Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/sched.h>
   7#include <linux/netdevice.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_common.h"
  11#include "ixgbe_phy.h"
  12
  13static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  14static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  16static int ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  19					u16 count);
  20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  24
  25static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  26static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  27static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 
 
  28					     u16 words, u16 *data);
  29static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  30					      u16 words, u16 *data);
  31static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  32						 u16 offset);
  33static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
  34
  35/* Base table for registers values that change by MAC */
  36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  37	IXGBE_MVALS_INIT(8259X)
  38};
  39
  40/**
  41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  42 *  control
  43 *  @hw: pointer to hardware structure
  44 *
  45 *  There are several phys that do not support autoneg flow control. This
  46 *  function check the device id to see if the associated phy supports
  47 *  autoneg flow control.
  48 **/
  49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  50{
  51	bool supported = false;
  52	ixgbe_link_speed speed;
  53	bool link_up;
  54
  55	switch (hw->phy.media_type) {
  56	case ixgbe_media_type_fiber:
  57		/* flow control autoneg black list */
  58		switch (hw->device_id) {
  59		case IXGBE_DEV_ID_X550EM_A_SFP:
  60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
  61			supported = false;
  62			break;
  63		default:
  64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
  65			/* if link is down, assume supported */
  66			if (link_up)
  67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
  68			else
  69				supported = true;
  70		}
  71
  72		break;
  73	case ixgbe_media_type_backplane:
  74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
  75			supported = false;
  76		else
  77			supported = true;
  78		break;
 
 
 
  79	case ixgbe_media_type_copper:
  80		/* only some copper devices support flow control autoneg */
  81		switch (hw->device_id) {
  82		case IXGBE_DEV_ID_82599_T3_LOM:
  83		case IXGBE_DEV_ID_X540T:
  84		case IXGBE_DEV_ID_X540T1:
  85		case IXGBE_DEV_ID_X550T:
  86		case IXGBE_DEV_ID_X550T1:
  87		case IXGBE_DEV_ID_X550EM_X_10G_T:
  88		case IXGBE_DEV_ID_X550EM_A_10G_T:
  89		case IXGBE_DEV_ID_X550EM_A_1G_T:
  90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
  91			supported = true;
  92			break;
  93		default:
  94			break;
  95		}
  96		break;
  97	default:
  98		break;
  99	}
 100
 101	if (!supported)
 102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 103		       hw->device_id);
 104
 105	return supported;
 106}
 107
 108/**
 109 *  ixgbe_setup_fc_generic - Set up flow control
 110 *  @hw: pointer to hardware structure
 111 *
 112 *  Called at init time to set up flow control.
 113 **/
 114int ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 115{
 
 116	u32 reg = 0, reg_bp = 0;
 117	bool locked = false;
 118	int ret_val = 0;
 119	u16 reg_cu = 0;
 
 120
 121	/*
 122	 * Validate the requested mode.  Strict IEEE mode does not allow
 123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 124	 */
 125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 127		return -EINVAL;
 
 128	}
 129
 130	/*
 131	 * 10gig parts do not have a word in the EEPROM to determine the
 132	 * default flow control setting, so we explicitly set it to full.
 133	 */
 134	if (hw->fc.requested_mode == ixgbe_fc_default)
 135		hw->fc.requested_mode = ixgbe_fc_full;
 136
 137	/*
 138	 * Set up the 1G and 10G flow control advertisement registers so the
 139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 141	 */
 142	switch (hw->phy.media_type) {
 143	case ixgbe_media_type_backplane:
 144		/* some MAC's need RMW protection on AUTOC */
 145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 146		if (ret_val)
 147			return ret_val;
 148
 149		fallthrough; /* only backplane uses autoc */
 150	case ixgbe_media_type_fiber:
 151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 152
 153		break;
 154	case ixgbe_media_type_copper:
 155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 156					MDIO_MMD_AN, &reg_cu);
 157		break;
 158	default:
 159		break;
 160	}
 161
 162	/*
 163	 * The possible values of fc.requested_mode are:
 164	 * 0: Flow control is completely disabled
 165	 * 1: Rx flow control is enabled (we can receive pause frames,
 166	 *    but not send pause frames).
 167	 * 2: Tx flow control is enabled (we can send pause frames but
 168	 *    we do not support receiving pause frames).
 169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 170	 * other: Invalid.
 171	 */
 172	switch (hw->fc.requested_mode) {
 173	case ixgbe_fc_none:
 174		/* Flow control completely disabled by software override. */
 175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 176		if (hw->phy.media_type == ixgbe_media_type_backplane)
 177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 178				    IXGBE_AUTOC_ASM_PAUSE);
 179		else if (hw->phy.media_type == ixgbe_media_type_copper)
 180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 181		break;
 182	case ixgbe_fc_tx_pause:
 183		/*
 184		 * Tx Flow control is enabled, and Rx Flow control is
 185		 * disabled by software override.
 186		 */
 187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 195		}
 196		break;
 197	case ixgbe_fc_rx_pause:
 198		/*
 199		 * Rx Flow control is enabled and Tx Flow control is
 200		 * disabled by software override. Since there really
 201		 * isn't a way to advertise that we are capable of RX
 202		 * Pause ONLY, we will advertise that we support both
 203		 * symmetric and asymmetric Rx PAUSE, as such we fall
 204		 * through to the fc_full statement.  Later, we will
 205		 * disable the adapter's ability to send PAUSE frames.
 206		 */
 207	case ixgbe_fc_full:
 208		/* Flow control (both Rx and Tx) is enabled by SW override. */
 209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 210		if (hw->phy.media_type == ixgbe_media_type_backplane)
 211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 212				  IXGBE_AUTOC_ASM_PAUSE;
 213		else if (hw->phy.media_type == ixgbe_media_type_copper)
 214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 215		break;
 216	default:
 217		hw_dbg(hw, "Flow control param set incorrectly\n");
 218		return -EIO;
 
 
 219	}
 220
 221	if (hw->mac.type != ixgbe_mac_X540) {
 222		/*
 223		 * Enable auto-negotiation between the MAC & PHY;
 224		 * the MAC will advertise clause 37 flow control.
 225		 */
 226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 228
 229		/* Disable AN timeout */
 230		if (hw->fc.strict_ieee)
 231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 232
 233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 235	}
 236
 237	/*
 238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 239	 * and copper. There is no need to set the PCS1GCTL register.
 240	 *
 241	 */
 242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 244		 * LESM is on, likewise reset_pipeline requries the lock as
 245		 * it also writes AUTOC.
 246		 */
 247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 248		if (ret_val)
 249			return ret_val;
 250
 251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 252		   ixgbe_device_supports_autoneg_fc(hw)) {
 253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 254				      MDIO_MMD_AN, reg_cu);
 255	}
 256
 257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 
 258	return ret_val;
 259}
 260
 261/**
 262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 263 *  @hw: pointer to hardware structure
 264 *
 265 *  Starts the hardware by filling the bus info structure and media type, clears
 266 *  all on chip counters, initializes receive address registers, multicast
 267 *  table, VLAN filter table, calls routine to set up link and flow control
 268 *  settings, and leaves transmit and receive units disabled and uninitialized
 269 **/
 270int ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 271{
 272	u16 device_caps;
 273	u32 ctrl_ext;
 274	int ret_val;
 275
 276	/* Set the media type */
 277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279	/* Identify the PHY */
 280	hw->phy.ops.identify(hw);
 281
 282	/* Clear the VLAN filter table */
 283	hw->mac.ops.clear_vfta(hw);
 284
 285	/* Clear statistics registers */
 286	hw->mac.ops.clear_hw_cntrs(hw);
 287
 288	/* Set No Snoop Disable */
 289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292	IXGBE_WRITE_FLUSH(hw);
 293
 294	/* Setup flow control if method for doing so */
 295	if (hw->mac.ops.setup_fc) {
 296		ret_val = hw->mac.ops.setup_fc(hw);
 297		if (ret_val)
 298			return ret_val;
 299	}
 300
 301	/* Cashe bit indicating need for crosstalk fix */
 302	switch (hw->mac.type) {
 303	case ixgbe_mac_82599EB:
 304	case ixgbe_mac_X550EM_x:
 305	case ixgbe_mac_x550em_a:
 306		hw->mac.ops.get_device_caps(hw, &device_caps);
 307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 308			hw->need_crosstalk_fix = false;
 309		else
 310			hw->need_crosstalk_fix = true;
 311		break;
 312	default:
 313		hw->need_crosstalk_fix = false;
 314		break;
 315	}
 316
 317	/* Clear adapter stopped flag */
 318	hw->adapter_stopped = false;
 319
 320	return 0;
 321}
 322
 323/**
 324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 325 *  @hw: pointer to hw structure
 326 *
 327 * Performs the init sequence common to the second generation
 328 * of 10 GbE devices.
 329 * Devices in the second generation:
 330 *     82599
 331 *     X540
 332 **/
 333int ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 334{
 335	u32 i;
 
 336
 337	/* Clear the rate limiters */
 338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 341	}
 342	IXGBE_WRITE_FLUSH(hw);
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344	return 0;
 345}
 346
 347/**
 348 *  ixgbe_init_hw_generic - Generic hardware initialization
 349 *  @hw: pointer to hardware structure
 350 *
 351 *  Initialize the hardware by resetting the hardware, filling the bus info
 352 *  structure and media type, clears all on chip counters, initializes receive
 353 *  address registers, multicast table, VLAN filter table, calls routine to set
 354 *  up link and flow control settings, and leaves transmit and receive units
 355 *  disabled and uninitialized
 356 **/
 357int ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 358{
 359	int status;
 360
 361	/* Reset the hardware */
 362	status = hw->mac.ops.reset_hw(hw);
 363
 364	if (status == 0) {
 365		/* Start the HW */
 366		status = hw->mac.ops.start_hw(hw);
 367	}
 368
 369	/* Initialize the LED link active for LED blink support */
 370	if (hw->mac.ops.init_led_link_act)
 371		hw->mac.ops.init_led_link_act(hw);
 372
 373	return status;
 374}
 375
 376/**
 377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 378 *  @hw: pointer to hardware structure
 379 *
 380 *  Clears all hardware statistics counters by reading them from the hardware
 381 *  Statistics counters are clear on read.
 382 **/
 383int ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 384{
 385	u16 i = 0;
 386
 387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 391	for (i = 0; i < 8; i++)
 392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 393
 394	IXGBE_READ_REG(hw, IXGBE_MLFC);
 395	IXGBE_READ_REG(hw, IXGBE_MRFC);
 396	IXGBE_READ_REG(hw, IXGBE_RLEC);
 397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 399	if (hw->mac.type >= ixgbe_mac_82599EB) {
 400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 402	} else {
 403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 405	}
 406
 407	for (i = 0; i < 8; i++) {
 408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 410		if (hw->mac.type >= ixgbe_mac_82599EB) {
 411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 413		} else {
 414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 416		}
 417	}
 418	if (hw->mac.type >= ixgbe_mac_82599EB)
 419		for (i = 0; i < 8; i++)
 420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 421	IXGBE_READ_REG(hw, IXGBE_PRC64);
 422	IXGBE_READ_REG(hw, IXGBE_PRC127);
 423	IXGBE_READ_REG(hw, IXGBE_PRC255);
 424	IXGBE_READ_REG(hw, IXGBE_PRC511);
 425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 427	IXGBE_READ_REG(hw, IXGBE_GPRC);
 428	IXGBE_READ_REG(hw, IXGBE_BPRC);
 429	IXGBE_READ_REG(hw, IXGBE_MPRC);
 430	IXGBE_READ_REG(hw, IXGBE_GPTC);
 431	IXGBE_READ_REG(hw, IXGBE_GORCL);
 432	IXGBE_READ_REG(hw, IXGBE_GORCH);
 433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 435	if (hw->mac.type == ixgbe_mac_82598EB)
 436		for (i = 0; i < 8; i++)
 437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 438	IXGBE_READ_REG(hw, IXGBE_RUC);
 439	IXGBE_READ_REG(hw, IXGBE_RFC);
 440	IXGBE_READ_REG(hw, IXGBE_ROC);
 441	IXGBE_READ_REG(hw, IXGBE_RJC);
 442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 445	IXGBE_READ_REG(hw, IXGBE_TORL);
 446	IXGBE_READ_REG(hw, IXGBE_TORH);
 447	IXGBE_READ_REG(hw, IXGBE_TPR);
 448	IXGBE_READ_REG(hw, IXGBE_TPT);
 449	IXGBE_READ_REG(hw, IXGBE_PTC64);
 450	IXGBE_READ_REG(hw, IXGBE_PTC127);
 451	IXGBE_READ_REG(hw, IXGBE_PTC255);
 452	IXGBE_READ_REG(hw, IXGBE_PTC511);
 453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 455	IXGBE_READ_REG(hw, IXGBE_MPTC);
 456	IXGBE_READ_REG(hw, IXGBE_BPTC);
 457	for (i = 0; i < 16; i++) {
 458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 460		if (hw->mac.type >= ixgbe_mac_82599EB) {
 461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 466		} else {
 467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 469		}
 470	}
 471
 472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 473		if (hw->phy.id == 0)
 474			hw->phy.ops.identify(hw);
 475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 479	}
 480
 481	return 0;
 482}
 483
 484/**
 485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 486 *  @hw: pointer to hardware structure
 487 *  @pba_num: stores the part number string from the EEPROM
 488 *  @pba_num_size: part number string buffer length
 489 *
 490 *  Reads the part number string from the EEPROM.
 491 **/
 492int ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 493				  u32 pba_num_size)
 494{
 495	int ret_val;
 
 496	u16 pba_ptr;
 497	u16 offset;
 498	u16 length;
 499	u16 data;
 500
 501	if (pba_num == NULL) {
 502		hw_dbg(hw, "PBA string buffer was null\n");
 503		return -EINVAL;
 504	}
 505
 506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 507	if (ret_val) {
 508		hw_dbg(hw, "NVM Read Error\n");
 509		return ret_val;
 510	}
 511
 512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 513	if (ret_val) {
 514		hw_dbg(hw, "NVM Read Error\n");
 515		return ret_val;
 516	}
 517
 518	/*
 519	 * if data is not ptr guard the PBA must be in legacy format which
 520	 * means pba_ptr is actually our second data word for the PBA number
 521	 * and we can decode it into an ascii string
 522	 */
 523	if (data != IXGBE_PBANUM_PTR_GUARD) {
 524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 525
 526		/* we will need 11 characters to store the PBA */
 527		if (pba_num_size < 11) {
 528			hw_dbg(hw, "PBA string buffer too small\n");
 529			return -ENOSPC;
 530		}
 531
 532		/* extract hex string from data and pba_ptr */
 533		pba_num[0] = (data >> 12) & 0xF;
 534		pba_num[1] = (data >> 8) & 0xF;
 535		pba_num[2] = (data >> 4) & 0xF;
 536		pba_num[3] = data & 0xF;
 537		pba_num[4] = (pba_ptr >> 12) & 0xF;
 538		pba_num[5] = (pba_ptr >> 8) & 0xF;
 539		pba_num[6] = '-';
 540		pba_num[7] = 0;
 541		pba_num[8] = (pba_ptr >> 4) & 0xF;
 542		pba_num[9] = pba_ptr & 0xF;
 543
 544		/* put a null character on the end of our string */
 545		pba_num[10] = '\0';
 546
 547		/* switch all the data but the '-' to hex char */
 548		for (offset = 0; offset < 10; offset++) {
 549			if (pba_num[offset] < 0xA)
 550				pba_num[offset] += '0';
 551			else if (pba_num[offset] < 0x10)
 552				pba_num[offset] += 'A' - 0xA;
 553		}
 554
 555		return 0;
 556	}
 557
 558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 559	if (ret_val) {
 560		hw_dbg(hw, "NVM Read Error\n");
 561		return ret_val;
 562	}
 563
 564	if (length == 0xFFFF || length == 0) {
 565		hw_dbg(hw, "NVM PBA number section invalid length\n");
 566		return -EIO;
 567	}
 568
 569	/* check if pba_num buffer is big enough */
 570	if (pba_num_size  < (((u32)length * 2) - 1)) {
 571		hw_dbg(hw, "PBA string buffer too small\n");
 572		return -ENOSPC;
 573	}
 574
 575	/* trim pba length from start of string */
 576	pba_ptr++;
 577	length--;
 578
 579	for (offset = 0; offset < length; offset++) {
 580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 581		if (ret_val) {
 582			hw_dbg(hw, "NVM Read Error\n");
 583			return ret_val;
 584		}
 585		pba_num[offset * 2] = (u8)(data >> 8);
 586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 587	}
 588	pba_num[offset * 2] = '\0';
 589
 590	return 0;
 591}
 592
 593/**
 594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 595 *  @hw: pointer to hardware structure
 596 *  @mac_addr: Adapter MAC address
 597 *
 598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 599 *  A reset of the adapter must be performed prior to calling this function
 600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 601 **/
 602int ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 603{
 604	u32 rar_high;
 605	u32 rar_low;
 606	u16 i;
 607
 608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 610
 611	for (i = 0; i < 4; i++)
 612		mac_addr[i] = (u8)(rar_low >> (i*8));
 613
 614	for (i = 0; i < 2; i++)
 615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 616
 617	return 0;
 618}
 619
 620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 621{
 622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 623	case IXGBE_PCI_LINK_WIDTH_1:
 624		return ixgbe_bus_width_pcie_x1;
 625	case IXGBE_PCI_LINK_WIDTH_2:
 626		return ixgbe_bus_width_pcie_x2;
 627	case IXGBE_PCI_LINK_WIDTH_4:
 628		return ixgbe_bus_width_pcie_x4;
 629	case IXGBE_PCI_LINK_WIDTH_8:
 630		return ixgbe_bus_width_pcie_x8;
 631	default:
 632		return ixgbe_bus_width_unknown;
 633	}
 634}
 635
 636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 637{
 638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 639	case IXGBE_PCI_LINK_SPEED_2500:
 640		return ixgbe_bus_speed_2500;
 641	case IXGBE_PCI_LINK_SPEED_5000:
 642		return ixgbe_bus_speed_5000;
 643	case IXGBE_PCI_LINK_SPEED_8000:
 644		return ixgbe_bus_speed_8000;
 645	default:
 646		return ixgbe_bus_speed_unknown;
 647	}
 648}
 649
 650/**
 651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 652 *  @hw: pointer to hardware structure
 653 *
 654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 655 **/
 656int ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 657{
 658	u16 link_status;
 659
 660	hw->bus.type = ixgbe_bus_type_pci_express;
 661
 662	/* Get the negotiated link width and speed from PCI config space */
 663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 664
 665	hw->bus.width = ixgbe_convert_bus_width(link_status);
 666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 667
 668	hw->mac.ops.set_lan_id(hw);
 669
 670	return 0;
 671}
 672
 673/**
 674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 675 *  @hw: pointer to the HW structure
 676 *
 677 *  Determines the LAN function id by reading memory-mapped registers
 678 *  and swaps the port value if requested.
 679 **/
 680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 681{
 682	struct ixgbe_bus_info *bus = &hw->bus;
 683	u16 ee_ctrl_4;
 684	u32 reg;
 685
 686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687	bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
 688	bus->lan_id = bus->func;
 689
 690	/* check for a port swap */
 691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692	if (reg & IXGBE_FACTPS_LFS)
 693		bus->func ^= 0x1;
 694
 695	/* Get MAC instance from EEPROM for configuring CS4227 */
 696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 698		bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
 699					     ee_ctrl_4);
 700	}
 701}
 702
 703/**
 704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 705 *  @hw: pointer to hardware structure
 706 *
 707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 708 *  disables transmit and receive units. The adapter_stopped flag is used by
 709 *  the shared code and drivers to determine if the adapter is in a stopped
 710 *  state and should not touch the hardware.
 711 **/
 712int ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 713{
 714	u32 reg_val;
 715	u16 i;
 716
 717	/*
 718	 * Set the adapter_stopped flag so other driver functions stop touching
 719	 * the hardware
 720	 */
 721	hw->adapter_stopped = true;
 722
 723	/* Disable the receive unit */
 724	hw->mac.ops.disable_rx(hw);
 725
 726	/* Clear interrupt mask to stop interrupts from being generated */
 727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 728
 729	/* Clear any pending interrupts, flush previous writes */
 730	IXGBE_READ_REG(hw, IXGBE_EICR);
 731
 732	/* Disable the transmit unit.  Each queue must be disabled. */
 733	for (i = 0; i < hw->mac.max_tx_queues; i++)
 734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 735
 736	/* Disable the receive unit by stopping each queue */
 737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 740		reg_val |= IXGBE_RXDCTL_SWFLSH;
 741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 742	}
 743
 744	/* flush all queues disables */
 745	IXGBE_WRITE_FLUSH(hw);
 746	usleep_range(1000, 2000);
 747
 748	/*
 749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
 750	 * access and verify no pending requests
 751	 */
 752	return ixgbe_disable_pcie_primary(hw);
 753}
 754
 755/**
 756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 757 *  @hw: pointer to hardware structure
 758 *
 759 *  Store the index for the link active LED. This will be used to support
 760 *  blinking the LED.
 761 **/
 762int ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 763{
 764	struct ixgbe_mac_info *mac = &hw->mac;
 765	u32 led_reg, led_mode;
 766	u16 i;
 767
 768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 769
 770	/* Get LED link active from the LEDCTL register */
 771	for (i = 0; i < 4; i++) {
 772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 773
 774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 775		    IXGBE_LED_LINK_ACTIVE) {
 776			mac->led_link_act = i;
 777			return 0;
 778		}
 779	}
 780
 781	/* If LEDCTL register does not have the LED link active set, then use
 782	 * known MAC defaults.
 783	 */
 784	switch (hw->mac.type) {
 785	case ixgbe_mac_x550em_a:
 786		mac->led_link_act = 0;
 787		break;
 788	case ixgbe_mac_X550EM_x:
 789		mac->led_link_act = 1;
 790		break;
 791	default:
 792		mac->led_link_act = 2;
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 800 *  @hw: pointer to hardware structure
 801 *  @index: led number to turn on
 802 **/
 803int ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 804{
 805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 806
 807	if (index > 3)
 808		return -EINVAL;
 809
 810	/* To turn on the LED, set mode to ON. */
 811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 814	IXGBE_WRITE_FLUSH(hw);
 815
 816	return 0;
 817}
 818
 819/**
 820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 821 *  @hw: pointer to hardware structure
 822 *  @index: led number to turn off
 823 **/
 824int ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 825{
 826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 827
 828	if (index > 3)
 829		return -EINVAL;
 830
 831	/* To turn off the LED, set mode to OFF. */
 832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 835	IXGBE_WRITE_FLUSH(hw);
 836
 837	return 0;
 838}
 839
 840/**
 841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 842 *  @hw: pointer to hardware structure
 843 *
 844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 845 *  ixgbe_hw struct in order to set up EEPROM access.
 846 **/
 847int ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 848{
 849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 850	u32 eec;
 851	u16 eeprom_size;
 852
 853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 854		eeprom->type = ixgbe_eeprom_none;
 855		/* Set default semaphore delay to 10ms which is a well
 856		 * tested value */
 857		eeprom->semaphore_delay = 10;
 858		/* Clear EEPROM page size, it will be initialized as needed */
 859		eeprom->word_page_size = 0;
 860
 861		/*
 862		 * Check for EEPROM present first.
 863		 * If not present leave as none
 864		 */
 865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 866		if (eec & IXGBE_EEC_PRES) {
 867			eeprom->type = ixgbe_eeprom_spi;
 868
 869			/*
 870			 * SPI EEPROM is assumed here.  This code would need to
 871			 * change if a future EEPROM is not SPI.
 872			 */
 873			eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
 874			eeprom->word_size = BIT(eeprom_size +
 875						IXGBE_EEPROM_WORD_SIZE_SHIFT);
 
 876		}
 877
 878		if (eec & IXGBE_EEC_ADDR_SIZE)
 879			eeprom->address_bits = 16;
 880		else
 881			eeprom->address_bits = 8;
 882		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 883		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 
 884	}
 885
 886	return 0;
 887}
 888
 889/**
 890 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 891 *  @hw: pointer to hardware structure
 892 *  @offset: offset within the EEPROM to write
 893 *  @words: number of words
 894 *  @data: 16 bit word(s) to write to EEPROM
 895 *
 896 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 897 **/
 898int ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 899					       u16 words, u16 *data)
 900{
 
 901	u16 i, count;
 902	int status;
 903
 904	hw->eeprom.ops.init_params(hw);
 905
 906	if (words == 0 || (offset + words > hw->eeprom.word_size))
 907		return -EINVAL;
 
 
 
 
 
 
 
 908
 909	/*
 910	 * The EEPROM page size cannot be queried from the chip. We do lazy
 911	 * initialization. It is worth to do that when we write large buffer.
 912	 */
 913	if ((hw->eeprom.word_page_size == 0) &&
 914	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 915		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 916
 917	/*
 918	 * We cannot hold synchronization semaphores for too long
 919	 * to avoid other entity starvation. However it is more efficient
 920	 * to read in bursts than synchronizing access for each word.
 921	 */
 922	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 923		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 924			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 925		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 926							    count, &data[i]);
 927
 928		if (status != 0)
 929			break;
 930	}
 931
 
 932	return status;
 933}
 934
 935/**
 936 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 937 *  @hw: pointer to hardware structure
 938 *  @offset: offset within the EEPROM to be written to
 939 *  @words: number of word(s)
 940 *  @data: 16 bit word(s) to be written to the EEPROM
 941 *
 942 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 943 *  EEPROM will most likely contain an invalid checksum.
 944 **/
 945static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 946					      u16 words, u16 *data)
 947{
 948	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 949	u16 page_size;
 950	int status;
 951	u16 word;
 
 952	u16 i;
 
 953
 954	/* Prepare the EEPROM for writing  */
 955	status = ixgbe_acquire_eeprom(hw);
 956	if (status)
 957		return status;
 958
 959	if (ixgbe_ready_eeprom(hw) != 0) {
 960		ixgbe_release_eeprom(hw);
 961		return -EIO;
 
 
 962	}
 963
 964	for (i = 0; i < words; i++) {
 965		ixgbe_standby_eeprom(hw);
 966
 967		/* Send the WRITE ENABLE command (8 bit opcode) */
 968		ixgbe_shift_out_eeprom_bits(hw,
 969					    IXGBE_EEPROM_WREN_OPCODE_SPI,
 970					    IXGBE_EEPROM_OPCODE_BITS);
 971
 972		ixgbe_standby_eeprom(hw);
 973
 974		/* Some SPI eeproms use the 8th address bit embedded
 975		 * in the opcode
 976		 */
 977		if ((hw->eeprom.address_bits == 8) &&
 978		    ((offset + i) >= 128))
 979			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 980
 981		/* Send the Write command (8-bit opcode + addr) */
 982		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 983					    IXGBE_EEPROM_OPCODE_BITS);
 984		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 985					    hw->eeprom.address_bits);
 986
 987		page_size = hw->eeprom.word_page_size;
 988
 989		/* Send the data in burst via SPI */
 990		do {
 991			word = data[i];
 992			word = (word >> 8) | (word << 8);
 993			ixgbe_shift_out_eeprom_bits(hw, word, 16);
 994
 995			if (page_size == 0)
 996				break;
 997
 998			/* do not wrap around page */
 999			if (((offset + i) & (page_size - 1)) ==
1000			    (page_size - 1))
1001				break;
1002		} while (++i < words);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004		ixgbe_standby_eeprom(hw);
1005		usleep_range(10000, 20000);
 
 
 
1006	}
1007	/* Done with writing - release the EEPROM */
1008	ixgbe_release_eeprom(hw);
1009
1010	return 0;
1011}
1012
1013/**
1014 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 *  @hw: pointer to hardware structure
1016 *  @offset: offset within the EEPROM to be written to
1017 *  @data: 16 bit word to be written to the EEPROM
1018 *
1019 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1020 *  EEPROM will most likely contain an invalid checksum.
1021 **/
1022int ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023{
 
 
1024	hw->eeprom.ops.init_params(hw);
1025
1026	if (offset >= hw->eeprom.word_size)
1027		return -EINVAL;
 
 
 
 
1028
1029	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 
1030}
1031
1032/**
1033 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 *  @hw: pointer to hardware structure
1035 *  @offset: offset within the EEPROM to be read
1036 *  @words: number of word(s)
1037 *  @data: read 16 bit words(s) from EEPROM
1038 *
1039 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
1041int ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042					      u16 words, u16 *data)
1043{
 
1044	u16 i, count;
1045	int status;
1046
1047	hw->eeprom.ops.init_params(hw);
1048
1049	if (words == 0 || (offset + words > hw->eeprom.word_size))
1050		return -EINVAL;
 
 
 
 
 
 
 
1051
1052	/*
1053	 * We cannot hold synchronization semaphores for too long
1054	 * to avoid other entity starvation. However it is more efficient
1055	 * to read in bursts than synchronizing access for each word.
1056	 */
1057	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062							   count, &data[i]);
1063
1064		if (status)
1065			return status;
1066	}
1067
1068	return 0;
 
1069}
1070
1071/**
1072 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset within the EEPROM to be read
1075 *  @words: number of word(s)
1076 *  @data: read 16 bit word(s) from EEPROM
1077 *
1078 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
1080static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081					     u16 words, u16 *data)
1082{
1083	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1084	u16 word_in;
1085	int status;
1086	u16 i;
1087
1088	/* Prepare the EEPROM for reading  */
1089	status = ixgbe_acquire_eeprom(hw);
1090	if (status)
1091		return status;
1092
1093	if (ixgbe_ready_eeprom(hw) != 0) {
1094		ixgbe_release_eeprom(hw);
1095		return -EIO;
 
 
1096	}
1097
1098	for (i = 0; i < words; i++) {
1099		ixgbe_standby_eeprom(hw);
1100		/* Some SPI eeproms use the 8th address bit embedded
1101		 * in the opcode
1102		 */
1103		if ((hw->eeprom.address_bits == 8) &&
1104		    ((offset + i) >= 128))
1105			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107		/* Send the READ command (opcode + addr) */
1108		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109					    IXGBE_EEPROM_OPCODE_BITS);
1110		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111					    hw->eeprom.address_bits);
1112
1113		/* Read the data. */
1114		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115		data[i] = (word_in >> 8) | (word_in << 8);
1116	}
 
 
1117
1118	/* End this read operation */
1119	ixgbe_release_eeprom(hw);
 
1120
1121	return 0;
1122}
1123
1124/**
1125 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 *  @hw: pointer to hardware structure
1127 *  @offset: offset within the EEPROM to be read
1128 *  @data: read 16 bit value from EEPROM
1129 *
1130 *  Reads 16 bit value from EEPROM through bit-bang method
1131 **/
1132int ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133				       u16 *data)
1134{
 
 
1135	hw->eeprom.ops.init_params(hw);
1136
1137	if (offset >= hw->eeprom.word_size)
1138		return -EINVAL;
 
 
 
 
1139
1140	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 
1141}
1142
1143/**
1144 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 *  @hw: pointer to hardware structure
1146 *  @offset: offset of word in the EEPROM to read
1147 *  @words: number of word(s)
1148 *  @data: 16 bit word(s) from the EEPROM
1149 *
1150 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
1152int ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153				   u16 words, u16 *data)
1154{
1155	int status;
1156	u32 eerd;
 
1157	u32 i;
1158
1159	hw->eeprom.ops.init_params(hw);
1160
1161	if (words == 0 || offset >= hw->eeprom.word_size)
1162		return -EINVAL;
 
 
 
 
 
 
 
1163
1164	for (i = 0; i < words; i++) {
1165		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166		       IXGBE_EEPROM_RW_REG_START;
1167
1168		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171		if (status == 0) {
1172			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173				   IXGBE_EEPROM_RW_REG_DATA);
1174		} else {
1175			hw_dbg(hw, "Eeprom read timed out\n");
1176			return status;
1177		}
1178	}
1179
1180	return 0;
1181}
1182
1183/**
1184 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 *  @hw: pointer to hardware structure
1186 *  @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 *  Discover EEPROM page size by writing marching data at given offset.
1189 *  This function is called only when we are writing a new large buffer
1190 *  at given offset so the data would be overwritten anyway.
1191 **/
1192static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193						 u16 offset)
1194{
1195	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196	int status;
1197	u16 i;
1198
1199	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200		data[i] = i;
1201
1202	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205	hw->eeprom.word_page_size = 0;
1206	if (status)
1207		return status;
1208
1209	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210	if (status)
1211		return status;
1212
1213	/*
1214	 * When writing in burst more than the actual page size
1215	 * EEPROM address wraps around current page.
1216	 */
1217	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220	       hw->eeprom.word_page_size);
1221	return 0;
 
1222}
1223
1224/**
1225 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 *  @hw: pointer to hardware structure
1227 *  @offset: offset of  word in the EEPROM to read
1228 *  @data: word read from the EEPROM
1229 *
1230 *  Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
1232int ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233{
1234	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235}
1236
1237/**
1238 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 *  @hw: pointer to hardware structure
1240 *  @offset: offset of  word in the EEPROM to write
1241 *  @words: number of words
1242 *  @data: word(s) write to the EEPROM
1243 *
1244 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
1246int ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247				    u16 words, u16 *data)
1248{
1249	int status;
1250	u32 eewr;
 
1251	u16 i;
1252
1253	hw->eeprom.ops.init_params(hw);
1254
1255	if (words == 0 || offset >= hw->eeprom.word_size)
1256		return -EINVAL;
 
 
 
 
 
 
 
1257
1258	for (i = 0; i < words; i++) {
1259		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261		       IXGBE_EEPROM_RW_REG_START;
1262
1263		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264		if (status) {
1265			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266			return status;
1267		}
1268
1269		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272		if (status) {
1273			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274			return status;
1275		}
1276	}
1277
1278	return 0;
 
1279}
1280
1281/**
1282 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 *  @hw: pointer to hardware structure
1284 *  @offset: offset of  word in the EEPROM to write
1285 *  @data: word write to the EEPROM
1286 *
1287 *  Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
1289int ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290{
1291	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292}
1293
1294/**
1295 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 *  @hw: pointer to hardware structure
1297 *  @ee_reg: EEPROM flag for polling
1298 *
1299 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 *  read or write is done respectively.
1301 **/
1302static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303{
1304	u32 i;
1305	u32 reg;
 
1306
1307	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308		if (ee_reg == IXGBE_NVM_POLL_READ)
1309			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310		else
1311			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314			return 0;
 
1315		}
1316		udelay(5);
1317	}
1318	return -EIO;
1319}
1320
1321/**
1322 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 *  @hw: pointer to hardware structure
1324 *
1325 *  Prepares EEPROM for access using bit-bang method. This function should
1326 *  be called before issuing a command to the EEPROM.
1327 **/
1328static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329{
 
1330	u32 eec;
1331	u32 i;
1332
1333	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334		return -EBUSY;
1335
1336	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 
1337
1338	/* Request EEPROM Access */
1339	eec |= IXGBE_EEC_REQ;
1340	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
 
 
 
 
 
 
 
1341
1342	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344		if (eec & IXGBE_EEC_GNT)
1345			break;
1346		udelay(5);
1347	}
1348
1349	/* Release if grant not acquired */
1350	if (!(eec & IXGBE_EEC_GNT)) {
1351		eec &= ~IXGBE_EEC_REQ;
1352		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356		return -EIO;
1357	}
1358
1359	/* Setup EEPROM for Read/Write */
1360	/* Clear CS and SK */
1361	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363	IXGBE_WRITE_FLUSH(hw);
1364	udelay(1);
1365	return 0;
 
 
 
1366}
1367
1368/**
1369 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 *  @hw: pointer to hardware structure
1371 *
1372 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
1374static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375{
 
1376	u32 timeout = 2000;
1377	u32 i;
1378	u32 swsm;
1379
1380	/* Get SMBI software semaphore between device drivers first */
1381	for (i = 0; i < timeout; i++) {
1382		/*
1383		 * If the SMBI bit is 0 when we read it, then the bit will be
1384		 * set and we have the semaphore
1385		 */
1386		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387		if (!(swsm & IXGBE_SWSM_SMBI))
 
1388			break;
1389		usleep_range(50, 100);
 
1390	}
1391
1392	if (i == timeout) {
1393		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394		/* this release is particularly important because our attempts
 
 
1395		 * above to get the semaphore may have succeeded, and if there
1396		 * was a timeout, we should unconditionally clear the semaphore
1397		 * bits to free the driver to make progress
1398		 */
1399		ixgbe_release_eeprom_semaphore(hw);
1400
1401		usleep_range(50, 100);
1402		/* one last try
 
1403		 * If the SMBI bit is 0 when we read it, then the bit will be
1404		 * set and we have the semaphore
1405		 */
1406		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407		if (swsm & IXGBE_SWSM_SMBI) {
1408			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409			return -EIO;
1410		}
1411	}
1412
1413	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1414	for (i = 0; i < timeout; i++) {
1415		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
 
1416
1417		/* Set the SW EEPROM semaphore bit to request access */
1418		swsm |= IXGBE_SWSM_SWESMBI;
1419		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421		/* If we set the bit successfully then we got the
1422		 * semaphore.
1423		 */
1424		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425		if (swsm & IXGBE_SWSM_SWESMBI)
1426			break;
 
1427
1428		usleep_range(50, 100);
1429	}
1430
1431	/* Release semaphores and return error if SW EEPROM semaphore
1432	 * was not granted because we don't have access to the EEPROM
1433	 */
1434	if (i >= timeout) {
1435		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436		ixgbe_release_eeprom_semaphore(hw);
1437		return -EIO;
 
 
 
 
 
 
1438	}
1439
1440	return 0;
1441}
1442
1443/**
1444 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 *  @hw: pointer to hardware structure
1446 *
1447 *  This function clears hardware semaphore bits.
1448 **/
1449static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450{
1451	u32 swsm;
1452
1453	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458	IXGBE_WRITE_FLUSH(hw);
1459}
1460
1461/**
1462 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1463 *  @hw: pointer to hardware structure
1464 **/
1465static int ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466{
 
1467	u16 i;
1468	u8 spi_stat_reg;
1469
1470	/*
1471	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1472	 * EEPROM will signal that the command has been completed by clearing
1473	 * bit 0 of the internal status register.  If it's not cleared within
1474	 * 5 milliseconds, then error out.
1475	 */
1476	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478					    IXGBE_EEPROM_OPCODE_BITS);
1479		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481			break;
1482
1483		udelay(5);
1484		ixgbe_standby_eeprom(hw);
1485	}
1486
1487	/*
1488	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489	 * devices (and only 0-5mSec on 5V devices)
1490	 */
1491	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492		hw_dbg(hw, "SPI EEPROM Status error\n");
1493		return -EIO;
1494	}
1495
1496	return 0;
1497}
1498
1499/**
1500 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 *  @hw: pointer to hardware structure
1502 **/
1503static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504{
1505	u32 eec;
1506
1507	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509	/* Toggle CS to flush commands */
1510	eec |= IXGBE_EEC_CS;
1511	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512	IXGBE_WRITE_FLUSH(hw);
1513	udelay(1);
1514	eec &= ~IXGBE_EEC_CS;
1515	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516	IXGBE_WRITE_FLUSH(hw);
1517	udelay(1);
1518}
1519
1520/**
1521 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 *  @hw: pointer to hardware structure
1523 *  @data: data to send to the EEPROM
1524 *  @count: number of bits to shift out
1525 **/
1526static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527					u16 count)
1528{
1529	u32 eec;
1530	u32 mask;
1531	u32 i;
1532
1533	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535	/*
1536	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537	 * one bit at a time.  Determine the starting bit based on count
1538	 */
1539	mask = BIT(count - 1);
1540
1541	for (i = 0; i < count; i++) {
1542		/*
1543		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544		 * "1", and then raising and then lowering the clock (the SK
1545		 * bit controls the clock input to the EEPROM).  A "0" is
1546		 * shifted out to the EEPROM by setting "DI" to "0" and then
1547		 * raising and then lowering the clock.
1548		 */
1549		if (data & mask)
1550			eec |= IXGBE_EEC_DI;
1551		else
1552			eec &= ~IXGBE_EEC_DI;
1553
1554		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555		IXGBE_WRITE_FLUSH(hw);
1556
1557		udelay(1);
1558
1559		ixgbe_raise_eeprom_clk(hw, &eec);
1560		ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562		/*
1563		 * Shift mask to signify next bit of data to shift in to the
1564		 * EEPROM
1565		 */
1566		mask = mask >> 1;
1567	}
1568
1569	/* We leave the "DI" bit set to "0" when we leave this routine. */
1570	eec &= ~IXGBE_EEC_DI;
1571	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572	IXGBE_WRITE_FLUSH(hw);
1573}
1574
1575/**
1576 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 *  @hw: pointer to hardware structure
1578 *  @count: number of bits to shift
1579 **/
1580static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581{
1582	u32 eec;
1583	u32 i;
1584	u16 data = 0;
1585
1586	/*
1587	 * In order to read a register from the EEPROM, we need to shift
1588	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589	 * the clock input to the EEPROM (setting the SK bit), and then reading
1590	 * the value of the "DO" bit.  During this "shifting in" process the
1591	 * "DI" bit should always be clear.
1592	 */
1593	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597	for (i = 0; i < count; i++) {
1598		data = data << 1;
1599		ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603		eec &= ~(IXGBE_EEC_DI);
1604		if (eec & IXGBE_EEC_DO)
1605			data |= 1;
1606
1607		ixgbe_lower_eeprom_clk(hw, &eec);
1608	}
1609
1610	return data;
1611}
1612
1613/**
1614 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 *  @hw: pointer to hardware structure
1616 *  @eec: EEC register's current value
1617 **/
1618static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619{
1620	/*
1621	 * Raise the clock input to the EEPROM
1622	 * (setting the SK bit), then delay
1623	 */
1624	*eec = *eec | IXGBE_EEC_SK;
1625	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626	IXGBE_WRITE_FLUSH(hw);
1627	udelay(1);
1628}
1629
1630/**
1631 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 *  @hw: pointer to hardware structure
1633 *  @eec: EEC's current value
1634 **/
1635static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636{
1637	/*
1638	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639	 * delay
1640	 */
1641	*eec = *eec & ~IXGBE_EEC_SK;
1642	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643	IXGBE_WRITE_FLUSH(hw);
1644	udelay(1);
1645}
1646
1647/**
1648 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 *  @hw: pointer to hardware structure
1650 **/
1651static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652{
1653	u32 eec;
1654
1655	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1658	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661	IXGBE_WRITE_FLUSH(hw);
1662
1663	udelay(1);
1664
1665	/* Stop requesting EEPROM access */
1666	eec &= ~IXGBE_EEC_REQ;
1667	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671	/*
1672	 * Delay before attempt to obtain semaphore again to allow FW
1673	 * access. semaphore_delay is in ms we need us for usleep_range
1674	 */
1675	usleep_range(hw->eeprom.semaphore_delay * 1000,
1676		     hw->eeprom.semaphore_delay * 2000);
1677}
1678
1679/**
1680 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 *  @hw: pointer to hardware structure
1682 **/
1683int ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684{
1685	u16 i;
1686	u16 j;
1687	u16 checksum = 0;
1688	u16 length = 0;
1689	u16 pointer = 0;
1690	u16 word = 0;
1691
1692	/* Include 0x0-0x3F in the checksum */
1693	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694		if (hw->eeprom.ops.read(hw, i, &word)) {
1695			hw_dbg(hw, "EEPROM read failed\n");
1696			break;
1697		}
1698		checksum += word;
1699	}
1700
1701	/* Include all data from pointers except for the fw pointer */
1702	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704			hw_dbg(hw, "EEPROM read failed\n");
1705			return -EIO;
1706		}
1707
1708		/* If the pointer seems invalid */
1709		if (pointer == 0xFFFF || pointer == 0)
1710			continue;
1711
1712		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713			hw_dbg(hw, "EEPROM read failed\n");
1714			return -EIO;
1715		}
1716
1717		if (length == 0xFFFF || length == 0)
1718			continue;
1719
1720		for (j = pointer + 1; j <= pointer + length; j++) {
1721			if (hw->eeprom.ops.read(hw, j, &word)) {
1722				hw_dbg(hw, "EEPROM read failed\n");
1723				return -EIO;
1724			}
1725			checksum += word;
1726		}
1727	}
1728
1729	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731	return (int)checksum;
1732}
1733
1734/**
1735 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 *  @hw: pointer to hardware structure
1737 *  @checksum_val: calculated checksum
1738 *
1739 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1740 *  caller does not need checksum_val, the value can be NULL.
1741 **/
1742int ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743					   u16 *checksum_val)
1744{
1745	u16 read_checksum = 0;
1746	u16 checksum;
1747	int status;
1748
1749	/*
1750	 * Read the first word from the EEPROM. If this times out or fails, do
1751	 * not continue or we could be in for a very long wait while every
1752	 * EEPROM read fails
1753	 */
1754	status = hw->eeprom.ops.read(hw, 0, &checksum);
1755	if (status) {
1756		hw_dbg(hw, "EEPROM read failed\n");
1757		return status;
1758	}
1759
1760	status = hw->eeprom.ops.calc_checksum(hw);
1761	if (status < 0)
1762		return status;
1763
1764	checksum = (u16)(status & 0xffff);
1765
1766	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767	if (status) {
 
 
 
 
 
 
 
 
 
1768		hw_dbg(hw, "EEPROM read failed\n");
1769		return status;
1770	}
1771
1772	/* Verify read checksum from EEPROM is the same as
1773	 * calculated checksum
1774	 */
1775	if (read_checksum != checksum)
1776		status = -EIO;
1777
1778	/* If the user cares, return the calculated checksum */
1779	if (checksum_val)
1780		*checksum_val = checksum;
1781
1782	return status;
1783}
1784
1785/**
1786 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 *  @hw: pointer to hardware structure
1788 **/
1789int ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790{
 
1791	u16 checksum;
1792	int status;
1793
1794	/*
1795	 * Read the first word from the EEPROM. If this times out or fails, do
1796	 * not continue or we could be in for a very long wait while every
1797	 * EEPROM read fails
1798	 */
1799	status = hw->eeprom.ops.read(hw, 0, &checksum);
1800	if (status) {
 
 
 
 
 
1801		hw_dbg(hw, "EEPROM read failed\n");
1802		return status;
1803	}
1804
1805	status = hw->eeprom.ops.calc_checksum(hw);
1806	if (status < 0)
1807		return status;
1808
1809	checksum = (u16)(status & 0xffff);
1810
1811	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812
1813	return status;
1814}
1815
1816/**
1817 *  ixgbe_set_rar_generic - Set Rx address register
1818 *  @hw: pointer to hardware structure
1819 *  @index: Receive address register to write
1820 *  @addr: Address to put into receive address register
1821 *  @vmdq: VMDq "set" or "pool" index
1822 *  @enable_addr: set flag that address is active
1823 *
1824 *  Puts an ethernet address into a receive address register.
1825 **/
1826int ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827			  u32 enable_addr)
1828{
1829	u32 rar_low, rar_high;
1830	u32 rar_entries = hw->mac.num_rar_entries;
1831
1832	/* Make sure we are using a valid rar index range */
1833	if (index >= rar_entries) {
1834		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835		return -EINVAL;
1836	}
1837
1838	/* setup VMDq pool selection before this RAR gets enabled */
1839	hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841	/*
1842	 * HW expects these in little endian so we reverse the byte
1843	 * order from network order (big endian) to little endian
1844	 */
1845	rar_low = ((u32)addr[0] |
1846		   ((u32)addr[1] << 8) |
1847		   ((u32)addr[2] << 16) |
1848		   ((u32)addr[3] << 24));
1849	/*
1850	 * Some parts put the VMDq setting in the extra RAH bits,
1851	 * so save everything except the lower 16 bits that hold part
1852	 * of the address and the address valid bit.
1853	 */
1854	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858	if (enable_addr != 0)
1859		rar_high |= IXGBE_RAH_AV;
1860
1861	/* Record lower 32 bits of MAC address and then make
1862	 * sure that write is flushed to hardware before writing
1863	 * the upper 16 bits and setting the valid bit.
1864	 */
1865	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866	IXGBE_WRITE_FLUSH(hw);
1867	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869	return 0;
1870}
1871
1872/**
1873 *  ixgbe_clear_rar_generic - Remove Rx address register
1874 *  @hw: pointer to hardware structure
1875 *  @index: Receive address register to write
1876 *
1877 *  Clears an ethernet address from a receive address register.
1878 **/
1879int ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880{
1881	u32 rar_high;
1882	u32 rar_entries = hw->mac.num_rar_entries;
1883
1884	/* Make sure we are using a valid rar index range */
1885	if (index >= rar_entries) {
1886		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887		return -EINVAL;
1888	}
1889
1890	/*
1891	 * Some parts put the VMDq setting in the extra RAH bits,
1892	 * so save everything except the lower 16 bits that hold part
1893	 * of the address and the address valid bit.
1894	 */
1895	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898	/* Clear the address valid bit and upper 16 bits of the address
1899	 * before clearing the lower bits. This way we aren't updating
1900	 * a live filter.
1901	 */
1902	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903	IXGBE_WRITE_FLUSH(hw);
1904	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 
1905
1906	/* clear VMDq pool/queue selection for this RAR */
1907	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909	return 0;
1910}
1911
1912/**
1913 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 *  @hw: pointer to hardware structure
1915 *
1916 *  Places the MAC address in receive address register 0 and clears the rest
1917 *  of the receive address registers. Clears the multicast table. Assumes
1918 *  the receiver is in reset when the routine is called.
1919 **/
1920int ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921{
1922	u32 i;
1923	u32 rar_entries = hw->mac.num_rar_entries;
1924
1925	/*
1926	 * If the current mac address is valid, assume it is a software override
1927	 * to the permanent address.
1928	 * Otherwise, use the permanent address from the eeprom.
1929	 */
1930	if (!is_valid_ether_addr(hw->mac.addr)) {
1931		/* Get the MAC address from the RAR0 for later reference */
1932		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935	} else {
1936		/* Setup the receive address. */
1937		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941	}
1942
1943	/*  clear VMDq pool/queue selection for RAR 0 */
1944	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
 
 
 
1946	hw->addr_ctrl.overflow_promisc = 0;
1947
1948	hw->addr_ctrl.rar_used_count = 1;
1949
1950	/* Zero out the other receive addresses. */
1951	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952	for (i = 1; i < rar_entries; i++) {
1953		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955	}
1956
1957	/* Clear the MTA */
1958	hw->addr_ctrl.mta_in_use = 0;
1959	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961	hw_dbg(hw, " Clearing MTA\n");
1962	for (i = 0; i < hw->mac.mcft_size; i++)
1963		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965	if (hw->mac.ops.init_uta_tables)
1966		hw->mac.ops.init_uta_tables(hw);
1967
1968	return 0;
1969}
1970
1971/**
1972 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 *  @hw: pointer to hardware structure
1974 *  @mc_addr: the multicast address
1975 *
1976 *  Extracts the 12 bits, from a multicast address, to determine which
1977 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 *  incoming rx multicast addresses, to determine the bit-vector to check in
1979 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 *  to mc_filter_type.
1982 **/
1983static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984{
1985	u32 vector = 0;
1986
1987	switch (hw->mac.mc_filter_type) {
1988	case 0:   /* use bits [47:36] of the address */
1989		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990		break;
1991	case 1:   /* use bits [46:35] of the address */
1992		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993		break;
1994	case 2:   /* use bits [45:34] of the address */
1995		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996		break;
1997	case 3:   /* use bits [43:32] of the address */
1998		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999		break;
2000	default:  /* Invalid mc_filter_type */
2001		hw_dbg(hw, "MC filter type param set incorrectly\n");
2002		break;
2003	}
2004
2005	/* vector can only be 12-bits or boundary will be exceeded */
2006	vector &= 0xFFF;
2007	return vector;
2008}
2009
2010/**
2011 *  ixgbe_set_mta - Set bit-vector in multicast table
2012 *  @hw: pointer to hardware structure
2013 *  @mc_addr: Multicast address
2014 *
2015 *  Sets the bit-vector in the multicast table.
2016 **/
2017static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018{
2019	u32 vector;
2020	u32 vector_bit;
2021	u32 vector_reg;
2022
2023	hw->addr_ctrl.mta_in_use++;
2024
2025	vector = ixgbe_mta_vector(hw, mc_addr);
2026	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028	/*
2029	 * The MTA is a register array of 128 32-bit registers. It is treated
2030	 * like an array of 4096 bits.  We want to set bit
2031	 * BitArray[vector_value]. So we figure out what register the bit is
2032	 * in, read it, OR in the new bit, then write back the new value.  The
2033	 * register is determined by the upper 7 bits of the vector value and
2034	 * the bit within that register are determined by the lower 5 bits of
2035	 * the value.
2036	 */
2037	vector_reg = (vector >> 5) & 0x7F;
2038	vector_bit = vector & 0x1F;
2039	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040}
2041
2042/**
2043 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 *  @hw: pointer to hardware structure
2045 *  @netdev: pointer to net device structure
2046 *
2047 *  The given list replaces any existing list. Clears the MC addrs from receive
2048 *  address registers and the multicast table. Uses unused receive address
2049 *  registers for the first multicast addresses, and hashes the rest into the
2050 *  multicast table.
2051 **/
2052int ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053				      struct net_device *netdev)
2054{
2055	struct netdev_hw_addr *ha;
2056	u32 i;
2057
2058	/*
2059	 * Set the new number of MC addresses that we are being requested to
2060	 * use.
2061	 */
2062	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063	hw->addr_ctrl.mta_in_use = 0;
2064
2065	/* Clear mta_shadow */
2066	hw_dbg(hw, " Clearing MTA\n");
2067	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069	/* Update mta shadow */
2070	netdev_for_each_mc_addr(ha, netdev) {
2071		hw_dbg(hw, " Adding the multicast addresses:\n");
2072		ixgbe_set_mta(hw, ha->addr);
2073	}
2074
2075	/* Enable mta */
2076	for (i = 0; i < hw->mac.mcft_size; i++)
2077		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078				      hw->mac.mta_shadow[i]);
2079
2080	if (hw->addr_ctrl.mta_in_use > 0)
2081		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085	return 0;
2086}
2087
2088/**
2089 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 *  @hw: pointer to hardware structure
2091 *
2092 *  Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
2094int ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095{
2096	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098	if (a->mta_in_use > 0)
2099		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100				hw->mac.mc_filter_type);
2101
2102	return 0;
2103}
2104
2105/**
2106 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 *  @hw: pointer to hardware structure
2108 *
2109 *  Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
2111int ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112{
2113	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115	if (a->mta_in_use > 0)
2116		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118	return 0;
2119}
2120
2121/**
2122 *  ixgbe_fc_enable_generic - Enable flow control
2123 *  @hw: pointer to hardware structure
2124 *
2125 *  Enable flow control according to the current settings.
2126 **/
2127int ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128{
 
2129	u32 mflcn_reg, fccfg_reg;
2130	u32 reg;
2131	u32 fcrtl, fcrth;
2132	int i;
2133
2134	/* Validate the water mark configuration. */
2135	if (!hw->fc.pause_time)
2136		return -EINVAL;
2137
2138	/* Low water mark of zero causes XOFF floods */
2139	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141		    hw->fc.high_water[i]) {
2142			if (!hw->fc.low_water[i] ||
2143			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144				hw_dbg(hw, "Invalid water mark configuration\n");
2145				return -EINVAL;
2146			}
2147		}
2148	}
2149
2150	/* Negotiate the fc mode to use */
2151	hw->mac.ops.fc_autoneg(hw);
2152
2153	/* Disable any previous flow control settings */
2154	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160	/*
2161	 * The possible values of fc.current_mode are:
2162	 * 0: Flow control is completely disabled
2163	 * 1: Rx flow control is enabled (we can receive pause frames,
2164	 *    but not send pause frames).
2165	 * 2: Tx flow control is enabled (we can send pause frames but
2166	 *    we do not support receiving pause frames).
2167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168	 * other: Invalid.
2169	 */
2170	switch (hw->fc.current_mode) {
2171	case ixgbe_fc_none:
2172		/*
2173		 * Flow control is disabled by software override or autoneg.
2174		 * The code below will actually disable it in the HW.
2175		 */
2176		break;
2177	case ixgbe_fc_rx_pause:
2178		/*
2179		 * Rx Flow control is enabled and Tx Flow control is
2180		 * disabled by software override. Since there really
2181		 * isn't a way to advertise that we are capable of RX
2182		 * Pause ONLY, we will advertise that we support both
2183		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2184		 * disable the adapter's ability to send PAUSE frames.
2185		 */
2186		mflcn_reg |= IXGBE_MFLCN_RFCE;
2187		break;
2188	case ixgbe_fc_tx_pause:
2189		/*
2190		 * Tx Flow control is enabled, and Rx Flow control is
2191		 * disabled by software override.
2192		 */
2193		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194		break;
2195	case ixgbe_fc_full:
2196		/* Flow control (both Rx and Tx) is enabled by SW override. */
2197		mflcn_reg |= IXGBE_MFLCN_RFCE;
2198		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199		break;
2200	default:
2201		hw_dbg(hw, "Flow control param set incorrectly\n");
2202		return -EIO;
 
 
2203	}
2204
2205	/* Set 802.3x based flow control settings. */
2206	mflcn_reg |= IXGBE_MFLCN_DPF;
2207	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
 
 
2210	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213		    hw->fc.high_water[i]) {
2214			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217		} else {
2218			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219			/*
2220			 * In order to prevent Tx hangs when the internal Tx
2221			 * switch is enabled we must set the high water mark
2222			 * to the Rx packet buffer size - 24KB.  This allows
2223			 * the Tx switch to function even under heavy Rx
2224			 * workloads.
2225			 */
2226			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227		}
2228
2229		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230	}
2231
2232	/* Configure pause time (2 TCs per register) */
2233	reg = hw->fc.pause_time * 0x00010001U;
2234	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239	return 0;
 
2240}
2241
2242/**
2243 *  ixgbe_negotiate_fc - Negotiate flow control
2244 *  @hw: pointer to hardware structure
2245 *  @adv_reg: flow control advertised settings
2246 *  @lp_reg: link partner's flow control settings
2247 *  @adv_sym: symmetric pause bit in advertisement
2248 *  @adv_asm: asymmetric pause bit in advertisement
2249 *  @lp_sym: symmetric pause bit in link partner advertisement
2250 *  @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 *  Find the intersection between advertised settings and link partner's
2253 *  advertised settings
2254 **/
2255int ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257{
2258	if ((!(adv_reg)) ||  (!(lp_reg)))
2259		return -EINVAL;
2260
2261	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262		/*
2263		 * Now we need to check if the user selected Rx ONLY
2264		 * of pause frames.  In this case, we had to advertise
2265		 * FULL flow control because we could not advertise RX
2266		 * ONLY. Hence, we must now check to see if we need to
2267		 * turn OFF the TRANSMISSION of PAUSE frames.
2268		 */
2269		if (hw->fc.requested_mode == ixgbe_fc_full) {
2270			hw->fc.current_mode = ixgbe_fc_full;
2271			hw_dbg(hw, "Flow Control = FULL.\n");
2272		} else {
2273			hw->fc.current_mode = ixgbe_fc_rx_pause;
2274			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275		}
2276	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278		hw->fc.current_mode = ixgbe_fc_tx_pause;
2279		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282		hw->fc.current_mode = ixgbe_fc_rx_pause;
2283		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284	} else {
2285		hw->fc.current_mode = ixgbe_fc_none;
2286		hw_dbg(hw, "Flow Control = NONE.\n");
2287	}
2288	return 0;
2289}
2290
2291/**
2292 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 *  @hw: pointer to hardware structure
2294 *
2295 *  Enable flow control according on 1 gig fiber.
2296 **/
2297static int ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298{
2299	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300	int ret_val;
2301
2302	/*
2303	 * On multispeed fiber at 1g, bail out if
2304	 * - link is up but AN did not complete, or if
2305	 * - link is up and AN completed but timed out
2306	 */
2307
2308	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311		return -EIO;
2312
2313	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318			       IXGBE_PCS1GANA_ASM_PAUSE,
2319			       IXGBE_PCS1GANA_SYM_PAUSE,
2320			       IXGBE_PCS1GANA_ASM_PAUSE);
2321
 
2322	return ret_val;
2323}
2324
2325/**
2326 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Enable flow control according to IEEE clause 37.
2330 **/
2331static int ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332{
2333	u32 links2, anlp1_reg, autoc_reg, links;
2334	int ret_val;
2335
2336	/*
2337	 * On backplane, bail out if
2338	 * - backplane autoneg was not completed, or if
2339	 * - we are 82599 and link partner is not AN enabled
2340	 */
2341	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343		return -EIO;
2344
2345	if (hw->mac.type == ixgbe_mac_82599EB) {
2346		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348			return -EIO;
2349	}
2350	/*
2351	 * Read the 10g AN autoc and LP ability registers and resolve
2352	 * local flow control settings accordingly
2353	 */
2354	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
 
2361	return ret_val;
2362}
2363
2364/**
2365 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 *  @hw: pointer to hardware structure
2367 *
2368 *  Enable flow control according to IEEE clause 37.
2369 **/
2370static int ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371{
2372	u16 technology_ability_reg = 0;
2373	u16 lp_technology_ability_reg = 0;
2374
2375	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376			     MDIO_MMD_AN,
2377			     &technology_ability_reg);
2378	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379			     MDIO_MMD_AN,
2380			     &lp_technology_ability_reg);
2381
2382	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383				  (u32)lp_technology_ability_reg,
2384				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386}
2387
2388/**
2389 *  ixgbe_fc_autoneg - Configure flow control
2390 *  @hw: pointer to hardware structure
2391 *
2392 *  Compares our advertised flow control capabilities to those advertised by
2393 *  our link partner, and determines the proper flow control mode to use.
2394 **/
2395void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396{
 
2397	ixgbe_link_speed speed;
2398	int ret_val = -EIO;
2399	bool link_up;
2400
2401	/*
2402	 * AN should have completed when the cable was plugged in.
2403	 * Look for reasons to bail out.  Bail out if:
2404	 * - FC autoneg is disabled, or if
2405	 * - link is not up.
2406	 *
2407	 * Since we're being called from an LSC, link is already known to be up.
2408	 * So use link_up_wait_to_complete=false.
2409	 */
2410	if (hw->fc.disable_fc_autoneg)
2411		goto out;
2412
2413	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414	if (!link_up)
2415		goto out;
2416
2417	switch (hw->phy.media_type) {
2418	/* Autoneg flow control on fiber adapters */
2419	case ixgbe_media_type_fiber:
2420		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421			ret_val = ixgbe_fc_autoneg_fiber(hw);
2422		break;
2423
2424	/* Autoneg flow control on backplane adapters */
2425	case ixgbe_media_type_backplane:
2426		ret_val = ixgbe_fc_autoneg_backplane(hw);
2427		break;
2428
2429	/* Autoneg flow control on copper adapters */
2430	case ixgbe_media_type_copper:
2431		if (ixgbe_device_supports_autoneg_fc(hw))
2432			ret_val = ixgbe_fc_autoneg_copper(hw);
2433		break;
2434
2435	default:
2436		break;
2437	}
2438
2439out:
2440	if (ret_val == 0) {
2441		hw->fc.fc_was_autonegged = true;
2442	} else {
2443		hw->fc.fc_was_autonegged = false;
2444		hw->fc.current_mode = hw->fc.requested_mode;
2445	}
2446}
2447
2448/**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 *  Add 10% to specified maximum and return the number of times to poll for
2455 *  completion timeout, in units of 100 microsec.  Never return less than
2456 *  800 = 80 millisec.
2457 **/
2458static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459{
2460	s16 devctl2;
2461	u32 pollcnt;
2462
2463	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466	switch (devctl2) {
2467	case IXGBE_PCIDEVCTRL2_65_130ms:
2468		 pollcnt = 1300;         /* 130 millisec */
2469		break;
2470	case IXGBE_PCIDEVCTRL2_260_520ms:
2471		pollcnt = 5200;         /* 520 millisec */
2472		break;
2473	case IXGBE_PCIDEVCTRL2_1_2s:
2474		pollcnt = 20000;        /* 2 sec */
2475		break;
2476	case IXGBE_PCIDEVCTRL2_4_8s:
2477		pollcnt = 80000;        /* 8 sec */
2478		break;
2479	case IXGBE_PCIDEVCTRL2_17_34s:
2480		pollcnt = 34000;        /* 34 sec */
2481		break;
2482	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2483	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2484	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2485	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2486	default:
2487		pollcnt = 800;          /* 80 millisec minimum */
2488		break;
2489	}
2490
2491	/* add 10% to spec maximum */
2492	return (pollcnt * 11) / 10;
2493}
2494
2495/**
2496 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Disables PCI-Express primary access and verifies there are no pending
2500 *  requests. -EALREADY is returned if primary disable
2501 *  bit hasn't caused the primary requests to be disabled, else 0
2502 *  is returned signifying primary requests disabled.
2503 **/
2504static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505{
 
2506	u32 i, poll;
2507	u16 value;
2508
2509	/* Always set this bit to ensure any future transactions are blocked */
2510	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512	/* Poll for bit to read as set */
2513	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515			break;
2516		usleep_range(100, 120);
2517	}
2518	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520		goto gio_disable_fail;
2521	}
2522
2523	/* Exit if primary requests are blocked */
2524	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525	    ixgbe_removed(hw->hw_addr))
2526		return 0;
2527
2528	/* Poll for primary request bit to clear */
2529	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530		udelay(100);
2531		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532			return 0;
2533	}
2534
2535	/*
2536	 * Two consecutive resets are required via CTRL.RST per datasheet
2537	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2538	 * of this need.  The first reset prevents new primary requests from
2539	 * being issued by our device.  We then must wait 1usec or more for any
2540	 * remaining completions from the PCIe bus to trickle in, and then reset
2541	 * again to clear out any effects they may have had on our device.
2542	 */
2543	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544gio_disable_fail:
2545	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547	if (hw->mac.type >= ixgbe_mac_X550)
2548		return 0;
2549
2550	/*
2551	 * Before proceeding, make sure that the PCIe block does not have
2552	 * transactions pending.
2553	 */
2554	poll = ixgbe_pcie_timeout_poll(hw);
2555	for (i = 0; i < poll; i++) {
2556		udelay(100);
2557		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558		if (ixgbe_removed(hw->hw_addr))
2559			return 0;
2560		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561			return 0;
2562	}
2563
2564	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565	return -EALREADY;
 
 
 
2566}
2567
2568/**
2569 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 *  @hw: pointer to hardware structure
2571 *  @mask: Mask to specify which semaphore to acquire
2572 *
2573 *  Acquires the SWFW semaphore through the GSSR register for the specified
2574 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576int ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577{
2578	u32 gssr = 0;
2579	u32 swmask = mask;
2580	u32 fwmask = mask << 5;
2581	u32 timeout = 200;
2582	u32 i;
2583
2584	for (i = 0; i < timeout; i++) {
2585		/*
2586		 * SW NVM semaphore bit is used for access to all
2587		 * SW_FW_SYNC bits (not just NVM)
2588		 */
2589		if (ixgbe_get_eeprom_semaphore(hw))
2590			return -EBUSY;
2591
2592		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593		if (!(gssr & (fwmask | swmask))) {
2594			gssr |= swmask;
2595			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596			ixgbe_release_eeprom_semaphore(hw);
2597			return 0;
2598		} else {
2599			/* Resource is currently in use by FW or SW */
2600			ixgbe_release_eeprom_semaphore(hw);
2601			usleep_range(5000, 10000);
2602		}
2603	}
2604
2605	/* If time expired clear the bits holding the lock and retry */
2606	if (gssr & (fwmask | swmask))
2607		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609	usleep_range(5000, 10000);
2610	return -EBUSY;
2611}
2612
2613/**
2614 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2615 *  @hw: pointer to hardware structure
2616 *  @mask: Mask to specify which semaphore to release
2617 *
2618 *  Releases the SWFW semaphore through the GSSR register for the specified
2619 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
2621void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622{
2623	u32 gssr;
2624	u32 swmask = mask;
2625
2626	ixgbe_get_eeprom_semaphore(hw);
2627
2628	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629	gssr &= ~swmask;
2630	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632	ixgbe_release_eeprom_semaphore(hw);
2633}
2634
2635/**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2640 *	    true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
2644int prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645{
2646	*locked = false;
2647	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648	return 0;
2649}
2650
2651/**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 *	    previous read.
2657 **/
2658int prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659{
2660	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661	return 0;
2662}
2663
2664/**
2665 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 *  @hw: pointer to hardware structure
2667 *
2668 *  Stops the receive data path and waits for the HW to internally
2669 *  empty the Rx security block.
2670 **/
2671int ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672{
2673#define IXGBE_MAX_SECRX_POLL 40
2674	int i;
2675	int secrxreg;
2676
2677	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683			break;
2684		else
2685			/* Use interrupt-safe sleep just in case */
2686			udelay(1000);
2687	}
2688
2689	/* For informational purposes only */
2690	if (i >= IXGBE_MAX_SECRX_POLL)
2691		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
 
2692
2693	return 0;
2694
2695}
2696
2697/**
2698 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 *  @hw: pointer to hardware structure
2700 *
2701 *  Enables the receive data path
2702 **/
2703int ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704{
2705	u32 secrxreg;
2706
2707	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710	IXGBE_WRITE_FLUSH(hw);
2711
2712	return 0;
2713}
2714
2715/**
2716 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 *  @hw: pointer to hardware structure
2718 *  @regval: register value to write to RXCTRL
2719 *
2720 *  Enables the Rx DMA unit
2721 **/
2722int ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723{
2724	if (regval & IXGBE_RXCTRL_RXEN)
2725		hw->mac.ops.enable_rx(hw);
2726	else
2727		hw->mac.ops.disable_rx(hw);
2728
2729	return 0;
2730}
2731
2732/**
2733 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2734 *  @hw: pointer to hardware structure
2735 *  @index: led number to blink
2736 **/
2737int ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738{
2739	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2740	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741	ixgbe_link_speed speed = 0;
2742	bool link_up = false;
 
 
 
2743	bool locked = false;
2744	int ret_val;
2745
2746	if (index > 3)
2747		return -EINVAL;
2748
2749	/*
2750	 * Link must be up to auto-blink the LEDs;
2751	 * Force it if link is down.
2752	 */
2753	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755	if (!link_up) {
2756		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757		if (ret_val)
2758			return ret_val;
2759
2760		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761		autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764		if (ret_val)
2765			return ret_val;
2766
2767		IXGBE_WRITE_FLUSH(hw);
2768
2769		usleep_range(10000, 20000);
2770	}
2771
2772	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773	led_reg |= IXGBE_LED_BLINK(index);
2774	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775	IXGBE_WRITE_FLUSH(hw);
2776
2777	return 0;
 
2778}
2779
2780/**
2781 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 *  @hw: pointer to hardware structure
2783 *  @index: led number to stop blinking
2784 **/
2785int ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786{
 
2787	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 
2788	bool locked = false;
2789	u32 autoc_reg = 0;
2790	int ret_val;
2791
2792	if (index > 3)
2793		return -EINVAL;
2794
2795	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796	if (ret_val)
2797		return ret_val;
2798
2799	autoc_reg &= ~IXGBE_AUTOC_FLU;
2800	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803	if (ret_val)
2804		return ret_val;
2805
2806	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807	led_reg &= ~IXGBE_LED_BLINK(index);
2808	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810	IXGBE_WRITE_FLUSH(hw);
2811
2812	return 0;
 
2813}
2814
2815/**
2816 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 *  @hw: pointer to hardware structure
2818 *  @san_mac_offset: SAN MAC address offset
2819 *
2820 *  This function will read the EEPROM location for the SAN MAC address
2821 *  pointer, and returns the value at that location.  This is used in both
2822 *  get and set mac_addr routines.
2823 **/
2824static int ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825					 u16 *san_mac_offset)
2826{
2827	int ret_val;
2828
2829	/*
2830	 * First read the EEPROM pointer to see if the MAC addresses are
2831	 * available.
2832	 */
2833	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834				      san_mac_offset);
2835	if (ret_val)
2836		hw_err(hw, "eeprom read at offset %d failed\n",
2837		       IXGBE_SAN_MAC_ADDR_PTR);
2838
2839	return ret_val;
2840}
2841
2842/**
2843 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 *  @hw: pointer to hardware structure
2845 *  @san_mac_addr: SAN MAC address
2846 *
2847 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2848 *  per-port, so set_lan_id() must be called before reading the addresses.
2849 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 *  upon for non-SFP connections, so we must call it here.
2851 **/
2852int ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853{
2854	u16 san_mac_data, san_mac_offset;
2855	int ret_val;
2856	u8 i;
 
2857
2858	/*
2859	 * First read the EEPROM pointer to see if the MAC addresses are
2860	 * available.  If they're not, no point in calling set_lan_id() here.
2861	 */
2862	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864
2865		goto san_mac_addr_clr;
2866
2867	/* make sure we know which port we need to program */
2868	hw->mac.ops.set_lan_id(hw);
2869	/* apply the port offset to the address offset */
2870	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872	for (i = 0; i < 3; i++) {
2873		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874					      &san_mac_data);
2875		if (ret_val) {
2876			hw_err(hw, "eeprom read at offset %d failed\n",
2877			       san_mac_offset);
2878			goto san_mac_addr_clr;
2879		}
2880		san_mac_addr[i * 2] = (u8)(san_mac_data);
2881		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882		san_mac_offset++;
2883	}
2884	return 0;
2885
2886san_mac_addr_clr:
2887	/* No addresses available in this EEPROM.  It's not necessarily an
2888	 * error though, so just wipe the local address and return.
2889	 */
2890	for (i = 0; i < 6; i++)
2891		san_mac_addr[i] = 0xFF;
2892	return ret_val;
2893}
2894
2895/**
2896 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 *  @hw: pointer to hardware structure
2898 *
2899 *  Read PCIe configuration space, and get the MSI-X vector count from
2900 *  the capabilities table.
2901 **/
2902u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903{
2904	u16 msix_count;
2905	u16 max_msix_count;
2906	u16 pcie_offset;
2907
2908	switch (hw->mac.type) {
2909	case ixgbe_mac_82598EB:
2910		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912		break;
2913	case ixgbe_mac_82599EB:
2914	case ixgbe_mac_X540:
2915	case ixgbe_mac_X550:
2916	case ixgbe_mac_X550EM_x:
2917	case ixgbe_mac_x550em_a:
2918		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920		break;
2921	default:
2922		return 1;
2923	}
2924
2925	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926	if (ixgbe_removed(hw->hw_addr))
2927		msix_count = 0;
2928	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930	/* MSI-X count is zero-based in HW */
2931	msix_count++;
2932
2933	if (msix_count > max_msix_count)
2934		msix_count = max_msix_count;
2935
2936	return msix_count;
2937}
2938
2939/**
2940 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 *  @hw: pointer to hardware struct
2942 *  @rar: receive address register index to disassociate
2943 *  @vmdq: VMDq pool index to remove from the rar
2944 **/
2945int ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946{
2947	u32 mpsar_lo, mpsar_hi;
2948	u32 rar_entries = hw->mac.num_rar_entries;
2949
2950	/* Make sure we are using a valid rar index range */
2951	if (rar >= rar_entries) {
2952		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953		return -EINVAL;
2954	}
2955
2956	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959	if (ixgbe_removed(hw->hw_addr))
2960		return 0;
2961
2962	if (!mpsar_lo && !mpsar_hi)
2963		return 0;
2964
2965	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966		if (mpsar_lo) {
2967			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968			mpsar_lo = 0;
2969		}
2970		if (mpsar_hi) {
2971			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972			mpsar_hi = 0;
2973		}
2974	} else if (vmdq < 32) {
2975		mpsar_lo &= ~BIT(vmdq);
2976		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977	} else {
2978		mpsar_hi &= ~BIT(vmdq - 32);
2979		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980	}
2981
2982	/* was that the last pool using this rar? */
2983	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2985		hw->mac.ops.clear_rar(hw, rar);
2986
2987	return 0;
2988}
2989
2990/**
2991 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 *  @hw: pointer to hardware struct
2993 *  @rar: receive address register index to associate with a VMDq index
2994 *  @vmdq: VMDq pool index
2995 **/
2996int ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997{
2998	u32 mpsar;
2999	u32 rar_entries = hw->mac.num_rar_entries;
3000
3001	/* Make sure we are using a valid rar index range */
3002	if (rar >= rar_entries) {
3003		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004		return -EINVAL;
3005	}
3006
3007	if (vmdq < 32) {
3008		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009		mpsar |= BIT(vmdq);
3010		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011	} else {
3012		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013		mpsar |= BIT(vmdq - 32);
3014		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015	}
3016	return 0;
3017}
3018
3019/**
3020 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 *  @hw: pointer to hardware struct
3022 *  @vmdq: VMDq pool index
3023 *
3024 *  This function should only be involved in the IOV mode.
3025 *  In IOV mode, Default pool is next pool after the number of
3026 *  VFs advertized and not 0.
3027 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 
 
 
 
3028 **/
3029int ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030{
3031	u32 rar = hw->mac.san_mac_rar_index;
3032
3033	if (vmdq < 32) {
3034		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036	} else {
3037		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039	}
3040
3041	return 0;
3042}
3043
3044/**
3045 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 *  @hw: pointer to hardware structure
3047 **/
3048int ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049{
3050	int i;
3051
3052	for (i = 0; i < 128; i++)
3053		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055	return 0;
3056}
3057
3058/**
3059 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 *  @hw: pointer to hardware structure
3061 *  @vlan: VLAN id to write to VLAN filter
3062 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 *		  vlanid not found
3064 *
3065 *  return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
3068static int ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069{
3070	int regindex, first_empty_slot;
3071	u32 bits;
 
3072
3073	/* short cut the special case */
3074	if (vlan == 0)
3075		return 0;
3076
3077	/* if vlvf_bypass is set we don't want to use an empty slot, we
3078	 * will simply bypass the VLVF if there are no entries present in the
3079	 * VLVF that contain our VLAN
3080	 */
3081	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083	/* add VLAN enable bit for comparison */
3084	vlan |= IXGBE_VLVF_VIEN;
3085
3086	/* Search for the vlan id in the VLVF entries. Save off the first empty
3087	 * slot found along the way.
3088	 *
3089	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090	 */
3091	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093		if (bits == vlan)
3094			return regindex;
3095		if (!first_empty_slot && !bits)
3096			first_empty_slot = regindex;
 
 
3097	}
3098
3099	/* If we are here then we didn't find the VLAN.  Return first empty
3100	 * slot we found during our search, else error.
3101	 */
3102	if (!first_empty_slot)
3103		hw_dbg(hw, "No space in VLVF.\n");
 
 
 
 
 
 
 
 
3104
3105	return first_empty_slot ? : -ENOSPC;
3106}
3107
3108/**
3109 *  ixgbe_set_vfta_generic - Set VLAN filter table
3110 *  @hw: pointer to hardware structure
3111 *  @vlan: VLAN id to write to VLAN filter
3112 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 *  Turn on/off specified VLAN in the VLAN filter table.
3117 **/
3118int ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119			   bool vlan_on, bool vlvf_bypass)
3120{
3121	u32 regidx, vfta_delta, vfta, bits;
3122	int vlvf_index;
 
 
 
 
 
3123
3124	if ((vlan > 4095) || (vind > 63))
3125		return -EINVAL;
3126
3127	/*
3128	 * this is a 2 part operation - first the VFTA, then the
3129	 * VLVF and VLVFB if VT Mode is set
3130	 * We don't write the VFTA until we know the VLVF part succeeded.
3131	 */
3132
3133	/* Part 1
3134	 * The VFTA is a bitstring made up of 128 32-bit registers
3135	 * that enable the particular VLAN id, much like the MTA:
3136	 *    bits[11-5]: which register
3137	 *    bits[4-0]:  which bit in the register
3138	 */
3139	regidx = vlan / 32;
3140	vfta_delta = BIT(vlan % 32);
3141	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143	/* vfta_delta represents the difference between the current value
3144	 * of vfta and the value we want in the register.  Since the diff
3145	 * is an XOR mask we can just update vfta using an XOR.
3146	 */
3147	vfta_delta &= vlan_on ? ~vfta : vfta;
3148	vfta ^= vfta_delta;
 
 
 
 
 
 
3149
3150	/* Part 2
3151	 * If VT Mode is set
3152	 *   Either vlan_on
3153	 *     make sure the vlan is in VLVF
3154	 *     set the vind bit in the matching VLVFB
3155	 *   Or !vlan_on
3156	 *     clear the pool bit and possibly the vind
3157	 */
3158	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159		goto vfta_update;
3160
3161	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162	if (vlvf_index < 0) {
3163		if (vlvf_bypass)
3164			goto vfta_update;
3165		return vlvf_index;
3166	}
3167
3168	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170	/* set the pool bit */
3171	bits |= BIT(vind % 32);
3172	if (vlan_on)
3173		goto vlvf_update;
3174
3175	/* clear the pool bit */
3176	bits ^= BIT(vind % 32);
3177
3178	if (!bits &&
3179	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180		/* Clear VFTA first, then disable VLVF.  Otherwise
3181		 * we run the risk of stray packets leaking into
3182		 * the PF via the default pool
3183		 */
3184		if (vfta_delta)
3185			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187		/* disable VLVF and clear remaining bit from pool */
3188		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190
3191		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	}
3193
3194	/* If there are still bits set in the VLVFB registers
3195	 * for the VLAN ID indicated we need to see if the
3196	 * caller is requesting that we clear the VFTA entry bit.
3197	 * If the caller has requested that we clear the VFTA
3198	 * entry bit but there are still pools/VFs using this VLAN
3199	 * ID entry then ignore the request.  We're not worried
3200	 * about the case where we're turning the VFTA VLAN ID
3201	 * entry bit on, only when requested to turn it off as
3202	 * there may be multiple pools and/or VFs using the
3203	 * VLAN ID entry.  In that case we cannot clear the
3204	 * VFTA bit until all pools/VFs using that VLAN ID have also
3205	 * been cleared.  This will be indicated by "bits" being
3206	 * zero.
3207	 */
3208	vfta_delta = 0;
3209
3210vlvf_update:
3211	/* record pool change and enable VLAN ID if not already enabled */
3212	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215vfta_update:
3216	/* Update VFTA now that we are ready for traffic */
3217	if (vfta_delta)
3218		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220	return 0;
3221}
3222
3223/**
3224 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 *  @hw: pointer to hardware structure
3226 *
3227 *  Clears the VLAN filter table, and the VMDq index associated with the filter
3228 **/
3229int ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230{
3231	u32 offset;
3232
3233	for (offset = 0; offset < hw->mac.vft_size; offset++)
3234		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240	}
3241
3242	return 0;
3243}
3244
3245/**
3246 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 *  @hw: pointer to hardware structure
3248 *
3249 *  Contains the logic to identify if we need to verify link for the
3250 *  crosstalk fix
3251 **/
3252static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253{
3254	/* Does FW say we need the fix */
3255	if (!hw->need_crosstalk_fix)
3256		return false;
3257
3258	/* Only consider SFP+ PHYs i.e. media type fiber */
3259	switch (hw->mac.ops.get_media_type(hw)) {
3260	case ixgbe_media_type_fiber:
3261	case ixgbe_media_type_fiber_qsfp:
3262		break;
3263	default:
3264		return false;
3265	}
3266
3267	return true;
3268}
3269
3270/**
3271 *  ixgbe_check_mac_link_generic - Determine link and speed status
3272 *  @hw: pointer to hardware structure
3273 *  @speed: pointer to link speed
3274 *  @link_up: true when link is up
3275 *  @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 *  Reads the links register to determine if link is up and the current speed
3278 **/
3279int ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280				 bool *link_up, bool link_up_wait_to_complete)
3281{
3282	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283	u32 links_reg, links_orig;
3284	u32 i;
3285
3286	/* If Crosstalk fix enabled do the sanity check of making sure
3287	 * the SFP+ cage is full.
3288	 */
3289	if (crosstalk_fix_active) {
3290		u32 sfp_cage_full;
3291
3292		switch (hw->mac.type) {
3293		case ixgbe_mac_82599EB:
3294			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295					IXGBE_ESDP_SDP2;
3296			break;
3297		case ixgbe_mac_X550EM_x:
3298		case ixgbe_mac_x550em_a:
3299			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300					IXGBE_ESDP_SDP0;
3301			break;
3302		default:
3303			/* sanity check - No SFP+ devices here */
3304			sfp_cage_full = false;
3305			break;
3306		}
3307
3308		if (!sfp_cage_full) {
3309			*link_up = false;
3310			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3311			return 0;
3312		}
3313	}
3314
3315	/* clear the old state */
3316	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317
3318	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320	if (links_orig != links_reg) {
3321		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322		       links_orig, links_reg);
3323	}
3324
3325	if (link_up_wait_to_complete) {
3326		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327			if (links_reg & IXGBE_LINKS_UP) {
3328				*link_up = true;
3329				break;
3330			} else {
3331				*link_up = false;
3332			}
3333			msleep(100);
3334			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335		}
3336	} else {
3337		if (links_reg & IXGBE_LINKS_UP) {
3338			if (crosstalk_fix_active) {
3339				/* Check the link state again after a delay
3340				 * to filter out spurious link up
3341				 * notifications.
3342				 */
3343				mdelay(5);
3344				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345				if (!(links_reg & IXGBE_LINKS_UP)) {
3346					*link_up = false;
3347					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3348					return 0;
3349				}
3350			}
3351			*link_up = true;
3352		} else {
3353			*link_up = false;
3354		}
3355	}
3356
3357	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358	case IXGBE_LINKS_SPEED_10G_82599:
3359		if ((hw->mac.type >= ixgbe_mac_X550) &&
3360		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362		else
3363			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3364		break;
3365	case IXGBE_LINKS_SPEED_1G_82599:
3366		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3367		break;
3368	case IXGBE_LINKS_SPEED_100_82599:
3369		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3372		else
3373			*speed = IXGBE_LINK_SPEED_100_FULL;
3374		break;
3375	case IXGBE_LINKS_SPEED_10_X550EM_A:
3376		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3377		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379			*speed = IXGBE_LINK_SPEED_10_FULL;
3380		}
3381		break;
3382	default:
3383		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3384	}
3385
3386	return 0;
3387}
3388
3389/**
3390 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391 *  the EEPROM
3392 *  @hw: pointer to hardware structure
3393 *  @wwnn_prefix: the alternative WWNN prefix
3394 *  @wwpn_prefix: the alternative WWPN prefix
3395 *
3396 *  This function will read the EEPROM from the alternative SAN MAC address
3397 *  block to check the support for the alternative WWNN/WWPN prefix support.
3398 **/
3399int ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400				 u16 *wwpn_prefix)
3401{
3402	u16 offset, caps;
3403	u16 alt_san_mac_blk_offset;
3404
3405	/* clear output first */
3406	*wwnn_prefix = 0xFFFF;
3407	*wwpn_prefix = 0xFFFF;
3408
3409	/* check if alternative SAN MAC is supported */
3410	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412		goto wwn_prefix_err;
3413
3414	if ((alt_san_mac_blk_offset == 0) ||
3415	    (alt_san_mac_blk_offset == 0xFFFF))
3416		return 0;
3417
3418	/* check capability in alternative san mac address block */
3419	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420	if (hw->eeprom.ops.read(hw, offset, &caps))
3421		goto wwn_prefix_err;
3422	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423		return 0;
3424
3425	/* get the corresponding prefix for WWNN/WWPN */
3426	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429
3430	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432		goto wwn_prefix_err;
3433
 
3434	return 0;
3435
3436wwn_prefix_err:
3437	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438	return 0;
3439}
3440
3441/**
3442 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 *  @hw: pointer to hardware structure
3444 *  @enable: enable or disable switch for MAC anti-spoofing
3445 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 *
3447 **/
3448void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449{
3450	int vf_target_reg = vf >> 3;
3451	int vf_target_shift = vf % 8;
3452	u32 pfvfspoof;
 
3453
3454	if (hw->mac.type == ixgbe_mac_82598EB)
3455		return;
3456
3457	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458	if (enable)
3459		pfvfspoof |= BIT(vf_target_shift);
3460	else
3461		pfvfspoof &= ~BIT(vf_target_shift);
3462	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463}
3464
3465/**
3466 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 *  @hw: pointer to hardware structure
3468 *  @enable: enable or disable switch for VLAN anti-spoofing
3469 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 *
3471 **/
3472void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473{
3474	int vf_target_reg = vf >> 3;
3475	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476	u32 pfvfspoof;
3477
3478	if (hw->mac.type == ixgbe_mac_82598EB)
3479		return;
3480
3481	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482	if (enable)
3483		pfvfspoof |= BIT(vf_target_shift);
3484	else
3485		pfvfspoof &= ~BIT(vf_target_shift);
3486	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487}
3488
3489/**
3490 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3491 *  @hw: pointer to hardware structure
3492 *  @device_caps: the EEPROM word with the extra device capabilities
3493 *
3494 *  This function will read the EEPROM location for the device capabilities,
3495 *  and return the word through device_caps.
3496 **/
3497int ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498{
3499	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500
3501	return 0;
3502}
3503
3504/**
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3510 **/
3511void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512			     int num_pb,
3513			     u32 headroom,
3514			     int strategy)
3515{
3516	u32 pbsize = hw->mac.rx_pb_size;
3517	int i = 0;
3518	u32 rxpktsize, txpktsize, txpbthresh;
3519
3520	/* Reserve headroom */
3521	pbsize -= headroom;
3522
3523	if (!num_pb)
3524		num_pb = 1;
3525
3526	/* Divide remaining packet buffer space amongst the number
3527	 * of packet buffers requested using supplied strategy.
3528	 */
3529	switch (strategy) {
3530	case (PBA_STRATEGY_WEIGHTED):
3531		/* pba_80_48 strategy weight first half of packet buffer with
3532		 * 5/8 of the packet buffer space.
3533		 */
3534		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535		pbsize -= rxpktsize * (num_pb / 2);
3536		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537		for (; i < (num_pb / 2); i++)
3538			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539		fallthrough; /* configure remaining packet buffers */
3540	case (PBA_STRATEGY_EQUAL):
3541		/* Divide the remaining Rx packet buffer evenly among the TCs */
3542		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543		for (; i < num_pb; i++)
3544			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545		break;
3546	default:
3547		break;
3548	}
3549
3550	/*
3551	 * Setup Tx packet buffer and threshold equally for all TCs
3552	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553	 * 10 since the largest packet we support is just over 9K.
3554	 */
3555	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557	for (i = 0; i < num_pb; i++) {
3558		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560	}
3561
3562	/* Clear unused TCs, if any, to zero buffer size*/
3563	for (; i < IXGBE_MAX_PB; i++) {
3564		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567	}
3568}
3569
3570/**
3571 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3572 *  @buffer: pointer to EEPROM
3573 *  @length: size of EEPROM to calculate a checksum for
3574 *
3575 *  Calculates the checksum for some buffer on a specified length.  The
3576 *  checksum calculated is returned.
3577 **/
3578u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579{
3580	u32 i;
3581	u8 sum = 0;
3582
3583	if (!buffer)
3584		return 0;
3585
3586	for (i = 0; i < length; i++)
3587		sum += buffer[i];
3588
3589	return (u8) (0 - sum);
3590}
3591
3592/**
3593 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 *  @hw: pointer to the HW structure
3595 *  @buffer: command to write and where the return status will be placed
 
3596 *  @length: length of buffer, must be multiple of 4 bytes
3597 *  @timeout: time in ms to wait for command completion
3598 *
3599 *  Communicates with the manageability block. On success return 0
3600 *  else returns semaphore error when encountering an error acquiring
3601 *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602 *  command fails.
3603 *
3604 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605 *  by the caller.
3606 **/
3607int ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608		       u32 timeout)
3609{
3610	u32 hicr, i, fwsts;
3611	u16 dword_len;
 
3612
3613	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615		return -EINVAL;
3616	}
3617
3618	/* Set bit 9 of FWSTS clearing FW reset indication */
3619	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
 
 
 
3621
3622	/* Check that the host interface is enabled. */
3623	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624	if (!(hicr & IXGBE_HICR_EN)) {
3625		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626		return -EIO;
3627	}
3628
3629	/* Calculate length in DWORDs. We must be DWORD aligned */
3630	if (length % sizeof(u32)) {
3631		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632		return -EINVAL;
3633	}
3634
 
3635	dword_len = length >> 2;
3636
3637	/* The device driver writes the relevant command block
 
3638	 * into the ram area.
3639	 */
3640	for (i = 0; i < dword_len; i++)
3641		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642				      i, (__force u32)cpu_to_le32(buffer[i]));
3643
3644	/* Setting this bit tells the ARC that a new command is pending. */
3645	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646
3647	for (i = 0; i < timeout; i++) {
3648		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649		if (!(hicr & IXGBE_HICR_C))
3650			break;
3651		usleep_range(1000, 2000);
3652	}
3653
3654	/* Check command successful completion. */
3655	if ((timeout && i == timeout) ||
3656	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657		return -EIO;
3658
3659	return 0;
3660}
3661
3662/**
3663 *  ixgbe_host_interface_command - Issue command to manageability block
3664 *  @hw: pointer to the HW structure
3665 *  @buffer: contains the command to write and where the return status will
3666 *           be placed
3667 *  @length: length of buffer, must be multiple of 4 bytes
3668 *  @timeout: time in ms to wait for command completion
3669 *  @return_data: read and return data from the buffer (true) or not (false)
3670 *  Needed because FW structures are big endian and decoding of
3671 *  these fields can be 8 bit or 16 bit based on command. Decoding
3672 *  is not easily understood without making a table of commands.
3673 *  So we will leave this up to the caller to read back the data
3674 *  in these cases.
3675 *
3676 *  Communicates with the manageability block.  On success return 0
3677 *  else return -EIO or -EINVAL.
3678 **/
3679int ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680				 u32 length, u32 timeout,
3681				 bool return_data)
3682{
3683	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684	struct ixgbe_hic_hdr *hdr = buffer;
3685	u16 buf_len, dword_len;
3686	u32 *u32arr = buffer;
3687	int status;
3688	u32 bi;
3689
3690	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692		return -EINVAL;
3693	}
3694	/* Take management host interface semaphore */
3695	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696	if (status)
3697		return status;
3698
3699	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700	if (status)
3701		goto rel_out;
3702
3703	if (!return_data)
3704		goto rel_out;
3705
3706	/* Calculate length in DWORDs */
3707	dword_len = hdr_size >> 2;
3708
3709	/* first pull in the header so we know the buffer length */
3710	for (bi = 0; bi < dword_len; bi++) {
3711		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712		le32_to_cpus(&u32arr[bi]);
3713	}
3714
3715	/* If there is any thing in data position pull it in */
3716	buf_len = hdr->buf_len;
3717	if (!buf_len)
3718		goto rel_out;
3719
3720	if (length < round_up(buf_len, 4) + hdr_size) {
3721		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722		status = -EIO;
3723		goto rel_out;
3724	}
3725
3726	/* Calculate length in DWORDs, add 3 for odd lengths */
3727	dword_len = (buf_len + 3) >> 2;
3728
3729	/* Pull in the rest of the buffer (bi is where we left off) */
3730	for (; bi <= dword_len; bi++) {
3731		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732		le32_to_cpus(&u32arr[bi]);
3733	}
3734
3735rel_out:
3736	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737
3738	return status;
3739}
3740
3741/**
3742 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 *  @hw: pointer to the HW structure
3744 *  @maj: driver version major number
3745 *  @min: driver version minor number
3746 *  @build: driver version build number
3747 *  @sub: driver version sub build number
3748 *  @len: length of driver_ver string
3749 *  @driver_ver: driver string
3750 *
3751 *  Sends driver version number to firmware through the manageability
3752 *  block.  On success return 0
3753 *  else returns -EBUSY when encountering an error acquiring
3754 *  semaphore or -EIO when command fails.
3755 **/
3756int ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757				 u8 build, u8 sub, __always_unused u16 len,
3758				 __always_unused const char *driver_ver)
3759{
3760	struct ixgbe_hic_drv_info fw_cmd;
3761	int ret_val;
3762	int i;
 
 
 
 
 
 
3763
3764	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767	fw_cmd.port_num = hw->bus.func;
3768	fw_cmd.ver_maj = maj;
3769	fw_cmd.ver_min = min;
3770	fw_cmd.ver_build = build;
3771	fw_cmd.ver_sub = sub;
3772	fw_cmd.hdr.checksum = 0;
3773	fw_cmd.pad = 0;
3774	fw_cmd.pad2 = 0;
3775	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
 
 
3777
3778	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780						       sizeof(fw_cmd),
3781						       IXGBE_HI_COMMAND_TIMEOUT,
3782						       true);
3783		if (ret_val != 0)
3784			continue;
3785
3786		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787		    FW_CEM_RESP_STATUS_SUCCESS)
3788			ret_val = 0;
3789		else
3790			ret_val = -EIO;
3791
3792		break;
3793	}
3794
 
 
3795	return ret_val;
3796}
3797
3798/**
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3801 *
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs.  This function prevents this by flushing the PCIe
3804 * buffers on the system.
3805 **/
3806void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807{
3808	u32 gcr_ext, hlreg0, i, poll;
3809	u16 value;
3810
3811	/*
3812	 * If double reset is not requested then all transactions should
3813	 * already be clear and as such there is no work to do
3814	 */
3815	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816		return;
3817
3818	/*
3819	 * Set loopback enable to prevent any transmits from being sent
3820	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3821	 * has already been cleared.
3822	 */
3823	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825
3826	/* wait for a last completion before clearing buffers */
3827	IXGBE_WRITE_FLUSH(hw);
3828	usleep_range(3000, 6000);
3829
3830	/* Before proceeding, make sure that the PCIe block does not have
3831	 * transactions pending.
3832	 */
3833	poll = ixgbe_pcie_timeout_poll(hw);
3834	for (i = 0; i < poll; i++) {
3835		usleep_range(100, 200);
3836		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837		if (ixgbe_removed(hw->hw_addr))
3838			break;
3839		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840			break;
3841	}
3842
3843	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3844	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847
3848	/* Flush all writes and allow 20usec for all transactions to clear */
3849	IXGBE_WRITE_FLUSH(hw);
3850	udelay(20);
3851
3852	/* restore previous register values */
3853	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855}
3856
3857static const u8 ixgbe_emc_temp_data[4] = {
3858	IXGBE_EMC_INTERNAL_DATA,
3859	IXGBE_EMC_DIODE1_DATA,
3860	IXGBE_EMC_DIODE2_DATA,
3861	IXGBE_EMC_DIODE3_DATA
3862};
3863static const u8 ixgbe_emc_therm_limit[4] = {
3864	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865	IXGBE_EMC_DIODE1_THERM_LIMIT,
3866	IXGBE_EMC_DIODE2_THERM_LIMIT,
3867	IXGBE_EMC_DIODE3_THERM_LIMIT
3868};
3869
3870/**
3871 *  ixgbe_get_ets_data - Extracts the ETS bit data
3872 *  @hw: pointer to hardware structure
3873 *  @ets_cfg: extected ETS data
3874 *  @ets_offset: offset of ETS data
3875 *
3876 *  Returns error code.
3877 **/
3878static int ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879			      u16 *ets_offset)
3880{
3881	int status;
3882
3883	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884	if (status)
3885		return status;
3886
3887	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888		return -EOPNOTSUPP;
 
 
3889
3890	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891	if (status)
3892		return status;
3893
3894	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895		return -EOPNOTSUPP;
 
 
3896
3897	return 0;
 
3898}
3899
3900/**
3901 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 *  @hw: pointer to hardware structure
3903 *
3904 *  Returns the thermal sensor data structure
3905 **/
3906int ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907{
 
3908	u16 ets_offset;
 
3909	u16 ets_sensor;
3910	u8  num_sensors;
3911	u16 ets_cfg;
3912	int status;
3913	u8  i;
3914	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915
3916	/* Only support thermal sensors attached to physical port 0 */
3917	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918		return -EOPNOTSUPP;
 
 
3919
3920	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921	if (status)
3922		return status;
3923
3924	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925	if (num_sensors > IXGBE_MAX_SENSORS)
3926		num_sensors = IXGBE_MAX_SENSORS;
3927
3928	for (i = 0; i < num_sensors; i++) {
3929		u8  sensor_index;
3930		u8  sensor_location;
3931
3932		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933					     &ets_sensor);
3934		if (status)
3935			return status;
3936
3937		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938					 ets_sensor);
3939		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940					    ets_sensor);
3941
3942		if (sensor_location != 0) {
3943			status = hw->phy.ops.read_i2c_byte(hw,
3944					ixgbe_emc_temp_data[sensor_index],
3945					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946					&data->sensor[i].temp);
3947			if (status)
3948				return status;
3949		}
3950	}
3951
3952	return 0;
3953}
3954
3955/**
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3958 *
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3961 **/
3962int ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963{
3964	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
 
 
 
3965	u8  low_thresh_delta;
3966	u8  num_sensors;
3967	u8  therm_limit;
3968	u16 ets_sensor;
3969	u16 ets_offset;
3970	u16 ets_cfg;
3971	int status;
3972	u8  i;
 
3973
3974	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975
3976	/* Only support thermal sensors attached to physical port 0 */
3977	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978		return -EOPNOTSUPP;
 
 
3979
3980	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981	if (status)
3982		return status;
3983
3984	low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
 
3985	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986	if (num_sensors > IXGBE_MAX_SENSORS)
3987		num_sensors = IXGBE_MAX_SENSORS;
3988
3989	for (i = 0; i < num_sensors; i++) {
3990		u8  sensor_index;
3991		u8  sensor_location;
3992
3993		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994			hw_err(hw, "eeprom read at offset %d failed\n",
3995			       ets_offset + 1 + i);
3996			continue;
3997		}
3998		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999					 ets_sensor);
4000		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001					    ets_sensor);
4002		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004		hw->phy.ops.write_i2c_byte(hw,
4005			ixgbe_emc_therm_limit[sensor_index],
4006			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008		if (sensor_location == 0)
4009			continue;
4010
4011		data->sensor[i].location = sensor_location;
4012		data->sensor[i].caution_thresh = therm_limit;
4013		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014	}
4015
4016	return 0;
4017}
4018
4019/**
4020 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021 *
4022 *  @hw: pointer to hardware structure
4023 *  @nvm_ver: pointer to output structure
4024 *
4025 *  if valid option ROM version, nvm_ver->or_valid set to true
4026 *  else nvm_ver->or_valid is false.
4027 **/
4028void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029			    struct ixgbe_nvm_version *nvm_ver)
4030{
4031	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033	nvm_ver->or_valid = false;
4034	/* Option Rom may or may not be present.  Start with pointer */
4035	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037	/* make sure offset is valid */
4038	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039		return;
4040
4041	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044	/* option rom exists and is valid */
4045	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4047	    eeprom_cfg_blkh == NVM_VER_INVALID)
4048		return;
4049
4050	nvm_ver->or_valid = true;
4051	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055}
4056
4057/**
4058 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059 *  @hw: pointer to hardware structure
4060 *  @nvm_ver: pointer to output structure
4061 *
4062 *  if valid OEM product version, nvm_ver->oem_valid set to true
4063 *  else nvm_ver->oem_valid is false.
4064 **/
4065void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066				struct ixgbe_nvm_version *nvm_ver)
4067{
4068	u16 rel_num, prod_ver, mod_len, cap, offset;
4069
4070	nvm_ver->oem_valid = false;
4071	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072
4073	/* Return is offset to OEM Product Version block is invalid */
4074	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075		return;
4076
4077	/* Read product version block */
4078	hw->eeprom.ops.read(hw, offset, &mod_len);
4079	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080
4081	/* Return if OEM product version block is invalid */
4082	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084		return;
4085
4086	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088
4089	/* Return if version is invalid */
4090	if ((rel_num | prod_ver) == 0x0 ||
4091	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092		return;
4093
4094	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096	nvm_ver->oem_release = rel_num;
4097	nvm_ver->oem_valid = true;
4098}
4099
4100/**
4101 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102 *
4103 *  @hw: pointer to hardware structure
4104 *  @nvm_ver: pointer to output structure
4105 *
4106 *  word read errors will return 0xFFFF
4107 **/
4108void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109		      struct ixgbe_nvm_version *nvm_ver)
4110{
4111	u16 etk_id_l, etk_id_h;
4112
4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114		etk_id_l = NVM_VER_INVALID;
4115	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116		etk_id_h = NVM_VER_INVALID;
4117
4118	/* The word order for the version format is determined by high order
4119	 * word bit 15.
4120	 */
4121	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122		nvm_ver->etk_id = etk_id_h;
4123		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124	} else {
4125		nvm_ver->etk_id = etk_id_l;
4126		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127	}
4128}
4129
4130void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131{
4132	u32 rxctrl;
4133
4134	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136		if (hw->mac.type != ixgbe_mac_82598EB) {
4137			u32 pfdtxgswc;
4138
4139			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143				hw->mac.set_lben = true;
4144			} else {
4145				hw->mac.set_lben = false;
4146			}
4147		}
4148		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150	}
4151}
4152
4153void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154{
4155	u32 rxctrl;
4156
4157	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159
4160	if (hw->mac.type != ixgbe_mac_82598EB) {
4161		if (hw->mac.set_lben) {
4162			u32 pfdtxgswc;
4163
4164			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167			hw->mac.set_lben = false;
4168		}
4169	}
4170}
4171
4172/** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4174 **/
4175bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176{
4177	u32 fwsm;
4178
4179	if (hw->mac.type < ixgbe_mac_82599EB)
4180		return false;
4181
4182	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183
4184	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185}
4186
4187/**
4188 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 *  @hw: pointer to hardware structure
4190 *  @speed: new link speed
4191 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192 *
4193 *  Set the link speed in the MAC and/or PHY register and restarts link.
4194 */
4195int ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196					  ixgbe_link_speed speed,
4197					  bool autoneg_wait_to_complete)
4198{
4199	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201	bool autoneg, link_up = false;
4202	u32 speedcnt = 0;
4203	int status = 0;
4204	u32 i = 0;
4205
4206	/* Mask off requested but non-supported speeds */
4207	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208	if (status)
4209		return status;
4210
4211	speed &= link_speed;
4212
4213	/* Try each speed one by one, highest priority first.  We do this in
4214	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215	 */
4216	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217		speedcnt++;
4218		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219
4220		/* Set the module link speed */
4221		switch (hw->phy.media_type) {
4222		case ixgbe_media_type_fiber:
4223			hw->mac.ops.set_rate_select_speed(hw,
4224						    IXGBE_LINK_SPEED_10GB_FULL);
4225			break;
4226		case ixgbe_media_type_fiber_qsfp:
4227			/* QSFP module automatically detects MAC link speed */
4228			break;
4229		default:
4230			hw_dbg(hw, "Unexpected media type\n");
4231			break;
4232		}
4233
4234		/* Allow module to change analog characteristics (1G->10G) */
4235		msleep(40);
4236
4237		status = hw->mac.ops.setup_mac_link(hw,
4238						    IXGBE_LINK_SPEED_10GB_FULL,
4239						    autoneg_wait_to_complete);
4240		if (status)
4241			return status;
4242
4243		/* Flap the Tx laser if it has not already been done */
4244		if (hw->mac.ops.flap_tx_laser)
4245			hw->mac.ops.flap_tx_laser(hw);
4246
4247		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249		 * attempted.  82599 uses the same timing for 10g SFI.
4250		 */
4251		for (i = 0; i < 5; i++) {
4252			/* Wait for the link partner to also set speed */
4253			msleep(100);
4254
4255			/* If we have link, just jump out */
4256			status = hw->mac.ops.check_link(hw, &link_speed,
4257							&link_up, false);
4258			if (status)
4259				return status;
4260
4261			if (link_up)
4262				goto out;
4263		}
4264	}
4265
4266	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267		speedcnt++;
4268		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270
4271		/* Set the module link speed */
4272		switch (hw->phy.media_type) {
4273		case ixgbe_media_type_fiber:
4274			hw->mac.ops.set_rate_select_speed(hw,
4275						     IXGBE_LINK_SPEED_1GB_FULL);
4276			break;
4277		case ixgbe_media_type_fiber_qsfp:
4278			/* QSFP module automatically detects link speed */
4279			break;
4280		default:
4281			hw_dbg(hw, "Unexpected media type\n");
4282			break;
4283		}
4284
4285		/* Allow module to change analog characteristics (10G->1G) */
4286		msleep(40);
4287
4288		status = hw->mac.ops.setup_mac_link(hw,
4289						    IXGBE_LINK_SPEED_1GB_FULL,
4290						    autoneg_wait_to_complete);
4291		if (status)
4292			return status;
4293
4294		/* Flap the Tx laser if it has not already been done */
4295		if (hw->mac.ops.flap_tx_laser)
4296			hw->mac.ops.flap_tx_laser(hw);
4297
4298		/* Wait for the link partner to also set speed */
4299		msleep(100);
4300
4301		/* If we have link, just jump out */
4302		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303						false);
4304		if (status)
4305			return status;
4306
4307		if (link_up)
4308			goto out;
4309	}
4310
4311	/* We didn't get link.  Configure back to the highest speed we tried,
4312	 * (if there was more than one).  We call ourselves back with just the
4313	 * single highest speed that the user requested.
4314	 */
4315	if (speedcnt > 1)
4316		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317						      highest_link_speed,
4318						      autoneg_wait_to_complete);
4319
4320out:
4321	/* Set autoneg_advertised value based on input link speed */
4322	hw->phy.autoneg_advertised = 0;
4323
4324	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326
4327	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329
4330	return status;
4331}
4332
4333/**
4334 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335 *  @hw: pointer to hardware structure
4336 *  @speed: link speed to set
4337 *
4338 *  Set module link speed via the soft rate select.
4339 */
4340void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341				      ixgbe_link_speed speed)
4342{
4343	u8 rs, eeprom_data;
4344	int status;
4345
4346	switch (speed) {
4347	case IXGBE_LINK_SPEED_10GB_FULL:
4348		/* one bit mask same as setting on */
4349		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350		break;
4351	case IXGBE_LINK_SPEED_1GB_FULL:
4352		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353		break;
4354	default:
4355		hw_dbg(hw, "Invalid fixed module speed\n");
4356		return;
4357	}
4358
4359	/* Set RS0 */
4360	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362					   &eeprom_data);
4363	if (status) {
4364		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365		return;
4366	}
4367
4368	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369
4370	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372					    eeprom_data);
4373	if (status) {
4374		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375		return;
4376	}
4377
4378	/* Set RS1 */
4379	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381					   &eeprom_data);
4382	if (status) {
4383		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384		return;
4385	}
4386
4387	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388
4389	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391					    eeprom_data);
4392	if (status) {
4393		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394		return;
4395	}
4396}
v3.15
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44                                        u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53					     u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55					     u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
 
 
  57						 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
 
 
 
 
 
  59
  60/**
  61 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  62 *  control
  63 *  @hw: pointer to hardware structure
  64 *
  65 *  There are several phys that do not support autoneg flow control. This
  66 *  function check the device id to see if the associated phy supports
  67 *  autoneg flow control.
  68 **/
  69bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  70{
  71	bool supported = false;
  72	ixgbe_link_speed speed;
  73	bool link_up;
  74
  75	switch (hw->phy.media_type) {
  76	case ixgbe_media_type_fiber:
  77		hw->mac.ops.check_link(hw, &speed, &link_up, false);
  78		/* if link is down, assume supported */
  79		if (link_up)
  80			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  81				true : false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82		else
  83			supported = true;
  84		break;
  85	case ixgbe_media_type_backplane:
  86		supported = true;
  87		break;
  88	case ixgbe_media_type_copper:
  89		/* only some copper devices support flow control autoneg */
  90		switch (hw->device_id) {
  91		case IXGBE_DEV_ID_82599_T3_LOM:
  92		case IXGBE_DEV_ID_X540T:
  93		case IXGBE_DEV_ID_X540T1:
 
 
 
 
 
 
  94			supported = true;
  95			break;
  96		default:
  97			break;
  98		}
 
  99	default:
 100		break;
 101	}
 102
 
 
 
 
 103	return supported;
 104}
 105
 106/**
 107 *  ixgbe_setup_fc - Set up flow control
 108 *  @hw: pointer to hardware structure
 109 *
 110 *  Called at init time to set up flow control.
 111 **/
 112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 113{
 114	s32 ret_val = 0;
 115	u32 reg = 0, reg_bp = 0;
 
 
 116	u16 reg_cu = 0;
 117	bool locked = false;
 118
 119	/*
 120	 * Validate the requested mode.  Strict IEEE mode does not allow
 121	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 122	 */
 123	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 124		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 125		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 126		goto out;
 127	}
 128
 129	/*
 130	 * 10gig parts do not have a word in the EEPROM to determine the
 131	 * default flow control setting, so we explicitly set it to full.
 132	 */
 133	if (hw->fc.requested_mode == ixgbe_fc_default)
 134		hw->fc.requested_mode = ixgbe_fc_full;
 135
 136	/*
 137	 * Set up the 1G and 10G flow control advertisement registers so the
 138	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 139	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 140	 */
 141	switch (hw->phy.media_type) {
 142	case ixgbe_media_type_backplane:
 143		/* some MAC's need RMW protection on AUTOC */
 144		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 145		if (ret_val)
 146			goto out;
 147
 148		/* only backplane uses autoc so fall though */
 149	case ixgbe_media_type_fiber:
 150		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 151
 152		break;
 153	case ixgbe_media_type_copper:
 154		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 155					MDIO_MMD_AN, &reg_cu);
 156		break;
 157	default:
 158		break;
 159	}
 160
 161	/*
 162	 * The possible values of fc.requested_mode are:
 163	 * 0: Flow control is completely disabled
 164	 * 1: Rx flow control is enabled (we can receive pause frames,
 165	 *    but not send pause frames).
 166	 * 2: Tx flow control is enabled (we can send pause frames but
 167	 *    we do not support receiving pause frames).
 168	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 169	 * other: Invalid.
 170	 */
 171	switch (hw->fc.requested_mode) {
 172	case ixgbe_fc_none:
 173		/* Flow control completely disabled by software override. */
 174		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 175		if (hw->phy.media_type == ixgbe_media_type_backplane)
 176			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 177				    IXGBE_AUTOC_ASM_PAUSE);
 178		else if (hw->phy.media_type == ixgbe_media_type_copper)
 179			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 180		break;
 181	case ixgbe_fc_tx_pause:
 182		/*
 183		 * Tx Flow control is enabled, and Rx Flow control is
 184		 * disabled by software override.
 185		 */
 186		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 187		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 188		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 189			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 190			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 191		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 192			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 193			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 194		}
 195		break;
 196	case ixgbe_fc_rx_pause:
 197		/*
 198		 * Rx Flow control is enabled and Tx Flow control is
 199		 * disabled by software override. Since there really
 200		 * isn't a way to advertise that we are capable of RX
 201		 * Pause ONLY, we will advertise that we support both
 202		 * symmetric and asymmetric Rx PAUSE, as such we fall
 203		 * through to the fc_full statement.  Later, we will
 204		 * disable the adapter's ability to send PAUSE frames.
 205		 */
 206	case ixgbe_fc_full:
 207		/* Flow control (both Rx and Tx) is enabled by SW override. */
 208		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 209		if (hw->phy.media_type == ixgbe_media_type_backplane)
 210			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 211				  IXGBE_AUTOC_ASM_PAUSE;
 212		else if (hw->phy.media_type == ixgbe_media_type_copper)
 213			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 214		break;
 215	default:
 216		hw_dbg(hw, "Flow control param set incorrectly\n");
 217		ret_val = IXGBE_ERR_CONFIG;
 218		goto out;
 219		break;
 220	}
 221
 222	if (hw->mac.type != ixgbe_mac_X540) {
 223		/*
 224		 * Enable auto-negotiation between the MAC & PHY;
 225		 * the MAC will advertise clause 37 flow control.
 226		 */
 227		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 228		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 229
 230		/* Disable AN timeout */
 231		if (hw->fc.strict_ieee)
 232			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 233
 234		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 235		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 236	}
 237
 238	/*
 239	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 240	 * and copper. There is no need to set the PCS1GCTL register.
 241	 *
 242	 */
 243	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 244		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 245		 * LESM is on, likewise reset_pipeline requries the lock as
 246		 * it also writes AUTOC.
 247		 */
 248		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 249		if (ret_val)
 250			goto out;
 251
 252	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 253		   ixgbe_device_supports_autoneg_fc(hw)) {
 254		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 255				      MDIO_MMD_AN, reg_cu);
 256	}
 257
 258	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 259out:
 260	return ret_val;
 261}
 262
 263/**
 264 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 265 *  @hw: pointer to hardware structure
 266 *
 267 *  Starts the hardware by filling the bus info structure and media type, clears
 268 *  all on chip counters, initializes receive address registers, multicast
 269 *  table, VLAN filter table, calls routine to set up link and flow control
 270 *  settings, and leaves transmit and receive units disabled and uninitialized
 271 **/
 272s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 273{
 
 274	u32 ctrl_ext;
 
 275
 276	/* Set the media type */
 277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279	/* Identify the PHY */
 280	hw->phy.ops.identify(hw);
 281
 282	/* Clear the VLAN filter table */
 283	hw->mac.ops.clear_vfta(hw);
 284
 285	/* Clear statistics registers */
 286	hw->mac.ops.clear_hw_cntrs(hw);
 287
 288	/* Set No Snoop Disable */
 289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292	IXGBE_WRITE_FLUSH(hw);
 293
 294	/* Setup flow control */
 295	ixgbe_setup_fc(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	/* Clear adapter stopped flag */
 298	hw->adapter_stopped = false;
 299
 300	return 0;
 301}
 302
 303/**
 304 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 305 *  @hw: pointer to hw structure
 306 *
 307 * Performs the init sequence common to the second generation
 308 * of 10 GbE devices.
 309 * Devices in the second generation:
 310 *     82599
 311 *     X540
 312 **/
 313s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 314{
 315	u32 i;
 316	u32 regval;
 317
 318	/* Clear the rate limiters */
 319	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 320		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 321		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 322	}
 323	IXGBE_WRITE_FLUSH(hw);
 324
 325	/* Disable relaxed ordering */
 326	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 327		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 328		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 329		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 330	}
 331
 332	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 333		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 334		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 335			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 336		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 337	}
 338
 339	return 0;
 340}
 341
 342/**
 343 *  ixgbe_init_hw_generic - Generic hardware initialization
 344 *  @hw: pointer to hardware structure
 345 *
 346 *  Initialize the hardware by resetting the hardware, filling the bus info
 347 *  structure and media type, clears all on chip counters, initializes receive
 348 *  address registers, multicast table, VLAN filter table, calls routine to set
 349 *  up link and flow control settings, and leaves transmit and receive units
 350 *  disabled and uninitialized
 351 **/
 352s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 353{
 354	s32 status;
 355
 356	/* Reset the hardware */
 357	status = hw->mac.ops.reset_hw(hw);
 358
 359	if (status == 0) {
 360		/* Start the HW */
 361		status = hw->mac.ops.start_hw(hw);
 362	}
 363
 
 
 
 
 364	return status;
 365}
 366
 367/**
 368 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 369 *  @hw: pointer to hardware structure
 370 *
 371 *  Clears all hardware statistics counters by reading them from the hardware
 372 *  Statistics counters are clear on read.
 373 **/
 374s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 375{
 376	u16 i = 0;
 377
 378	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 379	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 380	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 381	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 382	for (i = 0; i < 8; i++)
 383		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 384
 385	IXGBE_READ_REG(hw, IXGBE_MLFC);
 386	IXGBE_READ_REG(hw, IXGBE_MRFC);
 387	IXGBE_READ_REG(hw, IXGBE_RLEC);
 388	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 389	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 390	if (hw->mac.type >= ixgbe_mac_82599EB) {
 391		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 392		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 393	} else {
 394		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 395		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 396	}
 397
 398	for (i = 0; i < 8; i++) {
 399		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 400		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 401		if (hw->mac.type >= ixgbe_mac_82599EB) {
 402			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 403			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 404		} else {
 405			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 406			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 407		}
 408	}
 409	if (hw->mac.type >= ixgbe_mac_82599EB)
 410		for (i = 0; i < 8; i++)
 411			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 412	IXGBE_READ_REG(hw, IXGBE_PRC64);
 413	IXGBE_READ_REG(hw, IXGBE_PRC127);
 414	IXGBE_READ_REG(hw, IXGBE_PRC255);
 415	IXGBE_READ_REG(hw, IXGBE_PRC511);
 416	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 417	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 418	IXGBE_READ_REG(hw, IXGBE_GPRC);
 419	IXGBE_READ_REG(hw, IXGBE_BPRC);
 420	IXGBE_READ_REG(hw, IXGBE_MPRC);
 421	IXGBE_READ_REG(hw, IXGBE_GPTC);
 422	IXGBE_READ_REG(hw, IXGBE_GORCL);
 423	IXGBE_READ_REG(hw, IXGBE_GORCH);
 424	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 425	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 426	if (hw->mac.type == ixgbe_mac_82598EB)
 427		for (i = 0; i < 8; i++)
 428			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 429	IXGBE_READ_REG(hw, IXGBE_RUC);
 430	IXGBE_READ_REG(hw, IXGBE_RFC);
 431	IXGBE_READ_REG(hw, IXGBE_ROC);
 432	IXGBE_READ_REG(hw, IXGBE_RJC);
 433	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 434	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 435	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 436	IXGBE_READ_REG(hw, IXGBE_TORL);
 437	IXGBE_READ_REG(hw, IXGBE_TORH);
 438	IXGBE_READ_REG(hw, IXGBE_TPR);
 439	IXGBE_READ_REG(hw, IXGBE_TPT);
 440	IXGBE_READ_REG(hw, IXGBE_PTC64);
 441	IXGBE_READ_REG(hw, IXGBE_PTC127);
 442	IXGBE_READ_REG(hw, IXGBE_PTC255);
 443	IXGBE_READ_REG(hw, IXGBE_PTC511);
 444	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 445	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 446	IXGBE_READ_REG(hw, IXGBE_MPTC);
 447	IXGBE_READ_REG(hw, IXGBE_BPTC);
 448	for (i = 0; i < 16; i++) {
 449		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 450		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 451		if (hw->mac.type >= ixgbe_mac_82599EB) {
 452			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 453			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 454			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 455			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 456			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 457		} else {
 458			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 459			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 460		}
 461	}
 462
 463	if (hw->mac.type == ixgbe_mac_X540) {
 464		if (hw->phy.id == 0)
 465			hw->phy.ops.identify(hw);
 466		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 467		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 468		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 469		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 477 *  @hw: pointer to hardware structure
 478 *  @pba_num: stores the part number string from the EEPROM
 479 *  @pba_num_size: part number string buffer length
 480 *
 481 *  Reads the part number string from the EEPROM.
 482 **/
 483s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 484                                  u32 pba_num_size)
 485{
 486	s32 ret_val;
 487	u16 data;
 488	u16 pba_ptr;
 489	u16 offset;
 490	u16 length;
 
 491
 492	if (pba_num == NULL) {
 493		hw_dbg(hw, "PBA string buffer was null\n");
 494		return IXGBE_ERR_INVALID_ARGUMENT;
 495	}
 496
 497	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 498	if (ret_val) {
 499		hw_dbg(hw, "NVM Read Error\n");
 500		return ret_val;
 501	}
 502
 503	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 504	if (ret_val) {
 505		hw_dbg(hw, "NVM Read Error\n");
 506		return ret_val;
 507	}
 508
 509	/*
 510	 * if data is not ptr guard the PBA must be in legacy format which
 511	 * means pba_ptr is actually our second data word for the PBA number
 512	 * and we can decode it into an ascii string
 513	 */
 514	if (data != IXGBE_PBANUM_PTR_GUARD) {
 515		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 516
 517		/* we will need 11 characters to store the PBA */
 518		if (pba_num_size < 11) {
 519			hw_dbg(hw, "PBA string buffer too small\n");
 520			return IXGBE_ERR_NO_SPACE;
 521		}
 522
 523		/* extract hex string from data and pba_ptr */
 524		pba_num[0] = (data >> 12) & 0xF;
 525		pba_num[1] = (data >> 8) & 0xF;
 526		pba_num[2] = (data >> 4) & 0xF;
 527		pba_num[3] = data & 0xF;
 528		pba_num[4] = (pba_ptr >> 12) & 0xF;
 529		pba_num[5] = (pba_ptr >> 8) & 0xF;
 530		pba_num[6] = '-';
 531		pba_num[7] = 0;
 532		pba_num[8] = (pba_ptr >> 4) & 0xF;
 533		pba_num[9] = pba_ptr & 0xF;
 534
 535		/* put a null character on the end of our string */
 536		pba_num[10] = '\0';
 537
 538		/* switch all the data but the '-' to hex char */
 539		for (offset = 0; offset < 10; offset++) {
 540			if (pba_num[offset] < 0xA)
 541				pba_num[offset] += '0';
 542			else if (pba_num[offset] < 0x10)
 543				pba_num[offset] += 'A' - 0xA;
 544		}
 545
 546		return 0;
 547	}
 548
 549	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 550	if (ret_val) {
 551		hw_dbg(hw, "NVM Read Error\n");
 552		return ret_val;
 553	}
 554
 555	if (length == 0xFFFF || length == 0) {
 556		hw_dbg(hw, "NVM PBA number section invalid length\n");
 557		return IXGBE_ERR_PBA_SECTION;
 558	}
 559
 560	/* check if pba_num buffer is big enough */
 561	if (pba_num_size  < (((u32)length * 2) - 1)) {
 562		hw_dbg(hw, "PBA string buffer too small\n");
 563		return IXGBE_ERR_NO_SPACE;
 564	}
 565
 566	/* trim pba length from start of string */
 567	pba_ptr++;
 568	length--;
 569
 570	for (offset = 0; offset < length; offset++) {
 571		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 572		if (ret_val) {
 573			hw_dbg(hw, "NVM Read Error\n");
 574			return ret_val;
 575		}
 576		pba_num[offset * 2] = (u8)(data >> 8);
 577		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 578	}
 579	pba_num[offset * 2] = '\0';
 580
 581	return 0;
 582}
 583
 584/**
 585 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 586 *  @hw: pointer to hardware structure
 587 *  @mac_addr: Adapter MAC address
 588 *
 589 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 590 *  A reset of the adapter must be performed prior to calling this function
 591 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 592 **/
 593s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 594{
 595	u32 rar_high;
 596	u32 rar_low;
 597	u16 i;
 598
 599	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 600	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 601
 602	for (i = 0; i < 4; i++)
 603		mac_addr[i] = (u8)(rar_low >> (i*8));
 604
 605	for (i = 0; i < 2; i++)
 606		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 607
 608	return 0;
 609}
 610
 611enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 612{
 613	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 614	case IXGBE_PCI_LINK_WIDTH_1:
 615		return ixgbe_bus_width_pcie_x1;
 616	case IXGBE_PCI_LINK_WIDTH_2:
 617		return ixgbe_bus_width_pcie_x2;
 618	case IXGBE_PCI_LINK_WIDTH_4:
 619		return ixgbe_bus_width_pcie_x4;
 620	case IXGBE_PCI_LINK_WIDTH_8:
 621		return ixgbe_bus_width_pcie_x8;
 622	default:
 623		return ixgbe_bus_width_unknown;
 624	}
 625}
 626
 627enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 628{
 629	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 630	case IXGBE_PCI_LINK_SPEED_2500:
 631		return ixgbe_bus_speed_2500;
 632	case IXGBE_PCI_LINK_SPEED_5000:
 633		return ixgbe_bus_speed_5000;
 634	case IXGBE_PCI_LINK_SPEED_8000:
 635		return ixgbe_bus_speed_8000;
 636	default:
 637		return ixgbe_bus_speed_unknown;
 638	}
 639}
 640
 641/**
 642 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 643 *  @hw: pointer to hardware structure
 644 *
 645 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 646 **/
 647s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 648{
 649	u16 link_status;
 650
 651	hw->bus.type = ixgbe_bus_type_pci_express;
 652
 653	/* Get the negotiated link width and speed from PCI config space */
 654	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 655
 656	hw->bus.width = ixgbe_convert_bus_width(link_status);
 657	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 658
 659	hw->mac.ops.set_lan_id(hw);
 660
 661	return 0;
 662}
 663
 664/**
 665 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Determines the LAN function id by reading memory-mapped registers
 669 *  and swaps the port value if requested.
 670 **/
 671void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 672{
 673	struct ixgbe_bus_info *bus = &hw->bus;
 
 674	u32 reg;
 675
 676	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 677	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 678	bus->lan_id = bus->func;
 679
 680	/* check for a port swap */
 681	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 682	if (reg & IXGBE_FACTPS_LFS)
 683		bus->func ^= 0x1;
 
 
 
 
 
 
 
 684}
 685
 686/**
 687 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 688 *  @hw: pointer to hardware structure
 689 *
 690 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 691 *  disables transmit and receive units. The adapter_stopped flag is used by
 692 *  the shared code and drivers to determine if the adapter is in a stopped
 693 *  state and should not touch the hardware.
 694 **/
 695s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 696{
 697	u32 reg_val;
 698	u16 i;
 699
 700	/*
 701	 * Set the adapter_stopped flag so other driver functions stop touching
 702	 * the hardware
 703	 */
 704	hw->adapter_stopped = true;
 705
 706	/* Disable the receive unit */
 707	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 708
 709	/* Clear interrupt mask to stop interrupts from being generated */
 710	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 711
 712	/* Clear any pending interrupts, flush previous writes */
 713	IXGBE_READ_REG(hw, IXGBE_EICR);
 714
 715	/* Disable the transmit unit.  Each queue must be disabled. */
 716	for (i = 0; i < hw->mac.max_tx_queues; i++)
 717		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 718
 719	/* Disable the receive unit by stopping each queue */
 720	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 721		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 722		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 723		reg_val |= IXGBE_RXDCTL_SWFLSH;
 724		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 725	}
 726
 727	/* flush all queues disables */
 728	IXGBE_WRITE_FLUSH(hw);
 729	usleep_range(1000, 2000);
 730
 731	/*
 732	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 733	 * access and verify no pending requests
 734	 */
 735	return ixgbe_disable_pcie_master(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738/**
 739 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 740 *  @hw: pointer to hardware structure
 741 *  @index: led number to turn on
 742 **/
 743s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 744{
 745	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 746
 
 
 
 747	/* To turn on the LED, set mode to ON. */
 748	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 749	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 750	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 751	IXGBE_WRITE_FLUSH(hw);
 752
 753	return 0;
 754}
 755
 756/**
 757 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 758 *  @hw: pointer to hardware structure
 759 *  @index: led number to turn off
 760 **/
 761s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 762{
 763	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 764
 
 
 
 765	/* To turn off the LED, set mode to OFF. */
 766	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 767	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 768	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 769	IXGBE_WRITE_FLUSH(hw);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 776 *  @hw: pointer to hardware structure
 777 *
 778 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 779 *  ixgbe_hw struct in order to set up EEPROM access.
 780 **/
 781s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 782{
 783	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 784	u32 eec;
 785	u16 eeprom_size;
 786
 787	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 788		eeprom->type = ixgbe_eeprom_none;
 789		/* Set default semaphore delay to 10ms which is a well
 790		 * tested value */
 791		eeprom->semaphore_delay = 10;
 792		/* Clear EEPROM page size, it will be initialized as needed */
 793		eeprom->word_page_size = 0;
 794
 795		/*
 796		 * Check for EEPROM present first.
 797		 * If not present leave as none
 798		 */
 799		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 800		if (eec & IXGBE_EEC_PRES) {
 801			eeprom->type = ixgbe_eeprom_spi;
 802
 803			/*
 804			 * SPI EEPROM is assumed here.  This code would need to
 805			 * change if a future EEPROM is not SPI.
 806			 */
 807			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 808					    IXGBE_EEC_SIZE_SHIFT);
 809			eeprom->word_size = 1 << (eeprom_size +
 810						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 811		}
 812
 813		if (eec & IXGBE_EEC_ADDR_SIZE)
 814			eeprom->address_bits = 16;
 815		else
 816			eeprom->address_bits = 8;
 817		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 818			  "%d\n", eeprom->type, eeprom->word_size,
 819			  eeprom->address_bits);
 820	}
 821
 822	return 0;
 823}
 824
 825/**
 826 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 827 *  @hw: pointer to hardware structure
 828 *  @offset: offset within the EEPROM to write
 829 *  @words: number of words
 830 *  @data: 16 bit word(s) to write to EEPROM
 831 *
 832 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 833 **/
 834s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 835					       u16 words, u16 *data)
 836{
 837	s32 status = 0;
 838	u16 i, count;
 
 839
 840	hw->eeprom.ops.init_params(hw);
 841
 842	if (words == 0) {
 843		status = IXGBE_ERR_INVALID_ARGUMENT;
 844		goto out;
 845	}
 846
 847	if (offset + words > hw->eeprom.word_size) {
 848		status = IXGBE_ERR_EEPROM;
 849		goto out;
 850	}
 851
 852	/*
 853	 * The EEPROM page size cannot be queried from the chip. We do lazy
 854	 * initialization. It is worth to do that when we write large buffer.
 855	 */
 856	if ((hw->eeprom.word_page_size == 0) &&
 857	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 858		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 859
 860	/*
 861	 * We cannot hold synchronization semaphores for too long
 862	 * to avoid other entity starvation. However it is more efficient
 863	 * to read in bursts than synchronizing access for each word.
 864	 */
 865	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 866		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 867			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 868		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 869							    count, &data[i]);
 870
 871		if (status != 0)
 872			break;
 873	}
 874
 875out:
 876	return status;
 877}
 878
 879/**
 880 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 881 *  @hw: pointer to hardware structure
 882 *  @offset: offset within the EEPROM to be written to
 883 *  @words: number of word(s)
 884 *  @data: 16 bit word(s) to be written to the EEPROM
 885 *
 886 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 887 *  EEPROM will most likely contain an invalid checksum.
 888 **/
 889static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 890					      u16 words, u16 *data)
 891{
 892	s32 status;
 
 
 893	u16 word;
 894	u16 page_size;
 895	u16 i;
 896	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 897
 898	/* Prepare the EEPROM for writing  */
 899	status = ixgbe_acquire_eeprom(hw);
 
 
 900
 901	if (status == 0) {
 902		if (ixgbe_ready_eeprom(hw) != 0) {
 903			ixgbe_release_eeprom(hw);
 904			status = IXGBE_ERR_EEPROM;
 905		}
 906	}
 907
 908	if (status == 0) {
 909		for (i = 0; i < words; i++) {
 910			ixgbe_standby_eeprom(hw);
 
 
 
 
 
 
 911
 912			/*  Send the WRITE ENABLE command (8 bit opcode )  */
 913			ixgbe_shift_out_eeprom_bits(hw,
 914						  IXGBE_EEPROM_WREN_OPCODE_SPI,
 915						  IXGBE_EEPROM_OPCODE_BITS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917			ixgbe_standby_eeprom(hw);
 
 918
 919			/*
 920			 * Some SPI eeproms use the 8th address bit embedded
 921			 * in the opcode
 922			 */
 923			if ((hw->eeprom.address_bits == 8) &&
 924			    ((offset + i) >= 128))
 925				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 926
 927			/* Send the Write command (8-bit opcode + addr) */
 928			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 929						    IXGBE_EEPROM_OPCODE_BITS);
 930			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 931						    hw->eeprom.address_bits);
 932
 933			page_size = hw->eeprom.word_page_size;
 934
 935			/* Send the data in burst via SPI*/
 936			do {
 937				word = data[i];
 938				word = (word >> 8) | (word << 8);
 939				ixgbe_shift_out_eeprom_bits(hw, word, 16);
 940
 941				if (page_size == 0)
 942					break;
 943
 944				/* do not wrap around page */
 945				if (((offset + i) & (page_size - 1)) ==
 946				    (page_size - 1))
 947					break;
 948			} while (++i < words);
 949
 950			ixgbe_standby_eeprom(hw);
 951			usleep_range(10000, 20000);
 952		}
 953		/* Done with writing - release the EEPROM */
 954		ixgbe_release_eeprom(hw);
 955	}
 
 
 956
 957	return status;
 958}
 959
 960/**
 961 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 962 *  @hw: pointer to hardware structure
 963 *  @offset: offset within the EEPROM to be written to
 964 *  @data: 16 bit word to be written to the EEPROM
 965 *
 966 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 967 *  EEPROM will most likely contain an invalid checksum.
 968 **/
 969s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 970{
 971	s32 status;
 972
 973	hw->eeprom.ops.init_params(hw);
 974
 975	if (offset >= hw->eeprom.word_size) {
 976		status = IXGBE_ERR_EEPROM;
 977		goto out;
 978	}
 979
 980	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 981
 982out:
 983	return status;
 984}
 985
 986/**
 987 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 988 *  @hw: pointer to hardware structure
 989 *  @offset: offset within the EEPROM to be read
 990 *  @words: number of word(s)
 991 *  @data: read 16 bit words(s) from EEPROM
 992 *
 993 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 994 **/
 995s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 996					      u16 words, u16 *data)
 997{
 998	s32 status = 0;
 999	u16 i, count;
 
1000
1001	hw->eeprom.ops.init_params(hw);
1002
1003	if (words == 0) {
1004		status = IXGBE_ERR_INVALID_ARGUMENT;
1005		goto out;
1006	}
1007
1008	if (offset + words > hw->eeprom.word_size) {
1009		status = IXGBE_ERR_EEPROM;
1010		goto out;
1011	}
1012
1013	/*
1014	 * We cannot hold synchronization semaphores for too long
1015	 * to avoid other entity starvation. However it is more efficient
1016	 * to read in bursts than synchronizing access for each word.
1017	 */
1018	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1019		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1020			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1021
1022		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1023							   count, &data[i]);
1024
1025		if (status != 0)
1026			break;
1027	}
1028
1029out:
1030	return status;
1031}
1032
1033/**
1034 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1035 *  @hw: pointer to hardware structure
1036 *  @offset: offset within the EEPROM to be read
1037 *  @words: number of word(s)
1038 *  @data: read 16 bit word(s) from EEPROM
1039 *
1040 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1041 **/
1042static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1043					     u16 words, u16 *data)
1044{
1045	s32 status;
1046	u16 word_in;
1047	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1048	u16 i;
1049
1050	/* Prepare the EEPROM for reading  */
1051	status = ixgbe_acquire_eeprom(hw);
 
 
1052
1053	if (status == 0) {
1054		if (ixgbe_ready_eeprom(hw) != 0) {
1055			ixgbe_release_eeprom(hw);
1056			status = IXGBE_ERR_EEPROM;
1057		}
1058	}
1059
1060	if (status == 0) {
1061		for (i = 0; i < words; i++) {
1062			ixgbe_standby_eeprom(hw);
1063			/*
1064			 * Some SPI eeproms use the 8th address bit embedded
1065			 * in the opcode
1066			 */
1067			if ((hw->eeprom.address_bits == 8) &&
1068			    ((offset + i) >= 128))
1069				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1070
1071			/* Send the READ command (opcode + addr) */
1072			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1073						    IXGBE_EEPROM_OPCODE_BITS);
1074			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1075						    hw->eeprom.address_bits);
1076
1077			/* Read the data. */
1078			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1079			data[i] = (word_in >> 8) | (word_in << 8);
1080		}
1081
1082		/* End this read operation */
1083		ixgbe_release_eeprom(hw);
1084	}
1085
1086	return status;
1087}
1088
1089/**
1090 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1091 *  @hw: pointer to hardware structure
1092 *  @offset: offset within the EEPROM to be read
1093 *  @data: read 16 bit value from EEPROM
1094 *
1095 *  Reads 16 bit value from EEPROM through bit-bang method
1096 **/
1097s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1098				       u16 *data)
1099{
1100	s32 status;
1101
1102	hw->eeprom.ops.init_params(hw);
1103
1104	if (offset >= hw->eeprom.word_size) {
1105		status = IXGBE_ERR_EEPROM;
1106		goto out;
1107	}
1108
1109	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1110
1111out:
1112	return status;
1113}
1114
1115/**
1116 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1117 *  @hw: pointer to hardware structure
1118 *  @offset: offset of word in the EEPROM to read
1119 *  @words: number of word(s)
1120 *  @data: 16 bit word(s) from the EEPROM
1121 *
1122 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1123 **/
1124s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1125				   u16 words, u16 *data)
1126{
 
1127	u32 eerd;
1128	s32 status = 0;
1129	u32 i;
1130
1131	hw->eeprom.ops.init_params(hw);
1132
1133	if (words == 0) {
1134		status = IXGBE_ERR_INVALID_ARGUMENT;
1135		goto out;
1136	}
1137
1138	if (offset >= hw->eeprom.word_size) {
1139		status = IXGBE_ERR_EEPROM;
1140		goto out;
1141	}
1142
1143	for (i = 0; i < words; i++) {
1144		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1145		       IXGBE_EEPROM_RW_REG_START;
1146
1147		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1148		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1149
1150		if (status == 0) {
1151			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1152				   IXGBE_EEPROM_RW_REG_DATA);
1153		} else {
1154			hw_dbg(hw, "Eeprom read timed out\n");
1155			goto out;
1156		}
1157	}
1158out:
1159	return status;
1160}
1161
1162/**
1163 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1164 *  @hw: pointer to hardware structure
1165 *  @offset: offset within the EEPROM to be used as a scratch pad
1166 *
1167 *  Discover EEPROM page size by writing marching data at given offset.
1168 *  This function is called only when we are writing a new large buffer
1169 *  at given offset so the data would be overwritten anyway.
1170 **/
1171static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1172						 u16 offset)
1173{
1174	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1175	s32 status = 0;
1176	u16 i;
1177
1178	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1179		data[i] = i;
1180
1181	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1182	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1183					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1184	hw->eeprom.word_page_size = 0;
1185	if (status != 0)
1186		goto out;
1187
1188	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1189	if (status != 0)
1190		goto out;
1191
1192	/*
1193	 * When writing in burst more than the actual page size
1194	 * EEPROM address wraps around current page.
1195	 */
1196	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1197
1198	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1199	       hw->eeprom.word_page_size);
1200out:
1201	return status;
1202}
1203
1204/**
1205 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1206 *  @hw: pointer to hardware structure
1207 *  @offset: offset of  word in the EEPROM to read
1208 *  @data: word read from the EEPROM
1209 *
1210 *  Reads a 16 bit word from the EEPROM using the EERD register.
1211 **/
1212s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1213{
1214	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1215}
1216
1217/**
1218 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1219 *  @hw: pointer to hardware structure
1220 *  @offset: offset of  word in the EEPROM to write
1221 *  @words: number of words
1222 *  @data: word(s) write to the EEPROM
1223 *
1224 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1225 **/
1226s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1227				    u16 words, u16 *data)
1228{
 
1229	u32 eewr;
1230	s32 status = 0;
1231	u16 i;
1232
1233	hw->eeprom.ops.init_params(hw);
1234
1235	if (words == 0) {
1236		status = IXGBE_ERR_INVALID_ARGUMENT;
1237		goto out;
1238	}
1239
1240	if (offset >= hw->eeprom.word_size) {
1241		status = IXGBE_ERR_EEPROM;
1242		goto out;
1243	}
1244
1245	for (i = 0; i < words; i++) {
1246		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1247		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1248		       IXGBE_EEPROM_RW_REG_START;
1249
1250		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1251		if (status != 0) {
1252			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1253			goto out;
1254		}
1255
1256		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1257
1258		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1259		if (status != 0) {
1260			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1261			goto out;
1262		}
1263	}
1264
1265out:
1266	return status;
1267}
1268
1269/**
1270 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1271 *  @hw: pointer to hardware structure
1272 *  @offset: offset of  word in the EEPROM to write
1273 *  @data: word write to the EEPROM
1274 *
1275 *  Write a 16 bit word to the EEPROM using the EEWR register.
1276 **/
1277s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1278{
1279	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1280}
1281
1282/**
1283 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1284 *  @hw: pointer to hardware structure
1285 *  @ee_reg: EEPROM flag for polling
1286 *
1287 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1288 *  read or write is done respectively.
1289 **/
1290static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1291{
1292	u32 i;
1293	u32 reg;
1294	s32 status = IXGBE_ERR_EEPROM;
1295
1296	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1297		if (ee_reg == IXGBE_NVM_POLL_READ)
1298			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1299		else
1300			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1301
1302		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1303			status = 0;
1304			break;
1305		}
1306		udelay(5);
1307	}
1308	return status;
1309}
1310
1311/**
1312 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1313 *  @hw: pointer to hardware structure
1314 *
1315 *  Prepares EEPROM for access using bit-bang method. This function should
1316 *  be called before issuing a command to the EEPROM.
1317 **/
1318static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1319{
1320	s32 status = 0;
1321	u32 eec;
1322	u32 i;
1323
1324	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1325		status = IXGBE_ERR_SWFW_SYNC;
1326
1327	if (status == 0) {
1328		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1329
1330		/* Request EEPROM Access */
1331		eec |= IXGBE_EEC_REQ;
1332		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1333
1334		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1335			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1336			if (eec & IXGBE_EEC_GNT)
1337				break;
1338			udelay(5);
1339		}
1340
1341		/* Release if grant not acquired */
1342		if (!(eec & IXGBE_EEC_GNT)) {
1343			eec &= ~IXGBE_EEC_REQ;
1344			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1345			hw_dbg(hw, "Could not acquire EEPROM grant\n");
 
1346
1347			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1348			status = IXGBE_ERR_EEPROM;
1349		}
 
 
 
 
 
 
1350
1351		/* Setup EEPROM for Read/Write */
1352		if (status == 0) {
1353			/* Clear CS and SK */
1354			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1355			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1356			IXGBE_WRITE_FLUSH(hw);
1357			udelay(1);
1358		}
1359	}
1360	return status;
1361}
1362
1363/**
1364 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1365 *  @hw: pointer to hardware structure
1366 *
1367 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1368 **/
1369static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1370{
1371	s32 status = IXGBE_ERR_EEPROM;
1372	u32 timeout = 2000;
1373	u32 i;
1374	u32 swsm;
1375
1376	/* Get SMBI software semaphore between device drivers first */
1377	for (i = 0; i < timeout; i++) {
1378		/*
1379		 * If the SMBI bit is 0 when we read it, then the bit will be
1380		 * set and we have the semaphore
1381		 */
1382		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1383		if (!(swsm & IXGBE_SWSM_SMBI)) {
1384			status = 0;
1385			break;
1386		}
1387		udelay(50);
1388	}
1389
1390	if (i == timeout) {
1391		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1392		       "not granted.\n");
1393		/*
1394		 * this release is particularly important because our attempts
1395		 * above to get the semaphore may have succeeded, and if there
1396		 * was a timeout, we should unconditionally clear the semaphore
1397		 * bits to free the driver to make progress
1398		 */
1399		ixgbe_release_eeprom_semaphore(hw);
1400
1401		udelay(50);
1402		/*
1403		 * one last try
1404		 * If the SMBI bit is 0 when we read it, then the bit will be
1405		 * set and we have the semaphore
1406		 */
1407		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1408		if (!(swsm & IXGBE_SWSM_SMBI))
1409			status = 0;
 
 
1410	}
1411
1412	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1413	if (status == 0) {
1414		for (i = 0; i < timeout; i++) {
1415			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1416
1417			/* Set the SW EEPROM semaphore bit to request access */
1418			swsm |= IXGBE_SWSM_SWESMBI;
1419			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1420
1421			/*
1422			 * If we set the bit successfully then we got the
1423			 * semaphore.
1424			 */
1425			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1426			if (swsm & IXGBE_SWSM_SWESMBI)
1427				break;
1428
1429			udelay(50);
1430		}
1431
1432		/*
1433		 * Release semaphores and return error if SW EEPROM semaphore
1434		 * was not granted because we don't have access to the EEPROM
1435		 */
1436		if (i >= timeout) {
1437			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1438			       "not granted.\n");
1439			ixgbe_release_eeprom_semaphore(hw);
1440			status = IXGBE_ERR_EEPROM;
1441		}
1442	} else {
1443		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1444		       "not granted.\n");
1445	}
1446
1447	return status;
1448}
1449
1450/**
1451 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1452 *  @hw: pointer to hardware structure
1453 *
1454 *  This function clears hardware semaphore bits.
1455 **/
1456static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1457{
1458	u32 swsm;
1459
1460	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1461
1462	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1463	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1464	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1465	IXGBE_WRITE_FLUSH(hw);
1466}
1467
1468/**
1469 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1470 *  @hw: pointer to hardware structure
1471 **/
1472static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1473{
1474	s32 status = 0;
1475	u16 i;
1476	u8 spi_stat_reg;
1477
1478	/*
1479	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1480	 * EEPROM will signal that the command has been completed by clearing
1481	 * bit 0 of the internal status register.  If it's not cleared within
1482	 * 5 milliseconds, then error out.
1483	 */
1484	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1485		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1486		                            IXGBE_EEPROM_OPCODE_BITS);
1487		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1488		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1489			break;
1490
1491		udelay(5);
1492		ixgbe_standby_eeprom(hw);
1493	}
1494
1495	/*
1496	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1497	 * devices (and only 0-5mSec on 5V devices)
1498	 */
1499	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1500		hw_dbg(hw, "SPI EEPROM Status error\n");
1501		status = IXGBE_ERR_EEPROM;
1502	}
1503
1504	return status;
1505}
1506
1507/**
1508 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1509 *  @hw: pointer to hardware structure
1510 **/
1511static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1512{
1513	u32 eec;
1514
1515	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1516
1517	/* Toggle CS to flush commands */
1518	eec |= IXGBE_EEC_CS;
1519	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1520	IXGBE_WRITE_FLUSH(hw);
1521	udelay(1);
1522	eec &= ~IXGBE_EEC_CS;
1523	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1524	IXGBE_WRITE_FLUSH(hw);
1525	udelay(1);
1526}
1527
1528/**
1529 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1530 *  @hw: pointer to hardware structure
1531 *  @data: data to send to the EEPROM
1532 *  @count: number of bits to shift out
1533 **/
1534static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1535                                        u16 count)
1536{
1537	u32 eec;
1538	u32 mask;
1539	u32 i;
1540
1541	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1542
1543	/*
1544	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1545	 * one bit at a time.  Determine the starting bit based on count
1546	 */
1547	mask = 0x01 << (count - 1);
1548
1549	for (i = 0; i < count; i++) {
1550		/*
1551		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1552		 * "1", and then raising and then lowering the clock (the SK
1553		 * bit controls the clock input to the EEPROM).  A "0" is
1554		 * shifted out to the EEPROM by setting "DI" to "0" and then
1555		 * raising and then lowering the clock.
1556		 */
1557		if (data & mask)
1558			eec |= IXGBE_EEC_DI;
1559		else
1560			eec &= ~IXGBE_EEC_DI;
1561
1562		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1563		IXGBE_WRITE_FLUSH(hw);
1564
1565		udelay(1);
1566
1567		ixgbe_raise_eeprom_clk(hw, &eec);
1568		ixgbe_lower_eeprom_clk(hw, &eec);
1569
1570		/*
1571		 * Shift mask to signify next bit of data to shift in to the
1572		 * EEPROM
1573		 */
1574		mask = mask >> 1;
1575	}
1576
1577	/* We leave the "DI" bit set to "0" when we leave this routine. */
1578	eec &= ~IXGBE_EEC_DI;
1579	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1580	IXGBE_WRITE_FLUSH(hw);
1581}
1582
1583/**
1584 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1585 *  @hw: pointer to hardware structure
 
1586 **/
1587static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1588{
1589	u32 eec;
1590	u32 i;
1591	u16 data = 0;
1592
1593	/*
1594	 * In order to read a register from the EEPROM, we need to shift
1595	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1596	 * the clock input to the EEPROM (setting the SK bit), and then reading
1597	 * the value of the "DO" bit.  During this "shifting in" process the
1598	 * "DI" bit should always be clear.
1599	 */
1600	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601
1602	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1603
1604	for (i = 0; i < count; i++) {
1605		data = data << 1;
1606		ixgbe_raise_eeprom_clk(hw, &eec);
1607
1608		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1609
1610		eec &= ~(IXGBE_EEC_DI);
1611		if (eec & IXGBE_EEC_DO)
1612			data |= 1;
1613
1614		ixgbe_lower_eeprom_clk(hw, &eec);
1615	}
1616
1617	return data;
1618}
1619
1620/**
1621 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1622 *  @hw: pointer to hardware structure
1623 *  @eec: EEC register's current value
1624 **/
1625static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1626{
1627	/*
1628	 * Raise the clock input to the EEPROM
1629	 * (setting the SK bit), then delay
1630	 */
1631	*eec = *eec | IXGBE_EEC_SK;
1632	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633	IXGBE_WRITE_FLUSH(hw);
1634	udelay(1);
1635}
1636
1637/**
1638 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1639 *  @hw: pointer to hardware structure
1640 *  @eecd: EECD's current value
1641 **/
1642static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1643{
1644	/*
1645	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1646	 * delay
1647	 */
1648	*eec = *eec & ~IXGBE_EEC_SK;
1649	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1650	IXGBE_WRITE_FLUSH(hw);
1651	udelay(1);
1652}
1653
1654/**
1655 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1656 *  @hw: pointer to hardware structure
1657 **/
1658static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1659{
1660	u32 eec;
1661
1662	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1663
1664	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1665	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1666
1667	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1668	IXGBE_WRITE_FLUSH(hw);
1669
1670	udelay(1);
1671
1672	/* Stop requesting EEPROM access */
1673	eec &= ~IXGBE_EEC_REQ;
1674	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1675
1676	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1677
1678	/*
1679	 * Delay before attempt to obtain semaphore again to allow FW
1680	 * access. semaphore_delay is in ms we need us for usleep_range
1681	 */
1682	usleep_range(hw->eeprom.semaphore_delay * 1000,
1683		     hw->eeprom.semaphore_delay * 2000);
1684}
1685
1686/**
1687 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1688 *  @hw: pointer to hardware structure
1689 **/
1690u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1691{
1692	u16 i;
1693	u16 j;
1694	u16 checksum = 0;
1695	u16 length = 0;
1696	u16 pointer = 0;
1697	u16 word = 0;
1698
1699	/* Include 0x0-0x3F in the checksum */
1700	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1701		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1702			hw_dbg(hw, "EEPROM read failed\n");
1703			break;
1704		}
1705		checksum += word;
1706	}
1707
1708	/* Include all data from pointers except for the fw pointer */
1709	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1710		hw->eeprom.ops.read(hw, i, &pointer);
 
 
 
 
 
 
 
1711
1712		/* Make sure the pointer seems valid */
1713		if (pointer != 0xFFFF && pointer != 0) {
1714			hw->eeprom.ops.read(hw, pointer, &length);
1715
1716			if (length != 0xFFFF && length != 0) {
1717				for (j = pointer+1; j <= pointer+length; j++) {
1718					hw->eeprom.ops.read(hw, j, &word);
1719					checksum += word;
1720				}
 
 
 
1721			}
 
1722		}
1723	}
1724
1725	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1726
1727	return checksum;
1728}
1729
1730/**
1731 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1732 *  @hw: pointer to hardware structure
1733 *  @checksum_val: calculated checksum
1734 *
1735 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1736 *  caller does not need checksum_val, the value can be NULL.
1737 **/
1738s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1739                                           u16 *checksum_val)
1740{
1741	s32 status;
1742	u16 checksum;
1743	u16 read_checksum = 0;
1744
1745	/*
1746	 * Read the first word from the EEPROM. If this times out or fails, do
1747	 * not continue or we could be in for a very long wait while every
1748	 * EEPROM read fails
1749	 */
1750	status = hw->eeprom.ops.read(hw, 0, &checksum);
 
 
 
 
1751
1752	if (status == 0) {
1753		checksum = hw->eeprom.ops.calc_checksum(hw);
 
1754
1755		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756
1757		/*
1758		 * Verify read checksum from EEPROM is the same as
1759		 * calculated checksum
1760		 */
1761		if (read_checksum != checksum)
1762			status = IXGBE_ERR_EEPROM_CHECKSUM;
1763
1764		/* If the user cares, return the calculated checksum */
1765		if (checksum_val)
1766			*checksum_val = checksum;
1767	} else {
1768		hw_dbg(hw, "EEPROM read failed\n");
 
1769	}
1770
 
 
 
 
 
 
 
 
 
 
1771	return status;
1772}
1773
1774/**
1775 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776 *  @hw: pointer to hardware structure
1777 **/
1778s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779{
1780	s32 status;
1781	u16 checksum;
 
1782
1783	/*
1784	 * Read the first word from the EEPROM. If this times out or fails, do
1785	 * not continue or we could be in for a very long wait while every
1786	 * EEPROM read fails
1787	 */
1788	status = hw->eeprom.ops.read(hw, 0, &checksum);
1789
1790	if (status == 0) {
1791		checksum = hw->eeprom.ops.calc_checksum(hw);
1792		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1793					      checksum);
1794	} else {
1795		hw_dbg(hw, "EEPROM read failed\n");
 
1796	}
1797
 
 
 
 
 
 
 
 
1798	return status;
1799}
1800
1801/**
1802 *  ixgbe_set_rar_generic - Set Rx address register
1803 *  @hw: pointer to hardware structure
1804 *  @index: Receive address register to write
1805 *  @addr: Address to put into receive address register
1806 *  @vmdq: VMDq "set" or "pool" index
1807 *  @enable_addr: set flag that address is active
1808 *
1809 *  Puts an ethernet address into a receive address register.
1810 **/
1811s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1812                          u32 enable_addr)
1813{
1814	u32 rar_low, rar_high;
1815	u32 rar_entries = hw->mac.num_rar_entries;
1816
1817	/* Make sure we are using a valid rar index range */
1818	if (index >= rar_entries) {
1819		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1820		return IXGBE_ERR_INVALID_ARGUMENT;
1821	}
1822
1823	/* setup VMDq pool selection before this RAR gets enabled */
1824	hw->mac.ops.set_vmdq(hw, index, vmdq);
1825
1826	/*
1827	 * HW expects these in little endian so we reverse the byte
1828	 * order from network order (big endian) to little endian
1829	 */
1830	rar_low = ((u32)addr[0] |
1831		   ((u32)addr[1] << 8) |
1832		   ((u32)addr[2] << 16) |
1833		   ((u32)addr[3] << 24));
1834	/*
1835	 * Some parts put the VMDq setting in the extra RAH bits,
1836	 * so save everything except the lower 16 bits that hold part
1837	 * of the address and the address valid bit.
1838	 */
1839	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1842
1843	if (enable_addr != 0)
1844		rar_high |= IXGBE_RAH_AV;
1845
 
 
 
 
1846	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 
1847	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1848
1849	return 0;
1850}
1851
1852/**
1853 *  ixgbe_clear_rar_generic - Remove Rx address register
1854 *  @hw: pointer to hardware structure
1855 *  @index: Receive address register to write
1856 *
1857 *  Clears an ethernet address from a receive address register.
1858 **/
1859s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1860{
1861	u32 rar_high;
1862	u32 rar_entries = hw->mac.num_rar_entries;
1863
1864	/* Make sure we are using a valid rar index range */
1865	if (index >= rar_entries) {
1866		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1867		return IXGBE_ERR_INVALID_ARGUMENT;
1868	}
1869
1870	/*
1871	 * Some parts put the VMDq setting in the extra RAH bits,
1872	 * so save everything except the lower 16 bits that hold part
1873	 * of the address and the address valid bit.
1874	 */
1875	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1876	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1877
 
 
 
 
 
 
1878	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1879	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880
1881	/* clear VMDq pool/queue selection for this RAR */
1882	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1883
1884	return 0;
1885}
1886
1887/**
1888 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1889 *  @hw: pointer to hardware structure
1890 *
1891 *  Places the MAC address in receive address register 0 and clears the rest
1892 *  of the receive address registers. Clears the multicast table. Assumes
1893 *  the receiver is in reset when the routine is called.
1894 **/
1895s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1896{
1897	u32 i;
1898	u32 rar_entries = hw->mac.num_rar_entries;
1899
1900	/*
1901	 * If the current mac address is valid, assume it is a software override
1902	 * to the permanent address.
1903	 * Otherwise, use the permanent address from the eeprom.
1904	 */
1905	if (!is_valid_ether_addr(hw->mac.addr)) {
1906		/* Get the MAC address from the RAR0 for later reference */
1907		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1908
1909		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1910	} else {
1911		/* Setup the receive address. */
1912		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1913		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1914
1915		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
 
 
 
 
1916
1917		/*  clear VMDq pool/queue selection for RAR 0 */
1918		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1919	}
1920	hw->addr_ctrl.overflow_promisc = 0;
1921
1922	hw->addr_ctrl.rar_used_count = 1;
1923
1924	/* Zero out the other receive addresses. */
1925	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1926	for (i = 1; i < rar_entries; i++) {
1927		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1928		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1929	}
1930
1931	/* Clear the MTA */
1932	hw->addr_ctrl.mta_in_use = 0;
1933	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1934
1935	hw_dbg(hw, " Clearing MTA\n");
1936	for (i = 0; i < hw->mac.mcft_size; i++)
1937		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1938
1939	if (hw->mac.ops.init_uta_tables)
1940		hw->mac.ops.init_uta_tables(hw);
1941
1942	return 0;
1943}
1944
1945/**
1946 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1947 *  @hw: pointer to hardware structure
1948 *  @mc_addr: the multicast address
1949 *
1950 *  Extracts the 12 bits, from a multicast address, to determine which
1951 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1952 *  incoming rx multicast addresses, to determine the bit-vector to check in
1953 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1954 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1955 *  to mc_filter_type.
1956 **/
1957static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1958{
1959	u32 vector = 0;
1960
1961	switch (hw->mac.mc_filter_type) {
1962	case 0:   /* use bits [47:36] of the address */
1963		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1964		break;
1965	case 1:   /* use bits [46:35] of the address */
1966		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1967		break;
1968	case 2:   /* use bits [45:34] of the address */
1969		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1970		break;
1971	case 3:   /* use bits [43:32] of the address */
1972		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1973		break;
1974	default:  /* Invalid mc_filter_type */
1975		hw_dbg(hw, "MC filter type param set incorrectly\n");
1976		break;
1977	}
1978
1979	/* vector can only be 12-bits or boundary will be exceeded */
1980	vector &= 0xFFF;
1981	return vector;
1982}
1983
1984/**
1985 *  ixgbe_set_mta - Set bit-vector in multicast table
1986 *  @hw: pointer to hardware structure
1987 *  @hash_value: Multicast address hash value
1988 *
1989 *  Sets the bit-vector in the multicast table.
1990 **/
1991static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1992{
1993	u32 vector;
1994	u32 vector_bit;
1995	u32 vector_reg;
1996
1997	hw->addr_ctrl.mta_in_use++;
1998
1999	vector = ixgbe_mta_vector(hw, mc_addr);
2000	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2001
2002	/*
2003	 * The MTA is a register array of 128 32-bit registers. It is treated
2004	 * like an array of 4096 bits.  We want to set bit
2005	 * BitArray[vector_value]. So we figure out what register the bit is
2006	 * in, read it, OR in the new bit, then write back the new value.  The
2007	 * register is determined by the upper 7 bits of the vector value and
2008	 * the bit within that register are determined by the lower 5 bits of
2009	 * the value.
2010	 */
2011	vector_reg = (vector >> 5) & 0x7F;
2012	vector_bit = vector & 0x1F;
2013	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2014}
2015
2016/**
2017 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2018 *  @hw: pointer to hardware structure
2019 *  @netdev: pointer to net device structure
2020 *
2021 *  The given list replaces any existing list. Clears the MC addrs from receive
2022 *  address registers and the multicast table. Uses unused receive address
2023 *  registers for the first multicast addresses, and hashes the rest into the
2024 *  multicast table.
2025 **/
2026s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2027				      struct net_device *netdev)
2028{
2029	struct netdev_hw_addr *ha;
2030	u32 i;
2031
2032	/*
2033	 * Set the new number of MC addresses that we are being requested to
2034	 * use.
2035	 */
2036	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2037	hw->addr_ctrl.mta_in_use = 0;
2038
2039	/* Clear mta_shadow */
2040	hw_dbg(hw, " Clearing MTA\n");
2041	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2042
2043	/* Update mta shadow */
2044	netdev_for_each_mc_addr(ha, netdev) {
2045		hw_dbg(hw, " Adding the multicast addresses:\n");
2046		ixgbe_set_mta(hw, ha->addr);
2047	}
2048
2049	/* Enable mta */
2050	for (i = 0; i < hw->mac.mcft_size; i++)
2051		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2052				      hw->mac.mta_shadow[i]);
2053
2054	if (hw->addr_ctrl.mta_in_use > 0)
2055		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2056		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2057
2058	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2059	return 0;
2060}
2061
2062/**
2063 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2064 *  @hw: pointer to hardware structure
2065 *
2066 *  Enables multicast address in RAR and the use of the multicast hash table.
2067 **/
2068s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2069{
2070	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2071
2072	if (a->mta_in_use > 0)
2073		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2074		                hw->mac.mc_filter_type);
2075
2076	return 0;
2077}
2078
2079/**
2080 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2081 *  @hw: pointer to hardware structure
2082 *
2083 *  Disables multicast address in RAR and the use of the multicast hash table.
2084 **/
2085s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2086{
2087	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2088
2089	if (a->mta_in_use > 0)
2090		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2091
2092	return 0;
2093}
2094
2095/**
2096 *  ixgbe_fc_enable_generic - Enable flow control
2097 *  @hw: pointer to hardware structure
2098 *
2099 *  Enable flow control according to the current settings.
2100 **/
2101s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2102{
2103	s32 ret_val = 0;
2104	u32 mflcn_reg, fccfg_reg;
2105	u32 reg;
2106	u32 fcrtl, fcrth;
2107	int i;
2108
2109	/*
2110	 * Validate the water mark configuration for packet buffer 0.  Zero
2111	 * water marks indicate that the packet buffer was not configured
2112	 * and the watermarks for packet buffer 0 should always be configured.
2113	 */
2114	if (!hw->fc.low_water ||
2115	    !hw->fc.high_water[0] ||
2116	    !hw->fc.pause_time) {
2117		hw_dbg(hw, "Invalid water mark configuration\n");
2118		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2119		goto out;
 
 
 
2120	}
2121
2122	/* Negotiate the fc mode to use */
2123	ixgbe_fc_autoneg(hw);
2124
2125	/* Disable any previous flow control settings */
2126	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2127	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2128
2129	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2130	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2131
2132	/*
2133	 * The possible values of fc.current_mode are:
2134	 * 0: Flow control is completely disabled
2135	 * 1: Rx flow control is enabled (we can receive pause frames,
2136	 *    but not send pause frames).
2137	 * 2: Tx flow control is enabled (we can send pause frames but
2138	 *    we do not support receiving pause frames).
2139	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2140	 * other: Invalid.
2141	 */
2142	switch (hw->fc.current_mode) {
2143	case ixgbe_fc_none:
2144		/*
2145		 * Flow control is disabled by software override or autoneg.
2146		 * The code below will actually disable it in the HW.
2147		 */
2148		break;
2149	case ixgbe_fc_rx_pause:
2150		/*
2151		 * Rx Flow control is enabled and Tx Flow control is
2152		 * disabled by software override. Since there really
2153		 * isn't a way to advertise that we are capable of RX
2154		 * Pause ONLY, we will advertise that we support both
2155		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2156		 * disable the adapter's ability to send PAUSE frames.
2157		 */
2158		mflcn_reg |= IXGBE_MFLCN_RFCE;
2159		break;
2160	case ixgbe_fc_tx_pause:
2161		/*
2162		 * Tx Flow control is enabled, and Rx Flow control is
2163		 * disabled by software override.
2164		 */
2165		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2166		break;
2167	case ixgbe_fc_full:
2168		/* Flow control (both Rx and Tx) is enabled by SW override. */
2169		mflcn_reg |= IXGBE_MFLCN_RFCE;
2170		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2171		break;
2172	default:
2173		hw_dbg(hw, "Flow control param set incorrectly\n");
2174		ret_val = IXGBE_ERR_CONFIG;
2175		goto out;
2176		break;
2177	}
2178
2179	/* Set 802.3x based flow control settings. */
2180	mflcn_reg |= IXGBE_MFLCN_DPF;
2181	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2182	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2183
2184	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2185
2186	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2187	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2188		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2189		    hw->fc.high_water[i]) {
 
2190			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2191			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2192		} else {
2193			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2194			/*
2195			 * In order to prevent Tx hangs when the internal Tx
2196			 * switch is enabled we must set the high water mark
2197			 * to the maximum FCRTH value.  This allows the Tx
2198			 * switch to function even under heavy Rx workloads.
 
2199			 */
2200			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2201		}
2202
2203		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2204	}
2205
2206	/* Configure pause time (2 TCs per register) */
2207	reg = hw->fc.pause_time * 0x00010001;
2208	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2209		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2210
2211	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2212
2213out:
2214	return ret_val;
2215}
2216
2217/**
2218 *  ixgbe_negotiate_fc - Negotiate flow control
2219 *  @hw: pointer to hardware structure
2220 *  @adv_reg: flow control advertised settings
2221 *  @lp_reg: link partner's flow control settings
2222 *  @adv_sym: symmetric pause bit in advertisement
2223 *  @adv_asm: asymmetric pause bit in advertisement
2224 *  @lp_sym: symmetric pause bit in link partner advertisement
2225 *  @lp_asm: asymmetric pause bit in link partner advertisement
2226 *
2227 *  Find the intersection between advertised settings and link partner's
2228 *  advertised settings
2229 **/
2230static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2231			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2232{
2233	if ((!(adv_reg)) ||  (!(lp_reg)))
2234		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2235
2236	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2237		/*
2238		 * Now we need to check if the user selected Rx ONLY
2239		 * of pause frames.  In this case, we had to advertise
2240		 * FULL flow control because we could not advertise RX
2241		 * ONLY. Hence, we must now check to see if we need to
2242		 * turn OFF the TRANSMISSION of PAUSE frames.
2243		 */
2244		if (hw->fc.requested_mode == ixgbe_fc_full) {
2245			hw->fc.current_mode = ixgbe_fc_full;
2246			hw_dbg(hw, "Flow Control = FULL.\n");
2247		} else {
2248			hw->fc.current_mode = ixgbe_fc_rx_pause;
2249			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2250		}
2251	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2252		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2253		hw->fc.current_mode = ixgbe_fc_tx_pause;
2254		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2255	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2256		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2257		hw->fc.current_mode = ixgbe_fc_rx_pause;
2258		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2259	} else {
2260		hw->fc.current_mode = ixgbe_fc_none;
2261		hw_dbg(hw, "Flow Control = NONE.\n");
2262	}
2263	return 0;
2264}
2265
2266/**
2267 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2268 *  @hw: pointer to hardware structure
2269 *
2270 *  Enable flow control according on 1 gig fiber.
2271 **/
2272static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2273{
2274	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2275	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2276
2277	/*
2278	 * On multispeed fiber at 1g, bail out if
2279	 * - link is up but AN did not complete, or if
2280	 * - link is up and AN completed but timed out
2281	 */
2282
2283	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2284	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2285	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2286		goto out;
2287
2288	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2289	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2290
2291	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2292			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2293			       IXGBE_PCS1GANA_ASM_PAUSE,
2294			       IXGBE_PCS1GANA_SYM_PAUSE,
2295			       IXGBE_PCS1GANA_ASM_PAUSE);
2296
2297out:
2298	return ret_val;
2299}
2300
2301/**
2302 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2303 *  @hw: pointer to hardware structure
2304 *
2305 *  Enable flow control according to IEEE clause 37.
2306 **/
2307static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2308{
2309	u32 links2, anlp1_reg, autoc_reg, links;
2310	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2311
2312	/*
2313	 * On backplane, bail out if
2314	 * - backplane autoneg was not completed, or if
2315	 * - we are 82599 and link partner is not AN enabled
2316	 */
2317	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2318	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2319		goto out;
2320
2321	if (hw->mac.type == ixgbe_mac_82599EB) {
2322		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2323		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2324			goto out;
2325	}
2326	/*
2327	 * Read the 10g AN autoc and LP ability registers and resolve
2328	 * local flow control settings accordingly
2329	 */
2330	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2331	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2332
2333	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2334		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2335		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2336
2337out:
2338	return ret_val;
2339}
2340
2341/**
2342 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2343 *  @hw: pointer to hardware structure
2344 *
2345 *  Enable flow control according to IEEE clause 37.
2346 **/
2347static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2348{
2349	u16 technology_ability_reg = 0;
2350	u16 lp_technology_ability_reg = 0;
2351
2352	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2353			     MDIO_MMD_AN,
2354			     &technology_ability_reg);
2355	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2356			     MDIO_MMD_AN,
2357			     &lp_technology_ability_reg);
2358
2359	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2360				  (u32)lp_technology_ability_reg,
2361				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2362				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2363}
2364
2365/**
2366 *  ixgbe_fc_autoneg - Configure flow control
2367 *  @hw: pointer to hardware structure
2368 *
2369 *  Compares our advertised flow control capabilities to those advertised by
2370 *  our link partner, and determines the proper flow control mode to use.
2371 **/
2372void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2373{
2374	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2375	ixgbe_link_speed speed;
 
2376	bool link_up;
2377
2378	/*
2379	 * AN should have completed when the cable was plugged in.
2380	 * Look for reasons to bail out.  Bail out if:
2381	 * - FC autoneg is disabled, or if
2382	 * - link is not up.
2383	 *
2384	 * Since we're being called from an LSC, link is already known to be up.
2385	 * So use link_up_wait_to_complete=false.
2386	 */
2387	if (hw->fc.disable_fc_autoneg)
2388		goto out;
2389
2390	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2391	if (!link_up)
2392		goto out;
2393
2394	switch (hw->phy.media_type) {
2395	/* Autoneg flow control on fiber adapters */
2396	case ixgbe_media_type_fiber:
2397		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2398			ret_val = ixgbe_fc_autoneg_fiber(hw);
2399		break;
2400
2401	/* Autoneg flow control on backplane adapters */
2402	case ixgbe_media_type_backplane:
2403		ret_val = ixgbe_fc_autoneg_backplane(hw);
2404		break;
2405
2406	/* Autoneg flow control on copper adapters */
2407	case ixgbe_media_type_copper:
2408		if (ixgbe_device_supports_autoneg_fc(hw))
2409			ret_val = ixgbe_fc_autoneg_copper(hw);
2410		break;
2411
2412	default:
2413		break;
2414	}
2415
2416out:
2417	if (ret_val == 0) {
2418		hw->fc.fc_was_autonegged = true;
2419	} else {
2420		hw->fc.fc_was_autonegged = false;
2421		hw->fc.current_mode = hw->fc.requested_mode;
2422	}
2423}
2424
2425/**
2426 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2427 * @hw: pointer to hardware structure
2428 *
2429 * System-wide timeout range is encoded in PCIe Device Control2 register.
2430 *
2431 *  Add 10% to specified maximum and return the number of times to poll for
2432 *  completion timeout, in units of 100 microsec.  Never return less than
2433 *  800 = 80 millisec.
2434 **/
2435static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2436{
2437	s16 devctl2;
2438	u32 pollcnt;
2439
2440	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2441	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2442
2443	switch (devctl2) {
2444	case IXGBE_PCIDEVCTRL2_65_130ms:
2445		 pollcnt = 1300;         /* 130 millisec */
2446		break;
2447	case IXGBE_PCIDEVCTRL2_260_520ms:
2448		pollcnt = 5200;         /* 520 millisec */
2449		break;
2450	case IXGBE_PCIDEVCTRL2_1_2s:
2451		pollcnt = 20000;        /* 2 sec */
2452		break;
2453	case IXGBE_PCIDEVCTRL2_4_8s:
2454		pollcnt = 80000;        /* 8 sec */
2455		break;
2456	case IXGBE_PCIDEVCTRL2_17_34s:
2457		pollcnt = 34000;        /* 34 sec */
2458		break;
2459	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2460	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2461	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2462	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2463	default:
2464		pollcnt = 800;          /* 80 millisec minimum */
2465		break;
2466	}
2467
2468	/* add 10% to spec maximum */
2469	return (pollcnt * 11) / 10;
2470}
2471
2472/**
2473 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2474 *  @hw: pointer to hardware structure
2475 *
2476 *  Disables PCI-Express master access and verifies there are no pending
2477 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2478 *  bit hasn't caused the master requests to be disabled, else 0
2479 *  is returned signifying master requests disabled.
2480 **/
2481static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2482{
2483	s32 status = 0;
2484	u32 i, poll;
2485	u16 value;
2486
2487	/* Always set this bit to ensure any future transactions are blocked */
2488	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2489
2490	/* Exit if master requests are blocked */
 
 
 
 
 
 
 
 
 
 
 
2491	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2492	    ixgbe_removed(hw->hw_addr))
2493		goto out;
2494
2495	/* Poll for master request bit to clear */
2496	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2497		udelay(100);
2498		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2499			goto out;
2500	}
2501
2502	/*
2503	 * Two consecutive resets are required via CTRL.RST per datasheet
2504	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2505	 * of this need.  The first reset prevents new master requests from
2506	 * being issued by our device.  We then must wait 1usec or more for any
2507	 * remaining completions from the PCIe bus to trickle in, and then reset
2508	 * again to clear out any effects they may have had on our device.
2509	 */
2510	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
 
2511	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2512
 
 
 
2513	/*
2514	 * Before proceeding, make sure that the PCIe block does not have
2515	 * transactions pending.
2516	 */
2517	poll = ixgbe_pcie_timeout_poll(hw);
2518	for (i = 0; i < poll; i++) {
2519		udelay(100);
2520		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2521		if (ixgbe_removed(hw->hw_addr))
2522			goto out;
2523		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2524			goto out;
2525	}
2526
2527	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2528	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2529
2530out:
2531	return status;
2532}
2533
2534/**
2535 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2536 *  @hw: pointer to hardware structure
2537 *  @mask: Mask to specify which semaphore to acquire
2538 *
2539 *  Acquires the SWFW semaphore through the GSSR register for the specified
2540 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2541 **/
2542s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2543{
2544	u32 gssr = 0;
2545	u32 swmask = mask;
2546	u32 fwmask = mask << 5;
2547	u32 timeout = 200;
2548	u32 i;
2549
2550	for (i = 0; i < timeout; i++) {
2551		/*
2552		 * SW NVM semaphore bit is used for access to all
2553		 * SW_FW_SYNC bits (not just NVM)
2554		 */
2555		if (ixgbe_get_eeprom_semaphore(hw))
2556			return IXGBE_ERR_SWFW_SYNC;
2557
2558		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2559		if (!(gssr & (fwmask | swmask))) {
2560			gssr |= swmask;
2561			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2562			ixgbe_release_eeprom_semaphore(hw);
2563			return 0;
2564		} else {
2565			/* Resource is currently in use by FW or SW */
2566			ixgbe_release_eeprom_semaphore(hw);
2567			usleep_range(5000, 10000);
2568		}
2569	}
2570
2571	/* If time expired clear the bits holding the lock and retry */
2572	if (gssr & (fwmask | swmask))
2573		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2574
2575	usleep_range(5000, 10000);
2576	return IXGBE_ERR_SWFW_SYNC;
2577}
2578
2579/**
2580 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2581 *  @hw: pointer to hardware structure
2582 *  @mask: Mask to specify which semaphore to release
2583 *
2584 *  Releases the SWFW semaphore through the GSSR register for the specified
2585 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2586 **/
2587void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2588{
2589	u32 gssr;
2590	u32 swmask = mask;
2591
2592	ixgbe_get_eeprom_semaphore(hw);
2593
2594	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2595	gssr &= ~swmask;
2596	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2597
2598	ixgbe_release_eeprom_semaphore(hw);
2599}
2600
2601/**
2602 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2603 * @hw: pointer to hardware structure
2604 * @reg_val: Value we read from AUTOC
2605 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2606 *	    true in this the generic case.
2607 *
2608 * The default case requires no protection so just to the register read.
2609 **/
2610s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2611{
2612	*locked = false;
2613	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2614	return 0;
2615}
2616
2617/**
2618 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2619 * @hw: pointer to hardware structure
2620 * @reg_val: value to write to AUTOC
2621 * @locked: bool to indicate whether the SW/FW lock was already taken by
2622 *	    previous read.
2623 **/
2624s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2625{
2626	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2627	return 0;
2628}
2629
2630/**
2631 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2632 *  @hw: pointer to hardware structure
2633 *
2634 *  Stops the receive data path and waits for the HW to internally
2635 *  empty the Rx security block.
2636 **/
2637s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2638{
2639#define IXGBE_MAX_SECRX_POLL 40
2640	int i;
2641	int secrxreg;
2642
2643	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2644	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2645	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2646	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2647		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2648		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2649			break;
2650		else
2651			/* Use interrupt-safe sleep just in case */
2652			udelay(1000);
2653	}
2654
2655	/* For informational purposes only */
2656	if (i >= IXGBE_MAX_SECRX_POLL)
2657		hw_dbg(hw, "Rx unit being enabled before security "
2658		       "path fully disabled.  Continuing with init.\n");
2659
2660	return 0;
2661
2662}
2663
2664/**
2665 *  ixgbe_enable_rx_buff - Enables the receive data path
2666 *  @hw: pointer to hardware structure
2667 *
2668 *  Enables the receive data path
2669 **/
2670s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2671{
2672	int secrxreg;
2673
2674	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2675	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2676	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2677	IXGBE_WRITE_FLUSH(hw);
2678
2679	return 0;
2680}
2681
2682/**
2683 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2684 *  @hw: pointer to hardware structure
2685 *  @regval: register value to write to RXCTRL
2686 *
2687 *  Enables the Rx DMA unit
2688 **/
2689s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2690{
2691	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
 
 
 
2692
2693	return 0;
2694}
2695
2696/**
2697 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2698 *  @hw: pointer to hardware structure
2699 *  @index: led number to blink
2700 **/
2701s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2702{
 
 
2703	ixgbe_link_speed speed = 0;
2704	bool link_up = false;
2705	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2706	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2707	s32 ret_val = 0;
2708	bool locked = false;
 
 
 
 
2709
2710	/*
2711	 * Link must be up to auto-blink the LEDs;
2712	 * Force it if link is down.
2713	 */
2714	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2715
2716	if (!link_up) {
2717		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2718		if (ret_val)
2719			goto out;
2720
2721		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2722		autoc_reg |= IXGBE_AUTOC_FLU;
2723
2724		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2725		if (ret_val)
2726			goto out;
2727
2728		IXGBE_WRITE_FLUSH(hw);
2729
2730		usleep_range(10000, 20000);
2731	}
2732
2733	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2734	led_reg |= IXGBE_LED_BLINK(index);
2735	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2736	IXGBE_WRITE_FLUSH(hw);
2737
2738out:
2739	return ret_val;
2740}
2741
2742/**
2743 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2744 *  @hw: pointer to hardware structure
2745 *  @index: led number to stop blinking
2746 **/
2747s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2748{
2749	u32 autoc_reg = 0;
2750	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2751	s32 ret_val = 0;
2752	bool locked = false;
 
 
 
 
 
2753
2754	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2755	if (ret_val)
2756		goto out;
2757
2758	autoc_reg &= ~IXGBE_AUTOC_FLU;
2759	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2760
2761	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2762	if (ret_val)
2763		goto out;
2764
2765	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2766	led_reg &= ~IXGBE_LED_BLINK(index);
2767	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2768	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2769	IXGBE_WRITE_FLUSH(hw);
2770
2771out:
2772	return ret_val;
2773}
2774
2775/**
2776 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2777 *  @hw: pointer to hardware structure
2778 *  @san_mac_offset: SAN MAC address offset
2779 *
2780 *  This function will read the EEPROM location for the SAN MAC address
2781 *  pointer, and returns the value at that location.  This is used in both
2782 *  get and set mac_addr routines.
2783 **/
2784static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2785                                        u16 *san_mac_offset)
2786{
2787	s32 ret_val;
2788
2789	/*
2790	 * First read the EEPROM pointer to see if the MAC addresses are
2791	 * available.
2792	 */
2793	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2794				      san_mac_offset);
2795	if (ret_val)
2796		hw_err(hw, "eeprom read at offset %d failed\n",
2797		       IXGBE_SAN_MAC_ADDR_PTR);
2798
2799	return ret_val;
2800}
2801
2802/**
2803 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2804 *  @hw: pointer to hardware structure
2805 *  @san_mac_addr: SAN MAC address
2806 *
2807 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2808 *  per-port, so set_lan_id() must be called before reading the addresses.
2809 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2810 *  upon for non-SFP connections, so we must call it here.
2811 **/
2812s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2813{
2814	u16 san_mac_data, san_mac_offset;
 
2815	u8 i;
2816	s32 ret_val;
2817
2818	/*
2819	 * First read the EEPROM pointer to see if the MAC addresses are
2820	 * available.  If they're not, no point in calling set_lan_id() here.
2821	 */
2822	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2823	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2824
2825		goto san_mac_addr_clr;
2826
2827	/* make sure we know which port we need to program */
2828	hw->mac.ops.set_lan_id(hw);
2829	/* apply the port offset to the address offset */
2830	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2831	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2832	for (i = 0; i < 3; i++) {
2833		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2834					      &san_mac_data);
2835		if (ret_val) {
2836			hw_err(hw, "eeprom read at offset %d failed\n",
2837			       san_mac_offset);
2838			goto san_mac_addr_clr;
2839		}
2840		san_mac_addr[i * 2] = (u8)(san_mac_data);
2841		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2842		san_mac_offset++;
2843	}
2844	return 0;
2845
2846san_mac_addr_clr:
2847	/* No addresses available in this EEPROM.  It's not necessarily an
2848	 * error though, so just wipe the local address and return.
2849	 */
2850	for (i = 0; i < 6; i++)
2851		san_mac_addr[i] = 0xFF;
2852	return ret_val;
2853}
2854
2855/**
2856 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2857 *  @hw: pointer to hardware structure
2858 *
2859 *  Read PCIe configuration space, and get the MSI-X vector count from
2860 *  the capabilities table.
2861 **/
2862u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2863{
2864	u16 msix_count = 1;
2865	u16 max_msix_count;
2866	u16 pcie_offset;
2867
2868	switch (hw->mac.type) {
2869	case ixgbe_mac_82598EB:
2870		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2871		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2872		break;
2873	case ixgbe_mac_82599EB:
2874	case ixgbe_mac_X540:
 
 
 
2875		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2876		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2877		break;
2878	default:
2879		return msix_count;
2880	}
2881
2882	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2883	if (ixgbe_removed(hw->hw_addr))
2884		msix_count = 0;
2885	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2886
2887	/* MSI-X count is zero-based in HW */
2888	msix_count++;
2889
2890	if (msix_count > max_msix_count)
2891		msix_count = max_msix_count;
2892
2893	return msix_count;
2894}
2895
2896/**
2897 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2898 *  @hw: pointer to hardware struct
2899 *  @rar: receive address register index to disassociate
2900 *  @vmdq: VMDq pool index to remove from the rar
2901 **/
2902s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2903{
2904	u32 mpsar_lo, mpsar_hi;
2905	u32 rar_entries = hw->mac.num_rar_entries;
2906
2907	/* Make sure we are using a valid rar index range */
2908	if (rar >= rar_entries) {
2909		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2910		return IXGBE_ERR_INVALID_ARGUMENT;
2911	}
2912
2913	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2914	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2915
2916	if (ixgbe_removed(hw->hw_addr))
2917		goto done;
2918
2919	if (!mpsar_lo && !mpsar_hi)
2920		goto done;
2921
2922	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2923		if (mpsar_lo) {
2924			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2925			mpsar_lo = 0;
2926		}
2927		if (mpsar_hi) {
2928			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2929			mpsar_hi = 0;
2930		}
2931	} else if (vmdq < 32) {
2932		mpsar_lo &= ~(1 << vmdq);
2933		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2934	} else {
2935		mpsar_hi &= ~(1 << (vmdq - 32));
2936		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2937	}
2938
2939	/* was that the last pool using this rar? */
2940	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
 
2941		hw->mac.ops.clear_rar(hw, rar);
2942done:
2943	return 0;
2944}
2945
2946/**
2947 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2948 *  @hw: pointer to hardware struct
2949 *  @rar: receive address register index to associate with a VMDq index
2950 *  @vmdq: VMDq pool index
2951 **/
2952s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2953{
2954	u32 mpsar;
2955	u32 rar_entries = hw->mac.num_rar_entries;
2956
2957	/* Make sure we are using a valid rar index range */
2958	if (rar >= rar_entries) {
2959		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2960		return IXGBE_ERR_INVALID_ARGUMENT;
2961	}
2962
2963	if (vmdq < 32) {
2964		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2965		mpsar |= 1 << vmdq;
2966		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2967	} else {
2968		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2969		mpsar |= 1 << (vmdq - 32);
2970		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2971	}
2972	return 0;
2973}
2974
2975/**
 
 
 
 
2976 *  This function should only be involved in the IOV mode.
2977 *  In IOV mode, Default pool is next pool after the number of
2978 *  VFs advertized and not 0.
2979 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2980 *
2981 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2982 *  @hw: pointer to hardware struct
2983 *  @vmdq: VMDq pool index
2984 **/
2985s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2986{
2987	u32 rar = hw->mac.san_mac_rar_index;
2988
2989	if (vmdq < 32) {
2990		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2991		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2992	} else {
2993		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2994		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2995	}
2996
2997	return 0;
2998}
2999
3000/**
3001 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3002 *  @hw: pointer to hardware structure
3003 **/
3004s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3005{
3006	int i;
3007
3008	for (i = 0; i < 128; i++)
3009		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3010
3011	return 0;
3012}
3013
3014/**
3015 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3016 *  @hw: pointer to hardware structure
3017 *  @vlan: VLAN id to write to VLAN filter
 
 
3018 *
3019 *  return the VLVF index where this VLAN id should be placed
3020 *
3021 **/
3022static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3023{
3024	u32 bits = 0;
3025	u32 first_empty_slot = 0;
3026	s32 regindex;
3027
3028	/* short cut the special case */
3029	if (vlan == 0)
3030		return 0;
3031
3032	/*
3033	  * Search for the vlan id in the VLVF entries. Save off the first empty
3034	  * slot found along the way
3035	  */
3036	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
 
 
 
 
 
 
 
 
 
 
3037		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3038		if (!bits && !(first_empty_slot))
 
 
3039			first_empty_slot = regindex;
3040		else if ((bits & 0x0FFF) == vlan)
3041			break;
3042	}
3043
3044	/*
3045	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3046	  * in the VLVF. Else use the first empty VLVF register for this
3047	  * vlan id.
3048	  */
3049	if (regindex >= IXGBE_VLVF_ENTRIES) {
3050		if (first_empty_slot)
3051			regindex = first_empty_slot;
3052		else {
3053			hw_dbg(hw, "No space in VLVF.\n");
3054			regindex = IXGBE_ERR_NO_SPACE;
3055		}
3056	}
3057
3058	return regindex;
3059}
3060
3061/**
3062 *  ixgbe_set_vfta_generic - Set VLAN filter table
3063 *  @hw: pointer to hardware structure
3064 *  @vlan: VLAN id to write to VLAN filter
3065 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3066 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 
3067 *
3068 *  Turn on/off specified VLAN in the VLAN filter table.
3069 **/
3070s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3071                           bool vlan_on)
3072{
3073	s32 regindex;
3074	u32 bitindex;
3075	u32 vfta;
3076	u32 bits;
3077	u32 vt;
3078	u32 targetbit;
3079	bool vfta_changed = false;
3080
3081	if (vlan > 4095)
3082		return IXGBE_ERR_PARAM;
3083
3084	/*
3085	 * this is a 2 part operation - first the VFTA, then the
3086	 * VLVF and VLVFB if VT Mode is set
3087	 * We don't write the VFTA until we know the VLVF part succeeded.
3088	 */
3089
3090	/* Part 1
3091	 * The VFTA is a bitstring made up of 128 32-bit registers
3092	 * that enable the particular VLAN id, much like the MTA:
3093	 *    bits[11-5]: which register
3094	 *    bits[4-0]:  which bit in the register
3095	 */
3096	regindex = (vlan >> 5) & 0x7F;
3097	bitindex = vlan & 0x1F;
3098	targetbit = (1 << bitindex);
3099	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3100
3101	if (vlan_on) {
3102		if (!(vfta & targetbit)) {
3103			vfta |= targetbit;
3104			vfta_changed = true;
3105		}
3106	} else {
3107		if ((vfta & targetbit)) {
3108			vfta &= ~targetbit;
3109			vfta_changed = true;
3110		}
3111	}
3112
3113	/* Part 2
3114	 * If VT Mode is set
3115	 *   Either vlan_on
3116	 *     make sure the vlan is in VLVF
3117	 *     set the vind bit in the matching VLVFB
3118	 *   Or !vlan_on
3119	 *     clear the pool bit and possibly the vind
3120	 */
3121	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3122	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3123		s32 vlvf_index;
3124
3125		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3126		if (vlvf_index < 0)
3127			return vlvf_index;
3128
3129		if (vlan_on) {
3130			/* set the pool bit */
3131			if (vind < 32) {
3132				bits = IXGBE_READ_REG(hw,
3133						IXGBE_VLVFB(vlvf_index*2));
3134				bits |= (1 << vind);
3135				IXGBE_WRITE_REG(hw,
3136						IXGBE_VLVFB(vlvf_index*2),
3137						bits);
3138			} else {
3139				bits = IXGBE_READ_REG(hw,
3140						IXGBE_VLVFB((vlvf_index*2)+1));
3141				bits |= (1 << (vind-32));
3142				IXGBE_WRITE_REG(hw,
3143						IXGBE_VLVFB((vlvf_index*2)+1),
3144						bits);
3145			}
3146		} else {
3147			/* clear the pool bit */
3148			if (vind < 32) {
3149				bits = IXGBE_READ_REG(hw,
3150						IXGBE_VLVFB(vlvf_index*2));
3151				bits &= ~(1 << vind);
3152				IXGBE_WRITE_REG(hw,
3153						IXGBE_VLVFB(vlvf_index*2),
3154						bits);
3155				bits |= IXGBE_READ_REG(hw,
3156						IXGBE_VLVFB((vlvf_index*2)+1));
3157			} else {
3158				bits = IXGBE_READ_REG(hw,
3159						IXGBE_VLVFB((vlvf_index*2)+1));
3160				bits &= ~(1 << (vind-32));
3161				IXGBE_WRITE_REG(hw,
3162						IXGBE_VLVFB((vlvf_index*2)+1),
3163						bits);
3164				bits |= IXGBE_READ_REG(hw,
3165						IXGBE_VLVFB(vlvf_index*2));
3166			}
3167		}
3168
3169		/*
3170		 * If there are still bits set in the VLVFB registers
3171		 * for the VLAN ID indicated we need to see if the
3172		 * caller is requesting that we clear the VFTA entry bit.
3173		 * If the caller has requested that we clear the VFTA
3174		 * entry bit but there are still pools/VFs using this VLAN
3175		 * ID entry then ignore the request.  We're not worried
3176		 * about the case where we're turning the VFTA VLAN ID
3177		 * entry bit on, only when requested to turn it off as
3178		 * there may be multiple pools and/or VFs using the
3179		 * VLAN ID entry.  In that case we cannot clear the
3180		 * VFTA bit until all pools/VFs using that VLAN ID have also
3181		 * been cleared.  This will be indicated by "bits" being
3182		 * zero.
3183		 */
3184		if (bits) {
3185			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3186					(IXGBE_VLVF_VIEN | vlan));
3187			if (!vlan_on) {
3188				/* someone wants to clear the vfta entry
3189				 * but some pools/VFs are still using it.
3190				 * Ignore it. */
3191				vfta_changed = false;
3192			}
3193		}
3194		else
3195			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3196	}
3197
3198	if (vfta_changed)
3199		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200
3201	return 0;
3202}
3203
3204/**
3205 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3206 *  @hw: pointer to hardware structure
3207 *
3208 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3209 **/
3210s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3211{
3212	u32 offset;
3213
3214	for (offset = 0; offset < hw->mac.vft_size; offset++)
3215		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3216
3217	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3218		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3219		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3220		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3221	}
3222
3223	return 0;
3224}
3225
3226/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227 *  ixgbe_check_mac_link_generic - Determine link and speed status
3228 *  @hw: pointer to hardware structure
3229 *  @speed: pointer to link speed
3230 *  @link_up: true when link is up
3231 *  @link_up_wait_to_complete: bool used to wait for link up or not
3232 *
3233 *  Reads the links register to determine if link is up and the current speed
3234 **/
3235s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3236				 bool *link_up, bool link_up_wait_to_complete)
3237{
 
3238	u32 links_reg, links_orig;
3239	u32 i;
3240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241	/* clear the old state */
3242	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3243
3244	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3245
3246	if (links_orig != links_reg) {
3247		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3248		       links_orig, links_reg);
3249	}
3250
3251	if (link_up_wait_to_complete) {
3252		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3253			if (links_reg & IXGBE_LINKS_UP) {
3254				*link_up = true;
3255				break;
3256			} else {
3257				*link_up = false;
3258			}
3259			msleep(100);
3260			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3261		}
3262	} else {
3263		if (links_reg & IXGBE_LINKS_UP)
 
 
 
 
 
 
 
 
 
 
 
 
 
3264			*link_up = true;
3265		else
3266			*link_up = false;
 
3267	}
3268
3269	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3270	    IXGBE_LINKS_SPEED_10G_82599)
3271		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3272	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3273		 IXGBE_LINKS_SPEED_1G_82599)
 
 
 
 
3274		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3275	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3276		 IXGBE_LINKS_SPEED_100_82599)
3277		*speed = IXGBE_LINK_SPEED_100_FULL;
3278	else
 
 
 
 
 
 
 
 
 
 
 
 
3279		*speed = IXGBE_LINK_SPEED_UNKNOWN;
 
3280
3281	return 0;
3282}
3283
3284/**
3285 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3286 *  the EEPROM
3287 *  @hw: pointer to hardware structure
3288 *  @wwnn_prefix: the alternative WWNN prefix
3289 *  @wwpn_prefix: the alternative WWPN prefix
3290 *
3291 *  This function will read the EEPROM from the alternative SAN MAC address
3292 *  block to check the support for the alternative WWNN/WWPN prefix support.
3293 **/
3294s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3295                                        u16 *wwpn_prefix)
3296{
3297	u16 offset, caps;
3298	u16 alt_san_mac_blk_offset;
3299
3300	/* clear output first */
3301	*wwnn_prefix = 0xFFFF;
3302	*wwpn_prefix = 0xFFFF;
3303
3304	/* check if alternative SAN MAC is supported */
3305	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3306	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3307		goto wwn_prefix_err;
3308
3309	if ((alt_san_mac_blk_offset == 0) ||
3310	    (alt_san_mac_blk_offset == 0xFFFF))
3311		goto wwn_prefix_out;
3312
3313	/* check capability in alternative san mac address block */
3314	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3315	if (hw->eeprom.ops.read(hw, offset, &caps))
3316		goto wwn_prefix_err;
3317	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3318		goto wwn_prefix_out;
3319
3320	/* get the corresponding prefix for WWNN/WWPN */
3321	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3322	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3323		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3324
3325	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3326	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3327		goto wwn_prefix_err;
3328
3329wwn_prefix_out:
3330	return 0;
3331
3332wwn_prefix_err:
3333	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3334	return 0;
3335}
3336
3337/**
3338 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3339 *  @hw: pointer to hardware structure
3340 *  @enable: enable or disable switch for anti-spoofing
3341 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3342 *
3343 **/
3344void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3345{
3346	int j;
3347	int pf_target_reg = pf >> 3;
3348	int pf_target_shift = pf % 8;
3349	u32 pfvfspoof = 0;
3350
3351	if (hw->mac.type == ixgbe_mac_82598EB)
3352		return;
3353
 
3354	if (enable)
3355		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3356
3357	/*
3358	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3359	 * MAC anti-spoof enables in each register array element.
3360	 */
3361	for (j = 0; j < pf_target_reg; j++)
3362		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3363
3364	/*
3365	 * The PF should be allowed to spoof so that it can support
3366	 * emulation mode NICs.  Do not set the bits assigned to the PF
3367	 */
3368	pfvfspoof &= (1 << pf_target_shift) - 1;
3369	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3370
3371	/*
3372	 * Remaining pools belong to the PF so they do not need to have
3373	 * anti-spoofing enabled.
3374	 */
3375	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3376		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3377}
3378
3379/**
3380 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3381 *  @hw: pointer to hardware structure
3382 *  @enable: enable or disable switch for VLAN anti-spoofing
3383 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3384 *
3385 **/
3386void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3387{
3388	int vf_target_reg = vf >> 3;
3389	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3390	u32 pfvfspoof;
3391
3392	if (hw->mac.type == ixgbe_mac_82598EB)
3393		return;
3394
3395	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3396	if (enable)
3397		pfvfspoof |= (1 << vf_target_shift);
3398	else
3399		pfvfspoof &= ~(1 << vf_target_shift);
3400	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3401}
3402
3403/**
3404 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3405 *  @hw: pointer to hardware structure
3406 *  @device_caps: the EEPROM word with the extra device capabilities
3407 *
3408 *  This function will read the EEPROM location for the device capabilities,
3409 *  and return the word through device_caps.
3410 **/
3411s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3412{
3413	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3414
3415	return 0;
3416}
3417
3418/**
3419 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3420 * @hw: pointer to hardware structure
3421 * @num_pb: number of packet buffers to allocate
3422 * @headroom: reserve n KB of headroom
3423 * @strategy: packet buffer allocation strategy
3424 **/
3425void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3426			     int num_pb,
3427			     u32 headroom,
3428			     int strategy)
3429{
3430	u32 pbsize = hw->mac.rx_pb_size;
3431	int i = 0;
3432	u32 rxpktsize, txpktsize, txpbthresh;
3433
3434	/* Reserve headroom */
3435	pbsize -= headroom;
3436
3437	if (!num_pb)
3438		num_pb = 1;
3439
3440	/* Divide remaining packet buffer space amongst the number
3441	 * of packet buffers requested using supplied strategy.
3442	 */
3443	switch (strategy) {
3444	case (PBA_STRATEGY_WEIGHTED):
3445		/* pba_80_48 strategy weight first half of packet buffer with
3446		 * 5/8 of the packet buffer space.
3447		 */
3448		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3449		pbsize -= rxpktsize * (num_pb / 2);
3450		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3451		for (; i < (num_pb / 2); i++)
3452			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3453		/* Fall through to configure remaining packet buffers */
3454	case (PBA_STRATEGY_EQUAL):
3455		/* Divide the remaining Rx packet buffer evenly among the TCs */
3456		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3457		for (; i < num_pb; i++)
3458			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3459		break;
3460	default:
3461		break;
3462	}
3463
3464	/*
3465	 * Setup Tx packet buffer and threshold equally for all TCs
3466	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3467	 * 10 since the largest packet we support is just over 9K.
3468	 */
3469	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3470	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3471	for (i = 0; i < num_pb; i++) {
3472		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3473		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3474	}
3475
3476	/* Clear unused TCs, if any, to zero buffer size*/
3477	for (; i < IXGBE_MAX_PB; i++) {
3478		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3479		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3480		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3481	}
3482}
3483
3484/**
3485 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3486 *  @buffer: pointer to EEPROM
3487 *  @length: size of EEPROM to calculate a checksum for
3488 *
3489 *  Calculates the checksum for some buffer on a specified length.  The
3490 *  checksum calculated is returned.
3491 **/
3492static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3493{
3494	u32 i;
3495	u8 sum = 0;
3496
3497	if (!buffer)
3498		return 0;
3499
3500	for (i = 0; i < length; i++)
3501		sum += buffer[i];
3502
3503	return (u8) (0 - sum);
3504}
3505
3506/**
3507 *  ixgbe_host_interface_command - Issue command to manageability block
3508 *  @hw: pointer to the HW structure
3509 *  @buffer: contains the command to write and where the return status will
3510 *           be placed
3511 *  @length: length of buffer, must be multiple of 4 bytes
 
3512 *
3513 *  Communicates with the manageability block.  On success return 0
3514 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 
 
 
 
 
3515 **/
3516static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3517					u32 length)
3518{
3519	u32 hicr, i, bi;
3520	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3521	u8 buf_len, dword_len;
3522
3523	s32 ret_val = 0;
 
 
 
3524
3525	if (length == 0 || length & 0x3 ||
3526	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3527		hw_dbg(hw, "Buffer length failure.\n");
3528		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3529		goto out;
3530	}
3531
3532	/* Check that the host interface is enabled. */
3533	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3534	if ((hicr & IXGBE_HICR_EN) == 0) {
3535		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3536		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3537		goto out;
 
 
 
 
 
3538	}
3539
3540	/* Calculate length in DWORDs */
3541	dword_len = length >> 2;
3542
3543	/*
3544	 * The device driver writes the relevant command block
3545	 * into the ram area.
3546	 */
3547	for (i = 0; i < dword_len; i++)
3548		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3549				      i, cpu_to_le32(buffer[i]));
3550
3551	/* Setting this bit tells the ARC that a new command is pending. */
3552	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3553
3554	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3555		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3556		if (!(hicr & IXGBE_HICR_C))
3557			break;
3558		usleep_range(1000, 2000);
3559	}
3560
3561	/* Check command successful completion. */
3562	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3563	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3564		hw_dbg(hw, "Command has failed with no status valid.\n");
3565		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567	}
 
 
 
 
 
 
 
 
 
 
 
3568
3569	/* Calculate length in DWORDs */
3570	dword_len = hdr_size >> 2;
3571
3572	/* first pull in the header so we know the buffer length */
3573	for (bi = 0; bi < dword_len; bi++) {
3574		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3575		le32_to_cpus(&buffer[bi]);
3576	}
3577
3578	/* If there is any thing in data position pull it in */
3579	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3580	if (buf_len == 0)
3581		goto out;
3582
3583	if (length < (buf_len + hdr_size)) {
3584		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3585		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3586		goto out;
3587	}
3588
3589	/* Calculate length in DWORDs, add 3 for odd lengths */
3590	dword_len = (buf_len + 3) >> 2;
3591
3592	/* Pull in the rest of the buffer (bi is where we left off)*/
3593	for (; bi <= dword_len; bi++) {
3594		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3595		le32_to_cpus(&buffer[bi]);
3596	}
3597
3598out:
3599	return ret_val;
 
 
3600}
3601
3602/**
3603 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3604 *  @hw: pointer to the HW structure
3605 *  @maj: driver version major number
3606 *  @min: driver version minor number
3607 *  @build: driver version build number
3608 *  @sub: driver version sub build number
 
 
3609 *
3610 *  Sends driver version number to firmware through the manageability
3611 *  block.  On success return 0
3612 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3613 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3614 **/
3615s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3616				 u8 build, u8 sub)
 
3617{
3618	struct ixgbe_hic_drv_info fw_cmd;
 
3619	int i;
3620	s32 ret_val = 0;
3621
3622	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3623		ret_val = IXGBE_ERR_SWFW_SYNC;
3624		goto out;
3625	}
3626
3627	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3628	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3629	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3630	fw_cmd.port_num = (u8)hw->bus.func;
3631	fw_cmd.ver_maj = maj;
3632	fw_cmd.ver_min = min;
3633	fw_cmd.ver_build = build;
3634	fw_cmd.ver_sub = sub;
3635	fw_cmd.hdr.checksum = 0;
 
 
3636	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3637				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3638	fw_cmd.pad = 0;
3639	fw_cmd.pad2 = 0;
3640
3641	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3642		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3643						       sizeof(fw_cmd));
 
 
3644		if (ret_val != 0)
3645			continue;
3646
3647		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3648		    FW_CEM_RESP_STATUS_SUCCESS)
3649			ret_val = 0;
3650		else
3651			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3652
3653		break;
3654	}
3655
3656	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3657out:
3658	return ret_val;
3659}
3660
3661/**
3662 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3663 * @hw: pointer to the hardware structure
3664 *
3665 * The 82599 and x540 MACs can experience issues if TX work is still pending
3666 * when a reset occurs.  This function prevents this by flushing the PCIe
3667 * buffers on the system.
3668 **/
3669void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3670{
3671	u32 gcr_ext, hlreg0;
 
3672
3673	/*
3674	 * If double reset is not requested then all transactions should
3675	 * already be clear and as such there is no work to do
3676	 */
3677	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3678		return;
3679
3680	/*
3681	 * Set loopback enable to prevent any transmits from being sent
3682	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3683	 * has already been cleared.
3684	 */
3685	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3686	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3688	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3689	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3690	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3691			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3692
3693	/* Flush all writes and allow 20usec for all transactions to clear */
3694	IXGBE_WRITE_FLUSH(hw);
3695	udelay(20);
3696
3697	/* restore previous register values */
3698	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3699	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3700}
3701
3702static const u8 ixgbe_emc_temp_data[4] = {
3703	IXGBE_EMC_INTERNAL_DATA,
3704	IXGBE_EMC_DIODE1_DATA,
3705	IXGBE_EMC_DIODE2_DATA,
3706	IXGBE_EMC_DIODE3_DATA
3707};
3708static const u8 ixgbe_emc_therm_limit[4] = {
3709	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3710	IXGBE_EMC_DIODE1_THERM_LIMIT,
3711	IXGBE_EMC_DIODE2_THERM_LIMIT,
3712	IXGBE_EMC_DIODE3_THERM_LIMIT
3713};
3714
3715/**
3716 *  ixgbe_get_ets_data - Extracts the ETS bit data
3717 *  @hw: pointer to hardware structure
3718 *  @ets_cfg: extected ETS data
3719 *  @ets_offset: offset of ETS data
3720 *
3721 *  Returns error code.
3722 **/
3723static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3724			      u16 *ets_offset)
3725{
3726	s32 status = 0;
3727
3728	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3729	if (status)
3730		goto out;
3731
3732	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3733		status = IXGBE_NOT_IMPLEMENTED;
3734		goto out;
3735	}
3736
3737	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3738	if (status)
3739		goto out;
3740
3741	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3742		status = IXGBE_NOT_IMPLEMENTED;
3743		goto out;
3744	}
3745
3746out:
3747	return status;
3748}
3749
3750/**
3751 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3752 *  @hw: pointer to hardware structure
3753 *
3754 *  Returns the thermal sensor data structure
3755 **/
3756s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3757{
3758	s32 status = 0;
3759	u16 ets_offset;
3760	u16 ets_cfg;
3761	u16 ets_sensor;
3762	u8  num_sensors;
 
 
3763	u8  i;
3764	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3765
3766	/* Only support thermal sensors attached to physical port 0 */
3767	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3768		status = IXGBE_NOT_IMPLEMENTED;
3769		goto out;
3770	}
3771
3772	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3773	if (status)
3774		goto out;
3775
3776	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3777	if (num_sensors > IXGBE_MAX_SENSORS)
3778		num_sensors = IXGBE_MAX_SENSORS;
3779
3780	for (i = 0; i < num_sensors; i++) {
3781		u8  sensor_index;
3782		u8  sensor_location;
3783
3784		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3785					     &ets_sensor);
3786		if (status)
3787			goto out;
3788
3789		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3790				IXGBE_ETS_DATA_INDEX_SHIFT);
3791		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3792				   IXGBE_ETS_DATA_LOC_SHIFT);
3793
3794		if (sensor_location != 0) {
3795			status = hw->phy.ops.read_i2c_byte(hw,
3796					ixgbe_emc_temp_data[sensor_index],
3797					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3798					&data->sensor[i].temp);
3799			if (status)
3800				goto out;
3801		}
3802	}
3803out:
3804	return status;
3805}
3806
3807/**
3808 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3809 * @hw: pointer to hardware structure
3810 *
3811 * Inits the thermal sensor thresholds according to the NVM map
3812 * and save off the threshold and location values into mac.thermal_sensor_data
3813 **/
3814s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3815{
3816	s32 status = 0;
3817	u16 ets_offset;
3818	u16 ets_cfg;
3819	u16 ets_sensor;
3820	u8  low_thresh_delta;
3821	u8  num_sensors;
3822	u8  therm_limit;
 
 
 
 
3823	u8  i;
3824	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3825
3826	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3827
3828	/* Only support thermal sensors attached to physical port 0 */
3829	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3830		status = IXGBE_NOT_IMPLEMENTED;
3831		goto out;
3832	}
3833
3834	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3835	if (status)
3836		goto out;
3837
3838	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3839			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3840	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3841	if (num_sensors > IXGBE_MAX_SENSORS)
3842		num_sensors = IXGBE_MAX_SENSORS;
3843
3844	for (i = 0; i < num_sensors; i++) {
3845		u8  sensor_index;
3846		u8  sensor_location;
3847
3848		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3849			hw_err(hw, "eeprom read at offset %d failed\n",
3850			       ets_offset + 1 + i);
3851			continue;
3852		}
3853		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3854				IXGBE_ETS_DATA_INDEX_SHIFT);
3855		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3856				   IXGBE_ETS_DATA_LOC_SHIFT);
3857		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3858
3859		hw->phy.ops.write_i2c_byte(hw,
3860			ixgbe_emc_therm_limit[sensor_index],
3861			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3862
3863		if (sensor_location == 0)
3864			continue;
3865
3866		data->sensor[i].location = sensor_location;
3867		data->sensor[i].caution_thresh = therm_limit;
3868		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3869	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3870out:
 
 
 
 
 
 
 
 
 
3871	return status;
3872}
3873