Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG		0x000
  27#define QUP_STATE		0x004
  28#define QUP_IO_MODE		0x008
  29#define QUP_SW_RESET		0x00c
  30#define QUP_OPERATIONAL		0x018
  31#define QUP_ERROR_FLAGS		0x01c
  32#define QUP_ERROR_FLAGS_EN	0x020
  33#define QUP_OPERATIONAL_MASK	0x028
  34#define QUP_HW_VERSION		0x030
  35#define QUP_MX_OUTPUT_CNT	0x100
  36#define QUP_OUT_FIFO_BASE	0x110
  37#define QUP_MX_WRITE_CNT	0x150
  38#define QUP_MX_INPUT_CNT	0x200
  39#define QUP_MX_READ_CNT		0x208
  40#define QUP_IN_FIFO_BASE	0x218
  41#define QUP_I2C_CLK_CTL		0x400
  42#define QUP_I2C_STATUS		0x404
  43#define QUP_I2C_MASTER_GEN	0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE		0
  47#define QUP_RUN_STATE		1
  48#define QUP_PAUSE_STATE		3
  49#define QUP_STATE_MASK		3
  50
  51#define QUP_STATE_VALID		BIT(2)
  52#define QUP_I2C_MAST_GEN	BIT(4)
  53#define QUP_I2C_FLUSH		BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET	0x000ff0
  56#define QUP_I2C_STATUS_RESET	0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG	BIT(3)
  60#define QUP_OUT_NOT_EMPTY	BIT(4)
  61#define QUP_IN_NOT_EMPTY	BIT(5)
  62#define QUP_OUT_FULL		BIT(6)
  63#define QUP_OUT_SVC_FLAG	BIT(8)
  64#define QUP_IN_SVC_FLAG		BIT(9)
  65#define QUP_MX_OUTPUT_DONE	BIT(10)
  66#define QUP_MX_INPUT_DONE	BIT(11)
  67#define OUT_BLOCK_WRITE_REQ	BIT(12)
  68#define IN_BLOCK_READ_REQ	BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT		BIT(7)
  72#define QUP_CLOCK_AUTO_GATE	BIT(13)
  73#define I2C_MINI_CORE		(2 << 8)
  74#define I2C_N_VAL		15
  75#define I2C_N_VAL_V2		7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
  82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
  83#define QUP_INPUT_BLK_MODE	(1 << 12)
  84#define QUP_INPUT_BAM_MODE	(3 << 12)
  85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN		BIT(14)
  87#define QUP_PACK_EN		BIT(15)
  88
  89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN		1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START		(1 << 8)
  99#define QUP_TAG_DATA		(2 << 8)
 100#define QUP_TAG_STOP		(3 << 8)
 101#define QUP_TAG_REC		(4 << 8)
 102#define QUP_BAM_INPUT_EOT		0x93
 103#define QUP_BAM_FLUSH_STOP		0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 116#define I2C_STATUS_ERROR_MASK		0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS		0x7c
 118
 119#define QUP_READ_LIMIT			256
 120#define SET_BIT				0x1
 121#define RESET_BIT			0x0
 122#define ONE_BYTE			0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN			SZ_64K
 127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN			2
 138
 139/* Default values. Use these if FW query fails */
 140#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
 141#define DEFAULT_SRC_CLK 20000000
 142
 143/*
 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 145 * data transfer
 146 */
 147#define QUP_MAX_TAGS_LEN		4
 148/* Max data length for each DATARD tags */
 149#define RECV_MAX_DATA_LEN		254
 150/* TAG length for DATA READ in RX FIFO  */
 151#define READ_RX_TAGS_LEN		2
 152
 153static unsigned int scl_freq;
 154module_param_named(scl_freq, scl_freq, uint, 0444);
 155MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 156
 157/*
 158 * count: no of blocks
 159 * pos: current block number
 160 * tx_tag_len: tx tag length for current block
 161 * rx_tag_len: rx tag length for current block
 162 * data_len: remaining data length for current message
 163 * cur_blk_len: data length for current block
 164 * total_tx_len: total tx length including tag bytes for current QUP transfer
 165 * total_rx_len: total rx length including tag bytes for current QUP transfer
 166 * tx_fifo_data_pos: current byte number in TX FIFO word
 167 * tx_fifo_free: number of free bytes in current QUP block write.
 168 * rx_fifo_data_pos: current byte number in RX FIFO word
 169 * fifo_available: number of available bytes in RX FIFO for current
 170 *		   QUP block read
 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 172 *		 to TX FIFO will be appended in this data and will be written to
 173 *		 TX FIFO when all the 4 bytes are available.
 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 175 *		 contains the 4 bytes of RX data.
 176 * cur_data: pointer to tell cur data position for current message
 177 * cur_tx_tags: pointer to tell cur position in tags
 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 179 * send_last_word: for tx FIFO, last word send is pending in current block
 180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 184 * tags: contains tx tag bytes for current QUP transfer
 185 */
 186struct qup_i2c_block {
 187	int		count;
 188	int		pos;
 189	int		tx_tag_len;
 190	int		rx_tag_len;
 191	int		data_len;
 192	int		cur_blk_len;
 193	int		total_tx_len;
 194	int		total_rx_len;
 195	int		tx_fifo_data_pos;
 196	int		tx_fifo_free;
 197	int		rx_fifo_data_pos;
 198	int		fifo_available;
 199	u32		tx_fifo_data;
 200	u32		rx_fifo_data;
 201	u8		*cur_data;
 202	u8		*cur_tx_tags;
 203	bool		tx_tags_sent;
 204	bool		send_last_word;
 205	bool		rx_tags_fetched;
 206	bool		rx_bytes_read;
 207	bool		is_tx_blk_mode;
 208	bool		is_rx_blk_mode;
 209	u8		tags[6];
 210};
 211
 212struct qup_i2c_tag {
 213	u8 *start;
 214	dma_addr_t addr;
 215};
 216
 217struct qup_i2c_bam {
 218	struct	qup_i2c_tag tag;
 219	struct	dma_chan *dma;
 220	struct	scatterlist *sg;
 221	unsigned int sg_cnt;
 222};
 223
 224struct qup_i2c_dev {
 225	struct device		*dev;
 226	void __iomem		*base;
 227	int			irq;
 228	struct clk		*clk;
 229	struct clk		*pclk;
 230	struct i2c_adapter	adap;
 231
 232	int			clk_ctl;
 233	int			out_fifo_sz;
 234	int			in_fifo_sz;
 235	int			out_blk_sz;
 236	int			in_blk_sz;
 237
 238	int			blk_xfer_limit;
 239	unsigned long		one_byte_t;
 240	unsigned long		xfer_timeout;
 241	struct qup_i2c_block	blk;
 242
 243	struct i2c_msg		*msg;
 244	/* Current posion in user message buffer */
 245	int			pos;
 246	/* I2C protocol errors */
 247	u32			bus_err;
 248	/* QUP core errors */
 249	u32			qup_err;
 250
 251	/* To check if this is the last msg */
 252	bool			is_last;
 253	bool			is_smbus_read;
 254
 255	/* To configure when bus is in run state */
 256	u32			config_run;
 257
 258	/* dma parameters */
 259	bool			is_dma;
 260	/* To check if the current transfer is using DMA */
 261	bool			use_dma;
 262	unsigned int		max_xfer_sg_len;
 263	unsigned int		tag_buf_pos;
 264	/* The threshold length above which block mode will be used */
 265	unsigned int		blk_mode_threshold;
 266	struct			dma_pool *dpool;
 267	struct			qup_i2c_tag start_tag;
 268	struct			qup_i2c_bam brx;
 269	struct			qup_i2c_bam btx;
 270
 271	struct completion	xfer;
 272	/* function to write data in tx fifo */
 273	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 274	/* function to read data from rx fifo */
 275	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 276	/* function to write tags in tx fifo for i2c read transfer */
 277	void (*write_rx_tags)(struct qup_i2c_dev *qup);
 278};
 279
 280static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 281{
 282	struct qup_i2c_dev *qup = dev;
 283	struct qup_i2c_block *blk = &qup->blk;
 284	u32 bus_err;
 285	u32 qup_err;
 286	u32 opflags;
 287
 288	bus_err = readl(qup->base + QUP_I2C_STATUS);
 289	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 290	opflags = readl(qup->base + QUP_OPERATIONAL);
 291
 292	if (!qup->msg) {
 293		/* Clear Error interrupt */
 294		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 295		return IRQ_HANDLED;
 296	}
 297
 298	bus_err &= I2C_STATUS_ERROR_MASK;
 299	qup_err &= QUP_STATUS_ERROR_FLAGS;
 300
 301	/* Clear the error bits in QUP_ERROR_FLAGS */
 302	if (qup_err)
 303		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 304
 305	/* Clear the error bits in QUP_I2C_STATUS */
 306	if (bus_err)
 307		writel(bus_err, qup->base + QUP_I2C_STATUS);
 308
 309	/*
 310	 * Check for BAM mode and returns if already error has come for current
 311	 * transfer. In Error case, sometimes, QUP generates more than one
 312	 * interrupt.
 313	 */
 314	if (qup->use_dma && (qup->qup_err || qup->bus_err))
 315		return IRQ_HANDLED;
 316
 317	/* Reset the QUP State in case of error */
 318	if (qup_err || bus_err) {
 319		/*
 320		 * Don’t reset the QUP state in case of BAM mode. The BAM
 321		 * flush operation needs to be scheduled in transfer function
 322		 * which will clear the remaining schedule descriptors in BAM
 323		 * HW FIFO and generates the BAM interrupt.
 324		 */
 325		if (!qup->use_dma)
 326			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 327		goto done;
 328	}
 329
 330	if (opflags & QUP_OUT_SVC_FLAG) {
 331		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 332
 333		if (opflags & OUT_BLOCK_WRITE_REQ) {
 334			blk->tx_fifo_free += qup->out_blk_sz;
 335			if (qup->msg->flags & I2C_M_RD)
 336				qup->write_rx_tags(qup);
 337			else
 338				qup->write_tx_fifo(qup);
 339		}
 340	}
 341
 342	if (opflags & QUP_IN_SVC_FLAG) {
 343		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 344
 345		if (!blk->is_rx_blk_mode) {
 346			blk->fifo_available += qup->in_fifo_sz;
 347			qup->read_rx_fifo(qup);
 348		} else if (opflags & IN_BLOCK_READ_REQ) {
 349			blk->fifo_available += qup->in_blk_sz;
 350			qup->read_rx_fifo(qup);
 351		}
 352	}
 353
 354	if (qup->msg->flags & I2C_M_RD) {
 355		if (!blk->rx_bytes_read)
 356			return IRQ_HANDLED;
 357	} else {
 358		/*
 359		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 360		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 361		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 362		 * of interrupt for write message in FIFO mode is
 363		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 364		 */
 365		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 366			return IRQ_HANDLED;
 367	}
 368
 369done:
 370	qup->qup_err = qup_err;
 371	qup->bus_err = bus_err;
 372	complete(&qup->xfer);
 373	return IRQ_HANDLED;
 374}
 375
 376static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 377				   u32 req_state, u32 req_mask)
 378{
 379	int retries = 1;
 380	u32 state;
 381
 382	/*
 383	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 384	 * cycles. So retry once after a 1uS delay.
 385	 */
 386	do {
 387		state = readl(qup->base + QUP_STATE);
 388
 389		if (state & QUP_STATE_VALID &&
 390		    (state & req_mask) == req_state)
 391			return 0;
 392
 393		udelay(1);
 394	} while (retries--);
 395
 396	return -ETIMEDOUT;
 397}
 398
 399static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 400{
 401	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 402}
 403
 404static void qup_i2c_flush(struct qup_i2c_dev *qup)
 405{
 406	u32 val = readl(qup->base + QUP_STATE);
 407
 408	val |= QUP_I2C_FLUSH;
 409	writel(val, qup->base + QUP_STATE);
 410}
 411
 412static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 413{
 414	return qup_i2c_poll_state_mask(qup, 0, 0);
 415}
 416
 417static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 418{
 419	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 420}
 421
 422static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 423{
 424	if (qup_i2c_poll_state_valid(qup) != 0)
 425		return -EIO;
 426
 427	writel(state, qup->base + QUP_STATE);
 428
 429	if (qup_i2c_poll_state(qup, state) != 0)
 430		return -EIO;
 431	return 0;
 432}
 433
 434/* Check if I2C bus returns to IDLE state */
 435static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 436{
 437	unsigned long timeout;
 438	u32 status;
 439	int ret = 0;
 440
 441	timeout = jiffies + len * 4;
 442	for (;;) {
 443		status = readl(qup->base + QUP_I2C_STATUS);
 444		if (!(status & I2C_STATUS_BUS_ACTIVE))
 445			break;
 446
 447		if (time_after(jiffies, timeout))
 448			ret = -ETIMEDOUT;
 449
 450		usleep_range(len, len * 2);
 451	}
 452
 453	return ret;
 454}
 455
 456static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 457{
 458	struct qup_i2c_block *blk = &qup->blk;
 459	struct i2c_msg *msg = qup->msg;
 460	u32 addr = i2c_8bit_addr_from_msg(msg);
 461	u32 qup_tag;
 462	int idx;
 463	u32 val;
 464
 465	if (qup->pos == 0) {
 466		val = QUP_TAG_START | addr;
 467		idx = 1;
 468		blk->tx_fifo_free--;
 469	} else {
 470		val = 0;
 471		idx = 0;
 472	}
 473
 474	while (blk->tx_fifo_free && qup->pos < msg->len) {
 475		if (qup->pos == msg->len - 1)
 476			qup_tag = QUP_TAG_STOP;
 477		else
 478			qup_tag = QUP_TAG_DATA;
 479
 480		if (idx & 1)
 481			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 482		else
 483			val = qup_tag | msg->buf[qup->pos];
 484
 485		/* Write out the pair and the last odd value */
 486		if (idx & 1 || qup->pos == msg->len - 1)
 487			writel(val, qup->base + QUP_OUT_FIFO_BASE);
 488
 489		qup->pos++;
 490		idx++;
 491		blk->tx_fifo_free--;
 492	}
 493}
 494
 495static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 496				 struct i2c_msg *msg)
 497{
 498	qup->blk.pos = 0;
 499	qup->blk.data_len = msg->len;
 500	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 501}
 502
 503static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 504{
 505	int data_len;
 506
 507	if (qup->blk.data_len > qup->blk_xfer_limit)
 508		data_len = qup->blk_xfer_limit;
 509	else
 510		data_len = qup->blk.data_len;
 511
 512	return data_len;
 513}
 514
 515static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 516{
 517	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 518}
 519
 520static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 521			struct i2c_msg *msg)
 522{
 523	int len = 0;
 524
 525	if (qup->is_smbus_read) {
 526		tags[len++] = QUP_TAG_V2_DATARD_STOP;
 527		tags[len++] = qup_i2c_get_data_len(qup);
 528	} else {
 529		tags[len++] = QUP_TAG_V2_START;
 530		tags[len++] = addr & 0xff;
 531
 532		if (msg->flags & I2C_M_TEN)
 533			tags[len++] = addr >> 8;
 534
 535		tags[len++] = QUP_TAG_V2_DATARD;
 536		/* Read 1 byte indicating the length of the SMBus message */
 537		tags[len++] = 1;
 538	}
 539	return len;
 540}
 541
 542static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 543			    struct i2c_msg *msg)
 544{
 545	u16 addr = i2c_8bit_addr_from_msg(msg);
 546	int len = 0;
 547	int data_len;
 548
 549	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 550
 551	/* Handle tags for SMBus block read */
 552	if (qup_i2c_check_msg_len(msg))
 553		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 554
 555	if (qup->blk.pos == 0) {
 556		tags[len++] = QUP_TAG_V2_START;
 557		tags[len++] = addr & 0xff;
 558
 559		if (msg->flags & I2C_M_TEN)
 560			tags[len++] = addr >> 8;
 561	}
 562
 563	/* Send _STOP commands for the last block */
 564	if (last) {
 565		if (msg->flags & I2C_M_RD)
 566			tags[len++] = QUP_TAG_V2_DATARD_STOP;
 567		else
 568			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 569	} else {
 570		if (msg->flags & I2C_M_RD)
 571			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 572				      QUP_TAG_V2_DATARD_NACK :
 573				      QUP_TAG_V2_DATARD;
 574		else
 575			tags[len++] = QUP_TAG_V2_DATAWR;
 576	}
 577
 578	data_len = qup_i2c_get_data_len(qup);
 579
 580	/* 0 implies 256 bytes */
 581	if (data_len == QUP_READ_LIMIT)
 582		tags[len++] = 0;
 583	else
 584		tags[len++] = data_len;
 585
 586	return len;
 587}
 588
 589
 590static void qup_i2c_bam_cb(void *data)
 591{
 592	struct qup_i2c_dev *qup = data;
 593
 594	complete(&qup->xfer);
 595}
 596
 597static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 598			  unsigned int buflen, struct qup_i2c_dev *qup,
 599			  int dir)
 600{
 601	int ret;
 602
 603	sg_set_buf(sg, buf, buflen);
 604	ret = dma_map_sg(qup->dev, sg, 1, dir);
 605	if (!ret)
 606		return -EINVAL;
 607
 608	return 0;
 609}
 610
 611static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 612{
 613	if (qup->btx.dma)
 614		dma_release_channel(qup->btx.dma);
 615	if (qup->brx.dma)
 616		dma_release_channel(qup->brx.dma);
 617	qup->btx.dma = NULL;
 618	qup->brx.dma = NULL;
 619}
 620
 621static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 622{
 623	int err;
 624
 625	if (!qup->btx.dma) {
 626		qup->btx.dma = dma_request_chan(qup->dev, "tx");
 627		if (IS_ERR(qup->btx.dma)) {
 628			err = PTR_ERR(qup->btx.dma);
 629			qup->btx.dma = NULL;
 630			dev_err(qup->dev, "\n tx channel not available");
 631			return err;
 632		}
 633	}
 634
 635	if (!qup->brx.dma) {
 636		qup->brx.dma = dma_request_chan(qup->dev, "rx");
 637		if (IS_ERR(qup->brx.dma)) {
 638			dev_err(qup->dev, "\n rx channel not available");
 639			err = PTR_ERR(qup->brx.dma);
 640			qup->brx.dma = NULL;
 641			qup_i2c_rel_dma(qup);
 642			return err;
 643		}
 644	}
 645	return 0;
 646}
 647
 648static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 649{
 650	int ret = 0, limit = QUP_READ_LIMIT;
 651	u32 len = 0, blocks, rem;
 652	u32 i = 0, tlen, tx_len = 0;
 653	u8 *tags;
 654
 655	qup->blk_xfer_limit = QUP_READ_LIMIT;
 656	qup_i2c_set_blk_data(qup, msg);
 657
 658	blocks = qup->blk.count;
 659	rem = msg->len - (blocks - 1) * limit;
 660
 661	if (msg->flags & I2C_M_RD) {
 662		while (qup->blk.pos < blocks) {
 663			tlen = (i == (blocks - 1)) ? rem : limit;
 664			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 665			len += qup_i2c_set_tags(tags, qup, msg);
 666			qup->blk.data_len -= tlen;
 667
 668			/* scratch buf to read the start and len tags */
 669			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 670					     &qup->brx.tag.start[0],
 671					     2, qup, DMA_FROM_DEVICE);
 672
 673			if (ret)
 674				return ret;
 675
 676			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 677					     &msg->buf[limit * i],
 678					     tlen, qup,
 679					     DMA_FROM_DEVICE);
 680			if (ret)
 681				return ret;
 682
 683			i++;
 684			qup->blk.pos = i;
 685		}
 686		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 687				     &qup->start_tag.start[qup->tag_buf_pos],
 688				     len, qup, DMA_TO_DEVICE);
 689		if (ret)
 690			return ret;
 691
 692		qup->tag_buf_pos += len;
 693	} else {
 694		while (qup->blk.pos < blocks) {
 695			tlen = (i == (blocks - 1)) ? rem : limit;
 696			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 697			len = qup_i2c_set_tags(tags, qup, msg);
 698			qup->blk.data_len -= tlen;
 699
 700			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 701					     tags, len,
 702					     qup, DMA_TO_DEVICE);
 703			if (ret)
 704				return ret;
 705
 706			tx_len += len;
 707			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 708					     &msg->buf[limit * i],
 709					     tlen, qup, DMA_TO_DEVICE);
 710			if (ret)
 711				return ret;
 712			i++;
 713			qup->blk.pos = i;
 714		}
 715
 716		qup->tag_buf_pos += tx_len;
 717	}
 718
 719	return 0;
 720}
 721
 722static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 723{
 724	struct dma_async_tx_descriptor *txd, *rxd = NULL;
 725	int ret = 0;
 726	dma_cookie_t cookie_rx, cookie_tx;
 727	u32 len = 0;
 728	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 729
 730	/* schedule the EOT and FLUSH I2C tags */
 731	len = 1;
 732	if (rx_cnt) {
 733		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 734		len++;
 735
 736		/* scratch buf to read the BAM EOT FLUSH tags */
 737		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 738				     &qup->brx.tag.start[0],
 739				     1, qup, DMA_FROM_DEVICE);
 740		if (ret)
 741			return ret;
 742	}
 743
 744	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 745	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 746			     len, qup, DMA_TO_DEVICE);
 747	if (ret)
 748		return ret;
 749
 750	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 751				      DMA_MEM_TO_DEV,
 752				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 753	if (!txd) {
 754		dev_err(qup->dev, "failed to get tx desc\n");
 755		ret = -EINVAL;
 756		goto desc_err;
 757	}
 758
 759	if (!rx_cnt) {
 760		txd->callback = qup_i2c_bam_cb;
 761		txd->callback_param = qup;
 762	}
 763
 764	cookie_tx = dmaengine_submit(txd);
 765	if (dma_submit_error(cookie_tx)) {
 766		ret = -EINVAL;
 767		goto desc_err;
 768	}
 769
 770	dma_async_issue_pending(qup->btx.dma);
 771
 772	if (rx_cnt) {
 773		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 774					      rx_cnt, DMA_DEV_TO_MEM,
 775					      DMA_PREP_INTERRUPT);
 776		if (!rxd) {
 777			dev_err(qup->dev, "failed to get rx desc\n");
 778			ret = -EINVAL;
 779
 780			/* abort TX descriptors */
 781			dmaengine_terminate_sync(qup->btx.dma);
 782			goto desc_err;
 783		}
 784
 785		rxd->callback = qup_i2c_bam_cb;
 786		rxd->callback_param = qup;
 787		cookie_rx = dmaengine_submit(rxd);
 788		if (dma_submit_error(cookie_rx)) {
 789			ret = -EINVAL;
 790			goto desc_err;
 791		}
 792
 793		dma_async_issue_pending(qup->brx.dma);
 794	}
 795
 796	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
 797		dev_err(qup->dev, "normal trans timed out\n");
 798		ret = -ETIMEDOUT;
 799	}
 800
 801	if (ret || qup->bus_err || qup->qup_err) {
 802		reinit_completion(&qup->xfer);
 803
 804		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 805		if (ret) {
 806			dev_err(qup->dev, "change to run state timed out");
 807			goto desc_err;
 808		}
 809
 810		qup_i2c_flush(qup);
 811
 812		/* wait for remaining interrupts to occur */
 813		if (!wait_for_completion_timeout(&qup->xfer, HZ))
 814			dev_err(qup->dev, "flush timed out\n");
 815
 816		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 817	}
 818
 819desc_err:
 820	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 821
 822	if (rx_cnt)
 823		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 824			     DMA_FROM_DEVICE);
 825
 826	return ret;
 827}
 828
 829static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 830{
 831	qup->btx.sg_cnt = 0;
 832	qup->brx.sg_cnt = 0;
 833	qup->tag_buf_pos = 0;
 834}
 835
 836static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 837			    int num)
 838{
 839	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 840	int ret = 0;
 841	int idx = 0;
 842
 843	enable_irq(qup->irq);
 844	ret = qup_i2c_req_dma(qup);
 845
 846	if (ret)
 847		goto out;
 848
 849	writel(0, qup->base + QUP_MX_INPUT_CNT);
 850	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 851
 852	/* set BAM mode */
 853	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 854
 855	/* mask fifo irqs */
 856	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 857
 858	/* set RUN STATE */
 859	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 860	if (ret)
 861		goto out;
 862
 863	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 864	qup_i2c_bam_clear_tag_buffers(qup);
 865
 866	for (idx = 0; idx < num; idx++) {
 867		qup->msg = msg + idx;
 868		qup->is_last = idx == (num - 1);
 869
 870		ret = qup_i2c_bam_make_desc(qup, qup->msg);
 871		if (ret)
 872			break;
 873
 874		/*
 875		 * Make DMA descriptor and schedule the BAM transfer if its
 876		 * already crossed the maximum length. Since the memory for all
 877		 * tags buffers have been taken for 2 maximum possible
 878		 * transfers length so it will never cross the buffer actual
 879		 * length.
 880		 */
 881		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 882		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 883		    qup->is_last) {
 884			ret = qup_i2c_bam_schedule_desc(qup);
 885			if (ret)
 886				break;
 887
 888			qup_i2c_bam_clear_tag_buffers(qup);
 889		}
 890	}
 891
 892out:
 893	disable_irq(qup->irq);
 894
 895	qup->msg = NULL;
 896	return ret;
 897}
 898
 899static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 900				     struct i2c_msg *msg)
 901{
 902	unsigned long left;
 903	int ret = 0;
 904
 905	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 906	if (!left) {
 907		writel(1, qup->base + QUP_SW_RESET);
 908		ret = -ETIMEDOUT;
 909	}
 910
 911	if (qup->bus_err || qup->qup_err)
 912		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 913
 914	return ret;
 915}
 916
 917static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 918{
 919	struct qup_i2c_block *blk = &qup->blk;
 920	struct i2c_msg *msg = qup->msg;
 921	u32 val = 0;
 922	int idx = 0;
 923
 924	while (blk->fifo_available && qup->pos < msg->len) {
 925		if ((idx & 1) == 0) {
 926			/* Reading 2 words at time */
 927			val = readl(qup->base + QUP_IN_FIFO_BASE);
 928			msg->buf[qup->pos++] = val & 0xFF;
 929		} else {
 930			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 931		}
 932		idx++;
 933		blk->fifo_available--;
 934	}
 935
 936	if (qup->pos == msg->len)
 937		blk->rx_bytes_read = true;
 938}
 939
 940static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 941{
 942	struct i2c_msg *msg = qup->msg;
 943	u32 addr, len, val;
 944
 945	addr = i2c_8bit_addr_from_msg(msg);
 946
 947	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 948	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 949
 950	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 951	writel(val, qup->base + QUP_OUT_FIFO_BASE);
 952}
 953
 954static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 955{
 956	struct qup_i2c_block *blk = &qup->blk;
 957	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 958	u32 io_mode = QUP_REPACK_EN;
 959
 960	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
 961	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
 962
 963	if (blk->is_tx_blk_mode) {
 964		io_mode |= QUP_OUTPUT_BLK_MODE;
 965		writel(0, qup->base + QUP_MX_WRITE_CNT);
 966		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 967	} else {
 968		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 969		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 970	}
 971
 972	if (blk->total_rx_len) {
 973		if (blk->is_rx_blk_mode) {
 974			io_mode |= QUP_INPUT_BLK_MODE;
 975			writel(0, qup->base + QUP_MX_READ_CNT);
 976			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 977		} else {
 978			writel(0, qup->base + QUP_MX_INPUT_CNT);
 979			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 980		}
 981	} else {
 982		qup_config |= QUP_NO_INPUT;
 983	}
 984
 985	writel(qup_config, qup->base + QUP_CONFIG);
 986	writel(io_mode, qup->base + QUP_IO_MODE);
 987}
 988
 989static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 990{
 991	blk->tx_fifo_free = 0;
 992	blk->fifo_available = 0;
 993	blk->rx_bytes_read = false;
 994}
 995
 996static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
 997{
 998	struct qup_i2c_block *blk = &qup->blk;
 999	int ret;
1000
1001	qup_i2c_clear_blk_v1(blk);
1002	qup_i2c_conf_v1(qup);
1003	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1004	if (ret)
1005		return ret;
1006
1007	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1008
1009	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1010	if (ret)
1011		return ret;
1012
1013	reinit_completion(&qup->xfer);
1014	enable_irq(qup->irq);
1015	if (!blk->is_tx_blk_mode) {
1016		blk->tx_fifo_free = qup->out_fifo_sz;
1017
1018		if (is_rx)
1019			qup_i2c_write_rx_tags_v1(qup);
1020		else
1021			qup_i2c_write_tx_fifo_v1(qup);
1022	}
1023
1024	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1025	if (ret)
1026		goto err;
1027
1028	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1029	if (ret)
1030		goto err;
1031
1032	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1033
1034err:
1035	disable_irq(qup->irq);
1036	return ret;
1037}
1038
1039static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1040{
1041	struct i2c_msg *msg = qup->msg;
1042	struct qup_i2c_block *blk = &qup->blk;
1043
1044	qup->pos = 0;
1045	blk->total_tx_len = msg->len + 1;
1046	blk->total_rx_len = 0;
1047
1048	return qup_i2c_conf_xfer_v1(qup, false);
1049}
1050
1051static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1052{
1053	struct qup_i2c_block *blk = &qup->blk;
1054
1055	qup->pos = 0;
1056	blk->total_tx_len = 2;
1057	blk->total_rx_len = qup->msg->len;
1058
1059	return qup_i2c_conf_xfer_v1(qup, true);
1060}
1061
1062static int qup_i2c_xfer(struct i2c_adapter *adap,
1063			struct i2c_msg msgs[],
1064			int num)
1065{
1066	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1067	int ret, idx;
1068
1069	ret = pm_runtime_get_sync(qup->dev);
1070	if (ret < 0)
1071		goto out;
1072
1073	qup->bus_err = 0;
1074	qup->qup_err = 0;
1075
1076	writel(1, qup->base + QUP_SW_RESET);
1077	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1078	if (ret)
1079		goto out;
1080
1081	/* Configure QUP as I2C mini core */
1082	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1083
1084	for (idx = 0; idx < num; idx++) {
1085		if (qup_i2c_poll_state_i2c_master(qup)) {
1086			ret = -EIO;
1087			goto out;
1088		}
1089
1090		if (qup_i2c_check_msg_len(&msgs[idx])) {
1091			ret = -EINVAL;
1092			goto out;
1093		}
1094
1095		qup->msg = &msgs[idx];
1096		if (msgs[idx].flags & I2C_M_RD)
1097			ret = qup_i2c_read_one(qup);
1098		else
1099			ret = qup_i2c_write_one(qup);
1100
1101		if (ret)
1102			break;
1103
1104		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1105		if (ret)
1106			break;
1107	}
1108
1109	if (ret == 0)
1110		ret = num;
1111out:
1112
1113	pm_runtime_mark_last_busy(qup->dev);
1114	pm_runtime_put_autosuspend(qup->dev);
1115
1116	return ret;
1117}
1118
1119/*
1120 * Configure registers related with reconfiguration during run and call it
1121 * before each i2c sub transfer.
1122 */
1123static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1124{
1125	struct qup_i2c_block *blk = &qup->blk;
1126	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1127
1128	if (blk->is_tx_blk_mode)
1129		writel(qup->config_run | blk->total_tx_len,
1130		       qup->base + QUP_MX_OUTPUT_CNT);
1131	else
1132		writel(qup->config_run | blk->total_tx_len,
1133		       qup->base + QUP_MX_WRITE_CNT);
1134
1135	if (blk->total_rx_len) {
1136		if (blk->is_rx_blk_mode)
1137			writel(qup->config_run | blk->total_rx_len,
1138			       qup->base + QUP_MX_INPUT_CNT);
1139		else
1140			writel(qup->config_run | blk->total_rx_len,
1141			       qup->base + QUP_MX_READ_CNT);
1142	} else {
1143		qup_config |= QUP_NO_INPUT;
1144	}
1145
1146	writel(qup_config, qup->base + QUP_CONFIG);
1147}
1148
1149/*
1150 * Configure registers related with transfer mode (FIFO/Block)
1151 * before starting of i2c transfer. It will be called only once in
1152 * QUP RESET state.
1153 */
1154static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1155{
1156	struct qup_i2c_block *blk = &qup->blk;
1157	u32 io_mode = QUP_REPACK_EN;
1158
1159	if (blk->is_tx_blk_mode) {
1160		io_mode |= QUP_OUTPUT_BLK_MODE;
1161		writel(0, qup->base + QUP_MX_WRITE_CNT);
1162	} else {
1163		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1164	}
1165
1166	if (blk->is_rx_blk_mode) {
1167		io_mode |= QUP_INPUT_BLK_MODE;
1168		writel(0, qup->base + QUP_MX_READ_CNT);
1169	} else {
1170		writel(0, qup->base + QUP_MX_INPUT_CNT);
1171	}
1172
1173	writel(io_mode, qup->base + QUP_IO_MODE);
1174}
1175
1176/* Clear required variables before starting of any QUP v2 sub transfer. */
1177static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1178{
1179	blk->send_last_word = false;
1180	blk->tx_tags_sent = false;
1181	blk->tx_fifo_data = 0;
1182	blk->tx_fifo_data_pos = 0;
1183	blk->tx_fifo_free = 0;
1184
1185	blk->rx_tags_fetched = false;
1186	blk->rx_bytes_read = false;
1187	blk->rx_fifo_data = 0;
1188	blk->rx_fifo_data_pos = 0;
1189	blk->fifo_available = 0;
1190}
1191
1192/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1193static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1194{
1195	struct qup_i2c_block *blk = &qup->blk;
1196	int j;
1197
1198	for (j = blk->rx_fifo_data_pos;
1199	     blk->cur_blk_len && blk->fifo_available;
1200	     blk->cur_blk_len--, blk->fifo_available--) {
1201		if (j == 0)
1202			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1203
1204		*(blk->cur_data++) = blk->rx_fifo_data;
1205		blk->rx_fifo_data >>= 8;
1206
1207		if (j == 3)
1208			j = 0;
1209		else
1210			j++;
1211	}
1212
1213	blk->rx_fifo_data_pos = j;
1214}
1215
1216/* Receive tags for read message in QUP v2 i2c transfer. */
1217static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1218{
1219	struct qup_i2c_block *blk = &qup->blk;
1220
1221	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1222	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1223	blk->rx_fifo_data_pos = blk->rx_tag_len;
1224	blk->fifo_available -= blk->rx_tag_len;
1225}
1226
1227/*
1228 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1229 * preceded by received data bytes so
1230 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1231 *    all tag bytes and discard that.
1232 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1233 *    set rx_bytes_read to true.
1234 */
1235static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1236{
1237	struct qup_i2c_block *blk = &qup->blk;
1238
1239	if (!blk->rx_tags_fetched) {
1240		qup_i2c_recv_tags(qup);
1241		blk->rx_tags_fetched = true;
1242	}
1243
1244	qup_i2c_recv_data(qup);
1245	if (!blk->cur_blk_len)
1246		blk->rx_bytes_read = true;
1247}
1248
1249/*
1250 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1251 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1252 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1253 */
1254static void
1255qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1256{
1257	struct qup_i2c_block *blk = &qup->blk;
1258	unsigned int j;
1259
1260	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1261	     (*len)--, blk->tx_fifo_free--) {
1262		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1263		if (j == 3) {
1264			writel(blk->tx_fifo_data,
1265			       qup->base + QUP_OUT_FIFO_BASE);
1266			blk->tx_fifo_data = 0x0;
1267			j = 0;
1268		} else {
1269			j++;
1270		}
1271	}
1272
1273	blk->tx_fifo_data_pos = j;
1274}
1275
1276/* Transfer tags for read message in QUP v2 i2c transfer. */
1277static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1278{
1279	struct qup_i2c_block *blk = &qup->blk;
1280
1281	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1282	if (blk->tx_fifo_data_pos)
1283		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1284}
1285
1286/*
1287 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1288 * need to be written and QUP write tags can have maximum 256 data length, so
1289 *
1290 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1291 *    tags to TX FIFO and set tx_tags_sent to true.
1292 * 2. Check if send_last_word is true. It will be set when last few data bytes
1293 *    (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1294 *    space. All this data bytes are available in tx_fifo_data so write this
1295 *    in FIFO.
1296 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1297 *    then more data is pending otherwise following 3 cases can be possible
1298 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1299 *       have been written in TX FIFO so nothing else is required.
1300 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1301 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1302 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1303 *       will be always greater than or equal to 4 bytes.
1304 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1305 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1306 *       FIFO full so make send_last_word true.
1307 */
1308static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1309{
1310	struct qup_i2c_block *blk = &qup->blk;
1311
1312	if (!blk->tx_tags_sent) {
1313		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1314				       &blk->tx_tag_len);
1315		blk->tx_tags_sent = true;
1316	}
1317
1318	if (blk->send_last_word)
1319		goto send_last_word;
1320
1321	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1322	if (!blk->cur_blk_len) {
1323		if (!blk->tx_fifo_data_pos)
1324			return;
1325
1326		if (blk->tx_fifo_free)
1327			goto send_last_word;
1328
1329		blk->send_last_word = true;
1330	}
1331
1332	return;
1333
1334send_last_word:
1335	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1336}
1337
1338/*
1339 * Main transfer function which read or write i2c data.
1340 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1341 * transfers can be scheduled.
1342 */
1343static int
1344qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1345		     bool change_pause_state)
1346{
1347	struct qup_i2c_block *blk = &qup->blk;
1348	struct i2c_msg *msg = qup->msg;
1349	int ret;
1350
1351	/*
1352	 * Check if its SMBus Block read for which the top level read will be
1353	 * done into 2 QUP reads. One with message length 1 while other one is
1354	 * with actual length.
1355	 */
1356	if (qup_i2c_check_msg_len(msg)) {
1357		if (qup->is_smbus_read) {
1358			/*
1359			 * If the message length is already read in
1360			 * the first byte of the buffer, account for
1361			 * that by setting the offset
1362			 */
1363			blk->cur_data += 1;
1364			is_first = false;
1365		} else {
1366			change_pause_state = false;
1367		}
1368	}
1369
1370	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1371
1372	qup_i2c_clear_blk_v2(blk);
1373	qup_i2c_conf_count_v2(qup);
1374
1375	/* If it is first sub transfer, then configure i2c bus clocks */
1376	if (is_first) {
1377		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1378		if (ret)
1379			return ret;
1380
1381		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1382
1383		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1384		if (ret)
1385			return ret;
1386	}
1387
1388	reinit_completion(&qup->xfer);
1389	enable_irq(qup->irq);
1390	/*
1391	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1392	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1393	 */
1394	if (!blk->is_tx_blk_mode) {
1395		blk->tx_fifo_free = qup->out_fifo_sz;
1396
1397		if (is_rx)
1398			qup_i2c_write_rx_tags_v2(qup);
1399		else
1400			qup_i2c_write_tx_fifo_v2(qup);
1401	}
1402
1403	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1404	if (ret)
1405		goto err;
1406
1407	ret = qup_i2c_wait_for_complete(qup, msg);
1408	if (ret)
1409		goto err;
1410
1411	/* Move to pause state for all the transfers, except last one */
1412	if (change_pause_state) {
1413		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1414		if (ret)
1415			goto err;
1416	}
1417
1418err:
1419	disable_irq(qup->irq);
1420	return ret;
1421}
1422
1423/*
1424 * Transfer one read/write message in i2c transfer. It splits the message into
1425 * multiple of blk_xfer_limit data length blocks and schedule each
1426 * QUP block individually.
1427 */
1428static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1429{
1430	int ret = 0;
1431	unsigned int data_len, i;
1432	struct i2c_msg *msg = qup->msg;
1433	struct qup_i2c_block *blk = &qup->blk;
1434	u8 *msg_buf = msg->buf;
1435
1436	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1437	qup_i2c_set_blk_data(qup, msg);
1438
1439	for (i = 0; i < blk->count; i++) {
1440		data_len =  qup_i2c_get_data_len(qup);
1441		blk->pos = i;
1442		blk->cur_tx_tags = blk->tags;
1443		blk->cur_blk_len = data_len;
1444		blk->tx_tag_len =
1445			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1446
1447		blk->cur_data = msg_buf;
1448
1449		if (is_rx) {
1450			blk->total_tx_len = blk->tx_tag_len;
1451			blk->rx_tag_len = 2;
1452			blk->total_rx_len = blk->rx_tag_len + data_len;
1453		} else {
1454			blk->total_tx_len = blk->tx_tag_len + data_len;
1455			blk->total_rx_len = 0;
1456		}
1457
1458		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1459					   !qup->is_last || i < blk->count - 1);
1460		if (ret)
1461			return ret;
1462
1463		/* Handle SMBus block read length */
1464		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1465		    !qup->is_smbus_read) {
1466			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1467				return -EPROTO;
1468
1469			msg->len = msg->buf[0];
1470			qup->is_smbus_read = true;
1471			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1472			qup->is_smbus_read = false;
1473			if (ret)
1474				return ret;
1475
1476			msg->len += 1;
1477		}
1478
1479		msg_buf += data_len;
1480		blk->data_len -= qup->blk_xfer_limit;
1481	}
1482
1483	return ret;
1484}
1485
1486/*
1487 * QUP v2 supports 3 modes
1488 * Programmed IO using FIFO mode : Less than FIFO size
1489 * Programmed IO using Block mode : Greater than FIFO size
1490 * DMA using BAM : Appropriate for any transaction size but the address should
1491 *		   be DMA applicable
1492 *
1493 * This function determines the mode which will be used for this transfer. An
1494 * i2c transfer contains multiple message. Following are the rules to determine
1495 * the mode used.
1496 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1497 * 2. If complete transfer length is greater than fifo size then use the DMA
1498 *    mode.
1499 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1500 *    for maximum tx and rx length to determine mode.
1501 */
1502static int
1503qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1504			  struct i2c_msg msgs[], int num)
1505{
1506	int idx;
1507	bool no_dma = false;
1508	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1509
1510	/* All i2c_msgs should be transferred using either dma or cpu */
1511	for (idx = 0; idx < num; idx++) {
1512		if (msgs[idx].flags & I2C_M_RD)
1513			max_rx_len = max_t(unsigned int, max_rx_len,
1514					   msgs[idx].len);
1515		else
1516			max_tx_len = max_t(unsigned int, max_tx_len,
1517					   msgs[idx].len);
1518
1519		if (is_vmalloc_addr(msgs[idx].buf))
1520			no_dma = true;
1521
1522		total_len += msgs[idx].len;
1523	}
1524
1525	if (!no_dma && qup->is_dma &&
1526	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1527		qup->use_dma = true;
1528	} else {
1529		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1530			QUP_MAX_TAGS_LEN;
1531		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1532			READ_RX_TAGS_LEN;
1533	}
1534
1535	return 0;
1536}
1537
1538static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1539			   struct i2c_msg msgs[],
1540			   int num)
1541{
1542	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1543	int ret, idx = 0;
1544
1545	qup->bus_err = 0;
1546	qup->qup_err = 0;
1547
1548	ret = pm_runtime_get_sync(qup->dev);
1549	if (ret < 0)
1550		goto out;
1551
1552	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1553	if (ret)
1554		goto out;
1555
1556	writel(1, qup->base + QUP_SW_RESET);
1557	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1558	if (ret)
1559		goto out;
1560
1561	/* Configure QUP as I2C mini core */
1562	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1563	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1564
1565	if (qup_i2c_poll_state_i2c_master(qup)) {
1566		ret = -EIO;
1567		goto out;
1568	}
1569
1570	if (qup->use_dma) {
1571		reinit_completion(&qup->xfer);
1572		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1573		qup->use_dma = false;
1574	} else {
1575		qup_i2c_conf_mode_v2(qup);
1576
1577		for (idx = 0; idx < num; idx++) {
1578			qup->msg = &msgs[idx];
1579			qup->is_last = idx == (num - 1);
1580
1581			ret = qup_i2c_xfer_v2_msg(qup, idx,
1582					!!(msgs[idx].flags & I2C_M_RD));
1583			if (ret)
1584				break;
1585		}
1586		qup->msg = NULL;
1587	}
1588
1589	if (!ret)
1590		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1591
1592	if (!ret)
1593		qup_i2c_change_state(qup, QUP_RESET_STATE);
1594
1595	if (ret == 0)
1596		ret = num;
1597out:
1598	pm_runtime_mark_last_busy(qup->dev);
1599	pm_runtime_put_autosuspend(qup->dev);
1600
1601	return ret;
1602}
1603
1604static u32 qup_i2c_func(struct i2c_adapter *adap)
1605{
1606	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1607}
1608
1609static const struct i2c_algorithm qup_i2c_algo = {
1610	.master_xfer	= qup_i2c_xfer,
1611	.functionality	= qup_i2c_func,
1612};
1613
1614static const struct i2c_algorithm qup_i2c_algo_v2 = {
1615	.master_xfer	= qup_i2c_xfer_v2,
1616	.functionality	= qup_i2c_func,
1617};
1618
1619/*
1620 * The QUP block will issue a NACK and STOP on the bus when reaching
1621 * the end of the read, the length of the read is specified as one byte
1622 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1623 */
1624static const struct i2c_adapter_quirks qup_i2c_quirks = {
1625	.flags = I2C_AQ_NO_ZERO_LEN,
1626	.max_read_len = QUP_READ_LIMIT,
1627};
1628
1629static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1630	.flags = I2C_AQ_NO_ZERO_LEN,
1631};
1632
1633static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1634{
1635	clk_prepare_enable(qup->clk);
1636	clk_prepare_enable(qup->pclk);
1637}
1638
1639static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1640{
1641	u32 config;
1642
1643	qup_i2c_change_state(qup, QUP_RESET_STATE);
1644	clk_disable_unprepare(qup->clk);
1645	config = readl(qup->base + QUP_CONFIG);
1646	config |= QUP_CLOCK_AUTO_GATE;
1647	writel(config, qup->base + QUP_CONFIG);
1648	clk_disable_unprepare(qup->pclk);
1649}
1650
1651static const struct acpi_device_id qup_i2c_acpi_match[] = {
1652	{ "QCOM8010"},
1653	{ },
1654};
1655MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1656
1657static int qup_i2c_probe(struct platform_device *pdev)
1658{
1659	static const int blk_sizes[] = {4, 16, 32};
1660	struct qup_i2c_dev *qup;
1661	unsigned long one_bit_t;
1662	u32 io_mode, hw_ver, size;
1663	int ret, fs_div, hs_div;
1664	u32 src_clk_freq = DEFAULT_SRC_CLK;
1665	u32 clk_freq = DEFAULT_CLK_FREQ;
1666	int blocks;
1667	bool is_qup_v1;
1668
1669	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1670	if (!qup)
1671		return -ENOMEM;
1672
1673	qup->dev = &pdev->dev;
1674	init_completion(&qup->xfer);
1675	platform_set_drvdata(pdev, qup);
1676
1677	if (scl_freq) {
1678		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1679		clk_freq = scl_freq;
1680	} else {
1681		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1682		if (ret) {
1683			dev_notice(qup->dev, "using default clock-frequency %d",
1684				DEFAULT_CLK_FREQ);
1685		}
1686	}
1687
1688	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1689		qup->adap.algo = &qup_i2c_algo;
1690		qup->adap.quirks = &qup_i2c_quirks;
1691		is_qup_v1 = true;
1692	} else {
1693		qup->adap.algo = &qup_i2c_algo_v2;
1694		qup->adap.quirks = &qup_i2c_quirks_v2;
1695		is_qup_v1 = false;
1696		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1697			goto nodma;
1698		else
1699			ret = qup_i2c_req_dma(qup);
1700
1701		if (ret == -EPROBE_DEFER)
1702			goto fail_dma;
1703		else if (ret != 0)
1704			goto nodma;
1705
1706		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1707		blocks = (MX_DMA_BLOCKS << 1) + 1;
1708		qup->btx.sg = devm_kcalloc(&pdev->dev,
1709					   blocks, sizeof(*qup->btx.sg),
1710					   GFP_KERNEL);
1711		if (!qup->btx.sg) {
1712			ret = -ENOMEM;
1713			goto fail_dma;
1714		}
1715		sg_init_table(qup->btx.sg, blocks);
1716
1717		qup->brx.sg = devm_kcalloc(&pdev->dev,
1718					   blocks, sizeof(*qup->brx.sg),
1719					   GFP_KERNEL);
1720		if (!qup->brx.sg) {
1721			ret = -ENOMEM;
1722			goto fail_dma;
1723		}
1724		sg_init_table(qup->brx.sg, blocks);
1725
1726		/* 2 tag bytes for each block + 5 for start, stop tags */
1727		size = blocks * 2 + 5;
1728
1729		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1730						    size, GFP_KERNEL);
1731		if (!qup->start_tag.start) {
1732			ret = -ENOMEM;
1733			goto fail_dma;
1734		}
1735
1736		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1737		if (!qup->brx.tag.start) {
1738			ret = -ENOMEM;
1739			goto fail_dma;
1740		}
1741
1742		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1743		if (!qup->btx.tag.start) {
1744			ret = -ENOMEM;
1745			goto fail_dma;
1746		}
1747		qup->is_dma = true;
1748	}
1749
1750nodma:
1751	/* We support frequencies up to FAST Mode Plus (1MHz) */
1752	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1753		dev_err(qup->dev, "clock frequency not supported %d\n",
1754			clk_freq);
1755		ret = -EINVAL;
1756		goto fail_dma;
1757	}
1758
1759	qup->base = devm_platform_ioremap_resource(pdev, 0);
1760	if (IS_ERR(qup->base)) {
1761		ret = PTR_ERR(qup->base);
1762		goto fail_dma;
1763	}
1764
1765	qup->irq = platform_get_irq(pdev, 0);
1766	if (qup->irq < 0) {
1767		ret = qup->irq;
1768		goto fail_dma;
1769	}
1770
1771	if (has_acpi_companion(qup->dev)) {
1772		ret = device_property_read_u32(qup->dev,
1773				"src-clock-hz", &src_clk_freq);
1774		if (ret) {
1775			dev_notice(qup->dev, "using default src-clock-hz %d",
1776				DEFAULT_SRC_CLK);
1777		}
1778		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1779	} else {
1780		qup->clk = devm_clk_get(qup->dev, "core");
1781		if (IS_ERR(qup->clk)) {
1782			dev_err(qup->dev, "Could not get core clock\n");
1783			ret = PTR_ERR(qup->clk);
1784			goto fail_dma;
1785		}
1786
1787		qup->pclk = devm_clk_get(qup->dev, "iface");
1788		if (IS_ERR(qup->pclk)) {
1789			dev_err(qup->dev, "Could not get iface clock\n");
1790			ret = PTR_ERR(qup->pclk);
1791			goto fail_dma;
1792		}
1793		qup_i2c_enable_clocks(qup);
1794		src_clk_freq = clk_get_rate(qup->clk);
1795	}
1796
1797	/*
1798	 * Bootloaders might leave a pending interrupt on certain QUP's,
1799	 * so we reset the core before registering for interrupts.
1800	 */
1801	writel(1, qup->base + QUP_SW_RESET);
1802	ret = qup_i2c_poll_state_valid(qup);
1803	if (ret)
1804		goto fail;
1805
1806	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1807			       IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1808			       "i2c_qup", qup);
1809	if (ret) {
1810		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1811		goto fail;
1812	}
1813
1814	hw_ver = readl(qup->base + QUP_HW_VERSION);
1815	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1816
1817	io_mode = readl(qup->base + QUP_IO_MODE);
1818
1819	/*
1820	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1821	 * associated with each byte written/received
1822	 */
1823	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1824	if (size >= ARRAY_SIZE(blk_sizes)) {
1825		ret = -EIO;
1826		goto fail;
1827	}
1828	qup->out_blk_sz = blk_sizes[size];
1829
1830	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1831	if (size >= ARRAY_SIZE(blk_sizes)) {
1832		ret = -EIO;
1833		goto fail;
1834	}
1835	qup->in_blk_sz = blk_sizes[size];
1836
1837	if (is_qup_v1) {
1838		/*
1839		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1840		 * single transfer but the block size is in bytes so divide the
1841		 * in_blk_sz and out_blk_sz by 2
1842		 */
1843		qup->in_blk_sz /= 2;
1844		qup->out_blk_sz /= 2;
1845		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1846		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1847		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1848	} else {
1849		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1850		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1851		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1852	}
1853
1854	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1855	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1856
1857	size = QUP_INPUT_FIFO_SIZE(io_mode);
1858	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1859
1860	hs_div = 3;
1861	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1862		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1863		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1864	} else {
1865		/* 33%/66% duty cycle */
1866		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1867		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1868	}
1869
1870	/*
1871	 * Time it takes for a byte to be clocked out on the bus.
1872	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1873	 */
1874	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1875	qup->one_byte_t = one_bit_t * 9;
1876	qup->xfer_timeout = TOUT_MIN * HZ +
1877		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1878
1879	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1880		qup->in_blk_sz, qup->in_fifo_sz,
1881		qup->out_blk_sz, qup->out_fifo_sz);
1882
1883	i2c_set_adapdata(&qup->adap, qup);
1884	qup->adap.dev.parent = qup->dev;
1885	qup->adap.dev.of_node = pdev->dev.of_node;
1886	qup->is_last = true;
1887
1888	strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1889
1890	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1891	pm_runtime_use_autosuspend(qup->dev);
1892	pm_runtime_set_active(qup->dev);
1893	pm_runtime_enable(qup->dev);
1894
1895	ret = i2c_add_adapter(&qup->adap);
1896	if (ret)
1897		goto fail_runtime;
1898
1899	return 0;
1900
1901fail_runtime:
1902	pm_runtime_disable(qup->dev);
1903	pm_runtime_set_suspended(qup->dev);
1904fail:
1905	qup_i2c_disable_clocks(qup);
1906fail_dma:
1907	if (qup->btx.dma)
1908		dma_release_channel(qup->btx.dma);
1909	if (qup->brx.dma)
1910		dma_release_channel(qup->brx.dma);
1911	return ret;
1912}
1913
1914static void qup_i2c_remove(struct platform_device *pdev)
1915{
1916	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1917
1918	if (qup->is_dma) {
1919		dma_release_channel(qup->btx.dma);
1920		dma_release_channel(qup->brx.dma);
1921	}
1922
1923	disable_irq(qup->irq);
1924	qup_i2c_disable_clocks(qup);
1925	i2c_del_adapter(&qup->adap);
1926	pm_runtime_disable(qup->dev);
1927	pm_runtime_set_suspended(qup->dev);
1928}
1929
1930static int qup_i2c_pm_suspend_runtime(struct device *device)
1931{
1932	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1933
1934	dev_dbg(device, "pm_runtime: suspending...\n");
1935	qup_i2c_disable_clocks(qup);
1936	return 0;
1937}
1938
1939static int qup_i2c_pm_resume_runtime(struct device *device)
1940{
1941	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1942
1943	dev_dbg(device, "pm_runtime: resuming...\n");
1944	qup_i2c_enable_clocks(qup);
1945	return 0;
1946}
1947
1948static int qup_i2c_suspend(struct device *device)
1949{
1950	if (!pm_runtime_suspended(device))
1951		return qup_i2c_pm_suspend_runtime(device);
1952	return 0;
1953}
1954
1955static int qup_i2c_resume(struct device *device)
1956{
1957	qup_i2c_pm_resume_runtime(device);
1958	pm_runtime_mark_last_busy(device);
1959	pm_request_autosuspend(device);
1960	return 0;
1961}
1962
1963static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1964	SYSTEM_SLEEP_PM_OPS(qup_i2c_suspend, qup_i2c_resume)
1965	RUNTIME_PM_OPS(qup_i2c_pm_suspend_runtime,
1966		       qup_i2c_pm_resume_runtime, NULL)
1967};
1968
1969static const struct of_device_id qup_i2c_dt_match[] = {
1970	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1971	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1972	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1973	{}
1974};
1975MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1976
1977static struct platform_driver qup_i2c_driver = {
1978	.probe  = qup_i2c_probe,
1979	.remove_new = qup_i2c_remove,
1980	.driver = {
1981		.name = "i2c_qup",
1982		.pm = pm_ptr(&qup_i2c_qup_pm_ops),
1983		.of_match_table = qup_i2c_dt_match,
1984		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1985	},
1986};
1987
1988module_platform_driver(qup_i2c_driver);
1989
1990MODULE_LICENSE("GPL v2");
1991MODULE_ALIAS("platform:i2c_qup");
1