5194			if (ret_val)
5195				return ret_val;
5196
5197			msleep(20);
5198
5199			ret_val = e1000_write_phy_reg(hw, 0x0000,
5200						      IGP01E1000_IEEE_FORCE_GIGA);
5201			if (ret_val)
5202				return ret_val;
5203			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5204				ret_val =
5205				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5206						       &phy_data);
5207				if (ret_val)
5208					return ret_val;
5209
5210				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5211				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5212
5213				ret_val =
5214				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5215							phy_data);
5216				if (ret_val)
5217					return ret_val;
5218			}
5219
5220			ret_val = e1000_write_phy_reg(hw, 0x0000,
5221						      IGP01E1000_IEEE_RESTART_AUTONEG);
5222			if (ret_val)
5223				return ret_val;
5224
5225			msleep(20);
5226
5227			/* Now enable the transmitter */
5228			ret_val =
5229			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5230
5231			if (ret_val)
5232				return ret_val;
5233
5234			hw->dsp_config_state = e1000_dsp_config_enabled;
5235		}
5236
5237		if (hw->ffe_config_state == e1000_ffe_config_active) {
5238			/* Save off the current value of register 0x2F5B to be
5239			 * restored at the end of the routines.
5240			 */
5241			ret_val =
5242			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5243
5244			if (ret_val)
5245				return ret_val;
5246
5247			/* Disable the PHY transmitter */
5248			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5249
5250			if (ret_val)
5251				return ret_val;
5252
5253			msleep(20);
5254
5255			ret_val = e1000_write_phy_reg(hw, 0x0000,
5256						      IGP01E1000_IEEE_FORCE_GIGA);
5257			if (ret_val)
5258				return ret_val;
5259			ret_val =
5260			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5261						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5262			if (ret_val)
5263				return ret_val;
5264
5265			ret_val = e1000_write_phy_reg(hw, 0x0000,
5266						      IGP01E1000_IEEE_RESTART_AUTONEG);
5267			if (ret_val)
5268				return ret_val;
5269
5270			msleep(20);
5271
5272			/* Now enable the transmitter */
5273			ret_val =
5274			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5275
5276			if (ret_val)
5277				return ret_val;
5278
5279			hw->ffe_config_state = e1000_ffe_config_enabled;
5280		}
5281	}
5282	return E1000_SUCCESS;
5283}
5284
5285/**
5286 * e1000_set_phy_mode - Set PHY to class A mode
5287 * @hw: Struct containing variables accessed by shared code
5288 *
5289 * Assumes the following operations will follow to enable the new class mode.
5290 *  1. Do a PHY soft reset
5291 *  2. Restart auto-negotiation or force link.
5292 */
5293static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5294{
5295	s32 ret_val;
5296	u16 eeprom_data;
5297
 
 
5298	if ((hw->mac_type == e1000_82545_rev_3) &&
5299	    (hw->media_type == e1000_media_type_copper)) {
5300		ret_val =
5301		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5302				      &eeprom_data);
5303		if (ret_val)
5304			return ret_val;
 
5305
5306		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5307		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5308			ret_val =
5309			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5310						0x000B);
5311			if (ret_val)
5312				return ret_val;
5313			ret_val =
5314			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5315						0x8104);
5316			if (ret_val)
5317				return ret_val;
5318
5319			hw->phy_reset_disable = false;
5320		}
5321	}
5322
5323	return E1000_SUCCESS;
5324}
5325
5326/**
5327 * e1000_set_d3_lplu_state - set d3 link power state
5328 * @hw: Struct containing variables accessed by shared code
5329 * @active: true to enable lplu false to disable lplu.
5330 *
5331 * This function sets the lplu state according to the active flag.  When
5332 * activating lplu this function also disables smart speed and vise versa.
5333 * lplu will not be activated unless the device autonegotiation advertisement
5334 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5335 *
5336 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5337 *            E1000_SUCCESS at any other case.
5338 */
5339static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5340{
5341	s32 ret_val;
5342	u16 phy_data;
 
5343
5344	if (hw->phy_type != e1000_phy_igp)
5345		return E1000_SUCCESS;
5346
5347	/* During driver activity LPLU should not be used or it will attain link
5348	 * from the lowest speeds starting from 10Mbps. The capability is used
5349	 * for Dx transitions and states
5350	 */
5351	if (hw->mac_type == e1000_82541_rev_2 ||
5352	    hw->mac_type == e1000_82547_rev_2) {
5353		ret_val =
5354		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5355		if (ret_val)
5356			return ret_val;
5357	}
5358
5359	if (!active) {
5360		if (hw->mac_type == e1000_82541_rev_2 ||
5361		    hw->mac_type == e1000_82547_rev_2) {
5362			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5363			ret_val =
5364			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5365						phy_data);
5366			if (ret_val)
5367				return ret_val;
5368		}
5369
5370		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5371		 * during Dx states where the power conservation is most
5372		 * important.  During driver activity we should enable
5373		 * SmartSpeed, so performance is maintained.
5374		 */
5375		if (hw->smart_speed == e1000_smart_speed_on) {
5376			ret_val =
5377			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5378					       &phy_data);
5379			if (ret_val)
5380				return ret_val;
5381
5382			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5383			ret_val =
5384			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5385						phy_data);
5386			if (ret_val)
5387				return ret_val;
5388		} else if (hw->smart_speed == e1000_smart_speed_off) {
5389			ret_val =
5390			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391					       &phy_data);
5392			if (ret_val)
5393				return ret_val;
5394
5395			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5396			ret_val =
5397			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5398						phy_data);
5399			if (ret_val)
5400				return ret_val;
5401		}
5402	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5403		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5404		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
 
 
5405		if (hw->mac_type == e1000_82541_rev_2 ||
5406		    hw->mac_type == e1000_82547_rev_2) {
5407			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5408			ret_val =
5409			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5410						phy_data);
5411			if (ret_val)
5412				return ret_val;
5413		}
5414
5415		/* When LPLU is enabled we should disable SmartSpeed */
5416		ret_val =
5417		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5418				       &phy_data);
5419		if (ret_val)
5420			return ret_val;
5421
5422		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5423		ret_val =
5424		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425					phy_data);
5426		if (ret_val)
5427			return ret_val;
 
5428	}
5429	return E1000_SUCCESS;
5430}
5431
5432/**
5433 * e1000_set_vco_speed
5434 * @hw: Struct containing variables accessed by shared code
5435 *
5436 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5437 */
5438static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5439{
5440	s32 ret_val;
5441	u16 default_page = 0;
5442	u16 phy_data;
5443
 
 
5444	switch (hw->mac_type) {
5445	case e1000_82545_rev_3:
5446	case e1000_82546_rev_3:
5447		break;
5448	default:
5449		return E1000_SUCCESS;
5450	}
5451
5452	/* Set PHY register 30, page 5, bit 8 to 0 */
5453
5454	ret_val =
5455	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5456	if (ret_val)
5457		return ret_val;
5458
5459	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5460	if (ret_val)
5461		return ret_val;
5462
5463	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5464	if (ret_val)
5465		return ret_val;
5466
5467	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5468	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5469	if (ret_val)
5470		return ret_val;
5471
5472	/* Set PHY register 30, page 4, bit 11 to 1 */
5473
5474	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5475	if (ret_val)
5476		return ret_val;
5477
5478	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5479	if (ret_val)
5480		return ret_val;
5481
5482	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5483	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5484	if (ret_val)
5485		return ret_val;
5486
5487	ret_val =
5488	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5489	if (ret_val)
5490		return ret_val;
5491
5492	return E1000_SUCCESS;
5493}
5494
 
5495/**
5496 * e1000_enable_mng_pass_thru - check for bmc pass through
5497 * @hw: Struct containing variables accessed by shared code
5498 *
5499 * Verifies the hardware needs to allow ARPs to be processed by the host
5500 * returns: - true/false
5501 */
5502u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5503{
5504	u32 manc;
5505
5506	if (hw->asf_firmware_present) {
5507		manc = er32(MANC);
5508
5509		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5510		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5511			return false;
5512		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5513			return true;
5514	}
5515	return false;
5516}
5517
5518static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5519{
5520	s32 ret_val;
5521	u16 mii_status_reg;
5522	u16 i;
5523
5524	/* Polarity reversal workaround for forced 10F/10H links. */
5525
5526	/* Disable the transmitter on the PHY */
5527
5528	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5529	if (ret_val)
5530		return ret_val;
5531	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5532	if (ret_val)
5533		return ret_val;
5534
5535	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5536	if (ret_val)
5537		return ret_val;
5538
5539	/* This loop will early-out if the NO link condition has been met. */
5540	for (i = PHY_FORCE_TIME; i > 0; i--) {
5541		/* Read the MII Status Register and wait for Link Status bit
5542		 * to be clear.
5543		 */
5544
5545		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5546		if (ret_val)
5547			return ret_val;
5548
5549		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5550		if (ret_val)
5551			return ret_val;
5552
5553		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5554			break;
5555		msleep(100);
5556	}
5557
5558	/* Recommended delay time after link has been lost */
5559	msleep(1000);
5560
5561	/* Now we will re-enable th transmitter on the PHY */
5562
5563	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5564	if (ret_val)
5565		return ret_val;
5566	msleep(50);
5567	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5568	if (ret_val)
5569		return ret_val;
5570	msleep(50);
5571	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5572	if (ret_val)
5573		return ret_val;
5574	msleep(50);
5575	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5576	if (ret_val)
5577		return ret_val;
5578
5579	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5580	if (ret_val)
5581		return ret_val;
5582
5583	/* This loop will early-out if the link condition has been met. */
5584	for (i = PHY_FORCE_TIME; i > 0; i--) {
5585		/* Read the MII Status Register and wait for Link Status bit
5586		 * to be set.
5587		 */
5588
5589		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5590		if (ret_val)
5591			return ret_val;
5592
5593		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5594		if (ret_val)
5595			return ret_val;
5596
5597		if (mii_status_reg & MII_SR_LINK_STATUS)
5598			break;
5599		msleep(100);
5600	}
5601	return E1000_SUCCESS;
5602}
5603
5604/**
5605 * e1000_get_auto_rd_done
5606 * @hw: Struct containing variables accessed by shared code
5607 *
5608 * Check for EEPROM Auto Read bit done.
5609 * returns: - E1000_ERR_RESET if fail to reset MAC
5610 *            E1000_SUCCESS at any other case.
5611 */
5612static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5613{
 
5614	msleep(5);
5615	return E1000_SUCCESS;
5616}
5617
5618/**
5619 * e1000_get_phy_cfg_done
5620 * @hw: Struct containing variables accessed by shared code
5621 *
5622 * Checks if the PHY configuration is done
5623 * returns: - E1000_ERR_RESET if fail to reset MAC
5624 *            E1000_SUCCESS at any other case.
5625 */
5626static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5627{
 
5628	msleep(10);
5629	return E1000_SUCCESS;
5630}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
 
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37				e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41					      bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46				  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51				  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53				  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70				  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72					u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78				  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80				 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89				u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91				 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102	    100,
 103	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104	    110, 110,
 105	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106	    120, 120
 107};
 108
 109static DEFINE_SPINLOCK(e1000_eeprom_lock);
 
 110
 111/**
 112 * e1000_set_phy_type - Set the phy type member in the hw struct.
 113 * @hw: Struct containing variables accessed by shared code
 114 */
 115static s32 e1000_set_phy_type(struct e1000_hw *hw)
 116{
 117	e_dbg("e1000_set_phy_type");
 118
 119	if (hw->mac_type == e1000_undefined)
 120		return -E1000_ERR_PHY_TYPE;
 121
 122	switch (hw->phy_id) {
 123	case M88E1000_E_PHY_ID:
 124	case M88E1000_I_PHY_ID:
 125	case M88E1011_I_PHY_ID:
 126	case M88E1111_I_PHY_ID:
 127	case M88E1118_E_PHY_ID:
 128		hw->phy_type = e1000_phy_m88;
 129		break;
 130	case IGP01E1000_I_PHY_ID:
 131		if (hw->mac_type == e1000_82541 ||
 132		    hw->mac_type == e1000_82541_rev_2 ||
 133		    hw->mac_type == e1000_82547 ||
 134		    hw->mac_type == e1000_82547_rev_2)
 135			hw->phy_type = e1000_phy_igp;
 136		break;
 137	case RTL8211B_PHY_ID:
 138		hw->phy_type = e1000_phy_8211;
 139		break;
 140	case RTL8201N_PHY_ID:
 141		hw->phy_type = e1000_phy_8201;
 142		break;
 143	default:
 144		/* Should never have loaded on this device */
 145		hw->phy_type = e1000_phy_undefined;
 146		return -E1000_ERR_PHY_TYPE;
 147	}
 148
 149	return E1000_SUCCESS;
 150}
 151
 152/**
 153 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 154 * @hw: Struct containing variables accessed by shared code
 155 */
 156static void e1000_phy_init_script(struct e1000_hw *hw)
 157{
 158	u32 ret_val;
 159	u16 phy_saved_data;
 160
 161	e_dbg("e1000_phy_init_script");
 162
 163	if (hw->phy_init_script) {
 164		msleep(20);
 165
 166		/* Save off the current value of register 0x2F5B to be restored at
 167		 * the end of this routine. */
 168		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 
 169
 170		/* Disabled the PHY transmitter */
 171		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 172		msleep(20);
 173
 174		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 175		msleep(5);
 176
 177		switch (hw->mac_type) {
 178		case e1000_82541:
 179		case e1000_82547:
 180			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 181			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 182			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 183			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 184			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 185			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 186			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 187			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 188			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 189			break;
 190
 191		case e1000_82541_rev_2:
 192		case e1000_82547_rev_2:
 193			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 194			break;
 195		default:
 196			break;
 197		}
 198
 199		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 200		msleep(20);
 201
 202		/* Now enable the transmitter */
 203		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 204
 205		if (hw->mac_type == e1000_82547) {
 206			u16 fused, fine, coarse;
 207
 208			/* Move to analog registers page */
 209			e1000_read_phy_reg(hw,
 210					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 211					   &fused);
 212
 213			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 214				e1000_read_phy_reg(hw,
 215						   IGP01E1000_ANALOG_FUSE_STATUS,
 216						   &fused);
 217
 218				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 219				coarse =
 220				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 221
 222				if (coarse >
 223				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 224					coarse -=
 225					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 226					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 227				} else if (coarse ==
 228					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 229					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 230
 231				fused =
 232				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 233				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 234				    (coarse &
 235				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 236
 237				e1000_write_phy_reg(hw,
 238						    IGP01E1000_ANALOG_FUSE_CONTROL,
 239						    fused);
 240				e1000_write_phy_reg(hw,
 241						    IGP01E1000_ANALOG_FUSE_BYPASS,
 242						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 243			}
 244		}
 245	}
 246}
 247
 248/**
 249 * e1000_set_mac_type - Set the mac type member in the hw struct.
 250 * @hw: Struct containing variables accessed by shared code
 251 */
 252s32 e1000_set_mac_type(struct e1000_hw *hw)
 253{
 254	e_dbg("e1000_set_mac_type");
 255
 256	switch (hw->device_id) {
 257	case E1000_DEV_ID_82542:
 258		switch (hw->revision_id) {
 259		case E1000_82542_2_0_REV_ID:
 260			hw->mac_type = e1000_82542_rev2_0;
 261			break;
 262		case E1000_82542_2_1_REV_ID:
 263			hw->mac_type = e1000_82542_rev2_1;
 264			break;
 265		default:
 266			/* Invalid 82542 revision ID */
 267			return -E1000_ERR_MAC_TYPE;
 268		}
 269		break;
 270	case E1000_DEV_ID_82543GC_FIBER:
 271	case E1000_DEV_ID_82543GC_COPPER:
 272		hw->mac_type = e1000_82543;
 273		break;
 274	case E1000_DEV_ID_82544EI_COPPER:
 275	case E1000_DEV_ID_82544EI_FIBER:
 276	case E1000_DEV_ID_82544GC_COPPER:
 277	case E1000_DEV_ID_82544GC_LOM:
 278		hw->mac_type = e1000_82544;
 279		break;
 280	case E1000_DEV_ID_82540EM:
 281	case E1000_DEV_ID_82540EM_LOM:
 282	case E1000_DEV_ID_82540EP:
 283	case E1000_DEV_ID_82540EP_LOM:
 284	case E1000_DEV_ID_82540EP_LP:
 285		hw->mac_type = e1000_82540;
 286		break;
 287	case E1000_DEV_ID_82545EM_COPPER:
 288	case E1000_DEV_ID_82545EM_FIBER:
 289		hw->mac_type = e1000_82545;
 290		break;
 291	case E1000_DEV_ID_82545GM_COPPER:
 292	case E1000_DEV_ID_82545GM_FIBER:
 293	case E1000_DEV_ID_82545GM_SERDES:
 294		hw->mac_type = e1000_82545_rev_3;
 295		break;
 296	case E1000_DEV_ID_82546EB_COPPER:
 297	case E1000_DEV_ID_82546EB_FIBER:
 298	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 299		hw->mac_type = e1000_82546;
 300		break;
 301	case E1000_DEV_ID_82546GB_COPPER:
 302	case E1000_DEV_ID_82546GB_FIBER:
 303	case E1000_DEV_ID_82546GB_SERDES:
 304	case E1000_DEV_ID_82546GB_PCIE:
 305	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 306	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 307		hw->mac_type = e1000_82546_rev_3;
 308		break;
 309	case E1000_DEV_ID_82541EI:
 310	case E1000_DEV_ID_82541EI_MOBILE:
 311	case E1000_DEV_ID_82541ER_LOM:
 312		hw->mac_type = e1000_82541;
 313		break;
 314	case E1000_DEV_ID_82541ER:
 315	case E1000_DEV_ID_82541GI:
 316	case E1000_DEV_ID_82541GI_LF:
 317	case E1000_DEV_ID_82541GI_MOBILE:
 318		hw->mac_type = e1000_82541_rev_2;
 319		break;
 320	case E1000_DEV_ID_82547EI:
 321	case E1000_DEV_ID_82547EI_MOBILE:
 322		hw->mac_type = e1000_82547;
 323		break;
 324	case E1000_DEV_ID_82547GI:
 325		hw->mac_type = e1000_82547_rev_2;
 326		break;
 327	case E1000_DEV_ID_INTEL_CE4100_GBE:
 328		hw->mac_type = e1000_ce4100;
 329		break;
 330	default:
 331		/* Should never have loaded on this device */
 332		return -E1000_ERR_MAC_TYPE;
 333	}
 334
 335	switch (hw->mac_type) {
 336	case e1000_82541:
 337	case e1000_82547:
 338	case e1000_82541_rev_2:
 339	case e1000_82547_rev_2:
 340		hw->asf_firmware_present = true;
 341		break;
 342	default:
 343		break;
 344	}
 345
 346	/* The 82543 chip does not count tx_carrier_errors properly in
 347	 * FD mode
 348	 */
 349	if (hw->mac_type == e1000_82543)
 350		hw->bad_tx_carr_stats_fd = true;
 351
 352	if (hw->mac_type > e1000_82544)
 353		hw->has_smbus = true;
 354
 355	return E1000_SUCCESS;
 356}
 357
 358/**
 359 * e1000_set_media_type - Set media type and TBI compatibility.
 360 * @hw: Struct containing variables accessed by shared code
 361 */
 362void e1000_set_media_type(struct e1000_hw *hw)
 363{
 364	u32 status;
 365
 366	e_dbg("e1000_set_media_type");
 367
 368	if (hw->mac_type != e1000_82543) {
 369		/* tbi_compatibility is only valid on 82543 */
 370		hw->tbi_compatibility_en = false;
 371	}
 372
 373	switch (hw->device_id) {
 374	case E1000_DEV_ID_82545GM_SERDES:
 375	case E1000_DEV_ID_82546GB_SERDES:
 376		hw->media_type = e1000_media_type_internal_serdes;
 377		break;
 378	default:
 379		switch (hw->mac_type) {
 380		case e1000_82542_rev2_0:
 381		case e1000_82542_rev2_1:
 382			hw->media_type = e1000_media_type_fiber;
 383			break;
 384		case e1000_ce4100:
 385			hw->media_type = e1000_media_type_copper;
 386			break;
 387		default:
 388			status = er32(STATUS);
 389			if (status & E1000_STATUS_TBIMODE) {
 390				hw->media_type = e1000_media_type_fiber;
 391				/* tbi_compatibility not valid on fiber */
 392				hw->tbi_compatibility_en = false;
 393			} else {
 394				hw->media_type = e1000_media_type_copper;
 395			}
 396			break;
 397		}
 398	}
 399}
 400
 401/**
 402 * e1000_reset_hw: reset the hardware completely
 403 * @hw: Struct containing variables accessed by shared code
 404 *
 405 * Reset the transmit and receive units; mask and clear all interrupts.
 406 */
 407s32 e1000_reset_hw(struct e1000_hw *hw)
 408{
 409	u32 ctrl;
 410	u32 ctrl_ext;
 411	u32 icr;
 412	u32 manc;
 413	u32 led_ctrl;
 414	s32 ret_val;
 415
 416	e_dbg("e1000_reset_hw");
 417
 418	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 419	if (hw->mac_type == e1000_82542_rev2_0) {
 420		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 421		e1000_pci_clear_mwi(hw);
 422	}
 423
 424	/* Clear interrupt mask to stop board from generating interrupts */
 425	e_dbg("Masking off all interrupts\n");
 426	ew32(IMC, 0xffffffff);
 427
 428	/* Disable the Transmit and Receive units.  Then delay to allow
 429	 * any pending transactions to complete before we hit the MAC with
 430	 * the global reset.
 431	 */
 432	ew32(RCTL, 0);
 433	ew32(TCTL, E1000_TCTL_PSP);
 434	E1000_WRITE_FLUSH();
 435
 436	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 437	hw->tbi_compatibility_on = false;
 438
 439	/* Delay to allow any outstanding PCI transactions to complete before
 440	 * resetting the device
 441	 */
 442	msleep(10);
 443
 444	ctrl = er32(CTRL);
 445
 446	/* Must reset the PHY before resetting the MAC */
 447	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 448		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 449		E1000_WRITE_FLUSH();
 450		msleep(5);
 451	}
 452
 453	/* Issue a global reset to the MAC.  This will reset the chip's
 454	 * transmit, receive, DMA, and link units.  It will not effect
 455	 * the current PCI configuration.  The global reset bit is self-
 456	 * clearing, and should clear within a microsecond.
 457	 */
 458	e_dbg("Issuing a global reset to MAC\n");
 459
 460	switch (hw->mac_type) {
 461	case e1000_82544:
 462	case e1000_82540:
 463	case e1000_82545:
 464	case e1000_82546:
 465	case e1000_82541:
 466	case e1000_82541_rev_2:
 467		/* These controllers can't ack the 64-bit write when issuing the
 468		 * reset, so use IO-mapping as a workaround to issue the reset */
 
 469		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 470		break;
 471	case e1000_82545_rev_3:
 472	case e1000_82546_rev_3:
 473		/* Reset is performed on a shadow of the control register */
 474		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 475		break;
 476	case e1000_ce4100:
 477	default:
 478		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 479		break;
 480	}
 481
 482	/* After MAC reset, force reload of EEPROM to restore power-on settings to
 483	 * device.  Later controllers reload the EEPROM automatically, so just wait
 484	 * for reload to complete.
 485	 */
 486	switch (hw->mac_type) {
 487	case e1000_82542_rev2_0:
 488	case e1000_82542_rev2_1:
 489	case e1000_82543:
 490	case e1000_82544:
 491		/* Wait for reset to complete */
 492		udelay(10);
 493		ctrl_ext = er32(CTRL_EXT);
 494		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 495		ew32(CTRL_EXT, ctrl_ext);
 496		E1000_WRITE_FLUSH();
 497		/* Wait for EEPROM reload */
 498		msleep(2);
 499		break;
 500	case e1000_82541:
 501	case e1000_82541_rev_2:
 502	case e1000_82547:
 503	case e1000_82547_rev_2:
 504		/* Wait for EEPROM reload */
 505		msleep(20);
 506		break;
 507	default:
 508		/* Auto read done will delay 5ms or poll based on mac type */
 509		ret_val = e1000_get_auto_rd_done(hw);
 510		if (ret_val)
 511			return ret_val;
 512		break;
 513	}
 514
 515	/* Disable HW ARPs on ASF enabled adapters */
 516	if (hw->mac_type >= e1000_82540) {
 517		manc = er32(MANC);
 518		manc &= ~(E1000_MANC_ARP_EN);
 519		ew32(MANC, manc);
 520	}
 521
 522	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 523		e1000_phy_init_script(hw);
 524
 525		/* Configure activity LED after PHY reset */
 526		led_ctrl = er32(LEDCTL);
 527		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 528		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 529		ew32(LEDCTL, led_ctrl);
 530	}
 531
 532	/* Clear interrupt mask to stop board from generating interrupts */
 533	e_dbg("Masking off all interrupts\n");
 534	ew32(IMC, 0xffffffff);
 535
 536	/* Clear any pending interrupt events. */
 537	icr = er32(ICR);
 538
 539	/* If MWI was previously enabled, reenable it. */
 540	if (hw->mac_type == e1000_82542_rev2_0) {
 541		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 542			e1000_pci_set_mwi(hw);
 543	}
 544
 545	return E1000_SUCCESS;
 546}
 547
 548/**
 549 * e1000_init_hw: Performs basic configuration of the adapter.
 550 * @hw: Struct containing variables accessed by shared code
 551 *
 552 * Assumes that the controller has previously been reset and is in a
 553 * post-reset uninitialized state. Initializes the receive address registers,
 554 * multicast table, and VLAN filter table. Calls routines to setup link
 555 * configuration and flow control settings. Clears all on-chip counters. Leaves
 556 * the transmit and receive units disabled and uninitialized.
 557 */
 558s32 e1000_init_hw(struct e1000_hw *hw)
 559{
 560	u32 ctrl;
 561	u32 i;
 562	s32 ret_val;
 563	u32 mta_size;
 564	u32 ctrl_ext;
 565
 566	e_dbg("e1000_init_hw");
 567
 568	/* Initialize Identification LED */
 569	ret_val = e1000_id_led_init(hw);
 570	if (ret_val) {
 571		e_dbg("Error Initializing Identification LED\n");
 572		return ret_val;
 573	}
 574
 575	/* Set the media type and TBI compatibility */
 576	e1000_set_media_type(hw);
 577
 578	/* Disabling VLAN filtering. */
 579	e_dbg("Initializing the IEEE VLAN\n");
 580	if (hw->mac_type < e1000_82545_rev_3)
 581		ew32(VET, 0);
 582	e1000_clear_vfta(hw);
 583
 584	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 585	if (hw->mac_type == e1000_82542_rev2_0) {
 586		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 587		e1000_pci_clear_mwi(hw);
 588		ew32(RCTL, E1000_RCTL_RST);
 589		E1000_WRITE_FLUSH();
 590		msleep(5);
 591	}
 592
 593	/* Setup the receive address. This involves initializing all of the Receive
 594	 * Address Registers (RARs 0 - 15).
 595	 */
 596	e1000_init_rx_addrs(hw);
 597
 598	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 599	if (hw->mac_type == e1000_82542_rev2_0) {
 600		ew32(RCTL, 0);
 601		E1000_WRITE_FLUSH();
 602		msleep(1);
 603		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 604			e1000_pci_set_mwi(hw);
 605	}
 606
 607	/* Zero out the Multicast HASH table */
 608	e_dbg("Zeroing the MTA\n");
 609	mta_size = E1000_MC_TBL_SIZE;
 610	for (i = 0; i < mta_size; i++) {
 611		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 612		/* use write flush to prevent Memory Write Block (MWB) from
 613		 * occurring when accessing our register space */
 
 614		E1000_WRITE_FLUSH();
 615	}
 616
 617	/* Set the PCI priority bit correctly in the CTRL register.  This
 618	 * determines if the adapter gives priority to receives, or if it
 619	 * gives equal priority to transmits and receives.  Valid only on
 620	 * 82542 and 82543 silicon.
 621	 */
 622	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 623		ctrl = er32(CTRL);
 624		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 625	}
 626
 627	switch (hw->mac_type) {
 628	case e1000_82545_rev_3:
 629	case e1000_82546_rev_3:
 630		break;
 631	default:
 632		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
 633		if (hw->bus_type == e1000_bus_type_pcix
 634		    && e1000_pcix_get_mmrbc(hw) > 2048)
 
 
 635			e1000_pcix_set_mmrbc(hw, 2048);
 636		break;
 637	}
 638
 639	/* Call a subroutine to configure the link and setup flow control. */
 640	ret_val = e1000_setup_link(hw);
 641
 642	/* Set the transmit descriptor write-back policy */
 643	if (hw->mac_type > e1000_82544) {
 644		ctrl = er32(TXDCTL);
 645		ctrl =
 646		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 647		    E1000_TXDCTL_FULL_TX_DESC_WB;
 648		ew32(TXDCTL, ctrl);
 649	}
 650
 651	/* Clear all of the statistics registers (clear on read).  It is
 652	 * important that we do this after we have tried to establish link
 653	 * because the symbol error count will increment wildly if there
 654	 * is no link.
 655	 */
 656	e1000_clear_hw_cntrs(hw);
 657
 658	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 659	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 660		ctrl_ext = er32(CTRL_EXT);
 661		/* Relaxed ordering must be disabled to avoid a parity
 662		 * error crash in a PCI slot. */
 
 663		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 664		ew32(CTRL_EXT, ctrl_ext);
 665	}
 666
 667	return ret_val;
 668}
 669
 670/**
 671 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 672 * @hw: Struct containing variables accessed by shared code.
 673 */
 674static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 675{
 676	u16 eeprom_data;
 677	s32 ret_val;
 678
 679	e_dbg("e1000_adjust_serdes_amplitude");
 680
 681	if (hw->media_type != e1000_media_type_internal_serdes)
 682		return E1000_SUCCESS;
 683
 684	switch (hw->mac_type) {
 685	case e1000_82545_rev_3:
 686	case e1000_82546_rev_3:
 687		break;
 688	default:
 689		return E1000_SUCCESS;
 690	}
 691
 692	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 693	                            &eeprom_data);
 694	if (ret_val) {
 695		return ret_val;
 696	}
 697
 698	if (eeprom_data != EEPROM_RESERVED_WORD) {
 699		/* Adjust SERDES output amplitude only. */
 700		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 701		ret_val =
 702		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 703		if (ret_val)
 704			return ret_val;
 705	}
 706
 707	return E1000_SUCCESS;
 708}
 709
 710/**
 711 * e1000_setup_link - Configures flow control and link settings.
 712 * @hw: Struct containing variables accessed by shared code
 713 *
 714 * Determines which flow control settings to use. Calls the appropriate media-
 715 * specific link configuration function. Configures the flow control settings.
 716 * Assuming the adapter has a valid link partner, a valid link should be
 717 * established. Assumes the hardware has previously been reset and the
 718 * transmitter and receiver are not enabled.
 719 */
 720s32 e1000_setup_link(struct e1000_hw *hw)
 721{
 722	u32 ctrl_ext;
 723	s32 ret_val;
 724	u16 eeprom_data;
 725
 726	e_dbg("e1000_setup_link");
 727
 728	/* Read and store word 0x0F of the EEPROM. This word contains bits
 729	 * that determine the hardware's default PAUSE (flow control) mode,
 730	 * a bit that determines whether the HW defaults to enabling or
 731	 * disabling auto-negotiation, and the direction of the
 732	 * SW defined pins. If there is no SW over-ride of the flow
 733	 * control setting, then the variable hw->fc will
 734	 * be initialized based on a value in the EEPROM.
 735	 */
 736	if (hw->fc == E1000_FC_DEFAULT) {
 737		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 738					    1, &eeprom_data);
 739		if (ret_val) {
 740			e_dbg("EEPROM Read Error\n");
 741			return -E1000_ERR_EEPROM;
 742		}
 743		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 744			hw->fc = E1000_FC_NONE;
 745		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 746			 EEPROM_WORD0F_ASM_DIR)
 747			hw->fc = E1000_FC_TX_PAUSE;
 748		else
 749			hw->fc = E1000_FC_FULL;
 750	}
 751
 752	/* We want to save off the original Flow Control configuration just
 753	 * in case we get disconnected and then reconnected into a different
 754	 * hub or switch with different Flow Control capabilities.
 755	 */
 756	if (hw->mac_type == e1000_82542_rev2_0)
 757		hw->fc &= (~E1000_FC_TX_PAUSE);
 758
 759	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 760		hw->fc &= (~E1000_FC_RX_PAUSE);
 761
 762	hw->original_fc = hw->fc;
 763
 764	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 765
 766	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 767	 * polarity value for the SW controlled pins, and setup the
 768	 * Extended Device Control reg with that info.
 769	 * This is needed because one of the SW controlled pins is used for
 770	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 771	 * or e1000_phy_setup() is called.
 772	 */
 773	if (hw->mac_type == e1000_82543) {
 774		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 775					    1, &eeprom_data);
 776		if (ret_val) {
 777			e_dbg("EEPROM Read Error\n");
 778			return -E1000_ERR_EEPROM;
 779		}
 780		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 781			    SWDPIO__EXT_SHIFT);
 782		ew32(CTRL_EXT, ctrl_ext);
 783	}
 784
 785	/* Call the necessary subroutine to configure the link. */
 786	ret_val = (hw->media_type == e1000_media_type_copper) ?
 787	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 788
 789	/* Initialize the flow control address, type, and PAUSE timer
 790	 * registers to their default values.  This is done even if flow
 791	 * control is disabled, because it does not hurt anything to
 792	 * initialize these registers.
 793	 */
 794	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 795
 796	ew32(FCT, FLOW_CONTROL_TYPE);
 797	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 798	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 799
 800	ew32(FCTTV, hw->fc_pause_time);
 801
 802	/* Set the flow control receive threshold registers.  Normally,
 803	 * these registers will be set to a default threshold that may be
 804	 * adjusted later by the driver's runtime code.  However, if the
 805	 * ability to transmit pause frames in not enabled, then these
 806	 * registers will be set to 0.
 807	 */
 808	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 809		ew32(FCRTL, 0);
 810		ew32(FCRTH, 0);
 811	} else {
 812		/* We need to set up the Receive Threshold high and low water marks
 813		 * as well as (optionally) enabling the transmission of XON frames.
 
 814		 */
 815		if (hw->fc_send_xon) {
 816			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 817			ew32(FCRTH, hw->fc_high_water);
 818		} else {
 819			ew32(FCRTL, hw->fc_low_water);
 820			ew32(FCRTH, hw->fc_high_water);
 821		}
 822	}
 823	return ret_val;
 824}
 825
 826/**
 827 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 828 * @hw: Struct containing variables accessed by shared code
 829 *
 830 * Manipulates Physical Coding Sublayer functions in order to configure
 831 * link. Assumes the hardware has been previously reset and the transmitter
 832 * and receiver are not enabled.
 833 */
 834static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 835{
 836	u32 ctrl;
 837	u32 status;
 838	u32 txcw = 0;
 839	u32 i;
 840	u32 signal = 0;
 841	s32 ret_val;
 842
 843	e_dbg("e1000_setup_fiber_serdes_link");
 844
 845	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 846	 * set when the optics detect a signal. On older adapters, it will be
 847	 * cleared when there is a signal.  This applies to fiber media only.
 848	 * If we're on serdes media, adjust the output amplitude to value
 849	 * set in the EEPROM.
 850	 */
 851	ctrl = er32(CTRL);
 852	if (hw->media_type == e1000_media_type_fiber)
 853		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 854
 855	ret_val = e1000_adjust_serdes_amplitude(hw);
 856	if (ret_val)
 857		return ret_val;
 858
 859	/* Take the link out of reset */
 860	ctrl &= ~(E1000_CTRL_LRST);
 861
 862	/* Adjust VCO speed to improve BER performance */
 863	ret_val = e1000_set_vco_speed(hw);
 864	if (ret_val)
 865		return ret_val;
 866
 867	e1000_config_collision_dist(hw);
 868
 869	/* Check for a software override of the flow control settings, and setup
 870	 * the device accordingly.  If auto-negotiation is enabled, then software
 871	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
 872	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
 873	 * auto-negotiation is disabled, then software will have to manually
 874	 * configure the two flow control enable bits in the CTRL register.
 
 875	 *
 876	 * The possible values of the "fc" parameter are:
 877	 *      0:  Flow control is completely disabled
 878	 *      1:  Rx flow control is enabled (we can receive pause frames, but
 879	 *          not send pause frames).
 880	 *      2:  Tx flow control is enabled (we can send pause frames but we do
 881	 *          not support receiving pause frames).
 882	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
 883	 */
 884	switch (hw->fc) {
 885	case E1000_FC_NONE:
 886		/* Flow control is completely disabled by a software over-ride. */
 887		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 888		break;
 889	case E1000_FC_RX_PAUSE:
 890		/* RX Flow control is enabled and TX Flow control is disabled by a
 891		 * software over-ride. Since there really isn't a way to advertise
 892		 * that we are capable of RX Pause ONLY, we will advertise that we
 893		 * support both symmetric and asymmetric RX PAUSE. Later, we will
 894		 *  disable the adapter's ability to send PAUSE frames.
 
 895		 */
 896		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 897		break;
 898	case E1000_FC_TX_PAUSE:
 899		/* TX Flow control is enabled, and RX Flow control is disabled, by a
 900		 * software over-ride.
 901		 */
 902		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 903		break;
 904	case E1000_FC_FULL:
 905		/* Flow control (both RX and TX) is enabled by a software over-ride. */
 
 
 906		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 907		break;
 908	default:
 909		e_dbg("Flow control param set incorrectly\n");
 910		return -E1000_ERR_CONFIG;
 911		break;
 912	}
 913
 914	/* Since auto-negotiation is enabled, take the link out of reset (the link
 915	 * will be in reset, because we previously reset the chip). This will
 916	 * restart auto-negotiation.  If auto-negotiation is successful then the
 917	 * link-up status bit will be set and the flow control enable bits (RFCE
 918	 * and TFCE) will be set according to their negotiated value.
 919	 */
 920	e_dbg("Auto-negotiation enabled\n");
 921
 922	ew32(TXCW, txcw);
 923	ew32(CTRL, ctrl);
 924	E1000_WRITE_FLUSH();
 925
 926	hw->txcw = txcw;
 927	msleep(1);
 928
 929	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
 930	 * indication in the Device Status Register.  Time-out if a link isn't
 931	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
 932	 * less than 500 milliseconds even if the other end is doing it in SW).
 933	 * For internal serdes, we just assume a signal is present, then poll.
 
 934	 */
 935	if (hw->media_type == e1000_media_type_internal_serdes ||
 936	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 937		e_dbg("Looking for Link\n");
 938		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 939			msleep(10);
 940			status = er32(STATUS);
 941			if (status & E1000_STATUS_LU)
 942				break;
 943		}
 944		if (i == (LINK_UP_TIMEOUT / 10)) {
 945			e_dbg("Never got a valid link from auto-neg!!!\n");
 946			hw->autoneg_failed = 1;
 947			/* AutoNeg failed to achieve a link, so we'll call
 948			 * e1000_check_for_link. This routine will force the link up if
 949			 * we detect a signal. This will allow us to communicate with
 950			 * non-autonegotiating link partners.
 951			 */
 952			ret_val = e1000_check_for_link(hw);
 953			if (ret_val) {
 954				e_dbg("Error while checking for link\n");
 955				return ret_val;
 956			}
 957			hw->autoneg_failed = 0;
 958		} else {
 959			hw->autoneg_failed = 0;
 960			e_dbg("Valid Link Found\n");
 961		}
 962	} else {
 963		e_dbg("No Signal Detected\n");
 964	}
 965	return E1000_SUCCESS;
 966}
 967
 968/**
 969 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 970 * @hw: Struct containing variables accessed by shared code
 971 *
 972 * Commits changes to PHY configuration by calling e1000_phy_reset().
 973 */
 974static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 975{
 976	s32 ret_val;
 977
 978	/* SW reset the PHY so all changes take effect */
 979	ret_val = e1000_phy_reset(hw);
 980	if (ret_val) {
 981		e_dbg("Error Resetting the PHY\n");
 982		return ret_val;
 983	}
 984
 985	return E1000_SUCCESS;
 986}
 987
 988static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 989{
 990	s32 ret_val;
 991	u32 ctrl_aux;
 992
 993	switch (hw->phy_type) {
 994	case e1000_phy_8211:
 995		ret_val = e1000_copper_link_rtl_setup(hw);
 996		if (ret_val) {
 997			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 998			return ret_val;
 999		}
1000		break;
1001	case e1000_phy_8201:
1002		/* Set RMII mode */
1003		ctrl_aux = er32(CTL_AUX);
1004		ctrl_aux |= E1000_CTL_AUX_RMII;
1005		ew32(CTL_AUX, ctrl_aux);
1006		E1000_WRITE_FLUSH();
1007
1008		/* Disable the J/K bits required for receive */
1009		ctrl_aux = er32(CTL_AUX);
1010		ctrl_aux |= 0x4;
1011		ctrl_aux &= ~0x2;
1012		ew32(CTL_AUX, ctrl_aux);
1013		E1000_WRITE_FLUSH();
1014		ret_val = e1000_copper_link_rtl_setup(hw);
1015
1016		if (ret_val) {
1017			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1018			return ret_val;
1019		}
1020		break;
1021	default:
1022		e_dbg("Error Resetting the PHY\n");
1023		return E1000_ERR_PHY_TYPE;
1024	}
1025
1026	return E1000_SUCCESS;
1027}
1028
1029/**
1030 * e1000_copper_link_preconfig - early configuration for copper
1031 * @hw: Struct containing variables accessed by shared code
1032 *
1033 * Make sure we have a valid PHY and change PHY mode before link setup.
1034 */
1035static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1036{
1037	u32 ctrl;
1038	s32 ret_val;
1039	u16 phy_data;
1040
1041	e_dbg("e1000_copper_link_preconfig");
1042
1043	ctrl = er32(CTRL);
1044	/* With 82543, we need to force speed and duplex on the MAC equal to what
1045	 * the PHY speed and duplex configuration is. In addition, we need to
1046	 * perform a hardware reset on the PHY to take it out of reset.
1047	 */
1048	if (hw->mac_type > e1000_82543) {
1049		ctrl |= E1000_CTRL_SLU;
1050		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1051		ew32(CTRL, ctrl);
1052	} else {
1053		ctrl |=
1054		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1055		ew32(CTRL, ctrl);
1056		ret_val = e1000_phy_hw_reset(hw);
1057		if (ret_val)
1058			return ret_val;
1059	}
1060
1061	/* Make sure we have a valid PHY */
1062	ret_val = e1000_detect_gig_phy(hw);
1063	if (ret_val) {
1064		e_dbg("Error, did not detect valid phy.\n");
1065		return ret_val;
1066	}
1067	e_dbg("Phy ID = %x\n", hw->phy_id);
1068
1069	/* Set PHY to class A mode (if necessary) */
1070	ret_val = e1000_set_phy_mode(hw);
1071	if (ret_val)
1072		return ret_val;
1073
1074	if ((hw->mac_type == e1000_82545_rev_3) ||
1075	    (hw->mac_type == e1000_82546_rev_3)) {
1076		ret_val =
1077		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1078		phy_data |= 0x00000008;
1079		ret_val =
1080		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1081	}
1082
1083	if (hw->mac_type <= e1000_82543 ||
1084	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1085	    hw->mac_type == e1000_82541_rev_2
1086	    || hw->mac_type == e1000_82547_rev_2)
1087		hw->phy_reset_disable = false;
1088
1089	return E1000_SUCCESS;
1090}
1091
1092/**
1093 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1094 * @hw: Struct containing variables accessed by shared code
1095 */
1096static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1097{
1098	u32 led_ctrl;
1099	s32 ret_val;
1100	u16 phy_data;
1101
1102	e_dbg("e1000_copper_link_igp_setup");
1103
1104	if (hw->phy_reset_disable)
1105		return E1000_SUCCESS;
1106
1107	ret_val = e1000_phy_reset(hw);
1108	if (ret_val) {
1109		e_dbg("Error Resetting the PHY\n");
1110		return ret_val;
1111	}
1112
1113	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1114	msleep(15);
1115	/* Configure activity LED after PHY reset */
1116	led_ctrl = er32(LEDCTL);
1117	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1118	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1119	ew32(LEDCTL, led_ctrl);
1120
1121	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1122	if (hw->phy_type == e1000_phy_igp) {
1123		/* disable lplu d3 during driver init */
1124		ret_val = e1000_set_d3_lplu_state(hw, false);
1125		if (ret_val) {
1126			e_dbg("Error Disabling LPLU D3\n");
1127			return ret_val;
1128		}
1129	}
1130
1131	/* Configure mdi-mdix settings */
1132	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1133	if (ret_val)
1134		return ret_val;
1135
1136	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1137		hw->dsp_config_state = e1000_dsp_config_disabled;
1138		/* Force MDI for earlier revs of the IGP PHY */
1139		phy_data &=
1140		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1141		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1142		hw->mdix = 1;
1143
1144	} else {
1145		hw->dsp_config_state = e1000_dsp_config_enabled;
1146		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1147
1148		switch (hw->mdix) {
1149		case 1:
1150			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1151			break;
1152		case 2:
1153			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1154			break;
1155		case 0:
1156		default:
1157			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1158			break;
1159		}
1160	}
1161	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1162	if (ret_val)
1163		return ret_val;
1164
1165	/* set auto-master slave resolution settings */
1166	if (hw->autoneg) {
1167		e1000_ms_type phy_ms_setting = hw->master_slave;
1168
1169		if (hw->ffe_config_state == e1000_ffe_config_active)
1170			hw->ffe_config_state = e1000_ffe_config_enabled;
1171
1172		if (hw->dsp_config_state == e1000_dsp_config_activated)
1173			hw->dsp_config_state = e1000_dsp_config_enabled;
1174
1175		/* when autonegotiation advertisement is only 1000Mbps then we
1176		 * should disable SmartSpeed and enable Auto MasterSlave
1177		 * resolution as hardware default. */
 
1178		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1179			/* Disable SmartSpeed */
1180			ret_val =
1181			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1182					       &phy_data);
1183			if (ret_val)
1184				return ret_val;
1185			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1186			ret_val =
1187			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1188						phy_data);
1189			if (ret_val)
1190				return ret_val;
1191			/* Set auto Master/Slave resolution process */
1192			ret_val =
1193			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194			if (ret_val)
1195				return ret_val;
1196			phy_data &= ~CR_1000T_MS_ENABLE;
1197			ret_val =
1198			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1199			if (ret_val)
1200				return ret_val;
1201		}
1202
1203		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1204		if (ret_val)
1205			return ret_val;
1206
1207		/* load defaults for future use */
1208		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1209		    ((phy_data & CR_1000T_MS_VALUE) ?
1210		     e1000_ms_force_master :
1211		     e1000_ms_force_slave) : e1000_ms_auto;
1212
1213		switch (phy_ms_setting) {
1214		case e1000_ms_force_master:
1215			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1216			break;
1217		case e1000_ms_force_slave:
1218			phy_data |= CR_1000T_MS_ENABLE;
1219			phy_data &= ~(CR_1000T_MS_VALUE);
1220			break;
1221		case e1000_ms_auto:
1222			phy_data &= ~CR_1000T_MS_ENABLE;
 
1223		default:
1224			break;
1225		}
1226		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1227		if (ret_val)
1228			return ret_val;
1229	}
1230
1231	return E1000_SUCCESS;
1232}
1233
1234/**
1235 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1236 * @hw: Struct containing variables accessed by shared code
1237 */
1238static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1239{
1240	s32 ret_val;
1241	u16 phy_data;
1242
1243	e_dbg("e1000_copper_link_mgp_setup");
1244
1245	if (hw->phy_reset_disable)
1246		return E1000_SUCCESS;
1247
1248	/* Enable CRS on TX. This must be set for half-duplex operation. */
1249	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1250	if (ret_val)
1251		return ret_val;
1252
1253	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1254
1255	/* Options:
1256	 *   MDI/MDI-X = 0 (default)
1257	 *   0 - Auto for all speeds
1258	 *   1 - MDI mode
1259	 *   2 - MDI-X mode
1260	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1261	 */
1262	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1263
1264	switch (hw->mdix) {
1265	case 1:
1266		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1267		break;
1268	case 2:
1269		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1270		break;
1271	case 3:
1272		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1273		break;
1274	case 0:
1275	default:
1276		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1277		break;
1278	}
1279
1280	/* Options:
1281	 *   disable_polarity_correction = 0 (default)
1282	 *       Automatic Correction for Reversed Cable Polarity
1283	 *   0 - Disabled
1284	 *   1 - Enabled
1285	 */
1286	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1287	if (hw->disable_polarity_correction == 1)
1288		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1289	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290	if (ret_val)
1291		return ret_val;
1292
1293	if (hw->phy_revision < M88E1011_I_REV_4) {
1294		/* Force TX_CLK in the Extended PHY Specific Control Register
1295		 * to 25MHz clock.
1296		 */
1297		ret_val =
1298		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1299				       &phy_data);
1300		if (ret_val)
1301			return ret_val;
1302
1303		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1304
1305		if ((hw->phy_revision == E1000_REVISION_2) &&
1306		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1307			/* Vidalia Phy, set the downshift counter to 5x */
1308			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1309			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1310			ret_val = e1000_write_phy_reg(hw,
1311						      M88E1000_EXT_PHY_SPEC_CTRL,
1312						      phy_data);
1313			if (ret_val)
1314				return ret_val;
1315		} else {
1316			/* Configure Master and Slave downshift values */
1317			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1318				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1319			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1320				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1321			ret_val = e1000_write_phy_reg(hw,
1322						      M88E1000_EXT_PHY_SPEC_CTRL,
1323						      phy_data);
1324			if (ret_val)
1325				return ret_val;
1326		}
1327	}
1328
1329	/* SW Reset the PHY so all changes take effect */
1330	ret_val = e1000_phy_reset(hw);
1331	if (ret_val) {
1332		e_dbg("Error Resetting the PHY\n");
1333		return ret_val;
1334	}
1335
1336	return E1000_SUCCESS;
1337}
1338
1339/**
1340 * e1000_copper_link_autoneg - setup auto-neg
1341 * @hw: Struct containing variables accessed by shared code
1342 *
1343 * Setup auto-negotiation and flow control advertisements,
1344 * and then perform auto-negotiation.
1345 */
1346static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1347{
1348	s32 ret_val;
1349	u16 phy_data;
1350
1351	e_dbg("e1000_copper_link_autoneg");
1352
1353	/* Perform some bounds checking on the hw->autoneg_advertised
1354	 * parameter.  If this variable is zero, then set it to the default.
1355	 */
1356	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1357
1358	/* If autoneg_advertised is zero, we assume it was not defaulted
1359	 * by the calling code so we set to advertise full capability.
1360	 */
1361	if (hw->autoneg_advertised == 0)
1362		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1363
1364	/* IFE/RTL8201N PHY only supports 10/100 */
1365	if (hw->phy_type == e1000_phy_8201)
1366		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1367
1368	e_dbg("Reconfiguring auto-neg advertisement params\n");
1369	ret_val = e1000_phy_setup_autoneg(hw);
1370	if (ret_val) {
1371		e_dbg("Error Setting up Auto-Negotiation\n");
1372		return ret_val;
1373	}
1374	e_dbg("Restarting Auto-Neg\n");
1375
1376	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1377	 * the Auto Neg Restart bit in the PHY control register.
1378	 */
1379	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1380	if (ret_val)
1381		return ret_val;
1382
1383	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1384	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Does the user want to wait for Auto-Neg to complete here, or
1389	 * check at a later time (for example, callback routine).
1390	 */
1391	if (hw->wait_autoneg_complete) {
1392		ret_val = e1000_wait_autoneg(hw);
1393		if (ret_val) {
1394			e_dbg
1395			    ("Error while waiting for autoneg to complete\n");
1396			return ret_val;
1397		}
1398	}
1399
1400	hw->get_link_status = true;
1401
1402	return E1000_SUCCESS;
1403}
1404
1405/**
1406 * e1000_copper_link_postconfig - post link setup
1407 * @hw: Struct containing variables accessed by shared code
1408 *
1409 * Config the MAC and the PHY after link is up.
1410 *   1) Set up the MAC to the current PHY speed/duplex
1411 *      if we are on 82543.  If we
1412 *      are on newer silicon, we only need to configure
1413 *      collision distance in the Transmit Control Register.
1414 *   2) Set up flow control on the MAC to that established with
1415 *      the link partner.
1416 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1417 */
1418static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1419{
1420	s32 ret_val;
1421	e_dbg("e1000_copper_link_postconfig");
1422
1423	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1424		e1000_config_collision_dist(hw);
1425	} else {
1426		ret_val = e1000_config_mac_to_phy(hw);
1427		if (ret_val) {
1428			e_dbg("Error configuring MAC to PHY settings\n");
1429			return ret_val;
1430		}
1431	}
1432	ret_val = e1000_config_fc_after_link_up(hw);
1433	if (ret_val) {
1434		e_dbg("Error Configuring Flow Control\n");
1435		return ret_val;
1436	}
1437
1438	/* Config DSP to improve Giga link quality */
1439	if (hw->phy_type == e1000_phy_igp) {
1440		ret_val = e1000_config_dsp_after_link_change(hw, true);
1441		if (ret_val) {
1442			e_dbg("Error Configuring DSP after link up\n");
1443			return ret_val;
1444		}
1445	}
1446
1447	return E1000_SUCCESS;
1448}
1449
1450/**
1451 * e1000_setup_copper_link - phy/speed/duplex setting
1452 * @hw: Struct containing variables accessed by shared code
1453 *
1454 * Detects which PHY is present and sets up the speed and duplex
1455 */
1456static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1457{
1458	s32 ret_val;
1459	u16 i;
1460	u16 phy_data;
1461
1462	e_dbg("e1000_setup_copper_link");
1463
1464	/* Check if it is a valid PHY and set PHY mode if necessary. */
1465	ret_val = e1000_copper_link_preconfig(hw);
1466	if (ret_val)
1467		return ret_val;
1468
1469	if (hw->phy_type == e1000_phy_igp) {
1470		ret_val = e1000_copper_link_igp_setup(hw);
1471		if (ret_val)
1472			return ret_val;
1473	} else if (hw->phy_type == e1000_phy_m88) {
1474		ret_val = e1000_copper_link_mgp_setup(hw);
1475		if (ret_val)
1476			return ret_val;
1477	} else {
1478		ret_val = gbe_dhg_phy_setup(hw);
1479		if (ret_val) {
1480			e_dbg("gbe_dhg_phy_setup failed!\n");
1481			return ret_val;
1482		}
1483	}
1484
1485	if (hw->autoneg) {
1486		/* Setup autoneg and flow control advertisement
1487		 * and perform autonegotiation */
 
1488		ret_val = e1000_copper_link_autoneg(hw);
1489		if (ret_val)
1490			return ret_val;
1491	} else {
1492		/* PHY will be set to 10H, 10F, 100H,or 100F
1493		 * depending on value from forced_speed_duplex. */
 
1494		e_dbg("Forcing speed and duplex\n");
1495		ret_val = e1000_phy_force_speed_duplex(hw);
1496		if (ret_val) {
1497			e_dbg("Error Forcing Speed and Duplex\n");
1498			return ret_val;
1499		}
1500	}
1501
1502	/* Check link status. Wait up to 100 microseconds for link to become
1503	 * valid.
1504	 */
1505	for (i = 0; i < 10; i++) {
1506		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1507		if (ret_val)
1508			return ret_val;
1509		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1510		if (ret_val)
1511			return ret_val;
1512
1513		if (phy_data & MII_SR_LINK_STATUS) {
1514			/* Config the MAC and PHY after link is up */
1515			ret_val = e1000_copper_link_postconfig(hw);
1516			if (ret_val)
1517				return ret_val;
1518
1519			e_dbg("Valid link established!!!\n");
1520			return E1000_SUCCESS;
1521		}
1522		udelay(10);
1523	}
1524
1525	e_dbg("Unable to establish link!!!\n");
1526	return E1000_SUCCESS;
1527}
1528
1529/**
1530 * e1000_phy_setup_autoneg - phy settings
1531 * @hw: Struct containing variables accessed by shared code
1532 *
1533 * Configures PHY autoneg and flow control advertisement settings
1534 */
1535s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1536{
1537	s32 ret_val;
1538	u16 mii_autoneg_adv_reg;
1539	u16 mii_1000t_ctrl_reg;
1540
1541	e_dbg("e1000_phy_setup_autoneg");
1542
1543	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1544	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1545	if (ret_val)
1546		return ret_val;
1547
1548	/* Read the MII 1000Base-T Control Register (Address 9). */
1549	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1550	if (ret_val)
1551		return ret_val;
1552	else if (hw->phy_type == e1000_phy_8201)
1553		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1554
1555	/* Need to parse both autoneg_advertised and fc and set up
1556	 * the appropriate PHY registers.  First we will parse for
1557	 * autoneg_advertised software override.  Since we can advertise
1558	 * a plethora of combinations, we need to check each bit
1559	 * individually.
1560	 */
1561
1562	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1563	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1564	 * the  1000Base-T Control Register (Address 9).
1565	 */
1566	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1567	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1568
1569	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1570
1571	/* Do we want to advertise 10 Mb Half Duplex? */
1572	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1573		e_dbg("Advertise 10mb Half duplex\n");
1574		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1575	}
1576
1577	/* Do we want to advertise 10 Mb Full Duplex? */
1578	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1579		e_dbg("Advertise 10mb Full duplex\n");
1580		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1581	}
1582
1583	/* Do we want to advertise 100 Mb Half Duplex? */
1584	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1585		e_dbg("Advertise 100mb Half duplex\n");
1586		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1587	}
1588
1589	/* Do we want to advertise 100 Mb Full Duplex? */
1590	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1591		e_dbg("Advertise 100mb Full duplex\n");
1592		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1593	}
1594
1595	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1596	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1597		e_dbg
1598		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1599	}
1600
1601	/* Do we want to advertise 1000 Mb Full Duplex? */
1602	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1603		e_dbg("Advertise 1000mb Full duplex\n");
1604		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1605	}
1606
1607	/* Check for a software override of the flow control settings, and
1608	 * setup the PHY advertisement registers accordingly.  If
1609	 * auto-negotiation is enabled, then software will have to set the
1610	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1611	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
 
1612	 *
1613	 * The possible values of the "fc" parameter are:
1614	 *      0:  Flow control is completely disabled
1615	 *      1:  Rx flow control is enabled (we can receive pause frames
1616	 *          but not send pause frames).
1617	 *      2:  Tx flow control is enabled (we can send pause frames
1618	 *          but we do not support receiving pause frames).
1619	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1620	 *  other:  No software override.  The flow control configuration
1621	 *          in the EEPROM is used.
1622	 */
1623	switch (hw->fc) {
1624	case E1000_FC_NONE:	/* 0 */
1625		/* Flow control (RX & TX) is completely disabled by a
1626		 * software over-ride.
1627		 */
1628		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1629		break;
1630	case E1000_FC_RX_PAUSE:	/* 1 */
1631		/* RX Flow control is enabled, and TX Flow control is
1632		 * disabled, by a software over-ride.
1633		 */
1634		/* Since there really isn't a way to advertise that we are
1635		 * capable of RX Pause ONLY, we will advertise that we
1636		 * support both symmetric and asymmetric RX PAUSE.  Later
1637		 * (in e1000_config_fc_after_link_up) we will disable the
1638		 *hw's ability to send PAUSE frames.
1639		 */
1640		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1641		break;
1642	case E1000_FC_TX_PAUSE:	/* 2 */
1643		/* TX Flow control is enabled, and RX Flow control is
1644		 * disabled, by a software over-ride.
1645		 */
1646		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1647		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1648		break;
1649	case E1000_FC_FULL:	/* 3 */
1650		/* Flow control (both RX and TX) is enabled by a software
1651		 * over-ride.
1652		 */
1653		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1654		break;
1655	default:
1656		e_dbg("Flow control param set incorrectly\n");
1657		return -E1000_ERR_CONFIG;
1658	}
1659
1660	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1661	if (ret_val)
1662		return ret_val;
1663
1664	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1665
1666	if (hw->phy_type == e1000_phy_8201) {
1667		mii_1000t_ctrl_reg = 0;
1668	} else {
1669		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1670		                              mii_1000t_ctrl_reg);
1671		if (ret_val)
1672			return ret_val;
1673	}
1674
1675	return E1000_SUCCESS;
1676}
1677
1678/**
1679 * e1000_phy_force_speed_duplex - force link settings
1680 * @hw: Struct containing variables accessed by shared code
1681 *
1682 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1683 */
1684static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1685{
1686	u32 ctrl;
1687	s32 ret_val;
1688	u16 mii_ctrl_reg;
1689	u16 mii_status_reg;
1690	u16 phy_data;
1691	u16 i;
1692
1693	e_dbg("e1000_phy_force_speed_duplex");
1694
1695	/* Turn off Flow control if we are forcing speed and duplex. */
1696	hw->fc = E1000_FC_NONE;
1697
1698	e_dbg("hw->fc = %d\n", hw->fc);
1699
1700	/* Read the Device Control Register. */
1701	ctrl = er32(CTRL);
1702
1703	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1704	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1705	ctrl &= ~(DEVICE_SPEED_MASK);
1706
1707	/* Clear the Auto Speed Detect Enable bit. */
1708	ctrl &= ~E1000_CTRL_ASDE;
1709
1710	/* Read the MII Control Register. */
1711	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1712	if (ret_val)
1713		return ret_val;
1714
1715	/* We need to disable autoneg in order to force link and duplex. */
1716
1717	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1718
1719	/* Are we forcing Full or Half Duplex? */
1720	if (hw->forced_speed_duplex == e1000_100_full ||
1721	    hw->forced_speed_duplex == e1000_10_full) {
1722		/* We want to force full duplex so we SET the full duplex bits in the
1723		 * Device and MII Control Registers.
1724		 */
1725		ctrl |= E1000_CTRL_FD;
1726		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1727		e_dbg("Full Duplex\n");
1728	} else {
1729		/* We want to force half duplex so we CLEAR the full duplex bits in
1730		 * the Device and MII Control Registers.
1731		 */
1732		ctrl &= ~E1000_CTRL_FD;
1733		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1734		e_dbg("Half Duplex\n");
1735	}
1736
1737	/* Are we forcing 100Mbps??? */
1738	if (hw->forced_speed_duplex == e1000_100_full ||
1739	    hw->forced_speed_duplex == e1000_100_half) {
1740		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1741		ctrl |= E1000_CTRL_SPD_100;
1742		mii_ctrl_reg |= MII_CR_SPEED_100;
1743		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1744		e_dbg("Forcing 100mb ");
1745	} else {
1746		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1747		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1748		mii_ctrl_reg |= MII_CR_SPEED_10;
1749		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1750		e_dbg("Forcing 10mb ");
1751	}
1752
1753	e1000_config_collision_dist(hw);
1754
1755	/* Write the configured values back to the Device Control Reg. */
1756	ew32(CTRL, ctrl);
1757
1758	if (hw->phy_type == e1000_phy_m88) {
1759		ret_val =
1760		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1761		if (ret_val)
1762			return ret_val;
1763
1764		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1765		 * forced whenever speed are duplex are forced.
1766		 */
1767		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1768		ret_val =
1769		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1770		if (ret_val)
1771			return ret_val;
1772
1773		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1774
1775		/* Need to reset the PHY or these changes will be ignored */
1776		mii_ctrl_reg |= MII_CR_RESET;
1777
1778		/* Disable MDI-X support for 10/100 */
1779	} else {
1780		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1781		 * forced whenever speed or duplex are forced.
1782		 */
1783		ret_val =
1784		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1785		if (ret_val)
1786			return ret_val;
1787
1788		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1789		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1790
1791		ret_val =
1792		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1793		if (ret_val)
1794			return ret_val;
1795	}
1796
1797	/* Write back the modified PHY MII control register. */
1798	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1799	if (ret_val)
1800		return ret_val;
1801
1802	udelay(1);
1803
1804	/* The wait_autoneg_complete flag may be a little misleading here.
1805	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1806	 * But we do want to delay for a period while forcing only so we
1807	 * don't generate false No Link messages.  So we will wait here
1808	 * only if the user has set wait_autoneg_complete to 1, which is
1809	 * the default.
1810	 */
1811	if (hw->wait_autoneg_complete) {
1812		/* We will wait for autoneg to complete. */
1813		e_dbg("Waiting for forced speed/duplex link.\n");
1814		mii_status_reg = 0;
1815
1816		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
1817		for (i = PHY_FORCE_TIME; i > 0; i--) {
1818			/* Read the MII Status Register and wait for Auto-Neg Complete bit
1819			 * to be set.
1820			 */
1821			ret_val =
1822			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1823			if (ret_val)
1824				return ret_val;
1825
1826			ret_val =
1827			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1828			if (ret_val)
1829				return ret_val;
1830
1831			if (mii_status_reg & MII_SR_LINK_STATUS)
1832				break;
1833			msleep(100);
1834		}
1835		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1836			/* We didn't get link.  Reset the DSP and wait again for link. */
 
 
1837			ret_val = e1000_phy_reset_dsp(hw);
1838			if (ret_val) {
1839				e_dbg("Error Resetting PHY DSP\n");
1840				return ret_val;
1841			}
1842		}
1843		/* This loop will early-out if the link condition has been met.  */
 
 
1844		for (i = PHY_FORCE_TIME; i > 0; i--) {
1845			if (mii_status_reg & MII_SR_LINK_STATUS)
1846				break;
1847			msleep(100);
1848			/* Read the MII Status Register and wait for Auto-Neg Complete bit
1849			 * to be set.
1850			 */
1851			ret_val =
1852			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1853			if (ret_val)
1854				return ret_val;
1855
1856			ret_val =
1857			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1858			if (ret_val)
1859				return ret_val;
1860		}
1861	}
1862
1863	if (hw->phy_type == e1000_phy_m88) {
1864		/* Because we reset the PHY above, we need to re-force TX_CLK in the
1865		 * Extended PHY Specific Control Register to 25MHz clock.  This value
1866		 * defaults back to a 2.5MHz clock when the PHY is reset.
 
1867		 */
1868		ret_val =
1869		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1870				       &phy_data);
1871		if (ret_val)
1872			return ret_val;
1873
1874		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1875		ret_val =
1876		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1877					phy_data);
1878		if (ret_val)
1879			return ret_val;
1880
1881		/* In addition, because of the s/w reset above, we need to enable CRS on
1882		 * TX.  This must be set for both full and half duplex operation.
 
1883		 */
1884		ret_val =
1885		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1890		ret_val =
1891		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1892		if (ret_val)
1893			return ret_val;
1894
1895		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1896		    && (!hw->autoneg)
1897		    && (hw->forced_speed_duplex == e1000_10_full
1898			|| hw->forced_speed_duplex == e1000_10_half)) {
 
1899			ret_val = e1000_polarity_reversal_workaround(hw);
1900			if (ret_val)
1901				return ret_val;
1902		}
1903	}
1904	return E1000_SUCCESS;
1905}
1906
1907/**
1908 * e1000_config_collision_dist - set collision distance register
1909 * @hw: Struct containing variables accessed by shared code
1910 *
1911 * Sets the collision distance in the Transmit Control register.
1912 * Link should have been established previously. Reads the speed and duplex
1913 * information from the Device Status register.
1914 */
1915void e1000_config_collision_dist(struct e1000_hw *hw)
1916{
1917	u32 tctl, coll_dist;
1918
1919	e_dbg("e1000_config_collision_dist");
1920
1921	if (hw->mac_type < e1000_82543)
1922		coll_dist = E1000_COLLISION_DISTANCE_82542;
1923	else
1924		coll_dist = E1000_COLLISION_DISTANCE;
1925
1926	tctl = er32(TCTL);
1927
1928	tctl &= ~E1000_TCTL_COLD;
1929	tctl |= coll_dist << E1000_COLD_SHIFT;
1930
1931	ew32(TCTL, tctl);
1932	E1000_WRITE_FLUSH();
1933}
1934
1935/**
1936 * e1000_config_mac_to_phy - sync phy and mac settings
1937 * @hw: Struct containing variables accessed by shared code
1938 * @mii_reg: data to write to the MII control register
1939 *
1940 * Sets MAC speed and duplex settings to reflect the those in the PHY
1941 * The contents of the PHY register containing the needed information need to
1942 * be passed in.
1943 */
1944static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1945{
1946	u32 ctrl;
1947	s32 ret_val;
1948	u16 phy_data;
1949
1950	e_dbg("e1000_config_mac_to_phy");
1951
1952	/* 82544 or newer MAC, Auto Speed Detection takes care of
1953	 * MAC speed/duplex configuration.*/
 
1954	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1955		return E1000_SUCCESS;
1956
1957	/* Read the Device Control Register and set the bits to Force Speed
1958	 * and Duplex.
1959	 */
1960	ctrl = er32(CTRL);
1961	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1962	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1963
1964	switch (hw->phy_type) {
1965	case e1000_phy_8201:
1966		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1967		if (ret_val)
1968			return ret_val;
1969
1970		if (phy_data & RTL_PHY_CTRL_FD)
1971			ctrl |= E1000_CTRL_FD;
1972		else
1973			ctrl &= ~E1000_CTRL_FD;
1974
1975		if (phy_data & RTL_PHY_CTRL_SPD_100)
1976			ctrl |= E1000_CTRL_SPD_100;
1977		else
1978			ctrl |= E1000_CTRL_SPD_10;
1979
1980		e1000_config_collision_dist(hw);
1981		break;
1982	default:
1983		/* Set up duplex in the Device Control and Transmit Control
1984		 * registers depending on negotiated values.
1985		 */
1986		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1987		                             &phy_data);
1988		if (ret_val)
1989			return ret_val;
1990
1991		if (phy_data & M88E1000_PSSR_DPLX)
1992			ctrl |= E1000_CTRL_FD;
1993		else
1994			ctrl &= ~E1000_CTRL_FD;
1995
1996		e1000_config_collision_dist(hw);
1997
1998		/* Set up speed in the Device Control register depending on
1999		 * negotiated values.
2000		 */
2001		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2002			ctrl |= E1000_CTRL_SPD_1000;
2003		else if ((phy_data & M88E1000_PSSR_SPEED) ==
2004		         M88E1000_PSSR_100MBS)
2005			ctrl |= E1000_CTRL_SPD_100;
2006	}
2007
2008	/* Write the configured values back to the Device Control Reg. */
2009	ew32(CTRL, ctrl);
2010	return E1000_SUCCESS;
2011}
2012
2013/**
2014 * e1000_force_mac_fc - force flow control settings
2015 * @hw: Struct containing variables accessed by shared code
2016 *
2017 * Forces the MAC's flow control settings.
2018 * Sets the TFCE and RFCE bits in the device control register to reflect
2019 * the adapter settings. TFCE and RFCE need to be explicitly set by
2020 * software when a Copper PHY is used because autonegotiation is managed
2021 * by the PHY rather than the MAC. Software must also configure these
2022 * bits when link is forced on a fiber connection.
2023 */
2024s32 e1000_force_mac_fc(struct e1000_hw *hw)
2025{
2026	u32 ctrl;
2027
2028	e_dbg("e1000_force_mac_fc");
2029
2030	/* Get the current configuration of the Device Control Register */
2031	ctrl = er32(CTRL);
2032
2033	/* Because we didn't get link via the internal auto-negotiation
2034	 * mechanism (we either forced link or we got link via PHY
2035	 * auto-neg), we have to manually enable/disable transmit an
2036	 * receive flow control.
2037	 *
2038	 * The "Case" statement below enables/disable flow control
2039	 * according to the "hw->fc" parameter.
2040	 *
2041	 * The possible values of the "fc" parameter are:
2042	 *      0:  Flow control is completely disabled
2043	 *      1:  Rx flow control is enabled (we can receive pause
2044	 *          frames but not send pause frames).
2045	 *      2:  Tx flow control is enabled (we can send pause frames
2046	 *          frames but we do not receive pause frames).
2047	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2048	 *  other:  No other values should be possible at this point.
2049	 */
2050
2051	switch (hw->fc) {
2052	case E1000_FC_NONE:
2053		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2054		break;
2055	case E1000_FC_RX_PAUSE:
2056		ctrl &= (~E1000_CTRL_TFCE);
2057		ctrl |= E1000_CTRL_RFCE;
2058		break;
2059	case E1000_FC_TX_PAUSE:
2060		ctrl &= (~E1000_CTRL_RFCE);
2061		ctrl |= E1000_CTRL_TFCE;
2062		break;
2063	case E1000_FC_FULL:
2064		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2065		break;
2066	default:
2067		e_dbg("Flow control param set incorrectly\n");
2068		return -E1000_ERR_CONFIG;
2069	}
2070
2071	/* Disable TX Flow Control for 82542 (rev 2.0) */
2072	if (hw->mac_type == e1000_82542_rev2_0)
2073		ctrl &= (~E1000_CTRL_TFCE);
2074
2075	ew32(CTRL, ctrl);
2076	return E1000_SUCCESS;
2077}
2078
2079/**
2080 * e1000_config_fc_after_link_up - configure flow control after autoneg
2081 * @hw: Struct containing variables accessed by shared code
2082 *
2083 * Configures flow control settings after link is established
2084 * Should be called immediately after a valid link has been established.
2085 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2086 * and autonegotiation is enabled, the MAC flow control settings will be set
2087 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2088 * and RFCE bits will be automatically set to the negotiated flow control mode.
2089 */
2090static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2091{
2092	s32 ret_val;
2093	u16 mii_status_reg;
2094	u16 mii_nway_adv_reg;
2095	u16 mii_nway_lp_ability_reg;
2096	u16 speed;
2097	u16 duplex;
2098
2099	e_dbg("e1000_config_fc_after_link_up");
2100
2101	/* Check for the case where we have fiber media and auto-neg failed
2102	 * so we had to force link.  In this case, we need to force the
2103	 * configuration of the MAC to match the "fc" parameter.
2104	 */
2105	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2106	    || ((hw->media_type == e1000_media_type_internal_serdes)
2107		&& (hw->autoneg_failed))
2108	    || ((hw->media_type == e1000_media_type_copper)
2109		&& (!hw->autoneg))) {
 
2110		ret_val = e1000_force_mac_fc(hw);
2111		if (ret_val) {
2112			e_dbg("Error forcing flow control settings\n");
2113			return ret_val;
2114		}
2115	}
2116
2117	/* Check for the case where we have copper media and auto-neg is
2118	 * enabled.  In this case, we need to check and see if Auto-Neg
2119	 * has completed, and if so, how the PHY and link partner has
2120	 * flow control configured.
2121	 */
2122	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2123		/* Read the MII Status Register and check to see if AutoNeg
2124		 * has completed.  We read this twice because this reg has
2125		 * some "sticky" (latched) bits.
2126		 */
2127		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2128		if (ret_val)
2129			return ret_val;
2130		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2131		if (ret_val)
2132			return ret_val;
2133
2134		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2135			/* The AutoNeg process has completed, so we now need to
2136			 * read both the Auto Negotiation Advertisement Register
2137			 * (Address 4) and the Auto_Negotiation Base Page Ability
2138			 * Register (Address 5) to determine how flow control was
2139			 * negotiated.
2140			 */
2141			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2142						     &mii_nway_adv_reg);
2143			if (ret_val)
2144				return ret_val;
2145			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2146						     &mii_nway_lp_ability_reg);
2147			if (ret_val)
2148				return ret_val;
2149
2150			/* Two bits in the Auto Negotiation Advertisement Register
2151			 * (Address 4) and two bits in the Auto Negotiation Base
2152			 * Page Ability Register (Address 5) determine flow control
2153			 * for both the PHY and the link partner.  The following
2154			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2155			 * 1999, describes these PAUSE resolution bits and how flow
2156			 * control is determined based upon these settings.
 
2157			 * NOTE:  DC = Don't Care
2158			 *
2159			 *   LOCAL DEVICE  |   LINK PARTNER
2160			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2161			 *-------|---------|-------|---------|--------------------
2162			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2163			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2164			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2165			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2167			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2168			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2169			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2170			 *
2171			 */
2172			/* Are both PAUSE bits set to 1?  If so, this implies
2173			 * Symmetric Flow Control is enabled at both ends.  The
2174			 * ASM_DIR bits are irrelevant per the spec.
2175			 *
2176			 * For Symmetric Flow Control:
2177			 *
2178			 *   LOCAL DEVICE  |   LINK PARTNER
2179			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180			 *-------|---------|-------|---------|--------------------
2181			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2182			 *
2183			 */
2184			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2186				/* Now we need to check if the user selected RX ONLY
2187				 * of pause frames.  In this case, we had to advertise
2188				 * FULL flow control because we could not advertise RX
2189				 * ONLY. Hence, we must now check to see if we need to
2190				 * turn OFF  the TRANSMISSION of PAUSE frames.
 
2191				 */
2192				if (hw->original_fc == E1000_FC_FULL) {
2193					hw->fc = E1000_FC_FULL;
2194					e_dbg("Flow Control = FULL.\n");
2195				} else {
2196					hw->fc = E1000_FC_RX_PAUSE;
2197					e_dbg
2198					    ("Flow Control = RX PAUSE frames only.\n");
2199				}
2200			}
2201			/* For receiving PAUSE frames ONLY.
2202			 *
2203			 *   LOCAL DEVICE  |   LINK PARTNER
2204			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2205			 *-------|---------|-------|---------|--------------------
2206			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2207			 *
2208			 */
2209			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2211				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2212				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2213			{
2214				hw->fc = E1000_FC_TX_PAUSE;
2215				e_dbg
2216				    ("Flow Control = TX PAUSE frames only.\n");
2217			}
2218			/* For transmitting PAUSE frames ONLY.
2219			 *
2220			 *   LOCAL DEVICE  |   LINK PARTNER
2221			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2222			 *-------|---------|-------|---------|--------------------
2223			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2224			 *
2225			 */
2226			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2227				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2228				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2229				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2230			{
2231				hw->fc = E1000_FC_RX_PAUSE;
2232				e_dbg
2233				    ("Flow Control = RX PAUSE frames only.\n");
2234			}
2235			/* Per the IEEE spec, at this point flow control should be
2236			 * disabled.  However, we want to consider that we could
2237			 * be connected to a legacy switch that doesn't advertise
2238			 * desired flow control, but can be forced on the link
2239			 * partner.  So if we advertised no flow control, that is
2240			 * what we will resolve to.  If we advertised some kind of
2241			 * receive capability (Rx Pause Only or Full Flow Control)
2242			 * and the link partner advertised none, we will configure
2243			 * ourselves to enable Rx Flow Control only.  We can do
2244			 * this safely for two reasons:  If the link partner really
2245			 * didn't want flow control enabled, and we enable Rx, no
2246			 * harm done since we won't be receiving any PAUSE frames
2247			 * anyway.  If the intent on the link partner was to have
2248			 * flow control enabled, then by us enabling RX only, we
2249			 * can at least receive pause frames and process them.
2250			 * This is a good idea because in most cases, since we are
2251			 * predominantly a server NIC, more times than not we will
2252			 * be asked to delay transmission of packets than asking
2253			 * our link partner to pause transmission of frames.
 
 
2254			 */
2255			else if ((hw->original_fc == E1000_FC_NONE ||
2256				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2257				 hw->fc_strict_ieee) {
2258				hw->fc = E1000_FC_NONE;
2259				e_dbg("Flow Control = NONE.\n");
2260			} else {
2261				hw->fc = E1000_FC_RX_PAUSE;
2262				e_dbg
2263				    ("Flow Control = RX PAUSE frames only.\n");
2264			}
2265
2266			/* Now we need to do one last check...  If we auto-
2267			 * negotiated to HALF DUPLEX, flow control should not be
2268			 * enabled per IEEE 802.3 spec.
2269			 */
2270			ret_val =
2271			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2272			if (ret_val) {
2273				e_dbg
2274				    ("Error getting link speed and duplex\n");
2275				return ret_val;
2276			}
2277
2278			if (duplex == HALF_DUPLEX)
2279				hw->fc = E1000_FC_NONE;
2280
2281			/* Now we call a subroutine to actually force the MAC
2282			 * controller to use the correct flow control settings.
2283			 */
2284			ret_val = e1000_force_mac_fc(hw);
2285			if (ret_val) {
2286				e_dbg
2287				    ("Error forcing flow control settings\n");
2288				return ret_val;
2289			}
2290		} else {
2291			e_dbg
2292			    ("Copper PHY and Auto Neg has not completed.\n");
2293		}
2294	}
2295	return E1000_SUCCESS;
2296}
2297
2298/**
2299 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2300 * @hw: pointer to the HW structure
2301 *
2302 * Checks for link up on the hardware.  If link is not up and we have
2303 * a signal, then we need to force link up.
2304 */
2305static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2306{
2307	u32 rxcw;
2308	u32 ctrl;
2309	u32 status;
2310	s32 ret_val = E1000_SUCCESS;
2311
2312	e_dbg("e1000_check_for_serdes_link_generic");
2313
2314	ctrl = er32(CTRL);
2315	status = er32(STATUS);
2316	rxcw = er32(RXCW);
2317
2318	/*
2319	 * If we don't have link (auto-negotiation failed or link partner
2320	 * cannot auto-negotiate), and our link partner is not trying to
2321	 * auto-negotiate with us (we are receiving idles or data),
2322	 * we need to force link up. We also need to give auto-negotiation
2323	 * time to complete.
2324	 */
2325	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2326	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2327		if (hw->autoneg_failed == 0) {
2328			hw->autoneg_failed = 1;
2329			goto out;
2330		}
2331		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2332
2333		/* Disable auto-negotiation in the TXCW register */
2334		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2335
2336		/* Force link-up and also force full-duplex. */
2337		ctrl = er32(CTRL);
2338		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2339		ew32(CTRL, ctrl);
2340
2341		/* Configure Flow Control after forcing link up. */
2342		ret_val = e1000_config_fc_after_link_up(hw);
2343		if (ret_val) {
2344			e_dbg("Error configuring flow control\n");
2345			goto out;
2346		}
2347	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2348		/*
2349		 * If we are forcing link and we are receiving /C/ ordered
2350		 * sets, re-enable auto-negotiation in the TXCW register
2351		 * and disable forced link in the Device Control register
2352		 * in an attempt to auto-negotiate with our link partner.
2353		 */
2354		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2355		ew32(TXCW, hw->txcw);
2356		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2357
2358		hw->serdes_has_link = true;
2359	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2360		/*
2361		 * If we force link for non-auto-negotiation switch, check
2362		 * link status based on MAC synchronization for internal
2363		 * serdes media type.
2364		 */
2365		/* SYNCH bit and IV bit are sticky. */
2366		udelay(10);
2367		rxcw = er32(RXCW);
2368		if (rxcw & E1000_RXCW_SYNCH) {
2369			if (!(rxcw & E1000_RXCW_IV)) {
2370				hw->serdes_has_link = true;
2371				e_dbg("SERDES: Link up - forced.\n");
2372			}
2373		} else {
2374			hw->serdes_has_link = false;
2375			e_dbg("SERDES: Link down - force failed.\n");
2376		}
2377	}
2378
2379	if (E1000_TXCW_ANE & er32(TXCW)) {
2380		status = er32(STATUS);
2381		if (status & E1000_STATUS_LU) {
2382			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2383			udelay(10);
2384			rxcw = er32(RXCW);
2385			if (rxcw & E1000_RXCW_SYNCH) {
2386				if (!(rxcw & E1000_RXCW_IV)) {
2387					hw->serdes_has_link = true;
2388					e_dbg("SERDES: Link up - autoneg "
2389						 "completed successfully.\n");
2390				} else {
2391					hw->serdes_has_link = false;
2392					e_dbg("SERDES: Link down - invalid"
2393						 "codewords detected in autoneg.\n");
2394				}
2395			} else {
2396				hw->serdes_has_link = false;
2397				e_dbg("SERDES: Link down - no sync.\n");
2398			}
2399		} else {
2400			hw->serdes_has_link = false;
2401			e_dbg("SERDES: Link down - autoneg failed\n");
2402		}
2403	}
2404
2405      out:
2406	return ret_val;
2407}
2408
2409/**
2410 * e1000_check_for_link
2411 * @hw: Struct containing variables accessed by shared code
2412 *
2413 * Checks to see if the link status of the hardware has changed.
2414 * Called by any function that needs to check the link status of the adapter.
2415 */
2416s32 e1000_check_for_link(struct e1000_hw *hw)
2417{
2418	u32 rxcw = 0;
2419	u32 ctrl;
2420	u32 status;
2421	u32 rctl;
2422	u32 icr;
2423	u32 signal = 0;
2424	s32 ret_val;
2425	u16 phy_data;
2426
2427	e_dbg("e1000_check_for_link");
2428
2429	ctrl = er32(CTRL);
2430	status = er32(STATUS);
2431
2432	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2433	 * set when the optics detect a signal. On older adapters, it will be
2434	 * cleared when there is a signal.  This applies to fiber media only.
2435	 */
2436	if ((hw->media_type == e1000_media_type_fiber) ||
2437	    (hw->media_type == e1000_media_type_internal_serdes)) {
2438		rxcw = er32(RXCW);
2439
2440		if (hw->media_type == e1000_media_type_fiber) {
2441			signal =
2442			    (hw->mac_type >
2443			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2444			if (status & E1000_STATUS_LU)
2445				hw->get_link_status = false;
2446		}
2447	}
2448
2449	/* If we have a copper PHY then we only want to go out to the PHY
2450	 * registers to see if Auto-Neg has completed and/or if our link
2451	 * status has changed.  The get_link_status flag will be set if we
2452	 * receive a Link Status Change interrupt or we have Rx Sequence
2453	 * Errors.
2454	 */
2455	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2456		/* First we want to see if the MII Status Register reports
2457		 * link.  If so, then we want to get the current speed/duplex
2458		 * of the PHY.
2459		 * Read the register twice since the link bit is sticky.
2460		 */
2461		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2462		if (ret_val)
2463			return ret_val;
2464		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2465		if (ret_val)
2466			return ret_val;
2467
2468		if (phy_data & MII_SR_LINK_STATUS) {
2469			hw->get_link_status = false;
2470			/* Check if there was DownShift, must be checked immediately after
2471			 * link-up */
 
2472			e1000_check_downshift(hw);
2473
2474			/* If we are on 82544 or 82543 silicon and speed/duplex
2475			 * are forced to 10H or 10F, then we will implement the polarity
2476			 * reversal workaround.  We disable interrupts first, and upon
2477			 * returning, place the devices interrupt state to its previous
2478			 * value except for the link status change interrupt which will
 
2479			 * happen due to the execution of this workaround.
2480			 */
2481
2482			if ((hw->mac_type == e1000_82544
2483			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
2484			    && (hw->forced_speed_duplex == e1000_10_full
2485				|| hw->forced_speed_duplex == e1000_10_half)) {
 
2486				ew32(IMC, 0xffffffff);
2487				ret_val =
2488				    e1000_polarity_reversal_workaround(hw);
2489				icr = er32(ICR);
2490				ew32(ICS, (icr & ~E1000_ICS_LSC));
2491				ew32(IMS, IMS_ENABLE_MASK);
2492			}
2493
2494		} else {
2495			/* No link detected */
2496			e1000_config_dsp_after_link_change(hw, false);
2497			return 0;
2498		}
2499
2500		/* If we are forcing speed/duplex, then we simply return since
2501		 * we have already determined whether we have link or not.
2502		 */
2503		if (!hw->autoneg)
2504			return -E1000_ERR_CONFIG;
2505
2506		/* optimize the dsp settings for the igp phy */
2507		e1000_config_dsp_after_link_change(hw, true);
2508
2509		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2510		 * have Si on board that is 82544 or newer, Auto
2511		 * Speed Detection takes care of MAC speed/duplex
2512		 * configuration.  So we only need to configure Collision
2513		 * Distance in the MAC.  Otherwise, we need to force
2514		 * speed/duplex on the MAC to the current PHY speed/duplex
2515		 * settings.
2516		 */
2517		if ((hw->mac_type >= e1000_82544) &&
2518		    (hw->mac_type != e1000_ce4100))
2519			e1000_config_collision_dist(hw);
2520		else {
2521			ret_val = e1000_config_mac_to_phy(hw);
2522			if (ret_val) {
2523				e_dbg
2524				    ("Error configuring MAC to PHY settings\n");
2525				return ret_val;
2526			}
2527		}
2528
2529		/* Configure Flow Control now that Auto-Neg has completed. First, we
2530		 * need to restore the desired flow control settings because we may
2531		 * have had to re-autoneg with a different link partner.
 
2532		 */
2533		ret_val = e1000_config_fc_after_link_up(hw);
2534		if (ret_val) {
2535			e_dbg("Error configuring flow control\n");
2536			return ret_val;
2537		}
2538
2539		/* At this point we know that we are on copper and we have
2540		 * auto-negotiated link.  These are conditions for checking the link
2541		 * partner capability register.  We use the link speed to determine if
2542		 * TBI compatibility needs to be turned on or off.  If the link is not
2543		 * at gigabit speed, then TBI compatibility is not needed.  If we are
2544		 * at gigabit speed, we turn on TBI compatibility.
 
2545		 */
2546		if (hw->tbi_compatibility_en) {
2547			u16 speed, duplex;
 
2548			ret_val =
2549			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
 
2550			if (ret_val) {
2551				e_dbg
2552				    ("Error getting link speed and duplex\n");
2553				return ret_val;
2554			}
2555			if (speed != SPEED_1000) {
2556				/* If link speed is not set to gigabit speed, we do not need
2557				 * to enable TBI compatibility.
2558				 */
2559				if (hw->tbi_compatibility_on) {
2560					/* If we previously were in the mode, turn it off. */
 
 
2561					rctl = er32(RCTL);
2562					rctl &= ~E1000_RCTL_SBP;
2563					ew32(RCTL, rctl);
2564					hw->tbi_compatibility_on = false;
2565				}
2566			} else {
2567				/* If TBI compatibility is was previously off, turn it on. For
2568				 * compatibility with a TBI link partner, we will store bad
2569				 * packets. Some frames have an additional byte on the end and
2570				 * will look like CRC errors to to the hardware.
 
2571				 */
2572				if (!hw->tbi_compatibility_on) {
2573					hw->tbi_compatibility_on = true;
2574					rctl = er32(RCTL);
2575					rctl |= E1000_RCTL_SBP;
2576					ew32(RCTL, rctl);
2577				}
2578			}
2579		}
2580	}
2581
2582	if ((hw->media_type == e1000_media_type_fiber) ||
2583	    (hw->media_type == e1000_media_type_internal_serdes))
2584		e1000_check_for_serdes_link_generic(hw);
2585
2586	return E1000_SUCCESS;
2587}
2588
2589/**
2590 * e1000_get_speed_and_duplex
2591 * @hw: Struct containing variables accessed by shared code
2592 * @speed: Speed of the connection
2593 * @duplex: Duplex setting of the connection
2594
2595 * Detects the current speed and duplex settings of the hardware.
2596 */
2597s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2598{
2599	u32 status;
2600	s32 ret_val;
2601	u16 phy_data;
2602
2603	e_dbg("e1000_get_speed_and_duplex");
2604
2605	if (hw->mac_type >= e1000_82543) {
2606		status = er32(STATUS);
2607		if (status & E1000_STATUS_SPEED_1000) {
2608			*speed = SPEED_1000;
2609			e_dbg("1000 Mbs, ");
2610		} else if (status & E1000_STATUS_SPEED_100) {
2611			*speed = SPEED_100;
2612			e_dbg("100 Mbs, ");
2613		} else {
2614			*speed = SPEED_10;
2615			e_dbg("10 Mbs, ");
2616		}
2617
2618		if (status & E1000_STATUS_FD) {
2619			*duplex = FULL_DUPLEX;
2620			e_dbg("Full Duplex\n");
2621		} else {
2622			*duplex = HALF_DUPLEX;
2623			e_dbg(" Half Duplex\n");
2624		}
2625	} else {
2626		e_dbg("1000 Mbs, Full Duplex\n");
2627		*speed = SPEED_1000;
2628		*duplex = FULL_DUPLEX;
2629	}
2630
2631	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
2632	 * if it is operating at half duplex.  Here we set the duplex settings to
2633	 * match the duplex in the link partner's capabilities.
2634	 */
2635	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2636		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2637		if (ret_val)
2638			return ret_val;
2639
2640		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2641			*duplex = HALF_DUPLEX;
2642		else {
2643			ret_val =
2644			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2645			if (ret_val)
2646				return ret_val;
2647			if ((*speed == SPEED_100
2648			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2649			    || (*speed == SPEED_10
2650				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2651				*duplex = HALF_DUPLEX;
2652		}
2653	}
2654
2655	return E1000_SUCCESS;
2656}
2657
2658/**
2659 * e1000_wait_autoneg
2660 * @hw: Struct containing variables accessed by shared code
2661 *
2662 * Blocks until autoneg completes or times out (~4.5 seconds)
2663 */
2664static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2665{
2666	s32 ret_val;
2667	u16 i;
2668	u16 phy_data;
2669
2670	e_dbg("e1000_wait_autoneg");
2671	e_dbg("Waiting for Auto-Neg to complete.\n");
2672
2673	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2674	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2675		/* Read the MII Status Register and wait for Auto-Neg
2676		 * Complete bit to be set.
2677		 */
2678		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2679		if (ret_val)
2680			return ret_val;
2681		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2682		if (ret_val)
2683			return ret_val;
2684		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2685			return E1000_SUCCESS;
2686		}
2687		msleep(100);
2688	}
2689	return E1000_SUCCESS;
2690}
2691
2692/**
2693 * e1000_raise_mdi_clk - Raises the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699	/* Raise the clock input to the Management Data Clock (by setting the MDC
2700	 * bit), and then delay 10 microseconds.
2701	 */
2702	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2703	E1000_WRITE_FLUSH();
2704	udelay(10);
2705}
2706
2707/**
2708 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2709 * @hw: Struct containing variables accessed by shared code
2710 * @ctrl: Device control register's current value
2711 */
2712static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2713{
2714	/* Lower the clock input to the Management Data Clock (by clearing the MDC
2715	 * bit), and then delay 10 microseconds.
2716	 */
2717	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2718	E1000_WRITE_FLUSH();
2719	udelay(10);
2720}
2721
2722/**
2723 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2724 * @hw: Struct containing variables accessed by shared code
2725 * @data: Data to send out to the PHY
2726 * @count: Number of bits to shift out
2727 *
2728 * Bits are shifted out in MSB to LSB order.
2729 */
2730static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2731{
2732	u32 ctrl;
2733	u32 mask;
2734
2735	/* We need to shift "count" number of bits out to the PHY. So, the value
2736	 * in the "data" parameter will be shifted out to the PHY one bit at a
2737	 * time. In order to do this, "data" must be broken down into bits.
2738	 */
2739	mask = 0x01;
2740	mask <<= (count - 1);
2741
2742	ctrl = er32(CTRL);
2743
2744	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2745	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2746
2747	while (mask) {
2748		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2749		 * then raising and lowering the Management Data Clock. A "0" is
2750		 * shifted out to the PHY by setting the MDIO bit to "0" and then
2751		 * raising and lowering the clock.
2752		 */
2753		if (data & mask)
2754			ctrl |= E1000_CTRL_MDIO;
2755		else
2756			ctrl &= ~E1000_CTRL_MDIO;
2757
2758		ew32(CTRL, ctrl);
2759		E1000_WRITE_FLUSH();
2760
2761		udelay(10);
2762
2763		e1000_raise_mdi_clk(hw, &ctrl);
2764		e1000_lower_mdi_clk(hw, &ctrl);
2765
2766		mask = mask >> 1;
2767	}
2768}
2769
2770/**
2771 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2772 * @hw: Struct containing variables accessed by shared code
2773 *
2774 * Bits are shifted in in MSB to LSB order.
2775 */
2776static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2777{
2778	u32 ctrl;
2779	u16 data = 0;
2780	u8 i;
2781
2782	/* In order to read a register from the PHY, we need to shift in a total
2783	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2784	 * to avoid contention on the MDIO pin when a read operation is performed.
2785	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2786	 * by raising the input to the Management Data Clock (setting the MDC bit),
2787	 * and then reading the value of the MDIO bit.
2788	 */
2789	ctrl = er32(CTRL);
2790
2791	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
 
 
2792	ctrl &= ~E1000_CTRL_MDIO_DIR;
2793	ctrl &= ~E1000_CTRL_MDIO;
2794
2795	ew32(CTRL, ctrl);
2796	E1000_WRITE_FLUSH();
2797
2798	/* Raise and Lower the clock before reading in the data. This accounts for
2799	 * the turnaround bits. The first clock occurred when we clocked out the
2800	 * last bit of the Register Address.
2801	 */
2802	e1000_raise_mdi_clk(hw, &ctrl);
2803	e1000_lower_mdi_clk(hw, &ctrl);
2804
2805	for (data = 0, i = 0; i < 16; i++) {
2806		data = data << 1;
2807		e1000_raise_mdi_clk(hw, &ctrl);
2808		ctrl = er32(CTRL);
2809		/* Check to see if we shifted in a "1". */
2810		if (ctrl & E1000_CTRL_MDIO)
2811			data |= 1;
2812		e1000_lower_mdi_clk(hw, &ctrl);
2813	}
2814
2815	e1000_raise_mdi_clk(hw, &ctrl);
2816	e1000_lower_mdi_clk(hw, &ctrl);
2817
2818	return data;
2819}
2820
2821
2822/**
2823 * e1000_read_phy_reg - read a phy register
2824 * @hw: Struct containing variables accessed by shared code
2825 * @reg_addr: address of the PHY register to read
 
2826 *
2827 * Reads the value from a PHY register, if the value is on a specific non zero
2828 * page, sets the page first.
2829 */
2830s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2831{
2832	u32 ret_val;
 
2833
2834	e_dbg("e1000_read_phy_reg");
2835
2836	if ((hw->phy_type == e1000_phy_igp) &&
2837	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2838		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2839						 (u16) reg_addr);
2840		if (ret_val)
2841			return ret_val;
2842	}
2843
2844	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2845					phy_data);
 
 
2846
2847	return ret_val;
2848}
2849
2850static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2851				 u16 *phy_data)
2852{
2853	u32 i;
2854	u32 mdic = 0;
2855	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2856
2857	e_dbg("e1000_read_phy_reg_ex");
2858
2859	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2860		e_dbg("PHY Address %d is out of range\n", reg_addr);
2861		return -E1000_ERR_PARAM;
2862	}
2863
2864	if (hw->mac_type > e1000_82543) {
2865		/* Set up Op-code, Phy Address, and register address in the MDI
2866		 * Control register.  The MAC will take care of interfacing with the
2867		 * PHY to retrieve the desired data.
2868		 */
2869		if (hw->mac_type == e1000_ce4100) {
2870			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2871				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2872				(INTEL_CE_GBE_MDIC_OP_READ) |
2873				(INTEL_CE_GBE_MDIC_GO));
2874
2875			writel(mdic, E1000_MDIO_CMD);
2876
2877			/* Poll the ready bit to see if the MDI read
2878			 * completed
2879			 */
2880			for (i = 0; i < 64; i++) {
2881				udelay(50);
2882				mdic = readl(E1000_MDIO_CMD);
2883				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2884					break;
2885			}
2886
2887			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2888				e_dbg("MDI Read did not complete\n");
2889				return -E1000_ERR_PHY;
2890			}
2891
2892			mdic = readl(E1000_MDIO_STS);
2893			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2894				e_dbg("MDI Read Error\n");
2895				return -E1000_ERR_PHY;
2896			}
2897			*phy_data = (u16) mdic;
2898		} else {
2899			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2900				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2901				(E1000_MDIC_OP_READ));
2902
2903			ew32(MDIC, mdic);
2904
2905			/* Poll the ready bit to see if the MDI read
2906			 * completed
2907			 */
2908			for (i = 0; i < 64; i++) {
2909				udelay(50);
2910				mdic = er32(MDIC);
2911				if (mdic & E1000_MDIC_READY)
2912					break;
2913			}
2914			if (!(mdic & E1000_MDIC_READY)) {
2915				e_dbg("MDI Read did not complete\n");
2916				return -E1000_ERR_PHY;
2917			}
2918			if (mdic & E1000_MDIC_ERROR) {
2919				e_dbg("MDI Error\n");
2920				return -E1000_ERR_PHY;
2921			}
2922			*phy_data = (u16) mdic;
2923		}
2924	} else {
2925		/* We must first send a preamble through the MDIO pin to signal the
2926		 * beginning of an MII instruction.  This is done by sending 32
2927		 * consecutive "1" bits.
2928		 */
2929		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2930
2931		/* Now combine the next few fields that are required for a read
2932		 * operation.  We use this method instead of calling the
2933		 * e1000_shift_out_mdi_bits routine five different times. The format of
2934		 * a MII read instruction consists of a shift out of 14 bits and is
2935		 * defined as follows:
2936		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2937		 * followed by a shift in of 18 bits.  This first two bits shifted in
2938		 * are TurnAround bits used to avoid contention on the MDIO pin when a
2939		 * READ operation is performed.  These two bits are thrown away
2940		 * followed by a shift in of 16 bits which contains the desired data.
 
2941		 */
2942		mdic = ((reg_addr) | (phy_addr << 5) |
2943			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2944
2945		e1000_shift_out_mdi_bits(hw, mdic, 14);
2946
2947		/* Now that we've shifted out the read command to the MII, we need to
2948		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2949		 * register address.
2950		 */
2951		*phy_data = e1000_shift_in_mdi_bits(hw);
2952	}
2953	return E1000_SUCCESS;
2954}
2955
2956/**
2957 * e1000_write_phy_reg - write a phy register
2958 *
2959 * @hw: Struct containing variables accessed by shared code
2960 * @reg_addr: address of the PHY register to write
2961 * @data: data to write to the PHY
2962
2963 * Writes a value to a PHY register
2964 */
2965s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2966{
2967	u32 ret_val;
 
2968
2969	e_dbg("e1000_write_phy_reg");
2970
2971	if ((hw->phy_type == e1000_phy_igp) &&
2972	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2973		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2974						 (u16) reg_addr);
2975		if (ret_val)
 
2976			return ret_val;
 
2977	}
2978
2979	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2980					 phy_data);
 
2981
2982	return ret_val;
2983}
2984
2985static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2986				  u16 phy_data)
2987{
2988	u32 i;
2989	u32 mdic = 0;
2990	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2991
2992	e_dbg("e1000_write_phy_reg_ex");
2993
2994	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2995		e_dbg("PHY Address %d is out of range\n", reg_addr);
2996		return -E1000_ERR_PARAM;
2997	}
2998
2999	if (hw->mac_type > e1000_82543) {
3000		/* Set up Op-code, Phy Address, register address, and data
3001		 * intended for the PHY register in the MDI Control register.
3002		 * The MAC will take care of interfacing with the PHY to send
3003		 * the desired data.
3004		 */
3005		if (hw->mac_type == e1000_ce4100) {
3006			mdic = (((u32) phy_data) |
3007				(reg_addr << E1000_MDIC_REG_SHIFT) |
3008				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3009				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3010				(INTEL_CE_GBE_MDIC_GO));
3011
3012			writel(mdic, E1000_MDIO_CMD);
3013
3014			/* Poll the ready bit to see if the MDI read
3015			 * completed
3016			 */
3017			for (i = 0; i < 640; i++) {
3018				udelay(5);
3019				mdic = readl(E1000_MDIO_CMD);
3020				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3021					break;
3022			}
3023			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3024				e_dbg("MDI Write did not complete\n");
3025				return -E1000_ERR_PHY;
3026			}
3027		} else {
3028			mdic = (((u32) phy_data) |
3029				(reg_addr << E1000_MDIC_REG_SHIFT) |
3030				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3031				(E1000_MDIC_OP_WRITE));
3032
3033			ew32(MDIC, mdic);
3034
3035			/* Poll the ready bit to see if the MDI read
3036			 * completed
3037			 */
3038			for (i = 0; i < 641; i++) {
3039				udelay(5);
3040				mdic = er32(MDIC);
3041				if (mdic & E1000_MDIC_READY)
3042					break;
3043			}
3044			if (!(mdic & E1000_MDIC_READY)) {
3045				e_dbg("MDI Write did not complete\n");
3046				return -E1000_ERR_PHY;
3047			}
3048		}
3049	} else {
3050		/* We'll need to use the SW defined pins to shift the write command
3051		 * out to the PHY. We first send a preamble to the PHY to signal the
3052		 * beginning of the MII instruction.  This is done by sending 32
3053		 * consecutive "1" bits.
3054		 */
3055		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3056
3057		/* Now combine the remaining required fields that will indicate a
3058		 * write operation. We use this method instead of calling the
3059		 * e1000_shift_out_mdi_bits routine for each field in the command. The
3060		 * format of a MII write instruction is as follows:
3061		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3062		 */
3063		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3064			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3065		mdic <<= 16;
3066		mdic |= (u32) phy_data;
3067
3068		e1000_shift_out_mdi_bits(hw, mdic, 32);
3069	}
3070
3071	return E1000_SUCCESS;
3072}
3073
3074/**
3075 * e1000_phy_hw_reset - reset the phy, hardware style
3076 * @hw: Struct containing variables accessed by shared code
3077 *
3078 * Returns the PHY to the power-on reset state
3079 */
3080s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3081{
3082	u32 ctrl, ctrl_ext;
3083	u32 led_ctrl;
3084
3085	e_dbg("e1000_phy_hw_reset");
3086
3087	e_dbg("Resetting Phy...\n");
3088
3089	if (hw->mac_type > e1000_82543) {
3090		/* Read the device control register and assert the E1000_CTRL_PHY_RST
3091		 * bit. Then, take it out of reset.
3092		 * For e1000 hardware, we delay for 10ms between the assert
3093		 * and deassert.
3094		 */
3095		ctrl = er32(CTRL);
3096		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3097		E1000_WRITE_FLUSH();
3098
3099		msleep(10);
3100
3101		ew32(CTRL, ctrl);
3102		E1000_WRITE_FLUSH();
3103
3104	} else {
3105		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3106		 * bit to put the PHY into reset. Then, take it out of reset.
 
3107		 */
3108		ctrl_ext = er32(CTRL_EXT);
3109		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3110		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3111		ew32(CTRL_EXT, ctrl_ext);
3112		E1000_WRITE_FLUSH();
3113		msleep(10);
3114		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3115		ew32(CTRL_EXT, ctrl_ext);
3116		E1000_WRITE_FLUSH();
3117	}
3118	udelay(150);
3119
3120	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3121		/* Configure activity LED after PHY reset */
3122		led_ctrl = er32(LEDCTL);
3123		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3124		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3125		ew32(LEDCTL, led_ctrl);
3126	}
3127
3128	/* Wait for FW to finish PHY configuration. */
3129	return e1000_get_phy_cfg_done(hw);
3130}
3131
3132/**
3133 * e1000_phy_reset - reset the phy to commit settings
3134 * @hw: Struct containing variables accessed by shared code
3135 *
3136 * Resets the PHY
3137 * Sets bit 15 of the MII Control register
3138 */
3139s32 e1000_phy_reset(struct e1000_hw *hw)
3140{
3141	s32 ret_val;
3142	u16 phy_data;
3143
3144	e_dbg("e1000_phy_reset");
3145
3146	switch (hw->phy_type) {
3147	case e1000_phy_igp:
3148		ret_val = e1000_phy_hw_reset(hw);
3149		if (ret_val)
3150			return ret_val;
3151		break;
3152	default:
3153		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3154		if (ret_val)
3155			return ret_val;
3156
3157		phy_data |= MII_CR_RESET;
3158		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3159		if (ret_val)
3160			return ret_val;
3161
3162		udelay(1);
3163		break;
3164	}
3165
3166	if (hw->phy_type == e1000_phy_igp)
3167		e1000_phy_init_script(hw);
3168
3169	return E1000_SUCCESS;
3170}
3171
3172/**
3173 * e1000_detect_gig_phy - check the phy type
3174 * @hw: Struct containing variables accessed by shared code
3175 *
3176 * Probes the expected PHY address for known PHY IDs
3177 */
3178static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3179{
3180	s32 phy_init_status, ret_val;
3181	u16 phy_id_high, phy_id_low;
3182	bool match = false;
3183
3184	e_dbg("e1000_detect_gig_phy");
3185
3186	if (hw->phy_id != 0)
3187		return E1000_SUCCESS;
3188
3189	/* Read the PHY ID Registers to identify which PHY is onboard. */
3190	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3191	if (ret_val)
3192		return ret_val;
3193
3194	hw->phy_id = (u32) (phy_id_high << 16);
3195	udelay(20);
3196	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3197	if (ret_val)
3198		return ret_val;
3199
3200	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3201	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3202
3203	switch (hw->mac_type) {
3204	case e1000_82543:
3205		if (hw->phy_id == M88E1000_E_PHY_ID)
3206			match = true;
3207		break;
3208	case e1000_82544:
3209		if (hw->phy_id == M88E1000_I_PHY_ID)
3210			match = true;
3211		break;
3212	case e1000_82540:
3213	case e1000_82545:
3214	case e1000_82545_rev_3:
3215	case e1000_82546:
3216	case e1000_82546_rev_3:
3217		if (hw->phy_id == M88E1011_I_PHY_ID)
3218			match = true;
3219		break;
3220	case e1000_ce4100:
3221		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3222		    (hw->phy_id == RTL8201N_PHY_ID) ||
3223		    (hw->phy_id == M88E1118_E_PHY_ID))
3224			match = true;
3225		break;
3226	case e1000_82541:
3227	case e1000_82541_rev_2:
3228	case e1000_82547:
3229	case e1000_82547_rev_2:
3230		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3231			match = true;
3232		break;
3233	default:
3234		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3235		return -E1000_ERR_CONFIG;
3236	}
3237	phy_init_status = e1000_set_phy_type(hw);
3238
3239	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3240		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3241		return E1000_SUCCESS;
3242	}
3243	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3244	return -E1000_ERR_PHY;
3245}
3246
3247/**
3248 * e1000_phy_reset_dsp - reset DSP
3249 * @hw: Struct containing variables accessed by shared code
3250 *
3251 * Resets the PHY's DSP
3252 */
3253static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3254{
3255	s32 ret_val;
3256	e_dbg("e1000_phy_reset_dsp");
3257
3258	do {
3259		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3260		if (ret_val)
3261			break;
3262		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3263		if (ret_val)
3264			break;
3265		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3266		if (ret_val)
3267			break;
3268		ret_val = E1000_SUCCESS;
3269	} while (0);
3270
3271	return ret_val;
3272}
3273
3274/**
3275 * e1000_phy_igp_get_info - get igp specific registers
3276 * @hw: Struct containing variables accessed by shared code
3277 * @phy_info: PHY information structure
3278 *
3279 * Get PHY information from various PHY registers for igp PHY only.
3280 */
3281static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3282				  struct e1000_phy_info *phy_info)
3283{
3284	s32 ret_val;
3285	u16 phy_data, min_length, max_length, average;
3286	e1000_rev_polarity polarity;
3287
3288	e_dbg("e1000_phy_igp_get_info");
3289
3290	/* The downshift status is checked only once, after link is established,
3291	 * and it stored in the hw->speed_downgraded parameter. */
 
3292	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3293
3294	/* IGP01E1000 does not need to support it. */
3295	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3296
3297	/* IGP01E1000 always correct polarity reversal */
3298	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3299
3300	/* Check polarity status */
3301	ret_val = e1000_check_polarity(hw, &polarity);
3302	if (ret_val)
3303		return ret_val;
3304
3305	phy_info->cable_polarity = polarity;
3306
3307	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3308	if (ret_val)
3309		return ret_val;
3310
3311	phy_info->mdix_mode =
3312	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3313				 IGP01E1000_PSSR_MDIX_SHIFT);
3314
3315	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3316	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3317		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
 
 
3318		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3319		if (ret_val)
3320			return ret_val;
3321
3322		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3323				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3324		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3325		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3326				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3327		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3328
3329		/* Get cable length */
3330		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3331		if (ret_val)
3332			return ret_val;
3333
3334		/* Translate to old method */
3335		average = (max_length + min_length) / 2;
3336
3337		if (average <= e1000_igp_cable_length_50)
3338			phy_info->cable_length = e1000_cable_length_50;
3339		else if (average <= e1000_igp_cable_length_80)
3340			phy_info->cable_length = e1000_cable_length_50_80;
3341		else if (average <= e1000_igp_cable_length_110)
3342			phy_info->cable_length = e1000_cable_length_80_110;
3343		else if (average <= e1000_igp_cable_length_140)
3344			phy_info->cable_length = e1000_cable_length_110_140;
3345		else
3346			phy_info->cable_length = e1000_cable_length_140;
3347	}
3348
3349	return E1000_SUCCESS;
3350}
3351
3352/**
3353 * e1000_phy_m88_get_info - get m88 specific registers
3354 * @hw: Struct containing variables accessed by shared code
3355 * @phy_info: PHY information structure
3356 *
3357 * Get PHY information from various PHY registers for m88 PHY only.
3358 */
3359static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3360				  struct e1000_phy_info *phy_info)
3361{
3362	s32 ret_val;
3363	u16 phy_data;
3364	e1000_rev_polarity polarity;
3365
3366	e_dbg("e1000_phy_m88_get_info");
3367
3368	/* The downshift status is checked only once, after link is established,
3369	 * and it stored in the hw->speed_downgraded parameter. */
 
3370	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3371
3372	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3373	if (ret_val)
3374		return ret_val;
3375
3376	phy_info->extended_10bt_distance =
3377	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3378	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3379	    e1000_10bt_ext_dist_enable_lower :
3380	    e1000_10bt_ext_dist_enable_normal;
3381
3382	phy_info->polarity_correction =
3383	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3384	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3385	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3386
3387	/* Check polarity status */
3388	ret_val = e1000_check_polarity(hw, &polarity);
3389	if (ret_val)
3390		return ret_val;
3391	phy_info->cable_polarity = polarity;
3392
3393	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3394	if (ret_val)
3395		return ret_val;
3396
3397	phy_info->mdix_mode =
3398	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3399				 M88E1000_PSSR_MDIX_SHIFT);
3400
3401	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3402		/* Cable Length Estimation and Local/Remote Receiver Information
3403		 * are only valid at 1000 Mbps.
3404		 */
3405		phy_info->cable_length =
3406		    (e1000_cable_length) ((phy_data &
3407					   M88E1000_PSSR_CABLE_LENGTH) >>
3408					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3409
3410		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3411		if (ret_val)
3412			return ret_val;
3413
3414		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3415				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3416		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3417		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3418				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3419		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3420
3421	}
3422
3423	return E1000_SUCCESS;
3424}
3425
3426/**
3427 * e1000_phy_get_info - request phy info
3428 * @hw: Struct containing variables accessed by shared code
3429 * @phy_info: PHY information structure
3430 *
3431 * Get PHY information from various PHY registers
3432 */
3433s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3434{
3435	s32 ret_val;
3436	u16 phy_data;
3437
3438	e_dbg("e1000_phy_get_info");
3439
3440	phy_info->cable_length = e1000_cable_length_undefined;
3441	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3442	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3443	phy_info->downshift = e1000_downshift_undefined;
3444	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3445	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3446	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3447	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3448
3449	if (hw->media_type != e1000_media_type_copper) {
3450		e_dbg("PHY info is only valid for copper media\n");
3451		return -E1000_ERR_CONFIG;
3452	}
3453
3454	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3455	if (ret_val)
3456		return ret_val;
3457
3458	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3459	if (ret_val)
3460		return ret_val;
3461
3462	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3463		e_dbg("PHY info is only valid if link is up\n");
3464		return -E1000_ERR_CONFIG;
3465	}
3466
3467	if (hw->phy_type == e1000_phy_igp)
3468		return e1000_phy_igp_get_info(hw, phy_info);
3469	else if ((hw->phy_type == e1000_phy_8211) ||
3470	         (hw->phy_type == e1000_phy_8201))
3471		return E1000_SUCCESS;
3472	else
3473		return e1000_phy_m88_get_info(hw, phy_info);
3474}
3475
3476s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3477{
3478	e_dbg("e1000_validate_mdi_settings");
3479
3480	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3481		e_dbg("Invalid MDI setting detected\n");
3482		hw->mdix = 1;
3483		return -E1000_ERR_CONFIG;
3484	}
3485	return E1000_SUCCESS;
3486}
3487
3488/**
3489 * e1000_init_eeprom_params - initialize sw eeprom vars
3490 * @hw: Struct containing variables accessed by shared code
3491 *
3492 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3493 * is configured.
3494 */
3495s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3496{
3497	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3498	u32 eecd = er32(EECD);
3499	s32 ret_val = E1000_SUCCESS;
3500	u16 eeprom_size;
3501
3502	e_dbg("e1000_init_eeprom_params");
3503
3504	switch (hw->mac_type) {
3505	case e1000_82542_rev2_0:
3506	case e1000_82542_rev2_1:
3507	case e1000_82543:
3508	case e1000_82544:
3509		eeprom->type = e1000_eeprom_microwire;
3510		eeprom->word_size = 64;
3511		eeprom->opcode_bits = 3;
3512		eeprom->address_bits = 6;
3513		eeprom->delay_usec = 50;
3514		break;
3515	case e1000_82540:
3516	case e1000_82545:
3517	case e1000_82545_rev_3:
3518	case e1000_82546:
3519	case e1000_82546_rev_3:
3520		eeprom->type = e1000_eeprom_microwire;
3521		eeprom->opcode_bits = 3;
3522		eeprom->delay_usec = 50;
3523		if (eecd & E1000_EECD_SIZE) {
3524			eeprom->word_size = 256;
3525			eeprom->address_bits = 8;
3526		} else {
3527			eeprom->word_size = 64;
3528			eeprom->address_bits = 6;
3529		}
3530		break;
3531	case e1000_82541:
3532	case e1000_82541_rev_2:
3533	case e1000_82547:
3534	case e1000_82547_rev_2:
3535		if (eecd & E1000_EECD_TYPE) {
3536			eeprom->type = e1000_eeprom_spi;
3537			eeprom->opcode_bits = 8;
3538			eeprom->delay_usec = 1;
3539			if (eecd & E1000_EECD_ADDR_BITS) {
3540				eeprom->page_size = 32;
3541				eeprom->address_bits = 16;
3542			} else {
3543				eeprom->page_size = 8;
3544				eeprom->address_bits = 8;
3545			}
3546		} else {
3547			eeprom->type = e1000_eeprom_microwire;
3548			eeprom->opcode_bits = 3;
3549			eeprom->delay_usec = 50;
3550			if (eecd & E1000_EECD_ADDR_BITS) {
3551				eeprom->word_size = 256;
3552				eeprom->address_bits = 8;
3553			} else {
3554				eeprom->word_size = 64;
3555				eeprom->address_bits = 6;
3556			}
3557		}
3558		break;
3559	default:
3560		break;
3561	}
3562
3563	if (eeprom->type == e1000_eeprom_spi) {
3564		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3565		 * 32KB (incremented by powers of 2).
3566		 */
3567		/* Set to default value for initial eeprom read. */
3568		eeprom->word_size = 64;
3569		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3570		if (ret_val)
3571			return ret_val;
3572		eeprom_size =
3573		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3574		/* 256B eeprom size was not supported in earlier hardware, so we
3575		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3576		 * is never the result used in the shifting logic below. */
 
3577		if (eeprom_size)
3578			eeprom_size++;
3579
3580		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3581	}
3582	return ret_val;
3583}
3584
3585/**
3586 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3587 * @hw: Struct containing variables accessed by shared code
3588 * @eecd: EECD's current value
3589 */
3590static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3591{
3592	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3593	 * wait <delay> microseconds.
3594	 */
3595	*eecd = *eecd | E1000_EECD_SK;
3596	ew32(EECD, *eecd);
3597	E1000_WRITE_FLUSH();
3598	udelay(hw->eeprom.delay_usec);
3599}
3600
3601/**
3602 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3603 * @hw: Struct containing variables accessed by shared code
3604 * @eecd: EECD's current value
3605 */
3606static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3607{
3608	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3609	 * wait 50 microseconds.
3610	 */
3611	*eecd = *eecd & ~E1000_EECD_SK;
3612	ew32(EECD, *eecd);
3613	E1000_WRITE_FLUSH();
3614	udelay(hw->eeprom.delay_usec);
3615}
3616
3617/**
3618 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3619 * @hw: Struct containing variables accessed by shared code
3620 * @data: data to send to the EEPROM
3621 * @count: number of bits to shift out
3622 */
3623static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3624{
3625	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3626	u32 eecd;
3627	u32 mask;
3628
3629	/* We need to shift "count" bits out to the EEPROM. So, value in the
3630	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3631	 * In order to do this, "data" must be broken down into bits.
3632	 */
3633	mask = 0x01 << (count - 1);
3634	eecd = er32(EECD);
3635	if (eeprom->type == e1000_eeprom_microwire) {
3636		eecd &= ~E1000_EECD_DO;
3637	} else if (eeprom->type == e1000_eeprom_spi) {
3638		eecd |= E1000_EECD_DO;
3639	}
3640	do {
3641		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3642		 * and then raising and then lowering the clock (the SK bit controls
3643		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
3644		 * by setting "DI" to "0" and then raising and then lowering the clock.
 
3645		 */
3646		eecd &= ~E1000_EECD_DI;
3647
3648		if (data & mask)
3649			eecd |= E1000_EECD_DI;
3650
3651		ew32(EECD, eecd);
3652		E1000_WRITE_FLUSH();
3653
3654		udelay(eeprom->delay_usec);
3655
3656		e1000_raise_ee_clk(hw, &eecd);
3657		e1000_lower_ee_clk(hw, &eecd);
3658
3659		mask = mask >> 1;
3660
3661	} while (mask);
3662
3663	/* We leave the "DI" bit set to "0" when we leave this routine. */
3664	eecd &= ~E1000_EECD_DI;
3665	ew32(EECD, eecd);
3666}
3667
3668/**
3669 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3670 * @hw: Struct containing variables accessed by shared code
3671 * @count: number of bits to shift in
3672 */
3673static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3674{
3675	u32 eecd;
3676	u32 i;
3677	u16 data;
3678
3679	/* In order to read a register from the EEPROM, we need to shift 'count'
3680	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3681	 * input to the EEPROM (setting the SK bit), and then reading the value of
3682	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
3683	 * always be clear.
3684	 */
3685
3686	eecd = er32(EECD);
3687
3688	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3689	data = 0;
3690
3691	for (i = 0; i < count; i++) {
3692		data = data << 1;
3693		e1000_raise_ee_clk(hw, &eecd);
3694
3695		eecd = er32(EECD);
3696
3697		eecd &= ~(E1000_EECD_DI);
3698		if (eecd & E1000_EECD_DO)
3699			data |= 1;
3700
3701		e1000_lower_ee_clk(hw, &eecd);
3702	}
3703
3704	return data;
3705}
3706
3707/**
3708 * e1000_acquire_eeprom - Prepares EEPROM for access
3709 * @hw: Struct containing variables accessed by shared code
3710 *
3711 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3712 * function should be called before issuing a command to the EEPROM.
3713 */
3714static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3715{
3716	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3717	u32 eecd, i = 0;
3718
3719	e_dbg("e1000_acquire_eeprom");
3720
3721	eecd = er32(EECD);
3722
3723	/* Request EEPROM Access */
3724	if (hw->mac_type > e1000_82544) {
3725		eecd |= E1000_EECD_REQ;
3726		ew32(EECD, eecd);
3727		eecd = er32(EECD);
3728		while ((!(eecd & E1000_EECD_GNT)) &&
3729		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3730			i++;
3731			udelay(5);
3732			eecd = er32(EECD);
3733		}
3734		if (!(eecd & E1000_EECD_GNT)) {
3735			eecd &= ~E1000_EECD_REQ;
3736			ew32(EECD, eecd);
3737			e_dbg("Could not acquire EEPROM grant\n");
3738			return -E1000_ERR_EEPROM;
3739		}
3740	}
3741
3742	/* Setup EEPROM for Read/Write */
3743
3744	if (eeprom->type == e1000_eeprom_microwire) {
3745		/* Clear SK and DI */
3746		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3747		ew32(EECD, eecd);
3748
3749		/* Set CS */
3750		eecd |= E1000_EECD_CS;
3751		ew32(EECD, eecd);
3752	} else if (eeprom->type == e1000_eeprom_spi) {
3753		/* Clear SK and CS */
3754		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755		ew32(EECD, eecd);
3756		E1000_WRITE_FLUSH();
3757		udelay(1);
3758	}
3759
3760	return E1000_SUCCESS;
3761}
3762
3763/**
3764 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3765 * @hw: Struct containing variables accessed by shared code
3766 */
3767static void e1000_standby_eeprom(struct e1000_hw *hw)
3768{
3769	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3770	u32 eecd;
3771
3772	eecd = er32(EECD);
3773
3774	if (eeprom->type == e1000_eeprom_microwire) {
3775		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3776		ew32(EECD, eecd);
3777		E1000_WRITE_FLUSH();
3778		udelay(eeprom->delay_usec);
3779
3780		/* Clock high */
3781		eecd |= E1000_EECD_SK;
3782		ew32(EECD, eecd);
3783		E1000_WRITE_FLUSH();
3784		udelay(eeprom->delay_usec);
3785
3786		/* Select EEPROM */
3787		eecd |= E1000_EECD_CS;
3788		ew32(EECD, eecd);
3789		E1000_WRITE_FLUSH();
3790		udelay(eeprom->delay_usec);
3791
3792		/* Clock low */
3793		eecd &= ~E1000_EECD_SK;
3794		ew32(EECD, eecd);
3795		E1000_WRITE_FLUSH();
3796		udelay(eeprom->delay_usec);
3797	} else if (eeprom->type == e1000_eeprom_spi) {
3798		/* Toggle CS to flush commands */
3799		eecd |= E1000_EECD_CS;
3800		ew32(EECD, eecd);
3801		E1000_WRITE_FLUSH();
3802		udelay(eeprom->delay_usec);
3803		eecd &= ~E1000_EECD_CS;
3804		ew32(EECD, eecd);
3805		E1000_WRITE_FLUSH();
3806		udelay(eeprom->delay_usec);
3807	}
3808}
3809
3810/**
3811 * e1000_release_eeprom - drop chip select
3812 * @hw: Struct containing variables accessed by shared code
3813 *
3814 * Terminates a command by inverting the EEPROM's chip select pin
3815 */
3816static void e1000_release_eeprom(struct e1000_hw *hw)
3817{
3818	u32 eecd;
3819
3820	e_dbg("e1000_release_eeprom");
3821
3822	eecd = er32(EECD);
3823
3824	if (hw->eeprom.type == e1000_eeprom_spi) {
3825		eecd |= E1000_EECD_CS;	/* Pull CS high */
3826		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3827
3828		ew32(EECD, eecd);
3829		E1000_WRITE_FLUSH();
3830
3831		udelay(hw->eeprom.delay_usec);
3832	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833		/* cleanup eeprom */
3834
3835		/* CS on Microwire is active-high */
3836		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3837
3838		ew32(EECD, eecd);
3839
3840		/* Rising edge of clock */
3841		eecd |= E1000_EECD_SK;
3842		ew32(EECD, eecd);
3843		E1000_WRITE_FLUSH();
3844		udelay(hw->eeprom.delay_usec);
3845
3846		/* Falling edge of clock */
3847		eecd &= ~E1000_EECD_SK;
3848		ew32(EECD, eecd);
3849		E1000_WRITE_FLUSH();
3850		udelay(hw->eeprom.delay_usec);
3851	}
3852
3853	/* Stop requesting EEPROM access */
3854	if (hw->mac_type > e1000_82544) {
3855		eecd &= ~E1000_EECD_REQ;
3856		ew32(EECD, eecd);
3857	}
3858}
3859
3860/**
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3863 */
3864static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3865{
3866	u16 retry_count = 0;
3867	u8 spi_stat_reg;
3868
3869	e_dbg("e1000_spi_eeprom_ready");
3870
3871	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3872	 * EEPROM will signal that the command has been completed by clearing
3873	 * bit 0 of the internal status register.  If it's not cleared within
3874	 * 5 milliseconds, then error out.
3875	 */
3876	retry_count = 0;
3877	do {
3878		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879					hw->eeprom.opcode_bits);
3880		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3882			break;
3883
3884		udelay(5);
3885		retry_count += 5;
3886
3887		e1000_standby_eeprom(hw);
3888	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3889
3890	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891	 * only 0-5mSec on 5V devices)
3892	 */
3893	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3894		e_dbg("SPI EEPROM Status error\n");
3895		return -E1000_ERR_EEPROM;
3896	}
3897
3898	return E1000_SUCCESS;
3899}
3900
3901/**
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of  word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3907 */
3908s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3909{
3910	s32 ret;
3911	spin_lock(&e1000_eeprom_lock);
 
3912	ret = e1000_do_read_eeprom(hw, offset, words, data);
3913	spin_unlock(&e1000_eeprom_lock);
3914	return ret;
3915}
3916
3917static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3918				u16 *data)
3919{
3920	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3921	u32 i = 0;
3922
3923	e_dbg("e1000_read_eeprom");
3924
3925	if (hw->mac_type == e1000_ce4100) {
3926		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3927		                      data);
3928		return E1000_SUCCESS;
3929	}
3930
3931	/* If eeprom is not yet detected, do so now */
3932	if (eeprom->word_size == 0)
3933		e1000_init_eeprom_params(hw);
3934
3935	/* A check for invalid values:  offset too large, too many words, and not
3936	 * enough words.
3937	 */
3938	if ((offset >= eeprom->word_size)
3939	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
3940		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941		      "size = %d\n", offset, eeprom->word_size);
3942		return -E1000_ERR_EEPROM;
3943	}
3944
3945	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946	 * directly. In this case, we need to acquire the EEPROM so that
3947	 * FW or other port software does not interrupt.
3948	 */
3949	/* Prepare the EEPROM for bit-bang reading */
3950	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951		return -E1000_ERR_EEPROM;
3952
3953	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3954	 * acquired the EEPROM at this point, so any returns should release it */
 
3955	if (eeprom->type == e1000_eeprom_spi) {
3956		u16 word_in;
3957		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3958
3959		if (e1000_spi_eeprom_ready(hw)) {
3960			e1000_release_eeprom(hw);
3961			return -E1000_ERR_EEPROM;
3962		}
3963
3964		e1000_standby_eeprom(hw);
3965
3966		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
 
 
3967		if ((eeprom->address_bits == 8) && (offset >= 128))
3968			read_opcode |= EEPROM_A8_OPCODE_SPI;
3969
3970		/* Send the READ command (opcode + addr)  */
3971		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973					eeprom->address_bits);
3974
3975		/* Read the data.  The address of the eeprom internally increments with
3976		 * each byte (spi) being read, saving on the overhead of eeprom setup
3977		 * and tear-down.  The address counter will roll over if reading beyond
3978		 * the size of the eeprom, thus allowing the entire memory to be read
3979		 * starting from any offset. */
 
 
3980		for (i = 0; i < words; i++) {
3981			word_in = e1000_shift_in_ee_bits(hw, 16);
3982			data[i] = (word_in >> 8) | (word_in << 8);
3983		}
3984	} else if (eeprom->type == e1000_eeprom_microwire) {
3985		for (i = 0; i < words; i++) {
3986			/* Send the READ command (opcode + addr)  */
3987			e1000_shift_out_ee_bits(hw,
3988						EEPROM_READ_OPCODE_MICROWIRE,
3989						eeprom->opcode_bits);
3990			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991						eeprom->address_bits);
3992
3993			/* Read the data.  For microwire, each word requires the overhead
3994			 * of eeprom setup and tear-down. */
 
3995			data[i] = e1000_shift_in_ee_bits(hw, 16);
3996			e1000_standby_eeprom(hw);
 
3997		}
3998	}
3999
4000	/* End this read operation */
4001	e1000_release_eeprom(hw);
4002
4003	return E1000_SUCCESS;
4004}
4005
4006/**
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
4009 *
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4012 * valid.
4013 */
4014s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4015{
4016	u16 checksum = 0;
4017	u16 i, eeprom_data;
4018
4019	e_dbg("e1000_validate_eeprom_checksum");
4020
4021	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4023			e_dbg("EEPROM Read Error\n");
4024			return -E1000_ERR_EEPROM;
4025		}
4026		checksum += eeprom_data;
4027	}
4028
4029#ifdef CONFIG_PARISC
4030	/* This is a signature and not a checksum on HP c8000 */
4031	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4032		return E1000_SUCCESS;
4033
4034#endif
4035	if (checksum == (u16) EEPROM_SUM)
4036		return E1000_SUCCESS;
4037	else {
4038		e_dbg("EEPROM Checksum Invalid\n");
4039		return -E1000_ERR_EEPROM;
4040	}
4041}
4042
4043/**
4044 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4045 * @hw: Struct containing variables accessed by shared code
4046 *
4047 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4048 * Writes the difference to word offset 63 of the EEPROM.
4049 */
4050s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4051{
4052	u16 checksum = 0;
4053	u16 i, eeprom_data;
4054
4055	e_dbg("e1000_update_eeprom_checksum");
4056
4057	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4058		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4059			e_dbg("EEPROM Read Error\n");
4060			return -E1000_ERR_EEPROM;
4061		}
4062		checksum += eeprom_data;
4063	}
4064	checksum = (u16) EEPROM_SUM - checksum;
4065	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4066		e_dbg("EEPROM Write Error\n");
4067		return -E1000_ERR_EEPROM;
4068	}
4069	return E1000_SUCCESS;
4070}
4071
4072/**
4073 * e1000_write_eeprom - write words to the different EEPROM types.
4074 * @hw: Struct containing variables accessed by shared code
4075 * @offset: offset within the EEPROM to be written to
4076 * @words: number of words to write
4077 * @data: 16 bit word to be written to the EEPROM
4078 *
4079 * If e1000_update_eeprom_checksum is not called after this function, the
4080 * EEPROM will most likely contain an invalid checksum.
4081 */
4082s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4083{
4084	s32 ret;
4085	spin_lock(&e1000_eeprom_lock);
 
4086	ret = e1000_do_write_eeprom(hw, offset, words, data);
4087	spin_unlock(&e1000_eeprom_lock);
4088	return ret;
4089}
4090
4091static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4092				 u16 *data)
4093{
4094	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4095	s32 status = 0;
4096
4097	e_dbg("e1000_write_eeprom");
4098
4099	if (hw->mac_type == e1000_ce4100) {
4100		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4101		                       data);
4102		return E1000_SUCCESS;
4103	}
4104
4105	/* If eeprom is not yet detected, do so now */
4106	if (eeprom->word_size == 0)
4107		e1000_init_eeprom_params(hw);
4108
4109	/* A check for invalid values:  offset too large, too many words, and not
4110	 * enough words.
4111	 */
4112	if ((offset >= eeprom->word_size)
4113	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
4114		e_dbg("\"words\" parameter out of bounds\n");
4115		return -E1000_ERR_EEPROM;
4116	}
4117
4118	/* Prepare the EEPROM for writing  */
4119	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4120		return -E1000_ERR_EEPROM;
4121
4122	if (eeprom->type == e1000_eeprom_microwire) {
4123		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4124	} else {
4125		status = e1000_write_eeprom_spi(hw, offset, words, data);
4126		msleep(10);
4127	}
4128
4129	/* Done with writing */
4130	e1000_release_eeprom(hw);
4131
4132	return status;
4133}
4134
4135/**
4136 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4137 * @hw: Struct containing variables accessed by shared code
4138 * @offset: offset within the EEPROM to be written to
4139 * @words: number of words to write
4140 * @data: pointer to array of 8 bit words to be written to the EEPROM
4141 */
4142static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4143				  u16 *data)
4144{
4145	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4146	u16 widx = 0;
4147
4148	e_dbg("e1000_write_eeprom_spi");
4149
4150	while (widx < words) {
4151		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4152
4153		if (e1000_spi_eeprom_ready(hw))
4154			return -E1000_ERR_EEPROM;
4155
4156		e1000_standby_eeprom(hw);
 
4157
4158		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4159		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4160					eeprom->opcode_bits);
4161
4162		e1000_standby_eeprom(hw);
4163
4164		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
 
 
4165		if ((eeprom->address_bits == 8) && (offset >= 128))
4166			write_opcode |= EEPROM_A8_OPCODE_SPI;
4167
4168		/* Send the Write command (8-bit opcode + addr) */
4169		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4170
4171		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4172					eeprom->address_bits);
4173
4174		/* Send the data */
4175
4176		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
 
 
4177		while (widx < words) {
4178			u16 word_out = data[widx];
 
4179			word_out = (word_out >> 8) | (word_out << 8);
4180			e1000_shift_out_ee_bits(hw, word_out, 16);
4181			widx++;
4182
4183			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4184			 * operation, while the smaller eeproms are capable of an 8-byte
4185			 * PAGE WRITE operation.  Break the inner loop to pass new address
 
4186			 */
4187			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4188				e1000_standby_eeprom(hw);
4189				break;
4190			}
4191		}
4192	}
4193
4194	return E1000_SUCCESS;
4195}
4196
4197/**
4198 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4199 * @hw: Struct containing variables accessed by shared code
4200 * @offset: offset within the EEPROM to be written to
4201 * @words: number of words to write
4202 * @data: pointer to array of 8 bit words to be written to the EEPROM
4203 */
4204static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4205					u16 words, u16 *data)
4206{
4207	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4208	u32 eecd;
4209	u16 words_written = 0;
4210	u16 i = 0;
4211
4212	e_dbg("e1000_write_eeprom_microwire");
4213
4214	/* Send the write enable command to the EEPROM (3-bit opcode plus
4215	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4216	 * the 11 of the dummy address as part of the opcode than it is to shift
4217	 * it over the correct number of bits for the address.  This puts the
4218	 * EEPROM into write/erase mode.
4219	 */
4220	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4221				(u16) (eeprom->opcode_bits + 2));
4222
4223	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4224
4225	/* Prepare the EEPROM */
4226	e1000_standby_eeprom(hw);
4227
4228	while (words_written < words) {
4229		/* Send the Write command (3-bit opcode + addr) */
4230		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4231					eeprom->opcode_bits);
4232
4233		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4234					eeprom->address_bits);
4235
4236		/* Send the data */
4237		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4238
4239		/* Toggle the CS line.  This in effect tells the EEPROM to execute
4240		 * the previous command.
4241		 */
4242		e1000_standby_eeprom(hw);
4243
4244		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
4245		 * signal that the command has been completed by raising the DO signal.
4246		 * If DO does not go high in 10 milliseconds, then error out.
 
4247		 */
4248		for (i = 0; i < 200; i++) {
4249			eecd = er32(EECD);
4250			if (eecd & E1000_EECD_DO)
4251				break;
4252			udelay(50);
4253		}
4254		if (i == 200) {
4255			e_dbg("EEPROM Write did not complete\n");
4256			return -E1000_ERR_EEPROM;
4257		}
4258
4259		/* Recover from write */
4260		e1000_standby_eeprom(hw);
 
4261
4262		words_written++;
4263	}
4264
4265	/* Send the write disable command to the EEPROM (3-bit opcode plus
4266	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4267	 * the 10 of the dummy address as part of the opcode than it is to shift
4268	 * it over the correct number of bits for the address.  This takes the
4269	 * EEPROM out of write/erase mode.
4270	 */
4271	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4272				(u16) (eeprom->opcode_bits + 2));
4273
4274	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4275
4276	return E1000_SUCCESS;
4277}
4278
4279/**
4280 * e1000_read_mac_addr - read the adapters MAC from eeprom
4281 * @hw: Struct containing variables accessed by shared code
4282 *
4283 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4284 * second function of dual function devices
4285 */
4286s32 e1000_read_mac_addr(struct e1000_hw *hw)
4287{
4288	u16 offset;
4289	u16 eeprom_data, i;
4290
4291	e_dbg("e1000_read_mac_addr");
4292
4293	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4294		offset = i >> 1;
4295		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4296			e_dbg("EEPROM Read Error\n");
4297			return -E1000_ERR_EEPROM;
4298		}
4299		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4300		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4301	}
4302
4303	switch (hw->mac_type) {
4304	default:
4305		break;
4306	case e1000_82546:
4307	case e1000_82546_rev_3:
4308		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4309			hw->perm_mac_addr[5] ^= 0x01;
4310		break;
4311	}
4312
4313	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4314		hw->mac_addr[i] = hw->perm_mac_addr[i];
4315	return E1000_SUCCESS;
4316}
4317
4318/**
4319 * e1000_init_rx_addrs - Initializes receive address filters.
4320 * @hw: Struct containing variables accessed by shared code
4321 *
4322 * Places the MAC address in receive address register 0 and clears the rest
4323 * of the receive address registers. Clears the multicast table. Assumes
4324 * the receiver is in reset when the routine is called.
4325 */
4326static void e1000_init_rx_addrs(struct e1000_hw *hw)
4327{
4328	u32 i;
4329	u32 rar_num;
4330
4331	e_dbg("e1000_init_rx_addrs");
4332
4333	/* Setup the receive address. */
4334	e_dbg("Programming MAC Address into RAR[0]\n");
4335
4336	e1000_rar_set(hw, hw->mac_addr, 0);
4337
4338	rar_num = E1000_RAR_ENTRIES;
4339
4340	/* Zero out the other 15 receive addresses. */
4341	e_dbg("Clearing RAR[1-15]\n");
 
 
4342	for (i = 1; i < rar_num; i++) {
4343		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4344		E1000_WRITE_FLUSH();
4345		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4346		E1000_WRITE_FLUSH();
4347	}
4348}
4349
4350/**
4351 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4352 * @hw: Struct containing variables accessed by shared code
4353 * @mc_addr: the multicast address to hash
4354 */
4355u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4356{
4357	u32 hash_value = 0;
4358
4359	/* The portion of the address that is used for the hash table is
4360	 * determined by the mc_filter_type setting.
4361	 */
4362	switch (hw->mc_filter_type) {
4363		/* [0] [1] [2] [3] [4] [5]
4364		 * 01  AA  00  12  34  56
4365		 * LSB                 MSB
4366		 */
4367	case 0:
4368		/* [47:36] i.e. 0x563 for above example address */
4369		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4370		break;
4371	case 1:
4372		/* [46:35] i.e. 0xAC6 for above example address */
4373		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4374		break;
4375	case 2:
4376		/* [45:34] i.e. 0x5D8 for above example address */
4377		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4378		break;
4379	case 3:
4380		/* [43:32] i.e. 0x634 for above example address */
4381		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4382		break;
4383	}
4384
4385	hash_value &= 0xFFF;
4386	return hash_value;
4387}
4388
4389/**
4390 * e1000_rar_set - Puts an ethernet address into a receive address register.
4391 * @hw: Struct containing variables accessed by shared code
4392 * @addr: Address to put into receive address register
4393 * @index: Receive address register to write
4394 */
4395void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4396{
4397	u32 rar_low, rar_high;
4398
4399	/* HW expects these in little endian so we reverse the byte order
4400	 * from network order (big endian) to little endian
4401	 */
4402	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4403		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4404	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4405
4406	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4407	 * unit hang.
4408	 *
4409	 * Description:
4410	 * If there are any Rx frames queued up or otherwise present in the HW
4411	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4412	 * hang.  To work around this issue, we have to disable receives and
4413	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4414	 * redirect all Rx traffic to manageability and then reset the HW.
4415	 * This flushes away Rx frames, and (since the redirections to
4416	 * manageability persists across resets) keeps new ones from coming in
4417	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4418	 * addresses and undo the re-direction to manageability.
4419	 * Now, frames are coming in again, but the MAC won't accept them, so
4420	 * far so good.  We now proceed to initialize RSS (if necessary) and
4421	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4422	 * on our merry way.
4423	 */
4424	switch (hw->mac_type) {
4425	default:
4426		/* Indicate to hardware the Address is Valid. */
4427		rar_high |= E1000_RAH_AV;
4428		break;
4429	}
4430
4431	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4432	E1000_WRITE_FLUSH();
4433	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4434	E1000_WRITE_FLUSH();
4435}
4436
4437/**
4438 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4439 * @hw: Struct containing variables accessed by shared code
4440 * @offset: Offset in VLAN filer table to write
4441 * @value: Value to write into VLAN filter table
4442 */
4443void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4444{
4445	u32 temp;
4446
4447	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4448		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4449		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4450		E1000_WRITE_FLUSH();
4451		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4452		E1000_WRITE_FLUSH();
4453	} else {
4454		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4455		E1000_WRITE_FLUSH();
4456	}
4457}
4458
4459/**
4460 * e1000_clear_vfta - Clears the VLAN filer table
4461 * @hw: Struct containing variables accessed by shared code
4462 */
4463static void e1000_clear_vfta(struct e1000_hw *hw)
4464{
4465	u32 offset;
4466	u32 vfta_value = 0;
4467	u32 vfta_offset = 0;
4468	u32 vfta_bit_in_reg = 0;
4469
4470	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4471		/* If the offset we want to clear is the same offset of the
4472		 * manageability VLAN ID, then clear all bits except that of the
4473		 * manageability unit */
4474		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4475		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4476		E1000_WRITE_FLUSH();
4477	}
4478}
4479
4480static s32 e1000_id_led_init(struct e1000_hw *hw)
4481{
4482	u32 ledctl;
4483	const u32 ledctl_mask = 0x000000FF;
4484	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4485	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4486	u16 eeprom_data, i, temp;
4487	const u16 led_mask = 0x0F;
4488
4489	e_dbg("e1000_id_led_init");
4490
4491	if (hw->mac_type < e1000_82540) {
4492		/* Nothing to do */
4493		return E1000_SUCCESS;
4494	}
4495
4496	ledctl = er32(LEDCTL);
4497	hw->ledctl_default = ledctl;
4498	hw->ledctl_mode1 = hw->ledctl_default;
4499	hw->ledctl_mode2 = hw->ledctl_default;
4500
4501	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4502		e_dbg("EEPROM Read Error\n");
4503		return -E1000_ERR_EEPROM;
4504	}
4505
4506	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4507	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4508		eeprom_data = ID_LED_DEFAULT;
4509	}
4510
4511	for (i = 0; i < 4; i++) {
4512		temp = (eeprom_data >> (i << 2)) & led_mask;
4513		switch (temp) {
4514		case ID_LED_ON1_DEF2:
4515		case ID_LED_ON1_ON2:
4516		case ID_LED_ON1_OFF2:
4517			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4519			break;
4520		case ID_LED_OFF1_DEF2:
4521		case ID_LED_OFF1_ON2:
4522		case ID_LED_OFF1_OFF2:
4523			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4524			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4525			break;
4526		default:
4527			/* Do nothing */
4528			break;
4529		}
4530		switch (temp) {
4531		case ID_LED_DEF1_ON2:
4532		case ID_LED_ON1_ON2:
4533		case ID_LED_OFF1_ON2:
4534			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4536			break;
4537		case ID_LED_DEF1_OFF2:
4538		case ID_LED_ON1_OFF2:
4539		case ID_LED_OFF1_OFF2:
4540			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4541			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4542			break;
4543		default:
4544			/* Do nothing */
4545			break;
4546		}
4547	}
4548	return E1000_SUCCESS;
4549}
4550
4551/**
4552 * e1000_setup_led
4553 * @hw: Struct containing variables accessed by shared code
4554 *
4555 * Prepares SW controlable LED for use and saves the current state of the LED.
4556 */
4557s32 e1000_setup_led(struct e1000_hw *hw)
4558{
4559	u32 ledctl;
4560	s32 ret_val = E1000_SUCCESS;
4561
4562	e_dbg("e1000_setup_led");
4563
4564	switch (hw->mac_type) {
4565	case e1000_82542_rev2_0:
4566	case e1000_82542_rev2_1:
4567	case e1000_82543:
4568	case e1000_82544:
4569		/* No setup necessary */
4570		break;
4571	case e1000_82541:
4572	case e1000_82547:
4573	case e1000_82541_rev_2:
4574	case e1000_82547_rev_2:
4575		/* Turn off PHY Smart Power Down (if enabled) */
4576		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4577					     &hw->phy_spd_default);
4578		if (ret_val)
4579			return ret_val;
4580		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4581					      (u16) (hw->phy_spd_default &
4582						     ~IGP01E1000_GMII_SPD));
4583		if (ret_val)
4584			return ret_val;
4585		/* Fall Through */
4586	default:
4587		if (hw->media_type == e1000_media_type_fiber) {
4588			ledctl = er32(LEDCTL);
4589			/* Save current LEDCTL settings */
4590			hw->ledctl_default = ledctl;
4591			/* Turn off LED0 */
4592			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4593				    E1000_LEDCTL_LED0_BLINK |
4594				    E1000_LEDCTL_LED0_MODE_MASK);
4595			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4596				   E1000_LEDCTL_LED0_MODE_SHIFT);
4597			ew32(LEDCTL, ledctl);
4598		} else if (hw->media_type == e1000_media_type_copper)
4599			ew32(LEDCTL, hw->ledctl_mode1);
4600		break;
4601	}
4602
4603	return E1000_SUCCESS;
4604}
4605
4606/**
4607 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4608 * @hw: Struct containing variables accessed by shared code
4609 */
4610s32 e1000_cleanup_led(struct e1000_hw *hw)
4611{
4612	s32 ret_val = E1000_SUCCESS;
4613
4614	e_dbg("e1000_cleanup_led");
4615
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620	case e1000_82544:
4621		/* No cleanup necessary */
4622		break;
4623	case e1000_82541:
4624	case e1000_82547:
4625	case e1000_82541_rev_2:
4626	case e1000_82547_rev_2:
4627		/* Turn on PHY Smart Power Down (if previously enabled) */
4628		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4629					      hw->phy_spd_default);
4630		if (ret_val)
4631			return ret_val;
4632		/* Fall Through */
4633	default:
4634		/* Restore LEDCTL settings */
4635		ew32(LEDCTL, hw->ledctl_default);
4636		break;
4637	}
4638
4639	return E1000_SUCCESS;
4640}
4641
4642/**
4643 * e1000_led_on - Turns on the software controllable LED
4644 * @hw: Struct containing variables accessed by shared code
4645 */
4646s32 e1000_led_on(struct e1000_hw *hw)
4647{
4648	u32 ctrl = er32(CTRL);
4649
4650	e_dbg("e1000_led_on");
4651
4652	switch (hw->mac_type) {
4653	case e1000_82542_rev2_0:
4654	case e1000_82542_rev2_1:
4655	case e1000_82543:
4656		/* Set SW Defineable Pin 0 to turn on the LED */
4657		ctrl |= E1000_CTRL_SWDPIN0;
4658		ctrl |= E1000_CTRL_SWDPIO0;
4659		break;
4660	case e1000_82544:
4661		if (hw->media_type == e1000_media_type_fiber) {
4662			/* Set SW Defineable Pin 0 to turn on the LED */
4663			ctrl |= E1000_CTRL_SWDPIN0;
4664			ctrl |= E1000_CTRL_SWDPIO0;
4665		} else {
4666			/* Clear SW Defineable Pin 0 to turn on the LED */
4667			ctrl &= ~E1000_CTRL_SWDPIN0;
4668			ctrl |= E1000_CTRL_SWDPIO0;
4669		}
4670		break;
4671	default:
4672		if (hw->media_type == e1000_media_type_fiber) {
4673			/* Clear SW Defineable Pin 0 to turn on the LED */
4674			ctrl &= ~E1000_CTRL_SWDPIN0;
4675			ctrl |= E1000_CTRL_SWDPIO0;
4676		} else if (hw->media_type == e1000_media_type_copper) {
4677			ew32(LEDCTL, hw->ledctl_mode2);
4678			return E1000_SUCCESS;
4679		}
4680		break;
4681	}
4682
4683	ew32(CTRL, ctrl);
4684
4685	return E1000_SUCCESS;
4686}
4687
4688/**
4689 * e1000_led_off - Turns off the software controllable LED
4690 * @hw: Struct containing variables accessed by shared code
4691 */
4692s32 e1000_led_off(struct e1000_hw *hw)
4693{
4694	u32 ctrl = er32(CTRL);
4695
4696	e_dbg("e1000_led_off");
4697
4698	switch (hw->mac_type) {
4699	case e1000_82542_rev2_0:
4700	case e1000_82542_rev2_1:
4701	case e1000_82543:
4702		/* Clear SW Defineable Pin 0 to turn off the LED */
4703		ctrl &= ~E1000_CTRL_SWDPIN0;
4704		ctrl |= E1000_CTRL_SWDPIO0;
4705		break;
4706	case e1000_82544:
4707		if (hw->media_type == e1000_media_type_fiber) {
4708			/* Clear SW Defineable Pin 0 to turn off the LED */
4709			ctrl &= ~E1000_CTRL_SWDPIN0;
4710			ctrl |= E1000_CTRL_SWDPIO0;
4711		} else {
4712			/* Set SW Defineable Pin 0 to turn off the LED */
4713			ctrl |= E1000_CTRL_SWDPIN0;
4714			ctrl |= E1000_CTRL_SWDPIO0;
4715		}
4716		break;
4717	default:
4718		if (hw->media_type == e1000_media_type_fiber) {
4719			/* Set SW Defineable Pin 0 to turn off the LED */
4720			ctrl |= E1000_CTRL_SWDPIN0;
4721			ctrl |= E1000_CTRL_SWDPIO0;
4722		} else if (hw->media_type == e1000_media_type_copper) {
4723			ew32(LEDCTL, hw->ledctl_mode1);
4724			return E1000_SUCCESS;
4725		}
4726		break;
4727	}
4728
4729	ew32(CTRL, ctrl);
4730
4731	return E1000_SUCCESS;
4732}
4733
4734/**
4735 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4736 * @hw: Struct containing variables accessed by shared code
4737 */
4738static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4739{
4740	volatile u32 temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741
4742	temp = er32(CRCERRS);
4743	temp = er32(SYMERRS);
4744	temp = er32(MPC);
4745	temp = er32(SCC);
4746	temp = er32(ECOL);
4747	temp = er32(MCC);
4748	temp = er32(LATECOL);
4749	temp = er32(COLC);
4750	temp = er32(DC);
4751	temp = er32(SEC);
4752	temp = er32(RLEC);
4753	temp = er32(XONRXC);
4754	temp = er32(XONTXC);
4755	temp = er32(XOFFRXC);
4756	temp = er32(XOFFTXC);
4757	temp = er32(FCRUC);
4758
4759	temp = er32(PRC64);
4760	temp = er32(PRC127);
4761	temp = er32(PRC255);
4762	temp = er32(PRC511);
4763	temp = er32(PRC1023);
4764	temp = er32(PRC1522);
4765
4766	temp = er32(GPRC);
4767	temp = er32(BPRC);
4768	temp = er32(MPRC);
4769	temp = er32(GPTC);
4770	temp = er32(GORCL);
4771	temp = er32(GORCH);
4772	temp = er32(GOTCL);
4773	temp = er32(GOTCH);
4774	temp = er32(RNBC);
4775	temp = er32(RUC);
4776	temp = er32(RFC);
4777	temp = er32(ROC);
4778	temp = er32(RJC);
4779	temp = er32(TORL);
4780	temp = er32(TORH);
4781	temp = er32(TOTL);
4782	temp = er32(TOTH);
4783	temp = er32(TPR);
4784	temp = er32(TPT);
4785
4786	temp = er32(PTC64);
4787	temp = er32(PTC127);
4788	temp = er32(PTC255);
4789	temp = er32(PTC511);
4790	temp = er32(PTC1023);
4791	temp = er32(PTC1522);
4792
4793	temp = er32(MPTC);
4794	temp = er32(BPTC);
4795
4796	if (hw->mac_type < e1000_82543)
4797		return;
4798
4799	temp = er32(ALGNERRC);
4800	temp = er32(RXERRC);
4801	temp = er32(TNCRS);
4802	temp = er32(CEXTERR);
4803	temp = er32(TSCTC);
4804	temp = er32(TSCTFC);
4805
4806	if (hw->mac_type <= e1000_82544)
4807		return;
4808
4809	temp = er32(MGTPRC);
4810	temp = er32(MGTPDC);
4811	temp = er32(MGTPTC);
4812}
4813
4814/**
4815 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4816 * @hw: Struct containing variables accessed by shared code
4817 *
4818 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4819 * hw->ifs_params_forced to true. However, you must initialize hw->
4820 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4821 * before calling this function.
4822 */
4823void e1000_reset_adaptive(struct e1000_hw *hw)
4824{
4825	e_dbg("e1000_reset_adaptive");
4826
4827	if (hw->adaptive_ifs) {
4828		if (!hw->ifs_params_forced) {
4829			hw->current_ifs_val = 0;
4830			hw->ifs_min_val = IFS_MIN;
4831			hw->ifs_max_val = IFS_MAX;
4832			hw->ifs_step_size = IFS_STEP;
4833			hw->ifs_ratio = IFS_RATIO;
4834		}
4835		hw->in_ifs_mode = false;
4836		ew32(AIT, 0);
4837	} else {
4838		e_dbg("Not in Adaptive IFS mode!\n");
4839	}
4840}
4841
4842/**
4843 * e1000_update_adaptive - update adaptive IFS
4844 * @hw: Struct containing variables accessed by shared code
4845 * @tx_packets: Number of transmits since last callback
4846 * @total_collisions: Number of collisions since last callback
4847 *
4848 * Called during the callback/watchdog routine to update IFS value based on
4849 * the ratio of transmits to collisions.
4850 */
4851void e1000_update_adaptive(struct e1000_hw *hw)
4852{
4853	e_dbg("e1000_update_adaptive");
4854
4855	if (hw->adaptive_ifs) {
4856		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4857			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4858				hw->in_ifs_mode = true;
4859				if (hw->current_ifs_val < hw->ifs_max_val) {
4860					if (hw->current_ifs_val == 0)
4861						hw->current_ifs_val =
4862						    hw->ifs_min_val;
4863					else
4864						hw->current_ifs_val +=
4865						    hw->ifs_step_size;
4866					ew32(AIT, hw->current_ifs_val);
4867				}
4868			}
4869		} else {
4870			if (hw->in_ifs_mode
4871			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4872				hw->current_ifs_val = 0;
4873				hw->in_ifs_mode = false;
4874				ew32(AIT, 0);
4875			}
4876		}
4877	} else {
4878		e_dbg("Not in Adaptive IFS mode!\n");
4879	}
4880}
4881
4882/**
4883 * e1000_tbi_adjust_stats
4884 * @hw: Struct containing variables accessed by shared code
4885 * @frame_len: The length of the frame in question
4886 * @mac_addr: The Ethernet destination address of the frame in question
4887 *
4888 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4889 */
4890void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4891			    u32 frame_len, u8 *mac_addr)
4892{
4893	u64 carry_bit;
4894
4895	/* First adjust the frame length. */
4896	frame_len--;
4897	/* We need to adjust the statistics counters, since the hardware
4898	 * counters overcount this packet as a CRC error and undercount
4899	 * the packet as a good packet
4900	 */
4901	/* This packet should not be counted as a CRC error.    */
4902	stats->crcerrs--;
4903	/* This packet does count as a Good Packet Received.    */
4904	stats->gprc++;
4905
4906	/* Adjust the Good Octets received counters             */
4907	carry_bit = 0x80000000 & stats->gorcl;
4908	stats->gorcl += frame_len;
4909	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4910	 * Received Count) was one before the addition,
4911	 * AND it is zero after, then we lost the carry out,
4912	 * need to add one to Gorch (Good Octets Received Count High).
4913	 * This could be simplified if all environments supported
4914	 * 64-bit integers.
4915	 */
4916	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4917		stats->gorch++;
4918	/* Is this a broadcast or multicast?  Check broadcast first,
4919	 * since the test for a multicast frame will test positive on
4920	 * a broadcast frame.
4921	 */
4922	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4923		/* Broadcast packet */
4924		stats->bprc++;
4925	else if (*mac_addr & 0x01)
4926		/* Multicast packet */
4927		stats->mprc++;
4928
4929	if (frame_len == hw->max_frame_size) {
4930		/* In this case, the hardware has overcounted the number of
4931		 * oversize frames.
4932		 */
4933		if (stats->roc > 0)
4934			stats->roc--;
4935	}
4936
4937	/* Adjust the bin counters when the extra byte put the frame in the
4938	 * wrong bin. Remember that the frame_len was adjusted above.
4939	 */
4940	if (frame_len == 64) {
4941		stats->prc64++;
4942		stats->prc127--;
4943	} else if (frame_len == 127) {
4944		stats->prc127++;
4945		stats->prc255--;
4946	} else if (frame_len == 255) {
4947		stats->prc255++;
4948		stats->prc511--;
4949	} else if (frame_len == 511) {
4950		stats->prc511++;
4951		stats->prc1023--;
4952	} else if (frame_len == 1023) {
4953		stats->prc1023++;
4954		stats->prc1522--;
4955	} else if (frame_len == 1522) {
4956		stats->prc1522++;
4957	}
4958}
4959
4960/**
4961 * e1000_get_bus_info
4962 * @hw: Struct containing variables accessed by shared code
4963 *
4964 * Gets the current PCI bus type, speed, and width of the hardware
4965 */
4966void e1000_get_bus_info(struct e1000_hw *hw)
4967{
4968	u32 status;
4969
4970	switch (hw->mac_type) {
4971	case e1000_82542_rev2_0:
4972	case e1000_82542_rev2_1:
4973		hw->bus_type = e1000_bus_type_pci;
4974		hw->bus_speed = e1000_bus_speed_unknown;
4975		hw->bus_width = e1000_bus_width_unknown;
4976		break;
4977	default:
4978		status = er32(STATUS);
4979		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4980		    e1000_bus_type_pcix : e1000_bus_type_pci;
4981
4982		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4983			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4984			    e1000_bus_speed_66 : e1000_bus_speed_120;
4985		} else if (hw->bus_type == e1000_bus_type_pci) {
4986			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4987			    e1000_bus_speed_66 : e1000_bus_speed_33;
4988		} else {
4989			switch (status & E1000_STATUS_PCIX_SPEED) {
4990			case E1000_STATUS_PCIX_SPEED_66:
4991				hw->bus_speed = e1000_bus_speed_66;
4992				break;
4993			case E1000_STATUS_PCIX_SPEED_100:
4994				hw->bus_speed = e1000_bus_speed_100;
4995				break;
4996			case E1000_STATUS_PCIX_SPEED_133:
4997				hw->bus_speed = e1000_bus_speed_133;
4998				break;
4999			default:
5000				hw->bus_speed = e1000_bus_speed_reserved;
5001				break;
5002			}
5003		}
5004		hw->bus_width = (status & E1000_STATUS_BUS64) ?
5005		    e1000_bus_width_64 : e1000_bus_width_32;
5006		break;
5007	}
5008}
5009
5010/**
5011 * e1000_write_reg_io
5012 * @hw: Struct containing variables accessed by shared code
5013 * @offset: offset to write to
5014 * @value: value to write
5015 *
5016 * Writes a value to one of the devices registers using port I/O (as opposed to
5017 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5018 */
5019static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5020{
5021	unsigned long io_addr = hw->io_base;
5022	unsigned long io_data = hw->io_base + 4;
5023
5024	e1000_io_write(hw, io_addr, offset);
5025	e1000_io_write(hw, io_data, value);
5026}
5027
5028/**
5029 * e1000_get_cable_length - Estimates the cable length.
5030 * @hw: Struct containing variables accessed by shared code
5031 * @min_length: The estimated minimum length
5032 * @max_length: The estimated maximum length
5033 *
5034 * returns: - E1000_ERR_XXX
5035 *            E1000_SUCCESS
5036 *
5037 * This function always returns a ranged length (minimum & maximum).
5038 * So for M88 phy's, this function interprets the one value returned from the
5039 * register to the minimum and maximum range.
5040 * For IGP phy's, the function calculates the range by the AGC registers.
5041 */
5042static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5043				  u16 *max_length)
5044{
5045	s32 ret_val;
5046	u16 agc_value = 0;
5047	u16 i, phy_data;
5048	u16 cable_length;
5049
5050	e_dbg("e1000_get_cable_length");
5051
5052	*min_length = *max_length = 0;
5053
5054	/* Use old method for Phy older than IGP */
5055	if (hw->phy_type == e1000_phy_m88) {
5056
5057		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5058					     &phy_data);
5059		if (ret_val)
5060			return ret_val;
5061		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5062		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5063
5064		/* Convert the enum value to ranged values */
5065		switch (cable_length) {
5066		case e1000_cable_length_50:
5067			*min_length = 0;
5068			*max_length = e1000_igp_cable_length_50;
5069			break;
5070		case e1000_cable_length_50_80:
5071			*min_length = e1000_igp_cable_length_50;
5072			*max_length = e1000_igp_cable_length_80;
5073			break;
5074		case e1000_cable_length_80_110:
5075			*min_length = e1000_igp_cable_length_80;
5076			*max_length = e1000_igp_cable_length_110;
5077			break;
5078		case e1000_cable_length_110_140:
5079			*min_length = e1000_igp_cable_length_110;
5080			*max_length = e1000_igp_cable_length_140;
5081			break;
5082		case e1000_cable_length_140:
5083			*min_length = e1000_igp_cable_length_140;
5084			*max_length = e1000_igp_cable_length_170;
5085			break;
5086		default:
5087			return -E1000_ERR_PHY;
5088			break;
5089		}
5090	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
5091		u16 cur_agc_value;
5092		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5093		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5094		       IGP01E1000_PHY_AGC_A,
5095		       IGP01E1000_PHY_AGC_B,
5096		       IGP01E1000_PHY_AGC_C,
5097		       IGP01E1000_PHY_AGC_D
5098		};
5099		/* Read the AGC registers for all channels */
5100		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5101
5102			ret_val =
5103			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5104			if (ret_val)
5105				return ret_val;
5106
5107			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5108
5109			/* Value bound check. */
5110			if ((cur_agc_value >=
5111			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5112			    || (cur_agc_value == 0))
5113				return -E1000_ERR_PHY;
5114
5115			agc_value += cur_agc_value;
5116
5117			/* Update minimal AGC value. */
5118			if (min_agc_value > cur_agc_value)
5119				min_agc_value = cur_agc_value;
5120		}
5121
5122		/* Remove the minimal AGC result for length < 50m */
5123		if (agc_value <
5124		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5125			agc_value -= min_agc_value;
5126
5127			/* Get the average length of the remaining 3 channels */
5128			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5129		} else {
5130			/* Get the average length of all the 4 channels. */
5131			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5132		}
5133
5134		/* Set the range of the calculated length. */
5135		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5136				IGP01E1000_AGC_RANGE) > 0) ?
5137		    (e1000_igp_cable_length_table[agc_value] -
5138		     IGP01E1000_AGC_RANGE) : 0;
5139		*max_length = e1000_igp_cable_length_table[agc_value] +
5140		    IGP01E1000_AGC_RANGE;
5141	}
5142
5143	return E1000_SUCCESS;
5144}
5145
5146/**
5147 * e1000_check_polarity - Check the cable polarity
5148 * @hw: Struct containing variables accessed by shared code
5149 * @polarity: output parameter : 0 - Polarity is not reversed
5150 *                               1 - Polarity is reversed.
5151 *
5152 * returns: - E1000_ERR_XXX
5153 *            E1000_SUCCESS
5154 *
5155 * For phy's older than IGP, this function simply reads the polarity bit in the
5156 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5157 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5158 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5159 * IGP01E1000_PHY_PCS_INIT_REG.
5160 */
5161static s32 e1000_check_polarity(struct e1000_hw *hw,
5162				e1000_rev_polarity *polarity)
5163{
5164	s32 ret_val;
5165	u16 phy_data;
5166
5167	e_dbg("e1000_check_polarity");
5168
5169	if (hw->phy_type == e1000_phy_m88) {
5170		/* return the Polarity bit in the Status register. */
5171		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5172					     &phy_data);
5173		if (ret_val)
5174			return ret_val;
5175		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5176			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5177		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5178
5179	} else if (hw->phy_type == e1000_phy_igp) {
5180		/* Read the Status register to check the speed */
5181		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5182					     &phy_data);
5183		if (ret_val)
5184			return ret_val;
5185
5186		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5187		 * find the polarity status */
 
5188		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5189		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5190
5191			/* Read the GIG initialization PCS register (0x00B4) */
5192			ret_val =
5193			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5194					       &phy_data);
5195			if (ret_val)
5196				return ret_val;
5197
5198			/* Check the polarity bits */
5199			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5200			    e1000_rev_polarity_reversed :
5201			    e1000_rev_polarity_normal;
5202		} else {
5203			/* For 10 Mbps, read the polarity bit in the status register. (for
5204			 * 100 Mbps this bit is always 0) */
 
5205			*polarity =
5206			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5207			    e1000_rev_polarity_reversed :
5208			    e1000_rev_polarity_normal;
5209		}
5210	}
5211	return E1000_SUCCESS;
5212}
5213
5214/**
5215 * e1000_check_downshift - Check if Downshift occurred
5216 * @hw: Struct containing variables accessed by shared code
5217 * @downshift: output parameter : 0 - No Downshift occurred.
5218 *                                1 - Downshift occurred.
5219 *
5220 * returns: - E1000_ERR_XXX
5221 *            E1000_SUCCESS
5222 *
5223 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5224 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5225 * Link Health register.  In IGP this bit is latched high, so the driver must
5226 * read it immediately after link is established.
5227 */
5228static s32 e1000_check_downshift(struct e1000_hw *hw)
5229{
5230	s32 ret_val;
5231	u16 phy_data;
5232
5233	e_dbg("e1000_check_downshift");
5234
5235	if (hw->phy_type == e1000_phy_igp) {
5236		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5237					     &phy_data);
5238		if (ret_val)
5239			return ret_val;
5240
5241		hw->speed_downgraded =
5242		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5243	} else if (hw->phy_type == e1000_phy_m88) {
5244		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5245					     &phy_data);
5246		if (ret_val)
5247			return ret_val;
5248
5249		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5250		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5251	}
5252
5253	return E1000_SUCCESS;
5254}
5255
5256static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5257	IGP01E1000_PHY_AGC_PARAM_A,
5258	IGP01E1000_PHY_AGC_PARAM_B,
5259	IGP01E1000_PHY_AGC_PARAM_C,
5260	IGP01E1000_PHY_AGC_PARAM_D
5261};
5262
5263static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5264{
5265	u16 min_length, max_length;
5266	u16 phy_data, i;
5267	s32 ret_val;
5268
5269	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5270	if (ret_val)
5271		return ret_val;
5272
5273	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5274		return 0;
5275
5276	if (min_length >= e1000_igp_cable_length_50) {
5277		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5278			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5279						     &phy_data);
5280			if (ret_val)
5281				return ret_val;
5282
5283			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5284
5285			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5286						      phy_data);
5287			if (ret_val)
5288				return ret_val;
5289		}
5290		hw->dsp_config_state = e1000_dsp_config_activated;
5291	} else {
5292		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5293		u32 idle_errs = 0;
5294
5295		/* clear previous idle error counts */
5296		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5297		if (ret_val)
5298			return ret_val;
5299
5300		for (i = 0; i < ffe_idle_err_timeout; i++) {
5301			udelay(1000);
5302			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5303						     &phy_data);
5304			if (ret_val)
5305				return ret_val;
5306
5307			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5308			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5309				hw->ffe_config_state = e1000_ffe_config_active;
5310
5311				ret_val = e1000_write_phy_reg(hw,
5312					      IGP01E1000_PHY_DSP_FFE,
5313					      IGP01E1000_PHY_DSP_FFE_CM_CP);
5314				if (ret_val)
5315					return ret_val;
5316				break;
5317			}
5318
5319			if (idle_errs)
5320				ffe_idle_err_timeout =
5321					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5322		}
5323	}
5324
5325	return 0;
5326}
5327
5328/**
5329 * e1000_config_dsp_after_link_change
5330 * @hw: Struct containing variables accessed by shared code
5331 * @link_up: was link up at the time this was called
5332 *
5333 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5334 *            E1000_SUCCESS at any other case.
5335 *
5336 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5337 * gigabit link is achieved to improve link quality.
5338 */
5339
5340static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5341{
5342	s32 ret_val;
5343	u16 phy_data, phy_saved_data, speed, duplex, i;
5344
5345	e_dbg("e1000_config_dsp_after_link_change");
5346
5347	if (hw->phy_type != e1000_phy_igp)
5348		return E1000_SUCCESS;
5349
5350	if (link_up) {
5351		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5352		if (ret_val) {
5353			e_dbg("Error getting link speed and duplex\n");
5354			return ret_val;
5355		}
5356
5357		if (speed == SPEED_1000) {
5358			ret_val = e1000_1000Mb_check_cable_length(hw);
5359			if (ret_val)
5360				return ret_val;
5361		}
5362	} else {
5363		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5364			/* Save off the current value of register 0x2F5B to be restored at
5365			 * the end of the routines. */
 
5366			ret_val =
5367			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5368
5369			if (ret_val)
5370				return ret_val;
5371
5372			/* Disable the PHY transmitter */
5373			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5374
5375			if (ret_val)
5376				return ret_val;
5377
5378			msleep(20);
5379
5380			ret_val = e1000_write_phy_reg(hw, 0x0000,
5381						      IGP01E1000_IEEE_FORCE_GIGA);
5382			if (ret_val)
5383				return ret_val;
5384			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5385				ret_val =
5386				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5387						       &phy_data);
5388				if (ret_val)
5389					return ret_val;
5390
5391				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5392				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5393
5394				ret_val =
5395				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5396							phy_data);
5397				if (ret_val)
5398					return ret_val;
5399			}
5400
5401			ret_val = e1000_write_phy_reg(hw, 0x0000,
5402						      IGP01E1000_IEEE_RESTART_AUTONEG);
5403			if (ret_val)
5404				return ret_val;
5405
5406			msleep(20);
5407
5408			/* Now enable the transmitter */
5409			ret_val =
5410			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5411
5412			if (ret_val)
5413				return ret_val;
5414
5415			hw->dsp_config_state = e1000_dsp_config_enabled;
5416		}
5417
5418		if (hw->ffe_config_state == e1000_ffe_config_active) {
5419			/* Save off the current value of register 0x2F5B to be restored at
5420			 * the end of the routines. */
 
5421			ret_val =
5422			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5423
5424			if (ret_val)
5425				return ret_val;
5426
5427			/* Disable the PHY transmitter */
5428			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5429
5430			if (ret_val)
5431				return ret_val;
5432
5433			msleep(20);
5434
5435			ret_val = e1000_write_phy_reg(hw, 0x0000,
5436						      IGP01E1000_IEEE_FORCE_GIGA);
5437			if (ret_val)
5438				return ret_val;
5439			ret_val =
5440			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5441						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5442			if (ret_val)
5443				return ret_val;
5444
5445			ret_val = e1000_write_phy_reg(hw, 0x0000,
5446						      IGP01E1000_IEEE_RESTART_AUTONEG);
5447			if (ret_val)
5448				return ret_val;
5449
5450			msleep(20);
5451
5452			/* Now enable the transmitter */
5453			ret_val =
5454			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5455
5456			if (ret_val)
5457				return ret_val;
5458
5459			hw->ffe_config_state = e1000_ffe_config_enabled;
5460		}
5461	}
5462	return E1000_SUCCESS;
5463}
5464
5465/**
5466 * e1000_set_phy_mode - Set PHY to class A mode
5467 * @hw: Struct containing variables accessed by shared code
5468 *
5469 * Assumes the following operations will follow to enable the new class mode.
5470 *  1. Do a PHY soft reset
5471 *  2. Restart auto-negotiation or force link.
5472 */
5473static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5474{
5475	s32 ret_val;
5476	u16 eeprom_data;
5477
5478	e_dbg("e1000_set_phy_mode");
5479
5480	if ((hw->mac_type == e1000_82545_rev_3) &&
5481	    (hw->media_type == e1000_media_type_copper)) {
5482		ret_val =
5483		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5484				      &eeprom_data);
5485		if (ret_val) {
5486			return ret_val;
5487		}
5488
5489		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5490		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5491			ret_val =
5492			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5493						0x000B);
5494			if (ret_val)
5495				return ret_val;
5496			ret_val =
5497			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5498						0x8104);
5499			if (ret_val)
5500				return ret_val;
5501
5502			hw->phy_reset_disable = false;
5503		}
5504	}
5505
5506	return E1000_SUCCESS;
5507}
5508
5509/**
5510 * e1000_set_d3_lplu_state - set d3 link power state
5511 * @hw: Struct containing variables accessed by shared code
5512 * @active: true to enable lplu false to disable lplu.
5513 *
5514 * This function sets the lplu state according to the active flag.  When
5515 * activating lplu this function also disables smart speed and vise versa.
5516 * lplu will not be activated unless the device autonegotiation advertisement
5517 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5518 *
5519 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5520 *            E1000_SUCCESS at any other case.
5521 */
5522static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5523{
5524	s32 ret_val;
5525	u16 phy_data;
5526	e_dbg("e1000_set_d3_lplu_state");
5527
5528	if (hw->phy_type != e1000_phy_igp)
5529		return E1000_SUCCESS;
5530
5531	/* During driver activity LPLU should not be used or it will attain link
5532	 * from the lowest speeds starting from 10Mbps. The capability is used for
5533	 * Dx transitions and states */
5534	if (hw->mac_type == e1000_82541_rev_2
5535	    || hw->mac_type == e1000_82547_rev_2) {
 
5536		ret_val =
5537		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5538		if (ret_val)
5539			return ret_val;
5540	}
5541
5542	if (!active) {
5543		if (hw->mac_type == e1000_82541_rev_2 ||
5544		    hw->mac_type == e1000_82547_rev_2) {
5545			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5546			ret_val =
5547			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5548						phy_data);
5549			if (ret_val)
5550				return ret_val;
5551		}
5552
5553		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
5554		 * Dx states where the power conservation is most important.  During
5555		 * driver activity we should enable SmartSpeed, so performance is
5556		 * maintained. */
 
5557		if (hw->smart_speed == e1000_smart_speed_on) {
5558			ret_val =
5559			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5560					       &phy_data);
5561			if (ret_val)
5562				return ret_val;
5563
5564			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5565			ret_val =
5566			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5567						phy_data);
5568			if (ret_val)
5569				return ret_val;
5570		} else if (hw->smart_speed == e1000_smart_speed_off) {
5571			ret_val =
5572			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5573					       &phy_data);
5574			if (ret_val)
5575				return ret_val;
5576
5577			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5578			ret_val =
5579			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5580						phy_data);
5581			if (ret_val)
5582				return ret_val;
5583		}
5584	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5585		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5586		   || (hw->autoneg_advertised ==
5587		       AUTONEG_ADVERTISE_10_100_ALL)) {
5588
5589		if (hw->mac_type == e1000_82541_rev_2 ||
5590		    hw->mac_type == e1000_82547_rev_2) {
5591			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5592			ret_val =
5593			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5594						phy_data);
5595			if (ret_val)
5596				return ret_val;
5597		}
5598
5599		/* When LPLU is enabled we should disable SmartSpeed */
5600		ret_val =
5601		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5602				       &phy_data);
5603		if (ret_val)
5604			return ret_val;
5605
5606		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5607		ret_val =
5608		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5609					phy_data);
5610		if (ret_val)
5611			return ret_val;
5612
5613	}
5614	return E1000_SUCCESS;
5615}
5616
5617/**
5618 * e1000_set_vco_speed
5619 * @hw: Struct containing variables accessed by shared code
5620 *
5621 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5622 */
5623static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5624{
5625	s32 ret_val;
5626	u16 default_page = 0;
5627	u16 phy_data;
5628
5629	e_dbg("e1000_set_vco_speed");
5630
5631	switch (hw->mac_type) {
5632	case e1000_82545_rev_3:
5633	case e1000_82546_rev_3:
5634		break;
5635	default:
5636		return E1000_SUCCESS;
5637	}
5638
5639	/* Set PHY register 30, page 5, bit 8 to 0 */
5640
5641	ret_val =
5642	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5643	if (ret_val)
5644		return ret_val;
5645
5646	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5647	if (ret_val)
5648		return ret_val;
5649
5650	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5651	if (ret_val)
5652		return ret_val;
5653
5654	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5655	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5656	if (ret_val)
5657		return ret_val;
5658
5659	/* Set PHY register 30, page 4, bit 11 to 1 */
5660
5661	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5662	if (ret_val)
5663		return ret_val;
5664
5665	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5666	if (ret_val)
5667		return ret_val;
5668
5669	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5670	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5671	if (ret_val)
5672		return ret_val;
5673
5674	ret_val =
5675	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5676	if (ret_val)
5677		return ret_val;
5678
5679	return E1000_SUCCESS;
5680}
5681
5682
5683/**
5684 * e1000_enable_mng_pass_thru - check for bmc pass through
5685 * @hw: Struct containing variables accessed by shared code
5686 *
5687 * Verifies the hardware needs to allow ARPs to be processed by the host
5688 * returns: - true/false
5689 */
5690u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5691{
5692	u32 manc;
5693
5694	if (hw->asf_firmware_present) {
5695		manc = er32(MANC);
5696
5697		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5698		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5699			return false;
5700		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5701			return true;
5702	}
5703	return false;
5704}
5705
5706static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5707{
5708	s32 ret_val;
5709	u16 mii_status_reg;
5710	u16 i;
5711
5712	/* Polarity reversal workaround for forced 10F/10H links. */
5713
5714	/* Disable the transmitter on the PHY */
5715
5716	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5717	if (ret_val)
5718		return ret_val;
5719	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5720	if (ret_val)
5721		return ret_val;
5722
5723	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5724	if (ret_val)
5725		return ret_val;
5726
5727	/* This loop will early-out if the NO link condition has been met. */
5728	for (i = PHY_FORCE_TIME; i > 0; i--) {
5729		/* Read the MII Status Register and wait for Link Status bit
5730		 * to be clear.
5731		 */
5732
5733		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5734		if (ret_val)
5735			return ret_val;
5736
5737		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5738		if (ret_val)
5739			return ret_val;
5740
5741		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5742			break;
5743		msleep(100);
5744	}
5745
5746	/* Recommended delay time after link has been lost */
5747	msleep(1000);
5748
5749	/* Now we will re-enable th transmitter on the PHY */
5750
5751	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5752	if (ret_val)
5753		return ret_val;
5754	msleep(50);
5755	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5756	if (ret_val)
5757		return ret_val;
5758	msleep(50);
5759	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5760	if (ret_val)
5761		return ret_val;
5762	msleep(50);
5763	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5764	if (ret_val)
5765		return ret_val;
5766
5767	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5768	if (ret_val)
5769		return ret_val;
5770
5771	/* This loop will early-out if the link condition has been met. */
5772	for (i = PHY_FORCE_TIME; i > 0; i--) {
5773		/* Read the MII Status Register and wait for Link Status bit
5774		 * to be set.
5775		 */
5776
5777		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5778		if (ret_val)
5779			return ret_val;
5780
5781		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5782		if (ret_val)
5783			return ret_val;
5784
5785		if (mii_status_reg & MII_SR_LINK_STATUS)
5786			break;
5787		msleep(100);
5788	}
5789	return E1000_SUCCESS;
5790}
5791
5792/**
5793 * e1000_get_auto_rd_done
5794 * @hw: Struct containing variables accessed by shared code
5795 *
5796 * Check for EEPROM Auto Read bit done.
5797 * returns: - E1000_ERR_RESET if fail to reset MAC
5798 *            E1000_SUCCESS at any other case.
5799 */
5800static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5801{
5802	e_dbg("e1000_get_auto_rd_done");
5803	msleep(5);
5804	return E1000_SUCCESS;
5805}
5806
5807/**
5808 * e1000_get_phy_cfg_done
5809 * @hw: Struct containing variables accessed by shared code
5810 *
5811 * Checks if the PHY configuration is done
5812 * returns: - E1000_ERR_RESET if fail to reset MAC
5813 *            E1000_SUCCESS at any other case.
5814 */
5815static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5816{
5817	e_dbg("e1000_get_phy_cfg_done");
5818	msleep(10);
5819	return E1000_SUCCESS;
5820}