Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* ethtool support for igb */
5
6#include <linux/vmalloc.h>
7#include <linux/netdevice.h>
8#include <linux/pci.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/if_ether.h>
12#include <linux/ethtool.h>
13#include <linux/sched.h>
14#include <linux/slab.h>
15#include <linux/pm_runtime.h>
16#include <linux/highmem.h>
17#include <linux/mdio.h>
18
19#include "igb.h"
20
21struct igb_stats {
22 char stat_string[ETH_GSTRING_LEN];
23 int sizeof_stat;
24 int stat_offset;
25};
26
27#define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
31}
32static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75};
76
77#define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81}
82static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
92};
93
94#define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96#define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98#define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100
101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102
103#define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108#define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110
111enum igb_diagnostics_results {
112 TEST_REG = 0,
113 TEST_EEP,
114 TEST_IRQ,
115 TEST_LOOP,
116 TEST_LINK
117};
118
119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
125};
126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127
128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129#define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
130 "legacy-rx",
131};
132
133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134
135static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
137{
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 u32 status;
143 u32 speed;
144 u32 supported, advertising;
145
146 status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 0 : rd32(E1000_STATUS);
148 if (hw->phy.media_type == e1000_media_type_copper) {
149
150 supported = (SUPPORTED_10baseT_Half |
151 SUPPORTED_10baseT_Full |
152 SUPPORTED_100baseT_Half |
153 SUPPORTED_100baseT_Full |
154 SUPPORTED_1000baseT_Full|
155 SUPPORTED_Autoneg |
156 SUPPORTED_TP |
157 SUPPORTED_Pause);
158 advertising = ADVERTISED_TP;
159
160 if (hw->mac.autoneg == 1) {
161 advertising |= ADVERTISED_Autoneg;
162 /* the e1000 autoneg seems to match ethtool nicely */
163 advertising |= hw->phy.autoneg_advertised;
164 }
165
166 cmd->base.port = PORT_TP;
167 cmd->base.phy_address = hw->phy.addr;
168 } else {
169 supported = (SUPPORTED_FIBRE |
170 SUPPORTED_1000baseKX_Full |
171 SUPPORTED_Autoneg |
172 SUPPORTED_Pause);
173 advertising = (ADVERTISED_FIBRE |
174 ADVERTISED_1000baseKX_Full);
175 if (hw->mac.type == e1000_i354) {
176 if ((hw->device_id ==
177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 supported |= SUPPORTED_2500baseX_Full;
180 supported &= ~SUPPORTED_1000baseKX_Full;
181 advertising |= ADVERTISED_2500baseX_Full;
182 advertising &= ~ADVERTISED_1000baseKX_Full;
183 }
184 }
185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 supported |= SUPPORTED_100baseT_Full;
187 advertising |= ADVERTISED_100baseT_Full;
188 }
189 if (hw->mac.autoneg == 1)
190 advertising |= ADVERTISED_Autoneg;
191
192 cmd->base.port = PORT_FIBRE;
193 }
194 if (hw->mac.autoneg != 1)
195 advertising &= ~(ADVERTISED_Pause |
196 ADVERTISED_Asym_Pause);
197
198 switch (hw->fc.requested_mode) {
199 case e1000_fc_full:
200 advertising |= ADVERTISED_Pause;
201 break;
202 case e1000_fc_rx_pause:
203 advertising |= (ADVERTISED_Pause |
204 ADVERTISED_Asym_Pause);
205 break;
206 case e1000_fc_tx_pause:
207 advertising |= ADVERTISED_Asym_Pause;
208 break;
209 default:
210 advertising &= ~(ADVERTISED_Pause |
211 ADVERTISED_Asym_Pause);
212 }
213 if (status & E1000_STATUS_LU) {
214 if ((status & E1000_STATUS_2P5_SKU) &&
215 !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 speed = SPEED_2500;
217 } else if (status & E1000_STATUS_SPEED_1000) {
218 speed = SPEED_1000;
219 } else if (status & E1000_STATUS_SPEED_100) {
220 speed = SPEED_100;
221 } else {
222 speed = SPEED_10;
223 }
224 if ((status & E1000_STATUS_FD) ||
225 hw->phy.media_type != e1000_media_type_copper)
226 cmd->base.duplex = DUPLEX_FULL;
227 else
228 cmd->base.duplex = DUPLEX_HALF;
229 } else {
230 speed = SPEED_UNKNOWN;
231 cmd->base.duplex = DUPLEX_UNKNOWN;
232 }
233 cmd->base.speed = speed;
234 if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 hw->mac.autoneg)
236 cmd->base.autoneg = AUTONEG_ENABLE;
237 else
238 cmd->base.autoneg = AUTONEG_DISABLE;
239
240 /* MDI-X => 2; MDI =>1; Invalid =>0 */
241 if (hw->phy.media_type == e1000_media_type_copper)
242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 ETH_TP_MDI;
244 else
245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246
247 if (hw->phy.mdix == AUTO_ALL_MODES)
248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 else
250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251
252 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 supported);
254 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 advertising);
256
257 return 0;
258}
259
260static int igb_set_link_ksettings(struct net_device *netdev,
261 const struct ethtool_link_ksettings *cmd)
262{
263 struct igb_adapter *adapter = netdev_priv(netdev);
264 struct e1000_hw *hw = &adapter->hw;
265 u32 advertising;
266
267 /* When SoL/IDER sessions are active, autoneg/speed/duplex
268 * cannot be changed
269 */
270 if (igb_check_reset_block(hw)) {
271 dev_err(&adapter->pdev->dev,
272 "Cannot change link characteristics when SoL/IDER is active.\n");
273 return -EINVAL;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (cmd->base.eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper)
282 return -EOPNOTSUPP;
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 return -EINVAL;
288 }
289 }
290
291 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 usleep_range(1000, 2000);
293
294 ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 cmd->link_modes.advertising);
296
297 if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber) {
300 hw->phy.autoneg_advertised = advertising |
301 ADVERTISED_FIBRE |
302 ADVERTISED_Autoneg;
303 switch (adapter->link_speed) {
304 case SPEED_2500:
305 hw->phy.autoneg_advertised =
306 ADVERTISED_2500baseX_Full;
307 break;
308 case SPEED_1000:
309 hw->phy.autoneg_advertised =
310 ADVERTISED_1000baseT_Full;
311 break;
312 case SPEED_100:
313 hw->phy.autoneg_advertised =
314 ADVERTISED_100baseT_Full;
315 break;
316 default:
317 break;
318 }
319 } else {
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP |
322 ADVERTISED_Autoneg;
323 }
324 advertising = hw->phy.autoneg_advertised;
325 if (adapter->fc_autoneg)
326 hw->fc.requested_mode = e1000_fc_default;
327 } else {
328 u32 speed = cmd->base.speed;
329 /* calling this overrides forced MDI setting */
330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 clear_bit(__IGB_RESETTING, &adapter->state);
332 return -EINVAL;
333 }
334 }
335
336 /* MDI-X => 2; MDI => 1; Auto => 3 */
337 if (cmd->base.eth_tp_mdix_ctrl) {
338 /* fix up the value for auto (3 => 0) as zero is mapped
339 * internally to auto
340 */
341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 hw->phy.mdix = AUTO_ALL_MODES;
343 else
344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 }
346
347 /* reset the link */
348 if (netif_running(adapter->netdev)) {
349 igb_down(adapter);
350 igb_up(adapter);
351 } else
352 igb_reset(adapter);
353
354 clear_bit(__IGB_RESETTING, &adapter->state);
355 return 0;
356}
357
358static u32 igb_get_link(struct net_device *netdev)
359{
360 struct igb_adapter *adapter = netdev_priv(netdev);
361 struct e1000_mac_info *mac = &adapter->hw.mac;
362
363 /* If the link is not reported up to netdev, interrupts are disabled,
364 * and so the physical link state may have changed since we last
365 * looked. Set get_link_status to make sure that the true link
366 * state is interrogated, rather than pulling a cached and possibly
367 * stale link state from the driver.
368 */
369 if (!netif_carrier_ok(netdev))
370 mac->get_link_status = 1;
371
372 return igb_has_link(adapter);
373}
374
375static void igb_get_pauseparam(struct net_device *netdev,
376 struct ethtool_pauseparam *pause)
377{
378 struct igb_adapter *adapter = netdev_priv(netdev);
379 struct e1000_hw *hw = &adapter->hw;
380
381 pause->autoneg =
382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383
384 if (hw->fc.current_mode == e1000_fc_rx_pause)
385 pause->rx_pause = 1;
386 else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 pause->tx_pause = 1;
388 else if (hw->fc.current_mode == e1000_fc_full) {
389 pause->rx_pause = 1;
390 pause->tx_pause = 1;
391 }
392}
393
394static int igb_set_pauseparam(struct net_device *netdev,
395 struct ethtool_pauseparam *pause)
396{
397 struct igb_adapter *adapter = netdev_priv(netdev);
398 struct e1000_hw *hw = &adapter->hw;
399 int retval = 0;
400 int i;
401
402 /* 100basefx does not support setting link flow control */
403 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 return -EINVAL;
405
406 adapter->fc_autoneg = pause->autoneg;
407
408 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409 usleep_range(1000, 2000);
410
411 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 hw->fc.requested_mode = e1000_fc_default;
413 if (netif_running(adapter->netdev)) {
414 igb_down(adapter);
415 igb_up(adapter);
416 } else {
417 igb_reset(adapter);
418 }
419 } else {
420 if (pause->rx_pause && pause->tx_pause)
421 hw->fc.requested_mode = e1000_fc_full;
422 else if (pause->rx_pause && !pause->tx_pause)
423 hw->fc.requested_mode = e1000_fc_rx_pause;
424 else if (!pause->rx_pause && pause->tx_pause)
425 hw->fc.requested_mode = e1000_fc_tx_pause;
426 else if (!pause->rx_pause && !pause->tx_pause)
427 hw->fc.requested_mode = e1000_fc_none;
428
429 hw->fc.current_mode = hw->fc.requested_mode;
430
431 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 igb_force_mac_fc(hw) : igb_setup_link(hw));
433
434 /* Make sure SRRCTL considers new fc settings for each ring */
435 for (i = 0; i < adapter->num_rx_queues; i++) {
436 struct igb_ring *ring = adapter->rx_ring[i];
437
438 igb_setup_srrctl(adapter, ring);
439 }
440 }
441
442 clear_bit(__IGB_RESETTING, &adapter->state);
443 return retval;
444}
445
446static u32 igb_get_msglevel(struct net_device *netdev)
447{
448 struct igb_adapter *adapter = netdev_priv(netdev);
449 return adapter->msg_enable;
450}
451
452static void igb_set_msglevel(struct net_device *netdev, u32 data)
453{
454 struct igb_adapter *adapter = netdev_priv(netdev);
455 adapter->msg_enable = data;
456}
457
458static int igb_get_regs_len(struct net_device *netdev)
459{
460#define IGB_REGS_LEN 740
461 return IGB_REGS_LEN * sizeof(u32);
462}
463
464static void igb_get_regs(struct net_device *netdev,
465 struct ethtool_regs *regs, void *p)
466{
467 struct igb_adapter *adapter = netdev_priv(netdev);
468 struct e1000_hw *hw = &adapter->hw;
469 u32 *regs_buff = p;
470 u8 i;
471
472 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473
474 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475
476 /* General Registers */
477 regs_buff[0] = rd32(E1000_CTRL);
478 regs_buff[1] = rd32(E1000_STATUS);
479 regs_buff[2] = rd32(E1000_CTRL_EXT);
480 regs_buff[3] = rd32(E1000_MDIC);
481 regs_buff[4] = rd32(E1000_SCTL);
482 regs_buff[5] = rd32(E1000_CONNSW);
483 regs_buff[6] = rd32(E1000_VET);
484 regs_buff[7] = rd32(E1000_LEDCTL);
485 regs_buff[8] = rd32(E1000_PBA);
486 regs_buff[9] = rd32(E1000_PBS);
487 regs_buff[10] = rd32(E1000_FRTIMER);
488 regs_buff[11] = rd32(E1000_TCPTIMER);
489
490 /* NVM Register */
491 regs_buff[12] = rd32(E1000_EECD);
492
493 /* Interrupt */
494 /* Reading EICS for EICR because they read the
495 * same but EICS does not clear on read
496 */
497 regs_buff[13] = rd32(E1000_EICS);
498 regs_buff[14] = rd32(E1000_EICS);
499 regs_buff[15] = rd32(E1000_EIMS);
500 regs_buff[16] = rd32(E1000_EIMC);
501 regs_buff[17] = rd32(E1000_EIAC);
502 regs_buff[18] = rd32(E1000_EIAM);
503 /* Reading ICS for ICR because they read the
504 * same but ICS does not clear on read
505 */
506 regs_buff[19] = rd32(E1000_ICS);
507 regs_buff[20] = rd32(E1000_ICS);
508 regs_buff[21] = rd32(E1000_IMS);
509 regs_buff[22] = rd32(E1000_IMC);
510 regs_buff[23] = rd32(E1000_IAC);
511 regs_buff[24] = rd32(E1000_IAM);
512 regs_buff[25] = rd32(E1000_IMIRVP);
513
514 /* Flow Control */
515 regs_buff[26] = rd32(E1000_FCAL);
516 regs_buff[27] = rd32(E1000_FCAH);
517 regs_buff[28] = rd32(E1000_FCTTV);
518 regs_buff[29] = rd32(E1000_FCRTL);
519 regs_buff[30] = rd32(E1000_FCRTH);
520 regs_buff[31] = rd32(E1000_FCRTV);
521
522 /* Receive */
523 regs_buff[32] = rd32(E1000_RCTL);
524 regs_buff[33] = rd32(E1000_RXCSUM);
525 regs_buff[34] = rd32(E1000_RLPML);
526 regs_buff[35] = rd32(E1000_RFCTL);
527 regs_buff[36] = rd32(E1000_MRQC);
528 regs_buff[37] = rd32(E1000_VT_CTL);
529
530 /* Transmit */
531 regs_buff[38] = rd32(E1000_TCTL);
532 regs_buff[39] = rd32(E1000_TCTL_EXT);
533 regs_buff[40] = rd32(E1000_TIPG);
534 regs_buff[41] = rd32(E1000_DTXCTL);
535
536 /* Wake Up */
537 regs_buff[42] = rd32(E1000_WUC);
538 regs_buff[43] = rd32(E1000_WUFC);
539 regs_buff[44] = rd32(E1000_WUS);
540 regs_buff[45] = rd32(E1000_IPAV);
541 regs_buff[46] = rd32(E1000_WUPL);
542
543 /* MAC */
544 regs_buff[47] = rd32(E1000_PCS_CFG0);
545 regs_buff[48] = rd32(E1000_PCS_LCTL);
546 regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 regs_buff[50] = rd32(E1000_PCS_ANADV);
548 regs_buff[51] = rd32(E1000_PCS_LPAB);
549 regs_buff[52] = rd32(E1000_PCS_NPTX);
550 regs_buff[53] = rd32(E1000_PCS_LPABNP);
551
552 /* Statistics */
553 regs_buff[54] = adapter->stats.crcerrs;
554 regs_buff[55] = adapter->stats.algnerrc;
555 regs_buff[56] = adapter->stats.symerrs;
556 regs_buff[57] = adapter->stats.rxerrc;
557 regs_buff[58] = adapter->stats.mpc;
558 regs_buff[59] = adapter->stats.scc;
559 regs_buff[60] = adapter->stats.ecol;
560 regs_buff[61] = adapter->stats.mcc;
561 regs_buff[62] = adapter->stats.latecol;
562 regs_buff[63] = adapter->stats.colc;
563 regs_buff[64] = adapter->stats.dc;
564 regs_buff[65] = adapter->stats.tncrs;
565 regs_buff[66] = adapter->stats.sec;
566 regs_buff[67] = adapter->stats.htdpmc;
567 regs_buff[68] = adapter->stats.rlec;
568 regs_buff[69] = adapter->stats.xonrxc;
569 regs_buff[70] = adapter->stats.xontxc;
570 regs_buff[71] = adapter->stats.xoffrxc;
571 regs_buff[72] = adapter->stats.xofftxc;
572 regs_buff[73] = adapter->stats.fcruc;
573 regs_buff[74] = adapter->stats.prc64;
574 regs_buff[75] = adapter->stats.prc127;
575 regs_buff[76] = adapter->stats.prc255;
576 regs_buff[77] = adapter->stats.prc511;
577 regs_buff[78] = adapter->stats.prc1023;
578 regs_buff[79] = adapter->stats.prc1522;
579 regs_buff[80] = adapter->stats.gprc;
580 regs_buff[81] = adapter->stats.bprc;
581 regs_buff[82] = adapter->stats.mprc;
582 regs_buff[83] = adapter->stats.gptc;
583 regs_buff[84] = adapter->stats.gorc;
584 regs_buff[86] = adapter->stats.gotc;
585 regs_buff[88] = adapter->stats.rnbc;
586 regs_buff[89] = adapter->stats.ruc;
587 regs_buff[90] = adapter->stats.rfc;
588 regs_buff[91] = adapter->stats.roc;
589 regs_buff[92] = adapter->stats.rjc;
590 regs_buff[93] = adapter->stats.mgprc;
591 regs_buff[94] = adapter->stats.mgpdc;
592 regs_buff[95] = adapter->stats.mgptc;
593 regs_buff[96] = adapter->stats.tor;
594 regs_buff[98] = adapter->stats.tot;
595 regs_buff[100] = adapter->stats.tpr;
596 regs_buff[101] = adapter->stats.tpt;
597 regs_buff[102] = adapter->stats.ptc64;
598 regs_buff[103] = adapter->stats.ptc127;
599 regs_buff[104] = adapter->stats.ptc255;
600 regs_buff[105] = adapter->stats.ptc511;
601 regs_buff[106] = adapter->stats.ptc1023;
602 regs_buff[107] = adapter->stats.ptc1522;
603 regs_buff[108] = adapter->stats.mptc;
604 regs_buff[109] = adapter->stats.bptc;
605 regs_buff[110] = adapter->stats.tsctc;
606 regs_buff[111] = adapter->stats.iac;
607 regs_buff[112] = adapter->stats.rpthc;
608 regs_buff[113] = adapter->stats.hgptc;
609 regs_buff[114] = adapter->stats.hgorc;
610 regs_buff[116] = adapter->stats.hgotc;
611 regs_buff[118] = adapter->stats.lenerrs;
612 regs_buff[119] = adapter->stats.scvpc;
613 regs_buff[120] = adapter->stats.hrmpc;
614
615 for (i = 0; i < 4; i++)
616 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 for (i = 0; i < 4; i++)
618 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 for (i = 0; i < 4; i++)
620 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 for (i = 0; i < 4; i++)
622 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 for (i = 0; i < 4; i++)
624 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 for (i = 0; i < 4; i++)
626 regs_buff[141 + i] = rd32(E1000_RDH(i));
627 for (i = 0; i < 4; i++)
628 regs_buff[145 + i] = rd32(E1000_RDT(i));
629 for (i = 0; i < 4; i++)
630 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631
632 for (i = 0; i < 10; i++)
633 regs_buff[153 + i] = rd32(E1000_EITR(i));
634 for (i = 0; i < 8; i++)
635 regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 for (i = 0; i < 8; i++)
637 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 for (i = 0; i < 16; i++)
639 regs_buff[179 + i] = rd32(E1000_RAL(i));
640 for (i = 0; i < 16; i++)
641 regs_buff[195 + i] = rd32(E1000_RAH(i));
642
643 for (i = 0; i < 4; i++)
644 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 for (i = 0; i < 4; i++)
650 regs_buff[223 + i] = rd32(E1000_TDH(i));
651 for (i = 0; i < 4; i++)
652 regs_buff[227 + i] = rd32(E1000_TDT(i));
653 for (i = 0; i < 4; i++)
654 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 for (i = 0; i < 4; i++)
658 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 for (i = 0; i < 4; i++)
660 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661
662 for (i = 0; i < 4; i++)
663 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 for (i = 0; i < 4; i++)
665 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 for (i = 0; i < 32; i++)
667 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 for (i = 0; i < 128; i++)
669 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 for (i = 0; i < 128; i++)
671 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 for (i = 0; i < 4; i++)
673 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674
675 regs_buff[547] = rd32(E1000_TDFH);
676 regs_buff[548] = rd32(E1000_TDFT);
677 regs_buff[549] = rd32(E1000_TDFHS);
678 regs_buff[550] = rd32(E1000_TDFPC);
679
680 if (hw->mac.type > e1000_82580) {
681 regs_buff[551] = adapter->stats.o2bgptc;
682 regs_buff[552] = adapter->stats.b2ospc;
683 regs_buff[553] = adapter->stats.o2bspc;
684 regs_buff[554] = adapter->stats.b2ogprc;
685 }
686
687 if (hw->mac.type == e1000_82576) {
688 for (i = 0; i < 12; i++)
689 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 for (i = 0; i < 4; i++)
691 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704
705 for (i = 0; i < 12; i++)
706 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 for (i = 0; i < 12; i++)
708 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 for (i = 0; i < 12; i++)
710 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 for (i = 0; i < 12; i++)
712 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 for (i = 0; i < 12; i++)
714 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 for (i = 0; i < 12; i++)
716 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 for (i = 0; i < 12; i++)
718 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 for (i = 0; i < 12; i++)
720 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 }
722
723 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725}
726
727static int igb_get_eeprom_len(struct net_device *netdev)
728{
729 struct igb_adapter *adapter = netdev_priv(netdev);
730 return adapter->hw.nvm.word_size * 2;
731}
732
733static int igb_get_eeprom(struct net_device *netdev,
734 struct ethtool_eeprom *eeprom, u8 *bytes)
735{
736 struct igb_adapter *adapter = netdev_priv(netdev);
737 struct e1000_hw *hw = &adapter->hw;
738 u16 *eeprom_buff;
739 int first_word, last_word;
740 int ret_val = 0;
741 u16 i;
742
743 if (eeprom->len == 0)
744 return -EINVAL;
745
746 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747
748 first_word = eeprom->offset >> 1;
749 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750
751 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752 GFP_KERNEL);
753 if (!eeprom_buff)
754 return -ENOMEM;
755
756 if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 ret_val = hw->nvm.ops.read(hw, first_word,
758 last_word - first_word + 1,
759 eeprom_buff);
760 else {
761 for (i = 0; i < last_word - first_word + 1; i++) {
762 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 &eeprom_buff[i]);
764 if (ret_val)
765 break;
766 }
767 }
768
769 /* Device's eeprom is always little-endian, word addressable */
770 for (i = 0; i < last_word - first_word + 1; i++)
771 le16_to_cpus(&eeprom_buff[i]);
772
773 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 eeprom->len);
775 kfree(eeprom_buff);
776
777 return ret_val;
778}
779
780static int igb_set_eeprom(struct net_device *netdev,
781 struct ethtool_eeprom *eeprom, u8 *bytes)
782{
783 struct igb_adapter *adapter = netdev_priv(netdev);
784 struct e1000_hw *hw = &adapter->hw;
785 u16 *eeprom_buff;
786 void *ptr;
787 int max_len, first_word, last_word, ret_val = 0;
788 u16 i;
789
790 if (eeprom->len == 0)
791 return -EOPNOTSUPP;
792
793 if ((hw->mac.type >= e1000_i210) &&
794 !igb_get_flash_presence_i210(hw)) {
795 return -EOPNOTSUPP;
796 }
797
798 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 return -EFAULT;
800
801 max_len = hw->nvm.word_size * 2;
802
803 first_word = eeprom->offset >> 1;
804 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806 if (!eeprom_buff)
807 return -ENOMEM;
808
809 ptr = (void *)eeprom_buff;
810
811 if (eeprom->offset & 1) {
812 /* need read/modify/write of first changed EEPROM word
813 * only the second byte of the word is being modified
814 */
815 ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 &eeprom_buff[0]);
817 ptr++;
818 }
819 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 /* need read/modify/write of last changed EEPROM word
821 * only the first byte of the word is being modified
822 */
823 ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 &eeprom_buff[last_word - first_word]);
825 if (ret_val)
826 goto out;
827 }
828
829 /* Device's eeprom is always little-endian, word addressable */
830 for (i = 0; i < last_word - first_word + 1; i++)
831 le16_to_cpus(&eeprom_buff[i]);
832
833 memcpy(ptr, bytes, eeprom->len);
834
835 for (i = 0; i < last_word - first_word + 1; i++)
836 cpu_to_le16s(&eeprom_buff[i]);
837
838 ret_val = hw->nvm.ops.write(hw, first_word,
839 last_word - first_word + 1, eeprom_buff);
840
841 /* Update the checksum if nvm write succeeded */
842 if (ret_val == 0)
843 hw->nvm.ops.update(hw);
844
845 igb_set_fw_version(adapter);
846out:
847 kfree(eeprom_buff);
848 return ret_val;
849}
850
851static void igb_get_drvinfo(struct net_device *netdev,
852 struct ethtool_drvinfo *drvinfo)
853{
854 struct igb_adapter *adapter = netdev_priv(netdev);
855
856 strscpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
857
858 /* EEPROM image version # is reported as firmware version # for
859 * 82575 controllers
860 */
861 strscpy(drvinfo->fw_version, adapter->fw_version,
862 sizeof(drvinfo->fw_version));
863 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
864 sizeof(drvinfo->bus_info));
865
866 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
867}
868
869static void igb_get_ringparam(struct net_device *netdev,
870 struct ethtool_ringparam *ring,
871 struct kernel_ethtool_ringparam *kernel_ring,
872 struct netlink_ext_ack *extack)
873{
874 struct igb_adapter *adapter = netdev_priv(netdev);
875
876 ring->rx_max_pending = IGB_MAX_RXD;
877 ring->tx_max_pending = IGB_MAX_TXD;
878 ring->rx_pending = adapter->rx_ring_count;
879 ring->tx_pending = adapter->tx_ring_count;
880}
881
882static int igb_set_ringparam(struct net_device *netdev,
883 struct ethtool_ringparam *ring,
884 struct kernel_ethtool_ringparam *kernel_ring,
885 struct netlink_ext_ack *extack)
886{
887 struct igb_adapter *adapter = netdev_priv(netdev);
888 struct igb_ring *temp_ring;
889 int i, err = 0;
890 u16 new_rx_count, new_tx_count;
891
892 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
893 return -EINVAL;
894
895 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
896 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
897 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
898
899 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
900 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
901 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
902
903 if ((new_tx_count == adapter->tx_ring_count) &&
904 (new_rx_count == adapter->rx_ring_count)) {
905 /* nothing to do */
906 return 0;
907 }
908
909 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
910 usleep_range(1000, 2000);
911
912 if (!netif_running(adapter->netdev)) {
913 for (i = 0; i < adapter->num_tx_queues; i++)
914 adapter->tx_ring[i]->count = new_tx_count;
915 for (i = 0; i < adapter->num_rx_queues; i++)
916 adapter->rx_ring[i]->count = new_rx_count;
917 adapter->tx_ring_count = new_tx_count;
918 adapter->rx_ring_count = new_rx_count;
919 goto clear_reset;
920 }
921
922 if (adapter->num_tx_queues > adapter->num_rx_queues)
923 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
924 adapter->num_tx_queues));
925 else
926 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
927 adapter->num_rx_queues));
928
929 if (!temp_ring) {
930 err = -ENOMEM;
931 goto clear_reset;
932 }
933
934 igb_down(adapter);
935
936 /* We can't just free everything and then setup again,
937 * because the ISRs in MSI-X mode get passed pointers
938 * to the Tx and Rx ring structs.
939 */
940 if (new_tx_count != adapter->tx_ring_count) {
941 for (i = 0; i < adapter->num_tx_queues; i++) {
942 memcpy(&temp_ring[i], adapter->tx_ring[i],
943 sizeof(struct igb_ring));
944
945 temp_ring[i].count = new_tx_count;
946 err = igb_setup_tx_resources(&temp_ring[i]);
947 if (err) {
948 while (i) {
949 i--;
950 igb_free_tx_resources(&temp_ring[i]);
951 }
952 goto err_setup;
953 }
954 }
955
956 for (i = 0; i < adapter->num_tx_queues; i++) {
957 igb_free_tx_resources(adapter->tx_ring[i]);
958
959 memcpy(adapter->tx_ring[i], &temp_ring[i],
960 sizeof(struct igb_ring));
961 }
962
963 adapter->tx_ring_count = new_tx_count;
964 }
965
966 if (new_rx_count != adapter->rx_ring_count) {
967 for (i = 0; i < adapter->num_rx_queues; i++) {
968 memcpy(&temp_ring[i], adapter->rx_ring[i],
969 sizeof(struct igb_ring));
970
971 temp_ring[i].count = new_rx_count;
972 err = igb_setup_rx_resources(&temp_ring[i]);
973 if (err) {
974 while (i) {
975 i--;
976 igb_free_rx_resources(&temp_ring[i]);
977 }
978 goto err_setup;
979 }
980
981 }
982
983 for (i = 0; i < adapter->num_rx_queues; i++) {
984 igb_free_rx_resources(adapter->rx_ring[i]);
985
986 memcpy(adapter->rx_ring[i], &temp_ring[i],
987 sizeof(struct igb_ring));
988 }
989
990 adapter->rx_ring_count = new_rx_count;
991 }
992err_setup:
993 igb_up(adapter);
994 vfree(temp_ring);
995clear_reset:
996 clear_bit(__IGB_RESETTING, &adapter->state);
997 return err;
998}
999
1000/* ethtool register test data */
1001struct igb_reg_test {
1002 u16 reg;
1003 u16 reg_offset;
1004 u16 array_len;
1005 u16 test_type;
1006 u32 mask;
1007 u32 write;
1008};
1009
1010/* In the hardware, registers are laid out either singly, in arrays
1011 * spaced 0x100 bytes apart, or in contiguous tables. We assume
1012 * most tests take place on arrays or single registers (handled
1013 * as a single-element array) and special-case the tables.
1014 * Table tests are always pattern tests.
1015 *
1016 * We also make provision for some required setup steps by specifying
1017 * registers to be written without any read-back testing.
1018 */
1019
1020#define PATTERN_TEST 1
1021#define SET_READ_TEST 2
1022#define WRITE_NO_TEST 3
1023#define TABLE32_TEST 4
1024#define TABLE64_TEST_LO 5
1025#define TABLE64_TEST_HI 6
1026
1027/* i210 reg test */
1028static struct igb_reg_test reg_test_i210[] = {
1029 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1035 /* RDH is read-only for i210, only test RDT. */
1036 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1038 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1040 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1044 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1046 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1047 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1049 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1051 0x900FFFFF, 0xFFFFFFFF },
1052 { E1000_MTA, 0, 128, TABLE32_TEST,
1053 0xFFFFFFFF, 0xFFFFFFFF },
1054 { 0, 0, 0, 0, 0 }
1055};
1056
1057/* i350 reg test */
1058static struct igb_reg_test reg_test_i350[] = {
1059 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1061 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1062 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1063 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069 /* RDH is read-only for i350, only test RDT. */
1070 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1072 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1073 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1075 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1082 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1085 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1086 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1088 0xFFFFFFFF, 0xFFFFFFFF },
1089 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1090 0xC3FFFFFF, 0xFFFFFFFF },
1091 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1092 0xFFFFFFFF, 0xFFFFFFFF },
1093 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1094 0xC3FFFFFF, 0xFFFFFFFF },
1095 { E1000_MTA, 0, 128, TABLE32_TEST,
1096 0xFFFFFFFF, 0xFFFFFFFF },
1097 { 0, 0, 0, 0 }
1098};
1099
1100/* 82580 reg test */
1101static struct igb_reg_test reg_test_82580[] = {
1102 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1104 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1105 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112 /* RDH is read-only for 82580, only test RDT. */
1113 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1115 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1116 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1118 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1125 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1129 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1131 0xFFFFFFFF, 0xFFFFFFFF },
1132 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1133 0x83FFFFFF, 0xFFFFFFFF },
1134 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1135 0xFFFFFFFF, 0xFFFFFFFF },
1136 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1137 0x83FFFFFF, 0xFFFFFFFF },
1138 { E1000_MTA, 0, 128, TABLE32_TEST,
1139 0xFFFFFFFF, 0xFFFFFFFF },
1140 { 0, 0, 0, 0 }
1141};
1142
1143/* 82576 reg test */
1144static struct igb_reg_test reg_test_82576[] = {
1145 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1147 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1148 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 /* Enable all RX queues before testing. */
1156 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1157 E1000_RXDCTL_QUEUE_ENABLE },
1158 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1159 E1000_RXDCTL_QUEUE_ENABLE },
1160 /* RDH is read-only for 82576, only test RDT. */
1161 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1162 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1163 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1164 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1165 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1166 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1167 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1168 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1177 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1179 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1180 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1182 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 { 0, 0, 0, 0 }
1184};
1185
1186/* 82575 register test */
1187static struct igb_reg_test reg_test_82575[] = {
1188 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1190 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1191 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1193 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1194 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1195 /* Enable all four RX queues before testing. */
1196 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1197 E1000_RXDCTL_QUEUE_ENABLE },
1198 /* RDH is read-only for 82575, only test RDT. */
1199 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1201 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1202 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1204 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1205 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1206 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1207 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1209 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1210 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1212 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1213 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1214 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1215 { 0, 0, 0, 0 }
1216};
1217
1218static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1219 int reg, u32 mask, u32 write)
1220{
1221 struct e1000_hw *hw = &adapter->hw;
1222 u32 pat, val;
1223 static const u32 _test[] = {
1224 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1225 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1226 wr32(reg, (_test[pat] & write));
1227 val = rd32(reg) & mask;
1228 if (val != (_test[pat] & write & mask)) {
1229 dev_err(&adapter->pdev->dev,
1230 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1231 reg, val, (_test[pat] & write & mask));
1232 *data = reg;
1233 return true;
1234 }
1235 }
1236
1237 return false;
1238}
1239
1240static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1241 int reg, u32 mask, u32 write)
1242{
1243 struct e1000_hw *hw = &adapter->hw;
1244 u32 val;
1245
1246 wr32(reg, write & mask);
1247 val = rd32(reg);
1248 if ((write & mask) != (val & mask)) {
1249 dev_err(&adapter->pdev->dev,
1250 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1251 reg, (val & mask), (write & mask));
1252 *data = reg;
1253 return true;
1254 }
1255
1256 return false;
1257}
1258
1259#define REG_PATTERN_TEST(reg, mask, write) \
1260 do { \
1261 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1262 return 1; \
1263 } while (0)
1264
1265#define REG_SET_AND_CHECK(reg, mask, write) \
1266 do { \
1267 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1268 return 1; \
1269 } while (0)
1270
1271static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1272{
1273 struct e1000_hw *hw = &adapter->hw;
1274 struct igb_reg_test *test;
1275 u32 value, before, after;
1276 u32 i, toggle;
1277
1278 switch (adapter->hw.mac.type) {
1279 case e1000_i350:
1280 case e1000_i354:
1281 test = reg_test_i350;
1282 toggle = 0x7FEFF3FF;
1283 break;
1284 case e1000_i210:
1285 case e1000_i211:
1286 test = reg_test_i210;
1287 toggle = 0x7FEFF3FF;
1288 break;
1289 case e1000_82580:
1290 test = reg_test_82580;
1291 toggle = 0x7FEFF3FF;
1292 break;
1293 case e1000_82576:
1294 test = reg_test_82576;
1295 toggle = 0x7FFFF3FF;
1296 break;
1297 default:
1298 test = reg_test_82575;
1299 toggle = 0x7FFFF3FF;
1300 break;
1301 }
1302
1303 /* Because the status register is such a special case,
1304 * we handle it separately from the rest of the register
1305 * tests. Some bits are read-only, some toggle, and some
1306 * are writable on newer MACs.
1307 */
1308 before = rd32(E1000_STATUS);
1309 value = (rd32(E1000_STATUS) & toggle);
1310 wr32(E1000_STATUS, toggle);
1311 after = rd32(E1000_STATUS) & toggle;
1312 if (value != after) {
1313 dev_err(&adapter->pdev->dev,
1314 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1315 after, value);
1316 *data = 1;
1317 return 1;
1318 }
1319 /* restore previous status */
1320 wr32(E1000_STATUS, before);
1321
1322 /* Perform the remainder of the register test, looping through
1323 * the test table until we either fail or reach the null entry.
1324 */
1325 while (test->reg) {
1326 for (i = 0; i < test->array_len; i++) {
1327 switch (test->test_type) {
1328 case PATTERN_TEST:
1329 REG_PATTERN_TEST(test->reg +
1330 (i * test->reg_offset),
1331 test->mask,
1332 test->write);
1333 break;
1334 case SET_READ_TEST:
1335 REG_SET_AND_CHECK(test->reg +
1336 (i * test->reg_offset),
1337 test->mask,
1338 test->write);
1339 break;
1340 case WRITE_NO_TEST:
1341 writel(test->write,
1342 (adapter->hw.hw_addr + test->reg)
1343 + (i * test->reg_offset));
1344 break;
1345 case TABLE32_TEST:
1346 REG_PATTERN_TEST(test->reg + (i * 4),
1347 test->mask,
1348 test->write);
1349 break;
1350 case TABLE64_TEST_LO:
1351 REG_PATTERN_TEST(test->reg + (i * 8),
1352 test->mask,
1353 test->write);
1354 break;
1355 case TABLE64_TEST_HI:
1356 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1357 test->mask,
1358 test->write);
1359 break;
1360 }
1361 }
1362 test++;
1363 }
1364
1365 *data = 0;
1366 return 0;
1367}
1368
1369static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1370{
1371 struct e1000_hw *hw = &adapter->hw;
1372
1373 *data = 0;
1374
1375 /* Validate eeprom on all parts but flashless */
1376 switch (hw->mac.type) {
1377 case e1000_i210:
1378 case e1000_i211:
1379 if (igb_get_flash_presence_i210(hw)) {
1380 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1381 *data = 2;
1382 }
1383 break;
1384 default:
1385 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1386 *data = 2;
1387 break;
1388 }
1389
1390 return *data;
1391}
1392
1393static irqreturn_t igb_test_intr(int irq, void *data)
1394{
1395 struct igb_adapter *adapter = (struct igb_adapter *) data;
1396 struct e1000_hw *hw = &adapter->hw;
1397
1398 adapter->test_icr |= rd32(E1000_ICR);
1399
1400 return IRQ_HANDLED;
1401}
1402
1403static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1404{
1405 struct e1000_hw *hw = &adapter->hw;
1406 struct net_device *netdev = adapter->netdev;
1407 u32 mask, ics_mask, i = 0, shared_int = true;
1408 u32 irq = adapter->pdev->irq;
1409
1410 *data = 0;
1411
1412 /* Hook up test interrupt handler just for this test */
1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414 if (request_irq(adapter->msix_entries[0].vector,
1415 igb_test_intr, 0, netdev->name, adapter)) {
1416 *data = 1;
1417 return -1;
1418 }
1419 wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1420 wr32(E1000_EIMS, BIT(0));
1421 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1422 shared_int = false;
1423 if (request_irq(irq,
1424 igb_test_intr, 0, netdev->name, adapter)) {
1425 *data = 1;
1426 return -1;
1427 }
1428 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1429 netdev->name, adapter)) {
1430 shared_int = false;
1431 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1432 netdev->name, adapter)) {
1433 *data = 1;
1434 return -1;
1435 }
1436 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1437 (shared_int ? "shared" : "unshared"));
1438
1439 /* Disable all the interrupts */
1440 wr32(E1000_IMC, ~0);
1441 wrfl();
1442 usleep_range(10000, 11000);
1443
1444 /* Define all writable bits for ICS */
1445 switch (hw->mac.type) {
1446 case e1000_82575:
1447 ics_mask = 0x37F47EDD;
1448 break;
1449 case e1000_82576:
1450 ics_mask = 0x77D4FBFD;
1451 break;
1452 case e1000_82580:
1453 ics_mask = 0x77DCFED5;
1454 break;
1455 case e1000_i350:
1456 case e1000_i354:
1457 case e1000_i210:
1458 case e1000_i211:
1459 ics_mask = 0x77DCFED5;
1460 break;
1461 default:
1462 ics_mask = 0x7FFFFFFF;
1463 break;
1464 }
1465
1466 /* Test each interrupt */
1467 for (; i < 31; i++) {
1468 /* Interrupt to test */
1469 mask = BIT(i);
1470
1471 if (!(mask & ics_mask))
1472 continue;
1473
1474 if (!shared_int) {
1475 /* Disable the interrupt to be reported in
1476 * the cause register and then force the same
1477 * interrupt and see if one gets posted. If
1478 * an interrupt was posted to the bus, the
1479 * test failed.
1480 */
1481 adapter->test_icr = 0;
1482
1483 /* Flush any pending interrupts */
1484 wr32(E1000_ICR, ~0);
1485
1486 wr32(E1000_IMC, mask);
1487 wr32(E1000_ICS, mask);
1488 wrfl();
1489 usleep_range(10000, 11000);
1490
1491 if (adapter->test_icr & mask) {
1492 *data = 3;
1493 break;
1494 }
1495 }
1496
1497 /* Enable the interrupt to be reported in
1498 * the cause register and then force the same
1499 * interrupt and see if one gets posted. If
1500 * an interrupt was not posted to the bus, the
1501 * test failed.
1502 */
1503 adapter->test_icr = 0;
1504
1505 /* Flush any pending interrupts */
1506 wr32(E1000_ICR, ~0);
1507
1508 wr32(E1000_IMS, mask);
1509 wr32(E1000_ICS, mask);
1510 wrfl();
1511 usleep_range(10000, 11000);
1512
1513 if (!(adapter->test_icr & mask)) {
1514 *data = 4;
1515 break;
1516 }
1517
1518 if (!shared_int) {
1519 /* Disable the other interrupts to be reported in
1520 * the cause register and then force the other
1521 * interrupts and see if any get posted. If
1522 * an interrupt was posted to the bus, the
1523 * test failed.
1524 */
1525 adapter->test_icr = 0;
1526
1527 /* Flush any pending interrupts */
1528 wr32(E1000_ICR, ~0);
1529
1530 wr32(E1000_IMC, ~mask);
1531 wr32(E1000_ICS, ~mask);
1532 wrfl();
1533 usleep_range(10000, 11000);
1534
1535 if (adapter->test_icr & mask) {
1536 *data = 5;
1537 break;
1538 }
1539 }
1540 }
1541
1542 /* Disable all the interrupts */
1543 wr32(E1000_IMC, ~0);
1544 wrfl();
1545 usleep_range(10000, 11000);
1546
1547 /* Unhook test interrupt handler */
1548 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1549 free_irq(adapter->msix_entries[0].vector, adapter);
1550 else
1551 free_irq(irq, adapter);
1552
1553 return *data;
1554}
1555
1556static void igb_free_desc_rings(struct igb_adapter *adapter)
1557{
1558 igb_free_tx_resources(&adapter->test_tx_ring);
1559 igb_free_rx_resources(&adapter->test_rx_ring);
1560}
1561
1562static int igb_setup_desc_rings(struct igb_adapter *adapter)
1563{
1564 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566 struct e1000_hw *hw = &adapter->hw;
1567 int ret_val;
1568
1569 /* Setup Tx descriptor ring and Tx buffers */
1570 tx_ring->count = IGB_DEFAULT_TXD;
1571 tx_ring->dev = &adapter->pdev->dev;
1572 tx_ring->netdev = adapter->netdev;
1573 tx_ring->reg_idx = adapter->vfs_allocated_count;
1574
1575 if (igb_setup_tx_resources(tx_ring)) {
1576 ret_val = 1;
1577 goto err_nomem;
1578 }
1579
1580 igb_setup_tctl(adapter);
1581 igb_configure_tx_ring(adapter, tx_ring);
1582
1583 /* Setup Rx descriptor ring and Rx buffers */
1584 rx_ring->count = IGB_DEFAULT_RXD;
1585 rx_ring->dev = &adapter->pdev->dev;
1586 rx_ring->netdev = adapter->netdev;
1587 rx_ring->reg_idx = adapter->vfs_allocated_count;
1588
1589 if (igb_setup_rx_resources(rx_ring)) {
1590 ret_val = 3;
1591 goto err_nomem;
1592 }
1593
1594 /* set the default queue to queue 0 of PF */
1595 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1596
1597 /* enable receive ring */
1598 igb_setup_rctl(adapter);
1599 igb_configure_rx_ring(adapter, rx_ring);
1600
1601 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1602
1603 return 0;
1604
1605err_nomem:
1606 igb_free_desc_rings(adapter);
1607 return ret_val;
1608}
1609
1610static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613
1614 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1615 igb_write_phy_reg(hw, 29, 0x001F);
1616 igb_write_phy_reg(hw, 30, 0x8FFC);
1617 igb_write_phy_reg(hw, 29, 0x001A);
1618 igb_write_phy_reg(hw, 30, 0x8FF0);
1619}
1620
1621static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1622{
1623 struct e1000_hw *hw = &adapter->hw;
1624 u32 ctrl_reg = 0;
1625
1626 hw->mac.autoneg = false;
1627
1628 if (hw->phy.type == e1000_phy_m88) {
1629 if (hw->phy.id != I210_I_PHY_ID) {
1630 /* Auto-MDI/MDIX Off */
1631 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1632 /* reset to update Auto-MDI/MDIX */
1633 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1634 /* autoneg off */
1635 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1636 } else {
1637 /* force 1000, set loopback */
1638 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1639 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1640 }
1641 } else if (hw->phy.type == e1000_phy_82580) {
1642 /* enable MII loopback */
1643 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1644 }
1645
1646 /* add small delay to avoid loopback test failure */
1647 msleep(50);
1648
1649 /* force 1000, set loopback */
1650 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1651
1652 /* Now set up the MAC to the same speed/duplex as the PHY. */
1653 ctrl_reg = rd32(E1000_CTRL);
1654 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1655 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1656 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1657 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1658 E1000_CTRL_FD | /* Force Duplex to FULL */
1659 E1000_CTRL_SLU); /* Set link up enable bit */
1660
1661 if (hw->phy.type == e1000_phy_m88)
1662 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1663
1664 wr32(E1000_CTRL, ctrl_reg);
1665
1666 /* Disable the receiver on the PHY so when a cable is plugged in, the
1667 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1668 */
1669 if (hw->phy.type == e1000_phy_m88)
1670 igb_phy_disable_receiver(adapter);
1671
1672 msleep(500);
1673 return 0;
1674}
1675
1676static int igb_set_phy_loopback(struct igb_adapter *adapter)
1677{
1678 return igb_integrated_phy_loopback(adapter);
1679}
1680
1681static int igb_setup_loopback_test(struct igb_adapter *adapter)
1682{
1683 struct e1000_hw *hw = &adapter->hw;
1684 u32 reg;
1685
1686 reg = rd32(E1000_CTRL_EXT);
1687
1688 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1689 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1690 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1694 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1695 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1696 /* Enable DH89xxCC MPHY for near end loopback */
1697 reg = rd32(E1000_MPHY_ADDR_CTL);
1698 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699 E1000_MPHY_PCS_CLK_REG_OFFSET;
1700 wr32(E1000_MPHY_ADDR_CTL, reg);
1701
1702 reg = rd32(E1000_MPHY_DATA);
1703 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704 wr32(E1000_MPHY_DATA, reg);
1705 }
1706
1707 reg = rd32(E1000_RCTL);
1708 reg |= E1000_RCTL_LBM_TCVR;
1709 wr32(E1000_RCTL, reg);
1710
1711 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1712
1713 reg = rd32(E1000_CTRL);
1714 reg &= ~(E1000_CTRL_RFCE |
1715 E1000_CTRL_TFCE |
1716 E1000_CTRL_LRST);
1717 reg |= E1000_CTRL_SLU |
1718 E1000_CTRL_FD;
1719 wr32(E1000_CTRL, reg);
1720
1721 /* Unset switch control to serdes energy detect */
1722 reg = rd32(E1000_CONNSW);
1723 reg &= ~E1000_CONNSW_ENRGSRC;
1724 wr32(E1000_CONNSW, reg);
1725
1726 /* Unset sigdetect for SERDES loopback on
1727 * 82580 and newer devices.
1728 */
1729 if (hw->mac.type >= e1000_82580) {
1730 reg = rd32(E1000_PCS_CFG0);
1731 reg |= E1000_PCS_CFG_IGN_SD;
1732 wr32(E1000_PCS_CFG0, reg);
1733 }
1734
1735 /* Set PCS register for forced speed */
1736 reg = rd32(E1000_PCS_LCTL);
1737 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1738 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1739 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1740 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1741 E1000_PCS_LCTL_FSD | /* Force Speed */
1742 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1743 wr32(E1000_PCS_LCTL, reg);
1744
1745 return 0;
1746 }
1747
1748 return igb_set_phy_loopback(adapter);
1749}
1750
1751static void igb_loopback_cleanup(struct igb_adapter *adapter)
1752{
1753 struct e1000_hw *hw = &adapter->hw;
1754 u32 rctl;
1755 u16 phy_reg;
1756
1757 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1758 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1759 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1760 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1761 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1762 u32 reg;
1763
1764 /* Disable near end loopback on DH89xxCC */
1765 reg = rd32(E1000_MPHY_ADDR_CTL);
1766 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1767 E1000_MPHY_PCS_CLK_REG_OFFSET;
1768 wr32(E1000_MPHY_ADDR_CTL, reg);
1769
1770 reg = rd32(E1000_MPHY_DATA);
1771 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1772 wr32(E1000_MPHY_DATA, reg);
1773 }
1774
1775 rctl = rd32(E1000_RCTL);
1776 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1777 wr32(E1000_RCTL, rctl);
1778
1779 hw->mac.autoneg = true;
1780 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1781 if (phy_reg & MII_CR_LOOPBACK) {
1782 phy_reg &= ~MII_CR_LOOPBACK;
1783 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1784 igb_phy_sw_reset(hw);
1785 }
1786}
1787
1788static void igb_create_lbtest_frame(struct sk_buff *skb,
1789 unsigned int frame_size)
1790{
1791 memset(skb->data, 0xFF, frame_size);
1792 frame_size /= 2;
1793 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1794 skb->data[frame_size + 10] = 0xBE;
1795 skb->data[frame_size + 12] = 0xAF;
1796}
1797
1798static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1799 unsigned int frame_size)
1800{
1801 unsigned char *data;
1802 bool match = true;
1803
1804 frame_size >>= 1;
1805
1806 data = kmap_local_page(rx_buffer->page);
1807
1808 if (data[3] != 0xFF ||
1809 data[frame_size + 10] != 0xBE ||
1810 data[frame_size + 12] != 0xAF)
1811 match = false;
1812
1813 kunmap_local(data);
1814
1815 return match;
1816}
1817
1818static int igb_clean_test_rings(struct igb_ring *rx_ring,
1819 struct igb_ring *tx_ring,
1820 unsigned int size)
1821{
1822 union e1000_adv_rx_desc *rx_desc;
1823 struct igb_rx_buffer *rx_buffer_info;
1824 struct igb_tx_buffer *tx_buffer_info;
1825 u16 rx_ntc, tx_ntc, count = 0;
1826
1827 /* initialize next to clean and descriptor values */
1828 rx_ntc = rx_ring->next_to_clean;
1829 tx_ntc = tx_ring->next_to_clean;
1830 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1831
1832 while (rx_desc->wb.upper.length) {
1833 /* check Rx buffer */
1834 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1835
1836 /* sync Rx buffer for CPU read */
1837 dma_sync_single_for_cpu(rx_ring->dev,
1838 rx_buffer_info->dma,
1839 size,
1840 DMA_FROM_DEVICE);
1841
1842 /* verify contents of skb */
1843 if (igb_check_lbtest_frame(rx_buffer_info, size))
1844 count++;
1845
1846 /* sync Rx buffer for device write */
1847 dma_sync_single_for_device(rx_ring->dev,
1848 rx_buffer_info->dma,
1849 size,
1850 DMA_FROM_DEVICE);
1851
1852 /* unmap buffer on Tx side */
1853 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1854
1855 /* Free all the Tx ring sk_buffs */
1856 dev_kfree_skb_any(tx_buffer_info->skb);
1857
1858 /* unmap skb header data */
1859 dma_unmap_single(tx_ring->dev,
1860 dma_unmap_addr(tx_buffer_info, dma),
1861 dma_unmap_len(tx_buffer_info, len),
1862 DMA_TO_DEVICE);
1863 dma_unmap_len_set(tx_buffer_info, len, 0);
1864
1865 /* increment Rx/Tx next to clean counters */
1866 rx_ntc++;
1867 if (rx_ntc == rx_ring->count)
1868 rx_ntc = 0;
1869 tx_ntc++;
1870 if (tx_ntc == tx_ring->count)
1871 tx_ntc = 0;
1872
1873 /* fetch next descriptor */
1874 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1875 }
1876
1877 netdev_tx_reset_queue(txring_txq(tx_ring));
1878
1879 /* re-map buffers to ring, store next to clean values */
1880 igb_alloc_rx_buffers(rx_ring, count);
1881 rx_ring->next_to_clean = rx_ntc;
1882 tx_ring->next_to_clean = tx_ntc;
1883
1884 return count;
1885}
1886
1887static int igb_run_loopback_test(struct igb_adapter *adapter)
1888{
1889 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1890 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1891 u16 i, j, lc, good_cnt;
1892 int ret_val = 0;
1893 unsigned int size = IGB_RX_HDR_LEN;
1894 netdev_tx_t tx_ret_val;
1895 struct sk_buff *skb;
1896
1897 /* allocate test skb */
1898 skb = alloc_skb(size, GFP_KERNEL);
1899 if (!skb)
1900 return 11;
1901
1902 /* place data into test skb */
1903 igb_create_lbtest_frame(skb, size);
1904 skb_put(skb, size);
1905
1906 /* Calculate the loop count based on the largest descriptor ring
1907 * The idea is to wrap the largest ring a number of times using 64
1908 * send/receive pairs during each loop
1909 */
1910
1911 if (rx_ring->count <= tx_ring->count)
1912 lc = ((tx_ring->count / 64) * 2) + 1;
1913 else
1914 lc = ((rx_ring->count / 64) * 2) + 1;
1915
1916 for (j = 0; j <= lc; j++) { /* loop count loop */
1917 /* reset count of good packets */
1918 good_cnt = 0;
1919
1920 /* place 64 packets on the transmit queue*/
1921 for (i = 0; i < 64; i++) {
1922 skb_get(skb);
1923 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1924 if (tx_ret_val == NETDEV_TX_OK)
1925 good_cnt++;
1926 }
1927
1928 if (good_cnt != 64) {
1929 ret_val = 12;
1930 break;
1931 }
1932
1933 /* allow 200 milliseconds for packets to go from Tx to Rx */
1934 msleep(200);
1935
1936 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1937 if (good_cnt != 64) {
1938 ret_val = 13;
1939 break;
1940 }
1941 } /* end loop count loop */
1942
1943 /* free the original skb */
1944 kfree_skb(skb);
1945
1946 return ret_val;
1947}
1948
1949static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1950{
1951 /* PHY loopback cannot be performed if SoL/IDER
1952 * sessions are active
1953 */
1954 if (igb_check_reset_block(&adapter->hw)) {
1955 dev_err(&adapter->pdev->dev,
1956 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1957 *data = 0;
1958 goto out;
1959 }
1960
1961 if (adapter->hw.mac.type == e1000_i354) {
1962 dev_info(&adapter->pdev->dev,
1963 "Loopback test not supported on i354.\n");
1964 *data = 0;
1965 goto out;
1966 }
1967 *data = igb_setup_desc_rings(adapter);
1968 if (*data)
1969 goto out;
1970 *data = igb_setup_loopback_test(adapter);
1971 if (*data)
1972 goto err_loopback;
1973 *data = igb_run_loopback_test(adapter);
1974 igb_loopback_cleanup(adapter);
1975
1976err_loopback:
1977 igb_free_desc_rings(adapter);
1978out:
1979 return *data;
1980}
1981
1982static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1983{
1984 struct e1000_hw *hw = &adapter->hw;
1985 *data = 0;
1986 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1987 int i = 0;
1988
1989 hw->mac.serdes_has_link = false;
1990
1991 /* On some blade server designs, link establishment
1992 * could take as long as 2-3 minutes
1993 */
1994 do {
1995 hw->mac.ops.check_for_link(&adapter->hw);
1996 if (hw->mac.serdes_has_link)
1997 return *data;
1998 msleep(20);
1999 } while (i++ < 3750);
2000
2001 *data = 1;
2002 } else {
2003 hw->mac.ops.check_for_link(&adapter->hw);
2004 if (hw->mac.autoneg)
2005 msleep(5000);
2006
2007 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2008 *data = 1;
2009 }
2010 return *data;
2011}
2012
2013static void igb_diag_test(struct net_device *netdev,
2014 struct ethtool_test *eth_test, u64 *data)
2015{
2016 struct igb_adapter *adapter = netdev_priv(netdev);
2017 u16 autoneg_advertised;
2018 u8 forced_speed_duplex, autoneg;
2019 bool if_running = netif_running(netdev);
2020
2021 set_bit(__IGB_TESTING, &adapter->state);
2022
2023 /* can't do offline tests on media switching devices */
2024 if (adapter->hw.dev_spec._82575.mas_capable)
2025 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2026 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2027 /* Offline tests */
2028
2029 /* save speed, duplex, autoneg settings */
2030 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2031 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2032 autoneg = adapter->hw.mac.autoneg;
2033
2034 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2035
2036 /* power up link for link test */
2037 igb_power_up_link(adapter);
2038
2039 /* Link test performed before hardware reset so autoneg doesn't
2040 * interfere with test result
2041 */
2042 if (igb_link_test(adapter, &data[TEST_LINK]))
2043 eth_test->flags |= ETH_TEST_FL_FAILED;
2044
2045 if (if_running)
2046 /* indicate we're in test mode */
2047 igb_close(netdev);
2048 else
2049 igb_reset(adapter);
2050
2051 if (igb_reg_test(adapter, &data[TEST_REG]))
2052 eth_test->flags |= ETH_TEST_FL_FAILED;
2053
2054 igb_reset(adapter);
2055 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2056 eth_test->flags |= ETH_TEST_FL_FAILED;
2057
2058 igb_reset(adapter);
2059 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2060 eth_test->flags |= ETH_TEST_FL_FAILED;
2061
2062 igb_reset(adapter);
2063 /* power up link for loopback test */
2064 igb_power_up_link(adapter);
2065 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2066 eth_test->flags |= ETH_TEST_FL_FAILED;
2067
2068 /* restore speed, duplex, autoneg settings */
2069 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2070 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2071 adapter->hw.mac.autoneg = autoneg;
2072
2073 /* force this routine to wait until autoneg complete/timeout */
2074 adapter->hw.phy.autoneg_wait_to_complete = true;
2075 igb_reset(adapter);
2076 adapter->hw.phy.autoneg_wait_to_complete = false;
2077
2078 clear_bit(__IGB_TESTING, &adapter->state);
2079 if (if_running)
2080 igb_open(netdev);
2081 } else {
2082 dev_info(&adapter->pdev->dev, "online testing starting\n");
2083
2084 /* PHY is powered down when interface is down */
2085 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2086 eth_test->flags |= ETH_TEST_FL_FAILED;
2087 else
2088 data[TEST_LINK] = 0;
2089
2090 /* Online tests aren't run; pass by default */
2091 data[TEST_REG] = 0;
2092 data[TEST_EEP] = 0;
2093 data[TEST_IRQ] = 0;
2094 data[TEST_LOOP] = 0;
2095
2096 clear_bit(__IGB_TESTING, &adapter->state);
2097 }
2098 msleep_interruptible(4 * 1000);
2099}
2100
2101static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2102{
2103 struct igb_adapter *adapter = netdev_priv(netdev);
2104
2105 wol->wolopts = 0;
2106
2107 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2108 return;
2109
2110 wol->supported = WAKE_UCAST | WAKE_MCAST |
2111 WAKE_BCAST | WAKE_MAGIC |
2112 WAKE_PHY;
2113
2114 /* apply any specific unsupported masks here */
2115 switch (adapter->hw.device_id) {
2116 default:
2117 break;
2118 }
2119
2120 if (adapter->wol & E1000_WUFC_EX)
2121 wol->wolopts |= WAKE_UCAST;
2122 if (adapter->wol & E1000_WUFC_MC)
2123 wol->wolopts |= WAKE_MCAST;
2124 if (adapter->wol & E1000_WUFC_BC)
2125 wol->wolopts |= WAKE_BCAST;
2126 if (adapter->wol & E1000_WUFC_MAG)
2127 wol->wolopts |= WAKE_MAGIC;
2128 if (adapter->wol & E1000_WUFC_LNKC)
2129 wol->wolopts |= WAKE_PHY;
2130}
2131
2132static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2133{
2134 struct igb_adapter *adapter = netdev_priv(netdev);
2135
2136 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2137 return -EOPNOTSUPP;
2138
2139 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2140 return wol->wolopts ? -EOPNOTSUPP : 0;
2141
2142 /* these settings will always override what we currently have */
2143 adapter->wol = 0;
2144
2145 if (wol->wolopts & WAKE_UCAST)
2146 adapter->wol |= E1000_WUFC_EX;
2147 if (wol->wolopts & WAKE_MCAST)
2148 adapter->wol |= E1000_WUFC_MC;
2149 if (wol->wolopts & WAKE_BCAST)
2150 adapter->wol |= E1000_WUFC_BC;
2151 if (wol->wolopts & WAKE_MAGIC)
2152 adapter->wol |= E1000_WUFC_MAG;
2153 if (wol->wolopts & WAKE_PHY)
2154 adapter->wol |= E1000_WUFC_LNKC;
2155 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2156
2157 return 0;
2158}
2159
2160/* bit defines for adapter->led_status */
2161#define IGB_LED_ON 0
2162
2163static int igb_set_phys_id(struct net_device *netdev,
2164 enum ethtool_phys_id_state state)
2165{
2166 struct igb_adapter *adapter = netdev_priv(netdev);
2167 struct e1000_hw *hw = &adapter->hw;
2168
2169 switch (state) {
2170 case ETHTOOL_ID_ACTIVE:
2171 igb_blink_led(hw);
2172 return 2;
2173 case ETHTOOL_ID_ON:
2174 igb_blink_led(hw);
2175 break;
2176 case ETHTOOL_ID_OFF:
2177 igb_led_off(hw);
2178 break;
2179 case ETHTOOL_ID_INACTIVE:
2180 igb_led_off(hw);
2181 clear_bit(IGB_LED_ON, &adapter->led_status);
2182 igb_cleanup_led(hw);
2183 break;
2184 }
2185
2186 return 0;
2187}
2188
2189static int igb_set_coalesce(struct net_device *netdev,
2190 struct ethtool_coalesce *ec,
2191 struct kernel_ethtool_coalesce *kernel_coal,
2192 struct netlink_ext_ack *extack)
2193{
2194 struct igb_adapter *adapter = netdev_priv(netdev);
2195 int i;
2196
2197 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198 ((ec->rx_coalesce_usecs > 3) &&
2199 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200 (ec->rx_coalesce_usecs == 2))
2201 return -EINVAL;
2202
2203 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204 ((ec->tx_coalesce_usecs > 3) &&
2205 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206 (ec->tx_coalesce_usecs == 2))
2207 return -EINVAL;
2208
2209 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210 return -EINVAL;
2211
2212 /* If ITR is disabled, disable DMAC */
2213 if (ec->rx_coalesce_usecs == 0) {
2214 if (adapter->flags & IGB_FLAG_DMAC)
2215 adapter->flags &= ~IGB_FLAG_DMAC;
2216 }
2217
2218 /* convert to rate of irq's per second */
2219 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221 else
2222 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223
2224 /* convert to rate of irq's per second */
2225 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226 adapter->tx_itr_setting = adapter->rx_itr_setting;
2227 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229 else
2230 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231
2232 for (i = 0; i < adapter->num_q_vectors; i++) {
2233 struct igb_q_vector *q_vector = adapter->q_vector[i];
2234 q_vector->tx.work_limit = adapter->tx_work_limit;
2235 if (q_vector->rx.ring)
2236 q_vector->itr_val = adapter->rx_itr_setting;
2237 else
2238 q_vector->itr_val = adapter->tx_itr_setting;
2239 if (q_vector->itr_val && q_vector->itr_val <= 3)
2240 q_vector->itr_val = IGB_START_ITR;
2241 q_vector->set_itr = 1;
2242 }
2243
2244 return 0;
2245}
2246
2247static int igb_get_coalesce(struct net_device *netdev,
2248 struct ethtool_coalesce *ec,
2249 struct kernel_ethtool_coalesce *kernel_coal,
2250 struct netlink_ext_ack *extack)
2251{
2252 struct igb_adapter *adapter = netdev_priv(netdev);
2253
2254 if (adapter->rx_itr_setting <= 3)
2255 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256 else
2257 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258
2259 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260 if (adapter->tx_itr_setting <= 3)
2261 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262 else
2263 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264 }
2265
2266 return 0;
2267}
2268
2269static int igb_nway_reset(struct net_device *netdev)
2270{
2271 struct igb_adapter *adapter = netdev_priv(netdev);
2272 if (netif_running(netdev))
2273 igb_reinit_locked(adapter);
2274 return 0;
2275}
2276
2277static int igb_get_sset_count(struct net_device *netdev, int sset)
2278{
2279 switch (sset) {
2280 case ETH_SS_STATS:
2281 return IGB_STATS_LEN;
2282 case ETH_SS_TEST:
2283 return IGB_TEST_LEN;
2284 case ETH_SS_PRIV_FLAGS:
2285 return IGB_PRIV_FLAGS_STR_LEN;
2286 default:
2287 return -ENOTSUPP;
2288 }
2289}
2290
2291static void igb_get_ethtool_stats(struct net_device *netdev,
2292 struct ethtool_stats *stats, u64 *data)
2293{
2294 struct igb_adapter *adapter = netdev_priv(netdev);
2295 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296 unsigned int start;
2297 struct igb_ring *ring;
2298 int i, j;
2299 char *p;
2300
2301 spin_lock(&adapter->stats64_lock);
2302 igb_update_stats(adapter);
2303
2304 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308 }
2309 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313 }
2314 for (j = 0; j < adapter->num_tx_queues; j++) {
2315 u64 restart2;
2316
2317 ring = adapter->tx_ring[j];
2318 do {
2319 start = u64_stats_fetch_begin(&ring->tx_syncp);
2320 data[i] = ring->tx_stats.packets;
2321 data[i+1] = ring->tx_stats.bytes;
2322 data[i+2] = ring->tx_stats.restart_queue;
2323 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
2324 do {
2325 start = u64_stats_fetch_begin(&ring->tx_syncp2);
2326 restart2 = ring->tx_stats.restart_queue2;
2327 } while (u64_stats_fetch_retry(&ring->tx_syncp2, start));
2328 data[i+2] += restart2;
2329
2330 i += IGB_TX_QUEUE_STATS_LEN;
2331 }
2332 for (j = 0; j < adapter->num_rx_queues; j++) {
2333 ring = adapter->rx_ring[j];
2334 do {
2335 start = u64_stats_fetch_begin(&ring->rx_syncp);
2336 data[i] = ring->rx_stats.packets;
2337 data[i+1] = ring->rx_stats.bytes;
2338 data[i+2] = ring->rx_stats.drops;
2339 data[i+3] = ring->rx_stats.csum_err;
2340 data[i+4] = ring->rx_stats.alloc_failed;
2341 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
2342 i += IGB_RX_QUEUE_STATS_LEN;
2343 }
2344 spin_unlock(&adapter->stats64_lock);
2345}
2346
2347static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348{
2349 struct igb_adapter *adapter = netdev_priv(netdev);
2350 u8 *p = data;
2351 int i;
2352
2353 switch (stringset) {
2354 case ETH_SS_TEST:
2355 memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2356 break;
2357 case ETH_SS_STATS:
2358 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2359 ethtool_puts(&p, igb_gstrings_stats[i].stat_string);
2360 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2361 ethtool_puts(&p, igb_gstrings_net_stats[i].stat_string);
2362 for (i = 0; i < adapter->num_tx_queues; i++) {
2363 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2364 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2365 ethtool_sprintf(&p, "tx_queue_%u_restart", i);
2366 }
2367 for (i = 0; i < adapter->num_rx_queues; i++) {
2368 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2369 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2370 ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2371 ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2372 ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2373 }
2374 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2375 break;
2376 case ETH_SS_PRIV_FLAGS:
2377 memcpy(data, igb_priv_flags_strings,
2378 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2379 break;
2380 }
2381}
2382
2383static int igb_get_ts_info(struct net_device *dev,
2384 struct ethtool_ts_info *info)
2385{
2386 struct igb_adapter *adapter = netdev_priv(dev);
2387
2388 if (adapter->ptp_clock)
2389 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2390 else
2391 info->phc_index = -1;
2392
2393 switch (adapter->hw.mac.type) {
2394 case e1000_82575:
2395 info->so_timestamping =
2396 SOF_TIMESTAMPING_TX_SOFTWARE |
2397 SOF_TIMESTAMPING_RX_SOFTWARE |
2398 SOF_TIMESTAMPING_SOFTWARE;
2399 return 0;
2400 case e1000_82576:
2401 case e1000_82580:
2402 case e1000_i350:
2403 case e1000_i354:
2404 case e1000_i210:
2405 case e1000_i211:
2406 info->so_timestamping =
2407 SOF_TIMESTAMPING_TX_SOFTWARE |
2408 SOF_TIMESTAMPING_RX_SOFTWARE |
2409 SOF_TIMESTAMPING_SOFTWARE |
2410 SOF_TIMESTAMPING_TX_HARDWARE |
2411 SOF_TIMESTAMPING_RX_HARDWARE |
2412 SOF_TIMESTAMPING_RAW_HARDWARE;
2413
2414 info->tx_types =
2415 BIT(HWTSTAMP_TX_OFF) |
2416 BIT(HWTSTAMP_TX_ON);
2417
2418 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2419
2420 /* 82576 does not support timestamping all packets. */
2421 if (adapter->hw.mac.type >= e1000_82580)
2422 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2423 else
2424 info->rx_filters |=
2425 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2426 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2427 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2428
2429 return 0;
2430 default:
2431 return -EOPNOTSUPP;
2432 }
2433}
2434
2435#define ETHER_TYPE_FULL_MASK cpu_to_be16(FIELD_MAX(U16_MAX))
2436static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2437 struct ethtool_rxnfc *cmd)
2438{
2439 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2440 struct igb_nfc_filter *rule = NULL;
2441
2442 /* report total rule count */
2443 cmd->data = IGB_MAX_RXNFC_FILTERS;
2444
2445 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2446 if (fsp->location <= rule->sw_idx)
2447 break;
2448 }
2449
2450 if (!rule || fsp->location != rule->sw_idx)
2451 return -EINVAL;
2452
2453 if (rule->filter.match_flags) {
2454 fsp->flow_type = ETHER_FLOW;
2455 fsp->ring_cookie = rule->action;
2456 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2457 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2458 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2459 }
2460 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2461 fsp->flow_type |= FLOW_EXT;
2462 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2463 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2464 }
2465 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2466 ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2467 rule->filter.dst_addr);
2468 /* As we only support matching by the full
2469 * mask, return the mask to userspace
2470 */
2471 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2472 }
2473 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2474 ether_addr_copy(fsp->h_u.ether_spec.h_source,
2475 rule->filter.src_addr);
2476 /* As we only support matching by the full
2477 * mask, return the mask to userspace
2478 */
2479 eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2480 }
2481
2482 return 0;
2483 }
2484 return -EINVAL;
2485}
2486
2487static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2488 struct ethtool_rxnfc *cmd,
2489 u32 *rule_locs)
2490{
2491 struct igb_nfc_filter *rule;
2492 int cnt = 0;
2493
2494 /* report total rule count */
2495 cmd->data = IGB_MAX_RXNFC_FILTERS;
2496
2497 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2498 if (cnt == cmd->rule_cnt)
2499 return -EMSGSIZE;
2500 rule_locs[cnt] = rule->sw_idx;
2501 cnt++;
2502 }
2503
2504 cmd->rule_cnt = cnt;
2505
2506 return 0;
2507}
2508
2509static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2510 struct ethtool_rxnfc *cmd)
2511{
2512 cmd->data = 0;
2513
2514 /* Report default options for RSS on igb */
2515 switch (cmd->flow_type) {
2516 case TCP_V4_FLOW:
2517 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2518 fallthrough;
2519 case UDP_V4_FLOW:
2520 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2521 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2522 fallthrough;
2523 case SCTP_V4_FLOW:
2524 case AH_ESP_V4_FLOW:
2525 case AH_V4_FLOW:
2526 case ESP_V4_FLOW:
2527 case IPV4_FLOW:
2528 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2529 break;
2530 case TCP_V6_FLOW:
2531 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2532 fallthrough;
2533 case UDP_V6_FLOW:
2534 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2535 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2536 fallthrough;
2537 case SCTP_V6_FLOW:
2538 case AH_ESP_V6_FLOW:
2539 case AH_V6_FLOW:
2540 case ESP_V6_FLOW:
2541 case IPV6_FLOW:
2542 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2543 break;
2544 default:
2545 return -EINVAL;
2546 }
2547
2548 return 0;
2549}
2550
2551static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2552 u32 *rule_locs)
2553{
2554 struct igb_adapter *adapter = netdev_priv(dev);
2555 int ret = -EOPNOTSUPP;
2556
2557 switch (cmd->cmd) {
2558 case ETHTOOL_GRXRINGS:
2559 cmd->data = adapter->num_rx_queues;
2560 ret = 0;
2561 break;
2562 case ETHTOOL_GRXCLSRLCNT:
2563 cmd->rule_cnt = adapter->nfc_filter_count;
2564 ret = 0;
2565 break;
2566 case ETHTOOL_GRXCLSRULE:
2567 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2568 break;
2569 case ETHTOOL_GRXCLSRLALL:
2570 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2571 break;
2572 case ETHTOOL_GRXFH:
2573 ret = igb_get_rss_hash_opts(adapter, cmd);
2574 break;
2575 default:
2576 break;
2577 }
2578
2579 return ret;
2580}
2581
2582#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2583 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2584static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2585 struct ethtool_rxnfc *nfc)
2586{
2587 u32 flags = adapter->flags;
2588
2589 /* RSS does not support anything other than hashing
2590 * to queues on src and dst IPs and ports
2591 */
2592 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2593 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2594 return -EINVAL;
2595
2596 switch (nfc->flow_type) {
2597 case TCP_V4_FLOW:
2598 case TCP_V6_FLOW:
2599 if (!(nfc->data & RXH_IP_SRC) ||
2600 !(nfc->data & RXH_IP_DST) ||
2601 !(nfc->data & RXH_L4_B_0_1) ||
2602 !(nfc->data & RXH_L4_B_2_3))
2603 return -EINVAL;
2604 break;
2605 case UDP_V4_FLOW:
2606 if (!(nfc->data & RXH_IP_SRC) ||
2607 !(nfc->data & RXH_IP_DST))
2608 return -EINVAL;
2609 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2610 case 0:
2611 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2612 break;
2613 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2614 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2615 break;
2616 default:
2617 return -EINVAL;
2618 }
2619 break;
2620 case UDP_V6_FLOW:
2621 if (!(nfc->data & RXH_IP_SRC) ||
2622 !(nfc->data & RXH_IP_DST))
2623 return -EINVAL;
2624 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2625 case 0:
2626 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2627 break;
2628 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2629 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2630 break;
2631 default:
2632 return -EINVAL;
2633 }
2634 break;
2635 case AH_ESP_V4_FLOW:
2636 case AH_V4_FLOW:
2637 case ESP_V4_FLOW:
2638 case SCTP_V4_FLOW:
2639 case AH_ESP_V6_FLOW:
2640 case AH_V6_FLOW:
2641 case ESP_V6_FLOW:
2642 case SCTP_V6_FLOW:
2643 if (!(nfc->data & RXH_IP_SRC) ||
2644 !(nfc->data & RXH_IP_DST) ||
2645 (nfc->data & RXH_L4_B_0_1) ||
2646 (nfc->data & RXH_L4_B_2_3))
2647 return -EINVAL;
2648 break;
2649 default:
2650 return -EINVAL;
2651 }
2652
2653 /* if we changed something we need to update flags */
2654 if (flags != adapter->flags) {
2655 struct e1000_hw *hw = &adapter->hw;
2656 u32 mrqc = rd32(E1000_MRQC);
2657
2658 if ((flags & UDP_RSS_FLAGS) &&
2659 !(adapter->flags & UDP_RSS_FLAGS))
2660 dev_err(&adapter->pdev->dev,
2661 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2662
2663 adapter->flags = flags;
2664
2665 /* Perform hash on these packet types */
2666 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2667 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2668 E1000_MRQC_RSS_FIELD_IPV6 |
2669 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2670
2671 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2672 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2673
2674 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2675 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2676
2677 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2678 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2679
2680 wr32(E1000_MRQC, mrqc);
2681 }
2682
2683 return 0;
2684}
2685
2686static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2687 struct igb_nfc_filter *input)
2688{
2689 struct e1000_hw *hw = &adapter->hw;
2690 u8 i;
2691 u32 etqf;
2692 u16 etype;
2693
2694 /* find an empty etype filter register */
2695 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2696 if (!adapter->etype_bitmap[i])
2697 break;
2698 }
2699 if (i == MAX_ETYPE_FILTER) {
2700 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2701 return -EINVAL;
2702 }
2703
2704 adapter->etype_bitmap[i] = true;
2705
2706 etqf = rd32(E1000_ETQF(i));
2707 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2708
2709 etqf |= E1000_ETQF_FILTER_ENABLE;
2710 etqf &= ~E1000_ETQF_ETYPE_MASK;
2711 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2712
2713 etqf &= ~E1000_ETQF_QUEUE_MASK;
2714 etqf |= FIELD_PREP(E1000_ETQF_QUEUE_MASK, input->action);
2715 etqf |= E1000_ETQF_QUEUE_ENABLE;
2716
2717 wr32(E1000_ETQF(i), etqf);
2718
2719 input->etype_reg_index = i;
2720
2721 return 0;
2722}
2723
2724static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2725 struct igb_nfc_filter *input)
2726{
2727 struct e1000_hw *hw = &adapter->hw;
2728 u8 vlan_priority;
2729 u16 queue_index;
2730 u32 vlapqf;
2731
2732 vlapqf = rd32(E1000_VLAPQF);
2733 vlan_priority = FIELD_GET(VLAN_PRIO_MASK,
2734 ntohs(input->filter.vlan_tci));
2735 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2736
2737 /* check whether this vlan prio is already set */
2738 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2739 (queue_index != input->action)) {
2740 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2741 return -EEXIST;
2742 }
2743
2744 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2745 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2746
2747 wr32(E1000_VLAPQF, vlapqf);
2748
2749 return 0;
2750}
2751
2752int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2753{
2754 struct e1000_hw *hw = &adapter->hw;
2755 int err = -EINVAL;
2756
2757 if (hw->mac.type == e1000_i210 &&
2758 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2759 dev_err(&adapter->pdev->dev,
2760 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2761 return -EOPNOTSUPP;
2762 }
2763
2764 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2765 err = igb_rxnfc_write_etype_filter(adapter, input);
2766 if (err)
2767 return err;
2768 }
2769
2770 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2771 err = igb_add_mac_steering_filter(adapter,
2772 input->filter.dst_addr,
2773 input->action, 0);
2774 err = min_t(int, err, 0);
2775 if (err)
2776 return err;
2777 }
2778
2779 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2780 err = igb_add_mac_steering_filter(adapter,
2781 input->filter.src_addr,
2782 input->action,
2783 IGB_MAC_STATE_SRC_ADDR);
2784 err = min_t(int, err, 0);
2785 if (err)
2786 return err;
2787 }
2788
2789 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2791
2792 return err;
2793}
2794
2795static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2796 u16 reg_index)
2797{
2798 struct e1000_hw *hw = &adapter->hw;
2799 u32 etqf = rd32(E1000_ETQF(reg_index));
2800
2801 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2802 etqf &= ~E1000_ETQF_QUEUE_MASK;
2803 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2804
2805 wr32(E1000_ETQF(reg_index), etqf);
2806
2807 adapter->etype_bitmap[reg_index] = false;
2808}
2809
2810static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2811 u16 vlan_tci)
2812{
2813 struct e1000_hw *hw = &adapter->hw;
2814 u8 vlan_priority;
2815 u32 vlapqf;
2816
2817 vlan_priority = FIELD_GET(VLAN_PRIO_MASK, vlan_tci);
2818
2819 vlapqf = rd32(E1000_VLAPQF);
2820 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2821 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2822 E1000_VLAPQF_QUEUE_MASK);
2823
2824 wr32(E1000_VLAPQF, vlapqf);
2825}
2826
2827int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2828{
2829 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2830 igb_clear_etype_filter_regs(adapter,
2831 input->etype_reg_index);
2832
2833 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2834 igb_clear_vlan_prio_filter(adapter,
2835 ntohs(input->filter.vlan_tci));
2836
2837 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2838 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2839 input->action,
2840 IGB_MAC_STATE_SRC_ADDR);
2841
2842 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2843 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2844 input->action, 0);
2845
2846 return 0;
2847}
2848
2849static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2850 struct igb_nfc_filter *input,
2851 u16 sw_idx)
2852{
2853 struct igb_nfc_filter *rule, *parent;
2854 int err = -EINVAL;
2855
2856 parent = NULL;
2857 rule = NULL;
2858
2859 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2860 /* hash found, or no matching entry */
2861 if (rule->sw_idx >= sw_idx)
2862 break;
2863 parent = rule;
2864 }
2865
2866 /* if there is an old rule occupying our place remove it */
2867 if (rule && (rule->sw_idx == sw_idx)) {
2868 if (!input)
2869 err = igb_erase_filter(adapter, rule);
2870
2871 hlist_del(&rule->nfc_node);
2872 kfree(rule);
2873 adapter->nfc_filter_count--;
2874 }
2875
2876 /* If no input this was a delete, err should be 0 if a rule was
2877 * successfully found and removed from the list else -EINVAL
2878 */
2879 if (!input)
2880 return err;
2881
2882 /* initialize node */
2883 INIT_HLIST_NODE(&input->nfc_node);
2884
2885 /* add filter to the list */
2886 if (parent)
2887 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2888 else
2889 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2890
2891 /* update counts */
2892 adapter->nfc_filter_count++;
2893
2894 return 0;
2895}
2896
2897static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2898 struct ethtool_rxnfc *cmd)
2899{
2900 struct net_device *netdev = adapter->netdev;
2901 struct ethtool_rx_flow_spec *fsp =
2902 (struct ethtool_rx_flow_spec *)&cmd->fs;
2903 struct igb_nfc_filter *input, *rule;
2904 int err = 0;
2905
2906 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2907 return -EOPNOTSUPP;
2908
2909 /* Don't allow programming if the action is a queue greater than
2910 * the number of online Rx queues.
2911 */
2912 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2913 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2914 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2915 return -EINVAL;
2916 }
2917
2918 /* Don't allow indexes to exist outside of available space */
2919 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2920 dev_err(&adapter->pdev->dev, "Location out of range\n");
2921 return -EINVAL;
2922 }
2923
2924 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2925 return -EINVAL;
2926
2927 input = kzalloc(sizeof(*input), GFP_KERNEL);
2928 if (!input)
2929 return -ENOMEM;
2930
2931 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2932 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2933 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2934 }
2935
2936 /* Only support matching addresses by the full mask */
2937 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2938 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2939 ether_addr_copy(input->filter.src_addr,
2940 fsp->h_u.ether_spec.h_source);
2941 }
2942
2943 /* Only support matching addresses by the full mask */
2944 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2945 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2946 ether_addr_copy(input->filter.dst_addr,
2947 fsp->h_u.ether_spec.h_dest);
2948 }
2949
2950 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2951 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2952 err = -EINVAL;
2953 goto err_out;
2954 }
2955 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2956 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2957 }
2958
2959 input->action = fsp->ring_cookie;
2960 input->sw_idx = fsp->location;
2961
2962 spin_lock(&adapter->nfc_lock);
2963
2964 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2965 if (!memcmp(&input->filter, &rule->filter,
2966 sizeof(input->filter))) {
2967 err = -EEXIST;
2968 dev_err(&adapter->pdev->dev,
2969 "ethtool: this filter is already set\n");
2970 goto err_out_w_lock;
2971 }
2972 }
2973
2974 err = igb_add_filter(adapter, input);
2975 if (err)
2976 goto err_out_w_lock;
2977
2978 err = igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2979 if (err)
2980 goto err_out_input_filter;
2981
2982 spin_unlock(&adapter->nfc_lock);
2983 return 0;
2984
2985err_out_input_filter:
2986 igb_erase_filter(adapter, input);
2987err_out_w_lock:
2988 spin_unlock(&adapter->nfc_lock);
2989err_out:
2990 kfree(input);
2991 return err;
2992}
2993
2994static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2995 struct ethtool_rxnfc *cmd)
2996{
2997 struct ethtool_rx_flow_spec *fsp =
2998 (struct ethtool_rx_flow_spec *)&cmd->fs;
2999 int err;
3000
3001 spin_lock(&adapter->nfc_lock);
3002 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3003 spin_unlock(&adapter->nfc_lock);
3004
3005 return err;
3006}
3007
3008static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3009{
3010 struct igb_adapter *adapter = netdev_priv(dev);
3011 int ret = -EOPNOTSUPP;
3012
3013 switch (cmd->cmd) {
3014 case ETHTOOL_SRXFH:
3015 ret = igb_set_rss_hash_opt(adapter, cmd);
3016 break;
3017 case ETHTOOL_SRXCLSRLINS:
3018 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3019 break;
3020 case ETHTOOL_SRXCLSRLDEL:
3021 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3022 break;
3023 default:
3024 break;
3025 }
3026
3027 return ret;
3028}
3029
3030static int igb_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
3031{
3032 struct igb_adapter *adapter = netdev_priv(netdev);
3033 struct e1000_hw *hw = &adapter->hw;
3034 u32 ret_val;
3035 u16 phy_data;
3036
3037 if ((hw->mac.type < e1000_i350) ||
3038 (hw->phy.media_type != e1000_media_type_copper))
3039 return -EOPNOTSUPP;
3040
3041 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3042 edata->supported);
3043 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3044 edata->supported);
3045 if (!hw->dev_spec._82575.eee_disable)
3046 mii_eee_cap1_mod_linkmode_t(edata->advertised,
3047 adapter->eee_advert);
3048
3049 /* The IPCNFG and EEER registers are not supported on I354. */
3050 if (hw->mac.type == e1000_i354) {
3051 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3052 } else {
3053 u32 eeer;
3054
3055 eeer = rd32(E1000_EEER);
3056
3057 /* EEE status on negotiated link */
3058 if (eeer & E1000_EEER_EEE_NEG)
3059 edata->eee_active = true;
3060
3061 if (eeer & E1000_EEER_TX_LPI_EN)
3062 edata->tx_lpi_enabled = true;
3063 }
3064
3065 /* EEE Link Partner Advertised */
3066 switch (hw->mac.type) {
3067 case e1000_i350:
3068 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3069 &phy_data);
3070 if (ret_val)
3071 return -ENODATA;
3072
3073 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
3074 break;
3075 case e1000_i354:
3076 case e1000_i210:
3077 case e1000_i211:
3078 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3079 E1000_EEE_LP_ADV_DEV_I210,
3080 &phy_data);
3081 if (ret_val)
3082 return -ENODATA;
3083
3084 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
3085
3086 break;
3087 default:
3088 break;
3089 }
3090
3091 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3092
3093 if ((hw->mac.type == e1000_i354) &&
3094 (edata->eee_enabled))
3095 edata->tx_lpi_enabled = true;
3096
3097 /* Report correct negotiated EEE status for devices that
3098 * wrongly report EEE at half-duplex
3099 */
3100 if (adapter->link_duplex == HALF_DUPLEX) {
3101 edata->eee_enabled = false;
3102 edata->eee_active = false;
3103 edata->tx_lpi_enabled = false;
3104 linkmode_zero(edata->advertised);
3105 }
3106
3107 return 0;
3108}
3109
3110static int igb_set_eee(struct net_device *netdev,
3111 struct ethtool_keee *edata)
3112{
3113 struct igb_adapter *adapter = netdev_priv(netdev);
3114 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
3115 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
3116 struct e1000_hw *hw = &adapter->hw;
3117 struct ethtool_keee eee_curr;
3118 bool adv1g_eee = true, adv100m_eee = true;
3119 s32 ret_val;
3120
3121 if ((hw->mac.type < e1000_i350) ||
3122 (hw->phy.media_type != e1000_media_type_copper))
3123 return -EOPNOTSUPP;
3124
3125 memset(&eee_curr, 0, sizeof(struct ethtool_keee));
3126
3127 ret_val = igb_get_eee(netdev, &eee_curr);
3128 if (ret_val)
3129 return ret_val;
3130
3131 if (eee_curr.eee_enabled) {
3132 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3133 dev_err(&adapter->pdev->dev,
3134 "Setting EEE tx-lpi is not supported\n");
3135 return -EINVAL;
3136 }
3137
3138 /* Tx LPI timer is not implemented currently */
3139 if (edata->tx_lpi_timer) {
3140 dev_err(&adapter->pdev->dev,
3141 "Setting EEE Tx LPI timer is not supported\n");
3142 return -EINVAL;
3143 }
3144
3145 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3146 supported);
3147 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3148 supported);
3149 if (linkmode_andnot(tmp, edata->advertised, supported)) {
3150 dev_err(&adapter->pdev->dev,
3151 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3152 return -EINVAL;
3153 }
3154 adv100m_eee = linkmode_test_bit(
3155 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3156 edata->advertised);
3157 adv1g_eee = linkmode_test_bit(
3158 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3159 edata->advertised);
3160
3161 } else if (!edata->eee_enabled) {
3162 dev_err(&adapter->pdev->dev,
3163 "Setting EEE options are not supported with EEE disabled\n");
3164 return -EINVAL;
3165 }
3166
3167 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
3168 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3169 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3170 adapter->flags |= IGB_FLAG_EEE;
3171
3172 /* reset link */
3173 if (netif_running(netdev))
3174 igb_reinit_locked(adapter);
3175 else
3176 igb_reset(adapter);
3177 }
3178
3179 if (hw->mac.type == e1000_i354)
3180 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3181 else
3182 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3183
3184 if (ret_val) {
3185 dev_err(&adapter->pdev->dev,
3186 "Problem setting EEE advertisement options\n");
3187 return -EINVAL;
3188 }
3189
3190 return 0;
3191}
3192
3193static int igb_get_module_info(struct net_device *netdev,
3194 struct ethtool_modinfo *modinfo)
3195{
3196 struct igb_adapter *adapter = netdev_priv(netdev);
3197 struct e1000_hw *hw = &adapter->hw;
3198 u32 status = 0;
3199 u16 sff8472_rev, addr_mode;
3200 bool page_swap = false;
3201
3202 if ((hw->phy.media_type == e1000_media_type_copper) ||
3203 (hw->phy.media_type == e1000_media_type_unknown))
3204 return -EOPNOTSUPP;
3205
3206 /* Check whether we support SFF-8472 or not */
3207 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3208 if (status)
3209 return -EIO;
3210
3211 /* addressing mode is not supported */
3212 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3213 if (status)
3214 return -EIO;
3215
3216 /* addressing mode is not supported */
3217 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3218 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3219 page_swap = true;
3220 }
3221
3222 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3223 /* We have an SFP, but it does not support SFF-8472 */
3224 modinfo->type = ETH_MODULE_SFF_8079;
3225 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3226 } else {
3227 /* We have an SFP which supports a revision of SFF-8472 */
3228 modinfo->type = ETH_MODULE_SFF_8472;
3229 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3230 }
3231
3232 return 0;
3233}
3234
3235static int igb_get_module_eeprom(struct net_device *netdev,
3236 struct ethtool_eeprom *ee, u8 *data)
3237{
3238 struct igb_adapter *adapter = netdev_priv(netdev);
3239 struct e1000_hw *hw = &adapter->hw;
3240 u32 status = 0;
3241 u16 *dataword;
3242 u16 first_word, last_word;
3243 int i = 0;
3244
3245 if (ee->len == 0)
3246 return -EINVAL;
3247
3248 first_word = ee->offset >> 1;
3249 last_word = (ee->offset + ee->len - 1) >> 1;
3250
3251 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3252 GFP_KERNEL);
3253 if (!dataword)
3254 return -ENOMEM;
3255
3256 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3257 for (i = 0; i < last_word - first_word + 1; i++) {
3258 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3259 &dataword[i]);
3260 if (status) {
3261 /* Error occurred while reading module */
3262 kfree(dataword);
3263 return -EIO;
3264 }
3265
3266 be16_to_cpus(&dataword[i]);
3267 }
3268
3269 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3270 kfree(dataword);
3271
3272 return 0;
3273}
3274
3275static int igb_ethtool_begin(struct net_device *netdev)
3276{
3277 struct igb_adapter *adapter = netdev_priv(netdev);
3278 pm_runtime_get_sync(&adapter->pdev->dev);
3279 return 0;
3280}
3281
3282static void igb_ethtool_complete(struct net_device *netdev)
3283{
3284 struct igb_adapter *adapter = netdev_priv(netdev);
3285 pm_runtime_put(&adapter->pdev->dev);
3286}
3287
3288static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3289{
3290 return IGB_RETA_SIZE;
3291}
3292
3293static int igb_get_rxfh(struct net_device *netdev,
3294 struct ethtool_rxfh_param *rxfh)
3295{
3296 struct igb_adapter *adapter = netdev_priv(netdev);
3297 int i;
3298
3299 rxfh->hfunc = ETH_RSS_HASH_TOP;
3300 if (!rxfh->indir)
3301 return 0;
3302 for (i = 0; i < IGB_RETA_SIZE; i++)
3303 rxfh->indir[i] = adapter->rss_indir_tbl[i];
3304
3305 return 0;
3306}
3307
3308void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3309{
3310 struct e1000_hw *hw = &adapter->hw;
3311 u32 reg = E1000_RETA(0);
3312 u32 shift = 0;
3313 int i = 0;
3314
3315 switch (hw->mac.type) {
3316 case e1000_82575:
3317 shift = 6;
3318 break;
3319 case e1000_82576:
3320 /* 82576 supports 2 RSS queues for SR-IOV */
3321 if (adapter->vfs_allocated_count)
3322 shift = 3;
3323 break;
3324 default:
3325 break;
3326 }
3327
3328 while (i < IGB_RETA_SIZE) {
3329 u32 val = 0;
3330 int j;
3331
3332 for (j = 3; j >= 0; j--) {
3333 val <<= 8;
3334 val |= adapter->rss_indir_tbl[i + j];
3335 }
3336
3337 wr32(reg, val << shift);
3338 reg += 4;
3339 i += 4;
3340 }
3341}
3342
3343static int igb_set_rxfh(struct net_device *netdev,
3344 struct ethtool_rxfh_param *rxfh,
3345 struct netlink_ext_ack *extack)
3346{
3347 struct igb_adapter *adapter = netdev_priv(netdev);
3348 struct e1000_hw *hw = &adapter->hw;
3349 int i;
3350 u32 num_queues;
3351
3352 /* We do not allow change in unsupported parameters */
3353 if (rxfh->key ||
3354 (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3355 rxfh->hfunc != ETH_RSS_HASH_TOP))
3356 return -EOPNOTSUPP;
3357 if (!rxfh->indir)
3358 return 0;
3359
3360 num_queues = adapter->rss_queues;
3361
3362 switch (hw->mac.type) {
3363 case e1000_82576:
3364 /* 82576 supports 2 RSS queues for SR-IOV */
3365 if (adapter->vfs_allocated_count)
3366 num_queues = 2;
3367 break;
3368 default:
3369 break;
3370 }
3371
3372 /* Verify user input. */
3373 for (i = 0; i < IGB_RETA_SIZE; i++)
3374 if (rxfh->indir[i] >= num_queues)
3375 return -EINVAL;
3376
3377
3378 for (i = 0; i < IGB_RETA_SIZE; i++)
3379 adapter->rss_indir_tbl[i] = rxfh->indir[i];
3380
3381 igb_write_rss_indir_tbl(adapter);
3382
3383 return 0;
3384}
3385
3386static unsigned int igb_max_channels(struct igb_adapter *adapter)
3387{
3388 return igb_get_max_rss_queues(adapter);
3389}
3390
3391static void igb_get_channels(struct net_device *netdev,
3392 struct ethtool_channels *ch)
3393{
3394 struct igb_adapter *adapter = netdev_priv(netdev);
3395
3396 /* Report maximum channels */
3397 ch->max_combined = igb_max_channels(adapter);
3398
3399 /* Report info for other vector */
3400 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3401 ch->max_other = NON_Q_VECTORS;
3402 ch->other_count = NON_Q_VECTORS;
3403 }
3404
3405 ch->combined_count = adapter->rss_queues;
3406}
3407
3408static int igb_set_channels(struct net_device *netdev,
3409 struct ethtool_channels *ch)
3410{
3411 struct igb_adapter *adapter = netdev_priv(netdev);
3412 unsigned int count = ch->combined_count;
3413 unsigned int max_combined = 0;
3414
3415 /* Verify they are not requesting separate vectors */
3416 if (!count || ch->rx_count || ch->tx_count)
3417 return -EINVAL;
3418
3419 /* Verify other_count is valid and has not been changed */
3420 if (ch->other_count != NON_Q_VECTORS)
3421 return -EINVAL;
3422
3423 /* Verify the number of channels doesn't exceed hw limits */
3424 max_combined = igb_max_channels(adapter);
3425 if (count > max_combined)
3426 return -EINVAL;
3427
3428 if (count != adapter->rss_queues) {
3429 adapter->rss_queues = count;
3430 igb_set_flag_queue_pairs(adapter, max_combined);
3431
3432 /* Hardware has to reinitialize queues and interrupts to
3433 * match the new configuration.
3434 */
3435 return igb_reinit_queues(adapter);
3436 }
3437
3438 return 0;
3439}
3440
3441static u32 igb_get_priv_flags(struct net_device *netdev)
3442{
3443 struct igb_adapter *adapter = netdev_priv(netdev);
3444 u32 priv_flags = 0;
3445
3446 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3447 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3448
3449 return priv_flags;
3450}
3451
3452static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3453{
3454 struct igb_adapter *adapter = netdev_priv(netdev);
3455 unsigned int flags = adapter->flags;
3456
3457 flags &= ~IGB_FLAG_RX_LEGACY;
3458 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3459 flags |= IGB_FLAG_RX_LEGACY;
3460
3461 if (flags != adapter->flags) {
3462 adapter->flags = flags;
3463
3464 /* reset interface to repopulate queues */
3465 if (netif_running(netdev))
3466 igb_reinit_locked(adapter);
3467 }
3468
3469 return 0;
3470}
3471
3472static const struct ethtool_ops igb_ethtool_ops = {
3473 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3474 .get_drvinfo = igb_get_drvinfo,
3475 .get_regs_len = igb_get_regs_len,
3476 .get_regs = igb_get_regs,
3477 .get_wol = igb_get_wol,
3478 .set_wol = igb_set_wol,
3479 .get_msglevel = igb_get_msglevel,
3480 .set_msglevel = igb_set_msglevel,
3481 .nway_reset = igb_nway_reset,
3482 .get_link = igb_get_link,
3483 .get_eeprom_len = igb_get_eeprom_len,
3484 .get_eeprom = igb_get_eeprom,
3485 .set_eeprom = igb_set_eeprom,
3486 .get_ringparam = igb_get_ringparam,
3487 .set_ringparam = igb_set_ringparam,
3488 .get_pauseparam = igb_get_pauseparam,
3489 .set_pauseparam = igb_set_pauseparam,
3490 .self_test = igb_diag_test,
3491 .get_strings = igb_get_strings,
3492 .set_phys_id = igb_set_phys_id,
3493 .get_sset_count = igb_get_sset_count,
3494 .get_ethtool_stats = igb_get_ethtool_stats,
3495 .get_coalesce = igb_get_coalesce,
3496 .set_coalesce = igb_set_coalesce,
3497 .get_ts_info = igb_get_ts_info,
3498 .get_rxnfc = igb_get_rxnfc,
3499 .set_rxnfc = igb_set_rxnfc,
3500 .get_eee = igb_get_eee,
3501 .set_eee = igb_set_eee,
3502 .get_module_info = igb_get_module_info,
3503 .get_module_eeprom = igb_get_module_eeprom,
3504 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3505 .get_rxfh = igb_get_rxfh,
3506 .set_rxfh = igb_set_rxfh,
3507 .get_channels = igb_get_channels,
3508 .set_channels = igb_set_channels,
3509 .get_priv_flags = igb_get_priv_flags,
3510 .set_priv_flags = igb_set_priv_flags,
3511 .begin = igb_ethtool_begin,
3512 .complete = igb_ethtool_complete,
3513 .get_link_ksettings = igb_get_link_ksettings,
3514 .set_link_ksettings = igb_set_link_ksettings,
3515};
3516
3517void igb_set_ethtool_ops(struct net_device *netdev)
3518{
3519 netdev->ethtool_ops = &igb_ethtool_ops;
3520}
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27/* ethtool support for igb */
28
29#include <linux/vmalloc.h>
30#include <linux/netdevice.h>
31#include <linux/pci.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
34#include <linux/if_ether.h>
35#include <linux/ethtool.h>
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/pm_runtime.h>
39#include <linux/highmem.h>
40#include <linux/mdio.h>
41
42#include "igb.h"
43
44struct igb_stats {
45 char stat_string[ETH_GSTRING_LEN];
46 int sizeof_stat;
47 int stat_offset;
48};
49
50#define IGB_STAT(_name, _stat) { \
51 .stat_string = _name, \
52 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53 .stat_offset = offsetof(struct igb_adapter, _stat) \
54}
55static const struct igb_stats igb_gstrings_stats[] = {
56 IGB_STAT("rx_packets", stats.gprc),
57 IGB_STAT("tx_packets", stats.gptc),
58 IGB_STAT("rx_bytes", stats.gorc),
59 IGB_STAT("tx_bytes", stats.gotc),
60 IGB_STAT("rx_broadcast", stats.bprc),
61 IGB_STAT("tx_broadcast", stats.bptc),
62 IGB_STAT("rx_multicast", stats.mprc),
63 IGB_STAT("tx_multicast", stats.mptc),
64 IGB_STAT("multicast", stats.mprc),
65 IGB_STAT("collisions", stats.colc),
66 IGB_STAT("rx_crc_errors", stats.crcerrs),
67 IGB_STAT("rx_no_buffer_count", stats.rnbc),
68 IGB_STAT("rx_missed_errors", stats.mpc),
69 IGB_STAT("tx_aborted_errors", stats.ecol),
70 IGB_STAT("tx_carrier_errors", stats.tncrs),
71 IGB_STAT("tx_window_errors", stats.latecol),
72 IGB_STAT("tx_abort_late_coll", stats.latecol),
73 IGB_STAT("tx_deferred_ok", stats.dc),
74 IGB_STAT("tx_single_coll_ok", stats.scc),
75 IGB_STAT("tx_multi_coll_ok", stats.mcc),
76 IGB_STAT("tx_timeout_count", tx_timeout_count),
77 IGB_STAT("rx_long_length_errors", stats.roc),
78 IGB_STAT("rx_short_length_errors", stats.ruc),
79 IGB_STAT("rx_align_errors", stats.algnerrc),
80 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84 IGB_STAT("tx_flow_control_xon", stats.xontxc),
85 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86 IGB_STAT("rx_long_byte_count", stats.gorc),
87 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88 IGB_STAT("tx_smbus", stats.mgptc),
89 IGB_STAT("rx_smbus", stats.mgprc),
90 IGB_STAT("dropped_smbus", stats.mgpdc),
91 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97};
98
99#define IGB_NETDEV_STAT(_net_stat) { \
100 .stat_string = __stringify(_net_stat), \
101 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103}
104static const struct igb_stats igb_gstrings_net_stats[] = {
105 IGB_NETDEV_STAT(rx_errors),
106 IGB_NETDEV_STAT(tx_errors),
107 IGB_NETDEV_STAT(tx_dropped),
108 IGB_NETDEV_STAT(rx_length_errors),
109 IGB_NETDEV_STAT(rx_over_errors),
110 IGB_NETDEV_STAT(rx_frame_errors),
111 IGB_NETDEV_STAT(rx_fifo_errors),
112 IGB_NETDEV_STAT(tx_fifo_errors),
113 IGB_NETDEV_STAT(tx_heartbeat_errors)
114};
115
116#define IGB_GLOBAL_STATS_LEN \
117 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118#define IGB_NETDEV_STATS_LEN \
119 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120#define IGB_RX_QUEUE_STATS_LEN \
121 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125#define IGB_QUEUE_STATS_LEN \
126 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127 IGB_RX_QUEUE_STATS_LEN) + \
128 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129 IGB_TX_QUEUE_STATS_LEN))
130#define IGB_STATS_LEN \
131 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134 "Register test (offline)", "Eeprom test (offline)",
135 "Interrupt test (offline)", "Loopback test (offline)",
136 "Link test (on/offline)"
137};
138#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141{
142 struct igb_adapter *adapter = netdev_priv(netdev);
143 struct e1000_hw *hw = &adapter->hw;
144 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
145 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
146 u32 status;
147
148 status = rd32(E1000_STATUS);
149 if (hw->phy.media_type == e1000_media_type_copper) {
150
151 ecmd->supported = (SUPPORTED_10baseT_Half |
152 SUPPORTED_10baseT_Full |
153 SUPPORTED_100baseT_Half |
154 SUPPORTED_100baseT_Full |
155 SUPPORTED_1000baseT_Full|
156 SUPPORTED_Autoneg |
157 SUPPORTED_TP |
158 SUPPORTED_Pause);
159 ecmd->advertising = ADVERTISED_TP;
160
161 if (hw->mac.autoneg == 1) {
162 ecmd->advertising |= ADVERTISED_Autoneg;
163 /* the e1000 autoneg seems to match ethtool nicely */
164 ecmd->advertising |= hw->phy.autoneg_advertised;
165 }
166
167 ecmd->port = PORT_TP;
168 ecmd->phy_address = hw->phy.addr;
169 ecmd->transceiver = XCVR_INTERNAL;
170 } else {
171 ecmd->supported = (SUPPORTED_FIBRE |
172 SUPPORTED_1000baseKX_Full |
173 SUPPORTED_Autoneg |
174 SUPPORTED_Pause);
175 ecmd->advertising = (ADVERTISED_FIBRE |
176 ADVERTISED_1000baseKX_Full);
177 if (hw->mac.type == e1000_i354) {
178 if ((hw->device_id ==
179 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
180 !(status & E1000_STATUS_2P5_SKU_OVER)) {
181 ecmd->supported |= SUPPORTED_2500baseX_Full;
182 ecmd->supported &=
183 ~SUPPORTED_1000baseKX_Full;
184 ecmd->advertising |= ADVERTISED_2500baseX_Full;
185 ecmd->advertising &=
186 ~ADVERTISED_1000baseKX_Full;
187 }
188 }
189 if (eth_flags->e100_base_fx) {
190 ecmd->supported |= SUPPORTED_100baseT_Full;
191 ecmd->advertising |= ADVERTISED_100baseT_Full;
192 }
193 if (hw->mac.autoneg == 1)
194 ecmd->advertising |= ADVERTISED_Autoneg;
195
196 ecmd->port = PORT_FIBRE;
197 ecmd->transceiver = XCVR_EXTERNAL;
198 }
199 if (hw->mac.autoneg != 1)
200 ecmd->advertising &= ~(ADVERTISED_Pause |
201 ADVERTISED_Asym_Pause);
202
203 switch (hw->fc.requested_mode) {
204 case e1000_fc_full:
205 ecmd->advertising |= ADVERTISED_Pause;
206 break;
207 case e1000_fc_rx_pause:
208 ecmd->advertising |= (ADVERTISED_Pause |
209 ADVERTISED_Asym_Pause);
210 break;
211 case e1000_fc_tx_pause:
212 ecmd->advertising |= ADVERTISED_Asym_Pause;
213 break;
214 default:
215 ecmd->advertising &= ~(ADVERTISED_Pause |
216 ADVERTISED_Asym_Pause);
217 }
218 if (status & E1000_STATUS_LU) {
219 if ((status & E1000_STATUS_2P5_SKU) &&
220 !(status & E1000_STATUS_2P5_SKU_OVER)) {
221 ecmd->speed = SPEED_2500;
222 } else if (status & E1000_STATUS_SPEED_1000) {
223 ecmd->speed = SPEED_1000;
224 } else if (status & E1000_STATUS_SPEED_100) {
225 ecmd->speed = SPEED_100;
226 } else {
227 ecmd->speed = SPEED_10;
228 }
229 if ((status & E1000_STATUS_FD) ||
230 hw->phy.media_type != e1000_media_type_copper)
231 ecmd->duplex = DUPLEX_FULL;
232 else
233 ecmd->duplex = DUPLEX_HALF;
234 } else {
235 ecmd->speed = -1;
236 ecmd->duplex = -1;
237 }
238 if ((hw->phy.media_type == e1000_media_type_fiber) ||
239 hw->mac.autoneg)
240 ecmd->autoneg = AUTONEG_ENABLE;
241 else
242 ecmd->autoneg = AUTONEG_DISABLE;
243
244 /* MDI-X => 2; MDI =>1; Invalid =>0 */
245 if (hw->phy.media_type == e1000_media_type_copper)
246 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247 ETH_TP_MDI;
248 else
249 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
250
251 if (hw->phy.mdix == AUTO_ALL_MODES)
252 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
253 else
254 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
255
256 return 0;
257}
258
259static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
260{
261 struct igb_adapter *adapter = netdev_priv(netdev);
262 struct e1000_hw *hw = &adapter->hw;
263
264 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 * cannot be changed
266 */
267 if (igb_check_reset_block(hw)) {
268 dev_err(&adapter->pdev->dev,
269 "Cannot change link characteristics when SoL/IDER is active.\n");
270 return -EINVAL;
271 }
272
273 /* MDI setting is only allowed when autoneg enabled because
274 * some hardware doesn't allow MDI setting when speed or
275 * duplex is forced.
276 */
277 if (ecmd->eth_tp_mdix_ctrl) {
278 if (hw->phy.media_type != e1000_media_type_copper)
279 return -EOPNOTSUPP;
280
281 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
282 (ecmd->autoneg != AUTONEG_ENABLE)) {
283 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
284 return -EINVAL;
285 }
286 }
287
288 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289 msleep(1);
290
291 if (ecmd->autoneg == AUTONEG_ENABLE) {
292 hw->mac.autoneg = 1;
293 if (hw->phy.media_type == e1000_media_type_fiber) {
294 hw->phy.autoneg_advertised = ecmd->advertising |
295 ADVERTISED_FIBRE |
296 ADVERTISED_Autoneg;
297 switch (adapter->link_speed) {
298 case SPEED_2500:
299 hw->phy.autoneg_advertised =
300 ADVERTISED_2500baseX_Full;
301 break;
302 case SPEED_1000:
303 hw->phy.autoneg_advertised =
304 ADVERTISED_1000baseT_Full;
305 break;
306 case SPEED_100:
307 hw->phy.autoneg_advertised =
308 ADVERTISED_100baseT_Full;
309 break;
310 default:
311 break;
312 }
313 } else {
314 hw->phy.autoneg_advertised = ecmd->advertising |
315 ADVERTISED_TP |
316 ADVERTISED_Autoneg;
317 }
318 ecmd->advertising = hw->phy.autoneg_advertised;
319 if (adapter->fc_autoneg)
320 hw->fc.requested_mode = e1000_fc_default;
321 } else {
322 u32 speed = ethtool_cmd_speed(ecmd);
323 /* calling this overrides forced MDI setting */
324 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
325 clear_bit(__IGB_RESETTING, &adapter->state);
326 return -EINVAL;
327 }
328 }
329
330 /* MDI-X => 2; MDI => 1; Auto => 3 */
331 if (ecmd->eth_tp_mdix_ctrl) {
332 /* fix up the value for auto (3 => 0) as zero is mapped
333 * internally to auto
334 */
335 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336 hw->phy.mdix = AUTO_ALL_MODES;
337 else
338 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
339 }
340
341 /* reset the link */
342 if (netif_running(adapter->netdev)) {
343 igb_down(adapter);
344 igb_up(adapter);
345 } else
346 igb_reset(adapter);
347
348 clear_bit(__IGB_RESETTING, &adapter->state);
349 return 0;
350}
351
352static u32 igb_get_link(struct net_device *netdev)
353{
354 struct igb_adapter *adapter = netdev_priv(netdev);
355 struct e1000_mac_info *mac = &adapter->hw.mac;
356
357 /* If the link is not reported up to netdev, interrupts are disabled,
358 * and so the physical link state may have changed since we last
359 * looked. Set get_link_status to make sure that the true link
360 * state is interrogated, rather than pulling a cached and possibly
361 * stale link state from the driver.
362 */
363 if (!netif_carrier_ok(netdev))
364 mac->get_link_status = 1;
365
366 return igb_has_link(adapter);
367}
368
369static void igb_get_pauseparam(struct net_device *netdev,
370 struct ethtool_pauseparam *pause)
371{
372 struct igb_adapter *adapter = netdev_priv(netdev);
373 struct e1000_hw *hw = &adapter->hw;
374
375 pause->autoneg =
376 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
377
378 if (hw->fc.current_mode == e1000_fc_rx_pause)
379 pause->rx_pause = 1;
380 else if (hw->fc.current_mode == e1000_fc_tx_pause)
381 pause->tx_pause = 1;
382 else if (hw->fc.current_mode == e1000_fc_full) {
383 pause->rx_pause = 1;
384 pause->tx_pause = 1;
385 }
386}
387
388static int igb_set_pauseparam(struct net_device *netdev,
389 struct ethtool_pauseparam *pause)
390{
391 struct igb_adapter *adapter = netdev_priv(netdev);
392 struct e1000_hw *hw = &adapter->hw;
393 int retval = 0;
394
395 /* 100basefx does not support setting link flow control */
396 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
397 return -EINVAL;
398
399 adapter->fc_autoneg = pause->autoneg;
400
401 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
402 msleep(1);
403
404 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
405 hw->fc.requested_mode = e1000_fc_default;
406 if (netif_running(adapter->netdev)) {
407 igb_down(adapter);
408 igb_up(adapter);
409 } else {
410 igb_reset(adapter);
411 }
412 } else {
413 if (pause->rx_pause && pause->tx_pause)
414 hw->fc.requested_mode = e1000_fc_full;
415 else if (pause->rx_pause && !pause->tx_pause)
416 hw->fc.requested_mode = e1000_fc_rx_pause;
417 else if (!pause->rx_pause && pause->tx_pause)
418 hw->fc.requested_mode = e1000_fc_tx_pause;
419 else if (!pause->rx_pause && !pause->tx_pause)
420 hw->fc.requested_mode = e1000_fc_none;
421
422 hw->fc.current_mode = hw->fc.requested_mode;
423
424 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
425 igb_force_mac_fc(hw) : igb_setup_link(hw));
426 }
427
428 clear_bit(__IGB_RESETTING, &adapter->state);
429 return retval;
430}
431
432static u32 igb_get_msglevel(struct net_device *netdev)
433{
434 struct igb_adapter *adapter = netdev_priv(netdev);
435 return adapter->msg_enable;
436}
437
438static void igb_set_msglevel(struct net_device *netdev, u32 data)
439{
440 struct igb_adapter *adapter = netdev_priv(netdev);
441 adapter->msg_enable = data;
442}
443
444static int igb_get_regs_len(struct net_device *netdev)
445{
446#define IGB_REGS_LEN 739
447 return IGB_REGS_LEN * sizeof(u32);
448}
449
450static void igb_get_regs(struct net_device *netdev,
451 struct ethtool_regs *regs, void *p)
452{
453 struct igb_adapter *adapter = netdev_priv(netdev);
454 struct e1000_hw *hw = &adapter->hw;
455 u32 *regs_buff = p;
456 u8 i;
457
458 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
459
460 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
461
462 /* General Registers */
463 regs_buff[0] = rd32(E1000_CTRL);
464 regs_buff[1] = rd32(E1000_STATUS);
465 regs_buff[2] = rd32(E1000_CTRL_EXT);
466 regs_buff[3] = rd32(E1000_MDIC);
467 regs_buff[4] = rd32(E1000_SCTL);
468 regs_buff[5] = rd32(E1000_CONNSW);
469 regs_buff[6] = rd32(E1000_VET);
470 regs_buff[7] = rd32(E1000_LEDCTL);
471 regs_buff[8] = rd32(E1000_PBA);
472 regs_buff[9] = rd32(E1000_PBS);
473 regs_buff[10] = rd32(E1000_FRTIMER);
474 regs_buff[11] = rd32(E1000_TCPTIMER);
475
476 /* NVM Register */
477 regs_buff[12] = rd32(E1000_EECD);
478
479 /* Interrupt */
480 /* Reading EICS for EICR because they read the
481 * same but EICS does not clear on read
482 */
483 regs_buff[13] = rd32(E1000_EICS);
484 regs_buff[14] = rd32(E1000_EICS);
485 regs_buff[15] = rd32(E1000_EIMS);
486 regs_buff[16] = rd32(E1000_EIMC);
487 regs_buff[17] = rd32(E1000_EIAC);
488 regs_buff[18] = rd32(E1000_EIAM);
489 /* Reading ICS for ICR because they read the
490 * same but ICS does not clear on read
491 */
492 regs_buff[19] = rd32(E1000_ICS);
493 regs_buff[20] = rd32(E1000_ICS);
494 regs_buff[21] = rd32(E1000_IMS);
495 regs_buff[22] = rd32(E1000_IMC);
496 regs_buff[23] = rd32(E1000_IAC);
497 regs_buff[24] = rd32(E1000_IAM);
498 regs_buff[25] = rd32(E1000_IMIRVP);
499
500 /* Flow Control */
501 regs_buff[26] = rd32(E1000_FCAL);
502 regs_buff[27] = rd32(E1000_FCAH);
503 regs_buff[28] = rd32(E1000_FCTTV);
504 regs_buff[29] = rd32(E1000_FCRTL);
505 regs_buff[30] = rd32(E1000_FCRTH);
506 regs_buff[31] = rd32(E1000_FCRTV);
507
508 /* Receive */
509 regs_buff[32] = rd32(E1000_RCTL);
510 regs_buff[33] = rd32(E1000_RXCSUM);
511 regs_buff[34] = rd32(E1000_RLPML);
512 regs_buff[35] = rd32(E1000_RFCTL);
513 regs_buff[36] = rd32(E1000_MRQC);
514 regs_buff[37] = rd32(E1000_VT_CTL);
515
516 /* Transmit */
517 regs_buff[38] = rd32(E1000_TCTL);
518 regs_buff[39] = rd32(E1000_TCTL_EXT);
519 regs_buff[40] = rd32(E1000_TIPG);
520 regs_buff[41] = rd32(E1000_DTXCTL);
521
522 /* Wake Up */
523 regs_buff[42] = rd32(E1000_WUC);
524 regs_buff[43] = rd32(E1000_WUFC);
525 regs_buff[44] = rd32(E1000_WUS);
526 regs_buff[45] = rd32(E1000_IPAV);
527 regs_buff[46] = rd32(E1000_WUPL);
528
529 /* MAC */
530 regs_buff[47] = rd32(E1000_PCS_CFG0);
531 regs_buff[48] = rd32(E1000_PCS_LCTL);
532 regs_buff[49] = rd32(E1000_PCS_LSTAT);
533 regs_buff[50] = rd32(E1000_PCS_ANADV);
534 regs_buff[51] = rd32(E1000_PCS_LPAB);
535 regs_buff[52] = rd32(E1000_PCS_NPTX);
536 regs_buff[53] = rd32(E1000_PCS_LPABNP);
537
538 /* Statistics */
539 regs_buff[54] = adapter->stats.crcerrs;
540 regs_buff[55] = adapter->stats.algnerrc;
541 regs_buff[56] = adapter->stats.symerrs;
542 regs_buff[57] = adapter->stats.rxerrc;
543 regs_buff[58] = adapter->stats.mpc;
544 regs_buff[59] = adapter->stats.scc;
545 regs_buff[60] = adapter->stats.ecol;
546 regs_buff[61] = adapter->stats.mcc;
547 regs_buff[62] = adapter->stats.latecol;
548 regs_buff[63] = adapter->stats.colc;
549 regs_buff[64] = adapter->stats.dc;
550 regs_buff[65] = adapter->stats.tncrs;
551 regs_buff[66] = adapter->stats.sec;
552 regs_buff[67] = adapter->stats.htdpmc;
553 regs_buff[68] = adapter->stats.rlec;
554 regs_buff[69] = adapter->stats.xonrxc;
555 regs_buff[70] = adapter->stats.xontxc;
556 regs_buff[71] = adapter->stats.xoffrxc;
557 regs_buff[72] = adapter->stats.xofftxc;
558 regs_buff[73] = adapter->stats.fcruc;
559 regs_buff[74] = adapter->stats.prc64;
560 regs_buff[75] = adapter->stats.prc127;
561 regs_buff[76] = adapter->stats.prc255;
562 regs_buff[77] = adapter->stats.prc511;
563 regs_buff[78] = adapter->stats.prc1023;
564 regs_buff[79] = adapter->stats.prc1522;
565 regs_buff[80] = adapter->stats.gprc;
566 regs_buff[81] = adapter->stats.bprc;
567 regs_buff[82] = adapter->stats.mprc;
568 regs_buff[83] = adapter->stats.gptc;
569 regs_buff[84] = adapter->stats.gorc;
570 regs_buff[86] = adapter->stats.gotc;
571 regs_buff[88] = adapter->stats.rnbc;
572 regs_buff[89] = adapter->stats.ruc;
573 regs_buff[90] = adapter->stats.rfc;
574 regs_buff[91] = adapter->stats.roc;
575 regs_buff[92] = adapter->stats.rjc;
576 regs_buff[93] = adapter->stats.mgprc;
577 regs_buff[94] = adapter->stats.mgpdc;
578 regs_buff[95] = adapter->stats.mgptc;
579 regs_buff[96] = adapter->stats.tor;
580 regs_buff[98] = adapter->stats.tot;
581 regs_buff[100] = adapter->stats.tpr;
582 regs_buff[101] = adapter->stats.tpt;
583 regs_buff[102] = adapter->stats.ptc64;
584 regs_buff[103] = adapter->stats.ptc127;
585 regs_buff[104] = adapter->stats.ptc255;
586 regs_buff[105] = adapter->stats.ptc511;
587 regs_buff[106] = adapter->stats.ptc1023;
588 regs_buff[107] = adapter->stats.ptc1522;
589 regs_buff[108] = adapter->stats.mptc;
590 regs_buff[109] = adapter->stats.bptc;
591 regs_buff[110] = adapter->stats.tsctc;
592 regs_buff[111] = adapter->stats.iac;
593 regs_buff[112] = adapter->stats.rpthc;
594 regs_buff[113] = adapter->stats.hgptc;
595 regs_buff[114] = adapter->stats.hgorc;
596 regs_buff[116] = adapter->stats.hgotc;
597 regs_buff[118] = adapter->stats.lenerrs;
598 regs_buff[119] = adapter->stats.scvpc;
599 regs_buff[120] = adapter->stats.hrmpc;
600
601 for (i = 0; i < 4; i++)
602 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
603 for (i = 0; i < 4; i++)
604 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
605 for (i = 0; i < 4; i++)
606 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
607 for (i = 0; i < 4; i++)
608 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
609 for (i = 0; i < 4; i++)
610 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
611 for (i = 0; i < 4; i++)
612 regs_buff[141 + i] = rd32(E1000_RDH(i));
613 for (i = 0; i < 4; i++)
614 regs_buff[145 + i] = rd32(E1000_RDT(i));
615 for (i = 0; i < 4; i++)
616 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
617
618 for (i = 0; i < 10; i++)
619 regs_buff[153 + i] = rd32(E1000_EITR(i));
620 for (i = 0; i < 8; i++)
621 regs_buff[163 + i] = rd32(E1000_IMIR(i));
622 for (i = 0; i < 8; i++)
623 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
624 for (i = 0; i < 16; i++)
625 regs_buff[179 + i] = rd32(E1000_RAL(i));
626 for (i = 0; i < 16; i++)
627 regs_buff[195 + i] = rd32(E1000_RAH(i));
628
629 for (i = 0; i < 4; i++)
630 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
631 for (i = 0; i < 4; i++)
632 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
633 for (i = 0; i < 4; i++)
634 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
635 for (i = 0; i < 4; i++)
636 regs_buff[223 + i] = rd32(E1000_TDH(i));
637 for (i = 0; i < 4; i++)
638 regs_buff[227 + i] = rd32(E1000_TDT(i));
639 for (i = 0; i < 4; i++)
640 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
641 for (i = 0; i < 4; i++)
642 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
643 for (i = 0; i < 4; i++)
644 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
647
648 for (i = 0; i < 4; i++)
649 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
650 for (i = 0; i < 4; i++)
651 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
652 for (i = 0; i < 32; i++)
653 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
654 for (i = 0; i < 128; i++)
655 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
656 for (i = 0; i < 128; i++)
657 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
658 for (i = 0; i < 4; i++)
659 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
660
661 regs_buff[547] = rd32(E1000_TDFH);
662 regs_buff[548] = rd32(E1000_TDFT);
663 regs_buff[549] = rd32(E1000_TDFHS);
664 regs_buff[550] = rd32(E1000_TDFPC);
665
666 if (hw->mac.type > e1000_82580) {
667 regs_buff[551] = adapter->stats.o2bgptc;
668 regs_buff[552] = adapter->stats.b2ospc;
669 regs_buff[553] = adapter->stats.o2bspc;
670 regs_buff[554] = adapter->stats.b2ogprc;
671 }
672
673 if (hw->mac.type != e1000_82576)
674 return;
675 for (i = 0; i < 12; i++)
676 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
677 for (i = 0; i < 4; i++)
678 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
679 for (i = 0; i < 12; i++)
680 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
681 for (i = 0; i < 12; i++)
682 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
683 for (i = 0; i < 12; i++)
684 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
685 for (i = 0; i < 12; i++)
686 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
687 for (i = 0; i < 12; i++)
688 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
689 for (i = 0; i < 12; i++)
690 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
691
692 for (i = 0; i < 12; i++)
693 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
704 for (i = 0; i < 12; i++)
705 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
706 for (i = 0; i < 12; i++)
707 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
708}
709
710static int igb_get_eeprom_len(struct net_device *netdev)
711{
712 struct igb_adapter *adapter = netdev_priv(netdev);
713 return adapter->hw.nvm.word_size * 2;
714}
715
716static int igb_get_eeprom(struct net_device *netdev,
717 struct ethtool_eeprom *eeprom, u8 *bytes)
718{
719 struct igb_adapter *adapter = netdev_priv(netdev);
720 struct e1000_hw *hw = &adapter->hw;
721 u16 *eeprom_buff;
722 int first_word, last_word;
723 int ret_val = 0;
724 u16 i;
725
726 if (eeprom->len == 0)
727 return -EINVAL;
728
729 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
730
731 first_word = eeprom->offset >> 1;
732 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
733
734 eeprom_buff = kmalloc(sizeof(u16) *
735 (last_word - first_word + 1), GFP_KERNEL);
736 if (!eeprom_buff)
737 return -ENOMEM;
738
739 if (hw->nvm.type == e1000_nvm_eeprom_spi)
740 ret_val = hw->nvm.ops.read(hw, first_word,
741 last_word - first_word + 1,
742 eeprom_buff);
743 else {
744 for (i = 0; i < last_word - first_word + 1; i++) {
745 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
746 &eeprom_buff[i]);
747 if (ret_val)
748 break;
749 }
750 }
751
752 /* Device's eeprom is always little-endian, word addressable */
753 for (i = 0; i < last_word - first_word + 1; i++)
754 le16_to_cpus(&eeprom_buff[i]);
755
756 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
757 eeprom->len);
758 kfree(eeprom_buff);
759
760 return ret_val;
761}
762
763static int igb_set_eeprom(struct net_device *netdev,
764 struct ethtool_eeprom *eeprom, u8 *bytes)
765{
766 struct igb_adapter *adapter = netdev_priv(netdev);
767 struct e1000_hw *hw = &adapter->hw;
768 u16 *eeprom_buff;
769 void *ptr;
770 int max_len, first_word, last_word, ret_val = 0;
771 u16 i;
772
773 if (eeprom->len == 0)
774 return -EOPNOTSUPP;
775
776 if ((hw->mac.type >= e1000_i210) &&
777 !igb_get_flash_presence_i210(hw)) {
778 return -EOPNOTSUPP;
779 }
780
781 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
782 return -EFAULT;
783
784 max_len = hw->nvm.word_size * 2;
785
786 first_word = eeprom->offset >> 1;
787 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
788 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
789 if (!eeprom_buff)
790 return -ENOMEM;
791
792 ptr = (void *)eeprom_buff;
793
794 if (eeprom->offset & 1) {
795 /* need read/modify/write of first changed EEPROM word
796 * only the second byte of the word is being modified
797 */
798 ret_val = hw->nvm.ops.read(hw, first_word, 1,
799 &eeprom_buff[0]);
800 ptr++;
801 }
802 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
803 /* need read/modify/write of last changed EEPROM word
804 * only the first byte of the word is being modified
805 */
806 ret_val = hw->nvm.ops.read(hw, last_word, 1,
807 &eeprom_buff[last_word - first_word]);
808 }
809
810 /* Device's eeprom is always little-endian, word addressable */
811 for (i = 0; i < last_word - first_word + 1; i++)
812 le16_to_cpus(&eeprom_buff[i]);
813
814 memcpy(ptr, bytes, eeprom->len);
815
816 for (i = 0; i < last_word - first_word + 1; i++)
817 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
818
819 ret_val = hw->nvm.ops.write(hw, first_word,
820 last_word - first_word + 1, eeprom_buff);
821
822 /* Update the checksum if nvm write succeeded */
823 if (ret_val == 0)
824 hw->nvm.ops.update(hw);
825
826 igb_set_fw_version(adapter);
827 kfree(eeprom_buff);
828 return ret_val;
829}
830
831static void igb_get_drvinfo(struct net_device *netdev,
832 struct ethtool_drvinfo *drvinfo)
833{
834 struct igb_adapter *adapter = netdev_priv(netdev);
835
836 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
837 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
838
839 /* EEPROM image version # is reported as firmware version # for
840 * 82575 controllers
841 */
842 strlcpy(drvinfo->fw_version, adapter->fw_version,
843 sizeof(drvinfo->fw_version));
844 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
845 sizeof(drvinfo->bus_info));
846 drvinfo->n_stats = IGB_STATS_LEN;
847 drvinfo->testinfo_len = IGB_TEST_LEN;
848 drvinfo->regdump_len = igb_get_regs_len(netdev);
849 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
850}
851
852static void igb_get_ringparam(struct net_device *netdev,
853 struct ethtool_ringparam *ring)
854{
855 struct igb_adapter *adapter = netdev_priv(netdev);
856
857 ring->rx_max_pending = IGB_MAX_RXD;
858 ring->tx_max_pending = IGB_MAX_TXD;
859 ring->rx_pending = adapter->rx_ring_count;
860 ring->tx_pending = adapter->tx_ring_count;
861}
862
863static int igb_set_ringparam(struct net_device *netdev,
864 struct ethtool_ringparam *ring)
865{
866 struct igb_adapter *adapter = netdev_priv(netdev);
867 struct igb_ring *temp_ring;
868 int i, err = 0;
869 u16 new_rx_count, new_tx_count;
870
871 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
872 return -EINVAL;
873
874 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
875 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
876 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
877
878 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
879 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
880 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
881
882 if ((new_tx_count == adapter->tx_ring_count) &&
883 (new_rx_count == adapter->rx_ring_count)) {
884 /* nothing to do */
885 return 0;
886 }
887
888 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
889 msleep(1);
890
891 if (!netif_running(adapter->netdev)) {
892 for (i = 0; i < adapter->num_tx_queues; i++)
893 adapter->tx_ring[i]->count = new_tx_count;
894 for (i = 0; i < adapter->num_rx_queues; i++)
895 adapter->rx_ring[i]->count = new_rx_count;
896 adapter->tx_ring_count = new_tx_count;
897 adapter->rx_ring_count = new_rx_count;
898 goto clear_reset;
899 }
900
901 if (adapter->num_tx_queues > adapter->num_rx_queues)
902 temp_ring = vmalloc(adapter->num_tx_queues *
903 sizeof(struct igb_ring));
904 else
905 temp_ring = vmalloc(adapter->num_rx_queues *
906 sizeof(struct igb_ring));
907
908 if (!temp_ring) {
909 err = -ENOMEM;
910 goto clear_reset;
911 }
912
913 igb_down(adapter);
914
915 /* We can't just free everything and then setup again,
916 * because the ISRs in MSI-X mode get passed pointers
917 * to the Tx and Rx ring structs.
918 */
919 if (new_tx_count != adapter->tx_ring_count) {
920 for (i = 0; i < adapter->num_tx_queues; i++) {
921 memcpy(&temp_ring[i], adapter->tx_ring[i],
922 sizeof(struct igb_ring));
923
924 temp_ring[i].count = new_tx_count;
925 err = igb_setup_tx_resources(&temp_ring[i]);
926 if (err) {
927 while (i) {
928 i--;
929 igb_free_tx_resources(&temp_ring[i]);
930 }
931 goto err_setup;
932 }
933 }
934
935 for (i = 0; i < adapter->num_tx_queues; i++) {
936 igb_free_tx_resources(adapter->tx_ring[i]);
937
938 memcpy(adapter->tx_ring[i], &temp_ring[i],
939 sizeof(struct igb_ring));
940 }
941
942 adapter->tx_ring_count = new_tx_count;
943 }
944
945 if (new_rx_count != adapter->rx_ring_count) {
946 for (i = 0; i < adapter->num_rx_queues; i++) {
947 memcpy(&temp_ring[i], adapter->rx_ring[i],
948 sizeof(struct igb_ring));
949
950 temp_ring[i].count = new_rx_count;
951 err = igb_setup_rx_resources(&temp_ring[i]);
952 if (err) {
953 while (i) {
954 i--;
955 igb_free_rx_resources(&temp_ring[i]);
956 }
957 goto err_setup;
958 }
959
960 }
961
962 for (i = 0; i < adapter->num_rx_queues; i++) {
963 igb_free_rx_resources(adapter->rx_ring[i]);
964
965 memcpy(adapter->rx_ring[i], &temp_ring[i],
966 sizeof(struct igb_ring));
967 }
968
969 adapter->rx_ring_count = new_rx_count;
970 }
971err_setup:
972 igb_up(adapter);
973 vfree(temp_ring);
974clear_reset:
975 clear_bit(__IGB_RESETTING, &adapter->state);
976 return err;
977}
978
979/* ethtool register test data */
980struct igb_reg_test {
981 u16 reg;
982 u16 reg_offset;
983 u16 array_len;
984 u16 test_type;
985 u32 mask;
986 u32 write;
987};
988
989/* In the hardware, registers are laid out either singly, in arrays
990 * spaced 0x100 bytes apart, or in contiguous tables. We assume
991 * most tests take place on arrays or single registers (handled
992 * as a single-element array) and special-case the tables.
993 * Table tests are always pattern tests.
994 *
995 * We also make provision for some required setup steps by specifying
996 * registers to be written without any read-back testing.
997 */
998
999#define PATTERN_TEST 1
1000#define SET_READ_TEST 2
1001#define WRITE_NO_TEST 3
1002#define TABLE32_TEST 4
1003#define TABLE64_TEST_LO 5
1004#define TABLE64_TEST_HI 6
1005
1006/* i210 reg test */
1007static struct igb_reg_test reg_test_i210[] = {
1008 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014 /* RDH is read-only for i210, only test RDT. */
1015 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1016 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1017 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1019 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1020 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1021 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1022 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1025 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1026 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1028 0xFFFFFFFF, 0xFFFFFFFF },
1029 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1030 0x900FFFFF, 0xFFFFFFFF },
1031 { E1000_MTA, 0, 128, TABLE32_TEST,
1032 0xFFFFFFFF, 0xFFFFFFFF },
1033 { 0, 0, 0, 0, 0 }
1034};
1035
1036/* i350 reg test */
1037static struct igb_reg_test reg_test_i350[] = {
1038 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1042 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048 /* RDH is read-only for i350, only test RDT. */
1049 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1052 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1054 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1064 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1065 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1067 0xFFFFFFFF, 0xFFFFFFFF },
1068 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1069 0xC3FFFFFF, 0xFFFFFFFF },
1070 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1071 0xFFFFFFFF, 0xFFFFFFFF },
1072 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1073 0xC3FFFFFF, 0xFFFFFFFF },
1074 { E1000_MTA, 0, 128, TABLE32_TEST,
1075 0xFFFFFFFF, 0xFFFFFFFF },
1076 { 0, 0, 0, 0 }
1077};
1078
1079/* 82580 reg test */
1080static struct igb_reg_test reg_test_82580[] = {
1081 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091 /* RDH is read-only for 82580, only test RDT. */
1092 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1095 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1097 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1107 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1108 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1110 0xFFFFFFFF, 0xFFFFFFFF },
1111 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1112 0x83FFFFFF, 0xFFFFFFFF },
1113 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1114 0xFFFFFFFF, 0xFFFFFFFF },
1115 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1116 0x83FFFFFF, 0xFFFFFFFF },
1117 { E1000_MTA, 0, 128, TABLE32_TEST,
1118 0xFFFFFFFF, 0xFFFFFFFF },
1119 { 0, 0, 0, 0 }
1120};
1121
1122/* 82576 reg test */
1123static struct igb_reg_test reg_test_82576[] = {
1124 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134 /* Enable all RX queues before testing. */
1135 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1136 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137 /* RDH is read-only for 82576, only test RDT. */
1138 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1141 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1142 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1143 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1145 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1149 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1150 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1151 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1153 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1154 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1155 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1156 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1157 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1158 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1159 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160 { 0, 0, 0, 0 }
1161};
1162
1163/* 82575 register test */
1164static struct igb_reg_test reg_test_82575[] = {
1165 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1169 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1170 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1172 /* Enable all four RX queues before testing. */
1173 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1174 /* RDH is read-only for 82575, only test RDT. */
1175 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 { 0, 0, 0, 0 }
1192};
1193
1194static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195 int reg, u32 mask, u32 write)
1196{
1197 struct e1000_hw *hw = &adapter->hw;
1198 u32 pat, val;
1199 static const u32 _test[] =
1200 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202 wr32(reg, (_test[pat] & write));
1203 val = rd32(reg) & mask;
1204 if (val != (_test[pat] & write & mask)) {
1205 dev_err(&adapter->pdev->dev,
1206 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207 reg, val, (_test[pat] & write & mask));
1208 *data = reg;
1209 return 1;
1210 }
1211 }
1212
1213 return 0;
1214}
1215
1216static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217 int reg, u32 mask, u32 write)
1218{
1219 struct e1000_hw *hw = &adapter->hw;
1220 u32 val;
1221 wr32(reg, write & mask);
1222 val = rd32(reg);
1223 if ((write & mask) != (val & mask)) {
1224 dev_err(&adapter->pdev->dev,
1225 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1226 (val & mask), (write & mask));
1227 *data = reg;
1228 return 1;
1229 }
1230
1231 return 0;
1232}
1233
1234#define REG_PATTERN_TEST(reg, mask, write) \
1235 do { \
1236 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1237 return 1; \
1238 } while (0)
1239
1240#define REG_SET_AND_CHECK(reg, mask, write) \
1241 do { \
1242 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1243 return 1; \
1244 } while (0)
1245
1246static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1247{
1248 struct e1000_hw *hw = &adapter->hw;
1249 struct igb_reg_test *test;
1250 u32 value, before, after;
1251 u32 i, toggle;
1252
1253 switch (adapter->hw.mac.type) {
1254 case e1000_i350:
1255 case e1000_i354:
1256 test = reg_test_i350;
1257 toggle = 0x7FEFF3FF;
1258 break;
1259 case e1000_i210:
1260 case e1000_i211:
1261 test = reg_test_i210;
1262 toggle = 0x7FEFF3FF;
1263 break;
1264 case e1000_82580:
1265 test = reg_test_82580;
1266 toggle = 0x7FEFF3FF;
1267 break;
1268 case e1000_82576:
1269 test = reg_test_82576;
1270 toggle = 0x7FFFF3FF;
1271 break;
1272 default:
1273 test = reg_test_82575;
1274 toggle = 0x7FFFF3FF;
1275 break;
1276 }
1277
1278 /* Because the status register is such a special case,
1279 * we handle it separately from the rest of the register
1280 * tests. Some bits are read-only, some toggle, and some
1281 * are writable on newer MACs.
1282 */
1283 before = rd32(E1000_STATUS);
1284 value = (rd32(E1000_STATUS) & toggle);
1285 wr32(E1000_STATUS, toggle);
1286 after = rd32(E1000_STATUS) & toggle;
1287 if (value != after) {
1288 dev_err(&adapter->pdev->dev,
1289 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290 after, value);
1291 *data = 1;
1292 return 1;
1293 }
1294 /* restore previous status */
1295 wr32(E1000_STATUS, before);
1296
1297 /* Perform the remainder of the register test, looping through
1298 * the test table until we either fail or reach the null entry.
1299 */
1300 while (test->reg) {
1301 for (i = 0; i < test->array_len; i++) {
1302 switch (test->test_type) {
1303 case PATTERN_TEST:
1304 REG_PATTERN_TEST(test->reg +
1305 (i * test->reg_offset),
1306 test->mask,
1307 test->write);
1308 break;
1309 case SET_READ_TEST:
1310 REG_SET_AND_CHECK(test->reg +
1311 (i * test->reg_offset),
1312 test->mask,
1313 test->write);
1314 break;
1315 case WRITE_NO_TEST:
1316 writel(test->write,
1317 (adapter->hw.hw_addr + test->reg)
1318 + (i * test->reg_offset));
1319 break;
1320 case TABLE32_TEST:
1321 REG_PATTERN_TEST(test->reg + (i * 4),
1322 test->mask,
1323 test->write);
1324 break;
1325 case TABLE64_TEST_LO:
1326 REG_PATTERN_TEST(test->reg + (i * 8),
1327 test->mask,
1328 test->write);
1329 break;
1330 case TABLE64_TEST_HI:
1331 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1332 test->mask,
1333 test->write);
1334 break;
1335 }
1336 }
1337 test++;
1338 }
1339
1340 *data = 0;
1341 return 0;
1342}
1343
1344static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1345{
1346 struct e1000_hw *hw = &adapter->hw;
1347
1348 *data = 0;
1349
1350 /* Validate eeprom on all parts but flashless */
1351 switch (hw->mac.type) {
1352 case e1000_i210:
1353 case e1000_i211:
1354 if (igb_get_flash_presence_i210(hw)) {
1355 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356 *data = 2;
1357 }
1358 break;
1359 default:
1360 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1361 *data = 2;
1362 break;
1363 }
1364
1365 return *data;
1366}
1367
1368static irqreturn_t igb_test_intr(int irq, void *data)
1369{
1370 struct igb_adapter *adapter = (struct igb_adapter *) data;
1371 struct e1000_hw *hw = &adapter->hw;
1372
1373 adapter->test_icr |= rd32(E1000_ICR);
1374
1375 return IRQ_HANDLED;
1376}
1377
1378static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1379{
1380 struct e1000_hw *hw = &adapter->hw;
1381 struct net_device *netdev = adapter->netdev;
1382 u32 mask, ics_mask, i = 0, shared_int = true;
1383 u32 irq = adapter->pdev->irq;
1384
1385 *data = 0;
1386
1387 /* Hook up test interrupt handler just for this test */
1388 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389 if (request_irq(adapter->msix_entries[0].vector,
1390 igb_test_intr, 0, netdev->name, adapter)) {
1391 *data = 1;
1392 return -1;
1393 }
1394 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1395 shared_int = false;
1396 if (request_irq(irq,
1397 igb_test_intr, 0, netdev->name, adapter)) {
1398 *data = 1;
1399 return -1;
1400 }
1401 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1402 netdev->name, adapter)) {
1403 shared_int = false;
1404 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1405 netdev->name, adapter)) {
1406 *data = 1;
1407 return -1;
1408 }
1409 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1410 (shared_int ? "shared" : "unshared"));
1411
1412 /* Disable all the interrupts */
1413 wr32(E1000_IMC, ~0);
1414 wrfl();
1415 msleep(10);
1416
1417 /* Define all writable bits for ICS */
1418 switch (hw->mac.type) {
1419 case e1000_82575:
1420 ics_mask = 0x37F47EDD;
1421 break;
1422 case e1000_82576:
1423 ics_mask = 0x77D4FBFD;
1424 break;
1425 case e1000_82580:
1426 ics_mask = 0x77DCFED5;
1427 break;
1428 case e1000_i350:
1429 case e1000_i354:
1430 case e1000_i210:
1431 case e1000_i211:
1432 ics_mask = 0x77DCFED5;
1433 break;
1434 default:
1435 ics_mask = 0x7FFFFFFF;
1436 break;
1437 }
1438
1439 /* Test each interrupt */
1440 for (; i < 31; i++) {
1441 /* Interrupt to test */
1442 mask = 1 << i;
1443
1444 if (!(mask & ics_mask))
1445 continue;
1446
1447 if (!shared_int) {
1448 /* Disable the interrupt to be reported in
1449 * the cause register and then force the same
1450 * interrupt and see if one gets posted. If
1451 * an interrupt was posted to the bus, the
1452 * test failed.
1453 */
1454 adapter->test_icr = 0;
1455
1456 /* Flush any pending interrupts */
1457 wr32(E1000_ICR, ~0);
1458
1459 wr32(E1000_IMC, mask);
1460 wr32(E1000_ICS, mask);
1461 wrfl();
1462 msleep(10);
1463
1464 if (adapter->test_icr & mask) {
1465 *data = 3;
1466 break;
1467 }
1468 }
1469
1470 /* Enable the interrupt to be reported in
1471 * the cause register and then force the same
1472 * interrupt and see if one gets posted. If
1473 * an interrupt was not posted to the bus, the
1474 * test failed.
1475 */
1476 adapter->test_icr = 0;
1477
1478 /* Flush any pending interrupts */
1479 wr32(E1000_ICR, ~0);
1480
1481 wr32(E1000_IMS, mask);
1482 wr32(E1000_ICS, mask);
1483 wrfl();
1484 msleep(10);
1485
1486 if (!(adapter->test_icr & mask)) {
1487 *data = 4;
1488 break;
1489 }
1490
1491 if (!shared_int) {
1492 /* Disable the other interrupts to be reported in
1493 * the cause register and then force the other
1494 * interrupts and see if any get posted. If
1495 * an interrupt was posted to the bus, the
1496 * test failed.
1497 */
1498 adapter->test_icr = 0;
1499
1500 /* Flush any pending interrupts */
1501 wr32(E1000_ICR, ~0);
1502
1503 wr32(E1000_IMC, ~mask);
1504 wr32(E1000_ICS, ~mask);
1505 wrfl();
1506 msleep(10);
1507
1508 if (adapter->test_icr & mask) {
1509 *data = 5;
1510 break;
1511 }
1512 }
1513 }
1514
1515 /* Disable all the interrupts */
1516 wr32(E1000_IMC, ~0);
1517 wrfl();
1518 msleep(10);
1519
1520 /* Unhook test interrupt handler */
1521 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1522 free_irq(adapter->msix_entries[0].vector, adapter);
1523 else
1524 free_irq(irq, adapter);
1525
1526 return *data;
1527}
1528
1529static void igb_free_desc_rings(struct igb_adapter *adapter)
1530{
1531 igb_free_tx_resources(&adapter->test_tx_ring);
1532 igb_free_rx_resources(&adapter->test_rx_ring);
1533}
1534
1535static int igb_setup_desc_rings(struct igb_adapter *adapter)
1536{
1537 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1538 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1539 struct e1000_hw *hw = &adapter->hw;
1540 int ret_val;
1541
1542 /* Setup Tx descriptor ring and Tx buffers */
1543 tx_ring->count = IGB_DEFAULT_TXD;
1544 tx_ring->dev = &adapter->pdev->dev;
1545 tx_ring->netdev = adapter->netdev;
1546 tx_ring->reg_idx = adapter->vfs_allocated_count;
1547
1548 if (igb_setup_tx_resources(tx_ring)) {
1549 ret_val = 1;
1550 goto err_nomem;
1551 }
1552
1553 igb_setup_tctl(adapter);
1554 igb_configure_tx_ring(adapter, tx_ring);
1555
1556 /* Setup Rx descriptor ring and Rx buffers */
1557 rx_ring->count = IGB_DEFAULT_RXD;
1558 rx_ring->dev = &adapter->pdev->dev;
1559 rx_ring->netdev = adapter->netdev;
1560 rx_ring->reg_idx = adapter->vfs_allocated_count;
1561
1562 if (igb_setup_rx_resources(rx_ring)) {
1563 ret_val = 3;
1564 goto err_nomem;
1565 }
1566
1567 /* set the default queue to queue 0 of PF */
1568 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1569
1570 /* enable receive ring */
1571 igb_setup_rctl(adapter);
1572 igb_configure_rx_ring(adapter, rx_ring);
1573
1574 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575
1576 return 0;
1577
1578err_nomem:
1579 igb_free_desc_rings(adapter);
1580 return ret_val;
1581}
1582
1583static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1584{
1585 struct e1000_hw *hw = &adapter->hw;
1586
1587 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1588 igb_write_phy_reg(hw, 29, 0x001F);
1589 igb_write_phy_reg(hw, 30, 0x8FFC);
1590 igb_write_phy_reg(hw, 29, 0x001A);
1591 igb_write_phy_reg(hw, 30, 0x8FF0);
1592}
1593
1594static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1595{
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 ctrl_reg = 0;
1598
1599 hw->mac.autoneg = false;
1600
1601 if (hw->phy.type == e1000_phy_m88) {
1602 if (hw->phy.id != I210_I_PHY_ID) {
1603 /* Auto-MDI/MDIX Off */
1604 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1605 /* reset to update Auto-MDI/MDIX */
1606 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1607 /* autoneg off */
1608 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1609 } else {
1610 /* force 1000, set loopback */
1611 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1612 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613 }
1614 } else if (hw->phy.type == e1000_phy_82580) {
1615 /* enable MII loopback */
1616 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1617 }
1618
1619 /* add small delay to avoid loopback test failure */
1620 msleep(50);
1621
1622 /* force 1000, set loopback */
1623 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624
1625 /* Now set up the MAC to the same speed/duplex as the PHY. */
1626 ctrl_reg = rd32(E1000_CTRL);
1627 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1628 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1629 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1630 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1631 E1000_CTRL_FD | /* Force Duplex to FULL */
1632 E1000_CTRL_SLU); /* Set link up enable bit */
1633
1634 if (hw->phy.type == e1000_phy_m88)
1635 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1636
1637 wr32(E1000_CTRL, ctrl_reg);
1638
1639 /* Disable the receiver on the PHY so when a cable is plugged in, the
1640 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1641 */
1642 if (hw->phy.type == e1000_phy_m88)
1643 igb_phy_disable_receiver(adapter);
1644
1645 mdelay(500);
1646 return 0;
1647}
1648
1649static int igb_set_phy_loopback(struct igb_adapter *adapter)
1650{
1651 return igb_integrated_phy_loopback(adapter);
1652}
1653
1654static int igb_setup_loopback_test(struct igb_adapter *adapter)
1655{
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 reg;
1658
1659 reg = rd32(E1000_CTRL_EXT);
1660
1661 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1662 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1664 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1665 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1666 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1667 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1668
1669 /* Enable DH89xxCC MPHY for near end loopback */
1670 reg = rd32(E1000_MPHY_ADDR_CTL);
1671 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1672 E1000_MPHY_PCS_CLK_REG_OFFSET;
1673 wr32(E1000_MPHY_ADDR_CTL, reg);
1674
1675 reg = rd32(E1000_MPHY_DATA);
1676 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1677 wr32(E1000_MPHY_DATA, reg);
1678 }
1679
1680 reg = rd32(E1000_RCTL);
1681 reg |= E1000_RCTL_LBM_TCVR;
1682 wr32(E1000_RCTL, reg);
1683
1684 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1685
1686 reg = rd32(E1000_CTRL);
1687 reg &= ~(E1000_CTRL_RFCE |
1688 E1000_CTRL_TFCE |
1689 E1000_CTRL_LRST);
1690 reg |= E1000_CTRL_SLU |
1691 E1000_CTRL_FD;
1692 wr32(E1000_CTRL, reg);
1693
1694 /* Unset switch control to serdes energy detect */
1695 reg = rd32(E1000_CONNSW);
1696 reg &= ~E1000_CONNSW_ENRGSRC;
1697 wr32(E1000_CONNSW, reg);
1698
1699 /* Unset sigdetect for SERDES loopback on
1700 * 82580 and newer devices.
1701 */
1702 if (hw->mac.type >= e1000_82580) {
1703 reg = rd32(E1000_PCS_CFG0);
1704 reg |= E1000_PCS_CFG_IGN_SD;
1705 wr32(E1000_PCS_CFG0, reg);
1706 }
1707
1708 /* Set PCS register for forced speed */
1709 reg = rd32(E1000_PCS_LCTL);
1710 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1711 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1712 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1713 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1714 E1000_PCS_LCTL_FSD | /* Force Speed */
1715 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1716 wr32(E1000_PCS_LCTL, reg);
1717
1718 return 0;
1719 }
1720
1721 return igb_set_phy_loopback(adapter);
1722}
1723
1724static void igb_loopback_cleanup(struct igb_adapter *adapter)
1725{
1726 struct e1000_hw *hw = &adapter->hw;
1727 u32 rctl;
1728 u16 phy_reg;
1729
1730 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1731 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1732 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1733 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1734 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1735 u32 reg;
1736
1737 /* Disable near end loopback on DH89xxCC */
1738 reg = rd32(E1000_MPHY_ADDR_CTL);
1739 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1740 E1000_MPHY_PCS_CLK_REG_OFFSET;
1741 wr32(E1000_MPHY_ADDR_CTL, reg);
1742
1743 reg = rd32(E1000_MPHY_DATA);
1744 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1745 wr32(E1000_MPHY_DATA, reg);
1746 }
1747
1748 rctl = rd32(E1000_RCTL);
1749 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1750 wr32(E1000_RCTL, rctl);
1751
1752 hw->mac.autoneg = true;
1753 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1754 if (phy_reg & MII_CR_LOOPBACK) {
1755 phy_reg &= ~MII_CR_LOOPBACK;
1756 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1757 igb_phy_sw_reset(hw);
1758 }
1759}
1760
1761static void igb_create_lbtest_frame(struct sk_buff *skb,
1762 unsigned int frame_size)
1763{
1764 memset(skb->data, 0xFF, frame_size);
1765 frame_size /= 2;
1766 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1767 memset(&skb->data[frame_size + 10], 0xBE, 1);
1768 memset(&skb->data[frame_size + 12], 0xAF, 1);
1769}
1770
1771static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1772 unsigned int frame_size)
1773{
1774 unsigned char *data;
1775 bool match = true;
1776
1777 frame_size >>= 1;
1778
1779 data = kmap(rx_buffer->page);
1780
1781 if (data[3] != 0xFF ||
1782 data[frame_size + 10] != 0xBE ||
1783 data[frame_size + 12] != 0xAF)
1784 match = false;
1785
1786 kunmap(rx_buffer->page);
1787
1788 return match;
1789}
1790
1791static int igb_clean_test_rings(struct igb_ring *rx_ring,
1792 struct igb_ring *tx_ring,
1793 unsigned int size)
1794{
1795 union e1000_adv_rx_desc *rx_desc;
1796 struct igb_rx_buffer *rx_buffer_info;
1797 struct igb_tx_buffer *tx_buffer_info;
1798 u16 rx_ntc, tx_ntc, count = 0;
1799
1800 /* initialize next to clean and descriptor values */
1801 rx_ntc = rx_ring->next_to_clean;
1802 tx_ntc = tx_ring->next_to_clean;
1803 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1804
1805 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1806 /* check Rx buffer */
1807 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1808
1809 /* sync Rx buffer for CPU read */
1810 dma_sync_single_for_cpu(rx_ring->dev,
1811 rx_buffer_info->dma,
1812 IGB_RX_BUFSZ,
1813 DMA_FROM_DEVICE);
1814
1815 /* verify contents of skb */
1816 if (igb_check_lbtest_frame(rx_buffer_info, size))
1817 count++;
1818
1819 /* sync Rx buffer for device write */
1820 dma_sync_single_for_device(rx_ring->dev,
1821 rx_buffer_info->dma,
1822 IGB_RX_BUFSZ,
1823 DMA_FROM_DEVICE);
1824
1825 /* unmap buffer on Tx side */
1826 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1827 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1828
1829 /* increment Rx/Tx next to clean counters */
1830 rx_ntc++;
1831 if (rx_ntc == rx_ring->count)
1832 rx_ntc = 0;
1833 tx_ntc++;
1834 if (tx_ntc == tx_ring->count)
1835 tx_ntc = 0;
1836
1837 /* fetch next descriptor */
1838 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1839 }
1840
1841 netdev_tx_reset_queue(txring_txq(tx_ring));
1842
1843 /* re-map buffers to ring, store next to clean values */
1844 igb_alloc_rx_buffers(rx_ring, count);
1845 rx_ring->next_to_clean = rx_ntc;
1846 tx_ring->next_to_clean = tx_ntc;
1847
1848 return count;
1849}
1850
1851static int igb_run_loopback_test(struct igb_adapter *adapter)
1852{
1853 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1854 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1855 u16 i, j, lc, good_cnt;
1856 int ret_val = 0;
1857 unsigned int size = IGB_RX_HDR_LEN;
1858 netdev_tx_t tx_ret_val;
1859 struct sk_buff *skb;
1860
1861 /* allocate test skb */
1862 skb = alloc_skb(size, GFP_KERNEL);
1863 if (!skb)
1864 return 11;
1865
1866 /* place data into test skb */
1867 igb_create_lbtest_frame(skb, size);
1868 skb_put(skb, size);
1869
1870 /* Calculate the loop count based on the largest descriptor ring
1871 * The idea is to wrap the largest ring a number of times using 64
1872 * send/receive pairs during each loop
1873 */
1874
1875 if (rx_ring->count <= tx_ring->count)
1876 lc = ((tx_ring->count / 64) * 2) + 1;
1877 else
1878 lc = ((rx_ring->count / 64) * 2) + 1;
1879
1880 for (j = 0; j <= lc; j++) { /* loop count loop */
1881 /* reset count of good packets */
1882 good_cnt = 0;
1883
1884 /* place 64 packets on the transmit queue*/
1885 for (i = 0; i < 64; i++) {
1886 skb_get(skb);
1887 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1888 if (tx_ret_val == NETDEV_TX_OK)
1889 good_cnt++;
1890 }
1891
1892 if (good_cnt != 64) {
1893 ret_val = 12;
1894 break;
1895 }
1896
1897 /* allow 200 milliseconds for packets to go from Tx to Rx */
1898 msleep(200);
1899
1900 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1901 if (good_cnt != 64) {
1902 ret_val = 13;
1903 break;
1904 }
1905 } /* end loop count loop */
1906
1907 /* free the original skb */
1908 kfree_skb(skb);
1909
1910 return ret_val;
1911}
1912
1913static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1914{
1915 /* PHY loopback cannot be performed if SoL/IDER
1916 * sessions are active
1917 */
1918 if (igb_check_reset_block(&adapter->hw)) {
1919 dev_err(&adapter->pdev->dev,
1920 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1921 *data = 0;
1922 goto out;
1923 }
1924
1925 if (adapter->hw.mac.type == e1000_i354) {
1926 dev_info(&adapter->pdev->dev,
1927 "Loopback test not supported on i354.\n");
1928 *data = 0;
1929 goto out;
1930 }
1931 *data = igb_setup_desc_rings(adapter);
1932 if (*data)
1933 goto out;
1934 *data = igb_setup_loopback_test(adapter);
1935 if (*data)
1936 goto err_loopback;
1937 *data = igb_run_loopback_test(adapter);
1938 igb_loopback_cleanup(adapter);
1939
1940err_loopback:
1941 igb_free_desc_rings(adapter);
1942out:
1943 return *data;
1944}
1945
1946static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1947{
1948 struct e1000_hw *hw = &adapter->hw;
1949 *data = 0;
1950 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1951 int i = 0;
1952 hw->mac.serdes_has_link = false;
1953
1954 /* On some blade server designs, link establishment
1955 * could take as long as 2-3 minutes
1956 */
1957 do {
1958 hw->mac.ops.check_for_link(&adapter->hw);
1959 if (hw->mac.serdes_has_link)
1960 return *data;
1961 msleep(20);
1962 } while (i++ < 3750);
1963
1964 *data = 1;
1965 } else {
1966 hw->mac.ops.check_for_link(&adapter->hw);
1967 if (hw->mac.autoneg)
1968 msleep(5000);
1969
1970 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971 *data = 1;
1972 }
1973 return *data;
1974}
1975
1976static void igb_diag_test(struct net_device *netdev,
1977 struct ethtool_test *eth_test, u64 *data)
1978{
1979 struct igb_adapter *adapter = netdev_priv(netdev);
1980 u16 autoneg_advertised;
1981 u8 forced_speed_duplex, autoneg;
1982 bool if_running = netif_running(netdev);
1983
1984 set_bit(__IGB_TESTING, &adapter->state);
1985
1986 /* can't do offline tests on media switching devices */
1987 if (adapter->hw.dev_spec._82575.mas_capable)
1988 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990 /* Offline tests */
1991
1992 /* save speed, duplex, autoneg settings */
1993 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995 autoneg = adapter->hw.mac.autoneg;
1996
1997 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998
1999 /* power up link for link test */
2000 igb_power_up_link(adapter);
2001
2002 /* Link test performed before hardware reset so autoneg doesn't
2003 * interfere with test result
2004 */
2005 if (igb_link_test(adapter, &data[4]))
2006 eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008 if (if_running)
2009 /* indicate we're in test mode */
2010 dev_close(netdev);
2011 else
2012 igb_reset(adapter);
2013
2014 if (igb_reg_test(adapter, &data[0]))
2015 eth_test->flags |= ETH_TEST_FL_FAILED;
2016
2017 igb_reset(adapter);
2018 if (igb_eeprom_test(adapter, &data[1]))
2019 eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021 igb_reset(adapter);
2022 if (igb_intr_test(adapter, &data[2]))
2023 eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025 igb_reset(adapter);
2026 /* power up link for loopback test */
2027 igb_power_up_link(adapter);
2028 if (igb_loopback_test(adapter, &data[3]))
2029 eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031 /* restore speed, duplex, autoneg settings */
2032 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034 adapter->hw.mac.autoneg = autoneg;
2035
2036 /* force this routine to wait until autoneg complete/timeout */
2037 adapter->hw.phy.autoneg_wait_to_complete = true;
2038 igb_reset(adapter);
2039 adapter->hw.phy.autoneg_wait_to_complete = false;
2040
2041 clear_bit(__IGB_TESTING, &adapter->state);
2042 if (if_running)
2043 dev_open(netdev);
2044 } else {
2045 dev_info(&adapter->pdev->dev, "online testing starting\n");
2046
2047 /* PHY is powered down when interface is down */
2048 if (if_running && igb_link_test(adapter, &data[4]))
2049 eth_test->flags |= ETH_TEST_FL_FAILED;
2050 else
2051 data[4] = 0;
2052
2053 /* Online tests aren't run; pass by default */
2054 data[0] = 0;
2055 data[1] = 0;
2056 data[2] = 0;
2057 data[3] = 0;
2058
2059 clear_bit(__IGB_TESTING, &adapter->state);
2060 }
2061 msleep_interruptible(4 * 1000);
2062}
2063
2064static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065{
2066 struct igb_adapter *adapter = netdev_priv(netdev);
2067
2068 wol->wolopts = 0;
2069
2070 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071 return;
2072
2073 wol->supported = WAKE_UCAST | WAKE_MCAST |
2074 WAKE_BCAST | WAKE_MAGIC |
2075 WAKE_PHY;
2076
2077 /* apply any specific unsupported masks here */
2078 switch (adapter->hw.device_id) {
2079 default:
2080 break;
2081 }
2082
2083 if (adapter->wol & E1000_WUFC_EX)
2084 wol->wolopts |= WAKE_UCAST;
2085 if (adapter->wol & E1000_WUFC_MC)
2086 wol->wolopts |= WAKE_MCAST;
2087 if (adapter->wol & E1000_WUFC_BC)
2088 wol->wolopts |= WAKE_BCAST;
2089 if (adapter->wol & E1000_WUFC_MAG)
2090 wol->wolopts |= WAKE_MAGIC;
2091 if (adapter->wol & E1000_WUFC_LNKC)
2092 wol->wolopts |= WAKE_PHY;
2093}
2094
2095static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096{
2097 struct igb_adapter *adapter = netdev_priv(netdev);
2098
2099 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100 return -EOPNOTSUPP;
2101
2102 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103 return wol->wolopts ? -EOPNOTSUPP : 0;
2104
2105 /* these settings will always override what we currently have */
2106 adapter->wol = 0;
2107
2108 if (wol->wolopts & WAKE_UCAST)
2109 adapter->wol |= E1000_WUFC_EX;
2110 if (wol->wolopts & WAKE_MCAST)
2111 adapter->wol |= E1000_WUFC_MC;
2112 if (wol->wolopts & WAKE_BCAST)
2113 adapter->wol |= E1000_WUFC_BC;
2114 if (wol->wolopts & WAKE_MAGIC)
2115 adapter->wol |= E1000_WUFC_MAG;
2116 if (wol->wolopts & WAKE_PHY)
2117 adapter->wol |= E1000_WUFC_LNKC;
2118 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119
2120 return 0;
2121}
2122
2123/* bit defines for adapter->led_status */
2124#define IGB_LED_ON 0
2125
2126static int igb_set_phys_id(struct net_device *netdev,
2127 enum ethtool_phys_id_state state)
2128{
2129 struct igb_adapter *adapter = netdev_priv(netdev);
2130 struct e1000_hw *hw = &adapter->hw;
2131
2132 switch (state) {
2133 case ETHTOOL_ID_ACTIVE:
2134 igb_blink_led(hw);
2135 return 2;
2136 case ETHTOOL_ID_ON:
2137 igb_blink_led(hw);
2138 break;
2139 case ETHTOOL_ID_OFF:
2140 igb_led_off(hw);
2141 break;
2142 case ETHTOOL_ID_INACTIVE:
2143 igb_led_off(hw);
2144 clear_bit(IGB_LED_ON, &adapter->led_status);
2145 igb_cleanup_led(hw);
2146 break;
2147 }
2148
2149 return 0;
2150}
2151
2152static int igb_set_coalesce(struct net_device *netdev,
2153 struct ethtool_coalesce *ec)
2154{
2155 struct igb_adapter *adapter = netdev_priv(netdev);
2156 int i;
2157
2158 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2159 ((ec->rx_coalesce_usecs > 3) &&
2160 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2161 (ec->rx_coalesce_usecs == 2))
2162 return -EINVAL;
2163
2164 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2165 ((ec->tx_coalesce_usecs > 3) &&
2166 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2167 (ec->tx_coalesce_usecs == 2))
2168 return -EINVAL;
2169
2170 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2171 return -EINVAL;
2172
2173 /* If ITR is disabled, disable DMAC */
2174 if (ec->rx_coalesce_usecs == 0) {
2175 if (adapter->flags & IGB_FLAG_DMAC)
2176 adapter->flags &= ~IGB_FLAG_DMAC;
2177 }
2178
2179 /* convert to rate of irq's per second */
2180 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2181 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2182 else
2183 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2184
2185 /* convert to rate of irq's per second */
2186 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2187 adapter->tx_itr_setting = adapter->rx_itr_setting;
2188 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2189 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2190 else
2191 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2192
2193 for (i = 0; i < adapter->num_q_vectors; i++) {
2194 struct igb_q_vector *q_vector = adapter->q_vector[i];
2195 q_vector->tx.work_limit = adapter->tx_work_limit;
2196 if (q_vector->rx.ring)
2197 q_vector->itr_val = adapter->rx_itr_setting;
2198 else
2199 q_vector->itr_val = adapter->tx_itr_setting;
2200 if (q_vector->itr_val && q_vector->itr_val <= 3)
2201 q_vector->itr_val = IGB_START_ITR;
2202 q_vector->set_itr = 1;
2203 }
2204
2205 return 0;
2206}
2207
2208static int igb_get_coalesce(struct net_device *netdev,
2209 struct ethtool_coalesce *ec)
2210{
2211 struct igb_adapter *adapter = netdev_priv(netdev);
2212
2213 if (adapter->rx_itr_setting <= 3)
2214 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2215 else
2216 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2217
2218 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2219 if (adapter->tx_itr_setting <= 3)
2220 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2221 else
2222 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2223 }
2224
2225 return 0;
2226}
2227
2228static int igb_nway_reset(struct net_device *netdev)
2229{
2230 struct igb_adapter *adapter = netdev_priv(netdev);
2231 if (netif_running(netdev))
2232 igb_reinit_locked(adapter);
2233 return 0;
2234}
2235
2236static int igb_get_sset_count(struct net_device *netdev, int sset)
2237{
2238 switch (sset) {
2239 case ETH_SS_STATS:
2240 return IGB_STATS_LEN;
2241 case ETH_SS_TEST:
2242 return IGB_TEST_LEN;
2243 default:
2244 return -ENOTSUPP;
2245 }
2246}
2247
2248static void igb_get_ethtool_stats(struct net_device *netdev,
2249 struct ethtool_stats *stats, u64 *data)
2250{
2251 struct igb_adapter *adapter = netdev_priv(netdev);
2252 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2253 unsigned int start;
2254 struct igb_ring *ring;
2255 int i, j;
2256 char *p;
2257
2258 spin_lock(&adapter->stats64_lock);
2259 igb_update_stats(adapter, net_stats);
2260
2261 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2262 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2263 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2264 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2265 }
2266 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2267 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2268 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2269 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2270 }
2271 for (j = 0; j < adapter->num_tx_queues; j++) {
2272 u64 restart2;
2273
2274 ring = adapter->tx_ring[j];
2275 do {
2276 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2277 data[i] = ring->tx_stats.packets;
2278 data[i+1] = ring->tx_stats.bytes;
2279 data[i+2] = ring->tx_stats.restart_queue;
2280 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2281 do {
2282 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2283 restart2 = ring->tx_stats.restart_queue2;
2284 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2285 data[i+2] += restart2;
2286
2287 i += IGB_TX_QUEUE_STATS_LEN;
2288 }
2289 for (j = 0; j < adapter->num_rx_queues; j++) {
2290 ring = adapter->rx_ring[j];
2291 do {
2292 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2293 data[i] = ring->rx_stats.packets;
2294 data[i+1] = ring->rx_stats.bytes;
2295 data[i+2] = ring->rx_stats.drops;
2296 data[i+3] = ring->rx_stats.csum_err;
2297 data[i+4] = ring->rx_stats.alloc_failed;
2298 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2299 i += IGB_RX_QUEUE_STATS_LEN;
2300 }
2301 spin_unlock(&adapter->stats64_lock);
2302}
2303
2304static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2305{
2306 struct igb_adapter *adapter = netdev_priv(netdev);
2307 u8 *p = data;
2308 int i;
2309
2310 switch (stringset) {
2311 case ETH_SS_TEST:
2312 memcpy(data, *igb_gstrings_test,
2313 IGB_TEST_LEN*ETH_GSTRING_LEN);
2314 break;
2315 case ETH_SS_STATS:
2316 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2317 memcpy(p, igb_gstrings_stats[i].stat_string,
2318 ETH_GSTRING_LEN);
2319 p += ETH_GSTRING_LEN;
2320 }
2321 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2322 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2323 ETH_GSTRING_LEN);
2324 p += ETH_GSTRING_LEN;
2325 }
2326 for (i = 0; i < adapter->num_tx_queues; i++) {
2327 sprintf(p, "tx_queue_%u_packets", i);
2328 p += ETH_GSTRING_LEN;
2329 sprintf(p, "tx_queue_%u_bytes", i);
2330 p += ETH_GSTRING_LEN;
2331 sprintf(p, "tx_queue_%u_restart", i);
2332 p += ETH_GSTRING_LEN;
2333 }
2334 for (i = 0; i < adapter->num_rx_queues; i++) {
2335 sprintf(p, "rx_queue_%u_packets", i);
2336 p += ETH_GSTRING_LEN;
2337 sprintf(p, "rx_queue_%u_bytes", i);
2338 p += ETH_GSTRING_LEN;
2339 sprintf(p, "rx_queue_%u_drops", i);
2340 p += ETH_GSTRING_LEN;
2341 sprintf(p, "rx_queue_%u_csum_err", i);
2342 p += ETH_GSTRING_LEN;
2343 sprintf(p, "rx_queue_%u_alloc_failed", i);
2344 p += ETH_GSTRING_LEN;
2345 }
2346 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2347 break;
2348 }
2349}
2350
2351static int igb_get_ts_info(struct net_device *dev,
2352 struct ethtool_ts_info *info)
2353{
2354 struct igb_adapter *adapter = netdev_priv(dev);
2355
2356 if (adapter->ptp_clock)
2357 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2358 else
2359 info->phc_index = -1;
2360
2361 switch (adapter->hw.mac.type) {
2362 case e1000_82575:
2363 info->so_timestamping =
2364 SOF_TIMESTAMPING_TX_SOFTWARE |
2365 SOF_TIMESTAMPING_RX_SOFTWARE |
2366 SOF_TIMESTAMPING_SOFTWARE;
2367 return 0;
2368 case e1000_82576:
2369 case e1000_82580:
2370 case e1000_i350:
2371 case e1000_i354:
2372 case e1000_i210:
2373 case e1000_i211:
2374 info->so_timestamping =
2375 SOF_TIMESTAMPING_TX_SOFTWARE |
2376 SOF_TIMESTAMPING_RX_SOFTWARE |
2377 SOF_TIMESTAMPING_SOFTWARE |
2378 SOF_TIMESTAMPING_TX_HARDWARE |
2379 SOF_TIMESTAMPING_RX_HARDWARE |
2380 SOF_TIMESTAMPING_RAW_HARDWARE;
2381
2382 info->tx_types =
2383 (1 << HWTSTAMP_TX_OFF) |
2384 (1 << HWTSTAMP_TX_ON);
2385
2386 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2387
2388 /* 82576 does not support timestamping all packets. */
2389 if (adapter->hw.mac.type >= e1000_82580)
2390 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2391 else
2392 info->rx_filters |=
2393 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2394 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2395 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2396 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2397 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2398 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2399 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2400
2401 return 0;
2402 default:
2403 return -EOPNOTSUPP;
2404 }
2405}
2406
2407static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2408 struct ethtool_rxnfc *cmd)
2409{
2410 cmd->data = 0;
2411
2412 /* Report default options for RSS on igb */
2413 switch (cmd->flow_type) {
2414 case TCP_V4_FLOW:
2415 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2416 case UDP_V4_FLOW:
2417 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2418 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2419 case SCTP_V4_FLOW:
2420 case AH_ESP_V4_FLOW:
2421 case AH_V4_FLOW:
2422 case ESP_V4_FLOW:
2423 case IPV4_FLOW:
2424 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2425 break;
2426 case TCP_V6_FLOW:
2427 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2428 case UDP_V6_FLOW:
2429 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2430 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2431 case SCTP_V6_FLOW:
2432 case AH_ESP_V6_FLOW:
2433 case AH_V6_FLOW:
2434 case ESP_V6_FLOW:
2435 case IPV6_FLOW:
2436 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2437 break;
2438 default:
2439 return -EINVAL;
2440 }
2441
2442 return 0;
2443}
2444
2445static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2446 u32 *rule_locs)
2447{
2448 struct igb_adapter *adapter = netdev_priv(dev);
2449 int ret = -EOPNOTSUPP;
2450
2451 switch (cmd->cmd) {
2452 case ETHTOOL_GRXRINGS:
2453 cmd->data = adapter->num_rx_queues;
2454 ret = 0;
2455 break;
2456 case ETHTOOL_GRXFH:
2457 ret = igb_get_rss_hash_opts(adapter, cmd);
2458 break;
2459 default:
2460 break;
2461 }
2462
2463 return ret;
2464}
2465
2466#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2467 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2468static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2469 struct ethtool_rxnfc *nfc)
2470{
2471 u32 flags = adapter->flags;
2472
2473 /* RSS does not support anything other than hashing
2474 * to queues on src and dst IPs and ports
2475 */
2476 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2477 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2478 return -EINVAL;
2479
2480 switch (nfc->flow_type) {
2481 case TCP_V4_FLOW:
2482 case TCP_V6_FLOW:
2483 if (!(nfc->data & RXH_IP_SRC) ||
2484 !(nfc->data & RXH_IP_DST) ||
2485 !(nfc->data & RXH_L4_B_0_1) ||
2486 !(nfc->data & RXH_L4_B_2_3))
2487 return -EINVAL;
2488 break;
2489 case UDP_V4_FLOW:
2490 if (!(nfc->data & RXH_IP_SRC) ||
2491 !(nfc->data & RXH_IP_DST))
2492 return -EINVAL;
2493 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2494 case 0:
2495 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496 break;
2497 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2498 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2499 break;
2500 default:
2501 return -EINVAL;
2502 }
2503 break;
2504 case UDP_V6_FLOW:
2505 if (!(nfc->data & RXH_IP_SRC) ||
2506 !(nfc->data & RXH_IP_DST))
2507 return -EINVAL;
2508 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2509 case 0:
2510 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511 break;
2512 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2513 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2514 break;
2515 default:
2516 return -EINVAL;
2517 }
2518 break;
2519 case AH_ESP_V4_FLOW:
2520 case AH_V4_FLOW:
2521 case ESP_V4_FLOW:
2522 case SCTP_V4_FLOW:
2523 case AH_ESP_V6_FLOW:
2524 case AH_V6_FLOW:
2525 case ESP_V6_FLOW:
2526 case SCTP_V6_FLOW:
2527 if (!(nfc->data & RXH_IP_SRC) ||
2528 !(nfc->data & RXH_IP_DST) ||
2529 (nfc->data & RXH_L4_B_0_1) ||
2530 (nfc->data & RXH_L4_B_2_3))
2531 return -EINVAL;
2532 break;
2533 default:
2534 return -EINVAL;
2535 }
2536
2537 /* if we changed something we need to update flags */
2538 if (flags != adapter->flags) {
2539 struct e1000_hw *hw = &adapter->hw;
2540 u32 mrqc = rd32(E1000_MRQC);
2541
2542 if ((flags & UDP_RSS_FLAGS) &&
2543 !(adapter->flags & UDP_RSS_FLAGS))
2544 dev_err(&adapter->pdev->dev,
2545 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2546
2547 adapter->flags = flags;
2548
2549 /* Perform hash on these packet types */
2550 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2551 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2552 E1000_MRQC_RSS_FIELD_IPV6 |
2553 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2554
2555 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2556 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2557
2558 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2559 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2560
2561 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2562 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2563
2564 wr32(E1000_MRQC, mrqc);
2565 }
2566
2567 return 0;
2568}
2569
2570static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2571{
2572 struct igb_adapter *adapter = netdev_priv(dev);
2573 int ret = -EOPNOTSUPP;
2574
2575 switch (cmd->cmd) {
2576 case ETHTOOL_SRXFH:
2577 ret = igb_set_rss_hash_opt(adapter, cmd);
2578 break;
2579 default:
2580 break;
2581 }
2582
2583 return ret;
2584}
2585
2586static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2587{
2588 struct igb_adapter *adapter = netdev_priv(netdev);
2589 struct e1000_hw *hw = &adapter->hw;
2590 u32 ret_val;
2591 u16 phy_data;
2592
2593 if ((hw->mac.type < e1000_i350) ||
2594 (hw->phy.media_type != e1000_media_type_copper))
2595 return -EOPNOTSUPP;
2596
2597 edata->supported = (SUPPORTED_1000baseT_Full |
2598 SUPPORTED_100baseT_Full);
2599 if (!hw->dev_spec._82575.eee_disable)
2600 edata->advertised =
2601 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2602
2603 /* The IPCNFG and EEER registers are not supported on I354. */
2604 if (hw->mac.type == e1000_i354) {
2605 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2606 } else {
2607 u32 eeer;
2608
2609 eeer = rd32(E1000_EEER);
2610
2611 /* EEE status on negotiated link */
2612 if (eeer & E1000_EEER_EEE_NEG)
2613 edata->eee_active = true;
2614
2615 if (eeer & E1000_EEER_TX_LPI_EN)
2616 edata->tx_lpi_enabled = true;
2617 }
2618
2619 /* EEE Link Partner Advertised */
2620 switch (hw->mac.type) {
2621 case e1000_i350:
2622 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2623 &phy_data);
2624 if (ret_val)
2625 return -ENODATA;
2626
2627 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2628 break;
2629 case e1000_i354:
2630 case e1000_i210:
2631 case e1000_i211:
2632 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2633 E1000_EEE_LP_ADV_DEV_I210,
2634 &phy_data);
2635 if (ret_val)
2636 return -ENODATA;
2637
2638 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2639
2640 break;
2641 default:
2642 break;
2643 }
2644
2645 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2646
2647 if ((hw->mac.type == e1000_i354) &&
2648 (edata->eee_enabled))
2649 edata->tx_lpi_enabled = true;
2650
2651 /* Report correct negotiated EEE status for devices that
2652 * wrongly report EEE at half-duplex
2653 */
2654 if (adapter->link_duplex == HALF_DUPLEX) {
2655 edata->eee_enabled = false;
2656 edata->eee_active = false;
2657 edata->tx_lpi_enabled = false;
2658 edata->advertised &= ~edata->advertised;
2659 }
2660
2661 return 0;
2662}
2663
2664static int igb_set_eee(struct net_device *netdev,
2665 struct ethtool_eee *edata)
2666{
2667 struct igb_adapter *adapter = netdev_priv(netdev);
2668 struct e1000_hw *hw = &adapter->hw;
2669 struct ethtool_eee eee_curr;
2670 s32 ret_val;
2671
2672 if ((hw->mac.type < e1000_i350) ||
2673 (hw->phy.media_type != e1000_media_type_copper))
2674 return -EOPNOTSUPP;
2675
2676 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2677
2678 ret_val = igb_get_eee(netdev, &eee_curr);
2679 if (ret_val)
2680 return ret_val;
2681
2682 if (eee_curr.eee_enabled) {
2683 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2684 dev_err(&adapter->pdev->dev,
2685 "Setting EEE tx-lpi is not supported\n");
2686 return -EINVAL;
2687 }
2688
2689 /* Tx LPI timer is not implemented currently */
2690 if (edata->tx_lpi_timer) {
2691 dev_err(&adapter->pdev->dev,
2692 "Setting EEE Tx LPI timer is not supported\n");
2693 return -EINVAL;
2694 }
2695
2696 if (edata->advertised &
2697 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2698 dev_err(&adapter->pdev->dev,
2699 "EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2700 return -EINVAL;
2701 }
2702
2703 } else if (!edata->eee_enabled) {
2704 dev_err(&adapter->pdev->dev,
2705 "Setting EEE options are not supported with EEE disabled\n");
2706 return -EINVAL;
2707 }
2708
2709 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2710 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2711 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2712 adapter->flags |= IGB_FLAG_EEE;
2713 if (hw->mac.type == e1000_i350)
2714 igb_set_eee_i350(hw);
2715 else
2716 igb_set_eee_i354(hw);
2717
2718 /* reset link */
2719 if (netif_running(netdev))
2720 igb_reinit_locked(adapter);
2721 else
2722 igb_reset(adapter);
2723 }
2724
2725 return 0;
2726}
2727
2728static int igb_get_module_info(struct net_device *netdev,
2729 struct ethtool_modinfo *modinfo)
2730{
2731 struct igb_adapter *adapter = netdev_priv(netdev);
2732 struct e1000_hw *hw = &adapter->hw;
2733 u32 status = E1000_SUCCESS;
2734 u16 sff8472_rev, addr_mode;
2735 bool page_swap = false;
2736
2737 if ((hw->phy.media_type == e1000_media_type_copper) ||
2738 (hw->phy.media_type == e1000_media_type_unknown))
2739 return -EOPNOTSUPP;
2740
2741 /* Check whether we support SFF-8472 or not */
2742 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2743 if (status != E1000_SUCCESS)
2744 return -EIO;
2745
2746 /* addressing mode is not supported */
2747 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2748 if (status != E1000_SUCCESS)
2749 return -EIO;
2750
2751 /* addressing mode is not supported */
2752 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2753 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2754 page_swap = true;
2755 }
2756
2757 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2758 /* We have an SFP, but it does not support SFF-8472 */
2759 modinfo->type = ETH_MODULE_SFF_8079;
2760 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2761 } else {
2762 /* We have an SFP which supports a revision of SFF-8472 */
2763 modinfo->type = ETH_MODULE_SFF_8472;
2764 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2765 }
2766
2767 return 0;
2768}
2769
2770static int igb_get_module_eeprom(struct net_device *netdev,
2771 struct ethtool_eeprom *ee, u8 *data)
2772{
2773 struct igb_adapter *adapter = netdev_priv(netdev);
2774 struct e1000_hw *hw = &adapter->hw;
2775 u32 status = E1000_SUCCESS;
2776 u16 *dataword;
2777 u16 first_word, last_word;
2778 int i = 0;
2779
2780 if (ee->len == 0)
2781 return -EINVAL;
2782
2783 first_word = ee->offset >> 1;
2784 last_word = (ee->offset + ee->len - 1) >> 1;
2785
2786 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2787 GFP_KERNEL);
2788 if (!dataword)
2789 return -ENOMEM;
2790
2791 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2792 for (i = 0; i < last_word - first_word + 1; i++) {
2793 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2794 if (status != E1000_SUCCESS) {
2795 /* Error occurred while reading module */
2796 kfree(dataword);
2797 return -EIO;
2798 }
2799
2800 be16_to_cpus(&dataword[i]);
2801 }
2802
2803 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2804 kfree(dataword);
2805
2806 return 0;
2807}
2808
2809static int igb_ethtool_begin(struct net_device *netdev)
2810{
2811 struct igb_adapter *adapter = netdev_priv(netdev);
2812 pm_runtime_get_sync(&adapter->pdev->dev);
2813 return 0;
2814}
2815
2816static void igb_ethtool_complete(struct net_device *netdev)
2817{
2818 struct igb_adapter *adapter = netdev_priv(netdev);
2819 pm_runtime_put(&adapter->pdev->dev);
2820}
2821
2822static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2823{
2824 return IGB_RETA_SIZE;
2825}
2826
2827static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2828{
2829 struct igb_adapter *adapter = netdev_priv(netdev);
2830 int i;
2831
2832 for (i = 0; i < IGB_RETA_SIZE; i++)
2833 indir[i] = adapter->rss_indir_tbl[i];
2834
2835 return 0;
2836}
2837
2838void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2839{
2840 struct e1000_hw *hw = &adapter->hw;
2841 u32 reg = E1000_RETA(0);
2842 u32 shift = 0;
2843 int i = 0;
2844
2845 switch (hw->mac.type) {
2846 case e1000_82575:
2847 shift = 6;
2848 break;
2849 case e1000_82576:
2850 /* 82576 supports 2 RSS queues for SR-IOV */
2851 if (adapter->vfs_allocated_count)
2852 shift = 3;
2853 break;
2854 default:
2855 break;
2856 }
2857
2858 while (i < IGB_RETA_SIZE) {
2859 u32 val = 0;
2860 int j;
2861
2862 for (j = 3; j >= 0; j--) {
2863 val <<= 8;
2864 val |= adapter->rss_indir_tbl[i + j];
2865 }
2866
2867 wr32(reg, val << shift);
2868 reg += 4;
2869 i += 4;
2870 }
2871}
2872
2873static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2874{
2875 struct igb_adapter *adapter = netdev_priv(netdev);
2876 struct e1000_hw *hw = &adapter->hw;
2877 int i;
2878 u32 num_queues;
2879
2880 num_queues = adapter->rss_queues;
2881
2882 switch (hw->mac.type) {
2883 case e1000_82576:
2884 /* 82576 supports 2 RSS queues for SR-IOV */
2885 if (adapter->vfs_allocated_count)
2886 num_queues = 2;
2887 break;
2888 default:
2889 break;
2890 }
2891
2892 /* Verify user input. */
2893 for (i = 0; i < IGB_RETA_SIZE; i++)
2894 if (indir[i] >= num_queues)
2895 return -EINVAL;
2896
2897
2898 for (i = 0; i < IGB_RETA_SIZE; i++)
2899 adapter->rss_indir_tbl[i] = indir[i];
2900
2901 igb_write_rss_indir_tbl(adapter);
2902
2903 return 0;
2904}
2905
2906static unsigned int igb_max_channels(struct igb_adapter *adapter)
2907{
2908 struct e1000_hw *hw = &adapter->hw;
2909 unsigned int max_combined = 0;
2910
2911 switch (hw->mac.type) {
2912 case e1000_i211:
2913 max_combined = IGB_MAX_RX_QUEUES_I211;
2914 break;
2915 case e1000_82575:
2916 case e1000_i210:
2917 max_combined = IGB_MAX_RX_QUEUES_82575;
2918 break;
2919 case e1000_i350:
2920 if (!!adapter->vfs_allocated_count) {
2921 max_combined = 1;
2922 break;
2923 }
2924 /* fall through */
2925 case e1000_82576:
2926 if (!!adapter->vfs_allocated_count) {
2927 max_combined = 2;
2928 break;
2929 }
2930 /* fall through */
2931 case e1000_82580:
2932 case e1000_i354:
2933 default:
2934 max_combined = IGB_MAX_RX_QUEUES;
2935 break;
2936 }
2937
2938 return max_combined;
2939}
2940
2941static void igb_get_channels(struct net_device *netdev,
2942 struct ethtool_channels *ch)
2943{
2944 struct igb_adapter *adapter = netdev_priv(netdev);
2945
2946 /* Report maximum channels */
2947 ch->max_combined = igb_max_channels(adapter);
2948
2949 /* Report info for other vector */
2950 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2951 ch->max_other = NON_Q_VECTORS;
2952 ch->other_count = NON_Q_VECTORS;
2953 }
2954
2955 ch->combined_count = adapter->rss_queues;
2956}
2957
2958static int igb_set_channels(struct net_device *netdev,
2959 struct ethtool_channels *ch)
2960{
2961 struct igb_adapter *adapter = netdev_priv(netdev);
2962 unsigned int count = ch->combined_count;
2963
2964 /* Verify they are not requesting separate vectors */
2965 if (!count || ch->rx_count || ch->tx_count)
2966 return -EINVAL;
2967
2968 /* Verify other_count is valid and has not been changed */
2969 if (ch->other_count != NON_Q_VECTORS)
2970 return -EINVAL;
2971
2972 /* Verify the number of channels doesn't exceed hw limits */
2973 if (count > igb_max_channels(adapter))
2974 return -EINVAL;
2975
2976 if (count != adapter->rss_queues) {
2977 adapter->rss_queues = count;
2978
2979 /* Hardware has to reinitialize queues and interrupts to
2980 * match the new configuration.
2981 */
2982 return igb_reinit_queues(adapter);
2983 }
2984
2985 return 0;
2986}
2987
2988static const struct ethtool_ops igb_ethtool_ops = {
2989 .get_settings = igb_get_settings,
2990 .set_settings = igb_set_settings,
2991 .get_drvinfo = igb_get_drvinfo,
2992 .get_regs_len = igb_get_regs_len,
2993 .get_regs = igb_get_regs,
2994 .get_wol = igb_get_wol,
2995 .set_wol = igb_set_wol,
2996 .get_msglevel = igb_get_msglevel,
2997 .set_msglevel = igb_set_msglevel,
2998 .nway_reset = igb_nway_reset,
2999 .get_link = igb_get_link,
3000 .get_eeprom_len = igb_get_eeprom_len,
3001 .get_eeprom = igb_get_eeprom,
3002 .set_eeprom = igb_set_eeprom,
3003 .get_ringparam = igb_get_ringparam,
3004 .set_ringparam = igb_set_ringparam,
3005 .get_pauseparam = igb_get_pauseparam,
3006 .set_pauseparam = igb_set_pauseparam,
3007 .self_test = igb_diag_test,
3008 .get_strings = igb_get_strings,
3009 .set_phys_id = igb_set_phys_id,
3010 .get_sset_count = igb_get_sset_count,
3011 .get_ethtool_stats = igb_get_ethtool_stats,
3012 .get_coalesce = igb_get_coalesce,
3013 .set_coalesce = igb_set_coalesce,
3014 .get_ts_info = igb_get_ts_info,
3015 .get_rxnfc = igb_get_rxnfc,
3016 .set_rxnfc = igb_set_rxnfc,
3017 .get_eee = igb_get_eee,
3018 .set_eee = igb_set_eee,
3019 .get_module_info = igb_get_module_info,
3020 .get_module_eeprom = igb_get_module_eeprom,
3021 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3022 .get_rxfh_indir = igb_get_rxfh_indir,
3023 .set_rxfh_indir = igb_set_rxfh_indir,
3024 .get_channels = igb_get_channels,
3025 .set_channels = igb_set_channels,
3026 .begin = igb_ethtool_begin,
3027 .complete = igb_ethtool_complete,
3028};
3029
3030void igb_set_ethtool_ops(struct net_device *netdev)
3031{
3032 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3033}