Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
 
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
 
  36#include <linux/syscalls.h>
  37#include <linux/vmcore_info.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
 
  73
  74EXPORT_TRACEPOINT_SYMBOL_GPL(console);
 
 
 
 
 
  75
  76/*
  77 * Low level drivers may need that to know if they can schedule in
  78 * their unblank() callback or not. So let's export it.
  79 */
  80int oops_in_progress;
  81EXPORT_SYMBOL(oops_in_progress);
  82
  83/*
  84 * console_mutex protects console_list updates and console->flags updates.
  85 * The flags are synchronized only for consoles that are registered, i.e.
  86 * accessible via the console list.
  87 */
  88static DEFINE_MUTEX(console_mutex);
  89
  90/*
  91 * console_sem protects updates to console->seq
  92 * and also provides serialization for console printing.
  93 */
  94static DEFINE_SEMAPHORE(console_sem, 1);
  95HLIST_HEAD(console_list);
  96EXPORT_SYMBOL_GPL(console_list);
  97DEFINE_STATIC_SRCU(console_srcu);
  98
  99/*
 100 * System may need to suppress printk message under certain
 101 * circumstances, like after kernel panic happens.
 102 */
 103int __read_mostly suppress_printk;
 104
 105#ifdef CONFIG_LOCKDEP
 106static struct lockdep_map console_lock_dep_map = {
 107	.name = "console_lock"
 108};
 109
 110void lockdep_assert_console_list_lock_held(void)
 111{
 112	lockdep_assert_held(&console_mutex);
 113}
 114EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
 115#endif
 116
 117#ifdef CONFIG_DEBUG_LOCK_ALLOC
 118bool console_srcu_read_lock_is_held(void)
 119{
 120	return srcu_read_lock_held(&console_srcu);
 121}
 122EXPORT_SYMBOL(console_srcu_read_lock_is_held);
 123#endif
 124
 125enum devkmsg_log_bits {
 126	__DEVKMSG_LOG_BIT_ON = 0,
 127	__DEVKMSG_LOG_BIT_OFF,
 128	__DEVKMSG_LOG_BIT_LOCK,
 129};
 130
 131enum devkmsg_log_masks {
 132	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 133	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 134	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 135};
 136
 137/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 138#define DEVKMSG_LOG_MASK_DEFAULT	0
 139
 140static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141
 142static int __control_devkmsg(char *str)
 143{
 144	size_t len;
 145
 146	if (!str)
 147		return -EINVAL;
 148
 149	len = str_has_prefix(str, "on");
 150	if (len) {
 151		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 152		return len;
 153	}
 154
 155	len = str_has_prefix(str, "off");
 156	if (len) {
 157		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 158		return len;
 159	}
 160
 161	len = str_has_prefix(str, "ratelimit");
 162	if (len) {
 163		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 164		return len;
 165	}
 166
 167	return -EINVAL;
 168}
 169
 170static int __init control_devkmsg(char *str)
 171{
 172	if (__control_devkmsg(str) < 0) {
 173		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
 174		return 1;
 175	}
 176
 177	/*
 178	 * Set sysctl string accordingly:
 179	 */
 180	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 181		strcpy(devkmsg_log_str, "on");
 182	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 183		strcpy(devkmsg_log_str, "off");
 184	/* else "ratelimit" which is set by default. */
 185
 186	/*
 187	 * Sysctl cannot change it anymore. The kernel command line setting of
 188	 * this parameter is to force the setting to be permanent throughout the
 189	 * runtime of the system. This is a precation measure against userspace
 190	 * trying to be a smarta** and attempting to change it up on us.
 191	 */
 192	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 193
 194	return 1;
 195}
 196__setup("printk.devkmsg=", control_devkmsg);
 197
 198char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 199#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
 200int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 201			      void *buffer, size_t *lenp, loff_t *ppos)
 202{
 203	char old_str[DEVKMSG_STR_MAX_SIZE];
 204	unsigned int old;
 205	int err;
 206
 207	if (write) {
 208		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 209			return -EINVAL;
 210
 211		old = devkmsg_log;
 212		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 213	}
 214
 215	err = proc_dostring(table, write, buffer, lenp, ppos);
 216	if (err)
 217		return err;
 218
 219	if (write) {
 220		err = __control_devkmsg(devkmsg_log_str);
 221
 222		/*
 223		 * Do not accept an unknown string OR a known string with
 224		 * trailing crap...
 225		 */
 226		if (err < 0 || (err + 1 != *lenp)) {
 227
 228			/* ... and restore old setting. */
 229			devkmsg_log = old;
 230			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 231
 232			return -EINVAL;
 233		}
 234	}
 235
 236	return 0;
 237}
 238#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
 239
 240/**
 241 * console_list_lock - Lock the console list
 242 *
 243 * For console list or console->flags updates
 244 */
 245void console_list_lock(void)
 246{
 247	/*
 248	 * In unregister_console() and console_force_preferred_locked(),
 249	 * synchronize_srcu() is called with the console_list_lock held.
 250	 * Therefore it is not allowed that the console_list_lock is taken
 251	 * with the srcu_lock held.
 252	 *
 253	 * Detecting if this context is really in the read-side critical
 254	 * section is only possible if the appropriate debug options are
 255	 * enabled.
 256	 */
 257	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
 258		     srcu_read_lock_held(&console_srcu));
 259
 260	mutex_lock(&console_mutex);
 261}
 262EXPORT_SYMBOL(console_list_lock);
 263
 264/**
 265 * console_list_unlock - Unlock the console list
 266 *
 267 * Counterpart to console_list_lock()
 268 */
 269void console_list_unlock(void)
 270{
 271	mutex_unlock(&console_mutex);
 272}
 273EXPORT_SYMBOL(console_list_unlock);
 274
 275/**
 276 * console_srcu_read_lock - Register a new reader for the
 277 *	SRCU-protected console list
 278 *
 279 * Use for_each_console_srcu() to iterate the console list
 280 *
 281 * Context: Any context.
 282 * Return: A cookie to pass to console_srcu_read_unlock().
 283 */
 284int console_srcu_read_lock(void)
 285{
 286	return srcu_read_lock_nmisafe(&console_srcu);
 287}
 288EXPORT_SYMBOL(console_srcu_read_lock);
 289
 290/**
 291 * console_srcu_read_unlock - Unregister an old reader from
 292 *	the SRCU-protected console list
 293 * @cookie: cookie returned from console_srcu_read_lock()
 294 *
 295 * Counterpart to console_srcu_read_lock()
 296 */
 297void console_srcu_read_unlock(int cookie)
 298{
 299	srcu_read_unlock_nmisafe(&console_srcu, cookie);
 300}
 301EXPORT_SYMBOL(console_srcu_read_unlock);
 302
 303/*
 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 305 * macros instead of functions so that _RET_IP_ contains useful information.
 306 */
 307#define down_console_sem() do { \
 308	down(&console_sem);\
 309	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 310} while (0)
 311
 312static int __down_trylock_console_sem(unsigned long ip)
 313{
 314	int lock_failed;
 315	unsigned long flags;
 316
 317	/*
 318	 * Here and in __up_console_sem() we need to be in safe mode,
 319	 * because spindump/WARN/etc from under console ->lock will
 320	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 321	 */
 322	printk_safe_enter_irqsave(flags);
 323	lock_failed = down_trylock(&console_sem);
 324	printk_safe_exit_irqrestore(flags);
 325
 326	if (lock_failed)
 327		return 1;
 328	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 329	return 0;
 330}
 331#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 332
 333static void __up_console_sem(unsigned long ip)
 334{
 335	unsigned long flags;
 336
 337	mutex_release(&console_lock_dep_map, ip);
 338
 339	printk_safe_enter_irqsave(flags);
 340	up(&console_sem);
 341	printk_safe_exit_irqrestore(flags);
 342}
 343#define up_console_sem() __up_console_sem(_RET_IP_)
 344
 345static bool panic_in_progress(void)
 346{
 347	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
 348}
 349
 350/* Return true if a panic is in progress on the current CPU. */
 351bool this_cpu_in_panic(void)
 352{
 353	/*
 354	 * We can use raw_smp_processor_id() here because it is impossible for
 355	 * the task to be migrated to the panic_cpu, or away from it. If
 356	 * panic_cpu has already been set, and we're not currently executing on
 357	 * that CPU, then we never will be.
 358	 */
 359	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
 360}
 361
 362/*
 363 * Return true if a panic is in progress on a remote CPU.
 364 *
 365 * On true, the local CPU should immediately release any printing resources
 366 * that may be needed by the panic CPU.
 367 */
 368bool other_cpu_in_panic(void)
 369{
 370	return (panic_in_progress() && !this_cpu_in_panic());
 371}
 372
 373/*
 374 * This is used for debugging the mess that is the VT code by
 375 * keeping track if we have the console semaphore held. It's
 376 * definitely not the perfect debug tool (we don't know if _WE_
 377 * hold it and are racing, but it helps tracking those weird code
 378 * paths in the console code where we end up in places I want
 379 * locked without the console semaphore held).
 
 
 
 
 
 380 */
 381static int console_locked;
 382
 383/*
 384 *	Array of consoles built from command line options (console=)
 385 */
 386
 387#define MAX_CMDLINECONSOLES 8
 388
 389static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 390
 
 391static int preferred_console = -1;
 392int console_set_on_cmdline;
 393EXPORT_SYMBOL(console_set_on_cmdline);
 394
 395/* Flag: console code may call schedule() */
 396static int console_may_schedule;
 397
 398enum con_msg_format_flags {
 399	MSG_FORMAT_DEFAULT	= 0,
 400	MSG_FORMAT_SYSLOG	= (1 << 0),
 401};
 402
 403static int console_msg_format = MSG_FORMAT_DEFAULT;
 404
 405/*
 406 * The printk log buffer consists of a sequenced collection of records, each
 407 * containing variable length message text. Every record also contains its
 408 * own meta-data (@info).
 409 *
 410 * Every record meta-data carries the timestamp in microseconds, as well as
 411 * the standard userspace syslog level and syslog facility. The usual kernel
 412 * messages use LOG_KERN; userspace-injected messages always carry a matching
 413 * syslog facility, by default LOG_USER. The origin of every message can be
 414 * reliably determined that way.
 415 *
 416 * The human readable log message of a record is available in @text, the
 417 * length of the message text in @text_len. The stored message is not
 418 * terminated.
 
 
 
 
 
 
 
 
 419 *
 420 * Optionally, a record can carry a dictionary of properties (key/value
 421 * pairs), to provide userspace with a machine-readable message context.
 422 *
 423 * Examples for well-defined, commonly used property names are:
 424 *   DEVICE=b12:8               device identifier
 425 *                                b12:8         block dev_t
 426 *                                c127:3        char dev_t
 427 *                                n8            netdev ifindex
 428 *                                +sound:card0  subsystem:devname
 429 *   SUBSYSTEM=pci              driver-core subsystem name
 430 *
 431 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 432 * and values are terminated by a '\0' character.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433 *
 434 * Example of record values:
 435 *   record.text_buf                = "it's a line" (unterminated)
 436 *   record.info.seq                = 56
 437 *   record.info.ts_nsec            = 36863
 438 *   record.info.text_len           = 11
 439 *   record.info.facility           = 0 (LOG_KERN)
 440 *   record.info.flags              = 0
 441 *   record.info.level              = 3 (LOG_ERR)
 442 *   record.info.caller_id          = 299 (task 299)
 443 *   record.info.dev_info.subsystem = "pci" (terminated)
 444 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 445 *
 446 * The 'struct printk_info' buffer must never be directly exported to
 447 * userspace, it is a kernel-private implementation detail that might
 448 * need to be changed in the future, when the requirements change.
 449 *
 450 * /dev/kmsg exports the structured data in the following line format:
 451 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 452 *
 453 * Users of the export format should ignore possible additional values
 454 * separated by ',', and find the message after the ';' character.
 455 *
 456 * The optional key/value pairs are attached as continuation lines starting
 457 * with a space character and terminated by a newline. All possible
 458 * non-prinatable characters are escaped in the "\xff" notation.
 
 
 
 459 */
 460
 461/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 462static DEFINE_MUTEX(syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463
 464#ifdef CONFIG_PRINTK
 465DECLARE_WAIT_QUEUE_HEAD(log_wait);
 466/* All 3 protected by @syslog_lock. */
 467/* the next printk record to read by syslog(READ) or /proc/kmsg */
 468static u64 syslog_seq;
 
 
 469static size_t syslog_partial;
 470static bool syslog_time;
 471
 472struct latched_seq {
 473	seqcount_latch_t	latch;
 474	u64			val[2];
 475};
 476
 477/*
 478 * The next printk record to read after the last 'clear' command. There are
 479 * two copies (updated with seqcount_latch) so that reads can locklessly
 480 * access a valid value. Writers are synchronized by @syslog_lock.
 481 */
 482static struct latched_seq clear_seq = {
 483	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 484	.val[0]		= 0,
 485	.val[1]		= 0,
 486};
 
 487
 488#define LOG_LEVEL(v)		((v) & 0x07)
 489#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 490
 491/* record buffer */
 492#define LOG_ALIGN __alignof__(unsigned long)
 
 
 
 
 493#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 494#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 495static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 496static char *log_buf = __log_buf;
 497static u32 log_buf_len = __LOG_BUF_LEN;
 498
 499/*
 500 * Define the average message size. This only affects the number of
 501 * descriptors that will be available. Underestimating is better than
 502 * overestimating (too many available descriptors is better than not enough).
 503 */
 504#define PRB_AVGBITS 5	/* 32 character average length */
 505
 506#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 507#error CONFIG_LOG_BUF_SHIFT value too small.
 508#endif
 509_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 510		 PRB_AVGBITS, &__log_buf[0]);
 511
 512static struct printk_ringbuffer printk_rb_dynamic;
 513
 514struct printk_ringbuffer *prb = &printk_rb_static;
 515
 516/*
 517 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 518 * per_cpu_areas are initialised. This variable is set to true when
 519 * it's safe to access per-CPU data.
 520 */
 521static bool __printk_percpu_data_ready __ro_after_init;
 522
 523bool printk_percpu_data_ready(void)
 524{
 525	return __printk_percpu_data_ready;
 526}
 527
 528/* Must be called under syslog_lock. */
 529static void latched_seq_write(struct latched_seq *ls, u64 val)
 530{
 531	raw_write_seqcount_latch(&ls->latch);
 532	ls->val[0] = val;
 533	raw_write_seqcount_latch(&ls->latch);
 534	ls->val[1] = val;
 535}
 536
 537/* Can be called from any context. */
 538static u64 latched_seq_read_nolock(struct latched_seq *ls)
 539{
 540	unsigned int seq;
 541	unsigned int idx;
 542	u64 val;
 543
 544	do {
 545		seq = raw_read_seqcount_latch(&ls->latch);
 546		idx = seq & 0x1;
 547		val = ls->val[idx];
 548	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
 549
 550	return val;
 551}
 552
 553/* Return log buffer address */
 554char *log_buf_addr_get(void)
 555{
 556	return log_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558
 559/* Return log buffer size */
 560u32 log_buf_len_get(void)
 
 
 
 561{
 562	return log_buf_len;
 563}
 564
 565/*
 566 * Define how much of the log buffer we could take at maximum. The value
 567 * must be greater than two. Note that only half of the buffer is available
 568 * when the index points to the middle.
 569 */
 570#define MAX_LOG_TAKE_PART 4
 571static const char trunc_msg[] = "<truncated>";
 572
 573static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 574{
 575	/*
 576	 * The message should not take the whole buffer. Otherwise, it might
 577	 * get removed too soon.
 578	 */
 579	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 580
 581	if (*text_len > max_text_len)
 582		*text_len = max_text_len;
 
 
 
 
 
 583
 584	/* enable the warning message (if there is room) */
 585	*trunc_msg_len = strlen(trunc_msg);
 586	if (*text_len >= *trunc_msg_len)
 587		*text_len -= *trunc_msg_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	else
 589		*trunc_msg_len = 0;
 
 
 
 
 
 
 590}
 591
 592int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 
 
 
 
 593
 594static int syslog_action_restricted(int type)
 595{
 596	if (dmesg_restrict)
 597		return 1;
 598	/*
 599	 * Unless restricted, we allow "read all" and "get buffer size"
 600	 * for everybody.
 601	 */
 602	return type != SYSLOG_ACTION_READ_ALL &&
 603	       type != SYSLOG_ACTION_SIZE_BUFFER;
 604}
 605
 606static int check_syslog_permissions(int type, int source)
 607{
 608	/*
 609	 * If this is from /proc/kmsg and we've already opened it, then we've
 610	 * already done the capabilities checks at open time.
 611	 */
 612	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 613		goto ok;
 614
 615	if (syslog_action_restricted(type)) {
 616		if (capable(CAP_SYSLOG))
 617			goto ok;
 
 
 
 
 
 
 
 
 
 
 
 618		return -EPERM;
 619	}
 620ok:
 621	return security_syslog(type);
 622}
 623
 624static void append_char(char **pp, char *e, char c)
 625{
 626	if (*pp < e)
 627		*(*pp)++ = c;
 628}
 629
 630static ssize_t info_print_ext_header(char *buf, size_t size,
 631				     struct printk_info *info)
 632{
 633	u64 ts_usec = info->ts_nsec;
 634	char caller[20];
 635#ifdef CONFIG_PRINTK_CALLER
 636	u32 id = info->caller_id;
 637
 638	snprintf(caller, sizeof(caller), ",caller=%c%u",
 639		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 640#else
 641	caller[0] = '\0';
 642#endif
 643
 644	do_div(ts_usec, 1000);
 645
 646	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 647			 (info->facility << 3) | info->level, info->seq,
 648			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 649}
 650
 651static ssize_t msg_add_ext_text(char *buf, size_t size,
 652				const char *text, size_t text_len,
 653				unsigned char endc)
 654{
 655	char *p = buf, *e = buf + size;
 656	size_t i;
 657
 658	/* escape non-printable characters */
 659	for (i = 0; i < text_len; i++) {
 660		unsigned char c = text[i];
 661
 662		if (c < ' ' || c >= 127 || c == '\\')
 663			p += scnprintf(p, e - p, "\\x%02x", c);
 664		else
 665			append_char(&p, e, c);
 666	}
 667	append_char(&p, e, endc);
 668
 669	return p - buf;
 670}
 671
 672static ssize_t msg_add_dict_text(char *buf, size_t size,
 673				 const char *key, const char *val)
 674{
 675	size_t val_len = strlen(val);
 676	ssize_t len;
 677
 678	if (!val_len)
 679		return 0;
 680
 681	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 682	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 683	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 684
 685	return len;
 686}
 687
 688static ssize_t msg_print_ext_body(char *buf, size_t size,
 689				  char *text, size_t text_len,
 690				  struct dev_printk_info *dev_info)
 691{
 692	ssize_t len;
 693
 694	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 695
 696	if (!dev_info)
 697		goto out;
 698
 699	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 700				 dev_info->subsystem);
 701	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 702				 dev_info->device);
 703out:
 704	return len;
 705}
 706
 707/* /dev/kmsg - userspace message inject/listen interface */
 708struct devkmsg_user {
 709	atomic64_t seq;
 710	struct ratelimit_state rs;
 
 711	struct mutex lock;
 712	struct printk_buffers pbufs;
 713};
 714
 715static __printf(3, 4) __cold
 716int devkmsg_emit(int facility, int level, const char *fmt, ...)
 717{
 718	va_list args;
 719	int r;
 720
 721	va_start(args, fmt);
 722	r = vprintk_emit(facility, level, NULL, fmt, args);
 723	va_end(args);
 724
 725	return r;
 726}
 727
 728static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 729{
 730	char *buf, *line;
 
 731	int level = default_message_loglevel;
 732	int facility = 1;	/* LOG_USER */
 733	struct file *file = iocb->ki_filp;
 734	struct devkmsg_user *user = file->private_data;
 735	size_t len = iov_iter_count(from);
 736	ssize_t ret = len;
 737
 738	if (len > PRINTKRB_RECORD_MAX)
 739		return -EINVAL;
 740
 741	/* Ignore when user logging is disabled. */
 742	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 743		return len;
 744
 745	/* Ratelimit when not explicitly enabled. */
 746	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 747		if (!___ratelimit(&user->rs, current->comm))
 748			return ret;
 749	}
 750
 751	buf = kmalloc(len+1, GFP_KERNEL);
 752	if (buf == NULL)
 753		return -ENOMEM;
 754
 755	buf[len] = '\0';
 756	if (!copy_from_iter_full(buf, len, from)) {
 757		kfree(buf);
 758		return -EFAULT;
 
 
 
 759	}
 760
 761	/*
 762	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 763	 * the decimal value represents 32bit, the lower 3 bit are the log
 764	 * level, the rest are the log facility.
 765	 *
 766	 * If no prefix or no userspace facility is specified, we
 767	 * enforce LOG_USER, to be able to reliably distinguish
 768	 * kernel-generated messages from userspace-injected ones.
 769	 */
 770	line = buf;
 771	if (line[0] == '<') {
 772		char *endp = NULL;
 773		unsigned int u;
 774
 775		u = simple_strtoul(line + 1, &endp, 10);
 776		if (endp && endp[0] == '>') {
 777			level = LOG_LEVEL(u);
 778			if (LOG_FACILITY(u) != 0)
 779				facility = LOG_FACILITY(u);
 780			endp++;
 
 781			line = endp;
 782		}
 783	}
 
 784
 785	devkmsg_emit(facility, level, "%s", line);
 
 786	kfree(buf);
 787	return ret;
 788}
 789
 790static ssize_t devkmsg_read(struct file *file, char __user *buf,
 791			    size_t count, loff_t *ppos)
 792{
 793	struct devkmsg_user *user = file->private_data;
 794	char *outbuf = &user->pbufs.outbuf[0];
 795	struct printk_message pmsg = {
 796		.pbufs = &user->pbufs,
 797	};
 
 798	ssize_t ret;
 799
 
 
 
 800	ret = mutex_lock_interruptible(&user->lock);
 801	if (ret)
 802		return ret;
 803
 804	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
 805		if (file->f_flags & O_NONBLOCK) {
 806			ret = -EAGAIN;
 
 807			goto out;
 808		}
 809
 810		/*
 811		 * Guarantee this task is visible on the waitqueue before
 812		 * checking the wake condition.
 813		 *
 814		 * The full memory barrier within set_current_state() of
 815		 * prepare_to_wait_event() pairs with the full memory barrier
 816		 * within wq_has_sleeper().
 817		 *
 818		 * This pairs with __wake_up_klogd:A.
 819		 */
 820		ret = wait_event_interruptible(log_wait,
 821				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
 822							false)); /* LMM(devkmsg_read:A) */
 823		if (ret)
 824			goto out;
 
 825	}
 826
 827	if (pmsg.dropped) {
 828		/* our last seen message is gone, return error and reset */
 829		atomic64_set(&user->seq, pmsg.seq);
 
 830		ret = -EPIPE;
 
 831		goto out;
 832	}
 833
 834	atomic64_set(&user->seq, pmsg.seq + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836	if (pmsg.outbuf_len > count) {
 837		ret = -EINVAL;
 838		goto out;
 839	}
 840
 841	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
 842		ret = -EFAULT;
 843		goto out;
 844	}
 845	ret = pmsg.outbuf_len;
 846out:
 847	mutex_unlock(&user->lock);
 848	return ret;
 849}
 850
 851/*
 852 * Be careful when modifying this function!!!
 853 *
 854 * Only few operations are supported because the device works only with the
 855 * entire variable length messages (records). Non-standard values are
 856 * returned in the other cases and has been this way for quite some time.
 857 * User space applications might depend on this behavior.
 858 */
 859static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 860{
 861	struct devkmsg_user *user = file->private_data;
 862	loff_t ret = 0;
 863
 
 
 864	if (offset)
 865		return -ESPIPE;
 866
 
 867	switch (whence) {
 868	case SEEK_SET:
 869		/* the first record */
 870		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 871		break;
 872	case SEEK_DATA:
 873		/*
 874		 * The first record after the last SYSLOG_ACTION_CLEAR,
 875		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 876		 * changes no global state, and does not clear anything.
 877		 */
 878		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 
 879		break;
 880	case SEEK_END:
 881		/* after the last record */
 882		atomic64_set(&user->seq, prb_next_seq(prb));
 
 883		break;
 884	default:
 885		ret = -EINVAL;
 886	}
 
 887	return ret;
 888}
 889
 890static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 891{
 892	struct devkmsg_user *user = file->private_data;
 893	struct printk_info info;
 894	__poll_t ret = 0;
 
 
 895
 896	poll_wait(file, &log_wait, wait);
 897
 898	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 
 899		/* return error when data has vanished underneath us */
 900		if (info.seq != atomic64_read(&user->seq))
 901			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 902		else
 903			ret = EPOLLIN|EPOLLRDNORM;
 904	}
 
 905
 906	return ret;
 907}
 908
 909static int devkmsg_open(struct inode *inode, struct file *file)
 910{
 911	struct devkmsg_user *user;
 912	int err;
 913
 914	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 915		return -EPERM;
 916
 917	/* write-only does not need any file context */
 918	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 919		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 920					       SYSLOG_FROM_READER);
 921		if (err)
 922			return err;
 923	}
 
 924
 925	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 926	if (!user)
 927		return -ENOMEM;
 928
 929	ratelimit_default_init(&user->rs);
 930	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 931
 932	mutex_init(&user->lock);
 933
 934	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 
 
 935
 936	file->private_data = user;
 937	return 0;
 938}
 939
 940static int devkmsg_release(struct inode *inode, struct file *file)
 941{
 942	struct devkmsg_user *user = file->private_data;
 943
 944	ratelimit_state_exit(&user->rs);
 
 945
 946	mutex_destroy(&user->lock);
 947	kvfree(user);
 948	return 0;
 949}
 950
 951const struct file_operations kmsg_fops = {
 952	.open = devkmsg_open,
 953	.read = devkmsg_read,
 954	.write_iter = devkmsg_write,
 955	.llseek = devkmsg_llseek,
 956	.poll = devkmsg_poll,
 957	.release = devkmsg_release,
 958};
 959
 960#ifdef CONFIG_VMCORE_INFO
 961/*
 962 * This appends the listed symbols to /proc/vmcore
 963 *
 964 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 965 * obtain access to symbols that are otherwise very difficult to locate.  These
 966 * symbols are specifically used so that utilities can access and extract the
 967 * dmesg log from a vmcore file after a crash.
 968 */
 969void log_buf_vmcoreinfo_setup(void)
 970{
 971	struct dev_printk_info *dev_info = NULL;
 972
 973	VMCOREINFO_SYMBOL(prb);
 974	VMCOREINFO_SYMBOL(printk_rb_static);
 975	VMCOREINFO_SYMBOL(clear_seq);
 976
 977	/*
 978	 * Export struct size and field offsets. User space tools can
 979	 * parse it and detect any changes to structure down the line.
 980	 */
 981
 982	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 983	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 984	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 985	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 986
 987	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 988	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 989	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 990	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 991	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 992	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 993
 994	VMCOREINFO_STRUCT_SIZE(prb_desc);
 995	VMCOREINFO_OFFSET(prb_desc, state_var);
 996	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 997
 998	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 999	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1000	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1001
1002	VMCOREINFO_STRUCT_SIZE(printk_info);
1003	VMCOREINFO_OFFSET(printk_info, seq);
1004	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1005	VMCOREINFO_OFFSET(printk_info, text_len);
1006	VMCOREINFO_OFFSET(printk_info, caller_id);
1007	VMCOREINFO_OFFSET(printk_info, dev_info);
1008
1009	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1010	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1011	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1012	VMCOREINFO_OFFSET(dev_printk_info, device);
1013	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1014
1015	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1016	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1017	VMCOREINFO_OFFSET(prb_data_ring, data);
1018	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1019	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1020
1021	VMCOREINFO_SIZE(atomic_long_t);
1022	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1023
1024	VMCOREINFO_STRUCT_SIZE(latched_seq);
1025	VMCOREINFO_OFFSET(latched_seq, val);
1026}
1027#endif
1028
1029/* requested log_buf_len from kernel cmdline */
1030static unsigned long __initdata new_log_buf_len;
1031
1032/* we practice scaling the ring buffer by powers of 2 */
1033static void __init log_buf_len_update(u64 size)
1034{
1035	if (size > (u64)LOG_BUF_LEN_MAX) {
1036		size = (u64)LOG_BUF_LEN_MAX;
1037		pr_err("log_buf over 2G is not supported.\n");
1038	}
1039
1040	if (size)
1041		size = roundup_pow_of_two(size);
1042	if (size > log_buf_len)
1043		new_log_buf_len = (unsigned long)size;
1044}
1045
1046/* save requested log_buf_len since it's too early to process it */
1047static int __init log_buf_len_setup(char *str)
1048{
1049	u64 size;
1050
1051	if (!str)
1052		return -EINVAL;
1053
1054	size = memparse(str, &str);
1055
1056	log_buf_len_update(size);
1057
1058	return 0;
1059}
1060early_param("log_buf_len", log_buf_len_setup);
1061
1062#ifdef CONFIG_SMP
1063#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1064
1065static void __init log_buf_add_cpu(void)
1066{
1067	unsigned int cpu_extra;
1068
1069	/*
1070	 * archs should set up cpu_possible_bits properly with
1071	 * set_cpu_possible() after setup_arch() but just in
1072	 * case lets ensure this is valid.
1073	 */
1074	if (num_possible_cpus() == 1)
1075		return;
1076
1077	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1078
1079	/* by default this will only continue through for large > 64 CPUs */
1080	if (cpu_extra <= __LOG_BUF_LEN / 2)
1081		return;
1082
1083	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1084		__LOG_CPU_MAX_BUF_LEN);
1085	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1086		cpu_extra);
1087	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1088
1089	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1090}
1091#else /* !CONFIG_SMP */
1092static inline void log_buf_add_cpu(void) {}
1093#endif /* CONFIG_SMP */
1094
1095static void __init set_percpu_data_ready(void)
1096{
1097	__printk_percpu_data_ready = true;
1098}
1099
1100static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1101				     struct printk_record *r)
1102{
1103	struct prb_reserved_entry e;
1104	struct printk_record dest_r;
1105
1106	prb_rec_init_wr(&dest_r, r->info->text_len);
1107
1108	if (!prb_reserve(&e, rb, &dest_r))
1109		return 0;
1110
1111	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1112	dest_r.info->text_len = r->info->text_len;
1113	dest_r.info->facility = r->info->facility;
1114	dest_r.info->level = r->info->level;
1115	dest_r.info->flags = r->info->flags;
1116	dest_r.info->ts_nsec = r->info->ts_nsec;
1117	dest_r.info->caller_id = r->info->caller_id;
1118	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1119
1120	prb_final_commit(&e);
1121
1122	return prb_record_text_space(&e);
1123}
1124
1125static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1126
1127void __init setup_log_buf(int early)
1128{
1129	struct printk_info *new_infos;
1130	unsigned int new_descs_count;
1131	struct prb_desc *new_descs;
1132	struct printk_info info;
1133	struct printk_record r;
1134	unsigned int text_size;
1135	size_t new_descs_size;
1136	size_t new_infos_size;
1137	unsigned long flags;
1138	char *new_log_buf;
1139	unsigned int free;
1140	u64 seq;
1141
1142	/*
1143	 * Some archs call setup_log_buf() multiple times - first is very
1144	 * early, e.g. from setup_arch(), and second - when percpu_areas
1145	 * are initialised.
1146	 */
1147	if (!early)
1148		set_percpu_data_ready();
1149
1150	if (log_buf != __log_buf)
1151		return;
1152
1153	if (!early && !new_log_buf_len)
1154		log_buf_add_cpu();
1155
1156	if (!new_log_buf_len)
1157		return;
1158
1159	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1160	if (new_descs_count == 0) {
1161		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1162		return;
 
1163	}
1164
1165	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1166	if (unlikely(!new_log_buf)) {
1167		pr_err("log_buf_len: %lu text bytes not available\n",
1168		       new_log_buf_len);
1169		return;
1170	}
1171
1172	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1173	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1174	if (unlikely(!new_descs)) {
1175		pr_err("log_buf_len: %zu desc bytes not available\n",
1176		       new_descs_size);
1177		goto err_free_log_buf;
1178	}
1179
1180	new_infos_size = new_descs_count * sizeof(struct printk_info);
1181	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1182	if (unlikely(!new_infos)) {
1183		pr_err("log_buf_len: %zu info bytes not available\n",
1184		       new_infos_size);
1185		goto err_free_descs;
1186	}
1187
1188	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1189
1190	prb_init(&printk_rb_dynamic,
1191		 new_log_buf, ilog2(new_log_buf_len),
1192		 new_descs, ilog2(new_descs_count),
1193		 new_infos);
1194
1195	local_irq_save(flags);
1196
1197	log_buf_len = new_log_buf_len;
1198	log_buf = new_log_buf;
1199	new_log_buf_len = 0;
 
 
 
1200
1201	free = __LOG_BUF_LEN;
1202	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1203		text_size = add_to_rb(&printk_rb_dynamic, &r);
1204		if (text_size > free)
1205			free = 0;
1206		else
1207			free -= text_size;
1208	}
1209
1210	prb = &printk_rb_dynamic;
1211
1212	local_irq_restore(flags);
1213
1214	/*
1215	 * Copy any remaining messages that might have appeared from
1216	 * NMI context after copying but before switching to the
1217	 * dynamic buffer.
1218	 */
1219	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1220		text_size = add_to_rb(&printk_rb_dynamic, &r);
1221		if (text_size > free)
1222			free = 0;
1223		else
1224			free -= text_size;
1225	}
1226
1227	if (seq != prb_next_seq(&printk_rb_static)) {
1228		pr_err("dropped %llu messages\n",
1229		       prb_next_seq(&printk_rb_static) - seq);
1230	}
1231
1232	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1233	pr_info("early log buf free: %u(%u%%)\n",
1234		free, (free * 100) / __LOG_BUF_LEN);
1235	return;
1236
1237err_free_descs:
1238	memblock_free(new_descs, new_descs_size);
1239err_free_log_buf:
1240	memblock_free(new_log_buf, new_log_buf_len);
1241}
1242
1243static bool __read_mostly ignore_loglevel;
1244
1245static int __init ignore_loglevel_setup(char *str)
1246{
1247	ignore_loglevel = true;
1248	pr_info("debug: ignoring loglevel setting.\n");
1249
1250	return 0;
1251}
1252
1253early_param("ignore_loglevel", ignore_loglevel_setup);
1254module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1255MODULE_PARM_DESC(ignore_loglevel,
1256		 "ignore loglevel setting (prints all kernel messages to the console)");
1257
1258static bool suppress_message_printing(int level)
1259{
1260	return (level >= console_loglevel && !ignore_loglevel);
1261}
1262
1263#ifdef CONFIG_BOOT_PRINTK_DELAY
1264
1265static int boot_delay; /* msecs delay after each printk during bootup */
1266static unsigned long long loops_per_msec;	/* based on boot_delay */
1267
1268static int __init boot_delay_setup(char *str)
1269{
1270	unsigned long lpj;
1271
1272	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1273	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1274
1275	get_option(&str, &boot_delay);
1276	if (boot_delay > 10 * 1000)
1277		boot_delay = 0;
1278
1279	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1280		"HZ: %d, loops_per_msec: %llu\n",
1281		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1282	return 0;
1283}
1284early_param("boot_delay", boot_delay_setup);
1285
1286static void boot_delay_msec(int level)
1287{
1288	unsigned long long k;
1289	unsigned long timeout;
1290
1291	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1292		|| suppress_message_printing(level)) {
1293		return;
1294	}
1295
1296	k = (unsigned long long)loops_per_msec * boot_delay;
1297
1298	timeout = jiffies + msecs_to_jiffies(boot_delay);
1299	while (k) {
1300		k--;
1301		cpu_relax();
1302		/*
1303		 * use (volatile) jiffies to prevent
1304		 * compiler reduction; loop termination via jiffies
1305		 * is secondary and may or may not happen.
1306		 */
1307		if (time_after(jiffies, timeout))
1308			break;
1309		touch_nmi_watchdog();
1310	}
1311}
1312#else
1313static inline void boot_delay_msec(int level)
1314{
1315}
1316#endif
1317
1318static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
 
 
 
 
1319module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1320
1321static size_t print_syslog(unsigned int level, char *buf)
1322{
1323	return sprintf(buf, "<%u>", level);
1324}
1325
1326static size_t print_time(u64 ts, char *buf)
1327{
1328	unsigned long rem_nsec = do_div(ts, 1000000000);
1329
1330	return sprintf(buf, "[%5lu.%06lu]",
1331		       (unsigned long)ts, rem_nsec / 1000);
1332}
1333
1334#ifdef CONFIG_PRINTK_CALLER
1335static size_t print_caller(u32 id, char *buf)
1336{
1337	char caller[12];
1338
1339	snprintf(caller, sizeof(caller), "%c%u",
1340		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1341	return sprintf(buf, "[%6s]", caller);
 
 
1342}
1343#else
1344#define print_caller(id, buf) 0
1345#endif
1346
1347static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1348				bool time, char *buf)
1349{
1350	size_t len = 0;
 
1351
1352	if (syslog)
1353		len = print_syslog((info->facility << 3) | info->level, buf);
1354
1355	if (time)
1356		len += print_time(info->ts_nsec, buf + len);
1357
1358	len += print_caller(info->caller_id, buf + len);
1359
1360	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1361		buf[len++] = ' ';
1362		buf[len] = '\0';
 
1363	}
1364
 
1365	return len;
1366}
1367
1368/*
1369 * Prepare the record for printing. The text is shifted within the given
1370 * buffer to avoid a need for another one. The following operations are
1371 * done:
1372 *
1373 *   - Add prefix for each line.
1374 *   - Drop truncated lines that no longer fit into the buffer.
1375 *   - Add the trailing newline that has been removed in vprintk_store().
1376 *   - Add a string terminator.
1377 *
1378 * Since the produced string is always terminated, the maximum possible
1379 * return value is @r->text_buf_size - 1;
1380 *
1381 * Return: The length of the updated/prepared text, including the added
1382 * prefixes and the newline. The terminator is not counted. The dropped
1383 * line(s) are not counted.
1384 */
1385static size_t record_print_text(struct printk_record *r, bool syslog,
1386				bool time)
1387{
1388	size_t text_len = r->info->text_len;
1389	size_t buf_size = r->text_buf_size;
1390	char *text = r->text_buf;
1391	char prefix[PRINTK_PREFIX_MAX];
1392	bool truncated = false;
1393	size_t prefix_len;
1394	size_t line_len;
1395	size_t len = 0;
1396	char *next;
1397
1398	/*
1399	 * If the message was truncated because the buffer was not large
1400	 * enough, treat the available text as if it were the full text.
1401	 */
1402	if (text_len > buf_size)
1403		text_len = buf_size;
1404
1405	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
 
 
 
 
 
 
 
 
 
 
1406
1407	/*
1408	 * @text_len: bytes of unprocessed text
1409	 * @line_len: bytes of current line _without_ newline
1410	 * @text:     pointer to beginning of current line
1411	 * @len:      number of bytes prepared in r->text_buf
1412	 */
1413	for (;;) {
1414		next = memchr(text, '\n', text_len);
1415		if (next) {
1416			line_len = next - text;
 
 
1417		} else {
1418			/* Drop truncated line(s). */
1419			if (truncated)
1420				break;
1421			line_len = text_len;
1422		}
1423
1424		/*
1425		 * Truncate the text if there is not enough space to add the
1426		 * prefix and a trailing newline and a terminator.
1427		 */
1428		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1429			/* Drop even the current line if no space. */
1430			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1431				break;
1432
1433			text_len = buf_size - len - prefix_len - 1 - 1;
1434			truncated = true;
1435		}
1436
1437		memmove(text + prefix_len, text, text_len);
1438		memcpy(text, prefix, prefix_len);
1439
1440		/*
1441		 * Increment the prepared length to include the text and
1442		 * prefix that were just moved+copied. Also increment for the
1443		 * newline at the end of this line. If this is the last line,
1444		 * there is no newline, but it will be added immediately below.
1445		 */
1446		len += prefix_len + line_len + 1;
1447		if (text_len == line_len) {
1448			/*
1449			 * This is the last line. Add the trailing newline
1450			 * removed in vprintk_store().
1451			 */
1452			text[prefix_len + line_len] = '\n';
1453			break;
1454		}
1455
1456		/*
1457		 * Advance beyond the added prefix and the related line with
1458		 * its newline.
1459		 */
1460		text += prefix_len + line_len + 1;
1461
1462		/*
1463		 * The remaining text has only decreased by the line with its
1464		 * newline.
1465		 *
1466		 * Note that @text_len can become zero. It happens when @text
1467		 * ended with a newline (either due to truncation or the
1468		 * original string ending with "\n\n"). The loop is correctly
1469		 * repeated and (if not truncated) an empty line with a prefix
1470		 * will be prepared.
1471		 */
1472		text_len -= line_len + 1;
1473	}
1474
1475	/*
1476	 * If a buffer was provided, it will be terminated. Space for the
1477	 * string terminator is guaranteed to be available. The terminator is
1478	 * not counted in the return value.
1479	 */
1480	if (buf_size > 0)
1481		r->text_buf[len] = 0;
1482
1483	return len;
1484}
1485
1486static size_t get_record_print_text_size(struct printk_info *info,
1487					 unsigned int line_count,
1488					 bool syslog, bool time)
1489{
1490	char prefix[PRINTK_PREFIX_MAX];
1491	size_t prefix_len;
1492
1493	prefix_len = info_print_prefix(info, syslog, time, prefix);
1494
1495	/*
1496	 * Each line will be preceded with a prefix. The intermediate
1497	 * newlines are already within the text, but a final trailing
1498	 * newline will be added.
1499	 */
1500	return ((prefix_len * line_count) + info->text_len + 1);
1501}
1502
1503/*
1504 * Beginning with @start_seq, find the first record where it and all following
1505 * records up to (but not including) @max_seq fit into @size.
1506 *
1507 * @max_seq is simply an upper bound and does not need to exist. If the caller
1508 * does not require an upper bound, -1 can be used for @max_seq.
1509 */
1510static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1511				  bool syslog, bool time)
1512{
1513	struct printk_info info;
1514	unsigned int line_count;
1515	size_t len = 0;
1516	u64 seq;
1517
1518	/* Determine the size of the records up to @max_seq. */
1519	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1520		if (info.seq >= max_seq)
1521			break;
1522		len += get_record_print_text_size(&info, line_count, syslog, time);
1523	}
1524
1525	/*
1526	 * Adjust the upper bound for the next loop to avoid subtracting
1527	 * lengths that were never added.
1528	 */
1529	if (seq < max_seq)
1530		max_seq = seq;
1531
1532	/*
1533	 * Move first record forward until length fits into the buffer. Ignore
1534	 * newest messages that were not counted in the above cycle. Messages
1535	 * might appear and get lost in the meantime. This is a best effort
1536	 * that prevents an infinite loop that could occur with a retry.
1537	 */
1538	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1539		if (len <= size || info.seq >= max_seq)
1540			break;
1541		len -= get_record_print_text_size(&info, line_count, syslog, time);
1542	}
1543
1544	return seq;
1545}
1546
1547/* The caller is responsible for making sure @size is greater than 0. */
1548static int syslog_print(char __user *buf, int size)
1549{
1550	struct printk_info info;
1551	struct printk_record r;
1552	char *text;
 
1553	int len = 0;
1554	u64 seq;
1555
1556	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1557	if (!text)
1558		return -ENOMEM;
1559
1560	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1561
1562	mutex_lock(&syslog_lock);
1563
1564	/*
1565	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1566	 * change while waiting.
1567	 */
1568	do {
1569		seq = syslog_seq;
1570
1571		mutex_unlock(&syslog_lock);
1572		/*
1573		 * Guarantee this task is visible on the waitqueue before
1574		 * checking the wake condition.
1575		 *
1576		 * The full memory barrier within set_current_state() of
1577		 * prepare_to_wait_event() pairs with the full memory barrier
1578		 * within wq_has_sleeper().
1579		 *
1580		 * This pairs with __wake_up_klogd:A.
1581		 */
1582		len = wait_event_interruptible(log_wait,
1583				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1584		mutex_lock(&syslog_lock);
1585
1586		if (len)
1587			goto out;
1588	} while (syslog_seq != seq);
1589
1590	/*
1591	 * Copy records that fit into the buffer. The above cycle makes sure
1592	 * that the first record is always available.
1593	 */
1594	do {
1595		size_t n;
1596		size_t skip;
1597		int err;
1598
1599		if (!prb_read_valid(prb, syslog_seq, &r))
1600			break;
1601
1602		if (r.info->seq != syslog_seq) {
1603			/* message is gone, move to next valid one */
1604			syslog_seq = r.info->seq;
1605			syslog_partial = 0;
1606		}
1607
1608		/*
1609		 * To keep reading/counting partial line consistent,
1610		 * use printk_time value as of the beginning of a line.
1611		 */
1612		if (!syslog_partial)
1613			syslog_time = printk_time;
1614
1615		skip = syslog_partial;
1616		n = record_print_text(&r, true, syslog_time);
 
 
1617		if (n - syslog_partial <= size) {
1618			/* message fits into buffer, move forward */
1619			syslog_seq = r.info->seq + 1;
 
 
1620			n -= syslog_partial;
1621			syslog_partial = 0;
1622		} else if (!len){
1623			/* partial read(), remember position */
1624			n = size;
1625			syslog_partial += n;
1626		} else
1627			n = 0;
 
1628
1629		if (!n)
1630			break;
1631
1632		mutex_unlock(&syslog_lock);
1633		err = copy_to_user(buf, text + skip, n);
1634		mutex_lock(&syslog_lock);
1635
1636		if (err) {
1637			if (!len)
1638				len = -EFAULT;
1639			break;
1640		}
1641
1642		len += n;
1643		size -= n;
1644		buf += n;
1645	} while (size);
1646out:
1647	mutex_unlock(&syslog_lock);
1648	kfree(text);
1649	return len;
1650}
1651
1652static int syslog_print_all(char __user *buf, int size, bool clear)
1653{
1654	struct printk_info info;
1655	struct printk_record r;
1656	char *text;
1657	int len = 0;
1658	u64 seq;
1659	bool time;
1660
1661	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1662	if (!text)
1663		return -ENOMEM;
1664
1665	time = printk_time;
1666	/*
1667	 * Find first record that fits, including all following records,
1668	 * into the user-provided buffer for this dump.
1669	 */
1670	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1671				     size, true, time);
1672
1673	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1674
1675	prb_for_each_record(seq, prb, seq, &r) {
1676		int textlen;
1677
1678		textlen = record_print_text(&r, true, time);
1679
1680		if (len + textlen > size) {
1681			seq--;
1682			break;
 
1683		}
1684
1685		if (copy_to_user(buf + len, text, textlen))
1686			len = -EFAULT;
1687		else
1688			len += textlen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690		if (len < 0)
1691			break;
 
 
 
 
 
 
 
 
 
 
 
 
1692	}
1693
1694	if (clear) {
1695		mutex_lock(&syslog_lock);
1696		latched_seq_write(&clear_seq, seq);
1697		mutex_unlock(&syslog_lock);
1698	}
 
1699
1700	kfree(text);
1701	return len;
1702}
1703
1704static void syslog_clear(void)
1705{
1706	mutex_lock(&syslog_lock);
1707	latched_seq_write(&clear_seq, prb_next_seq(prb));
1708	mutex_unlock(&syslog_lock);
1709}
1710
1711int do_syslog(int type, char __user *buf, int len, int source)
1712{
1713	struct printk_info info;
1714	bool clear = false;
1715	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1716	int error;
1717
1718	error = check_syslog_permissions(type, source);
 
 
 
 
1719	if (error)
1720		return error;
1721
1722	switch (type) {
1723	case SYSLOG_ACTION_CLOSE:	/* Close log */
1724		break;
1725	case SYSLOG_ACTION_OPEN:	/* Open log */
1726		break;
1727	case SYSLOG_ACTION_READ:	/* Read from log */
 
1728		if (!buf || len < 0)
1729			return -EINVAL;
 
1730		if (!len)
1731			return 0;
1732		if (!access_ok(buf, len))
1733			return -EFAULT;
 
 
 
 
 
 
1734		error = syslog_print(buf, len);
1735		break;
1736	/* Read/clear last kernel messages */
1737	case SYSLOG_ACTION_READ_CLEAR:
1738		clear = true;
1739		fallthrough;
1740	/* Read last kernel messages */
1741	case SYSLOG_ACTION_READ_ALL:
 
1742		if (!buf || len < 0)
1743			return -EINVAL;
 
1744		if (!len)
1745			return 0;
1746		if (!access_ok(buf, len))
1747			return -EFAULT;
 
 
1748		error = syslog_print_all(buf, len, clear);
1749		break;
1750	/* Clear ring buffer */
1751	case SYSLOG_ACTION_CLEAR:
1752		syslog_clear();
1753		break;
1754	/* Disable logging to console */
1755	case SYSLOG_ACTION_CONSOLE_OFF:
1756		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1757			saved_console_loglevel = console_loglevel;
1758		console_loglevel = minimum_console_loglevel;
1759		break;
1760	/* Enable logging to console */
1761	case SYSLOG_ACTION_CONSOLE_ON:
1762		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1763			console_loglevel = saved_console_loglevel;
1764			saved_console_loglevel = LOGLEVEL_DEFAULT;
1765		}
1766		break;
1767	/* Set level of messages printed to console */
1768	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1769		if (len < 1 || len > 8)
1770			return -EINVAL;
1771		if (len < minimum_console_loglevel)
1772			len = minimum_console_loglevel;
1773		console_loglevel = len;
1774		/* Implicitly re-enable logging to console */
1775		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1776		break;
1777	/* Number of chars in the log buffer */
1778	case SYSLOG_ACTION_SIZE_UNREAD:
1779		mutex_lock(&syslog_lock);
1780		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1781			/* No unread messages. */
1782			mutex_unlock(&syslog_lock);
1783			return 0;
1784		}
1785		if (info.seq != syslog_seq) {
1786			/* messages are gone, move to first one */
1787			syslog_seq = info.seq;
 
 
1788			syslog_partial = 0;
1789		}
1790		if (source == SYSLOG_FROM_PROC) {
1791			/*
1792			 * Short-cut for poll(/"proc/kmsg") which simply checks
1793			 * for pending data, not the size; return the count of
1794			 * records, not the length.
1795			 */
1796			error = prb_next_seq(prb) - syslog_seq;
1797		} else {
1798			bool time = syslog_partial ? syslog_time : printk_time;
1799			unsigned int line_count;
1800			u64 seq;
1801
1802			prb_for_each_info(syslog_seq, prb, seq, &info,
1803					  &line_count) {
1804				error += get_record_print_text_size(&info, line_count,
1805								    true, time);
1806				time = printk_time;
 
 
 
1807			}
1808			error -= syslog_partial;
1809		}
1810		mutex_unlock(&syslog_lock);
1811		break;
1812	/* Size of the log buffer */
1813	case SYSLOG_ACTION_SIZE_BUFFER:
1814		error = log_buf_len;
1815		break;
1816	default:
1817		error = -EINVAL;
1818		break;
1819	}
1820
1821	return error;
1822}
1823
1824SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1825{
1826	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1827}
1828
1829/*
1830 * Special console_lock variants that help to reduce the risk of soft-lockups.
1831 * They allow to pass console_lock to another printk() call using a busy wait.
 
1832 */
 
 
 
1833
1834#ifdef CONFIG_LOCKDEP
1835static struct lockdep_map console_owner_dep_map = {
1836	.name = "console_owner"
1837};
1838#endif
1839
1840static DEFINE_RAW_SPINLOCK(console_owner_lock);
1841static struct task_struct *console_owner;
1842static bool console_waiter;
1843
1844/**
1845 * console_lock_spinning_enable - mark beginning of code where another
1846 *	thread might safely busy wait
1847 *
1848 * This basically converts console_lock into a spinlock. This marks
1849 * the section where the console_lock owner can not sleep, because
1850 * there may be a waiter spinning (like a spinlock). Also it must be
1851 * ready to hand over the lock at the end of the section.
1852 */
1853static void console_lock_spinning_enable(void)
1854{
1855	/*
1856	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1857	 * Non-panic CPUs abandon the flush anyway.
1858	 *
1859	 * Just keep the lockdep annotation. The panic-CPU should avoid
1860	 * taking console_owner_lock because it might cause a deadlock.
1861	 * This looks like the easiest way how to prevent false lockdep
1862	 * reports without handling races a lockless way.
1863	 */
1864	if (panic_in_progress())
1865		goto lockdep;
1866
1867	raw_spin_lock(&console_owner_lock);
1868	console_owner = current;
1869	raw_spin_unlock(&console_owner_lock);
1870
1871lockdep:
1872	/* The waiter may spin on us after setting console_owner */
1873	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
 
 
 
 
 
1874}
1875
1876/**
1877 * console_lock_spinning_disable_and_check - mark end of code where another
1878 *	thread was able to busy wait and check if there is a waiter
1879 * @cookie: cookie returned from console_srcu_read_lock()
1880 *
1881 * This is called at the end of the section where spinning is allowed.
1882 * It has two functions. First, it is a signal that it is no longer
1883 * safe to start busy waiting for the lock. Second, it checks if
1884 * there is a busy waiter and passes the lock rights to her.
1885 *
1886 * Important: Callers lose both the console_lock and the SRCU read lock if
1887 *	there was a busy waiter. They must not touch items synchronized by
1888 *	console_lock or SRCU read lock in this case.
1889 *
1890 * Return: 1 if the lock rights were passed, 0 otherwise.
1891 */
1892static int console_lock_spinning_disable_and_check(int cookie)
1893{
1894	int waiter;
1895
1896	/*
1897	 * Ignore spinning waiters during panic() because they might get stopped
1898	 * or blocked at any time,
1899	 *
1900	 * It is safe because nobody is allowed to start spinning during panic
1901	 * in the first place. If there has been a waiter then non panic CPUs
1902	 * might stay spinning. They would get stopped anyway. The panic context
1903	 * will never start spinning and an interrupted spin on panic CPU will
1904	 * never continue.
1905	 */
1906	if (panic_in_progress()) {
1907		/* Keep lockdep happy. */
1908		spin_release(&console_owner_dep_map, _THIS_IP_);
1909		return 0;
1910	}
1911
1912	raw_spin_lock(&console_owner_lock);
1913	waiter = READ_ONCE(console_waiter);
1914	console_owner = NULL;
1915	raw_spin_unlock(&console_owner_lock);
1916
1917	if (!waiter) {
1918		spin_release(&console_owner_dep_map, _THIS_IP_);
1919		return 0;
1920	}
1921
1922	/* The waiter is now free to continue */
1923	WRITE_ONCE(console_waiter, false);
 
 
 
 
1924
1925	spin_release(&console_owner_dep_map, _THIS_IP_);
 
 
 
1926
1927	/*
1928	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1929	 * releasing the console_lock.
1930	 */
1931	console_srcu_read_unlock(cookie);
1932
1933	/*
1934	 * Hand off console_lock to waiter. The waiter will perform
1935	 * the up(). After this, the waiter is the console_lock owner.
1936	 */
1937	mutex_release(&console_lock_dep_map, _THIS_IP_);
1938	return 1;
1939}
1940
1941/**
1942 * console_trylock_spinning - try to get console_lock by busy waiting
1943 *
1944 * This allows to busy wait for the console_lock when the current
1945 * owner is running in specially marked sections. It means that
1946 * the current owner is running and cannot reschedule until it
1947 * is ready to lose the lock.
1948 *
1949 * Return: 1 if we got the lock, 0 othrewise
 
 
 
1950 */
1951static int console_trylock_spinning(void)
1952{
1953	struct task_struct *owner = NULL;
1954	bool waiter;
1955	bool spin = false;
1956	unsigned long flags;
1957
1958	if (console_trylock())
1959		return 1;
1960
1961	/*
1962	 * It's unsafe to spin once a panic has begun. If we are the
1963	 * panic CPU, we may have already halted the owner of the
1964	 * console_sem. If we are not the panic CPU, then we should
1965	 * avoid taking console_sem, so the panic CPU has a better
1966	 * chance of cleanly acquiring it later.
1967	 */
1968	if (panic_in_progress())
1969		return 0;
1970
1971	printk_safe_enter_irqsave(flags);
1972
1973	raw_spin_lock(&console_owner_lock);
1974	owner = READ_ONCE(console_owner);
1975	waiter = READ_ONCE(console_waiter);
1976	if (!waiter && owner && owner != current) {
1977		WRITE_ONCE(console_waiter, true);
1978		spin = true;
1979	}
1980	raw_spin_unlock(&console_owner_lock);
1981
1982	/*
1983	 * If there is an active printk() writing to the
1984	 * consoles, instead of having it write our data too,
1985	 * see if we can offload that load from the active
1986	 * printer, and do some printing ourselves.
1987	 * Go into a spin only if there isn't already a waiter
1988	 * spinning, and there is an active printer, and
1989	 * that active printer isn't us (recursive printk?).
1990	 */
1991	if (!spin) {
1992		printk_safe_exit_irqrestore(flags);
1993		return 0;
1994	}
1995
1996	/* We spin waiting for the owner to release us */
1997	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1998	/* Owner will clear console_waiter on hand off */
1999	while (READ_ONCE(console_waiter))
2000		cpu_relax();
2001	spin_release(&console_owner_dep_map, _THIS_IP_);
2002
2003	printk_safe_exit_irqrestore(flags);
2004	/*
2005	 * The owner passed the console lock to us.
2006	 * Since we did not spin on console lock, annotate
2007	 * this as a trylock. Otherwise lockdep will
2008	 * complain.
2009	 */
2010	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2011
2012	/*
2013	 * Update @console_may_schedule for trylock because the previous
2014	 * owner may have been schedulable.
2015	 */
2016	console_may_schedule = 0;
2017
2018	return 1;
2019}
2020
2021/*
2022 * Recursion is tracked separately on each CPU. If NMIs are supported, an
2023 * additional NMI context per CPU is also separately tracked. Until per-CPU
2024 * is available, a separate "early tracking" is performed.
 
 
 
 
 
2025 */
2026static DEFINE_PER_CPU(u8, printk_count);
2027static u8 printk_count_early;
2028#ifdef CONFIG_HAVE_NMI
2029static DEFINE_PER_CPU(u8, printk_count_nmi);
2030static u8 printk_count_nmi_early;
2031#endif
2032
2033/*
2034 * Recursion is limited to keep the output sane. printk() should not require
2035 * more than 1 level of recursion (allowing, for example, printk() to trigger
2036 * a WARN), but a higher value is used in case some printk-internal errors
2037 * exist, such as the ringbuffer validation checks failing.
2038 */
2039#define PRINTK_MAX_RECURSION 3
2040
2041/*
2042 * Return a pointer to the dedicated counter for the CPU+context of the
2043 * caller.
2044 */
2045static u8 *__printk_recursion_counter(void)
2046{
2047#ifdef CONFIG_HAVE_NMI
2048	if (in_nmi()) {
2049		if (printk_percpu_data_ready())
2050			return this_cpu_ptr(&printk_count_nmi);
2051		return &printk_count_nmi_early;
2052	}
2053#endif
2054	if (printk_percpu_data_ready())
2055		return this_cpu_ptr(&printk_count);
2056	return &printk_count_early;
 
2057}
2058
2059/*
2060 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2061 * The caller must check the boolean return value to see if the recursion is
2062 * allowed. On failure, interrupts are not disabled.
2063 *
2064 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2065 * that is passed to printk_exit_irqrestore().
2066 */
2067#define printk_enter_irqsave(recursion_ptr, flags)	\
2068({							\
2069	bool success = true;				\
2070							\
2071	typecheck(u8 *, recursion_ptr);			\
2072	local_irq_save(flags);				\
2073	(recursion_ptr) = __printk_recursion_counter();	\
2074	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2075		local_irq_restore(flags);		\
2076		success = false;			\
2077	} else {					\
2078		(*(recursion_ptr))++;			\
2079	}						\
2080	success;					\
2081})
2082
2083/* Exit recursion tracking, restoring interrupts. */
2084#define printk_exit_irqrestore(recursion_ptr, flags)	\
2085	do {						\
2086		typecheck(u8 *, recursion_ptr);		\
2087		(*(recursion_ptr))--;			\
2088		local_irq_restore(flags);		\
2089	} while (0)
2090
2091int printk_delay_msec __read_mostly;
2092
2093static inline void printk_delay(int level)
2094{
2095	boot_delay_msec(level);
2096
2097	if (unlikely(printk_delay_msec)) {
2098		int m = printk_delay_msec;
2099
2100		while (m--) {
2101			mdelay(1);
2102			touch_nmi_watchdog();
2103		}
2104	}
2105}
2106
2107static inline u32 printk_caller_id(void)
2108{
2109	return in_task() ? task_pid_nr(current) :
2110		0x80000000 + smp_processor_id();
2111}
 
 
 
 
 
 
 
 
 
 
 
 
2112
2113/**
2114 * printk_parse_prefix - Parse level and control flags.
2115 *
2116 * @text:     The terminated text message.
2117 * @level:    A pointer to the current level value, will be updated.
2118 * @flags:    A pointer to the current printk_info flags, will be updated.
2119 *
2120 * @level may be NULL if the caller is not interested in the parsed value.
2121 * Otherwise the variable pointed to by @level must be set to
2122 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2123 *
2124 * @flags may be NULL if the caller is not interested in the parsed value.
2125 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2126 * value.
2127 *
2128 * Return: The length of the parsed level and control flags.
2129 */
2130u16 printk_parse_prefix(const char *text, int *level,
2131			enum printk_info_flags *flags)
2132{
2133	u16 prefix_len = 0;
2134	int kern_level;
2135
2136	while (*text) {
2137		kern_level = printk_get_level(text);
2138		if (!kern_level)
2139			break;
2140
2141		switch (kern_level) {
2142		case '0' ... '7':
2143			if (level && *level == LOGLEVEL_DEFAULT)
2144				*level = kern_level - '0';
2145			break;
2146		case 'c':	/* KERN_CONT */
2147			if (flags)
2148				*flags |= LOG_CONT;
2149		}
2150
2151		prefix_len += 2;
2152		text += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	}
2154
2155	return prefix_len;
2156}
2157
2158__printf(5, 0)
2159static u16 printk_sprint(char *text, u16 size, int facility,
2160			 enum printk_info_flags *flags, const char *fmt,
2161			 va_list args)
2162{
2163	u16 text_len;
2164
2165	text_len = vscnprintf(text, size, fmt, args);
2166
2167	/* Mark and strip a trailing newline. */
2168	if (text_len && text[text_len - 1] == '\n') {
2169		text_len--;
2170		*flags |= LOG_NEWLINE;
2171	}
2172
2173	/* Strip log level and control flags. */
2174	if (facility == 0) {
2175		u16 prefix_len;
2176
2177		prefix_len = printk_parse_prefix(text, NULL, NULL);
2178		if (prefix_len) {
2179			text_len -= prefix_len;
2180			memmove(text, text + prefix_len, text_len);
2181		}
2182	}
2183
2184	trace_console(text, text_len);
 
 
 
 
2185
2186	return text_len;
2187}
2188
2189__printf(4, 0)
2190int vprintk_store(int facility, int level,
2191		  const struct dev_printk_info *dev_info,
2192		  const char *fmt, va_list args)
2193{
2194	struct prb_reserved_entry e;
2195	enum printk_info_flags flags = 0;
2196	struct printk_record r;
2197	unsigned long irqflags;
2198	u16 trunc_msg_len = 0;
2199	char prefix_buf[8];
2200	u8 *recursion_ptr;
2201	u16 reserve_size;
2202	va_list args2;
2203	u32 caller_id;
2204	u16 text_len;
2205	int ret = 0;
2206	u64 ts_nsec;
2207
2208	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2209		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2210
2211	/*
2212	 * Since the duration of printk() can vary depending on the message
2213	 * and state of the ringbuffer, grab the timestamp now so that it is
2214	 * close to the call of printk(). This provides a more deterministic
2215	 * timestamp with respect to the caller.
2216	 */
2217	ts_nsec = local_clock();
 
 
 
 
 
2218
2219	caller_id = printk_caller_id();
 
 
 
 
 
2220
2221	/*
2222	 * The sprintf needs to come first since the syslog prefix might be
2223	 * passed in as a parameter. An extra byte must be reserved so that
2224	 * later the vscnprintf() into the reserved buffer has room for the
2225	 * terminating '\0', which is not counted by vsnprintf().
2226	 */
2227	va_copy(args2, args);
2228	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2229	va_end(args2);
2230
2231	if (reserve_size > PRINTKRB_RECORD_MAX)
2232		reserve_size = PRINTKRB_RECORD_MAX;
2233
2234	/* Extract log level or control flags. */
2235	if (facility == 0)
2236		printk_parse_prefix(&prefix_buf[0], &level, &flags);
 
 
 
 
2237
2238	if (level == LOGLEVEL_DEFAULT)
2239		level = default_message_loglevel;
 
2240
2241	if (dev_info)
2242		flags |= LOG_NEWLINE;
 
2243
2244	if (flags & LOG_CONT) {
2245		prb_rec_init_wr(&r, reserve_size);
2246		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2247			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2248						 facility, &flags, fmt, args);
2249			r.info->text_len += text_len;
2250
2251			if (flags & LOG_NEWLINE) {
2252				r.info->flags |= LOG_NEWLINE;
2253				prb_final_commit(&e);
2254			} else {
2255				prb_commit(&e);
2256			}
2257
2258			ret = text_len;
2259			goto out;
2260		}
2261	}
2262
2263	/*
2264	 * Explicitly initialize the record before every prb_reserve() call.
2265	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2266	 * structure when they fail.
2267	 */
2268	prb_rec_init_wr(&r, reserve_size);
2269	if (!prb_reserve(&e, prb, &r)) {
2270		/* truncate the message if it is too long for empty buffer */
2271		truncate_msg(&reserve_size, &trunc_msg_len);
2272
2273		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2274		if (!prb_reserve(&e, prb, &r))
2275			goto out;
 
2276	}
2277
2278	/* fill message */
2279	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2280	if (trunc_msg_len)
2281		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2282	r.info->text_len = text_len + trunc_msg_len;
2283	r.info->facility = facility;
2284	r.info->level = level & 7;
2285	r.info->flags = flags & 0x1f;
2286	r.info->ts_nsec = ts_nsec;
2287	r.info->caller_id = caller_id;
2288	if (dev_info)
2289		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2290
2291	/* A message without a trailing newline can be continued. */
2292	if (!(flags & LOG_NEWLINE))
2293		prb_commit(&e);
2294	else
2295		prb_final_commit(&e);
2296
2297	ret = text_len + trunc_msg_len;
2298out:
2299	printk_exit_irqrestore(recursion_ptr, irqflags);
2300	return ret;
2301}
2302
2303asmlinkage int vprintk_emit(int facility, int level,
2304			    const struct dev_printk_info *dev_info,
2305			    const char *fmt, va_list args)
2306{
2307	int printed_len;
2308	bool in_sched = false;
2309
2310	/* Suppress unimportant messages after panic happens */
2311	if (unlikely(suppress_printk))
2312		return 0;
2313
2314	/*
2315	 * The messages on the panic CPU are the most important. If
2316	 * non-panic CPUs are generating any messages, they will be
2317	 * silently dropped.
2318	 */
2319	if (other_cpu_in_panic())
2320		return 0;
2321
2322	if (level == LOGLEVEL_SCHED) {
2323		level = LOGLEVEL_DEFAULT;
2324		in_sched = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325	}
2326
2327	printk_delay(level);
 
2328
2329	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
 
2330
2331	/* If called from the scheduler, we can not call up(). */
2332	if (!in_sched) {
2333		/*
2334		 * The caller may be holding system-critical or
2335		 * timing-sensitive locks. Disable preemption during
2336		 * printing of all remaining records to all consoles so that
2337		 * this context can return as soon as possible. Hopefully
2338		 * another printk() caller will take over the printing.
2339		 */
2340		preempt_disable();
 
 
 
 
 
 
 
 
 
2341		/*
2342		 * Try to acquire and then immediately release the console
2343		 * semaphore. The release will print out buffers. With the
2344		 * spinning variant, this context tries to take over the
2345		 * printing from another printing context.
 
 
2346		 */
2347		if (console_trylock_spinning())
2348			console_unlock();
2349		preempt_enable();
 
 
 
 
 
 
 
2350	}
 
2351
2352	if (in_sched)
2353		defer_console_output();
2354	else
2355		wake_up_klogd();
 
 
 
 
 
 
 
 
 
 
2356
2357	return printed_len;
2358}
2359EXPORT_SYMBOL(vprintk_emit);
2360
2361int vprintk_default(const char *fmt, va_list args)
2362{
2363	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2364}
2365EXPORT_SYMBOL_GPL(vprintk_default);
2366
2367asmlinkage __visible int _printk(const char *fmt, ...)
 
 
2368{
2369	va_list args;
2370	int r;
2371
2372	va_start(args, fmt);
2373	r = vprintk(fmt, args);
2374	va_end(args);
2375
2376	return r;
2377}
2378EXPORT_SYMBOL(_printk);
2379
2380static bool pr_flush(int timeout_ms, bool reset_on_progress);
2381static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382
2383#else /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
2384
2385#define printk_time		false
 
 
2386
2387#define prb_read_valid(rb, seq, r)	false
2388#define prb_first_valid_seq(rb)		0
2389#define prb_next_seq(rb)		0
2390
 
 
 
2391static u64 syslog_seq;
2392
2393static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2394static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395
2396#endif /* CONFIG_PRINTK */
2397
2398#ifdef CONFIG_EARLY_PRINTK
2399struct console *early_console;
2400
 
 
 
 
 
 
 
 
 
 
2401asmlinkage __visible void early_printk(const char *fmt, ...)
2402{
2403	va_list ap;
2404	char buf[512];
2405	int n;
2406
2407	if (!early_console)
2408		return;
2409
2410	va_start(ap, fmt);
2411	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2412	va_end(ap);
2413
2414	early_console->write(early_console, buf, n);
2415}
2416#endif
2417
2418static void set_user_specified(struct console_cmdline *c, bool user_specified)
2419{
2420	if (!user_specified)
2421		return;
2422
2423	/*
2424	 * @c console was defined by the user on the command line.
2425	 * Do not clear when added twice also by SPCR or the device tree.
2426	 */
2427	c->user_specified = true;
2428	/* At least one console defined by the user on the command line. */
2429	console_set_on_cmdline = 1;
2430}
2431
2432static int __add_preferred_console(const char *name, const short idx, char *options,
2433				   char *brl_options, bool user_specified)
2434{
2435	struct console_cmdline *c;
2436	int i;
2437
2438	/*
2439	 * We use a signed short index for struct console for device drivers to
2440	 * indicate a not yet assigned index or port. However, a negative index
2441	 * value is not valid for preferred console.
2442	 */
2443	if (idx < 0)
2444		return -EINVAL;
2445
2446	/*
2447	 *	See if this tty is not yet registered, and
2448	 *	if we have a slot free.
2449	 */
2450	for (i = 0, c = console_cmdline;
2451	     i < MAX_CMDLINECONSOLES && c->name[0];
2452	     i++, c++) {
2453		if (strcmp(c->name, name) == 0 && c->index == idx) {
2454			if (!brl_options)
2455				preferred_console = i;
2456			set_user_specified(c, user_specified);
2457			return 0;
2458		}
2459	}
2460	if (i == MAX_CMDLINECONSOLES)
2461		return -E2BIG;
2462	if (!brl_options)
2463		preferred_console = i;
2464	strscpy(c->name, name, sizeof(c->name));
2465	c->options = options;
2466	set_user_specified(c, user_specified);
2467	braille_set_options(c, brl_options);
2468
2469	c->index = idx;
2470	return 0;
2471}
2472
2473static int __init console_msg_format_setup(char *str)
2474{
2475	if (!strcmp(str, "syslog"))
2476		console_msg_format = MSG_FORMAT_SYSLOG;
2477	if (!strcmp(str, "default"))
2478		console_msg_format = MSG_FORMAT_DEFAULT;
2479	return 1;
2480}
2481__setup("console_msg_format=", console_msg_format_setup);
2482
2483/*
2484 * Set up a console.  Called via do_early_param() in init/main.c
2485 * for each "console=" parameter in the boot command line.
2486 */
2487static int __init console_setup(char *str)
2488{
2489	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2490	char *s, *options, *brl_options = NULL;
2491	int idx;
2492
2493	/*
2494	 * console="" or console=null have been suggested as a way to
2495	 * disable console output. Use ttynull that has been created
2496	 * for exactly this purpose.
2497	 */
2498	if (str[0] == 0 || strcmp(str, "null") == 0) {
2499		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2500		return 1;
2501	}
2502
2503	if (_braille_console_setup(&str, &brl_options))
2504		return 1;
2505
2506	/*
2507	 * Decode str into name, index, options.
2508	 */
2509	if (str[0] >= '0' && str[0] <= '9') {
2510		strcpy(buf, "ttyS");
2511		strncpy(buf + 4, str, sizeof(buf) - 5);
2512	} else {
2513		strncpy(buf, str, sizeof(buf) - 1);
2514	}
2515	buf[sizeof(buf) - 1] = 0;
2516	options = strchr(str, ',');
2517	if (options)
2518		*(options++) = 0;
2519#ifdef __sparc__
2520	if (!strcmp(str, "ttya"))
2521		strcpy(buf, "ttyS0");
2522	if (!strcmp(str, "ttyb"))
2523		strcpy(buf, "ttyS1");
2524#endif
2525	for (s = buf; *s; s++)
2526		if (isdigit(*s) || *s == ',')
2527			break;
2528	idx = simple_strtoul(s, NULL, 10);
2529	*s = 0;
2530
2531	__add_preferred_console(buf, idx, options, brl_options, true);
 
2532	return 1;
2533}
2534__setup("console=", console_setup);
2535
2536/**
2537 * add_preferred_console - add a device to the list of preferred consoles.
2538 * @name: device name
2539 * @idx: device index
2540 * @options: options for this console
2541 *
2542 * The last preferred console added will be used for kernel messages
2543 * and stdin/out/err for init.  Normally this is used by console_setup
2544 * above to handle user-supplied console arguments; however it can also
2545 * be used by arch-specific code either to override the user or more
2546 * commonly to provide a default console (ie from PROM variables) when
2547 * the user has not supplied one.
2548 */
2549int add_preferred_console(const char *name, const short idx, char *options)
2550{
2551	return __add_preferred_console(name, idx, options, NULL, false);
2552}
2553
2554bool console_suspend_enabled = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555EXPORT_SYMBOL(console_suspend_enabled);
2556
2557static int __init console_suspend_disable(char *str)
2558{
2559	console_suspend_enabled = false;
2560	return 1;
2561}
2562__setup("no_console_suspend", console_suspend_disable);
2563module_param_named(console_suspend, console_suspend_enabled,
2564		bool, S_IRUGO | S_IWUSR);
2565MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2566	" and hibernate operations");
2567
2568static bool printk_console_no_auto_verbose;
2569
2570void console_verbose(void)
2571{
2572	if (console_loglevel && !printk_console_no_auto_verbose)
2573		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2574}
2575EXPORT_SYMBOL_GPL(console_verbose);
2576
2577module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2578MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2579
2580/**
2581 * suspend_console - suspend the console subsystem
2582 *
2583 * This disables printk() while we go into suspend states
2584 */
2585void suspend_console(void)
2586{
2587	struct console *con;
2588
2589	if (!console_suspend_enabled)
2590		return;
2591	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2592	pr_flush(1000, true);
2593
2594	console_list_lock();
2595	for_each_console(con)
2596		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2597	console_list_unlock();
2598
2599	/*
2600	 * Ensure that all SRCU list walks have completed. All printing
2601	 * contexts must be able to see that they are suspended so that it
2602	 * is guaranteed that all printing has stopped when this function
2603	 * completes.
2604	 */
2605	synchronize_srcu(&console_srcu);
2606}
2607
2608void resume_console(void)
2609{
2610	struct console *con;
2611
2612	if (!console_suspend_enabled)
2613		return;
2614
2615	console_list_lock();
2616	for_each_console(con)
2617		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2618	console_list_unlock();
2619
2620	/*
2621	 * Ensure that all SRCU list walks have completed. All printing
2622	 * contexts must be able to see they are no longer suspended so
2623	 * that they are guaranteed to wake up and resume printing.
2624	 */
2625	synchronize_srcu(&console_srcu);
2626
2627	pr_flush(1000, true);
2628}
2629
2630/**
2631 * console_cpu_notify - print deferred console messages after CPU hotplug
2632 * @cpu: unused
 
 
2633 *
2634 * If printk() is called from a CPU that is not online yet, the messages
2635 * will be printed on the console only if there are CON_ANYTIME consoles.
2636 * This function is called when a new CPU comes online (or fails to come
2637 * up) or goes offline.
2638 */
2639static int console_cpu_notify(unsigned int cpu)
2640{
2641	if (!cpuhp_tasks_frozen) {
2642		/* If trylock fails, someone else is doing the printing */
2643		if (console_trylock())
2644			console_unlock();
 
 
 
 
2645	}
2646	return 0;
2647}
2648
2649/**
2650 * console_lock - block the console subsystem from printing
2651 *
2652 * Acquires a lock which guarantees that no consoles will
2653 * be in or enter their write() callback.
2654 *
2655 * Can sleep, returns nothing.
2656 */
2657void console_lock(void)
2658{
2659	might_sleep();
2660
2661	/* On panic, the console_lock must be left to the panic cpu. */
2662	while (other_cpu_in_panic())
2663		msleep(1000);
2664
2665	down_console_sem();
2666	console_locked = 1;
2667	console_may_schedule = 1;
 
2668}
2669EXPORT_SYMBOL(console_lock);
2670
2671/**
2672 * console_trylock - try to block the console subsystem from printing
2673 *
2674 * Try to acquire a lock which guarantees that no consoles will
2675 * be in or enter their write() callback.
2676 *
2677 * returns 1 on success, and 0 on failure to acquire the lock.
2678 */
2679int console_trylock(void)
2680{
2681	/* On panic, the console_lock must be left to the panic cpu. */
2682	if (other_cpu_in_panic())
2683		return 0;
2684	if (down_trylock_console_sem())
 
2685		return 0;
 
2686	console_locked = 1;
2687	console_may_schedule = 0;
 
2688	return 1;
2689}
2690EXPORT_SYMBOL(console_trylock);
2691
2692int is_console_locked(void)
2693{
2694	return console_locked;
2695}
2696EXPORT_SYMBOL(is_console_locked);
2697
2698/*
2699 * Check if the given console is currently capable and allowed to print
2700 * records.
2701 *
2702 * Requires the console_srcu_read_lock.
2703 */
2704static inline bool console_is_usable(struct console *con)
2705{
2706	short flags = console_srcu_read_flags(con);
2707
2708	if (!(flags & CON_ENABLED))
2709		return false;
2710
2711	if ((flags & CON_SUSPENDED))
2712		return false;
2713
2714	if (!con->write)
2715		return false;
2716
2717	/*
2718	 * Console drivers may assume that per-cpu resources have been
2719	 * allocated. So unless they're explicitly marked as being able to
2720	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2721	 */
2722	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2723		return false;
2724
2725	return true;
2726}
2727
2728static void __console_unlock(void)
2729{
2730	console_locked = 0;
2731	up_console_sem();
2732}
2733
2734#ifdef CONFIG_PRINTK
2735
2736/*
2737 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2738 * is achieved by shifting the existing message over and inserting the dropped
2739 * message.
2740 *
2741 * @pmsg is the printk message to prepend.
2742 *
2743 * @dropped is the dropped count to report in the dropped message.
2744 *
2745 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2746 * the dropped message, the message text will be sufficiently truncated.
2747 *
2748 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2749 */
2750void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2751{
2752	struct printk_buffers *pbufs = pmsg->pbufs;
2753	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2754	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2755	char *scratchbuf = &pbufs->scratchbuf[0];
2756	char *outbuf = &pbufs->outbuf[0];
2757	size_t len;
2758
2759	len = scnprintf(scratchbuf, scratchbuf_sz,
2760		       "** %lu printk messages dropped **\n", dropped);
2761
2762	/*
2763	 * Make sure outbuf is sufficiently large before prepending.
2764	 * Keep at least the prefix when the message must be truncated.
2765	 * It is a rather theoretical problem when someone tries to
2766	 * use a minimalist buffer.
2767	 */
2768	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2769		return;
2770
2771	if (pmsg->outbuf_len + len >= outbuf_sz) {
2772		/* Truncate the message, but keep it terminated. */
2773		pmsg->outbuf_len = outbuf_sz - (len + 1);
2774		outbuf[pmsg->outbuf_len] = 0;
2775	}
2776
2777	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2778	memcpy(outbuf, scratchbuf, len);
2779	pmsg->outbuf_len += len;
2780}
2781
2782/*
2783 * Read and format the specified record (or a later record if the specified
2784 * record is not available).
2785 *
2786 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2787 * struct printk_buffers.
2788 *
2789 * @seq is the record to read and format. If it is not available, the next
2790 * valid record is read.
2791 *
2792 * @is_extended specifies if the message should be formatted for extended
2793 * console output.
2794 *
2795 * @may_supress specifies if records may be skipped based on loglevel.
2796 *
2797 * Returns false if no record is available. Otherwise true and all fields
2798 * of @pmsg are valid. (See the documentation of struct printk_message
2799 * for information about the @pmsg fields.)
2800 */
2801bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2802			     bool is_extended, bool may_suppress)
2803{
2804	struct printk_buffers *pbufs = pmsg->pbufs;
2805	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2806	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2807	char *scratchbuf = &pbufs->scratchbuf[0];
2808	char *outbuf = &pbufs->outbuf[0];
2809	struct printk_info info;
2810	struct printk_record r;
2811	size_t len = 0;
2812
2813	/*
2814	 * Formatting extended messages requires a separate buffer, so use the
2815	 * scratch buffer to read in the ringbuffer text.
2816	 *
2817	 * Formatting normal messages is done in-place, so read the ringbuffer
2818	 * text directly into the output buffer.
2819	 */
2820	if (is_extended)
2821		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2822	else
2823		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2824
2825	if (!prb_read_valid(prb, seq, &r))
2826		return false;
2827
2828	pmsg->seq = r.info->seq;
2829	pmsg->dropped = r.info->seq - seq;
2830
2831	/* Skip record that has level above the console loglevel. */
2832	if (may_suppress && suppress_message_printing(r.info->level))
2833		goto out;
2834
2835	if (is_extended) {
2836		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2837		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2838					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2839	} else {
2840		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2841	}
2842out:
2843	pmsg->outbuf_len = len;
2844	return true;
2845}
2846
2847/*
2848 * Used as the printk buffers for non-panic, serialized console printing.
2849 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2850 * Its usage requires the console_lock held.
2851 */
2852struct printk_buffers printk_shared_pbufs;
2853
2854/*
2855 * Print one record for the given console. The record printed is whatever
2856 * record is the next available record for the given console.
2857 *
2858 * @handover will be set to true if a printk waiter has taken over the
2859 * console_lock, in which case the caller is no longer holding both the
2860 * console_lock and the SRCU read lock. Otherwise it is set to false.
2861 *
2862 * @cookie is the cookie from the SRCU read lock.
 
 
2863 *
2864 * Returns false if the given console has no next record to print, otherwise
2865 * true.
2866 *
2867 * Requires the console_lock and the SRCU read lock.
2868 */
2869static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2870{
2871	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2872	char *outbuf = &printk_shared_pbufs.outbuf[0];
2873	struct printk_message pmsg = {
2874		.pbufs = &printk_shared_pbufs,
2875	};
2876	unsigned long flags;
 
 
2877
2878	*handover = false;
2879
2880	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2881		return false;
2882
2883	con->dropped += pmsg.dropped;
2884
2885	/* Skip messages of formatted length 0. */
2886	if (pmsg.outbuf_len == 0) {
2887		con->seq = pmsg.seq + 1;
2888		goto skip;
2889	}
2890
2891	if (con->dropped && !is_extended) {
2892		console_prepend_dropped(&pmsg, con->dropped);
2893		con->dropped = 0;
2894	}
2895
2896	/*
2897	 * While actively printing out messages, if another printk()
2898	 * were to occur on another CPU, it may wait for this one to
2899	 * finish. This task can not be preempted if there is a
2900	 * waiter waiting to take over.
2901	 *
2902	 * Interrupts are disabled because the hand over to a waiter
2903	 * must not be interrupted until the hand over is completed
2904	 * (@console_waiter is cleared).
2905	 */
2906	printk_safe_enter_irqsave(flags);
2907	console_lock_spinning_enable();
2908
2909	/* Do not trace print latency. */
2910	stop_critical_timings();
2911
2912	/* Write everything out to the hardware. */
2913	con->write(con, outbuf, pmsg.outbuf_len);
2914
2915	start_critical_timings();
 
 
 
 
 
 
2916
2917	con->seq = pmsg.seq + 1;
 
 
 
 
2918
2919	*handover = console_lock_spinning_disable_and_check(cookie);
2920	printk_safe_exit_irqrestore(flags);
 
 
 
 
2921skip:
2922	return true;
2923}
2924
2925#else
2926
2927static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2928{
2929	*handover = false;
2930	return false;
2931}
2932
2933#endif /* CONFIG_PRINTK */
2934
2935/*
2936 * Print out all remaining records to all consoles.
2937 *
2938 * @do_cond_resched is set by the caller. It can be true only in schedulable
2939 * context.
2940 *
2941 * @next_seq is set to the sequence number after the last available record.
2942 * The value is valid only when this function returns true. It means that all
2943 * usable consoles are completely flushed.
2944 *
2945 * @handover will be set to true if a printk waiter has taken over the
2946 * console_lock, in which case the caller is no longer holding the
2947 * console_lock. Otherwise it is set to false.
2948 *
2949 * Returns true when there was at least one usable console and all messages
2950 * were flushed to all usable consoles. A returned false informs the caller
2951 * that everything was not flushed (either there were no usable consoles or
2952 * another context has taken over printing or it is a panic situation and this
2953 * is not the panic CPU). Regardless the reason, the caller should assume it
2954 * is not useful to immediately try again.
2955 *
2956 * Requires the console_lock.
2957 */
2958static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2959{
2960	bool any_usable = false;
2961	struct console *con;
2962	bool any_progress;
2963	int cookie;
2964
2965	*next_seq = 0;
2966	*handover = false;
2967
2968	do {
2969		any_progress = false;
2970
2971		cookie = console_srcu_read_lock();
2972		for_each_console_srcu(con) {
2973			bool progress;
2974
2975			if (!console_is_usable(con))
2976				continue;
2977			any_usable = true;
2978
2979			progress = console_emit_next_record(con, handover, cookie);
2980
 
 
2981			/*
2982			 * If a handover has occurred, the SRCU read lock
2983			 * is already released.
2984			 */
2985			if (*handover)
2986				return false;
2987
2988			/* Track the next of the highest seq flushed. */
2989			if (con->seq > *next_seq)
2990				*next_seq = con->seq;
2991
2992			if (!progress)
2993				continue;
2994			any_progress = true;
2995
2996			/* Allow panic_cpu to take over the consoles safely. */
2997			if (other_cpu_in_panic())
2998				goto abandon;
2999
3000			if (do_cond_resched)
3001				cond_resched();
3002		}
3003		console_srcu_read_unlock(cookie);
3004	} while (any_progress);
 
 
 
 
 
 
 
3005
3006	return any_usable;
 
 
3007
3008abandon:
3009	console_srcu_read_unlock(cookie);
3010	return false;
3011}
3012
3013/**
3014 * console_unlock - unblock the console subsystem from printing
3015 *
3016 * Releases the console_lock which the caller holds to block printing of
3017 * the console subsystem.
3018 *
3019 * While the console_lock was held, console output may have been buffered
3020 * by printk().  If this is the case, console_unlock(); emits
3021 * the output prior to releasing the lock.
3022 *
3023 * console_unlock(); may be called from any context.
3024 */
3025void console_unlock(void)
3026{
3027	bool do_cond_resched;
3028	bool handover;
3029	bool flushed;
3030	u64 next_seq;
3031
3032	/*
3033	 * Console drivers are called with interrupts disabled, so
3034	 * @console_may_schedule should be cleared before; however, we may
3035	 * end up dumping a lot of lines, for example, if called from
3036	 * console registration path, and should invoke cond_resched()
3037	 * between lines if allowable.  Not doing so can cause a very long
3038	 * scheduling stall on a slow console leading to RCU stall and
3039	 * softlockup warnings which exacerbate the issue with more
3040	 * messages practically incapacitating the system. Therefore, create
3041	 * a local to use for the printing loop.
3042	 */
3043	do_cond_resched = console_may_schedule;
3044
3045	do {
3046		console_may_schedule = 0;
3047
3048		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3049		if (!handover)
3050			__console_unlock();
3051
3052		/*
3053		 * Abort if there was a failure to flush all messages to all
3054		 * usable consoles. Either it is not possible to flush (in
3055		 * which case it would be an infinite loop of retrying) or
3056		 * another context has taken over printing.
3057		 */
3058		if (!flushed)
3059			break;
3060
3061		/*
3062		 * Some context may have added new records after
3063		 * console_flush_all() but before unlocking the console.
3064		 * Re-check if there is a new record to flush. If the trylock
3065		 * fails, another context is already handling the printing.
3066		 */
3067	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3068}
3069EXPORT_SYMBOL(console_unlock);
3070
3071/**
3072 * console_conditional_schedule - yield the CPU if required
3073 *
3074 * If the console code is currently allowed to sleep, and
3075 * if this CPU should yield the CPU to another task, do
3076 * so here.
3077 *
3078 * Must be called within console_lock();.
3079 */
3080void __sched console_conditional_schedule(void)
3081{
3082	if (console_may_schedule)
3083		cond_resched();
3084}
3085EXPORT_SYMBOL(console_conditional_schedule);
3086
3087void console_unblank(void)
3088{
3089	bool found_unblank = false;
3090	struct console *c;
3091	int cookie;
3092
3093	/*
3094	 * First check if there are any consoles implementing the unblank()
3095	 * callback. If not, there is no reason to continue and take the
3096	 * console lock, which in particular can be dangerous if
3097	 * @oops_in_progress is set.
3098	 */
3099	cookie = console_srcu_read_lock();
3100	for_each_console_srcu(c) {
3101		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3102			found_unblank = true;
3103			break;
3104		}
3105	}
3106	console_srcu_read_unlock(cookie);
3107	if (!found_unblank)
3108		return;
3109
3110	/*
3111	 * Stop console printing because the unblank() callback may
3112	 * assume the console is not within its write() callback.
3113	 *
3114	 * If @oops_in_progress is set, this may be an atomic context.
3115	 * In that case, attempt a trylock as best-effort.
3116	 */
3117	if (oops_in_progress) {
3118		/* Semaphores are not NMI-safe. */
3119		if (in_nmi())
3120			return;
3121
3122		/*
3123		 * Attempting to trylock the console lock can deadlock
3124		 * if another CPU was stopped while modifying the
3125		 * semaphore. "Hope and pray" that this is not the
3126		 * current situation.
3127		 */
3128		if (down_trylock_console_sem() != 0)
3129			return;
3130	} else
3131		console_lock();
3132
3133	console_locked = 1;
3134	console_may_schedule = 0;
3135
3136	cookie = console_srcu_read_lock();
3137	for_each_console_srcu(c) {
3138		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3139			c->unblank();
3140	}
3141	console_srcu_read_unlock(cookie);
3142
3143	console_unlock();
3144
3145	if (!oops_in_progress)
3146		pr_flush(1000, true);
3147}
3148
3149/**
3150 * console_flush_on_panic - flush console content on panic
3151 * @mode: flush all messages in buffer or just the pending ones
3152 *
3153 * Immediately output all pending messages no matter what.
3154 */
3155void console_flush_on_panic(enum con_flush_mode mode)
3156{
3157	bool handover;
3158	u64 next_seq;
3159
3160	/*
3161	 * Ignore the console lock and flush out the messages. Attempting a
3162	 * trylock would not be useful because:
3163	 *
3164	 *   - if it is contended, it must be ignored anyway
3165	 *   - console_lock() and console_trylock() block and fail
3166	 *     respectively in panic for non-panic CPUs
3167	 *   - semaphores are not NMI-safe
3168	 */
3169
3170	/*
3171	 * If another context is holding the console lock,
3172	 * @console_may_schedule might be set. Clear it so that
3173	 * this context does not call cond_resched() while flushing.
3174	 */
3175	console_may_schedule = 0;
3176
3177	if (mode == CONSOLE_REPLAY_ALL) {
3178		struct console *c;
3179		short flags;
3180		int cookie;
3181		u64 seq;
3182
3183		seq = prb_first_valid_seq(prb);
3184
3185		cookie = console_srcu_read_lock();
3186		for_each_console_srcu(c) {
3187			flags = console_srcu_read_flags(c);
3188
3189			if (flags & CON_NBCON) {
3190				nbcon_seq_force(c, seq);
3191			} else {
3192				/*
3193				 * This is an unsynchronized assignment. On
3194				 * panic legacy consoles are only best effort.
3195				 */
3196				c->seq = seq;
3197			}
3198		}
3199		console_srcu_read_unlock(cookie);
3200	}
3201
3202	console_flush_all(false, &next_seq, &handover);
3203}
3204
3205/*
3206 * Return the console tty driver structure and its associated index
3207 */
3208struct tty_driver *console_device(int *index)
3209{
3210	struct console *c;
3211	struct tty_driver *driver = NULL;
3212	int cookie;
3213
3214	/*
3215	 * Take console_lock to serialize device() callback with
3216	 * other console operations. For example, fg_console is
3217	 * modified under console_lock when switching vt.
3218	 */
3219	console_lock();
3220
3221	cookie = console_srcu_read_lock();
3222	for_each_console_srcu(c) {
3223		if (!c->device)
3224			continue;
3225		driver = c->device(c, index);
3226		if (driver)
3227			break;
3228	}
3229	console_srcu_read_unlock(cookie);
3230
3231	console_unlock();
3232	return driver;
3233}
3234
3235/*
3236 * Prevent further output on the passed console device so that (for example)
3237 * serial drivers can disable console output before suspending a port, and can
3238 * re-enable output afterwards.
3239 */
3240void console_stop(struct console *console)
3241{
3242	__pr_flush(console, 1000, true);
3243	console_list_lock();
3244	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3245	console_list_unlock();
3246
3247	/*
3248	 * Ensure that all SRCU list walks have completed. All contexts must
3249	 * be able to see that this console is disabled so that (for example)
3250	 * the caller can suspend the port without risk of another context
3251	 * using the port.
3252	 */
3253	synchronize_srcu(&console_srcu);
3254}
3255EXPORT_SYMBOL(console_stop);
3256
3257void console_start(struct console *console)
3258{
3259	console_list_lock();
3260	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3261	console_list_unlock();
3262	__pr_flush(console, 1000, true);
3263}
3264EXPORT_SYMBOL(console_start);
3265
3266static int __read_mostly keep_bootcon;
3267
3268static int __init keep_bootcon_setup(char *str)
3269{
3270	keep_bootcon = 1;
3271	pr_info("debug: skip boot console de-registration.\n");
3272
3273	return 0;
3274}
3275
3276early_param("keep_bootcon", keep_bootcon_setup);
3277
3278static int console_call_setup(struct console *newcon, char *options)
3279{
3280	int err;
3281
3282	if (!newcon->setup)
3283		return 0;
3284
3285	/* Synchronize with possible boot console. */
3286	console_lock();
3287	err = newcon->setup(newcon, options);
3288	console_unlock();
3289
3290	return err;
3291}
3292
3293/*
3294 * This is called by register_console() to try to match
3295 * the newly registered console with any of the ones selected
3296 * by either the command line or add_preferred_console() and
3297 * setup/enable it.
3298 *
3299 * Care need to be taken with consoles that are statically
3300 * enabled such as netconsole
3301 */
3302static int try_enable_preferred_console(struct console *newcon,
3303					bool user_specified)
3304{
3305	struct console_cmdline *c;
3306	int i, err;
3307
3308	for (i = 0, c = console_cmdline;
3309	     i < MAX_CMDLINECONSOLES && c->name[0];
3310	     i++, c++) {
3311		if (c->user_specified != user_specified)
3312			continue;
3313		if (!newcon->match ||
3314		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3315			/* default matching */
3316			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3317			if (strcmp(c->name, newcon->name) != 0)
3318				continue;
3319			if (newcon->index >= 0 &&
3320			    newcon->index != c->index)
3321				continue;
3322			if (newcon->index < 0)
3323				newcon->index = c->index;
3324
3325			if (_braille_register_console(newcon, c))
3326				return 0;
3327
3328			err = console_call_setup(newcon, c->options);
3329			if (err)
3330				return err;
3331		}
3332		newcon->flags |= CON_ENABLED;
3333		if (i == preferred_console)
3334			newcon->flags |= CON_CONSDEV;
3335		return 0;
3336	}
3337
3338	/*
3339	 * Some consoles, such as pstore and netconsole, can be enabled even
3340	 * without matching. Accept the pre-enabled consoles only when match()
3341	 * and setup() had a chance to be called.
3342	 */
3343	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3344		return 0;
3345
3346	return -ENOENT;
3347}
3348
3349/* Try to enable the console unconditionally */
3350static void try_enable_default_console(struct console *newcon)
3351{
3352	if (newcon->index < 0)
3353		newcon->index = 0;
3354
3355	if (console_call_setup(newcon, NULL) != 0)
3356		return;
3357
3358	newcon->flags |= CON_ENABLED;
3359
3360	if (newcon->device)
3361		newcon->flags |= CON_CONSDEV;
3362}
3363
3364static void console_init_seq(struct console *newcon, bool bootcon_registered)
3365{
3366	struct console *con;
3367	bool handover;
3368
3369	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3370		/* Get a consistent copy of @syslog_seq. */
3371		mutex_lock(&syslog_lock);
3372		newcon->seq = syslog_seq;
3373		mutex_unlock(&syslog_lock);
3374	} else {
3375		/* Begin with next message added to ringbuffer. */
3376		newcon->seq = prb_next_seq(prb);
3377
3378		/*
3379		 * If any enabled boot consoles are due to be unregistered
3380		 * shortly, some may not be caught up and may be the same
3381		 * device as @newcon. Since it is not known which boot console
3382		 * is the same device, flush all consoles and, if necessary,
3383		 * start with the message of the enabled boot console that is
3384		 * the furthest behind.
3385		 */
3386		if (bootcon_registered && !keep_bootcon) {
3387			/*
3388			 * Hold the console_lock to stop console printing and
3389			 * guarantee safe access to console->seq.
3390			 */
3391			console_lock();
3392
3393			/*
3394			 * Flush all consoles and set the console to start at
3395			 * the next unprinted sequence number.
3396			 */
3397			if (!console_flush_all(true, &newcon->seq, &handover)) {
3398				/*
3399				 * Flushing failed. Just choose the lowest
3400				 * sequence of the enabled boot consoles.
3401				 */
3402
3403				/*
3404				 * If there was a handover, this context no
3405				 * longer holds the console_lock.
3406				 */
3407				if (handover)
3408					console_lock();
3409
3410				newcon->seq = prb_next_seq(prb);
3411				for_each_console(con) {
3412					if ((con->flags & CON_BOOT) &&
3413					    (con->flags & CON_ENABLED) &&
3414					    con->seq < newcon->seq) {
3415						newcon->seq = con->seq;
3416					}
3417				}
3418			}
3419
3420			console_unlock();
3421		}
3422	}
3423}
3424
3425#define console_first()				\
3426	hlist_entry(console_list.first, struct console, node)
3427
3428static int unregister_console_locked(struct console *console);
3429
3430/*
3431 * The console driver calls this routine during kernel initialization
3432 * to register the console printing procedure with printk() and to
3433 * print any messages that were printed by the kernel before the
3434 * console driver was initialized.
3435 *
3436 * This can happen pretty early during the boot process (because of
3437 * early_printk) - sometimes before setup_arch() completes - be careful
3438 * of what kernel features are used - they may not be initialised yet.
3439 *
3440 * There are two types of consoles - bootconsoles (early_printk) and
3441 * "real" consoles (everything which is not a bootconsole) which are
3442 * handled differently.
3443 *  - Any number of bootconsoles can be registered at any time.
3444 *  - As soon as a "real" console is registered, all bootconsoles
3445 *    will be unregistered automatically.
3446 *  - Once a "real" console is registered, any attempt to register a
3447 *    bootconsoles will be rejected
3448 */
3449void register_console(struct console *newcon)
3450{
3451	struct console *con;
3452	bool bootcon_registered = false;
3453	bool realcon_registered = false;
3454	int err;
3455
3456	console_list_lock();
3457
3458	for_each_console(con) {
3459		if (WARN(con == newcon, "console '%s%d' already registered\n",
3460					 con->name, con->index)) {
3461			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3462		}
3463
3464		if (con->flags & CON_BOOT)
3465			bootcon_registered = true;
3466		else
3467			realcon_registered = true;
3468	}
3469
3470	/* Do not register boot consoles when there already is a real one. */
3471	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3472		pr_info("Too late to register bootconsole %s%d\n",
3473			newcon->name, newcon->index);
3474		goto unlock;
3475	}
3476
3477	if (newcon->flags & CON_NBCON) {
3478		/*
3479		 * Ensure the nbcon console buffers can be allocated
3480		 * before modifying any global data.
3481		 */
3482		if (!nbcon_alloc(newcon))
3483			goto unlock;
3484	}
3485
3486	/*
3487	 * See if we want to enable this console driver by default.
3488	 *
3489	 * Nope when a console is preferred by the command line, device
3490	 * tree, or SPCR.
3491	 *
3492	 * The first real console with tty binding (driver) wins. More
3493	 * consoles might get enabled before the right one is found.
3494	 *
3495	 * Note that a console with tty binding will have CON_CONSDEV
3496	 * flag set and will be first in the list.
3497	 */
3498	if (preferred_console < 0) {
3499		if (hlist_empty(&console_list) || !console_first()->device ||
3500		    console_first()->flags & CON_BOOT) {
3501			try_enable_default_console(newcon);
 
 
 
 
 
 
3502		}
3503	}
3504
3505	/* See if this console matches one we selected on the command line */
3506	err = try_enable_preferred_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
3507
3508	/* If not, try to match against the platform default(s) */
3509	if (err == -ENOENT)
3510		err = try_enable_preferred_console(newcon, false);
3511
3512	/* printk() messages are not printed to the Braille console. */
3513	if (err || newcon->flags & CON_BRL) {
3514		if (newcon->flags & CON_NBCON)
3515			nbcon_free(newcon);
3516		goto unlock;
 
 
 
 
3517	}
3518
 
 
 
3519	/*
3520	 * If we have a bootconsole, and are switching to a real console,
3521	 * don't print everything out again, since when the boot console, and
3522	 * the real console are the same physical device, it's annoying to
3523	 * see the beginning boot messages twice
3524	 */
3525	if (bootcon_registered &&
3526	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3527		newcon->flags &= ~CON_PRINTBUFFER;
3528	}
3529
3530	newcon->dropped = 0;
3531	console_init_seq(newcon, bootcon_registered);
3532
3533	if (newcon->flags & CON_NBCON)
3534		nbcon_init(newcon);
3535
3536	/*
3537	 * Put this console in the list - keep the
3538	 * preferred driver at the head of the list.
3539	 */
3540	if (hlist_empty(&console_list)) {
3541		/* Ensure CON_CONSDEV is always set for the head. */
3542		newcon->flags |= CON_CONSDEV;
3543		hlist_add_head_rcu(&newcon->node, &console_list);
3544
3545	} else if (newcon->flags & CON_CONSDEV) {
3546		/* Only the new head can have CON_CONSDEV set. */
3547		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3548		hlist_add_head_rcu(&newcon->node, &console_list);
3549
3550	} else {
3551		hlist_add_behind_rcu(&newcon->node, console_list.first);
 
3552	}
3553
3554	/*
3555	 * No need to synchronize SRCU here! The caller does not rely
3556	 * on all contexts being able to see the new console before
3557	 * register_console() completes.
3558	 */
3559
 
 
 
 
 
 
 
 
 
 
 
3560	console_sysfs_notify();
3561
3562	/*
3563	 * By unregistering the bootconsoles after we enable the real console
3564	 * we get the "console xxx enabled" message on all the consoles -
3565	 * boot consoles, real consoles, etc - this is to ensure that end
3566	 * users know there might be something in the kernel's log buffer that
3567	 * went to the bootconsole (that they do not see on the real console)
3568	 */
3569	con_printk(KERN_INFO, newcon, "enabled\n");
3570	if (bootcon_registered &&
 
 
3571	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3572	    !keep_bootcon) {
3573		struct hlist_node *tmp;
3574
3575		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3576			if (con->flags & CON_BOOT)
3577				unregister_console_locked(con);
3578		}
3579	}
3580unlock:
3581	console_list_unlock();
3582}
3583EXPORT_SYMBOL(register_console);
3584
3585/* Must be called under console_list_lock(). */
3586static int unregister_console_locked(struct console *console)
3587{
 
3588	int res;
3589
3590	lockdep_assert_console_list_lock_held();
3591
3592	con_printk(KERN_INFO, console, "disabled\n");
3593
3594	res = _braille_unregister_console(console);
3595	if (res < 0)
3596		return res;
3597	if (res > 0)
3598		return 0;
3599
3600	/* Disable it unconditionally */
3601	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3602
3603	if (!console_is_registered_locked(console))
3604		return -ENODEV;
3605
3606	hlist_del_init_rcu(&console->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3607
3608	/*
3609	 * <HISTORICAL>
3610	 * If this isn't the last console and it has CON_CONSDEV set, we
3611	 * need to set it on the next preferred console.
3612	 * </HISTORICAL>
3613	 *
3614	 * The above makes no sense as there is no guarantee that the next
3615	 * console has any device attached. Oh well....
3616	 */
3617	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3618		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3619
3620	/*
3621	 * Ensure that all SRCU list walks have completed. All contexts
3622	 * must not be able to see this console in the list so that any
3623	 * exit/cleanup routines can be performed safely.
3624	 */
3625	synchronize_srcu(&console_srcu);
3626
3627	if (console->flags & CON_NBCON)
3628		nbcon_free(console);
3629
 
3630	console_sysfs_notify();
3631
3632	if (console->exit)
3633		res = console->exit(console);
3634
3635	return res;
3636}
3637
3638int unregister_console(struct console *console)
3639{
3640	int res;
3641
3642	console_list_lock();
3643	res = unregister_console_locked(console);
3644	console_list_unlock();
3645	return res;
3646}
3647EXPORT_SYMBOL(unregister_console);
3648
3649/**
3650 * console_force_preferred_locked - force a registered console preferred
3651 * @con: The registered console to force preferred.
3652 *
3653 * Must be called under console_list_lock().
3654 */
3655void console_force_preferred_locked(struct console *con)
3656{
3657	struct console *cur_pref_con;
3658
3659	if (!console_is_registered_locked(con))
3660		return;
3661
3662	cur_pref_con = console_first();
3663
3664	/* Already preferred? */
3665	if (cur_pref_con == con)
3666		return;
3667
3668	/*
3669	 * Delete, but do not re-initialize the entry. This allows the console
3670	 * to continue to appear registered (via any hlist_unhashed_lockless()
3671	 * checks), even though it was briefly removed from the console list.
3672	 */
3673	hlist_del_rcu(&con->node);
3674
3675	/*
3676	 * Ensure that all SRCU list walks have completed so that the console
3677	 * can be added to the beginning of the console list and its forward
3678	 * list pointer can be re-initialized.
3679	 */
3680	synchronize_srcu(&console_srcu);
3681
3682	con->flags |= CON_CONSDEV;
3683	WARN_ON(!con->device);
3684
3685	/* Only the new head can have CON_CONSDEV set. */
3686	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3687	hlist_add_head_rcu(&con->node, &console_list);
3688}
3689EXPORT_SYMBOL(console_force_preferred_locked);
3690
3691/*
3692 * Initialize the console device. This is called *early*, so
3693 * we can't necessarily depend on lots of kernel help here.
3694 * Just do some early initializations, and do the complex setup
3695 * later.
3696 */
3697void __init console_init(void)
3698{
3699	int ret;
3700	initcall_t call;
3701	initcall_entry_t *ce;
3702
3703	/* Setup the default TTY line discipline. */
3704	n_tty_init();
3705
3706	/*
3707	 * set up the console device so that later boot sequences can
3708	 * inform about problems etc..
3709	 */
3710	ce = __con_initcall_start;
3711	trace_initcall_level("console");
3712	while (ce < __con_initcall_end) {
3713		call = initcall_from_entry(ce);
3714		trace_initcall_start(call);
3715		ret = call();
3716		trace_initcall_finish(call, ret);
3717		ce++;
3718	}
3719}
3720
3721/*
3722 * Some boot consoles access data that is in the init section and which will
3723 * be discarded after the initcalls have been run. To make sure that no code
3724 * will access this data, unregister the boot consoles in a late initcall.
3725 *
3726 * If for some reason, such as deferred probe or the driver being a loadable
3727 * module, the real console hasn't registered yet at this point, there will
3728 * be a brief interval in which no messages are logged to the console, which
3729 * makes it difficult to diagnose problems that occur during this time.
3730 *
3731 * To mitigate this problem somewhat, only unregister consoles whose memory
3732 * intersects with the init section. Note that all other boot consoles will
3733 * get unregistered when the real preferred console is registered.
3734 */
3735static int __init printk_late_init(void)
3736{
3737	struct hlist_node *tmp;
3738	struct console *con;
3739	int ret;
3740
3741	console_list_lock();
3742	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3743		if (!(con->flags & CON_BOOT))
3744			continue;
3745
3746		/* Check addresses that might be used for enabled consoles. */
3747		if (init_section_intersects(con, sizeof(*con)) ||
3748		    init_section_contains(con->write, 0) ||
3749		    init_section_contains(con->read, 0) ||
3750		    init_section_contains(con->device, 0) ||
3751		    init_section_contains(con->unblank, 0) ||
3752		    init_section_contains(con->data, 0)) {
3753			/*
3754			 * Please, consider moving the reported consoles out
3755			 * of the init section.
3756			 */
3757			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3758				con->name, con->index);
3759			unregister_console_locked(con);
3760		}
3761	}
3762	console_list_unlock();
3763
3764	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3765					console_cpu_notify);
3766	WARN_ON(ret < 0);
3767	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3768					console_cpu_notify, NULL);
3769	WARN_ON(ret < 0);
3770	printk_sysctl_init();
3771	return 0;
3772}
3773late_initcall(printk_late_init);
3774
3775#if defined CONFIG_PRINTK
3776/* If @con is specified, only wait for that console. Otherwise wait for all. */
3777static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3778{
3779	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3780	unsigned long remaining_jiffies = timeout_jiffies;
3781	struct console *c;
3782	u64 last_diff = 0;
3783	u64 printk_seq;
3784	short flags;
3785	int cookie;
3786	u64 diff;
3787	u64 seq;
3788
3789	might_sleep();
3790
3791	seq = prb_next_reserve_seq(prb);
3792
3793	/* Flush the consoles so that records up to @seq are printed. */
3794	console_lock();
3795	console_unlock();
3796
3797	for (;;) {
3798		unsigned long begin_jiffies;
3799		unsigned long slept_jiffies;
3800
3801		diff = 0;
3802
3803		/*
3804		 * Hold the console_lock to guarantee safe access to
3805		 * console->seq. Releasing console_lock flushes more
3806		 * records in case @seq is still not printed on all
3807		 * usable consoles.
3808		 */
3809		console_lock();
3810
3811		cookie = console_srcu_read_lock();
3812		for_each_console_srcu(c) {
3813			if (con && con != c)
3814				continue;
3815
3816			flags = console_srcu_read_flags(c);
3817
3818			/*
3819			 * If consoles are not usable, it cannot be expected
3820			 * that they make forward progress, so only increment
3821			 * @diff for usable consoles.
3822			 */
3823			if (!console_is_usable(c))
3824				continue;
3825
3826			if (flags & CON_NBCON) {
3827				printk_seq = nbcon_seq_read(c);
3828			} else {
3829				printk_seq = c->seq;
3830			}
3831
3832			if (printk_seq < seq)
3833				diff += seq - printk_seq;
3834		}
3835		console_srcu_read_unlock(cookie);
3836
3837		if (diff != last_diff && reset_on_progress)
3838			remaining_jiffies = timeout_jiffies;
3839
3840		console_unlock();
3841
3842		/* Note: @diff is 0 if there are no usable consoles. */
3843		if (diff == 0 || remaining_jiffies == 0)
3844			break;
3845
3846		/* msleep(1) might sleep much longer. Check time by jiffies. */
3847		begin_jiffies = jiffies;
3848		msleep(1);
3849		slept_jiffies = jiffies - begin_jiffies;
3850
3851		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3852
3853		last_diff = diff;
3854	}
3855
3856	return (diff == 0);
3857}
3858
3859/**
3860 * pr_flush() - Wait for printing threads to catch up.
3861 *
3862 * @timeout_ms:        The maximum time (in ms) to wait.
3863 * @reset_on_progress: Reset the timeout if forward progress is seen.
3864 *
3865 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3866 * represents infinite waiting.
3867 *
3868 * If @reset_on_progress is true, the timeout will be reset whenever any
3869 * printer has been seen to make some forward progress.
3870 *
3871 * Context: Process context. May sleep while acquiring console lock.
3872 * Return: true if all usable printers are caught up.
3873 */
3874static bool pr_flush(int timeout_ms, bool reset_on_progress)
3875{
3876	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3877}
3878
3879/*
3880 * Delayed printk version, for scheduler-internal messages:
3881 */
 
 
3882#define PRINTK_PENDING_WAKEUP	0x01
3883#define PRINTK_PENDING_OUTPUT	0x02
3884
3885static DEFINE_PER_CPU(int, printk_pending);
 
3886
3887static void wake_up_klogd_work_func(struct irq_work *irq_work)
3888{
3889	int pending = this_cpu_xchg(printk_pending, 0);
3890
3891	if (pending & PRINTK_PENDING_OUTPUT) {
3892		/* If trylock fails, someone else is doing the printing */
3893		if (console_trylock())
3894			console_unlock();
3895	}
3896
3897	if (pending & PRINTK_PENDING_WAKEUP)
3898		wake_up_interruptible(&log_wait);
3899}
3900
3901static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3902	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
 
 
3903
3904static void __wake_up_klogd(int val)
3905{
3906	if (!printk_percpu_data_ready())
3907		return;
3908
3909	preempt_disable();
3910	/*
3911	 * Guarantee any new records can be seen by tasks preparing to wait
3912	 * before this context checks if the wait queue is empty.
3913	 *
3914	 * The full memory barrier within wq_has_sleeper() pairs with the full
3915	 * memory barrier within set_current_state() of
3916	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3917	 * the waiter but before it has checked the wait condition.
3918	 *
3919	 * This pairs with devkmsg_read:A and syslog_print:A.
3920	 */
3921	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3922	    (val & PRINTK_PENDING_OUTPUT)) {
3923		this_cpu_or(printk_pending, val);
3924		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3925	}
3926	preempt_enable();
3927}
3928
3929/**
3930 * wake_up_klogd - Wake kernel logging daemon
3931 *
3932 * Use this function when new records have been added to the ringbuffer
3933 * and the console printing of those records has already occurred or is
3934 * known to be handled by some other context. This function will only
3935 * wake the logging daemon.
3936 *
3937 * Context: Any context.
3938 */
3939void wake_up_klogd(void)
3940{
3941	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3942}
3943
3944/**
3945 * defer_console_output - Wake kernel logging daemon and trigger
3946 *	console printing in a deferred context
3947 *
3948 * Use this function when new records have been added to the ringbuffer,
3949 * this context is responsible for console printing those records, but
3950 * the current context is not allowed to perform the console printing.
3951 * Trigger an irq_work context to perform the console printing. This
3952 * function also wakes the logging daemon.
3953 *
3954 * Context: Any context.
3955 */
3956void defer_console_output(void)
3957{
3958	/*
3959	 * New messages may have been added directly to the ringbuffer
3960	 * using vprintk_store(), so wake any waiters as well.
3961	 */
3962	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3963}
3964
3965void printk_trigger_flush(void)
3966{
3967	defer_console_output();
3968}
3969
3970int vprintk_deferred(const char *fmt, va_list args)
3971{
3972	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3973}
3974
3975int _printk_deferred(const char *fmt, ...)
3976{
 
3977	va_list args;
 
3978	int r;
3979
 
 
 
3980	va_start(args, fmt);
3981	r = vprintk_deferred(fmt, args);
3982	va_end(args);
3983
 
 
 
 
3984	return r;
3985}
3986
3987/*
3988 * printk rate limiting, lifted from the networking subsystem.
3989 *
3990 * This enforces a rate limit: not more than 10 kernel messages
3991 * every 5s to make a denial-of-service attack impossible.
3992 */
3993DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3994
3995int __printk_ratelimit(const char *func)
3996{
3997	return ___ratelimit(&printk_ratelimit_state, func);
3998}
3999EXPORT_SYMBOL(__printk_ratelimit);
4000
4001/**
4002 * printk_timed_ratelimit - caller-controlled printk ratelimiting
4003 * @caller_jiffies: pointer to caller's state
4004 * @interval_msecs: minimum interval between prints
4005 *
4006 * printk_timed_ratelimit() returns true if more than @interval_msecs
4007 * milliseconds have elapsed since the last time printk_timed_ratelimit()
4008 * returned true.
4009 */
4010bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4011			unsigned int interval_msecs)
4012{
4013	unsigned long elapsed = jiffies - *caller_jiffies;
4014
4015	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4016		return false;
4017
4018	*caller_jiffies = jiffies;
4019	return true;
 
4020}
4021EXPORT_SYMBOL(printk_timed_ratelimit);
4022
4023static DEFINE_SPINLOCK(dump_list_lock);
4024static LIST_HEAD(dump_list);
4025
4026/**
4027 * kmsg_dump_register - register a kernel log dumper.
4028 * @dumper: pointer to the kmsg_dumper structure
4029 *
4030 * Adds a kernel log dumper to the system. The dump callback in the
4031 * structure will be called when the kernel oopses or panics and must be
4032 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4033 */
4034int kmsg_dump_register(struct kmsg_dumper *dumper)
4035{
4036	unsigned long flags;
4037	int err = -EBUSY;
4038
4039	/* The dump callback needs to be set */
4040	if (!dumper->dump)
4041		return -EINVAL;
4042
4043	spin_lock_irqsave(&dump_list_lock, flags);
4044	/* Don't allow registering multiple times */
4045	if (!dumper->registered) {
4046		dumper->registered = 1;
4047		list_add_tail_rcu(&dumper->list, &dump_list);
4048		err = 0;
4049	}
4050	spin_unlock_irqrestore(&dump_list_lock, flags);
4051
4052	return err;
4053}
4054EXPORT_SYMBOL_GPL(kmsg_dump_register);
4055
4056/**
4057 * kmsg_dump_unregister - unregister a kmsg dumper.
4058 * @dumper: pointer to the kmsg_dumper structure
4059 *
4060 * Removes a dump device from the system. Returns zero on success and
4061 * %-EINVAL otherwise.
4062 */
4063int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4064{
4065	unsigned long flags;
4066	int err = -EINVAL;
4067
4068	spin_lock_irqsave(&dump_list_lock, flags);
4069	if (dumper->registered) {
4070		dumper->registered = 0;
4071		list_del_rcu(&dumper->list);
4072		err = 0;
4073	}
4074	spin_unlock_irqrestore(&dump_list_lock, flags);
4075	synchronize_rcu();
4076
4077	return err;
4078}
4079EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4080
4081static bool always_kmsg_dump;
4082module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4083
4084const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4085{
4086	switch (reason) {
4087	case KMSG_DUMP_PANIC:
4088		return "Panic";
4089	case KMSG_DUMP_OOPS:
4090		return "Oops";
4091	case KMSG_DUMP_EMERG:
4092		return "Emergency";
4093	case KMSG_DUMP_SHUTDOWN:
4094		return "Shutdown";
4095	default:
4096		return "Unknown";
4097	}
4098}
4099EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4100
4101/**
4102 * kmsg_dump - dump kernel log to kernel message dumpers.
4103 * @reason: the reason (oops, panic etc) for dumping
4104 *
4105 * Call each of the registered dumper's dump() callback, which can
4106 * retrieve the kmsg records with kmsg_dump_get_line() or
4107 * kmsg_dump_get_buffer().
4108 */
4109void kmsg_dump(enum kmsg_dump_reason reason)
4110{
4111	struct kmsg_dumper *dumper;
 
 
 
 
4112
4113	rcu_read_lock();
4114	list_for_each_entry_rcu(dumper, &dump_list, list) {
4115		enum kmsg_dump_reason max_reason = dumper->max_reason;
4116
4117		/*
4118		 * If client has not provided a specific max_reason, default
4119		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4120		 */
4121		if (max_reason == KMSG_DUMP_UNDEF) {
4122			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4123							KMSG_DUMP_OOPS;
4124		}
4125		if (reason > max_reason)
4126			continue;
4127
 
 
 
 
 
 
 
 
 
 
4128		/* invoke dumper which will iterate over records */
4129		dumper->dump(dumper, reason);
 
 
 
4130	}
4131	rcu_read_unlock();
4132}
4133
4134/**
4135 * kmsg_dump_get_line - retrieve one kmsg log line
4136 * @iter: kmsg dump iterator
4137 * @syslog: include the "<4>" prefixes
4138 * @line: buffer to copy the line to
4139 * @size: maximum size of the buffer
4140 * @len: length of line placed into buffer
4141 *
4142 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4143 * record, and copy one record into the provided buffer.
4144 *
4145 * Consecutive calls will return the next available record moving
4146 * towards the end of the buffer with the youngest messages.
4147 *
4148 * A return value of FALSE indicates that there are no more records to
4149 * read.
 
 
4150 */
4151bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4152			char *line, size_t size, size_t *len)
4153{
4154	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4155	struct printk_info info;
4156	unsigned int line_count;
4157	struct printk_record r;
4158	size_t l = 0;
4159	bool ret = false;
4160
4161	if (iter->cur_seq < min_seq)
4162		iter->cur_seq = min_seq;
4163
4164	prb_rec_init_rd(&r, &info, line, size);
 
 
 
 
4165
4166	/* Read text or count text lines? */
4167	if (line) {
4168		if (!prb_read_valid(prb, iter->cur_seq, &r))
4169			goto out;
4170		l = record_print_text(&r, syslog, printk_time);
4171	} else {
4172		if (!prb_read_valid_info(prb, iter->cur_seq,
4173					 &info, &line_count)) {
4174			goto out;
4175		}
4176		l = get_record_print_text_size(&info, line_count, syslog,
4177					       printk_time);
4178
4179	}
 
4180
4181	iter->cur_seq = r.info->seq + 1;
 
4182	ret = true;
4183out:
4184	if (len)
4185		*len = l;
4186	return ret;
4187}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4188EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4189
4190/**
4191 * kmsg_dump_get_buffer - copy kmsg log lines
4192 * @iter: kmsg dump iterator
4193 * @syslog: include the "<4>" prefixes
4194 * @buf: buffer to copy the line to
4195 * @size: maximum size of the buffer
4196 * @len_out: length of line placed into buffer
4197 *
4198 * Start at the end of the kmsg buffer and fill the provided buffer
4199 * with as many of the *youngest* kmsg records that fit into it.
4200 * If the buffer is large enough, all available kmsg records will be
4201 * copied with a single call.
4202 *
4203 * Consecutive calls will fill the buffer with the next block of
4204 * available older records, not including the earlier retrieved ones.
4205 *
4206 * A return value of FALSE indicates that there are no more records to
4207 * read.
4208 */
4209bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4210			  char *buf, size_t size, size_t *len_out)
4211{
4212	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4213	struct printk_info info;
4214	struct printk_record r;
4215	u64 seq;
 
4216	u64 next_seq;
4217	size_t len = 0;
 
 
4218	bool ret = false;
4219	bool time = printk_time;
4220
4221	if (!buf || !size)
4222		goto out;
4223
4224	if (iter->cur_seq < min_seq)
4225		iter->cur_seq = min_seq;
4226
4227	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4228		if (info.seq != iter->cur_seq) {
4229			/* messages are gone, move to first available one */
4230			iter->cur_seq = info.seq;
4231		}
4232	}
4233
4234	/* last entry */
4235	if (iter->cur_seq >= iter->next_seq)
 
4236		goto out;
 
4237
4238	/*
4239	 * Find first record that fits, including all following records,
4240	 * into the user-provided buffer for this dump. Pass in size-1
4241	 * because this function (by way of record_print_text()) will
4242	 * not write more than size-1 bytes of text into @buf.
4243	 */
4244	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4245				     size - 1, syslog, time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4246
4247	/*
4248	 * Next kmsg_dump_get_buffer() invocation will dump block of
4249	 * older records stored right before this one.
4250	 */
4251	next_seq = seq;
 
4252
4253	prb_rec_init_rd(&r, &info, buf, size);
 
 
4254
4255	prb_for_each_record(seq, prb, seq, &r) {
4256		if (r.info->seq >= iter->next_seq)
4257			break;
4258
4259		len += record_print_text(&r, syslog, time);
4260
4261		/* Adjust record to store to remaining buffer space. */
4262		prb_rec_init_rd(&r, &info, buf + len, size - len);
4263	}
4264
4265	iter->next_seq = next_seq;
 
4266	ret = true;
 
4267out:
4268	if (len_out)
4269		*len_out = len;
4270	return ret;
4271}
4272EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4273
4274/**
4275 * kmsg_dump_rewind - reset the iterator
4276 * @iter: kmsg dump iterator
4277 *
4278 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4279 * kmsg_dump_get_buffer() can be called again and used multiple
4280 * times within the same dumper.dump() callback.
 
 
4281 */
4282void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4283{
4284	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4285	iter->next_seq = prb_next_seq(prb);
 
 
4286}
4287EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4288
4289#endif
4290
4291#ifdef CONFIG_SMP
4292static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4293static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4294
4295/**
4296 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4297 *                            spinning lock is not owned by any CPU.
4298 *
4299 * Context: Any context.
 
 
4300 */
4301void __printk_cpu_sync_wait(void)
4302{
4303	do {
4304		cpu_relax();
4305	} while (atomic_read(&printk_cpu_sync_owner) != -1);
 
 
4306}
4307EXPORT_SYMBOL(__printk_cpu_sync_wait);
 
 
4308
4309/**
4310 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4311 *                               spinning lock.
4312 *
4313 * If no processor has the lock, the calling processor takes the lock and
4314 * becomes the owner. If the calling processor is already the owner of the
4315 * lock, this function succeeds immediately.
4316 *
4317 * Context: Any context. Expects interrupts to be disabled.
4318 * Return: 1 on success, otherwise 0.
 
 
4319 */
4320int __printk_cpu_sync_try_get(void)
4321{
4322	int cpu;
4323	int old;
4324
4325	cpu = smp_processor_id();
 
 
 
 
4326
4327	/*
4328	 * Guarantee loads and stores from this CPU when it is the lock owner
4329	 * are _not_ visible to the previous lock owner. This pairs with
4330	 * __printk_cpu_sync_put:B.
4331	 *
4332	 * Memory barrier involvement:
4333	 *
4334	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4335	 * then __printk_cpu_sync_put:A can never read from
4336	 * __printk_cpu_sync_try_get:B.
4337	 *
4338	 * Relies on:
4339	 *
4340	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4341	 * of the previous CPU
4342	 *    matching
4343	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4344	 * __printk_cpu_sync_try_get:B of this CPU
4345	 */
4346	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4347				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4348	if (old == -1) {
4349		/*
4350		 * This CPU is now the owner and begins loading/storing
4351		 * data: LMM(__printk_cpu_sync_try_get:B)
4352		 */
4353		return 1;
4354
4355	} else if (old == cpu) {
4356		/* This CPU is already the owner. */
4357		atomic_inc(&printk_cpu_sync_nested);
4358		return 1;
4359	}
4360
4361	return 0;
4362}
4363EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4364
4365/**
4366 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4367 *
4368 * The calling processor must be the owner of the lock.
4369 *
4370 * Context: Any context. Expects interrupts to be disabled.
 
4371 */
4372void __printk_cpu_sync_put(void)
4373{
4374	if (atomic_read(&printk_cpu_sync_nested)) {
4375		atomic_dec(&printk_cpu_sync_nested);
4376		return;
4377	}
4378
4379	/*
4380	 * This CPU is finished loading/storing data:
4381	 * LMM(__printk_cpu_sync_put:A)
4382	 */
4383
4384	/*
4385	 * Guarantee loads and stores from this CPU when it was the
4386	 * lock owner are visible to the next lock owner. This pairs
4387	 * with __printk_cpu_sync_try_get:A.
4388	 *
4389	 * Memory barrier involvement:
4390	 *
4391	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4392	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4393	 *
4394	 * Relies on:
4395	 *
4396	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4397	 * of this CPU
4398	 *    matching
4399	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4400	 * __printk_cpu_sync_try_get:B of the next CPU
4401	 */
4402	atomic_set_release(&printk_cpu_sync_owner,
4403			   -1); /* LMM(__printk_cpu_sync_put:B) */
4404}
4405EXPORT_SYMBOL(__printk_cpu_sync_put);
4406#endif /* CONFIG_SMP */
v3.15
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/aio.h>
  36#include <linux/syscalls.h>
  37#include <linux/kexec.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
  43#include <linux/notifier.h>
  44#include <linux/rculist.h>
  45#include <linux/poll.h>
  46#include <linux/irq_work.h>
  47#include <linux/utsname.h>
 
 
 
 
  48
  49#include <asm/uaccess.h>
 
  50
 
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/printk.h>
  53
 
  54#include "console_cmdline.h"
  55#include "braille.h"
 
  56
  57/* printk's without a loglevel use this.. */
  58#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
 
 
 
 
 
  59
  60/* We show everything that is MORE important than this.. */
  61#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
  62#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
  63
  64int console_printk[4] = {
  65	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
  66	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
  67	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
  68	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
  69};
  70
  71/*
  72 * Low level drivers may need that to know if they can schedule in
  73 * their unblank() callback or not. So let's export it.
  74 */
  75int oops_in_progress;
  76EXPORT_SYMBOL(oops_in_progress);
  77
  78/*
  79 * console_sem protects the console_drivers list, and also
  80 * provides serialisation for access to the entire console
  81 * driver system.
  82 */
  83static DEFINE_SEMAPHORE(console_sem);
  84struct console *console_drivers;
  85EXPORT_SYMBOL_GPL(console_drivers);
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87#ifdef CONFIG_LOCKDEP
  88static struct lockdep_map console_lock_dep_map = {
  89	.name = "console_lock"
  90};
 
 
 
 
 
 
  91#endif
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93/*
  94 * This is used for debugging the mess that is the VT code by
  95 * keeping track if we have the console semaphore held. It's
  96 * definitely not the perfect debug tool (we don't know if _WE_
  97 * hold it are racing, but it helps tracking those weird code
  98 * path in the console code where we end up in places I want
  99 * locked without the console sempahore held
 100 */
 101static int console_locked, console_suspended;
 102
 103/*
 104 * If exclusive_console is non-NULL then only this console is to be printed to.
 105 */
 106static struct console *exclusive_console;
 107
 108/*
 109 *	Array of consoles built from command line options (console=)
 110 */
 111
 112#define MAX_CMDLINECONSOLES 8
 113
 114static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 115
 116static int selected_console = -1;
 117static int preferred_console = -1;
 118int console_set_on_cmdline;
 119EXPORT_SYMBOL(console_set_on_cmdline);
 120
 121/* Flag: console code may call schedule() */
 122static int console_may_schedule;
 123
 
 
 
 
 
 
 
 124/*
 125 * The printk log buffer consists of a chain of concatenated variable
 126 * length records. Every record starts with a record header, containing
 127 * the overall length of the record.
 128 *
 129 * The heads to the first and last entry in the buffer, as well as the
 130 * sequence numbers of these both entries are maintained when messages
 131 * are stored..
 132 *
 133 * If the heads indicate available messages, the length in the header
 134 * tells the start next message. A length == 0 for the next message
 135 * indicates a wrap-around to the beginning of the buffer.
 136 *
 137 * Every record carries the monotonic timestamp in microseconds, as well as
 138 * the standard userspace syslog level and syslog facility. The usual
 139 * kernel messages use LOG_KERN; userspace-injected messages always carry
 140 * a matching syslog facility, by default LOG_USER. The origin of every
 141 * message can be reliably determined that way.
 142 *
 143 * The human readable log message directly follows the message header. The
 144 * length of the message text is stored in the header, the stored message
 145 * is not terminated.
 146 *
 147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 148 * to provide userspace with a machine-readable message context.
 149 *
 150 * Examples for well-defined, commonly used property names are:
 151 *   DEVICE=b12:8               device identifier
 152 *                                b12:8         block dev_t
 153 *                                c127:3        char dev_t
 154 *                                n8            netdev ifindex
 155 *                                +sound:card0  subsystem:devname
 156 *   SUBSYSTEM=pci              driver-core subsystem name
 157 *
 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 159 * follows directly after a '=' character. Every property is terminated by
 160 * a '\0' character. The last property is not terminated.
 161 *
 162 * Example of a message structure:
 163 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 164 *   0008  34 00                        record is 52 bytes long
 165 *   000a        0b 00                  text is 11 bytes long
 166 *   000c              1f 00            dictionary is 23 bytes long
 167 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 168 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 169 *         69 6e 65                     "ine"
 170 *   001b           44 45 56 49 43      "DEVIC"
 171 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 172 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 173 *         67                           "g"
 174 *   0032     00 00 00                  padding to next message header
 175 *
 176 * The 'struct printk_log' buffer header must never be directly exported to
 
 
 
 
 
 
 
 
 
 
 
 
 177 * userspace, it is a kernel-private implementation detail that might
 178 * need to be changed in the future, when the requirements change.
 179 *
 180 * /dev/kmsg exports the structured data in the following line format:
 181 *   "level,sequnum,timestamp;<message text>\n"
 
 
 
 182 *
 183 * The optional key/value pairs are attached as continuation lines starting
 184 * with a space character and terminated by a newline. All possible
 185 * non-prinatable characters are escaped in the "\xff" notation.
 186 *
 187 * Users of the export format should ignore possible additional values
 188 * separated by ',', and find the message after the ';' character.
 189 */
 190
 191enum log_flags {
 192	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 193	LOG_NEWLINE	= 2,	/* text ended with a newline */
 194	LOG_PREFIX	= 4,	/* text started with a prefix */
 195	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 196};
 197
 198struct printk_log {
 199	u64 ts_nsec;		/* timestamp in nanoseconds */
 200	u16 len;		/* length of entire record */
 201	u16 text_len;		/* length of text buffer */
 202	u16 dict_len;		/* length of dictionary buffer */
 203	u8 facility;		/* syslog facility */
 204	u8 flags:5;		/* internal record flags */
 205	u8 level:3;		/* syslog level */
 206};
 207
 208/*
 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
 210 * used in interesting ways to provide interlocking in console_unlock();
 211 */
 212static DEFINE_RAW_SPINLOCK(logbuf_lock);
 213
 214#ifdef CONFIG_PRINTK
 215DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 216/* the next printk record to read by syslog(READ) or /proc/kmsg */
 217static u64 syslog_seq;
 218static u32 syslog_idx;
 219static enum log_flags syslog_prev;
 220static size_t syslog_partial;
 
 221
 222/* index and sequence number of the first record stored in the buffer */
 223static u64 log_first_seq;
 224static u32 log_first_idx;
 225
 226/* index and sequence number of the next record to store in the buffer */
 227static u64 log_next_seq;
 228static u32 log_next_idx;
 229
 230/* the next printk record to write to the console */
 231static u64 console_seq;
 232static u32 console_idx;
 233static enum log_flags console_prev;
 234
 235/* the next printk record to read after the last 'clear' command */
 236static u64 clear_seq;
 237static u32 clear_idx;
 238
 239#define PREFIX_MAX		32
 240#define LOG_LINE_MAX		1024 - PREFIX_MAX
 241
 242/* record buffer */
 243#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 244#define LOG_ALIGN 4
 245#else
 246#define LOG_ALIGN __alignof__(struct printk_log)
 247#endif
 248#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 249static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 250static char *log_buf = __log_buf;
 251static u32 log_buf_len = __LOG_BUF_LEN;
 252
 253/* cpu currently holding logbuf_lock */
 254static volatile unsigned int logbuf_cpu = UINT_MAX;
 
 
 
 
 
 
 
 
 
 
 255
 256/* human readable text of the record */
 257static char *log_text(const struct printk_log *msg)
 
 
 
 
 
 
 
 
 
 
 258{
 259	return (char *)msg + sizeof(struct printk_log);
 260}
 261
 262/* optional key/value pair dictionary attached to the record */
 263static char *log_dict(const struct printk_log *msg)
 264{
 265	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 
 
 
 266}
 267
 268/* get record by index; idx must point to valid msg */
 269static struct printk_log *log_from_idx(u32 idx)
 270{
 271	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 
 
 272
 273	/*
 274	 * A length == 0 record is the end of buffer marker. Wrap around and
 275	 * read the message at the start of the buffer.
 276	 */
 277	if (!msg->len)
 278		return (struct printk_log *)log_buf;
 279	return msg;
 280}
 281
 282/* get next record; idx must point to valid msg */
 283static u32 log_next(u32 idx)
 284{
 285	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 286
 287	/* length == 0 indicates the end of the buffer; wrap */
 288	/*
 289	 * A length == 0 record is the end of buffer marker. Wrap around and
 290	 * read the message at the start of the buffer as *this* one, and
 291	 * return the one after that.
 292	 */
 293	if (!msg->len) {
 294		msg = (struct printk_log *)log_buf;
 295		return msg->len;
 296	}
 297	return idx + msg->len;
 298}
 299
 300/* insert record into the buffer, discard old ones, update heads */
 301static void log_store(int facility, int level,
 302		      enum log_flags flags, u64 ts_nsec,
 303		      const char *dict, u16 dict_len,
 304		      const char *text, u16 text_len)
 305{
 306	struct printk_log *msg;
 307	u32 size, pad_len;
 308
 309	/* number of '\0' padding bytes to next message */
 310	size = sizeof(struct printk_log) + text_len + dict_len;
 311	pad_len = (-size) & (LOG_ALIGN - 1);
 312	size += pad_len;
 
 
 
 313
 314	while (log_first_seq < log_next_seq) {
 315		u32 free;
 316
 317		if (log_next_idx > log_first_idx)
 318			free = max(log_buf_len - log_next_idx, log_first_idx);
 319		else
 320			free = log_first_idx - log_next_idx;
 321
 322		if (free >= size + sizeof(struct printk_log))
 323			break;
 324
 325		/* drop old messages until we have enough contiuous space */
 326		log_first_idx = log_next(log_first_idx);
 327		log_first_seq++;
 328	}
 329
 330	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 331		/*
 332		 * This message + an additional empty header does not fit
 333		 * at the end of the buffer. Add an empty header with len == 0
 334		 * to signify a wrap around.
 335		 */
 336		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 337		log_next_idx = 0;
 338	}
 339
 340	/* fill message */
 341	msg = (struct printk_log *)(log_buf + log_next_idx);
 342	memcpy(log_text(msg), text, text_len);
 343	msg->text_len = text_len;
 344	memcpy(log_dict(msg), dict, dict_len);
 345	msg->dict_len = dict_len;
 346	msg->facility = facility;
 347	msg->level = level & 7;
 348	msg->flags = flags & 0x1f;
 349	if (ts_nsec > 0)
 350		msg->ts_nsec = ts_nsec;
 351	else
 352		msg->ts_nsec = local_clock();
 353	memset(log_dict(msg) + dict_len, 0, pad_len);
 354	msg->len = size;
 355
 356	/* insert message */
 357	log_next_idx += msg->len;
 358	log_next_seq++;
 359}
 360
 361#ifdef CONFIG_SECURITY_DMESG_RESTRICT
 362int dmesg_restrict = 1;
 363#else
 364int dmesg_restrict;
 365#endif
 366
 367static int syslog_action_restricted(int type)
 368{
 369	if (dmesg_restrict)
 370		return 1;
 371	/*
 372	 * Unless restricted, we allow "read all" and "get buffer size"
 373	 * for everybody.
 374	 */
 375	return type != SYSLOG_ACTION_READ_ALL &&
 376	       type != SYSLOG_ACTION_SIZE_BUFFER;
 377}
 378
 379static int check_syslog_permissions(int type, bool from_file)
 380{
 381	/*
 382	 * If this is from /proc/kmsg and we've already opened it, then we've
 383	 * already done the capabilities checks at open time.
 384	 */
 385	if (from_file && type != SYSLOG_ACTION_OPEN)
 386		return 0;
 387
 388	if (syslog_action_restricted(type)) {
 389		if (capable(CAP_SYSLOG))
 390			return 0;
 391		/*
 392		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 393		 * a warning.
 394		 */
 395		if (capable(CAP_SYS_ADMIN)) {
 396			pr_warn_once("%s (%d): Attempt to access syslog with "
 397				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 398				     "(deprecated).\n",
 399				 current->comm, task_pid_nr(current));
 400			return 0;
 401		}
 402		return -EPERM;
 403	}
 
 404	return security_syslog(type);
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407
 408/* /dev/kmsg - userspace message inject/listen interface */
 409struct devkmsg_user {
 410	u64 seq;
 411	u32 idx;
 412	enum log_flags prev;
 413	struct mutex lock;
 414	char buf[8192];
 415};
 416
 417static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
 418			      unsigned long count, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 419{
 420	char *buf, *line;
 421	int i;
 422	int level = default_message_loglevel;
 423	int facility = 1;	/* LOG_USER */
 424	size_t len = iov_length(iv, count);
 
 
 425	ssize_t ret = len;
 426
 427	if (len > LOG_LINE_MAX)
 428		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 429	buf = kmalloc(len+1, GFP_KERNEL);
 430	if (buf == NULL)
 431		return -ENOMEM;
 432
 433	line = buf;
 434	for (i = 0; i < count; i++) {
 435		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
 436			ret = -EFAULT;
 437			goto out;
 438		}
 439		line += iv[i].iov_len;
 440	}
 441
 442	/*
 443	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 444	 * the decimal value represents 32bit, the lower 3 bit are the log
 445	 * level, the rest are the log facility.
 446	 *
 447	 * If no prefix or no userspace facility is specified, we
 448	 * enforce LOG_USER, to be able to reliably distinguish
 449	 * kernel-generated messages from userspace-injected ones.
 450	 */
 451	line = buf;
 452	if (line[0] == '<') {
 453		char *endp = NULL;
 
 454
 455		i = simple_strtoul(line+1, &endp, 10);
 456		if (endp && endp[0] == '>') {
 457			level = i & 7;
 458			if (i >> 3)
 459				facility = i >> 3;
 460			endp++;
 461			len -= endp - line;
 462			line = endp;
 463		}
 464	}
 465	line[len] = '\0';
 466
 467	printk_emit(facility, level, NULL, 0, "%s", line);
 468out:
 469	kfree(buf);
 470	return ret;
 471}
 472
 473static ssize_t devkmsg_read(struct file *file, char __user *buf,
 474			    size_t count, loff_t *ppos)
 475{
 476	struct devkmsg_user *user = file->private_data;
 477	struct printk_log *msg;
 478	u64 ts_usec;
 479	size_t i;
 480	char cont = '-';
 481	size_t len;
 482	ssize_t ret;
 483
 484	if (!user)
 485		return -EBADF;
 486
 487	ret = mutex_lock_interruptible(&user->lock);
 488	if (ret)
 489		return ret;
 490	raw_spin_lock_irq(&logbuf_lock);
 491	while (user->seq == log_next_seq) {
 492		if (file->f_flags & O_NONBLOCK) {
 493			ret = -EAGAIN;
 494			raw_spin_unlock_irq(&logbuf_lock);
 495			goto out;
 496		}
 497
 498		raw_spin_unlock_irq(&logbuf_lock);
 
 
 
 
 
 
 
 
 
 499		ret = wait_event_interruptible(log_wait,
 500					       user->seq != log_next_seq);
 
 501		if (ret)
 502			goto out;
 503		raw_spin_lock_irq(&logbuf_lock);
 504	}
 505
 506	if (user->seq < log_first_seq) {
 507		/* our last seen message is gone, return error and reset */
 508		user->idx = log_first_idx;
 509		user->seq = log_first_seq;
 510		ret = -EPIPE;
 511		raw_spin_unlock_irq(&logbuf_lock);
 512		goto out;
 513	}
 514
 515	msg = log_from_idx(user->idx);
 516	ts_usec = msg->ts_nsec;
 517	do_div(ts_usec, 1000);
 518
 519	/*
 520	 * If we couldn't merge continuation line fragments during the print,
 521	 * export the stored flags to allow an optional external merge of the
 522	 * records. Merging the records isn't always neccessarily correct, like
 523	 * when we hit a race during printing. In most cases though, it produces
 524	 * better readable output. 'c' in the record flags mark the first
 525	 * fragment of a line, '+' the following.
 526	 */
 527	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
 528		cont = 'c';
 529	else if ((msg->flags & LOG_CONT) ||
 530		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 531		cont = '+';
 532
 533	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
 534		      (msg->facility << 3) | msg->level,
 535		      user->seq, ts_usec, cont);
 536	user->prev = msg->flags;
 537
 538	/* escape non-printable characters */
 539	for (i = 0; i < msg->text_len; i++) {
 540		unsigned char c = log_text(msg)[i];
 541
 542		if (c < ' ' || c >= 127 || c == '\\')
 543			len += sprintf(user->buf + len, "\\x%02x", c);
 544		else
 545			user->buf[len++] = c;
 546	}
 547	user->buf[len++] = '\n';
 548
 549	if (msg->dict_len) {
 550		bool line = true;
 551
 552		for (i = 0; i < msg->dict_len; i++) {
 553			unsigned char c = log_dict(msg)[i];
 554
 555			if (line) {
 556				user->buf[len++] = ' ';
 557				line = false;
 558			}
 559
 560			if (c == '\0') {
 561				user->buf[len++] = '\n';
 562				line = true;
 563				continue;
 564			}
 565
 566			if (c < ' ' || c >= 127 || c == '\\') {
 567				len += sprintf(user->buf + len, "\\x%02x", c);
 568				continue;
 569			}
 570
 571			user->buf[len++] = c;
 572		}
 573		user->buf[len++] = '\n';
 574	}
 575
 576	user->idx = log_next(user->idx);
 577	user->seq++;
 578	raw_spin_unlock_irq(&logbuf_lock);
 579
 580	if (len > count) {
 581		ret = -EINVAL;
 582		goto out;
 583	}
 584
 585	if (copy_to_user(buf, user->buf, len)) {
 586		ret = -EFAULT;
 587		goto out;
 588	}
 589	ret = len;
 590out:
 591	mutex_unlock(&user->lock);
 592	return ret;
 593}
 594
 
 
 
 
 
 
 
 
 595static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 596{
 597	struct devkmsg_user *user = file->private_data;
 598	loff_t ret = 0;
 599
 600	if (!user)
 601		return -EBADF;
 602	if (offset)
 603		return -ESPIPE;
 604
 605	raw_spin_lock_irq(&logbuf_lock);
 606	switch (whence) {
 607	case SEEK_SET:
 608		/* the first record */
 609		user->idx = log_first_idx;
 610		user->seq = log_first_seq;
 611		break;
 612	case SEEK_DATA:
 613		/*
 614		 * The first record after the last SYSLOG_ACTION_CLEAR,
 615		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 616		 * changes no global state, and does not clear anything.
 617		 */
 618		user->idx = clear_idx;
 619		user->seq = clear_seq;
 620		break;
 621	case SEEK_END:
 622		/* after the last record */
 623		user->idx = log_next_idx;
 624		user->seq = log_next_seq;
 625		break;
 626	default:
 627		ret = -EINVAL;
 628	}
 629	raw_spin_unlock_irq(&logbuf_lock);
 630	return ret;
 631}
 632
 633static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 634{
 635	struct devkmsg_user *user = file->private_data;
 636	int ret = 0;
 637
 638	if (!user)
 639		return POLLERR|POLLNVAL;
 640
 641	poll_wait(file, &log_wait, wait);
 642
 643	raw_spin_lock_irq(&logbuf_lock);
 644	if (user->seq < log_next_seq) {
 645		/* return error when data has vanished underneath us */
 646		if (user->seq < log_first_seq)
 647			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 648		else
 649			ret = POLLIN|POLLRDNORM;
 650	}
 651	raw_spin_unlock_irq(&logbuf_lock);
 652
 653	return ret;
 654}
 655
 656static int devkmsg_open(struct inode *inode, struct file *file)
 657{
 658	struct devkmsg_user *user;
 659	int err;
 660
 
 
 
 661	/* write-only does not need any file context */
 662	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 663		return 0;
 664
 665	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 666				       SYSLOG_FROM_READER);
 667	if (err)
 668		return err;
 669
 670	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 671	if (!user)
 672		return -ENOMEM;
 673
 
 
 
 674	mutex_init(&user->lock);
 675
 676	raw_spin_lock_irq(&logbuf_lock);
 677	user->idx = log_first_idx;
 678	user->seq = log_first_seq;
 679	raw_spin_unlock_irq(&logbuf_lock);
 680
 681	file->private_data = user;
 682	return 0;
 683}
 684
 685static int devkmsg_release(struct inode *inode, struct file *file)
 686{
 687	struct devkmsg_user *user = file->private_data;
 688
 689	if (!user)
 690		return 0;
 691
 692	mutex_destroy(&user->lock);
 693	kfree(user);
 694	return 0;
 695}
 696
 697const struct file_operations kmsg_fops = {
 698	.open = devkmsg_open,
 699	.read = devkmsg_read,
 700	.aio_write = devkmsg_writev,
 701	.llseek = devkmsg_llseek,
 702	.poll = devkmsg_poll,
 703	.release = devkmsg_release,
 704};
 705
 706#ifdef CONFIG_KEXEC
 707/*
 708 * This appends the listed symbols to /proc/vmcore
 709 *
 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 711 * obtain access to symbols that are otherwise very difficult to locate.  These
 712 * symbols are specifically used so that utilities can access and extract the
 713 * dmesg log from a vmcore file after a crash.
 714 */
 715void log_buf_kexec_setup(void)
 716{
 717	VMCOREINFO_SYMBOL(log_buf);
 718	VMCOREINFO_SYMBOL(log_buf_len);
 719	VMCOREINFO_SYMBOL(log_first_idx);
 720	VMCOREINFO_SYMBOL(log_next_idx);
 
 
 721	/*
 722	 * Export struct printk_log size and field offsets. User space tools can
 723	 * parse it and detect any changes to structure down the line.
 724	 */
 725	VMCOREINFO_STRUCT_SIZE(printk_log);
 726	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 727	VMCOREINFO_OFFSET(printk_log, len);
 728	VMCOREINFO_OFFSET(printk_log, text_len);
 729	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731#endif
 732
 733/* requested log_buf_len from kernel cmdline */
 734static unsigned long __initdata new_log_buf_len;
 735
 736/* save requested log_buf_len since it's too early to process it */
 737static int __init log_buf_len_setup(char *str)
 738{
 739	unsigned size = memparse(str, &str);
 
 
 
 740
 741	if (size)
 742		size = roundup_pow_of_two(size);
 743	if (size > log_buf_len)
 744		new_log_buf_len = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	return 0;
 747}
 748early_param("log_buf_len", log_buf_len_setup);
 749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750void __init setup_log_buf(int early)
 751{
 
 
 
 
 
 
 
 
 752	unsigned long flags;
 753	char *new_log_buf;
 754	int free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755
 756	if (!new_log_buf_len)
 757		return;
 758
 759	if (early) {
 760		new_log_buf =
 761			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
 762	} else {
 763		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
 764	}
 765
 
 766	if (unlikely(!new_log_buf)) {
 767		pr_err("log_buf_len: %ld bytes not available\n",
 768			new_log_buf_len);
 769		return;
 770	}
 771
 772	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773	log_buf_len = new_log_buf_len;
 774	log_buf = new_log_buf;
 775	new_log_buf_len = 0;
 776	free = __LOG_BUF_LEN - log_next_idx;
 777	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 778	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 779
 780	pr_info("log_buf_len: %d\n", log_buf_len);
 781	pr_info("early log buf free: %d(%d%%)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782		free, (free * 100) / __LOG_BUF_LEN);
 
 
 
 
 
 
 783}
 784
 785static bool __read_mostly ignore_loglevel;
 786
 787static int __init ignore_loglevel_setup(char *str)
 788{
 789	ignore_loglevel = 1;
 790	pr_info("debug: ignoring loglevel setting.\n");
 791
 792	return 0;
 793}
 794
 795early_param("ignore_loglevel", ignore_loglevel_setup);
 796module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 797MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
 798	"print all kernel messages to the console.");
 
 
 
 
 
 799
 800#ifdef CONFIG_BOOT_PRINTK_DELAY
 801
 802static int boot_delay; /* msecs delay after each printk during bootup */
 803static unsigned long long loops_per_msec;	/* based on boot_delay */
 804
 805static int __init boot_delay_setup(char *str)
 806{
 807	unsigned long lpj;
 808
 809	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 810	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 811
 812	get_option(&str, &boot_delay);
 813	if (boot_delay > 10 * 1000)
 814		boot_delay = 0;
 815
 816	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
 817		"HZ: %d, loops_per_msec: %llu\n",
 818		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
 819	return 0;
 820}
 821early_param("boot_delay", boot_delay_setup);
 822
 823static void boot_delay_msec(int level)
 824{
 825	unsigned long long k;
 826	unsigned long timeout;
 827
 828	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
 829		|| (level >= console_loglevel && !ignore_loglevel)) {
 830		return;
 831	}
 832
 833	k = (unsigned long long)loops_per_msec * boot_delay;
 834
 835	timeout = jiffies + msecs_to_jiffies(boot_delay);
 836	while (k) {
 837		k--;
 838		cpu_relax();
 839		/*
 840		 * use (volatile) jiffies to prevent
 841		 * compiler reduction; loop termination via jiffies
 842		 * is secondary and may or may not happen.
 843		 */
 844		if (time_after(jiffies, timeout))
 845			break;
 846		touch_nmi_watchdog();
 847	}
 848}
 849#else
 850static inline void boot_delay_msec(int level)
 851{
 852}
 853#endif
 854
 855#if defined(CONFIG_PRINTK_TIME)
 856static bool printk_time = 1;
 857#else
 858static bool printk_time;
 859#endif
 860module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
 861
 
 
 
 
 
 862static size_t print_time(u64 ts, char *buf)
 863{
 864	unsigned long rem_nsec;
 865
 866	if (!printk_time)
 867		return 0;
 
 868
 869	rem_nsec = do_div(ts, 1000000000);
 
 
 
 870
 871	if (!buf)
 872		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 873
 874	return sprintf(buf, "[%5lu.%06lu] ",
 875		       (unsigned long)ts, rem_nsec / 1000);
 876}
 
 
 
 877
 878static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
 879{
 880	size_t len = 0;
 881	unsigned int prefix = (msg->facility << 3) | msg->level;
 882
 883	if (syslog) {
 884		if (buf) {
 885			len += sprintf(buf, "<%u>", prefix);
 886		} else {
 887			len += 3;
 888			if (prefix > 999)
 889				len += 3;
 890			else if (prefix > 99)
 891				len += 2;
 892			else if (prefix > 9)
 893				len++;
 894		}
 895	}
 896
 897	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
 898	return len;
 899}
 900
 901static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
 902			     bool syslog, char *buf, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903{
 904	const char *text = log_text(msg);
 905	size_t text_size = msg->text_len;
 906	bool prefix = true;
 907	bool newline = true;
 
 
 
 908	size_t len = 0;
 
 909
 910	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
 911		prefix = false;
 
 
 
 
 912
 913	if (msg->flags & LOG_CONT) {
 914		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
 915			prefix = false;
 916
 917		if (!(msg->flags & LOG_NEWLINE))
 918			newline = false;
 919	}
 920
 921	do {
 922		const char *next = memchr(text, '\n', text_size);
 923		size_t text_len;
 924
 
 
 
 
 
 
 
 
 925		if (next) {
 926			text_len = next - text;
 927			next++;
 928			text_size -= next - text;
 929		} else {
 930			text_len = text_size;
 
 
 
 931		}
 932
 933		if (buf) {
 934			if (print_prefix(msg, syslog, NULL) +
 935			    text_len + 1 >= size - len)
 
 
 
 
 936				break;
 937
 938			if (prefix)
 939				len += print_prefix(msg, syslog, buf + len);
 940			memcpy(buf + len, text, text_len);
 941			len += text_len;
 942			if (next || newline)
 943				buf[len++] = '\n';
 944		} else {
 945			/* SYSLOG_ACTION_* buffer size only calculation */
 946			if (prefix)
 947				len += print_prefix(msg, syslog, NULL);
 948			len += text_len;
 949			if (next || newline)
 950				len++;
 
 
 
 
 
 
 
 
 951		}
 952
 953		prefix = true;
 954		text = next;
 955	} while (text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957	return len;
 958}
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960static int syslog_print(char __user *buf, int size)
 961{
 
 
 962	char *text;
 963	struct printk_log *msg;
 964	int len = 0;
 
 965
 966	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
 967	if (!text)
 968		return -ENOMEM;
 969
 970	while (size > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971		size_t n;
 972		size_t skip;
 
 973
 974		raw_spin_lock_irq(&logbuf_lock);
 975		if (syslog_seq < log_first_seq) {
 976			/* messages are gone, move to first one */
 977			syslog_seq = log_first_seq;
 978			syslog_idx = log_first_idx;
 979			syslog_prev = 0;
 980			syslog_partial = 0;
 981		}
 982		if (syslog_seq == log_next_seq) {
 983			raw_spin_unlock_irq(&logbuf_lock);
 984			break;
 985		}
 
 
 
 986
 987		skip = syslog_partial;
 988		msg = log_from_idx(syslog_idx);
 989		n = msg_print_text(msg, syslog_prev, true, text,
 990				   LOG_LINE_MAX + PREFIX_MAX);
 991		if (n - syslog_partial <= size) {
 992			/* message fits into buffer, move forward */
 993			syslog_idx = log_next(syslog_idx);
 994			syslog_seq++;
 995			syslog_prev = msg->flags;
 996			n -= syslog_partial;
 997			syslog_partial = 0;
 998		} else if (!len){
 999			/* partial read(), remember position */
1000			n = size;
1001			syslog_partial += n;
1002		} else
1003			n = 0;
1004		raw_spin_unlock_irq(&logbuf_lock);
1005
1006		if (!n)
1007			break;
1008
1009		if (copy_to_user(buf, text + skip, n)) {
 
 
 
 
1010			if (!len)
1011				len = -EFAULT;
1012			break;
1013		}
1014
1015		len += n;
1016		size -= n;
1017		buf += n;
1018	}
1019
 
1020	kfree(text);
1021	return len;
1022}
1023
1024static int syslog_print_all(char __user *buf, int size, bool clear)
1025{
 
 
1026	char *text;
1027	int len = 0;
 
 
1028
1029	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030	if (!text)
1031		return -ENOMEM;
1032
1033	raw_spin_lock_irq(&logbuf_lock);
1034	if (buf) {
1035		u64 next_seq;
1036		u64 seq;
1037		u32 idx;
1038		enum log_flags prev;
 
 
 
 
 
 
 
 
1039
1040		if (clear_seq < log_first_seq) {
1041			/* messages are gone, move to first available one */
1042			clear_seq = log_first_seq;
1043			clear_idx = log_first_idx;
1044		}
1045
1046		/*
1047		 * Find first record that fits, including all following records,
1048		 * into the user-provided buffer for this dump.
1049		 */
1050		seq = clear_seq;
1051		idx = clear_idx;
1052		prev = 0;
1053		while (seq < log_next_seq) {
1054			struct printk_log *msg = log_from_idx(idx);
1055
1056			len += msg_print_text(msg, prev, true, NULL, 0);
1057			prev = msg->flags;
1058			idx = log_next(idx);
1059			seq++;
1060		}
1061
1062		/* move first record forward until length fits into the buffer */
1063		seq = clear_seq;
1064		idx = clear_idx;
1065		prev = 0;
1066		while (len > size && seq < log_next_seq) {
1067			struct printk_log *msg = log_from_idx(idx);
1068
1069			len -= msg_print_text(msg, prev, true, NULL, 0);
1070			prev = msg->flags;
1071			idx = log_next(idx);
1072			seq++;
1073		}
1074
1075		/* last message fitting into this dump */
1076		next_seq = log_next_seq;
1077
1078		len = 0;
1079		while (len >= 0 && seq < next_seq) {
1080			struct printk_log *msg = log_from_idx(idx);
1081			int textlen;
1082
1083			textlen = msg_print_text(msg, prev, true, text,
1084						 LOG_LINE_MAX + PREFIX_MAX);
1085			if (textlen < 0) {
1086				len = textlen;
1087				break;
1088			}
1089			idx = log_next(idx);
1090			seq++;
1091			prev = msg->flags;
1092
1093			raw_spin_unlock_irq(&logbuf_lock);
1094			if (copy_to_user(buf + len, text, textlen))
1095				len = -EFAULT;
1096			else
1097				len += textlen;
1098			raw_spin_lock_irq(&logbuf_lock);
1099
1100			if (seq < log_first_seq) {
1101				/* messages are gone, move to next one */
1102				seq = log_first_seq;
1103				idx = log_first_idx;
1104				prev = 0;
1105			}
1106		}
1107	}
1108
1109	if (clear) {
1110		clear_seq = log_next_seq;
1111		clear_idx = log_next_idx;
 
1112	}
1113	raw_spin_unlock_irq(&logbuf_lock);
1114
1115	kfree(text);
1116	return len;
1117}
1118
1119int do_syslog(int type, char __user *buf, int len, bool from_file)
 
 
 
 
 
 
 
1120{
 
1121	bool clear = false;
1122	static int saved_console_loglevel = -1;
1123	int error;
1124
1125	error = check_syslog_permissions(type, from_file);
1126	if (error)
1127		goto out;
1128
1129	error = security_syslog(type);
1130	if (error)
1131		return error;
1132
1133	switch (type) {
1134	case SYSLOG_ACTION_CLOSE:	/* Close log */
1135		break;
1136	case SYSLOG_ACTION_OPEN:	/* Open log */
1137		break;
1138	case SYSLOG_ACTION_READ:	/* Read from log */
1139		error = -EINVAL;
1140		if (!buf || len < 0)
1141			goto out;
1142		error = 0;
1143		if (!len)
1144			goto out;
1145		if (!access_ok(VERIFY_WRITE, buf, len)) {
1146			error = -EFAULT;
1147			goto out;
1148		}
1149		error = wait_event_interruptible(log_wait,
1150						 syslog_seq != log_next_seq);
1151		if (error)
1152			goto out;
1153		error = syslog_print(buf, len);
1154		break;
1155	/* Read/clear last kernel messages */
1156	case SYSLOG_ACTION_READ_CLEAR:
1157		clear = true;
1158		/* FALL THRU */
1159	/* Read last kernel messages */
1160	case SYSLOG_ACTION_READ_ALL:
1161		error = -EINVAL;
1162		if (!buf || len < 0)
1163			goto out;
1164		error = 0;
1165		if (!len)
1166			goto out;
1167		if (!access_ok(VERIFY_WRITE, buf, len)) {
1168			error = -EFAULT;
1169			goto out;
1170		}
1171		error = syslog_print_all(buf, len, clear);
1172		break;
1173	/* Clear ring buffer */
1174	case SYSLOG_ACTION_CLEAR:
1175		syslog_print_all(NULL, 0, true);
1176		break;
1177	/* Disable logging to console */
1178	case SYSLOG_ACTION_CONSOLE_OFF:
1179		if (saved_console_loglevel == -1)
1180			saved_console_loglevel = console_loglevel;
1181		console_loglevel = minimum_console_loglevel;
1182		break;
1183	/* Enable logging to console */
1184	case SYSLOG_ACTION_CONSOLE_ON:
1185		if (saved_console_loglevel != -1) {
1186			console_loglevel = saved_console_loglevel;
1187			saved_console_loglevel = -1;
1188		}
1189		break;
1190	/* Set level of messages printed to console */
1191	case SYSLOG_ACTION_CONSOLE_LEVEL:
1192		error = -EINVAL;
1193		if (len < 1 || len > 8)
1194			goto out;
1195		if (len < minimum_console_loglevel)
1196			len = minimum_console_loglevel;
1197		console_loglevel = len;
1198		/* Implicitly re-enable logging to console */
1199		saved_console_loglevel = -1;
1200		error = 0;
1201		break;
1202	/* Number of chars in the log buffer */
1203	case SYSLOG_ACTION_SIZE_UNREAD:
1204		raw_spin_lock_irq(&logbuf_lock);
1205		if (syslog_seq < log_first_seq) {
 
 
 
 
 
1206			/* messages are gone, move to first one */
1207			syslog_seq = log_first_seq;
1208			syslog_idx = log_first_idx;
1209			syslog_prev = 0;
1210			syslog_partial = 0;
1211		}
1212		if (from_file) {
1213			/*
1214			 * Short-cut for poll(/"proc/kmsg") which simply checks
1215			 * for pending data, not the size; return the count of
1216			 * records, not the length.
1217			 */
1218			error = log_next_idx - syslog_idx;
1219		} else {
1220			u64 seq = syslog_seq;
1221			u32 idx = syslog_idx;
1222			enum log_flags prev = syslog_prev;
1223
1224			error = 0;
1225			while (seq < log_next_seq) {
1226				struct printk_log *msg = log_from_idx(idx);
1227
1228				error += msg_print_text(msg, prev, true, NULL, 0);
1229				idx = log_next(idx);
1230				seq++;
1231				prev = msg->flags;
1232			}
1233			error -= syslog_partial;
1234		}
1235		raw_spin_unlock_irq(&logbuf_lock);
1236		break;
1237	/* Size of the log buffer */
1238	case SYSLOG_ACTION_SIZE_BUFFER:
1239		error = log_buf_len;
1240		break;
1241	default:
1242		error = -EINVAL;
1243		break;
1244	}
1245out:
1246	return error;
1247}
1248
1249SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250{
1251	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252}
1253
1254/*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259static void call_console_drivers(int level, const char *text, size_t len)
1260{
1261	struct console *con;
1262
1263	trace_console(text, len);
 
 
 
 
 
 
 
 
1264
1265	if (level >= console_loglevel && !ignore_loglevel)
1266		return;
1267	if (!console_drivers)
1268		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269
1270	for_each_console(con) {
1271		if (exclusive_console && con != exclusive_console)
1272			continue;
1273		if (!(con->flags & CON_ENABLED))
1274			continue;
1275		if (!con->write)
1276			continue;
1277		if (!cpu_online(smp_processor_id()) &&
1278		    !(con->flags & CON_ANYTIME))
1279			continue;
1280		con->write(con, text, len);
1281	}
1282}
1283
1284/*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
 
 
 
 
 
 
 
 
 
 
 
1288 */
1289static void zap_locks(void)
1290{
1291	static unsigned long oops_timestamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292
1293	if (time_after_eq(jiffies, oops_timestamp) &&
1294			!time_after(jiffies, oops_timestamp + 30 * HZ))
1295		return;
 
1296
1297	oops_timestamp = jiffies;
 
 
 
1298
1299	debug_locks_off();
1300	/* If a crash is occurring, make sure we can't deadlock */
1301	raw_spin_lock_init(&logbuf_lock);
1302	/* And make sure that we print immediately */
1303	sema_init(&console_sem, 1);
1304}
1305
1306/* Check if we have any console registered that can be called early in boot. */
1307static int have_callable_console(void)
1308{
1309	struct console *con;
1310
1311	for_each_console(con)
1312		if (con->flags & CON_ANYTIME)
1313			return 1;
 
 
1314
1315	return 0;
 
 
 
 
 
1316}
1317
1318/*
1319 * Can we actually use the console at this time on this cpu?
 
 
 
 
 
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326static inline int can_use_console(unsigned int cpu)
1327{
1328	return cpu_online(cpu) || have_callable_console();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329}
1330
1331/*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341static int console_trylock_for_printk(unsigned int cpu)
1342	__releases(&logbuf_lock)
1343{
1344	int retval = 0, wake = 0;
 
 
1345
1346	if (console_trylock()) {
1347		retval = 1;
 
 
 
 
 
1348
1349		/*
1350		 * If we can't use the console, we need to release
1351		 * the console semaphore by hand to avoid flushing
1352		 * the buffer. We need to hold the console semaphore
1353		 * in order to do this test safely.
1354		 */
1355		if (!can_use_console(cpu)) {
1356			console_locked = 0;
1357			wake = 1;
1358			retval = 0;
1359		}
1360	}
1361	logbuf_cpu = UINT_MAX;
1362	raw_spin_unlock(&logbuf_lock);
1363	if (wake)
1364		up(&console_sem);
1365	return retval;
1366}
1367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368int printk_delay_msec __read_mostly;
1369
1370static inline void printk_delay(void)
1371{
 
 
1372	if (unlikely(printk_delay_msec)) {
1373		int m = printk_delay_msec;
1374
1375		while (m--) {
1376			mdelay(1);
1377			touch_nmi_watchdog();
1378		}
1379	}
1380}
1381
1382/*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388static struct cont {
1389	char buf[LOG_LINE_MAX];
1390	size_t len;			/* length == 0 means unused buffer */
1391	size_t cons;			/* bytes written to console */
1392	struct task_struct *owner;	/* task of first print*/
1393	u64 ts_nsec;			/* time of first print */
1394	u8 level;			/* log level of first message */
1395	u8 facility;			/* log level of first message */
1396	enum log_flags flags;		/* prefix, newline flags */
1397	bool flushed:1;			/* buffer sealed and committed */
1398} cont;
1399
1400static void cont_flush(enum log_flags flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401{
1402	if (cont.flushed)
1403		return;
1404	if (cont.len == 0)
1405		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1406
1407	if (cont.cons) {
1408		/*
1409		 * If a fragment of this line was directly flushed to the
1410		 * console; wait for the console to pick up the rest of the
1411		 * line. LOG_NOCONS suppresses a duplicated output.
1412		 */
1413		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415		cont.flags = flags;
1416		cont.flushed = true;
1417	} else {
1418		/*
1419		 * If no fragment of this line ever reached the console,
1420		 * just submit it to the store and free the buffer.
1421		 */
1422		log_store(cont.facility, cont.level, flags, 0,
1423			  NULL, 0, cont.buf, cont.len);
1424		cont.len = 0;
1425	}
 
 
1426}
1427
1428static bool cont_add(int facility, int level, const char *text, size_t len)
 
 
 
1429{
1430	if (cont.len && cont.flushed)
1431		return false;
 
1432
1433	if (cont.len + len > sizeof(cont.buf)) {
1434		/* the line gets too long, split it up in separate records */
1435		cont_flush(LOG_CONT);
1436		return false;
1437	}
1438
1439	if (!cont.len) {
1440		cont.facility = facility;
1441		cont.level = level;
1442		cont.owner = current;
1443		cont.ts_nsec = local_clock();
1444		cont.flags = 0;
1445		cont.cons = 0;
1446		cont.flushed = false;
 
1447	}
1448
1449	memcpy(cont.buf + cont.len, text, len);
1450	cont.len += len;
1451
1452	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453		cont_flush(LOG_CONT);
1454
1455	return true;
1456}
1457
1458static size_t cont_print_text(char *text, size_t size)
1459{
1460	size_t textlen = 0;
1461	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464		textlen += print_time(cont.ts_nsec, text);
1465		size -= textlen;
1466	}
1467
1468	len = cont.len - cont.cons;
1469	if (len > 0) {
1470		if (len+1 > size)
1471			len = size-1;
1472		memcpy(text + textlen, cont.buf + cont.cons, len);
1473		textlen += len;
1474		cont.cons = cont.len;
1475	}
1476
1477	if (cont.flushed) {
1478		if (cont.flags & LOG_NEWLINE)
1479			text[textlen++] = '\n';
1480		/* got everything, release buffer */
1481		cont.len = 0;
1482	}
1483	return textlen;
1484}
1485
1486asmlinkage int vprintk_emit(int facility, int level,
1487			    const char *dict, size_t dictlen,
1488			    const char *fmt, va_list args)
1489{
1490	static int recursion_bug;
1491	static char textbuf[LOG_LINE_MAX];
1492	char *text = textbuf;
1493	size_t text_len;
1494	enum log_flags lflags = 0;
1495	unsigned long flags;
1496	int this_cpu;
1497	int printed_len = 0;
1498
1499	boot_delay_msec(level);
1500	printk_delay();
1501
1502	/* This stops the holder of console_sem just where we want him */
1503	local_irq_save(flags);
1504	this_cpu = smp_processor_id();
1505
1506	/*
1507	 * Ouch, printk recursed into itself!
 
 
 
1508	 */
1509	if (unlikely(logbuf_cpu == this_cpu)) {
1510		/*
1511		 * If a crash is occurring during printk() on this CPU,
1512		 * then try to get the crash message out but make sure
1513		 * we can't deadlock. Otherwise just return to avoid the
1514		 * recursion and return - but flag the recursion so that
1515		 * it can be printed at the next appropriate moment:
1516		 */
1517		if (!oops_in_progress && !lockdep_recursing(current)) {
1518			recursion_bug = 1;
1519			goto out_restore_irqs;
1520		}
1521		zap_locks();
1522	}
1523
1524	lockdep_off();
1525	raw_spin_lock(&logbuf_lock);
1526	logbuf_cpu = this_cpu;
1527
1528	if (recursion_bug) {
1529		static const char recursion_msg[] =
1530			"BUG: recent printk recursion!";
1531
1532		recursion_bug = 0;
1533		printed_len += strlen(recursion_msg);
1534		/* emit KERN_CRIT message */
1535		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536			  NULL, 0, recursion_msg, printed_len);
 
 
 
 
 
 
 
 
 
 
 
 
1537	}
1538
1539	/*
1540	 * The printf needs to come first; we need the syslog
1541	 * prefix which might be passed-in as a parameter.
 
1542	 */
1543	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
 
 
 
1544
1545	/* mark and strip a trailing newline */
1546	if (text_len && text[text_len-1] == '\n') {
1547		text_len--;
1548		lflags |= LOG_NEWLINE;
1549	}
1550
1551	/* strip kernel syslog prefix and extract log level or control flags */
1552	if (facility == 0) {
1553		int kern_level = printk_get_level(text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555		if (kern_level) {
1556			const char *end_of_header = printk_skip_level(text);
1557			switch (kern_level) {
1558			case '0' ... '7':
1559				if (level == -1)
1560					level = kern_level - '0';
1561			case 'd':	/* KERN_DEFAULT */
1562				lflags |= LOG_PREFIX;
1563			}
1564			/*
1565			 * No need to check length here because vscnprintf
1566			 * put '\0' at the end of the string. Only valid and
1567			 * newly printed level is detected.
1568			 */
1569			text_len -= end_of_header - text;
1570			text = (char *)end_of_header;
1571		}
1572	}
1573
1574	if (level == -1)
1575		level = default_message_loglevel;
1576
1577	if (dict)
1578		lflags |= LOG_PREFIX|LOG_NEWLINE;
1579
1580	if (!(lflags & LOG_NEWLINE)) {
 
1581		/*
1582		 * Flush the conflicting buffer. An earlier newline was missing,
1583		 * or another task also prints continuation lines.
 
 
 
1584		 */
1585		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1586			cont_flush(LOG_NEWLINE);
1587
1588		/* buffer line if possible, otherwise store it right away */
1589		if (!cont_add(facility, level, text, text_len))
1590			log_store(facility, level, lflags | LOG_CONT, 0,
1591				  dict, dictlen, text, text_len);
1592	} else {
1593		bool stored = false;
1594
1595		/*
1596		 * If an earlier newline was missing and it was the same task,
1597		 * either merge it with the current buffer and flush, or if
1598		 * there was a race with interrupts (prefix == true) then just
1599		 * flush it out and store this line separately.
1600		 * If the preceding printk was from a different task and missed
1601		 * a newline, flush and append the newline.
1602		 */
1603		if (cont.len) {
1604			if (cont.owner == current && !(lflags & LOG_PREFIX))
1605				stored = cont_add(facility, level, text,
1606						  text_len);
1607			cont_flush(LOG_NEWLINE);
1608		}
1609
1610		if (!stored)
1611			log_store(facility, level, lflags, 0,
1612				  dict, dictlen, text, text_len);
1613	}
1614	printed_len += text_len;
1615
1616	/*
1617	 * Try to acquire and then immediately release the console semaphore.
1618	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1619	 * users.
1620	 *
1621	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1622	 * regardless of whether it actually gets the console semaphore or not.
1623	 */
1624	if (console_trylock_for_printk(this_cpu))
1625		console_unlock();
1626
1627	lockdep_on();
1628out_restore_irqs:
1629	local_irq_restore(flags);
1630
1631	return printed_len;
1632}
1633EXPORT_SYMBOL(vprintk_emit);
1634
1635asmlinkage int vprintk(const char *fmt, va_list args)
1636{
1637	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1638}
1639EXPORT_SYMBOL(vprintk);
1640
1641asmlinkage int printk_emit(int facility, int level,
1642			   const char *dict, size_t dictlen,
1643			   const char *fmt, ...)
1644{
1645	va_list args;
1646	int r;
1647
1648	va_start(args, fmt);
1649	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1650	va_end(args);
1651
1652	return r;
1653}
1654EXPORT_SYMBOL(printk_emit);
1655
1656/**
1657 * printk - print a kernel message
1658 * @fmt: format string
1659 *
1660 * This is printk(). It can be called from any context. We want it to work.
1661 *
1662 * We try to grab the console_lock. If we succeed, it's easy - we log the
1663 * output and call the console drivers.  If we fail to get the semaphore, we
1664 * place the output into the log buffer and return. The current holder of
1665 * the console_sem will notice the new output in console_unlock(); and will
1666 * send it to the consoles before releasing the lock.
1667 *
1668 * One effect of this deferred printing is that code which calls printk() and
1669 * then changes console_loglevel may break. This is because console_loglevel
1670 * is inspected when the actual printing occurs.
1671 *
1672 * See also:
1673 * printf(3)
1674 *
1675 * See the vsnprintf() documentation for format string extensions over C99.
1676 */
1677asmlinkage __visible int printk(const char *fmt, ...)
1678{
1679	va_list args;
1680	int r;
1681
1682#ifdef CONFIG_KGDB_KDB
1683	if (unlikely(kdb_trap_printk)) {
1684		va_start(args, fmt);
1685		r = vkdb_printf(fmt, args);
1686		va_end(args);
1687		return r;
1688	}
1689#endif
1690	va_start(args, fmt);
1691	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1692	va_end(args);
1693
1694	return r;
1695}
1696EXPORT_SYMBOL(printk);
1697
1698#else /* CONFIG_PRINTK */
 
 
1699
1700#define LOG_LINE_MAX		0
1701#define PREFIX_MAX		0
1702#define LOG_LINE_MAX 0
1703static u64 syslog_seq;
1704static u32 syslog_idx;
1705static u64 console_seq;
1706static u32 console_idx;
1707static enum log_flags syslog_prev;
1708static u64 log_first_seq;
1709static u32 log_first_idx;
1710static u64 log_next_seq;
1711static enum log_flags console_prev;
1712static struct cont {
1713	size_t len;
1714	size_t cons;
1715	u8 level;
1716	bool flushed:1;
1717} cont;
1718static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1719static u32 log_next(u32 idx) { return 0; }
1720static void call_console_drivers(int level, const char *text, size_t len) {}
1721static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1722			     bool syslog, char *buf, size_t size) { return 0; }
1723static size_t cont_print_text(char *text, size_t size) { return 0; }
1724
1725#endif /* CONFIG_PRINTK */
1726
1727#ifdef CONFIG_EARLY_PRINTK
1728struct console *early_console;
1729
1730void early_vprintk(const char *fmt, va_list ap)
1731{
1732	if (early_console) {
1733		char buf[512];
1734		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1735
1736		early_console->write(early_console, buf, n);
1737	}
1738}
1739
1740asmlinkage __visible void early_printk(const char *fmt, ...)
1741{
1742	va_list ap;
 
 
 
 
 
1743
1744	va_start(ap, fmt);
1745	early_vprintk(fmt, ap);
1746	va_end(ap);
 
 
1747}
1748#endif
1749
1750static int __add_preferred_console(char *name, int idx, char *options,
1751				   char *brl_options)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752{
1753	struct console_cmdline *c;
1754	int i;
1755
1756	/*
 
 
 
 
 
 
 
 
1757	 *	See if this tty is not yet registered, and
1758	 *	if we have a slot free.
1759	 */
1760	for (i = 0, c = console_cmdline;
1761	     i < MAX_CMDLINECONSOLES && c->name[0];
1762	     i++, c++) {
1763		if (strcmp(c->name, name) == 0 && c->index == idx) {
1764			if (!brl_options)
1765				selected_console = i;
 
1766			return 0;
1767		}
1768	}
1769	if (i == MAX_CMDLINECONSOLES)
1770		return -E2BIG;
1771	if (!brl_options)
1772		selected_console = i;
1773	strlcpy(c->name, name, sizeof(c->name));
1774	c->options = options;
 
1775	braille_set_options(c, brl_options);
1776
1777	c->index = idx;
1778	return 0;
1779}
 
 
 
 
 
 
 
 
 
 
 
1780/*
1781 * Set up a list of consoles.  Called from init/main.c
 
1782 */
1783static int __init console_setup(char *str)
1784{
1785	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1786	char *s, *options, *brl_options = NULL;
1787	int idx;
1788
 
 
 
 
 
 
 
 
 
 
1789	if (_braille_console_setup(&str, &brl_options))
1790		return 1;
1791
1792	/*
1793	 * Decode str into name, index, options.
1794	 */
1795	if (str[0] >= '0' && str[0] <= '9') {
1796		strcpy(buf, "ttyS");
1797		strncpy(buf + 4, str, sizeof(buf) - 5);
1798	} else {
1799		strncpy(buf, str, sizeof(buf) - 1);
1800	}
1801	buf[sizeof(buf) - 1] = 0;
1802	if ((options = strchr(str, ',')) != NULL)
 
1803		*(options++) = 0;
1804#ifdef __sparc__
1805	if (!strcmp(str, "ttya"))
1806		strcpy(buf, "ttyS0");
1807	if (!strcmp(str, "ttyb"))
1808		strcpy(buf, "ttyS1");
1809#endif
1810	for (s = buf; *s; s++)
1811		if ((*s >= '0' && *s <= '9') || *s == ',')
1812			break;
1813	idx = simple_strtoul(s, NULL, 10);
1814	*s = 0;
1815
1816	__add_preferred_console(buf, idx, options, brl_options);
1817	console_set_on_cmdline = 1;
1818	return 1;
1819}
1820__setup("console=", console_setup);
1821
1822/**
1823 * add_preferred_console - add a device to the list of preferred consoles.
1824 * @name: device name
1825 * @idx: device index
1826 * @options: options for this console
1827 *
1828 * The last preferred console added will be used for kernel messages
1829 * and stdin/out/err for init.  Normally this is used by console_setup
1830 * above to handle user-supplied console arguments; however it can also
1831 * be used by arch-specific code either to override the user or more
1832 * commonly to provide a default console (ie from PROM variables) when
1833 * the user has not supplied one.
1834 */
1835int add_preferred_console(char *name, int idx, char *options)
1836{
1837	return __add_preferred_console(name, idx, options, NULL);
1838}
1839
1840int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1841{
1842	struct console_cmdline *c;
1843	int i;
1844
1845	for (i = 0, c = console_cmdline;
1846	     i < MAX_CMDLINECONSOLES && c->name[0];
1847	     i++, c++)
1848		if (strcmp(c->name, name) == 0 && c->index == idx) {
1849			strlcpy(c->name, name_new, sizeof(c->name));
1850			c->name[sizeof(c->name) - 1] = 0;
1851			c->options = options;
1852			c->index = idx_new;
1853			return i;
1854		}
1855	/* not found */
1856	return -1;
1857}
1858
1859bool console_suspend_enabled = 1;
1860EXPORT_SYMBOL(console_suspend_enabled);
1861
1862static int __init console_suspend_disable(char *str)
1863{
1864	console_suspend_enabled = 0;
1865	return 1;
1866}
1867__setup("no_console_suspend", console_suspend_disable);
1868module_param_named(console_suspend, console_suspend_enabled,
1869		bool, S_IRUGO | S_IWUSR);
1870MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1871	" and hibernate operations");
1872
 
 
 
 
 
 
 
 
 
 
 
 
1873/**
1874 * suspend_console - suspend the console subsystem
1875 *
1876 * This disables printk() while we go into suspend states
1877 */
1878void suspend_console(void)
1879{
 
 
1880	if (!console_suspend_enabled)
1881		return;
1882	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1883	console_lock();
1884	console_suspended = 1;
1885	up(&console_sem);
1886	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
1887}
1888
1889void resume_console(void)
1890{
 
 
1891	if (!console_suspend_enabled)
1892		return;
1893	down(&console_sem);
1894	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1895	console_suspended = 0;
1896	console_unlock();
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * console_cpu_notify - print deferred console messages after CPU hotplug
1901 * @self: notifier struct
1902 * @action: CPU hotplug event
1903 * @hcpu: unused
1904 *
1905 * If printk() is called from a CPU that is not online yet, the messages
1906 * will be spooled but will not show up on the console.  This function is
1907 * called when a new CPU comes online (or fails to come up), and ensures
1908 * that any such output gets printed.
1909 */
1910static int console_cpu_notify(struct notifier_block *self,
1911	unsigned long action, void *hcpu)
1912{
1913	switch (action) {
1914	case CPU_ONLINE:
1915	case CPU_DEAD:
1916	case CPU_DOWN_FAILED:
1917	case CPU_UP_CANCELED:
1918		console_lock();
1919		console_unlock();
1920	}
1921	return NOTIFY_OK;
1922}
1923
1924/**
1925 * console_lock - lock the console system for exclusive use.
1926 *
1927 * Acquires a lock which guarantees that the caller has
1928 * exclusive access to the console system and the console_drivers list.
1929 *
1930 * Can sleep, returns nothing.
1931 */
1932void console_lock(void)
1933{
1934	might_sleep();
1935
1936	down(&console_sem);
1937	if (console_suspended)
1938		return;
 
 
1939	console_locked = 1;
1940	console_may_schedule = 1;
1941	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1942}
1943EXPORT_SYMBOL(console_lock);
1944
1945/**
1946 * console_trylock - try to lock the console system for exclusive use.
1947 *
1948 * Tried to acquire a lock which guarantees that the caller has
1949 * exclusive access to the console system and the console_drivers list.
1950 *
1951 * returns 1 on success, and 0 on failure to acquire the lock.
1952 */
1953int console_trylock(void)
1954{
1955	if (down_trylock(&console_sem))
 
1956		return 0;
1957	if (console_suspended) {
1958		up(&console_sem);
1959		return 0;
1960	}
1961	console_locked = 1;
1962	console_may_schedule = 0;
1963	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1964	return 1;
1965}
1966EXPORT_SYMBOL(console_trylock);
1967
1968int is_console_locked(void)
1969{
1970	return console_locked;
1971}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973static void console_cont_flush(char *text, size_t size)
1974{
1975	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976	size_t len;
1977
1978	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
1980	if (!cont.len)
1981		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982
1983	/*
1984	 * We still queue earlier records, likely because the console was
1985	 * busy. The earlier ones need to be printed before this one, we
1986	 * did not flush any fragment so far, so just let it queue up.
 
 
1987	 */
1988	if (console_seq < log_next_seq && !cont.cons)
 
 
 
 
 
 
 
 
 
 
 
 
1989		goto out;
1990
1991	len = cont_print_text(text, size);
1992	raw_spin_unlock(&logbuf_lock);
1993	stop_critical_timings();
1994	call_console_drivers(cont.level, text, len);
1995	start_critical_timings();
1996	local_irq_restore(flags);
1997	return;
1998out:
1999	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2000}
2001
2002/**
2003 * console_unlock - unlock the console system
 
 
 
 
 
 
 
 
2004 *
2005 * Releases the console_lock which the caller holds on the console system
2006 * and the console driver list.
 
2007 *
2008 * While the console_lock was held, console output may have been buffered
2009 * by printk().  If this is the case, console_unlock(); emits
2010 * the output prior to releasing the lock.
2011 *
2012 * If there is output waiting, we wake /dev/kmsg and syslog() users.
 
2013 *
2014 * console_unlock(); may be called from any context.
2015 */
2016void console_unlock(void)
2017{
2018	static char text[LOG_LINE_MAX + PREFIX_MAX];
2019	static u64 seen_seq;
 
 
 
2020	unsigned long flags;
2021	bool wake_klogd = false;
2022	bool retry;
2023
2024	if (console_suspended) {
2025		up(&console_sem);
2026		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
2027	}
2028
2029	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030
2031	/* flush buffered message fragment immediately to console */
2032	console_cont_flush(text, sizeof(text));
2033again:
2034	for (;;) {
2035		struct printk_log *msg;
2036		size_t len;
2037		int level;
2038
2039		raw_spin_lock_irqsave(&logbuf_lock, flags);
2040		if (seen_seq != log_next_seq) {
2041			wake_klogd = true;
2042			seen_seq = log_next_seq;
2043		}
2044
2045		if (console_seq < log_first_seq) {
2046			/* messages are gone, move to first one */
2047			console_seq = log_first_seq;
2048			console_idx = log_first_idx;
2049			console_prev = 0;
2050		}
2051skip:
2052		if (console_seq == log_next_seq)
2053			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054
2055		msg = log_from_idx(console_idx);
2056		if (msg->flags & LOG_NOCONS) {
2057			/*
2058			 * Skip record we have buffered and already printed
2059			 * directly to the console when we received it.
2060			 */
2061			console_idx = log_next(console_idx);
2062			console_seq++;
2063			/*
2064			 * We will get here again when we register a new
2065			 * CON_PRINTBUFFER console. Clear the flag so we
2066			 * will properly dump everything later.
2067			 */
2068			msg->flags &= ~LOG_NOCONS;
2069			console_prev = msg->flags;
2070			goto skip;
2071		}
2072
2073		level = msg->level;
2074		len = msg_print_text(msg, console_prev, false,
2075				     text, sizeof(text));
2076		console_idx = log_next(console_idx);
2077		console_seq++;
2078		console_prev = msg->flags;
2079		raw_spin_unlock(&logbuf_lock);
2080
2081		stop_critical_timings();	/* don't trace print latency */
2082		call_console_drivers(level, text, len);
2083		start_critical_timings();
2084		local_irq_restore(flags);
2085	}
2086	console_locked = 0;
2087	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2088
2089	/* Release the exclusive_console once it is used */
2090	if (unlikely(exclusive_console))
2091		exclusive_console = NULL;
2092
2093	raw_spin_unlock(&logbuf_lock);
 
 
 
2094
2095	up(&console_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096
2097	/*
2098	 * Someone could have filled up the buffer again, so re-check if there's
2099	 * something to flush. In case we cannot trylock the console_sem again,
2100	 * there's a new owner and the console_unlock() from them will do the
2101	 * flush, no worries.
2102	 */
2103	raw_spin_lock(&logbuf_lock);
2104	retry = console_seq != log_next_seq;
2105	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
 
 
 
 
 
2106
2107	if (retry && console_trylock())
2108		goto again;
 
2109
2110	if (wake_klogd)
2111		wake_up_klogd();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112}
2113EXPORT_SYMBOL(console_unlock);
2114
2115/**
2116 * console_conditional_schedule - yield the CPU if required
2117 *
2118 * If the console code is currently allowed to sleep, and
2119 * if this CPU should yield the CPU to another task, do
2120 * so here.
2121 *
2122 * Must be called within console_lock();.
2123 */
2124void __sched console_conditional_schedule(void)
2125{
2126	if (console_may_schedule)
2127		cond_resched();
2128}
2129EXPORT_SYMBOL(console_conditional_schedule);
2130
2131void console_unblank(void)
2132{
 
2133	struct console *c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134
2135	/*
2136	 * console_unblank can no longer be called in interrupt context unless
2137	 * oops_in_progress is set to 1..
 
 
 
2138	 */
2139	if (oops_in_progress) {
2140		if (down_trylock(&console_sem) != 0)
 
 
 
 
 
 
 
 
 
 
2141			return;
2142	} else
2143		console_lock();
2144
2145	console_locked = 1;
2146	console_may_schedule = 0;
2147	for_each_console(c)
2148		if ((c->flags & CON_ENABLED) && c->unblank)
 
 
2149			c->unblank();
 
 
 
2150	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152
2153/*
2154 * Return the console tty driver structure and its associated index
2155 */
2156struct tty_driver *console_device(int *index)
2157{
2158	struct console *c;
2159	struct tty_driver *driver = NULL;
 
2160
 
 
 
 
 
2161	console_lock();
2162	for_each_console(c) {
 
 
2163		if (!c->device)
2164			continue;
2165		driver = c->device(c, index);
2166		if (driver)
2167			break;
2168	}
 
 
2169	console_unlock();
2170	return driver;
2171}
2172
2173/*
2174 * Prevent further output on the passed console device so that (for example)
2175 * serial drivers can disable console output before suspending a port, and can
2176 * re-enable output afterwards.
2177 */
2178void console_stop(struct console *console)
2179{
2180	console_lock();
2181	console->flags &= ~CON_ENABLED;
2182	console_unlock();
 
 
 
 
 
 
 
 
 
2183}
2184EXPORT_SYMBOL(console_stop);
2185
2186void console_start(struct console *console)
2187{
2188	console_lock();
2189	console->flags |= CON_ENABLED;
2190	console_unlock();
 
2191}
2192EXPORT_SYMBOL(console_start);
2193
2194static int __read_mostly keep_bootcon;
2195
2196static int __init keep_bootcon_setup(char *str)
2197{
2198	keep_bootcon = 1;
2199	pr_info("debug: skip boot console de-registration.\n");
2200
2201	return 0;
2202}
2203
2204early_param("keep_bootcon", keep_bootcon_setup);
2205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206/*
2207 * The console driver calls this routine during kernel initialization
2208 * to register the console printing procedure with printk() and to
2209 * print any messages that were printed by the kernel before the
2210 * console driver was initialized.
2211 *
2212 * This can happen pretty early during the boot process (because of
2213 * early_printk) - sometimes before setup_arch() completes - be careful
2214 * of what kernel features are used - they may not be initialised yet.
2215 *
2216 * There are two types of consoles - bootconsoles (early_printk) and
2217 * "real" consoles (everything which is not a bootconsole) which are
2218 * handled differently.
2219 *  - Any number of bootconsoles can be registered at any time.
2220 *  - As soon as a "real" console is registered, all bootconsoles
2221 *    will be unregistered automatically.
2222 *  - Once a "real" console is registered, any attempt to register a
2223 *    bootconsoles will be rejected
2224 */
2225void register_console(struct console *newcon)
2226{
2227	int i;
2228	unsigned long flags;
2229	struct console *bcon = NULL;
2230	struct console_cmdline *c;
 
 
2231
2232	if (console_drivers)
2233		for_each_console(bcon)
2234			if (WARN(bcon == newcon,
2235					"console '%s%d' already registered\n",
2236					bcon->name, bcon->index))
2237				return;
2238
2239	/*
2240	 * before we register a new CON_BOOT console, make sure we don't
2241	 * already have a valid console
2242	 */
2243	if (console_drivers && newcon->flags & CON_BOOT) {
2244		/* find the last or real console */
2245		for_each_console(bcon) {
2246			if (!(bcon->flags & CON_BOOT)) {
2247				pr_info("Too late to register bootconsole %s%d\n",
2248					newcon->name, newcon->index);
2249				return;
2250			}
2251		}
 
 
 
 
 
2252	}
2253
2254	if (console_drivers && console_drivers->flags & CON_BOOT)
2255		bcon = console_drivers;
 
 
 
 
2256
2257	if (preferred_console < 0 || bcon || !console_drivers)
2258		preferred_console = selected_console;
2259
2260	if (newcon->early_setup)
2261		newcon->early_setup();
 
 
 
2262
2263	/*
2264	 *	See if we want to use this console driver. If we
2265	 *	didn't select a console we take the first one
2266	 *	that registers here.
 
 
 
 
 
 
 
2267	 */
2268	if (preferred_console < 0) {
2269		if (newcon->index < 0)
2270			newcon->index = 0;
2271		if (newcon->setup == NULL ||
2272		    newcon->setup(newcon, NULL) == 0) {
2273			newcon->flags |= CON_ENABLED;
2274			if (newcon->device) {
2275				newcon->flags |= CON_CONSDEV;
2276				preferred_console = 0;
2277			}
2278		}
2279	}
2280
2281	/*
2282	 *	See if this console matches one we selected on
2283	 *	the command line.
2284	 */
2285	for (i = 0, c = console_cmdline;
2286	     i < MAX_CMDLINECONSOLES && c->name[0];
2287	     i++, c++) {
2288		if (strcmp(c->name, newcon->name) != 0)
2289			continue;
2290		if (newcon->index >= 0 &&
2291		    newcon->index != c->index)
2292			continue;
2293		if (newcon->index < 0)
2294			newcon->index = c->index;
2295
2296		if (_braille_register_console(newcon, c))
2297			return;
2298
2299		if (newcon->setup &&
2300		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2301			break;
2302		newcon->flags |= CON_ENABLED;
2303		newcon->index = c->index;
2304		if (i == selected_console) {
2305			newcon->flags |= CON_CONSDEV;
2306			preferred_console = selected_console;
2307		}
2308		break;
2309	}
2310
2311	if (!(newcon->flags & CON_ENABLED))
2312		return;
2313
2314	/*
2315	 * If we have a bootconsole, and are switching to a real console,
2316	 * don't print everything out again, since when the boot console, and
2317	 * the real console are the same physical device, it's annoying to
2318	 * see the beginning boot messages twice
2319	 */
2320	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
 
2321		newcon->flags &= ~CON_PRINTBUFFER;
 
 
 
 
 
 
 
2322
2323	/*
2324	 *	Put this console in the list - keep the
2325	 *	preferred driver at the head of the list.
2326	 */
2327	console_lock();
2328	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2329		newcon->next = console_drivers;
2330		console_drivers = newcon;
2331		if (newcon->next)
2332			newcon->next->flags &= ~CON_CONSDEV;
 
 
 
 
2333	} else {
2334		newcon->next = console_drivers->next;
2335		console_drivers->next = newcon;
2336	}
2337	if (newcon->flags & CON_PRINTBUFFER) {
2338		/*
2339		 * console_unlock(); will print out the buffered messages
2340		 * for us.
2341		 */
2342		raw_spin_lock_irqsave(&logbuf_lock, flags);
2343		console_seq = syslog_seq;
2344		console_idx = syslog_idx;
2345		console_prev = syslog_prev;
2346		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2347		/*
2348		 * We're about to replay the log buffer.  Only do this to the
2349		 * just-registered console to avoid excessive message spam to
2350		 * the already-registered consoles.
2351		 */
2352		exclusive_console = newcon;
2353	}
2354	console_unlock();
2355	console_sysfs_notify();
2356
2357	/*
2358	 * By unregistering the bootconsoles after we enable the real console
2359	 * we get the "console xxx enabled" message on all the consoles -
2360	 * boot consoles, real consoles, etc - this is to ensure that end
2361	 * users know there might be something in the kernel's log buffer that
2362	 * went to the bootconsole (that they do not see on the real console)
2363	 */
2364	pr_info("%sconsole [%s%d] enabled\n",
2365		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2366		newcon->name, newcon->index);
2367	if (bcon &&
2368	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2369	    !keep_bootcon) {
2370		/* We need to iterate through all boot consoles, to make
2371		 * sure we print everything out, before we unregister them.
2372		 */
2373		for_each_console(bcon)
2374			if (bcon->flags & CON_BOOT)
2375				unregister_console(bcon);
2376	}
 
 
2377}
2378EXPORT_SYMBOL(register_console);
2379
2380int unregister_console(struct console *console)
 
2381{
2382        struct console *a, *b;
2383	int res;
2384
2385	pr_info("%sconsole [%s%d] disabled\n",
2386		(console->flags & CON_BOOT) ? "boot" : "" ,
2387		console->name, console->index);
2388
2389	res = _braille_unregister_console(console);
2390	if (res)
2391		return res;
 
 
 
 
 
 
 
 
2392
2393	res = 1;
2394	console_lock();
2395	if (console_drivers == console) {
2396		console_drivers=console->next;
2397		res = 0;
2398	} else if (console_drivers) {
2399		for (a=console_drivers->next, b=console_drivers ;
2400		     a; b=a, a=b->next) {
2401			if (a == console) {
2402				b->next = a->next;
2403				res = 0;
2404				break;
2405			}
2406		}
2407	}
2408
2409	/*
 
2410	 * If this isn't the last console and it has CON_CONSDEV set, we
2411	 * need to set it on the next preferred console.
 
 
 
 
 
 
 
 
 
 
 
 
2412	 */
2413	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2414		console_drivers->flags |= CON_CONSDEV;
 
 
2415
2416	console_unlock();
2417	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418	return res;
2419}
2420EXPORT_SYMBOL(unregister_console);
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422static int __init printk_late_init(void)
2423{
 
2424	struct console *con;
 
 
 
 
 
 
2425
2426	for_each_console(con) {
2427		if (!keep_bootcon && con->flags & CON_BOOT) {
2428			unregister_console(con);
 
 
 
 
 
 
 
 
 
 
 
2429		}
2430	}
2431	hotcpu_notifier(console_cpu_notify, 0);
 
 
 
 
 
 
 
 
2432	return 0;
2433}
2434late_initcall(printk_late_init);
2435
2436#if defined CONFIG_PRINTK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437/*
2438 * Delayed printk version, for scheduler-internal messages:
2439 */
2440#define PRINTK_BUF_SIZE		512
2441
2442#define PRINTK_PENDING_WAKEUP	0x01
2443#define PRINTK_PENDING_SCHED	0x02
2444
2445static DEFINE_PER_CPU(int, printk_pending);
2446static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2447
2448static void wake_up_klogd_work_func(struct irq_work *irq_work)
2449{
2450	int pending = __this_cpu_xchg(printk_pending, 0);
2451
2452	if (pending & PRINTK_PENDING_SCHED) {
2453		char *buf = __get_cpu_var(printk_sched_buf);
2454		pr_warn("[sched_delayed] %s", buf);
 
2455	}
2456
2457	if (pending & PRINTK_PENDING_WAKEUP)
2458		wake_up_interruptible(&log_wait);
2459}
2460
2461static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2462	.func = wake_up_klogd_work_func,
2463	.flags = IRQ_WORK_LAZY,
2464};
2465
2466void wake_up_klogd(void)
2467{
 
 
 
2468	preempt_disable();
2469	if (waitqueue_active(&log_wait)) {
2470		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2471		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
 
 
 
 
 
 
 
 
 
 
 
 
2472	}
2473	preempt_enable();
2474}
2475
2476int printk_sched(const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477{
2478	unsigned long flags;
2479	va_list args;
2480	char *buf;
2481	int r;
2482
2483	local_irq_save(flags);
2484	buf = __get_cpu_var(printk_sched_buf);
2485
2486	va_start(args, fmt);
2487	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2488	va_end(args);
2489
2490	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2491	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492	local_irq_restore(flags);
2493
2494	return r;
2495}
2496
2497/*
2498 * printk rate limiting, lifted from the networking subsystem.
2499 *
2500 * This enforces a rate limit: not more than 10 kernel messages
2501 * every 5s to make a denial-of-service attack impossible.
2502 */
2503DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2504
2505int __printk_ratelimit(const char *func)
2506{
2507	return ___ratelimit(&printk_ratelimit_state, func);
2508}
2509EXPORT_SYMBOL(__printk_ratelimit);
2510
2511/**
2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2513 * @caller_jiffies: pointer to caller's state
2514 * @interval_msecs: minimum interval between prints
2515 *
2516 * printk_timed_ratelimit() returns true if more than @interval_msecs
2517 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2518 * returned true.
2519 */
2520bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2521			unsigned int interval_msecs)
2522{
2523	if (*caller_jiffies == 0
2524			|| !time_in_range(jiffies, *caller_jiffies,
2525					*caller_jiffies
2526					+ msecs_to_jiffies(interval_msecs))) {
2527		*caller_jiffies = jiffies;
2528		return true;
2529	}
2530	return false;
2531}
2532EXPORT_SYMBOL(printk_timed_ratelimit);
2533
2534static DEFINE_SPINLOCK(dump_list_lock);
2535static LIST_HEAD(dump_list);
2536
2537/**
2538 * kmsg_dump_register - register a kernel log dumper.
2539 * @dumper: pointer to the kmsg_dumper structure
2540 *
2541 * Adds a kernel log dumper to the system. The dump callback in the
2542 * structure will be called when the kernel oopses or panics and must be
2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2544 */
2545int kmsg_dump_register(struct kmsg_dumper *dumper)
2546{
2547	unsigned long flags;
2548	int err = -EBUSY;
2549
2550	/* The dump callback needs to be set */
2551	if (!dumper->dump)
2552		return -EINVAL;
2553
2554	spin_lock_irqsave(&dump_list_lock, flags);
2555	/* Don't allow registering multiple times */
2556	if (!dumper->registered) {
2557		dumper->registered = 1;
2558		list_add_tail_rcu(&dumper->list, &dump_list);
2559		err = 0;
2560	}
2561	spin_unlock_irqrestore(&dump_list_lock, flags);
2562
2563	return err;
2564}
2565EXPORT_SYMBOL_GPL(kmsg_dump_register);
2566
2567/**
2568 * kmsg_dump_unregister - unregister a kmsg dumper.
2569 * @dumper: pointer to the kmsg_dumper structure
2570 *
2571 * Removes a dump device from the system. Returns zero on success and
2572 * %-EINVAL otherwise.
2573 */
2574int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2575{
2576	unsigned long flags;
2577	int err = -EINVAL;
2578
2579	spin_lock_irqsave(&dump_list_lock, flags);
2580	if (dumper->registered) {
2581		dumper->registered = 0;
2582		list_del_rcu(&dumper->list);
2583		err = 0;
2584	}
2585	spin_unlock_irqrestore(&dump_list_lock, flags);
2586	synchronize_rcu();
2587
2588	return err;
2589}
2590EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2591
2592static bool always_kmsg_dump;
2593module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595/**
2596 * kmsg_dump - dump kernel log to kernel message dumpers.
2597 * @reason: the reason (oops, panic etc) for dumping
2598 *
2599 * Call each of the registered dumper's dump() callback, which can
2600 * retrieve the kmsg records with kmsg_dump_get_line() or
2601 * kmsg_dump_get_buffer().
2602 */
2603void kmsg_dump(enum kmsg_dump_reason reason)
2604{
2605	struct kmsg_dumper *dumper;
2606	unsigned long flags;
2607
2608	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2609		return;
2610
2611	rcu_read_lock();
2612	list_for_each_entry_rcu(dumper, &dump_list, list) {
2613		if (dumper->max_reason && reason > dumper->max_reason)
 
 
 
 
 
 
 
 
 
 
2614			continue;
2615
2616		/* initialize iterator with data about the stored records */
2617		dumper->active = true;
2618
2619		raw_spin_lock_irqsave(&logbuf_lock, flags);
2620		dumper->cur_seq = clear_seq;
2621		dumper->cur_idx = clear_idx;
2622		dumper->next_seq = log_next_seq;
2623		dumper->next_idx = log_next_idx;
2624		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2625
2626		/* invoke dumper which will iterate over records */
2627		dumper->dump(dumper, reason);
2628
2629		/* reset iterator */
2630		dumper->active = false;
2631	}
2632	rcu_read_unlock();
2633}
2634
2635/**
2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2637 * @dumper: registered kmsg dumper
2638 * @syslog: include the "<4>" prefixes
2639 * @line: buffer to copy the line to
2640 * @size: maximum size of the buffer
2641 * @len: length of line placed into buffer
2642 *
2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2644 * record, and copy one record into the provided buffer.
2645 *
2646 * Consecutive calls will return the next available record moving
2647 * towards the end of the buffer with the youngest messages.
2648 *
2649 * A return value of FALSE indicates that there are no more records to
2650 * read.
2651 *
2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2653 */
2654bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2655			       char *line, size_t size, size_t *len)
2656{
2657	struct printk_log *msg;
 
 
 
2658	size_t l = 0;
2659	bool ret = false;
2660
2661	if (!dumper->active)
2662		goto out;
2663
2664	if (dumper->cur_seq < log_first_seq) {
2665		/* messages are gone, move to first available one */
2666		dumper->cur_seq = log_first_seq;
2667		dumper->cur_idx = log_first_idx;
2668	}
2669
2670	/* last entry */
2671	if (dumper->cur_seq >= log_next_seq)
2672		goto out;
 
 
 
 
 
 
 
 
 
2673
2674	msg = log_from_idx(dumper->cur_idx);
2675	l = msg_print_text(msg, 0, syslog, line, size);
2676
2677	dumper->cur_idx = log_next(dumper->cur_idx);
2678	dumper->cur_seq++;
2679	ret = true;
2680out:
2681	if (len)
2682		*len = l;
2683	return ret;
2684}
2685
2686/**
2687 * kmsg_dump_get_line - retrieve one kmsg log line
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @line: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2695 * record, and copy one record into the provided buffer.
2696 *
2697 * Consecutive calls will return the next available record moving
2698 * towards the end of the buffer with the youngest messages.
2699 *
2700 * A return value of FALSE indicates that there are no more records to
2701 * read.
2702 */
2703bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2704			char *line, size_t size, size_t *len)
2705{
2706	unsigned long flags;
2707	bool ret;
2708
2709	raw_spin_lock_irqsave(&logbuf_lock, flags);
2710	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2711	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2716
2717/**
2718 * kmsg_dump_get_buffer - copy kmsg log lines
2719 * @dumper: registered kmsg dumper
2720 * @syslog: include the "<4>" prefixes
2721 * @buf: buffer to copy the line to
2722 * @size: maximum size of the buffer
2723 * @len: length of line placed into buffer
2724 *
2725 * Start at the end of the kmsg buffer and fill the provided buffer
2726 * with as many of the the *youngest* kmsg records that fit into it.
2727 * If the buffer is large enough, all available kmsg records will be
2728 * copied with a single call.
2729 *
2730 * Consecutive calls will fill the buffer with the next block of
2731 * available older records, not including the earlier retrieved ones.
2732 *
2733 * A return value of FALSE indicates that there are no more records to
2734 * read.
2735 */
2736bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2737			  char *buf, size_t size, size_t *len)
2738{
2739	unsigned long flags;
 
 
2740	u64 seq;
2741	u32 idx;
2742	u64 next_seq;
2743	u32 next_idx;
2744	enum log_flags prev;
2745	size_t l = 0;
2746	bool ret = false;
 
2747
2748	if (!dumper->active)
2749		goto out;
2750
2751	raw_spin_lock_irqsave(&logbuf_lock, flags);
2752	if (dumper->cur_seq < log_first_seq) {
2753		/* messages are gone, move to first available one */
2754		dumper->cur_seq = log_first_seq;
2755		dumper->cur_idx = log_first_idx;
 
 
 
2756	}
2757
2758	/* last entry */
2759	if (dumper->cur_seq >= dumper->next_seq) {
2760		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2761		goto out;
2762	}
2763
2764	/* calculate length of entire buffer */
2765	seq = dumper->cur_seq;
2766	idx = dumper->cur_idx;
2767	prev = 0;
2768	while (seq < dumper->next_seq) {
2769		struct printk_log *msg = log_from_idx(idx);
2770
2771		l += msg_print_text(msg, prev, true, NULL, 0);
2772		idx = log_next(idx);
2773		seq++;
2774		prev = msg->flags;
2775	}
2776
2777	/* move first record forward until length fits into the buffer */
2778	seq = dumper->cur_seq;
2779	idx = dumper->cur_idx;
2780	prev = 0;
2781	while (l > size && seq < dumper->next_seq) {
2782		struct printk_log *msg = log_from_idx(idx);
2783
2784		l -= msg_print_text(msg, prev, true, NULL, 0);
2785		idx = log_next(idx);
2786		seq++;
2787		prev = msg->flags;
2788	}
2789
2790	/* last message in next interation */
 
 
 
2791	next_seq = seq;
2792	next_idx = idx;
2793
2794	l = 0;
2795	while (seq < dumper->next_seq) {
2796		struct printk_log *msg = log_from_idx(idx);
2797
2798		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2799		idx = log_next(idx);
2800		seq++;
2801		prev = msg->flags;
 
 
 
 
2802	}
2803
2804	dumper->next_seq = next_seq;
2805	dumper->next_idx = next_idx;
2806	ret = true;
2807	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2808out:
2809	if (len)
2810		*len = l;
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2814
2815/**
2816 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2817 * @dumper: registered kmsg dumper
2818 *
2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2820 * kmsg_dump_get_buffer() can be called again and used multiple
2821 * times within the same dumper.dump() callback.
2822 *
2823 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2824 */
2825void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2826{
2827	dumper->cur_seq = clear_seq;
2828	dumper->cur_idx = clear_idx;
2829	dumper->next_seq = log_next_seq;
2830	dumper->next_idx = log_next_idx;
2831}
 
 
 
 
 
 
 
2832
2833/**
2834 * kmsg_dump_rewind - reset the interator
2835 * @dumper: registered kmsg dumper
2836 *
2837 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2838 * kmsg_dump_get_buffer() can be called again and used multiple
2839 * times within the same dumper.dump() callback.
2840 */
2841void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2842{
2843	unsigned long flags;
2844
2845	raw_spin_lock_irqsave(&logbuf_lock, flags);
2846	kmsg_dump_rewind_nolock(dumper);
2847	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2848}
2849EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2850
2851static char dump_stack_arch_desc_str[128];
2852
2853/**
2854 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2855 * @fmt: printf-style format string
2856 * @...: arguments for the format string
 
 
 
2857 *
2858 * The configured string will be printed right after utsname during task
2859 * dumps.  Usually used to add arch-specific system identifiers.  If an
2860 * arch wants to make use of such an ID string, it should initialize this
2861 * as soon as possible during boot.
2862 */
2863void __init dump_stack_set_arch_desc(const char *fmt, ...)
2864{
2865	va_list args;
 
2866
2867	va_start(args, fmt);
2868	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2869		  fmt, args);
2870	va_end(args);
2871}
2872
2873/**
2874 * dump_stack_print_info - print generic debug info for dump_stack()
2875 * @log_lvl: log level
2876 *
2877 * Arch-specific dump_stack() implementations can use this function to
2878 * print out the same debug information as the generic dump_stack().
2879 */
2880void dump_stack_print_info(const char *log_lvl)
2881{
2882	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2883	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2884	       print_tainted(), init_utsname()->release,
2885	       (int)strcspn(init_utsname()->version, " "),
2886	       init_utsname()->version);
 
 
 
 
 
 
 
 
 
 
 
 
 
2887
2888	if (dump_stack_arch_desc_str[0] != '\0')
2889		printk("%sHardware name: %s\n",
2890		       log_lvl, dump_stack_arch_desc_str);
 
 
2891
2892	print_worker_info(log_lvl, current);
2893}
 
2894
2895/**
2896 * show_regs_print_info - print generic debug info for show_regs()
2897 * @log_lvl: log level
 
2898 *
2899 * show_regs() implementations can use this function to print out generic
2900 * debug information.
2901 */
2902void show_regs_print_info(const char *log_lvl)
2903{
2904	dump_stack_print_info(log_lvl);
 
 
 
2905
2906	printk("%stask: %p ti: %p task.ti: %p\n",
2907	       log_lvl, current, current_thread_info(),
2908	       task_thread_info(current));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2909}
2910
2911#endif