Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 
 
 
 
  70}
  71
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
  84	struct i40e_tx_buffer *tx_buf, *first;
 
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
 
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 
 
 
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 
 
 
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 
 
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 230{
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 340
 341	return ret;
 342}
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 386	u8 *raw_packet;
 
 
 387	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 434	u8 *raw_packet;
 
 
 435	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 
 
 
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 454		kfree(raw_packet);
 455		return ret;
 
 
 
 
 
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 
 
 466	}
 467	return 0;
 
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 488	u8 *raw_packet;
 489	int ret;
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 508	if (ret) {
 509		kfree(raw_packet);
 510		return ret;
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 
 591	int ret;
 592
 
 
 
 
 
 
 
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 
 
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 
 
 
 
 
 
 
 
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 
 
 
 
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
 
 
 
 
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
 
 
 
 
 
 
 
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
 
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
1397{
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
 
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
1551
1552	u64_stats_init(&rx_ring->syncp);
 
 
 
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
 
 
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
 
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
 
 
 
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	return false;
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
 
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
 
 
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754	decoded = decode_rx_desc_ptype(ptype);
1755
 
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
 
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
 
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258	}
2259
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
2273{
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
2307	u32 act;
2308
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
 
 
 
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
 
 
 
 
 
 
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
 
 
 
 
 
 
 
 
 
 
 
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598			}
 
 
 
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
 
 
 
 
2611		}
2612
2613		/* update budget accounting */
 
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627	*rx_cleaned = total_rx_packets;
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633/**
2634 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2635 * @itr_idx: interrupt throttling index
2636 * @interval: interrupt throttling interval value in usecs
2637 * @force_swint: force software interrupt
2638 *
2639 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2640 * is used to update interrupt throttling interval for specified ITR index
2641 * and optionally enforces a software interrupt. If the @itr_idx is equal
2642 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2643 * parameter is taken into account. If the interval change and enforced
2644 * software interrupt are not requested then the built value just enables
2645 * appropriate vector interrupt.
2646 **/
2647static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2648			     bool force_swint)
2649{
2650	u32 val;
2651
2652	/* We don't bother with setting the CLEARPBA bit as the data sheet
2653	 * points out doing so is "meaningless since it was already
2654	 * auto-cleared". The auto-clearing happens when the interrupt is
2655	 * asserted.
2656	 *
2657	 * Hardware errata 28 for also indicates that writing to a
2658	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2659	 * an event in the PBA anyway so we need to rely on the automask
2660	 * to hold pending events for us until the interrupt is re-enabled
2661	 *
2662	 * We have to shift the given value as it is reported in microseconds
2663	 * and the register value is recorded in 2 microsecond units.
2664	 */
2665	interval >>= 1;
2666
2667	/* 1. Enable vector interrupt
2668	 * 2. Update the interval for the specified ITR index
2669	 *    (I40E_ITR_NONE in the register is used to indicate that
2670	 *     no interval update is requested)
2671	 */
2672	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2673	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2674	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2675
2676	/* 3. Enforce software interrupt trigger if requested
2677	 *    (These software interrupts rate is limited by ITR2 that is
2678	 *     set to 20K interrupts per second)
2679	 */
2680	if (force_swint)
2681		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2682		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2683		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2684				  I40E_SW_ITR);
2685
2686	return val;
2687}
2688
2689/* The act of updating the ITR will cause it to immediately trigger. In order
2690 * to prevent this from throwing off adaptive update statistics we defer the
2691 * update so that it can only happen so often. So after either Tx or Rx are
2692 * updated we make the adaptive scheme wait until either the ITR completely
2693 * expires via the next_update expiration or we have been through at least
2694 * 3 interrupts.
2695 */
2696#define ITR_COUNTDOWN_START 3
2697
2698/**
2699 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2700 * @vsi: the VSI we care about
2701 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2702 *
2703 **/
2704static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2705					  struct i40e_q_vector *q_vector)
2706{
2707	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2708	struct i40e_hw *hw = &vsi->back->hw;
2709	u16 interval = 0;
2710	u32 itr_val;
2711
2712	/* If we don't have MSIX, then we only need to re-enable icr0 */
2713	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2714		i40e_irq_dynamic_enable_icr0(vsi->back);
2715		return;
 
2716	}
2717
2718	/* These will do nothing if dynamic updates are not enabled */
2719	i40e_update_itr(q_vector, &q_vector->tx);
2720	i40e_update_itr(q_vector, &q_vector->rx);
2721
2722	/* This block of logic allows us to get away with only updating
2723	 * one ITR value with each interrupt. The idea is to perform a
2724	 * pseudo-lazy update with the following criteria.
2725	 *
2726	 * 1. Rx is given higher priority than Tx if both are in same state
2727	 * 2. If we must reduce an ITR that is given highest priority.
2728	 * 3. We then give priority to increasing ITR based on amount.
2729	 */
2730	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2731		/* Rx ITR needs to be reduced, this is highest priority */
2732		itr_idx = I40E_RX_ITR;
2733		interval = q_vector->rx.target_itr;
2734		q_vector->rx.current_itr = q_vector->rx.target_itr;
2735		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2737		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2738		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2739		/* Tx ITR needs to be reduced, this is second priority
2740		 * Tx ITR needs to be increased more than Rx, fourth priority
2741		 */
2742		itr_idx = I40E_TX_ITR;
2743		interval = q_vector->tx.target_itr;
2744		q_vector->tx.current_itr = q_vector->tx.target_itr;
2745		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2746	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2747		/* Rx ITR needs to be increased, third priority */
2748		itr_idx = I40E_RX_ITR;
2749		interval = q_vector->rx.target_itr;
2750		q_vector->rx.current_itr = q_vector->rx.target_itr;
2751		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2752	} else {
2753		/* No ITR update, lowest priority */
2754		if (q_vector->itr_countdown)
2755			q_vector->itr_countdown--;
2756	}
2757
2758	/* Do not update interrupt control register if VSI is down */
2759	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2760		return;
2761
2762	/* Update ITR interval if necessary and enforce software interrupt
2763	 * if we are exiting busy poll.
2764	 */
2765	if (q_vector->in_busy_poll) {
2766		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2767		q_vector->in_busy_poll = false;
2768	} else {
2769		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2770	}
2771	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2772}
2773
2774/**
2775 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2776 * @napi: napi struct with our devices info in it
2777 * @budget: amount of work driver is allowed to do this pass, in packets
2778 *
2779 * This function will clean all queues associated with a q_vector.
2780 *
2781 * Returns the amount of work done
2782 **/
2783int i40e_napi_poll(struct napi_struct *napi, int budget)
2784{
2785	struct i40e_q_vector *q_vector =
2786			       container_of(napi, struct i40e_q_vector, napi);
2787	struct i40e_vsi *vsi = q_vector->vsi;
2788	struct i40e_ring *ring;
2789	bool tx_clean_complete = true;
2790	bool rx_clean_complete = true;
2791	unsigned int tx_cleaned = 0;
2792	unsigned int rx_cleaned = 0;
2793	bool clean_complete = true;
2794	bool arm_wb = false;
2795	int budget_per_ring;
2796	int work_done = 0;
2797
2798	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2799		napi_complete(napi);
2800		return 0;
2801	}
2802
2803	/* Since the actual Tx work is minimal, we can give the Tx a larger
2804	 * budget and be more aggressive about cleaning up the Tx descriptors.
2805	 */
2806	i40e_for_each_ring(ring, q_vector->tx) {
2807		bool wd = ring->xsk_pool ?
2808			  i40e_clean_xdp_tx_irq(vsi, ring) :
2809			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2810
2811		if (!wd) {
2812			clean_complete = tx_clean_complete = false;
2813			continue;
2814		}
2815		arm_wb |= ring->arm_wb;
2816		ring->arm_wb = false;
2817	}
2818
2819	/* Handle case where we are called by netpoll with a budget of 0 */
2820	if (budget <= 0)
2821		goto tx_only;
2822
2823	/* normally we have 1 Rx ring per q_vector */
2824	if (unlikely(q_vector->num_ringpairs > 1))
2825		/* We attempt to distribute budget to each Rx queue fairly, but
2826		 * don't allow the budget to go below 1 because that would exit
2827		 * polling early.
2828		 */
2829		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2830	else
2831		/* Max of 1 Rx ring in this q_vector so give it the budget */
2832		budget_per_ring = budget;
2833
2834	i40e_for_each_ring(ring, q_vector->rx) {
2835		int cleaned = ring->xsk_pool ?
2836			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2837			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2838
2839		work_done += cleaned;
2840		/* if we clean as many as budgeted, we must not be done */
2841		if (cleaned >= budget_per_ring)
2842			clean_complete = rx_clean_complete = false;
2843	}
2844
2845	if (!i40e_enabled_xdp_vsi(vsi))
2846		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2847				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2848
2849	/* If work not completed, return budget and polling will return */
2850	if (!clean_complete) {
2851		int cpu_id = smp_processor_id();
2852
2853		/* It is possible that the interrupt affinity has changed but,
2854		 * if the cpu is pegged at 100%, polling will never exit while
2855		 * traffic continues and the interrupt will be stuck on this
2856		 * cpu.  We check to make sure affinity is correct before we
2857		 * continue to poll, otherwise we must stop polling so the
2858		 * interrupt can move to the correct cpu.
2859		 */
2860		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2861			/* Tell napi that we are done polling */
2862			napi_complete_done(napi, work_done);
2863
2864			/* Force an interrupt */
2865			i40e_force_wb(vsi, q_vector);
2866
2867			/* Return budget-1 so that polling stops */
2868			return budget - 1;
2869		}
2870tx_only:
2871		if (arm_wb) {
2872			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2873			i40e_enable_wb_on_itr(vsi, q_vector);
2874		}
2875		return budget;
2876	}
2877
2878	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2879		q_vector->arm_wb_state = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880
2881	/* Exit the polling mode, but don't re-enable interrupts if stack might
2882	 * poll us due to busy-polling
2883	 */
2884	if (likely(napi_complete_done(napi, work_done)))
2885		i40e_update_enable_itr(vsi, q_vector);
2886	else
2887		q_vector->in_busy_poll = true;
2888
2889	return min(work_done, budget - 1);
2890}
2891
2892/**
2893 * i40e_atr - Add a Flow Director ATR filter
2894 * @tx_ring:  ring to add programming descriptor to
2895 * @skb:      send buffer
2896 * @tx_flags: send tx flags
 
2897 **/
2898static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2899		     u32 tx_flags)
2900{
2901	struct i40e_filter_program_desc *fdir_desc;
2902	struct i40e_pf *pf = tx_ring->vsi->back;
2903	union {
2904		unsigned char *network;
2905		struct iphdr *ipv4;
2906		struct ipv6hdr *ipv6;
2907	} hdr;
2908	struct tcphdr *th;
2909	unsigned int hlen;
2910	u32 flex_ptype, dtype_cmd;
2911	int l4_proto;
2912	u16 i;
2913
2914	/* make sure ATR is enabled */
2915	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2916		return;
2917
2918	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920
2921	/* if sampling is disabled do nothing */
2922	if (!tx_ring->atr_sample_rate)
2923		return;
2924
2925	/* Currently only IPv4/IPv6 with TCP is supported */
2926	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2927		return;
2928
2929	/* snag network header to get L4 type and address */
2930	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2931		      skb_inner_network_header(skb) : skb_network_header(skb);
2932
2933	/* Note: tx_flags gets modified to reflect inner protocols in
2934	 * tx_enable_csum function if encap is enabled.
2935	 */
2936	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2937		/* access ihl as u8 to avoid unaligned access on ia64 */
 
2938		hlen = (hdr.network[0] & 0x0F) << 2;
2939		l4_proto = hdr.ipv4->protocol;
2940	} else {
2941		/* find the start of the innermost ipv6 header */
2942		unsigned int inner_hlen = hdr.network - skb->data;
2943		unsigned int h_offset = inner_hlen;
2944
2945		/* this function updates h_offset to the end of the header */
2946		l4_proto =
2947		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2948		/* hlen will contain our best estimate of the tcp header */
2949		hlen = h_offset - inner_hlen;
2950	}
2951
2952	if (l4_proto != IPPROTO_TCP)
 
2953		return;
 
2954
2955	th = (struct tcphdr *)(hdr.network + hlen);
2956
2957	/* Due to lack of space, no more new filters can be programmed */
2958	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2959		return;
2960	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2961		/* HW ATR eviction will take care of removing filters on FIN
2962		 * and RST packets.
2963		 */
2964		if (th->fin || th->rst)
2965			return;
2966	}
2967
2968	tx_ring->atr_count++;
2969
2970	/* sample on all syn/fin/rst packets or once every atr sample rate */
2971	if (!th->fin &&
2972	    !th->syn &&
2973	    !th->rst &&
2974	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2975		return;
2976
2977	tx_ring->atr_count = 0;
2978
2979	/* grab the next descriptor */
2980	i = tx_ring->next_to_use;
2981	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2982
2983	i++;
2984	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2985
2986	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2987				tx_ring->queue_index);
2988	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2989		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2990		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2991		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2992		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2993
2994	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2995
2996	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2997
2998	dtype_cmd |= (th->fin || th->rst) ?
2999		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
3000		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
3001		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
3002		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
3003
3004	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
3005		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
3006
3007	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
3008		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
3009
3010	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
3011	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
3012		dtype_cmd |=
3013			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3014				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
3015	else
3016		dtype_cmd |=
3017			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3018				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
3019
3020	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
3021		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3022
3023	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3024	fdir_desc->rsvd = cpu_to_le32(0);
3025	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3026	fdir_desc->fd_id = cpu_to_le32(0);
3027}
3028
3029/**
3030 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3031 * @skb:     send buffer
3032 * @tx_ring: ring to send buffer on
3033 * @flags:   the tx flags to be set
3034 *
3035 * Checks the skb and set up correspondingly several generic transmit flags
3036 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3037 *
3038 * Returns error code indicate the frame should be dropped upon error and the
3039 * otherwise  returns 0 to indicate the flags has been set properly.
3040 **/
3041static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3042					     struct i40e_ring *tx_ring,
3043					     u32 *flags)
3044{
3045	__be16 protocol = skb->protocol;
3046	u32  tx_flags = 0;
3047
3048	if (protocol == htons(ETH_P_8021Q) &&
3049	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3050		/* When HW VLAN acceleration is turned off by the user the
3051		 * stack sets the protocol to 8021q so that the driver
3052		 * can take any steps required to support the SW only
3053		 * VLAN handling.  In our case the driver doesn't need
3054		 * to take any further steps so just set the protocol
3055		 * to the encapsulated ethertype.
3056		 */
3057		skb->protocol = vlan_get_protocol(skb);
3058		goto out;
3059	}
3060
3061	/* if we have a HW VLAN tag being added, default to the HW one */
3062	if (skb_vlan_tag_present(skb)) {
3063		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3064		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3065	/* else if it is a SW VLAN, check the next protocol and store the tag */
3066	} else if (protocol == htons(ETH_P_8021Q)) {
3067		struct vlan_hdr *vhdr, _vhdr;
3068
3069		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3070		if (!vhdr)
3071			return -EINVAL;
3072
3073		protocol = vhdr->h_vlan_encapsulated_proto;
3074		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3075		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3076	}
3077
3078	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3079		goto out;
3080
3081	/* Insert 802.1p priority into VLAN header */
3082	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3083	    (skb->priority != TC_PRIO_CONTROL)) {
 
3084		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3085		tx_flags |= (skb->priority & 0x7) <<
3086				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3087		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3088			struct vlan_ethhdr *vhdr;
3089			int rc;
3090
3091			rc = skb_cow_head(skb, 0);
3092			if (rc < 0)
3093				return rc;
3094			vhdr = skb_vlan_eth_hdr(skb);
3095			vhdr->h_vlan_TCI = htons(tx_flags >>
3096						 I40E_TX_FLAGS_VLAN_SHIFT);
3097		} else {
3098			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3099		}
3100	}
3101
3102out:
3103	*flags = tx_flags;
3104	return 0;
3105}
3106
3107/**
3108 * i40e_tso - set up the tso context descriptor
3109 * @first:    pointer to first Tx buffer for xmit
 
 
 
3110 * @hdr_len:  ptr to the size of the packet header
3111 * @cd_type_cmd_tso_mss: Quad Word 1
3112 *
3113 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3114 **/
3115static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3116		    u64 *cd_type_cmd_tso_mss)
3117{
3118	struct sk_buff *skb = first->skb;
3119	u64 cd_cmd, cd_tso_len, cd_mss;
3120	__be16 protocol;
3121	union {
3122		struct iphdr *v4;
3123		struct ipv6hdr *v6;
3124		unsigned char *hdr;
3125	} ip;
3126	union {
3127		struct tcphdr *tcp;
3128		struct udphdr *udp;
3129		unsigned char *hdr;
3130	} l4;
3131	u32 paylen, l4_offset;
3132	u16 gso_size;
3133	int err;
3134
3135	if (skb->ip_summed != CHECKSUM_PARTIAL)
3136		return 0;
3137
3138	if (!skb_is_gso(skb))
3139		return 0;
3140
3141	err = skb_cow_head(skb, 0);
3142	if (err < 0)
3143		return err;
3144
3145	protocol = vlan_get_protocol(skb);
3146
3147	if (eth_p_mpls(protocol))
3148		ip.hdr = skb_inner_network_header(skb);
3149	else
3150		ip.hdr = skb_network_header(skb);
3151	l4.hdr = skb_checksum_start(skb);
3152
3153	/* initialize outer IP header fields */
3154	if (ip.v4->version == 4) {
3155		ip.v4->tot_len = 0;
3156		ip.v4->check = 0;
3157
3158		first->tx_flags |= I40E_TX_FLAGS_TSO;
3159	} else {
3160		ip.v6->payload_len = 0;
3161		first->tx_flags |= I40E_TX_FLAGS_TSO;
3162	}
3163
3164	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3165					 SKB_GSO_GRE_CSUM |
3166					 SKB_GSO_IPXIP4 |
3167					 SKB_GSO_IPXIP6 |
3168					 SKB_GSO_UDP_TUNNEL |
3169					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3170		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3171		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3172			l4.udp->len = 0;
3173
3174			/* determine offset of outer transport header */
3175			l4_offset = l4.hdr - skb->data;
3176
3177			/* remove payload length from outer checksum */
3178			paylen = skb->len - l4_offset;
3179			csum_replace_by_diff(&l4.udp->check,
3180					     (__force __wsum)htonl(paylen));
3181		}
3182
3183		/* reset pointers to inner headers */
3184		ip.hdr = skb_inner_network_header(skb);
3185		l4.hdr = skb_inner_transport_header(skb);
3186
3187		/* initialize inner IP header fields */
3188		if (ip.v4->version == 4) {
3189			ip.v4->tot_len = 0;
3190			ip.v4->check = 0;
3191		} else {
3192			ip.v6->payload_len = 0;
3193		}
3194	}
3195
3196	/* determine offset of inner transport header */
3197	l4_offset = l4.hdr - skb->data;
3198
3199	/* remove payload length from inner checksum */
3200	paylen = skb->len - l4_offset;
3201
3202	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3203		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3204		/* compute length of segmentation header */
3205		*hdr_len = sizeof(*l4.udp) + l4_offset;
3206	} else {
3207		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3208		/* compute length of segmentation header */
3209		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3210	}
3211
3212	/* pull values out of skb_shinfo */
3213	gso_size = skb_shinfo(skb)->gso_size;
3214
3215	/* update GSO size and bytecount with header size */
3216	first->gso_segs = skb_shinfo(skb)->gso_segs;
3217	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3218
3219	/* find the field values */
3220	cd_cmd = I40E_TX_CTX_DESC_TSO;
3221	cd_tso_len = skb->len - *hdr_len;
3222	cd_mss = gso_size;
3223	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3224				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3225				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
 
3226	return 1;
3227}
3228
3229/**
3230 * i40e_tsyn - set up the tsyn context descriptor
3231 * @tx_ring:  ptr to the ring to send
3232 * @skb:      ptr to the skb we're sending
3233 * @tx_flags: the collected send information
3234 * @cd_type_cmd_tso_mss: Quad Word 1
3235 *
3236 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3237 **/
3238static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3239		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3240{
3241	struct i40e_pf *pf;
3242
3243	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3244		return 0;
3245
3246	/* Tx timestamps cannot be sampled when doing TSO */
3247	if (tx_flags & I40E_TX_FLAGS_TSO)
3248		return 0;
3249
3250	/* only timestamp the outbound packet if the user has requested it and
3251	 * we are not already transmitting a packet to be timestamped
3252	 */
3253	pf = i40e_netdev_to_pf(tx_ring->netdev);
3254	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3255		return 0;
3256
3257	if (pf->ptp_tx &&
3258	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3259		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3260		pf->ptp_tx_start = jiffies;
3261		pf->ptp_tx_skb = skb_get(skb);
3262	} else {
3263		pf->tx_hwtstamp_skipped++;
3264		return 0;
3265	}
3266
3267	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3268				I40E_TXD_CTX_QW1_CMD_SHIFT;
3269
 
 
 
3270	return 1;
3271}
3272
3273/**
3274 * i40e_tx_enable_csum - Enable Tx checksum offloads
3275 * @skb: send buffer
3276 * @tx_flags: pointer to Tx flags currently set
3277 * @td_cmd: Tx descriptor command bits to set
3278 * @td_offset: Tx descriptor header offsets to set
3279 * @tx_ring: Tx descriptor ring
3280 * @cd_tunneling: ptr to context desc bits
3281 **/
3282static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3283			       u32 *td_cmd, u32 *td_offset,
3284			       struct i40e_ring *tx_ring,
3285			       u32 *cd_tunneling)
3286{
3287	union {
3288		struct iphdr *v4;
3289		struct ipv6hdr *v6;
3290		unsigned char *hdr;
3291	} ip;
3292	union {
3293		struct tcphdr *tcp;
3294		struct udphdr *udp;
3295		unsigned char *hdr;
3296	} l4;
3297	unsigned char *exthdr;
3298	u32 offset, cmd = 0;
3299	__be16 frag_off;
3300	__be16 protocol;
3301	u8 l4_proto = 0;
3302
3303	if (skb->ip_summed != CHECKSUM_PARTIAL)
3304		return 0;
3305
3306	protocol = vlan_get_protocol(skb);
3307
3308	if (eth_p_mpls(protocol)) {
3309		ip.hdr = skb_inner_network_header(skb);
3310		l4.hdr = skb_checksum_start(skb);
3311	} else {
3312		ip.hdr = skb_network_header(skb);
3313		l4.hdr = skb_transport_header(skb);
3314	}
3315
3316	/* set the tx_flags to indicate the IP protocol type. this is
3317	 * required so that checksum header computation below is accurate.
3318	 */
3319	if (ip.v4->version == 4)
3320		*tx_flags |= I40E_TX_FLAGS_IPV4;
3321	else
3322		*tx_flags |= I40E_TX_FLAGS_IPV6;
3323
3324	/* compute outer L2 header size */
3325	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3326
3327	if (skb->encapsulation) {
3328		u32 tunnel = 0;
3329		/* define outer network header type */
3330		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3331			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3332				  I40E_TX_CTX_EXT_IP_IPV4 :
3333				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3334
3335			l4_proto = ip.v4->protocol;
3336		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3337			int ret;
3338
3339			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3340
3341			exthdr = ip.hdr + sizeof(*ip.v6);
3342			l4_proto = ip.v6->nexthdr;
3343			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3344					       &l4_proto, &frag_off);
3345			if (ret < 0)
3346				return -1;
 
 
 
3347		}
3348
3349		/* define outer transport */
3350		switch (l4_proto) {
3351		case IPPROTO_UDP:
3352			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3353			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3354			break;
3355		case IPPROTO_GRE:
3356			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3357			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3358			break;
3359		case IPPROTO_IPIP:
3360		case IPPROTO_IPV6:
3361			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3362			l4.hdr = skb_inner_network_header(skb);
3363			break;
3364		default:
3365			if (*tx_flags & I40E_TX_FLAGS_TSO)
3366				return -1;
3367
3368			skb_checksum_help(skb);
3369			return 0;
3370		}
3371
3372		/* compute outer L3 header size */
3373		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3374			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3375
3376		/* switch IP header pointer from outer to inner header */
3377		ip.hdr = skb_inner_network_header(skb);
3378
3379		/* compute tunnel header size */
3380		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3381			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3382
3383		/* indicate if we need to offload outer UDP header */
3384		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3385		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3386		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3387			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3388
3389		/* record tunnel offload values */
3390		*cd_tunneling |= tunnel;
3391
3392		/* switch L4 header pointer from outer to inner */
3393		l4.hdr = skb_inner_transport_header(skb);
3394		l4_proto = 0;
3395
3396		/* reset type as we transition from outer to inner headers */
3397		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3398		if (ip.v4->version == 4)
3399			*tx_flags |= I40E_TX_FLAGS_IPV4;
3400		if (ip.v6->version == 6)
3401			*tx_flags |= I40E_TX_FLAGS_IPV6;
3402	}
3403
3404	/* Enable IP checksum offloads */
3405	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3406		l4_proto = ip.v4->protocol;
3407		/* the stack computes the IP header already, the only time we
3408		 * need the hardware to recompute it is in the case of TSO.
3409		 */
3410		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3411		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3412		       I40E_TX_DESC_CMD_IIPT_IPV4;
3413	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3414		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3415
3416		exthdr = ip.hdr + sizeof(*ip.v6);
3417		l4_proto = ip.v6->nexthdr;
3418		if (l4.hdr != exthdr)
3419			ipv6_skip_exthdr(skb, exthdr - skb->data,
3420					 &l4_proto, &frag_off);
3421	}
3422
3423	/* compute inner L3 header size */
3424	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 
 
 
 
3425
3426	/* Enable L4 checksum offloads */
3427	switch (l4_proto) {
3428	case IPPROTO_TCP:
3429		/* enable checksum offloads */
3430		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3431		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 
3432		break;
3433	case IPPROTO_SCTP:
3434		/* enable SCTP checksum offload */
3435		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3436		offset |= (sizeof(struct sctphdr) >> 2) <<
3437			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3438		break;
3439	case IPPROTO_UDP:
3440		/* enable UDP checksum offload */
3441		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3442		offset |= (sizeof(struct udphdr) >> 2) <<
3443			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3444		break;
3445	default:
3446		if (*tx_flags & I40E_TX_FLAGS_TSO)
3447			return -1;
3448		skb_checksum_help(skb);
3449		return 0;
3450	}
3451
3452	*td_cmd |= cmd;
3453	*td_offset |= offset;
3454
3455	return 1;
3456}
3457
3458/**
3459 * i40e_create_tx_ctx - Build the Tx context descriptor
3460 * @tx_ring:  ring to create the descriptor on
3461 * @cd_type_cmd_tso_mss: Quad Word 1
3462 * @cd_tunneling: Quad Word 0 - bits 0-31
3463 * @cd_l2tag2: Quad Word 0 - bits 32-63
3464 **/
3465static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3466			       const u64 cd_type_cmd_tso_mss,
3467			       const u32 cd_tunneling, const u32 cd_l2tag2)
3468{
3469	struct i40e_tx_context_desc *context_desc;
3470	int i = tx_ring->next_to_use;
3471
3472	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3473	    !cd_tunneling && !cd_l2tag2)
3474		return;
3475
3476	/* grab the next descriptor */
3477	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3478
3479	i++;
3480	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3481
3482	/* cpu_to_le32 and assign to struct fields */
3483	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3484	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3485	context_desc->rsvd = cpu_to_le16(0);
3486	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3487}
3488
3489/**
3490 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3491 * @tx_ring: the ring to be checked
3492 * @size:    the size buffer we want to assure is available
3493 *
3494 * Returns -EBUSY if a stop is needed, else 0
3495 **/
3496int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3497{
3498	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3499	/* Memory barrier before checking head and tail */
3500	smp_mb();
3501
3502	++tx_ring->tx_stats.tx_stopped;
3503
3504	/* Check again in a case another CPU has just made room available. */
3505	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3506		return -EBUSY;
3507
3508	/* A reprieve! - use start_queue because it doesn't call schedule */
3509	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3510	++tx_ring->tx_stats.restart_queue;
3511	return 0;
3512}
3513
3514/**
3515 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3516 * @skb:      send buffer
3517 *
3518 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3519 * and so we need to figure out the cases where we need to linearize the skb.
3520 *
3521 * For TSO we need to count the TSO header and segment payload separately.
3522 * As such we need to check cases where we have 7 fragments or more as we
3523 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3524 * the segment payload in the first descriptor, and another 7 for the
3525 * fragments.
3526 **/
3527bool __i40e_chk_linearize(struct sk_buff *skb)
3528{
3529	const skb_frag_t *frag, *stale;
3530	int nr_frags, sum;
3531
3532	/* no need to check if number of frags is less than 7 */
3533	nr_frags = skb_shinfo(skb)->nr_frags;
3534	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3535		return false;
3536
3537	/* We need to walk through the list and validate that each group
3538	 * of 6 fragments totals at least gso_size.
3539	 */
3540	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3541	frag = &skb_shinfo(skb)->frags[0];
3542
3543	/* Initialize size to the negative value of gso_size minus 1.  We
3544	 * use this as the worst case scenerio in which the frag ahead
3545	 * of us only provides one byte which is why we are limited to 6
3546	 * descriptors for a single transmit as the header and previous
3547	 * fragment are already consuming 2 descriptors.
3548	 */
3549	sum = 1 - skb_shinfo(skb)->gso_size;
3550
3551	/* Add size of frags 0 through 4 to create our initial sum */
3552	sum += skb_frag_size(frag++);
3553	sum += skb_frag_size(frag++);
3554	sum += skb_frag_size(frag++);
3555	sum += skb_frag_size(frag++);
3556	sum += skb_frag_size(frag++);
3557
3558	/* Walk through fragments adding latest fragment, testing it, and
3559	 * then removing stale fragments from the sum.
3560	 */
3561	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3562		int stale_size = skb_frag_size(stale);
3563
3564		sum += skb_frag_size(frag++);
3565
3566		/* The stale fragment may present us with a smaller
3567		 * descriptor than the actual fragment size. To account
3568		 * for that we need to remove all the data on the front and
3569		 * figure out what the remainder would be in the last
3570		 * descriptor associated with the fragment.
3571		 */
3572		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3573			int align_pad = -(skb_frag_off(stale)) &
3574					(I40E_MAX_READ_REQ_SIZE - 1);
3575
3576			sum -= align_pad;
3577			stale_size -= align_pad;
3578
3579			do {
3580				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3581				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3582			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3583		}
3584
3585		/* if sum is negative we failed to make sufficient progress */
3586		if (sum < 0)
3587			return true;
3588
3589		if (!nr_frags--)
3590			break;
3591
3592		sum -= stale_size;
3593	}
3594
3595	return false;
3596}
3597
3598/**
3599 * i40e_tx_map - Build the Tx descriptor
3600 * @tx_ring:  ring to send buffer on
3601 * @skb:      send buffer
3602 * @first:    first buffer info buffer to use
3603 * @tx_flags: collected send information
3604 * @hdr_len:  size of the packet header
3605 * @td_cmd:   the command field in the descriptor
3606 * @td_offset: offset for checksum or crc
3607 *
3608 * Returns 0 on success, -1 on failure to DMA
3609 **/
3610static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3611			      struct i40e_tx_buffer *first, u32 tx_flags,
3612			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3613{
3614	unsigned int data_len = skb->data_len;
3615	unsigned int size = skb_headlen(skb);
3616	skb_frag_t *frag;
3617	struct i40e_tx_buffer *tx_bi;
3618	struct i40e_tx_desc *tx_desc;
3619	u16 i = tx_ring->next_to_use;
3620	u32 td_tag = 0;
3621	dma_addr_t dma;
3622	u16 desc_count = 1;
3623
3624	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3625		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3626		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3627	}
3628
 
 
 
 
 
 
 
 
 
3629	first->tx_flags = tx_flags;
3630
3631	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3632
3633	tx_desc = I40E_TX_DESC(tx_ring, i);
3634	tx_bi = first;
3635
3636	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3637		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3638
3639		if (dma_mapping_error(tx_ring->dev, dma))
3640			goto dma_error;
3641
3642		/* record length, and DMA address */
3643		dma_unmap_len_set(tx_bi, len, size);
3644		dma_unmap_addr_set(tx_bi, dma, dma);
3645
3646		/* align size to end of page */
3647		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3648		tx_desc->buffer_addr = cpu_to_le64(dma);
3649
3650		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3651			tx_desc->cmd_type_offset_bsz =
3652				build_ctob(td_cmd, td_offset,
3653					   max_data, td_tag);
3654
3655			tx_desc++;
3656			i++;
3657			desc_count++;
3658
3659			if (i == tx_ring->count) {
3660				tx_desc = I40E_TX_DESC(tx_ring, 0);
3661				i = 0;
3662			}
3663
3664			dma += max_data;
3665			size -= max_data;
3666
3667			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3668			tx_desc->buffer_addr = cpu_to_le64(dma);
3669		}
3670
3671		if (likely(!data_len))
3672			break;
3673
3674		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3675							  size, td_tag);
3676
3677		tx_desc++;
3678		i++;
3679		desc_count++;
3680
3681		if (i == tx_ring->count) {
3682			tx_desc = I40E_TX_DESC(tx_ring, 0);
3683			i = 0;
3684		}
3685
3686		size = skb_frag_size(frag);
3687		data_len -= size;
3688
3689		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3690				       DMA_TO_DEVICE);
3691
3692		tx_bi = &tx_ring->tx_bi[i];
3693	}
3694
3695	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3696
3697	i++;
3698	if (i == tx_ring->count)
3699		i = 0;
3700
3701	tx_ring->next_to_use = i;
3702
3703	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3704
3705	/* write last descriptor with EOP bit */
3706	td_cmd |= I40E_TX_DESC_CMD_EOP;
3707
3708	/* We OR these values together to check both against 4 (WB_STRIDE)
3709	 * below. This is safe since we don't re-use desc_count afterwards.
3710	 */
3711	desc_count |= ++tx_ring->packet_stride;
3712
3713	if (desc_count >= WB_STRIDE) {
3714		/* write last descriptor with RS bit set */
3715		td_cmd |= I40E_TX_DESC_CMD_RS;
3716		tx_ring->packet_stride = 0;
 
 
 
 
 
 
 
3717	}
3718
3719	tx_desc->cmd_type_offset_bsz =
3720			build_ctob(td_cmd, td_offset, size, td_tag);
 
3721
3722	skb_tx_timestamp(skb);
 
3723
3724	/* Force memory writes to complete before letting h/w know there
3725	 * are new descriptors to fetch.
3726	 *
3727	 * We also use this memory barrier to make certain all of the
3728	 * status bits have been updated before next_to_watch is written.
3729	 */
3730	wmb();
3731
3732	/* set next_to_watch value indicating a packet is present */
3733	first->next_to_watch = tx_desc;
3734
 
 
 
 
 
 
3735	/* notify HW of packet */
3736	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3737		writel(i, tx_ring->tail);
3738	}
3739
3740	return 0;
3741
3742dma_error:
3743	dev_info(tx_ring->dev, "TX DMA map failed\n");
3744
3745	/* clear dma mappings for failed tx_bi map */
3746	for (;;) {
3747		tx_bi = &tx_ring->tx_bi[i];
3748		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3749		if (tx_bi == first)
3750			break;
3751		if (i == 0)
3752			i = tx_ring->count;
3753		i--;
3754	}
3755
3756	tx_ring->next_to_use = i;
3757
3758	return -1;
3759}
3760
3761static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3762				  const struct sk_buff *skb,
3763				  u16 num_tx_queues)
 
 
 
 
 
3764{
3765	u32 jhash_initval_salt = 0xd631614b;
3766	u32 hash;
3767
3768	if (skb->sk && skb->sk->sk_hash)
3769		hash = skb->sk->sk_hash;
3770	else
3771		hash = (__force u16)skb->protocol ^ skb->hash;
3772
3773	hash = jhash_1word(hash, jhash_initval_salt);
 
 
3774
3775	return (u16)(((u64)hash * num_tx_queues) >> 32);
 
 
 
3776}
3777
3778u16 i40e_lan_select_queue(struct net_device *netdev,
3779			  struct sk_buff *skb,
3780			  struct net_device __always_unused *sb_dev)
 
 
 
 
 
3781{
3782	struct i40e_netdev_priv *np = netdev_priv(netdev);
3783	struct i40e_vsi *vsi = np->vsi;
3784	struct i40e_hw *hw;
3785	u16 qoffset;
3786	u16 qcount;
3787	u8 tclass;
3788	u16 hash;
3789	u8 prio;
3790
3791	/* is DCB enabled at all? */
3792	if (vsi->tc_config.numtc == 1 ||
3793	    i40e_is_tc_mqprio_enabled(vsi->back))
3794		return netdev_pick_tx(netdev, skb, sb_dev);
3795
3796	prio = skb->priority;
3797	hw = &vsi->back->hw;
3798	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3799	/* sanity check */
3800	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3801		tclass = 0;
3802
3803	/* select a queue assigned for the given TC */
3804	qcount = vsi->tc_config.tc_info[tclass].qcount;
3805	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3806
3807	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3808	return qoffset + hash;
3809}
3810
3811/**
3812 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3813 * @xdpf: data to transmit
3814 * @xdp_ring: XDP Tx ring
3815 **/
3816static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3817			      struct i40e_ring *xdp_ring)
3818{
3819	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3820	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3821	u16 i = 0, index = xdp_ring->next_to_use;
3822	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3823	struct i40e_tx_buffer *tx_bi = tx_head;
3824	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3825	void *data = xdpf->data;
3826	u32 size = xdpf->len;
3827
3828	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3829		xdp_ring->tx_stats.tx_busy++;
3830		return I40E_XDP_CONSUMED;
3831	}
3832
3833	tx_head->bytecount = xdp_get_frame_len(xdpf);
3834	tx_head->gso_segs = 1;
3835	tx_head->xdpf = xdpf;
3836
3837	for (;;) {
3838		dma_addr_t dma;
3839
3840		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3841		if (dma_mapping_error(xdp_ring->dev, dma))
3842			goto unmap;
3843
3844		/* record length, and DMA address */
3845		dma_unmap_len_set(tx_bi, len, size);
3846		dma_unmap_addr_set(tx_bi, dma, dma);
3847
3848		tx_desc->buffer_addr = cpu_to_le64(dma);
3849		tx_desc->cmd_type_offset_bsz =
3850			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3851
3852		if (++index == xdp_ring->count)
3853			index = 0;
3854
3855		if (i == nr_frags)
3856			break;
3857
3858		tx_bi = &xdp_ring->tx_bi[index];
3859		tx_desc = I40E_TX_DESC(xdp_ring, index);
3860
3861		data = skb_frag_address(&sinfo->frags[i]);
3862		size = skb_frag_size(&sinfo->frags[i]);
3863		i++;
3864	}
3865
3866	tx_desc->cmd_type_offset_bsz |=
3867		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3868
3869	/* Make certain all of the status bits have been updated
3870	 * before next_to_watch is written.
 
 
 
3871	 */
3872	smp_wmb();
3873
3874	xdp_ring->xdp_tx_active++;
3875
3876	tx_head->next_to_watch = tx_desc;
3877	xdp_ring->next_to_use = index;
3878
3879	return I40E_XDP_TX;
3880
3881unmap:
3882	for (;;) {
3883		tx_bi = &xdp_ring->tx_bi[index];
3884		if (dma_unmap_len(tx_bi, len))
3885			dma_unmap_page(xdp_ring->dev,
3886				       dma_unmap_addr(tx_bi, dma),
3887				       dma_unmap_len(tx_bi, len),
3888				       DMA_TO_DEVICE);
3889		dma_unmap_len_set(tx_bi, len, 0);
3890		if (tx_bi == tx_head)
3891			break;
3892
3893		if (!index)
3894			index += xdp_ring->count;
3895		index--;
3896	}
3897
3898	return I40E_XDP_CONSUMED;
3899}
3900
3901/**
3902 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3903 * @skb:     send buffer
3904 * @tx_ring: ring to send buffer on
3905 *
3906 * Returns NETDEV_TX_OK if sent, else an error code
3907 **/
3908static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3909					struct i40e_ring *tx_ring)
3910{
3911	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3912	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3913	struct i40e_tx_buffer *first;
3914	u32 td_offset = 0;
3915	u32 tx_flags = 0;
 
3916	u32 td_cmd = 0;
3917	u8 hdr_len = 0;
3918	int tso, count;
3919	int tsyn;
 
 
 
3920
3921	/* prefetch the data, we'll need it later */
3922	prefetch(skb->data);
3923
3924	i40e_trace(xmit_frame_ring, skb, tx_ring);
3925
3926	count = i40e_xmit_descriptor_count(skb);
3927	if (i40e_chk_linearize(skb, count)) {
3928		if (__skb_linearize(skb)) {
3929			dev_kfree_skb_any(skb);
3930			return NETDEV_TX_OK;
3931		}
3932		count = i40e_txd_use_count(skb->len);
3933		tx_ring->tx_stats.tx_linearize++;
3934	}
3935
3936	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3937	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3938	 *       + 4 desc gap to avoid the cache line where head is,
3939	 *       + 1 desc for context descriptor,
3940	 * otherwise try next time
3941	 */
3942	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3943		tx_ring->tx_stats.tx_busy++;
3944		return NETDEV_TX_BUSY;
3945	}
3946
3947	/* record the location of the first descriptor for this packet */
3948	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3949	first->skb = skb;
3950	first->bytecount = skb->len;
3951	first->gso_segs = 1;
3952
3953	/* prepare the xmit flags */
3954	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3955		goto out_drop;
 
 
3956
3957	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
 
3958
3959	if (tso < 0)
3960		goto out_drop;
3961	else if (tso)
3962		tx_flags |= I40E_TX_FLAGS_TSO;
3963
3964	/* Always offload the checksum, since it's in the data descriptor */
3965	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3966				  tx_ring, &cd_tunneling);
3967	if (tso < 0)
3968		goto out_drop;
3969
3970	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3971
3972	if (tsyn)
3973		tx_flags |= I40E_TX_FLAGS_TSYN;
3974
3975	/* always enable CRC insertion offload */
3976	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3977
 
 
 
 
 
 
 
 
3978	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3979			   cd_tunneling, cd_l2tag2);
3980
3981	/* Add Flow Director ATR if it's enabled.
3982	 *
3983	 * NOTE: this must always be directly before the data descriptor.
3984	 */
3985	i40e_atr(tx_ring, skb, tx_flags);
3986
3987	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3988			td_cmd, td_offset))
3989		goto cleanup_tx_tstamp;
 
3990
3991	return NETDEV_TX_OK;
3992
3993out_drop:
3994	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3995	dev_kfree_skb_any(first->skb);
3996	first->skb = NULL;
3997cleanup_tx_tstamp:
3998	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3999		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
4000
4001		dev_kfree_skb_any(pf->ptp_tx_skb);
4002		pf->ptp_tx_skb = NULL;
4003		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
4004	}
4005
4006	return NETDEV_TX_OK;
4007}
4008
4009/**
4010 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
4011 * @skb:    send buffer
4012 * @netdev: network interface device structure
4013 *
4014 * Returns NETDEV_TX_OK if sent, else an error code
4015 **/
4016netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4017{
4018	struct i40e_netdev_priv *np = netdev_priv(netdev);
4019	struct i40e_vsi *vsi = np->vsi;
4020	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4021
4022	/* hardware can't handle really short frames, hardware padding works
4023	 * beyond this point
4024	 */
4025	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4026		return NETDEV_TX_OK;
4027
4028	return i40e_xmit_frame_ring(skb, tx_ring);
4029}
4030
4031/**
4032 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4033 * @dev: netdev
4034 * @n: number of frames
4035 * @frames: array of XDP buffer pointers
4036 * @flags: XDP extra info
4037 *
4038 * Returns number of frames successfully sent. Failed frames
4039 * will be free'ed by XDP core.
4040 *
4041 * For error cases, a negative errno code is returned and no-frames
4042 * are transmitted (caller must handle freeing frames).
4043 **/
4044int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4045		  u32 flags)
4046{
4047	struct i40e_netdev_priv *np = netdev_priv(dev);
4048	unsigned int queue_index = smp_processor_id();
4049	struct i40e_vsi *vsi = np->vsi;
4050	struct i40e_pf *pf = vsi->back;
4051	struct i40e_ring *xdp_ring;
4052	int nxmit = 0;
4053	int i;
4054
4055	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4056		return -ENETDOWN;
4057
4058	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4059	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4060		return -ENXIO;
4061
4062	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4063		return -EINVAL;
4064
4065	xdp_ring = vsi->xdp_rings[queue_index];
4066
4067	for (i = 0; i < n; i++) {
4068		struct xdp_frame *xdpf = frames[i];
4069		int err;
4070
4071		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4072		if (err != I40E_XDP_TX)
4073			break;
4074		nxmit++;
4075	}
4076
4077	if (unlikely(flags & XDP_XMIT_FLUSH))
4078		i40e_xdp_ring_update_tail(xdp_ring);
4079
4080	return nxmit;
4081}
v3.15
   1/*******************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2014 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
 
 
 
 
 
  26
  27#include "i40e.h"
  28#include "i40e_prototype.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29
  30static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31				u32 td_tag)
  32{
  33	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  35			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  38}
  39
  40#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  41/**
  42 * i40e_program_fdir_filter - Program a Flow Director filter
  43 * @fdir_data: Packet data that will be filter parameters
  44 * @raw_packet: the pre-allocated packet buffer for FDir
  45 * @pf: The pf pointer
  46 * @add: True for add/update, False for remove
  47 **/
  48int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  49			     struct i40e_pf *pf, bool add)
 
  50{
  51	struct i40e_filter_program_desc *fdir_desc;
  52	struct i40e_tx_buffer *tx_buf;
  53	struct i40e_tx_desc *tx_desc;
  54	struct i40e_ring *tx_ring;
  55	unsigned int fpt, dcc;
  56	struct i40e_vsi *vsi;
  57	struct device *dev;
  58	dma_addr_t dma;
  59	u32 td_cmd = 0;
  60	u16 i;
  61
  62	/* find existing FDIR VSI */
  63	vsi = NULL;
  64	for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
  65		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  66			vsi = pf->vsi[i];
  67	if (!vsi)
  68		return -ENOENT;
  69
  70	tx_ring = vsi->tx_rings[0];
  71	dev = tx_ring->dev;
  72
 
 
 
 
 
 
 
  73	dma = dma_map_single(dev, raw_packet,
  74			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  75	if (dma_mapping_error(dev, dma))
  76		goto dma_fail;
  77
  78	/* grab the next descriptor */
  79	i = tx_ring->next_to_use;
  80	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  81
  82	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
  83
  84	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
  85	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
  86
  87	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
  88	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
  89
  90	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
  91	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
  92
  93	/* Use LAN VSI Id if not programmed by user */
  94	if (fdir_data->dest_vsi == 0)
  95		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
  96		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
  97	else
  98		fpt |= ((u32)fdir_data->dest_vsi <<
  99			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 100		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 101
 102	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 103
 104	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 105
 106	if (add)
 107		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 108		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 109	else
 110		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 111		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 112
 113	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 114	       I40E_TXD_FLTR_QW1_DEST_MASK;
 115
 116	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 117	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 118
 119	if (fdir_data->cnt_index != 0) {
 120		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 121		dcc |= ((u32)fdir_data->cnt_index <<
 122			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 123		       I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 124	}
 125
 126	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 127	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 128
 129	/* Now program a dummy descriptor */
 130	i = tx_ring->next_to_use;
 131	tx_desc = I40E_TX_DESC(tx_ring, i);
 132	tx_buf = &tx_ring->tx_bi[i];
 133
 134	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
 
 
 135
 136	/* record length, and DMA address */
 137	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 138	dma_unmap_addr_set(tx_buf, dma, dma);
 139
 140	tx_desc->buffer_addr = cpu_to_le64(dma);
 141	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 142
 
 
 
 143	tx_desc->cmd_type_offset_bsz =
 144		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 145
 146	/* set the timestamp */
 147	tx_buf->time_stamp = jiffies;
 148
 149	/* Force memory writes to complete before letting h/w
 150	 * know there are new descriptors to fetch.  (Only
 151	 * applicable for weak-ordered memory model archs,
 152	 * such as IA-64).
 153	 */
 154	wmb();
 155
 156	/* Mark the data descriptor to be watched */
 157	tx_buf->next_to_watch = tx_desc;
 158
 159	writel(tx_ring->next_to_use, tx_ring->tail);
 160	return 0;
 161
 162dma_fail:
 163	return -1;
 164}
 165
 166#define IP_HEADER_OFFSET 14
 167#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 168/**
 169 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * @vsi: pointer to the targeted VSI
 171 * @fd_data: the flow director data required for the FDir descriptor
 172 * @raw_packet: the pre-allocated packet buffer for FDir
 173 * @add: true adds a filter, false removes it
 
 174 *
 175 * Returns 0 if the filters were successfully added or removed
 176 **/
 177static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 178				   struct i40e_fdir_filter *fd_data,
 179				   u8 *raw_packet, bool add)
 
 180{
 181	struct i40e_pf *pf = vsi->back;
 182	struct udphdr *udp;
 183	struct iphdr *ip;
 184	bool err = false;
 185	int ret;
 186	int i;
 187	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 188		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 189		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 190
 191	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 192
 193	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 194	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 195	      + sizeof(struct iphdr));
 196
 197	ip->daddr = fd_data->dst_ip[0];
 198	udp->dest = fd_data->dst_port;
 199	ip->saddr = fd_data->src_ip[0];
 200	udp->source = fd_data->src_port;
 201
 202	for (i = I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP;
 203	     i <= I40E_FILTER_PCTYPE_NONF_IPV4_UDP; i++) {
 204		fd_data->pctype = i;
 205		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 206
 207		if (ret) {
 208			dev_info(&pf->pdev->dev,
 209				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 210				 fd_data->pctype, ret);
 211			err = true;
 212		} else {
 213			dev_info(&pf->pdev->dev,
 214				 "Filter OK for PCTYPE %d (ret = %d)\n",
 215				 fd_data->pctype, ret);
 216		}
 
 
 
 
 
 
 
 
 
 
 217	}
 218
 219	return err ? -EOPNOTSUPP : 0;
 
 
 
 220}
 221
 222#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 223/**
 224 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 225 * @vsi: pointer to the targeted VSI
 226 * @fd_data: the flow director data required for the FDir descriptor
 227 * @raw_packet: the pre-allocated packet buffer for FDir
 228 * @add: true adds a filter, false removes it
 
 229 *
 230 * Returns 0 if the filters were successfully added or removed
 231 **/
 232static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 233				   struct i40e_fdir_filter *fd_data,
 234				   u8 *raw_packet, bool add)
 
 235{
 236	struct i40e_pf *pf = vsi->back;
 237	struct tcphdr *tcp;
 238	struct iphdr *ip;
 239	bool err = false;
 240	int ret;
 241	/* Dummy packet */
 242	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 243		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 244		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 245		0x0, 0x72, 0, 0, 0, 0};
 246
 247	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 248
 249	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 250	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 251	      + sizeof(struct iphdr));
 252
 253	ip->daddr = fd_data->dst_ip[0];
 254	tcp->dest = fd_data->dst_port;
 255	ip->saddr = fd_data->src_ip[0];
 256	tcp->source = fd_data->src_port;
 257
 258	if (add) {
 259		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 260			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 261			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 262		}
 263	}
 264
 265	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN;
 266	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 267
 268	if (ret) {
 269		dev_info(&pf->pdev->dev,
 270			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 271			 fd_data->pctype, ret);
 272		err = true;
 273	} else {
 274		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 275			 fd_data->pctype, ret);
 276	}
 277
 278	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 
 279
 280	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 281	if (ret) {
 282		dev_info(&pf->pdev->dev,
 283			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 284			 fd_data->pctype, ret);
 285		err = true;
 286	} else {
 287		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 288			  fd_data->pctype, ret);
 289	}
 290
 291	return err ? -EOPNOTSUPP : 0;
 292}
 293
 
 
 294/**
 295 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 296 * a specific flow spec
 297 * @vsi: pointer to the targeted VSI
 298 * @fd_data: the flow director data required for the FDir descriptor
 299 * @raw_packet: the pre-allocated packet buffer for FDir
 300 * @add: true adds a filter, false removes it
 
 301 *
 302 * Always returns -EOPNOTSUPP
 303 **/
 304static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 305				    struct i40e_fdir_filter *fd_data,
 306				    u8 *raw_packet, bool add)
 
 307{
 308	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309}
 310
 311#define I40E_IP_DUMMY_PACKET_LEN 34
 
 312/**
 313 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 314 * a specific flow spec
 315 * @vsi: pointer to the targeted VSI
 316 * @fd_data: the flow director data required for the FDir descriptor
 317 * @raw_packet: the pre-allocated packet buffer for FDir
 318 * @add: true adds a filter, false removes it
 
 319 *
 320 * Returns 0 if the filters were successfully added or removed
 321 **/
 322static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 323				  struct i40e_fdir_filter *fd_data,
 324				  u8 *raw_packet, bool add)
 
 325{
 326	struct i40e_pf *pf = vsi->back;
 327	struct iphdr *ip;
 328	bool err = false;
 
 
 329	int ret;
 330	int i;
 331	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 332		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 333		0, 0, 0, 0};
 334
 335	memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 336	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 337
 338	ip->saddr = fd_data->src_ip[0];
 339	ip->daddr = fd_data->dst_ip[0];
 340	ip->protocol = 0;
 341
 342	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 343	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 344		fd_data->pctype = i;
 345		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 346
 347		if (ret) {
 348			dev_info(&pf->pdev->dev,
 349				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 350				 fd_data->pctype, ret);
 351			err = true;
 352		} else {
 353			dev_info(&pf->pdev->dev,
 354				 "Filter OK for PCTYPE %d (ret = %d)\n",
 355				 fd_data->pctype, ret);
 356		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358
 359	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 360}
 361
 362/**
 363 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 364 * @vsi: pointer to the targeted VSI
 365 * @cmd: command to get or set RX flow classification rules
 366 * @add: true adds a filter, false removes it
 367 *
 368 **/
 369int i40e_add_del_fdir(struct i40e_vsi *vsi,
 370		      struct i40e_fdir_filter *input, bool add)
 371{
 
 372	struct i40e_pf *pf = vsi->back;
 373	u8 *raw_packet;
 374	int ret;
 375
 376	/* Populate the Flow Director that we have at the moment
 377	 * and allocate the raw packet buffer for the calling functions
 378	 */
 379	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 380	if (!raw_packet)
 381		return -ENOMEM;
 382
 383	switch (input->flow_type & ~FLOW_EXT) {
 384	case TCP_V4_FLOW:
 385		ret = i40e_add_del_fdir_tcpv4(vsi, input, raw_packet,
 386					      add);
 387		break;
 388	case UDP_V4_FLOW:
 389		ret = i40e_add_del_fdir_udpv4(vsi, input, raw_packet,
 390					      add);
 391		break;
 392	case SCTP_V4_FLOW:
 393		ret = i40e_add_del_fdir_sctpv4(vsi, input, raw_packet,
 394					       add);
 
 
 
 
 
 395		break;
 396	case IPV4_FLOW:
 397		ret = i40e_add_del_fdir_ipv4(vsi, input, raw_packet,
 398					     add);
 399		break;
 400	case IP_USER_FLOW:
 401		switch (input->ip4_proto) {
 402		case IPPROTO_TCP:
 403			ret = i40e_add_del_fdir_tcpv4(vsi, input,
 404						      raw_packet, add);
 405			break;
 406		case IPPROTO_UDP:
 407			ret = i40e_add_del_fdir_udpv4(vsi, input,
 408						      raw_packet, add);
 409			break;
 410		case IPPROTO_SCTP:
 411			ret = i40e_add_del_fdir_sctpv4(vsi, input,
 412						       raw_packet, add);
 
 
 413			break;
 414		default:
 415			ret = i40e_add_del_fdir_ipv4(vsi, input,
 416						     raw_packet, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417			break;
 
 
 
 
 
 418		}
 419		break;
 420	default:
 421		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 422			 input->flow_type);
 423		ret = -EINVAL;
 424	}
 425
 426	kfree(raw_packet);
 
 
 
 
 
 427	return ret;
 428}
 429
 430/**
 431 * i40e_fd_handle_status - check the Programming Status for FD
 432 * @rx_ring: the Rx ring for this descriptor
 433 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 434 * @prog_id: the id originally used for programming
 435 *
 436 * This is used to verify if the FD programming or invalidation
 437 * requested by SW to the HW is successful or not and take actions accordingly.
 438 **/
 439static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 440				  union i40e_rx_desc *rx_desc, u8 prog_id)
 441{
 442	struct i40e_pf *pf = rx_ring->vsi->back;
 443	struct pci_dev *pdev = pf->pdev;
 
 444	u32 fcnt_prog, fcnt_avail;
 445	u32 error;
 446	u64 qw;
 447
 448	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 449	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 450		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 451
 452	if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 453		dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 454			 rx_desc->wb.qword0.hi_dword.fd_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456		/* filter programming failed most likely due to table full */
 457		fcnt_prog = i40e_get_current_fd_count(pf);
 458		fcnt_avail = pf->hw.fdir_shared_filter_count +
 459						       pf->fdir_pf_filter_count;
 460
 461		/* If ATR is running fcnt_prog can quickly change,
 462		 * if we are very close to full, it makes sense to disable
 463		 * FD ATR/SB and then re-enable it when there is room.
 464		 */
 465		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 466			/* Turn off ATR first */
 467			if (pf->flags | I40E_FLAG_FD_ATR_ENABLED) {
 468				pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 469				dev_warn(&pdev->dev, "FD filter space full, ATR for further flows will be turned off\n");
 470				pf->auto_disable_flags |=
 471						       I40E_FLAG_FD_ATR_ENABLED;
 472				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 473			} else if (pf->flags | I40E_FLAG_FD_SB_ENABLED) {
 474				pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
 475				dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 476				pf->auto_disable_flags |=
 477							I40E_FLAG_FD_SB_ENABLED;
 478				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 479			}
 480		} else {
 481			dev_info(&pdev->dev, "FD filter programming error\n");
 482		}
 483	} else if (error ==
 484			  (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 485		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 486			dev_info(&pdev->dev, "ntuple filter loc = %d, could not be removed\n",
 487				 rx_desc->wb.qword0.hi_dword.fd_id);
 488	}
 489}
 490
 491/**
 492 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 493 * @ring:      the ring that owns the buffer
 494 * @tx_buffer: the buffer to free
 495 **/
 496static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 497					    struct i40e_tx_buffer *tx_buffer)
 498{
 499	if (tx_buffer->skb) {
 500		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
 
 
 501		if (dma_unmap_len(tx_buffer, len))
 502			dma_unmap_single(ring->dev,
 503					 dma_unmap_addr(tx_buffer, dma),
 504					 dma_unmap_len(tx_buffer, len),
 505					 DMA_TO_DEVICE);
 506	} else if (dma_unmap_len(tx_buffer, len)) {
 507		dma_unmap_page(ring->dev,
 508			       dma_unmap_addr(tx_buffer, dma),
 509			       dma_unmap_len(tx_buffer, len),
 510			       DMA_TO_DEVICE);
 511	}
 
 512	tx_buffer->next_to_watch = NULL;
 513	tx_buffer->skb = NULL;
 514	dma_unmap_len_set(tx_buffer, len, 0);
 515	/* tx_buffer must be completely set up in the transmit path */
 516}
 517
 518/**
 519 * i40e_clean_tx_ring - Free any empty Tx buffers
 520 * @tx_ring: ring to be cleaned
 521 **/
 522void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 523{
 524	unsigned long bi_size;
 525	u16 i;
 526
 527	/* ring already cleared, nothing to do */
 528	if (!tx_ring->tx_bi)
 529		return;
 
 
 
 530
 531	/* Free all the Tx ring sk_buffs */
 532	for (i = 0; i < tx_ring->count; i++)
 533		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 534
 535	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 536	memset(tx_ring->tx_bi, 0, bi_size);
 537
 538	/* Zero out the descriptor ring */
 539	memset(tx_ring->desc, 0, tx_ring->size);
 540
 541	tx_ring->next_to_use = 0;
 542	tx_ring->next_to_clean = 0;
 543
 544	if (!tx_ring->netdev)
 545		return;
 546
 547	/* cleanup Tx queue statistics */
 548	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 549						  tx_ring->queue_index));
 550}
 551
 552/**
 553 * i40e_free_tx_resources - Free Tx resources per queue
 554 * @tx_ring: Tx descriptor ring for a specific queue
 555 *
 556 * Free all transmit software resources
 557 **/
 558void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 559{
 560	i40e_clean_tx_ring(tx_ring);
 561	kfree(tx_ring->tx_bi);
 562	tx_ring->tx_bi = NULL;
 563
 564	if (tx_ring->desc) {
 565		dma_free_coherent(tx_ring->dev, tx_ring->size,
 566				  tx_ring->desc, tx_ring->dma);
 567		tx_ring->desc = NULL;
 568	}
 569}
 570
 571/**
 572 * i40e_get_tx_pending - how many tx descriptors not processed
 573 * @tx_ring: the ring of descriptors
 
 574 *
 575 * Since there is no access to the ring head register
 576 * in XL710, we need to use our local copies
 577 **/
 578static u32 i40e_get_tx_pending(struct i40e_ring *ring)
 579{
 580	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
 581			? ring->next_to_use
 582			: ring->next_to_use + ring->count);
 583	return ntu - ring->next_to_clean;
 584}
 585
 586/**
 587 * i40e_check_tx_hang - Is there a hang in the Tx queue
 588 * @tx_ring: the ring of descriptors
 589 **/
 590static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
 591{
 592	u32 tx_pending = i40e_get_tx_pending(tx_ring);
 593	bool ret = false;
 594
 595	clear_check_for_tx_hang(tx_ring);
 596
 597	/* Check for a hung queue, but be thorough. This verifies
 598	 * that a transmit has been completed since the previous
 599	 * check AND there is at least one packet pending. The
 600	 * ARMED bit is set to indicate a potential hang. The
 601	 * bit is cleared if a pause frame is received to remove
 602	 * false hang detection due to PFC or 802.3x frames. By
 603	 * requiring this to fail twice we avoid races with
 604	 * PFC clearing the ARMED bit and conditions where we
 605	 * run the check_tx_hang logic with a transmit completion
 606	 * pending but without time to complete it yet.
 607	 */
 608	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
 609	    tx_pending) {
 610		/* make sure it is true for two checks in a row */
 611		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
 612				       &tx_ring->state);
 613	} else {
 614		/* update completed stats and disarm the hang check */
 615		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
 616		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
 617	}
 618
 619	return ret;
 
 
 
 
 620}
 621
 622/**
 623 * i40e_get_head - Retrieve head from head writeback
 624 * @tx_ring:  tx ring to fetch head of
 625 *
 626 * Returns value of Tx ring head based on value stored
 627 * in head write-back location
 628 **/
 629static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 630{
 631	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	return le32_to_cpu(*(volatile __le32 *)head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634}
 635
 636/**
 637 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 638 * @tx_ring:  tx ring to clean
 639 * @budget:   how many cleans we're allowed
 
 
 640 *
 641 * Returns true if there's any budget left (e.g. the clean is finished)
 642 **/
 643static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 
 
 644{
 645	u16 i = tx_ring->next_to_clean;
 646	struct i40e_tx_buffer *tx_buf;
 647	struct i40e_tx_desc *tx_head;
 648	struct i40e_tx_desc *tx_desc;
 649	unsigned int total_packets = 0;
 650	unsigned int total_bytes = 0;
 651
 652	tx_buf = &tx_ring->tx_bi[i];
 653	tx_desc = I40E_TX_DESC(tx_ring, i);
 654	i -= tx_ring->count;
 655
 656	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 657
 658	do {
 659		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 660
 661		/* if next_to_watch is not set then there is no work pending */
 662		if (!eop_desc)
 663			break;
 664
 665		/* prevent any other reads prior to eop_desc */
 666		read_barrier_depends();
 667
 
 668		/* we have caught up to head, no work left to do */
 669		if (tx_head == tx_desc)
 670			break;
 671
 672		/* clear next_to_watch to prevent false hangs */
 673		tx_buf->next_to_watch = NULL;
 674
 675		/* update the statistics for this packet */
 676		total_bytes += tx_buf->bytecount;
 677		total_packets += tx_buf->gso_segs;
 678
 679		/* free the skb */
 680		dev_kfree_skb_any(tx_buf->skb);
 
 
 
 681
 682		/* unmap skb header data */
 683		dma_unmap_single(tx_ring->dev,
 684				 dma_unmap_addr(tx_buf, dma),
 685				 dma_unmap_len(tx_buf, len),
 686				 DMA_TO_DEVICE);
 687
 688		/* clear tx_buffer data */
 689		tx_buf->skb = NULL;
 690		dma_unmap_len_set(tx_buf, len, 0);
 691
 692		/* unmap remaining buffers */
 693		while (tx_desc != eop_desc) {
 
 
 694
 695			tx_buf++;
 696			tx_desc++;
 697			i++;
 698			if (unlikely(!i)) {
 699				i -= tx_ring->count;
 700				tx_buf = tx_ring->tx_bi;
 701				tx_desc = I40E_TX_DESC(tx_ring, 0);
 702			}
 703
 704			/* unmap any remaining paged data */
 705			if (dma_unmap_len(tx_buf, len)) {
 706				dma_unmap_page(tx_ring->dev,
 707					       dma_unmap_addr(tx_buf, dma),
 708					       dma_unmap_len(tx_buf, len),
 709					       DMA_TO_DEVICE);
 710				dma_unmap_len_set(tx_buf, len, 0);
 711			}
 712		}
 713
 714		/* move us one more past the eop_desc for start of next pkt */
 715		tx_buf++;
 716		tx_desc++;
 717		i++;
 718		if (unlikely(!i)) {
 719			i -= tx_ring->count;
 720			tx_buf = tx_ring->tx_bi;
 721			tx_desc = I40E_TX_DESC(tx_ring, 0);
 722		}
 723
 
 
 724		/* update budget accounting */
 725		budget--;
 726	} while (likely(budget));
 727
 728	i += tx_ring->count;
 729	tx_ring->next_to_clean = i;
 730	u64_stats_update_begin(&tx_ring->syncp);
 731	tx_ring->stats.bytes += total_bytes;
 732	tx_ring->stats.packets += total_packets;
 733	u64_stats_update_end(&tx_ring->syncp);
 734	tx_ring->q_vector->tx.total_bytes += total_bytes;
 735	tx_ring->q_vector->tx.total_packets += total_packets;
 736
 737	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
 738		/* schedule immediate reset if we believe we hung */
 739		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
 740			 "  VSI                  <%d>\n"
 741			 "  Tx Queue             <%d>\n"
 742			 "  next_to_use          <%x>\n"
 743			 "  next_to_clean        <%x>\n",
 744			 tx_ring->vsi->seid,
 745			 tx_ring->queue_index,
 746			 tx_ring->next_to_use, i);
 747		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
 748			 "  time_stamp           <%lx>\n"
 749			 "  jiffies              <%lx>\n",
 750			 tx_ring->tx_bi[i].time_stamp, jiffies);
 751
 752		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 753
 754		dev_info(tx_ring->dev,
 755			 "tx hang detected on queue %d, resetting adapter\n",
 756			 tx_ring->queue_index);
 757
 758		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
 
 759
 760		/* the adapter is about to reset, no point in enabling stuff */
 761		return true;
 762	}
 763
 764	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 765						      tx_ring->queue_index),
 766				  total_packets, total_bytes);
 767
 768#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 769	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 770		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 771		/* Make sure that anybody stopping the queue after this
 772		 * sees the new next_to_clean.
 773		 */
 774		smp_mb();
 775		if (__netif_subqueue_stopped(tx_ring->netdev,
 776					     tx_ring->queue_index) &&
 777		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 778			netif_wake_subqueue(tx_ring->netdev,
 779					    tx_ring->queue_index);
 780			++tx_ring->tx_stats.restart_queue;
 781		}
 782	}
 783
 784	return budget > 0;
 
 785}
 786
 787/**
 788 * i40e_set_new_dynamic_itr - Find new ITR level
 789 * @rc: structure containing ring performance data
 
 790 *
 791 * Stores a new ITR value based on packets and byte counts during
 792 * the last interrupt.  The advantage of per interrupt computation
 793 * is faster updates and more accurate ITR for the current traffic
 794 * pattern.  Constants in this function were computed based on
 795 * theoretical maximum wire speed and thresholds were set based on
 796 * testing data as well as attempting to minimize response time
 797 * while increasing bulk throughput.
 798 **/
 799static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 800{
 801	enum i40e_latency_range new_latency_range = rc->latency_range;
 802	u32 new_itr = rc->itr;
 803	int bytes_per_int;
 804
 805	if (rc->total_packets == 0 || !rc->itr)
 806		return;
 807
 808	/* simple throttlerate management
 809	 *   0-10MB/s   lowest (100000 ints/s)
 810	 *  10-20MB/s   low    (20000 ints/s)
 811	 *  20-1249MB/s bulk   (8000 ints/s)
 812	 */
 813	bytes_per_int = rc->total_bytes / rc->itr;
 814	switch (rc->itr) {
 815	case I40E_LOWEST_LATENCY:
 816		if (bytes_per_int > 10)
 817			new_latency_range = I40E_LOW_LATENCY;
 818		break;
 819	case I40E_LOW_LATENCY:
 820		if (bytes_per_int > 20)
 821			new_latency_range = I40E_BULK_LATENCY;
 822		else if (bytes_per_int <= 10)
 823			new_latency_range = I40E_LOWEST_LATENCY;
 824		break;
 825	case I40E_BULK_LATENCY:
 826		if (bytes_per_int <= 20)
 827			rc->latency_range = I40E_LOW_LATENCY;
 828		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	}
 
 
 
 
 
 
 
 830
 831	switch (new_latency_range) {
 832	case I40E_LOWEST_LATENCY:
 833		new_itr = I40E_ITR_100K;
 
 
 
 
 834		break;
 835	case I40E_LOW_LATENCY:
 836		new_itr = I40E_ITR_20K;
 
 837		break;
 838	case I40E_BULK_LATENCY:
 839		new_itr = I40E_ITR_8K;
 
 840		break;
 841	default:
 
 
 842		break;
 843	}
 844
 845	if (new_itr != rc->itr) {
 846		/* do an exponential smoothing */
 847		new_itr = (10 * new_itr * rc->itr) /
 848			  ((9 * new_itr) + rc->itr);
 849		rc->itr = new_itr & I40E_MAX_ITR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	rc->total_bytes = 0;
 853	rc->total_packets = 0;
 854}
 855
 
 
 
 
 
 856/**
 857 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
 858 * @q_vector: the vector to adjust
 
 
 
 859 **/
 860static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
 
 861{
 862	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
 863	struct i40e_hw *hw = &q_vector->vsi->back->hw;
 864	u32 reg_addr;
 865	u16 old_itr;
 866
 867	reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
 868	old_itr = q_vector->rx.itr;
 869	i40e_set_new_dynamic_itr(&q_vector->rx);
 870	if (old_itr != q_vector->rx.itr)
 871		wr32(hw, reg_addr, q_vector->rx.itr);
 872
 873	reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
 874	old_itr = q_vector->tx.itr;
 875	i40e_set_new_dynamic_itr(&q_vector->tx);
 876	if (old_itr != q_vector->tx.itr)
 877		wr32(hw, reg_addr, q_vector->tx.itr);
 
 878}
 879
 880/**
 881 * i40e_clean_programming_status - clean the programming status descriptor
 882 * @rx_ring: the rx ring that has this descriptor
 883 * @rx_desc: the rx descriptor written back by HW
 
 884 *
 885 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 886 * status being successful or not and take actions accordingly. FCoE should
 887 * handle its context/filter programming/invalidation status and take actions.
 888 *
 
 889 **/
 890static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 891					  union i40e_rx_desc *rx_desc)
 892{
 893	u64 qw;
 894	u8 id;
 895
 896	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 897	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 898		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 899
 900	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 901		i40e_fd_handle_status(rx_ring, rx_desc, id);
 902}
 903
 904/**
 905 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 906 * @tx_ring: the tx ring to set up
 907 *
 908 * Return 0 on success, negative on error
 909 **/
 910int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 911{
 912	struct device *dev = tx_ring->dev;
 913	int bi_size;
 914
 915	if (!dev)
 916		return -ENOMEM;
 917
 
 
 918	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 919	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 920	if (!tx_ring->tx_bi)
 921		goto err;
 922
 
 
 923	/* round up to nearest 4K */
 924	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 925	/* add u32 for head writeback, align after this takes care of
 926	 * guaranteeing this is at least one cache line in size
 927	 */
 928	tx_ring->size += sizeof(u32);
 929	tx_ring->size = ALIGN(tx_ring->size, 4096);
 930	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 931					   &tx_ring->dma, GFP_KERNEL);
 932	if (!tx_ring->desc) {
 933		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 934			 tx_ring->size);
 935		goto err;
 936	}
 937
 938	tx_ring->next_to_use = 0;
 939	tx_ring->next_to_clean = 0;
 
 940	return 0;
 941
 942err:
 943	kfree(tx_ring->tx_bi);
 944	tx_ring->tx_bi = NULL;
 945	return -ENOMEM;
 946}
 947
 
 
 
 
 
 948/**
 949 * i40e_clean_rx_ring - Free Rx buffers
 950 * @rx_ring: ring to be cleaned
 951 **/
 952void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
 953{
 954	struct device *dev = rx_ring->dev;
 955	struct i40e_rx_buffer *rx_bi;
 956	unsigned long bi_size;
 957	u16 i;
 958
 959	/* ring already cleared, nothing to do */
 960	if (!rx_ring->rx_bi)
 961		return;
 962
 
 
 
 
 
 963	/* Free all the Rx ring sk_buffs */
 964	for (i = 0; i < rx_ring->count; i++) {
 965		rx_bi = &rx_ring->rx_bi[i];
 966		if (rx_bi->dma) {
 967			dma_unmap_single(dev,
 968					 rx_bi->dma,
 969					 rx_ring->rx_buf_len,
 970					 DMA_FROM_DEVICE);
 971			rx_bi->dma = 0;
 972		}
 973		if (rx_bi->skb) {
 974			dev_kfree_skb(rx_bi->skb);
 975			rx_bi->skb = NULL;
 976		}
 977		if (rx_bi->page) {
 978			if (rx_bi->page_dma) {
 979				dma_unmap_page(dev,
 980					       rx_bi->page_dma,
 981					       PAGE_SIZE / 2,
 982					       DMA_FROM_DEVICE);
 983				rx_bi->page_dma = 0;
 984			}
 985			__free_page(rx_bi->page);
 986			rx_bi->page = NULL;
 987			rx_bi->page_offset = 0;
 988		}
 989	}
 990
 991	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 992	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	/* Zero out the descriptor ring */
 995	memset(rx_ring->desc, 0, rx_ring->size);
 996
 
 997	rx_ring->next_to_clean = 0;
 
 998	rx_ring->next_to_use = 0;
 999}
1000
1001/**
1002 * i40e_free_rx_resources - Free Rx resources
1003 * @rx_ring: ring to clean the resources from
1004 *
1005 * Free all receive software resources
1006 **/
1007void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1008{
1009	i40e_clean_rx_ring(rx_ring);
 
 
 
1010	kfree(rx_ring->rx_bi);
1011	rx_ring->rx_bi = NULL;
1012
1013	if (rx_ring->desc) {
1014		dma_free_coherent(rx_ring->dev, rx_ring->size,
1015				  rx_ring->desc, rx_ring->dma);
1016		rx_ring->desc = NULL;
1017	}
1018}
1019
1020/**
1021 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1022 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1023 *
1024 * Returns 0 on success, negative on failure
1025 **/
1026int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1027{
1028	struct device *dev = rx_ring->dev;
1029	int bi_size;
1030
1031	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1032	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1033	if (!rx_ring->rx_bi)
1034		goto err;
1035
1036	/* Round up to nearest 4K */
1037	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1038		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1039		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1040	rx_ring->size = ALIGN(rx_ring->size, 4096);
1041	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1042					   &rx_ring->dma, GFP_KERNEL);
1043
1044	if (!rx_ring->desc) {
1045		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1046			 rx_ring->size);
1047		goto err;
1048	}
1049
 
1050	rx_ring->next_to_clean = 0;
 
1051	rx_ring->next_to_use = 0;
1052
 
 
 
 
 
 
 
1053	return 0;
1054err:
1055	kfree(rx_ring->rx_bi);
1056	rx_ring->rx_bi = NULL;
1057	return -ENOMEM;
1058}
1059
1060/**
1061 * i40e_release_rx_desc - Store the new tail and head values
1062 * @rx_ring: ring to bump
1063 * @val: new head index
1064 **/
1065static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1066{
1067	rx_ring->next_to_use = val;
 
 
 
 
1068	/* Force memory writes to complete before letting h/w
1069	 * know there are new descriptors to fetch.  (Only
1070	 * applicable for weak-ordered memory model archs,
1071	 * such as IA-64).
1072	 */
1073	wmb();
1074	writel(val, rx_ring->tail);
1075}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077/**
1078 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1079 * @rx_ring: ring to place buffers on
1080 * @cleaned_count: number of buffers to replace
 
 
1081 **/
1082void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1083{
1084	u16 i = rx_ring->next_to_use;
1085	union i40e_rx_desc *rx_desc;
1086	struct i40e_rx_buffer *bi;
1087	struct sk_buff *skb;
1088
1089	/* do nothing if no valid netdev defined */
1090	if (!rx_ring->netdev || !cleaned_count)
1091		return;
 
 
 
1092
1093	while (cleaned_count--) {
1094		rx_desc = I40E_RX_DESC(rx_ring, i);
1095		bi = &rx_ring->rx_bi[i];
1096		skb = bi->skb;
1097
1098		if (!skb) {
1099			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1100							rx_ring->rx_buf_len);
1101			if (!skb) {
1102				rx_ring->rx_stats.alloc_buff_failed++;
1103				goto no_buffers;
1104			}
1105			/* initialize queue mapping */
1106			skb_record_rx_queue(skb, rx_ring->queue_index);
1107			bi->skb = skb;
1108		}
1109
1110		if (!bi->dma) {
1111			bi->dma = dma_map_single(rx_ring->dev,
1112						 skb->data,
1113						 rx_ring->rx_buf_len,
1114						 DMA_FROM_DEVICE);
1115			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1116				rx_ring->rx_stats.alloc_buff_failed++;
1117				bi->dma = 0;
1118				goto no_buffers;
1119			}
 
 
 
 
 
 
 
 
1120		}
1121
1122		if (ring_is_ps_enabled(rx_ring)) {
1123			if (!bi->page) {
1124				bi->page = alloc_page(GFP_ATOMIC);
1125				if (!bi->page) {
1126					rx_ring->rx_stats.alloc_page_failed++;
1127					goto no_buffers;
1128				}
1129			}
1130
1131			if (!bi->page_dma) {
1132				/* use a half page if we're re-using */
1133				bi->page_offset ^= PAGE_SIZE / 2;
1134				bi->page_dma = dma_map_page(rx_ring->dev,
1135							    bi->page,
1136							    bi->page_offset,
1137							    PAGE_SIZE / 2,
1138							    DMA_FROM_DEVICE);
1139				if (dma_mapping_error(rx_ring->dev,
1140						      bi->page_dma)) {
1141					rx_ring->rx_stats.alloc_page_failed++;
1142					bi->page_dma = 0;
1143					goto no_buffers;
1144				}
1145			}
1146
1147			/* Refresh the desc even if buffer_addrs didn't change
1148			 * because each write-back erases this info.
1149			 */
1150			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1151			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1152		} else {
1153			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1154			rx_desc->read.hdr_addr = 0;
1155		}
1156		i++;
1157		if (i == rx_ring->count)
1158			i = 0;
1159	}
1160
1161no_buffers:
1162	if (rx_ring->next_to_use != i)
1163		i40e_release_rx_desc(rx_ring, i);
1164}
1165
1166/**
1167 * i40e_receive_skb - Send a completed packet up the stack
1168 * @rx_ring:  rx ring in play
1169 * @skb: packet to send up
1170 * @vlan_tag: vlan tag for packet
1171 **/
1172static void i40e_receive_skb(struct i40e_ring *rx_ring,
1173			     struct sk_buff *skb, u16 vlan_tag)
1174{
1175	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1176	struct i40e_vsi *vsi = rx_ring->vsi;
1177	u64 flags = vsi->back->flags;
1178
1179	if (vlan_tag & VLAN_VID_MASK)
1180		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1181
1182	if (flags & I40E_FLAG_IN_NETPOLL)
1183		netif_rx(skb);
1184	else
1185		napi_gro_receive(&q_vector->napi, skb);
1186}
1187
1188/**
1189 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1190 * @vsi: the VSI we care about
1191 * @skb: skb currently being received and modified
1192 * @rx_status: status value of last descriptor in packet
1193 * @rx_error: error value of last descriptor in packet
1194 * @rx_ptype: ptype value of last descriptor in packet
1195 **/
1196static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1197				    struct sk_buff *skb,
1198				    u32 rx_status,
1199				    u32 rx_error,
1200				    u16 rx_ptype)
1201{
1202	bool ipv4_tunnel, ipv6_tunnel;
1203	__wsum rx_udp_csum;
1204	__sum16 csum;
1205	struct iphdr *iph;
1206
1207	ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1208		      (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1209	ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1210		      (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1211
1212	skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
1213	skb->ip_summed = CHECKSUM_NONE;
1214
 
 
1215	/* Rx csum enabled and ip headers found? */
1216	if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
1217	      rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1218		return;
1219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220	/* likely incorrect csum if alternate IP extension headers found */
1221	if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 
 
1222		return;
1223
1224	/* IP or L4 or outmost IP checksum error */
1225	if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1226			(1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
1227			(1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
1228		vsi->back->hw_csum_rx_error++;
 
 
 
 
1229		return;
1230	}
1231
1232	if (ipv4_tunnel &&
1233	    !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
1234		/* If VXLAN traffic has an outer UDPv4 checksum we need to check
1235		 * it in the driver, hardware does not do it for us.
1236		 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1237		 * so the total length of IPv4 header is IHL*4 bytes
1238		 */
1239		skb->transport_header = skb->mac_header +
1240					sizeof(struct ethhdr) +
1241					(ip_hdr(skb)->ihl * 4);
1242
1243		/* Add 4 bytes for VLAN tagged packets */
1244		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1245					  skb->protocol == htons(ETH_P_8021AD))
1246					  ? VLAN_HLEN : 0;
1247
1248		rx_udp_csum = udp_csum(skb);
1249		iph = ip_hdr(skb);
1250		csum = csum_tcpudp_magic(
1251				iph->saddr, iph->daddr,
1252				(skb->len - skb_transport_offset(skb)),
1253				IPPROTO_UDP, rx_udp_csum);
1254
1255		if (udp_hdr(skb)->check != csum) {
1256			vsi->back->hw_csum_rx_error++;
1257			return;
1258		}
 
 
 
 
 
1259	}
1260
1261	skb->ip_summed = CHECKSUM_UNNECESSARY;
1262}
1263
1264/**
1265 * i40e_rx_hash - returns the hash value from the Rx descriptor
1266 * @ring: descriptor ring
1267 * @rx_desc: specific descriptor
1268 **/
1269static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1270			       union i40e_rx_desc *rx_desc)
1271{
1272	const __le64 rss_mask =
1273		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1274			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1275
1276	if ((ring->netdev->features & NETIF_F_RXHASH) &&
1277	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1278		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1279	else
1280		return 0;
1281}
1282
1283/**
1284 * i40e_ptype_to_hash - get a hash type
1285 * @ptype: the ptype value from the descriptor
1286 *
1287 * Returns a hash type to be used by skb_set_hash
1288 **/
1289static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1290{
1291	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1292
1293	if (!decoded.known)
1294		return PKT_HASH_TYPE_NONE;
1295
1296	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1297	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1298		return PKT_HASH_TYPE_L4;
1299	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1300		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1301		return PKT_HASH_TYPE_L3;
1302	else
1303		return PKT_HASH_TYPE_L2;
1304}
1305
1306/**
1307 * i40e_clean_rx_irq - Reclaim resources after receive completes
1308 * @rx_ring:  rx ring to clean
1309 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310 *
1311 * Returns true if there's any budget left (e.g. the clean is finished)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312 **/
1313static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
1314{
1315	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1316	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1317	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1318	const int current_node = numa_node_id();
1319	struct i40e_vsi *vsi = rx_ring->vsi;
1320	u16 i = rx_ring->next_to_clean;
1321	union i40e_rx_desc *rx_desc;
1322	u32 rx_error, rx_status;
1323	u8 rx_ptype;
1324	u64 qword;
 
 
 
 
 
 
 
 
 
 
 
 
1325
1326	if (budget <= 0)
1327		return 0;
 
 
 
 
1328
1329	rx_desc = I40E_RX_DESC(rx_ring, i);
1330	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1331	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1332		    I40E_RXD_QW1_STATUS_SHIFT;
1333
1334	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1335		union i40e_rx_desc *next_rxd;
1336		struct i40e_rx_buffer *rx_bi;
1337		struct sk_buff *skb;
1338		u16 vlan_tag;
1339		if (i40e_rx_is_programming_status(qword)) {
1340			i40e_clean_programming_status(rx_ring, rx_desc);
1341			I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1342			goto next_desc;
1343		}
1344		rx_bi = &rx_ring->rx_bi[i];
1345		skb = rx_bi->skb;
1346		prefetch(skb->data);
1347
1348		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1349				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1350		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1351				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1352		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1353			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1354
1355		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1356			   I40E_RXD_QW1_ERROR_SHIFT;
1357		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1358		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1359
1360		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1361			   I40E_RXD_QW1_PTYPE_SHIFT;
1362		rx_bi->skb = NULL;
1363
1364		/* This memory barrier is needed to keep us from reading
1365		 * any other fields out of the rx_desc until we know the
1366		 * STATUS_DD bit is set
1367		 */
1368		rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370		/* Get the header and possibly the whole packet
1371		 * If this is an skb from previous receive dma will be 0
1372		 */
1373		if (rx_bi->dma) {
1374			u16 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376			if (rx_hbo)
1377				len = I40E_RX_HDR_SIZE;
1378			else if (rx_sph)
1379				len = rx_header_len;
1380			else if (rx_packet_len)
1381				len = rx_packet_len;   /* 1buf/no split found */
1382			else
1383				len = rx_header_len;   /* split always mode */
1384
1385			skb_put(skb, len);
1386			dma_unmap_single(rx_ring->dev,
1387					 rx_bi->dma,
1388					 rx_ring->rx_buf_len,
1389					 DMA_FROM_DEVICE);
1390			rx_bi->dma = 0;
1391		}
1392
1393		/* Get the rest of the data if this was a header split */
1394		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1395
1396			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1397					   rx_bi->page,
1398					   rx_bi->page_offset,
1399					   rx_packet_len);
1400
1401			skb->len += rx_packet_len;
1402			skb->data_len += rx_packet_len;
1403			skb->truesize += rx_packet_len;
1404
1405			if ((page_count(rx_bi->page) == 1) &&
1406			    (page_to_nid(rx_bi->page) == current_node))
1407				get_page(rx_bi->page);
1408			else
1409				rx_bi->page = NULL;
1410
1411			dma_unmap_page(rx_ring->dev,
1412				       rx_bi->page_dma,
1413				       PAGE_SIZE / 2,
1414				       DMA_FROM_DEVICE);
1415			rx_bi->page_dma = 0;
1416		}
1417		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1418
1419		if (unlikely(
1420		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1421			struct i40e_rx_buffer *next_buffer;
1422
1423			next_buffer = &rx_ring->rx_bi[i];
1424
1425			if (ring_is_ps_enabled(rx_ring)) {
1426				rx_bi->skb = next_buffer->skb;
1427				rx_bi->dma = next_buffer->dma;
1428				next_buffer->skb = skb;
1429				next_buffer->dma = 0;
1430			}
1431			rx_ring->rx_stats.non_eop_descs++;
1432			goto next_desc;
1433		}
1434
1435		/* ERR_MASK will only have valid bits if EOP set */
1436		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1437			dev_kfree_skb_any(skb);
1438			goto next_desc;
1439		}
 
 
 
1440
1441		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1442			     i40e_ptype_to_hash(rx_ptype));
1443		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1444			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1445					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1446					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1447			rx_ring->last_rx_timestamp = jiffies;
1448		}
1449
1450		/* probably a little skewed due to removing CRC */
1451		total_rx_bytes += skb->len;
1452		total_rx_packets++;
 
 
 
 
1453
1454		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
1455
1456		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
 
 
 
 
 
 
 
1457
1458		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1459			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1460			 : 0;
1461		i40e_receive_skb(rx_ring, skb, vlan_tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463		rx_ring->netdev->last_rx = jiffies;
1464		budget--;
1465next_desc:
1466		rx_desc->wb.qword1.status_error_len = 0;
1467		if (!budget)
1468			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470		cleaned_count++;
1471		/* return some buffers to hardware, one at a time is too slow */
1472		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1473			i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1474			cleaned_count = 0;
1475		}
 
 
 
 
 
 
 
1476
1477		/* use prefetched values */
1478		rx_desc = next_rxd;
1479		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1480		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1481			    I40E_RXD_QW1_STATUS_SHIFT;
1482	}
1483
1484	rx_ring->next_to_clean = i;
1485	u64_stats_update_begin(&rx_ring->syncp);
1486	rx_ring->stats.packets += total_rx_packets;
1487	rx_ring->stats.bytes += total_rx_bytes;
1488	u64_stats_update_end(&rx_ring->syncp);
1489	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1490	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
1492	if (cleaned_count)
1493		i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 
1494
1495	return budget > 0;
 
 
 
 
 
 
 
 
 
1496}
1497
1498/**
1499 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1500 * @napi: napi struct with our devices info in it
1501 * @budget: amount of work driver is allowed to do this pass, in packets
1502 *
1503 * This function will clean all queues associated with a q_vector.
1504 *
1505 * Returns the amount of work done
1506 **/
1507int i40e_napi_poll(struct napi_struct *napi, int budget)
1508{
1509	struct i40e_q_vector *q_vector =
1510			       container_of(napi, struct i40e_q_vector, napi);
1511	struct i40e_vsi *vsi = q_vector->vsi;
1512	struct i40e_ring *ring;
 
 
 
 
1513	bool clean_complete = true;
 
1514	int budget_per_ring;
 
1515
1516	if (test_bit(__I40E_DOWN, &vsi->state)) {
1517		napi_complete(napi);
1518		return 0;
1519	}
1520
1521	/* Since the actual Tx work is minimal, we can give the Tx a larger
1522	 * budget and be more aggressive about cleaning up the Tx descriptors.
1523	 */
1524	i40e_for_each_ring(ring, q_vector->tx)
1525		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	/* We attempt to distribute budget to each Rx queue fairly, but don't
1528	 * allow the budget to go below 1 because that would exit polling early.
1529	 */
1530	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1531
1532	i40e_for_each_ring(ring, q_vector->rx)
1533		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	/* If work not completed, return budget and polling will return */
1536	if (!clean_complete)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537		return budget;
 
1538
1539	/* Work is done so exit the polling mode and re-enable the interrupt */
1540	napi_complete(napi);
1541	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1542	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1543		i40e_update_dynamic_itr(q_vector);
1544
1545	if (!test_bit(__I40E_DOWN, &vsi->state)) {
1546		if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1547			i40e_irq_dynamic_enable(vsi,
1548					q_vector->v_idx + vsi->base_vector);
1549		} else {
1550			struct i40e_hw *hw = &vsi->back->hw;
1551			/* We re-enable the queue 0 cause, but
1552			 * don't worry about dynamic_enable
1553			 * because we left it on for the other
1554			 * possible interrupts during napi
1555			 */
1556			u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1557			qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1558			wr32(hw, I40E_QINT_RQCTL(0), qval);
1559
1560			qval = rd32(hw, I40E_QINT_TQCTL(0));
1561			qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1562			wr32(hw, I40E_QINT_TQCTL(0), qval);
1563
1564			i40e_irq_dynamic_enable_icr0(vsi->back);
1565		}
1566	}
 
 
 
 
1567
1568	return 0;
1569}
1570
1571/**
1572 * i40e_atr - Add a Flow Director ATR filter
1573 * @tx_ring:  ring to add programming descriptor to
1574 * @skb:      send buffer
1575 * @flags:    send flags
1576 * @protocol: wire protocol
1577 **/
1578static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1579		     u32 flags, __be16 protocol)
1580{
1581	struct i40e_filter_program_desc *fdir_desc;
1582	struct i40e_pf *pf = tx_ring->vsi->back;
1583	union {
1584		unsigned char *network;
1585		struct iphdr *ipv4;
1586		struct ipv6hdr *ipv6;
1587	} hdr;
1588	struct tcphdr *th;
1589	unsigned int hlen;
1590	u32 flex_ptype, dtype_cmd;
 
1591	u16 i;
1592
1593	/* make sure ATR is enabled */
1594	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
 
 
 
1595		return;
1596
1597	/* if sampling is disabled do nothing */
1598	if (!tx_ring->atr_sample_rate)
1599		return;
1600
 
 
 
 
1601	/* snag network header to get L4 type and address */
1602	hdr.network = skb_network_header(skb);
 
1603
1604	/* Currently only IPv4/IPv6 with TCP is supported */
1605	if (protocol == htons(ETH_P_IP)) {
1606		if (hdr.ipv4->protocol != IPPROTO_TCP)
1607			return;
1608
1609		/* access ihl as a u8 to avoid unaligned access on ia64 */
1610		hlen = (hdr.network[0] & 0x0F) << 2;
1611	} else if (protocol == htons(ETH_P_IPV6)) {
1612		if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1613			return;
 
 
 
 
 
 
 
 
 
1614
1615		hlen = sizeof(struct ipv6hdr);
1616	} else {
1617		return;
1618	}
1619
1620	th = (struct tcphdr *)(hdr.network + hlen);
1621
1622	/* Due to lack of space, no more new filters can be programmed */
1623	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1624		return;
 
 
 
 
 
 
 
1625
1626	tx_ring->atr_count++;
1627
1628	/* sample on all syn/fin/rst packets or once every atr sample rate */
1629	if (!th->fin &&
1630	    !th->syn &&
1631	    !th->rst &&
1632	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
1633		return;
1634
1635	tx_ring->atr_count = 0;
1636
1637	/* grab the next descriptor */
1638	i = tx_ring->next_to_use;
1639	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1640
1641	i++;
1642	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1643
1644	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1645		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
1646	flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1647		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1648		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1649		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1650		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1651
1652	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1653
1654	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1655
1656	dtype_cmd |= (th->fin || th->rst) ?
1657		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1658		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1659		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1660		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1661
1662	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1663		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
1664
1665	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1666		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1667
 
 
 
 
 
 
 
 
 
 
 
 
 
1668	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 
1669	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 
1670}
1671
1672/**
1673 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1674 * @skb:     send buffer
1675 * @tx_ring: ring to send buffer on
1676 * @flags:   the tx flags to be set
1677 *
1678 * Checks the skb and set up correspondingly several generic transmit flags
1679 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1680 *
1681 * Returns error code indicate the frame should be dropped upon error and the
1682 * otherwise  returns 0 to indicate the flags has been set properly.
1683 **/
1684static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1685				      struct i40e_ring *tx_ring,
1686				      u32 *flags)
1687{
1688	__be16 protocol = skb->protocol;
1689	u32  tx_flags = 0;
1690
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	/* if we have a HW VLAN tag being added, default to the HW one */
1692	if (vlan_tx_tag_present(skb)) {
1693		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1694		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1695	/* else if it is a SW VLAN, check the next protocol and store the tag */
1696	} else if (protocol == htons(ETH_P_8021Q)) {
1697		struct vlan_hdr *vhdr, _vhdr;
 
1698		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1699		if (!vhdr)
1700			return -EINVAL;
1701
1702		protocol = vhdr->h_vlan_encapsulated_proto;
1703		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1704		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1705	}
1706
 
 
 
1707	/* Insert 802.1p priority into VLAN header */
1708	if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1709	    ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1710	     (skb->priority != TC_PRIO_CONTROL))) {
1711		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1712		tx_flags |= (skb->priority & 0x7) <<
1713				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1714		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1715			struct vlan_ethhdr *vhdr;
1716			int rc;
1717
1718			rc = skb_cow_head(skb, 0);
1719			if (rc < 0)
1720				return rc;
1721			vhdr = (struct vlan_ethhdr *)skb->data;
1722			vhdr->h_vlan_TCI = htons(tx_flags >>
1723						 I40E_TX_FLAGS_VLAN_SHIFT);
1724		} else {
1725			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1726		}
1727	}
 
 
1728	*flags = tx_flags;
1729	return 0;
1730}
1731
1732/**
1733 * i40e_tso - set up the tso context descriptor
1734 * @tx_ring:  ptr to the ring to send
1735 * @skb:      ptr to the skb we're sending
1736 * @tx_flags: the collected send information
1737 * @protocol: the send protocol
1738 * @hdr_len:  ptr to the size of the packet header
1739 * @cd_tunneling: ptr to context descriptor bits
1740 *
1741 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1742 **/
1743static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1744		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1745		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1746{
1747	u32 cd_cmd, cd_tso_len, cd_mss;
1748	struct ipv6hdr *ipv6h;
1749	struct tcphdr *tcph;
1750	struct iphdr *iph;
1751	u32 l4len;
 
 
 
 
 
 
 
 
 
1752	int err;
1753
 
 
 
1754	if (!skb_is_gso(skb))
1755		return 0;
1756
1757	err = skb_cow_head(skb, 0);
1758	if (err < 0)
1759		return err;
1760
1761	if (protocol == htons(ETH_P_IP)) {
1762		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1763		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1764		iph->tot_len = 0;
1765		iph->check = 0;
1766		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1767						 0, IPPROTO_TCP, 0);
1768	} else if (skb_is_gso_v6(skb)) {
1769
1770		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1771					   : ipv6_hdr(skb);
1772		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1773		ipv6h->payload_len = 0;
1774		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1775					       0, IPPROTO_TCP, 0);
1776	}
1777
1778	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1779	*hdr_len = (skb->encapsulation
1780		    ? (skb_inner_transport_header(skb) - skb->data)
1781		    : skb_transport_offset(skb)) + l4len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783	/* find the field values */
1784	cd_cmd = I40E_TX_CTX_DESC_TSO;
1785	cd_tso_len = skb->len - *hdr_len;
1786	cd_mss = skb_shinfo(skb)->gso_size;
1787	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1788				((u64)cd_tso_len <<
1789				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1790				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1791	return 1;
1792}
1793
1794/**
1795 * i40e_tsyn - set up the tsyn context descriptor
1796 * @tx_ring:  ptr to the ring to send
1797 * @skb:      ptr to the skb we're sending
1798 * @tx_flags: the collected send information
 
1799 *
1800 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1801 **/
1802static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1803		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1804{
1805	struct i40e_pf *pf;
1806
1807	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1808		return 0;
1809
1810	/* Tx timestamps cannot be sampled when doing TSO */
1811	if (tx_flags & I40E_TX_FLAGS_TSO)
1812		return 0;
1813
1814	/* only timestamp the outbound packet if the user has requested it and
1815	 * we are not already transmitting a packet to be timestamped
1816	 */
1817	pf = i40e_netdev_to_pf(tx_ring->netdev);
1818	if (pf->ptp_tx && !pf->ptp_tx_skb) {
 
 
 
 
1819		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
1820		pf->ptp_tx_skb = skb_get(skb);
1821	} else {
 
1822		return 0;
1823	}
1824
1825	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1826				I40E_TXD_CTX_QW1_CMD_SHIFT;
1827
1828	pf->ptp_tx_start = jiffies;
1829	schedule_work(&pf->ptp_tx_work);
1830
1831	return 1;
1832}
1833
1834/**
1835 * i40e_tx_enable_csum - Enable Tx checksum offloads
1836 * @skb: send buffer
1837 * @tx_flags: Tx flags currently set
1838 * @td_cmd: Tx descriptor command bits to set
1839 * @td_offset: Tx descriptor header offsets to set
 
1840 * @cd_tunneling: ptr to context desc bits
1841 **/
1842static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1843				u32 *td_cmd, u32 *td_offset,
1844				struct i40e_ring *tx_ring,
1845				u32 *cd_tunneling)
1846{
1847	struct ipv6hdr *this_ipv6_hdr;
1848	unsigned int this_tcp_hdrlen;
1849	struct iphdr *this_ip_hdr;
1850	u32 network_hdr_len;
1851	u8 l4_hdr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	if (skb->encapsulation) {
1854		network_hdr_len = skb_inner_network_header_len(skb);
1855		this_ip_hdr = inner_ip_hdr(skb);
1856		this_ipv6_hdr = inner_ipv6_hdr(skb);
1857		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1858
1859		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1860
1861			if (tx_flags & I40E_TX_FLAGS_TSO) {
1862				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1863				ip_hdr(skb)->check = 0;
1864			} else {
1865				*cd_tunneling |=
1866					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1867			}
1868		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1869			if (tx_flags & I40E_TX_FLAGS_TSO) {
1870				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1871				ip_hdr(skb)->check = 0;
1872			} else {
1873				*cd_tunneling |=
1874					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1875			}
1876		}
1877
1878		/* Now set the ctx descriptor fields */
1879		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1880					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1881				   I40E_TXD_CTX_UDP_TUNNELING            |
1882				   ((skb_inner_network_offset(skb) -
1883					skb_transport_offset(skb)) >> 1) <<
1884				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886	} else {
1887		network_hdr_len = skb_network_header_len(skb);
1888		this_ip_hdr = ip_hdr(skb);
1889		this_ipv6_hdr = ipv6_hdr(skb);
1890		this_tcp_hdrlen = tcp_hdrlen(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
1893	/* Enable IP checksum offloads */
1894	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1895		l4_hdr = this_ip_hdr->protocol;
1896		/* the stack computes the IP header already, the only time we
1897		 * need the hardware to recompute it is in the case of TSO.
1898		 */
1899		if (tx_flags & I40E_TX_FLAGS_TSO) {
1900			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1901			this_ip_hdr->check = 0;
1902		} else {
1903			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1904		}
1905		/* Now set the td_offset for IP header length */
1906		*td_offset = (network_hdr_len >> 2) <<
1907			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1908	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1909		l4_hdr = this_ipv6_hdr->nexthdr;
1910		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1911		/* Now set the td_offset for IP header length */
1912		*td_offset = (network_hdr_len >> 2) <<
1913			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1914	}
1915	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1916	*td_offset |= (skb_network_offset(skb) >> 1) <<
1917		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1918
1919	/* Enable L4 checksum offloads */
1920	switch (l4_hdr) {
1921	case IPPROTO_TCP:
1922		/* enable checksum offloads */
1923		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1924		*td_offset |= (this_tcp_hdrlen >> 2) <<
1925			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1926		break;
1927	case IPPROTO_SCTP:
1928		/* enable SCTP checksum offload */
1929		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1930		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1931			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1932		break;
1933	case IPPROTO_UDP:
1934		/* enable UDP checksum offload */
1935		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1936		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1937			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1938		break;
1939	default:
1940		break;
 
 
 
1941	}
 
 
 
 
 
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring:  ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952			       const u64 cd_type_cmd_tso_mss,
1953			       const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955	struct i40e_tx_context_desc *context_desc;
1956	int i = tx_ring->next_to_use;
1957
1958	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959	    !cd_tunneling && !cd_l2tag2)
1960		return;
1961
1962	/* grab the next descriptor */
1963	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965	i++;
1966	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968	/* cpu_to_le32 and assign to struct fields */
1969	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
 
1971	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1972}
1973
1974/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975 * i40e_tx_map - Build the Tx descriptor
1976 * @tx_ring:  ring to send buffer on
1977 * @skb:      send buffer
1978 * @first:    first buffer info buffer to use
1979 * @tx_flags: collected send information
1980 * @hdr_len:  size of the packet header
1981 * @td_cmd:   the command field in the descriptor
1982 * @td_offset: offset for checksum or crc
 
 
1983 **/
1984static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1985			struct i40e_tx_buffer *first, u32 tx_flags,
1986			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1987{
1988	unsigned int data_len = skb->data_len;
1989	unsigned int size = skb_headlen(skb);
1990	struct skb_frag_struct *frag;
1991	struct i40e_tx_buffer *tx_bi;
1992	struct i40e_tx_desc *tx_desc;
1993	u16 i = tx_ring->next_to_use;
1994	u32 td_tag = 0;
1995	dma_addr_t dma;
1996	u16 gso_segs;
1997
1998	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1999		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2000		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2001			 I40E_TX_FLAGS_VLAN_SHIFT;
2002	}
2003
2004	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2005		gso_segs = skb_shinfo(skb)->gso_segs;
2006	else
2007		gso_segs = 1;
2008
2009	/* multiply data chunks by size of headers */
2010	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2011	first->gso_segs = gso_segs;
2012	first->skb = skb;
2013	first->tx_flags = tx_flags;
2014
2015	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2016
2017	tx_desc = I40E_TX_DESC(tx_ring, i);
2018	tx_bi = first;
2019
2020	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 
 
2021		if (dma_mapping_error(tx_ring->dev, dma))
2022			goto dma_error;
2023
2024		/* record length, and DMA address */
2025		dma_unmap_len_set(tx_bi, len, size);
2026		dma_unmap_addr_set(tx_bi, dma, dma);
2027
 
 
2028		tx_desc->buffer_addr = cpu_to_le64(dma);
2029
2030		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2031			tx_desc->cmd_type_offset_bsz =
2032				build_ctob(td_cmd, td_offset,
2033					   I40E_MAX_DATA_PER_TXD, td_tag);
2034
2035			tx_desc++;
2036			i++;
 
 
2037			if (i == tx_ring->count) {
2038				tx_desc = I40E_TX_DESC(tx_ring, 0);
2039				i = 0;
2040			}
2041
2042			dma += I40E_MAX_DATA_PER_TXD;
2043			size -= I40E_MAX_DATA_PER_TXD;
2044
 
2045			tx_desc->buffer_addr = cpu_to_le64(dma);
2046		}
2047
2048		if (likely(!data_len))
2049			break;
2050
2051		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2052							  size, td_tag);
2053
2054		tx_desc++;
2055		i++;
 
 
2056		if (i == tx_ring->count) {
2057			tx_desc = I40E_TX_DESC(tx_ring, 0);
2058			i = 0;
2059		}
2060
2061		size = skb_frag_size(frag);
2062		data_len -= size;
2063
2064		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2065				       DMA_TO_DEVICE);
2066
2067		tx_bi = &tx_ring->tx_bi[i];
2068	}
2069
2070	/* Place RS bit on last descriptor of any packet that spans across the
2071	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
 
 
 
 
 
 
 
 
 
 
 
 
 
2072	 */
2073#define WB_STRIDE 0x3
2074	if (((i & WB_STRIDE) != WB_STRIDE) &&
2075	    (first <= &tx_ring->tx_bi[i]) &&
2076	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2077		tx_desc->cmd_type_offset_bsz =
2078			build_ctob(td_cmd, td_offset, size, td_tag) |
2079			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2080					 I40E_TXD_QW1_CMD_SHIFT);
2081	} else {
2082		tx_desc->cmd_type_offset_bsz =
2083			build_ctob(td_cmd, td_offset, size, td_tag) |
2084			cpu_to_le64((u64)I40E_TXD_CMD <<
2085					 I40E_TXD_QW1_CMD_SHIFT);
2086	}
2087
2088	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2089						 tx_ring->queue_index),
2090			     first->bytecount);
2091
2092	/* set the timestamp */
2093	first->time_stamp = jiffies;
2094
2095	/* Force memory writes to complete before letting h/w
2096	 * know there are new descriptors to fetch.  (Only
2097	 * applicable for weak-ordered memory model archs,
2098	 * such as IA-64).
 
2099	 */
2100	wmb();
2101
2102	/* set next_to_watch value indicating a packet is present */
2103	first->next_to_watch = tx_desc;
2104
2105	i++;
2106	if (i == tx_ring->count)
2107		i = 0;
2108
2109	tx_ring->next_to_use = i;
2110
2111	/* notify HW of packet */
2112	writel(i, tx_ring->tail);
 
 
2113
2114	return;
2115
2116dma_error:
2117	dev_info(tx_ring->dev, "TX DMA map failed\n");
2118
2119	/* clear dma mappings for failed tx_bi map */
2120	for (;;) {
2121		tx_bi = &tx_ring->tx_bi[i];
2122		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2123		if (tx_bi == first)
2124			break;
2125		if (i == 0)
2126			i = tx_ring->count;
2127		i--;
2128	}
2129
2130	tx_ring->next_to_use = i;
 
 
2131}
2132
2133/**
2134 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2135 * @tx_ring: the ring to be checked
2136 * @size:    the size buffer we want to assure is available
2137 *
2138 * Returns -EBUSY if a stop is needed, else 0
2139 **/
2140static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141{
2142	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2143	/* Memory barrier before checking head and tail */
2144	smp_mb();
 
 
 
 
2145
2146	/* Check again in a case another CPU has just made room available. */
2147	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2148		return -EBUSY;
2149
2150	/* A reprieve! - use start_queue because it doesn't call schedule */
2151	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2152	++tx_ring->tx_stats.restart_queue;
2153	return 0;
2154}
2155
2156/**
2157 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2158 * @tx_ring: the ring to be checked
2159 * @size:    the size buffer we want to assure is available
2160 *
2161 * Returns 0 if stop is not needed
2162 **/
2163static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2164{
2165	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2166		return 0;
2167	return __i40e_maybe_stop_tx(tx_ring, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168}
2169
2170/**
2171 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2172 * @skb:     send buffer
2173 * @tx_ring: ring to send buffer on
2174 *
2175 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2176 * there is not enough descriptors available in this ring since we need at least
2177 * one descriptor.
2178 **/
2179static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2180				      struct i40e_ring *tx_ring)
2181{
2182#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2183	unsigned int f;
2184#endif
2185	int count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186
2187	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2188	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2189	 *       + 4 desc gap to avoid the cache line where head is,
2190	 *       + 1 desc for context descriptor,
2191	 * otherwise try next time
2192	 */
2193#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2194	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2195		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2196#else
2197	count += skb_shinfo(skb)->nr_frags;
2198#endif
2199	count += TXD_USE_COUNT(skb_headlen(skb));
2200	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2201		tx_ring->tx_stats.tx_busy++;
2202		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
2204	return count;
 
2205}
2206
2207/**
2208 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2209 * @skb:     send buffer
2210 * @tx_ring: ring to send buffer on
2211 *
2212 * Returns NETDEV_TX_OK if sent, else an error code
2213 **/
2214static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2215					struct i40e_ring *tx_ring)
2216{
2217	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2218	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2219	struct i40e_tx_buffer *first;
2220	u32 td_offset = 0;
2221	u32 tx_flags = 0;
2222	__be16 protocol;
2223	u32 td_cmd = 0;
2224	u8 hdr_len = 0;
 
2225	int tsyn;
2226	int tso;
2227	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2228		return NETDEV_TX_BUSY;
2229
2230	/* prepare the xmit flags */
2231	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2232		goto out_drop;
 
 
 
 
 
 
 
 
 
 
 
2233
2234	/* obtain protocol of skb */
2235	protocol = skb->protocol;
 
 
 
 
 
 
 
 
2236
2237	/* record the location of the first descriptor for this packet */
2238	first = &tx_ring->tx_bi[tx_ring->next_to_use];
 
 
 
2239
2240	/* setup IPv4/IPv6 offloads */
2241	if (protocol == htons(ETH_P_IP))
2242		tx_flags |= I40E_TX_FLAGS_IPV4;
2243	else if (protocol == htons(ETH_P_IPV6))
2244		tx_flags |= I40E_TX_FLAGS_IPV6;
2245
2246	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2247		       &cd_type_cmd_tso_mss, &cd_tunneling);
2248
2249	if (tso < 0)
2250		goto out_drop;
2251	else if (tso)
2252		tx_flags |= I40E_TX_FLAGS_TSO;
2253
2254	skb_tx_timestamp(skb);
 
 
 
 
2255
2256	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2257
2258	if (tsyn)
2259		tx_flags |= I40E_TX_FLAGS_TSYN;
2260
2261	/* always enable CRC insertion offload */
2262	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2263
2264	/* Always offload the checksum, since it's in the data descriptor */
2265	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2266		tx_flags |= I40E_TX_FLAGS_CSUM;
2267
2268		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2269				    tx_ring, &cd_tunneling);
2270	}
2271
2272	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2273			   cd_tunneling, cd_l2tag2);
2274
2275	/* Add Flow Director ATR if it's enabled.
2276	 *
2277	 * NOTE: this must always be directly before the data descriptor.
2278	 */
2279	i40e_atr(tx_ring, skb, tx_flags, protocol);
2280
2281	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2282		    td_cmd, td_offset);
2283
2284	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285
2286	return NETDEV_TX_OK;
2287
2288out_drop:
2289	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2290	return NETDEV_TX_OK;
2291}
2292
2293/**
2294 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2295 * @skb:    send buffer
2296 * @netdev: network interface device structure
2297 *
2298 * Returns NETDEV_TX_OK if sent, else an error code
2299 **/
2300netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2301{
2302	struct i40e_netdev_priv *np = netdev_priv(netdev);
2303	struct i40e_vsi *vsi = np->vsi;
2304	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2305
2306	/* hardware can't handle really short frames, hardware padding works
2307	 * beyond this point
2308	 */
2309	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2310		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2311			return NETDEV_TX_OK;
2312		skb->len = I40E_MIN_TX_LEN;
2313		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314	}
2315
2316	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
2317}