Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
  1/*
  2 * Copyright © 2008 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 * Authors:
 24 *    Eric Anholt <eric@anholt.net>
 25 *
 26 */
 27
 28#include <linux/string.h>
 29#include <linux/bitops.h>
 30#include <drm/drmP.h>
 31#include <drm/i915_drm.h>
 32#include "i915_drv.h"
 33
 34/** @file i915_gem_tiling.c
 35 *
 36 * Support for managing tiling state of buffer objects.
 37 *
 38 * The idea behind tiling is to increase cache hit rates by rearranging
 39 * pixel data so that a group of pixel accesses are in the same cacheline.
 40 * Performance improvement from doing this on the back/depth buffer are on
 41 * the order of 30%.
 42 *
 43 * Intel architectures make this somewhat more complicated, though, by
 44 * adjustments made to addressing of data when the memory is in interleaved
 45 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 46 * For interleaved memory, the CPU sends every sequential 64 bytes
 47 * to an alternate memory channel so it can get the bandwidth from both.
 48 *
 49 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 50 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 51 * it does it a little differently, since one walks addresses not just in the
 52 * X direction but also Y.  So, along with alternating channels when bit
 53 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 54 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 55 * are common to both the 915 and 965-class hardware.
 56 *
 57 * The CPU also sometimes XORs in higher bits as well, to improve
 58 * bandwidth doing strided access like we do so frequently in graphics.  This
 59 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 60 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 61 * decode.
 62 *
 63 * All of this bit 6 XORing has an effect on our memory management,
 64 * as we need to make sure that the 3d driver can correctly address object
 65 * contents.
 66 *
 67 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 68 * required.
 69 *
 70 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 71 * 17 is not just a page offset, so as we page an objet out and back in,
 72 * individual pages in it will have different bit 17 addresses, resulting in
 73 * each 64 bytes being swapped with its neighbor!
 74 *
 75 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 76 * swizzling it needs to do is, since it's writing with the CPU to the pages
 77 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 78 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 79 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 80 * to match what the GPU expects.
 81 */
 82
 83/**
 84 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 85 * access through main memory.
 86 */
 87void
 88i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
 89{
 90	struct drm_i915_private *dev_priv = dev->dev_private;
 91	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
 92	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
 93
 94	if (IS_VALLEYVIEW(dev)) {
 95		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
 96		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
 97	} else if (INTEL_INFO(dev)->gen >= 6) {
 98		uint32_t dimm_c0, dimm_c1;
 99		dimm_c0 = I915_READ(MAD_DIMM_C0);
100		dimm_c1 = I915_READ(MAD_DIMM_C1);
101		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103		/* Enable swizzling when the channels are populated with
104		 * identically sized dimms. We don't need to check the 3rd
105		 * channel because no cpu with gpu attached ships in that
106		 * configuration. Also, swizzling only makes sense for 2
107		 * channels anyway. */
108		if (dimm_c0 == dimm_c1) {
109			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
110			swizzle_y = I915_BIT_6_SWIZZLE_9;
111		} else {
112			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
113			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
114		}
115	} else if (IS_GEN5(dev)) {
116		/* On Ironlake whatever DRAM config, GPU always do
117		 * same swizzling setup.
118		 */
119		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120		swizzle_y = I915_BIT_6_SWIZZLE_9;
121	} else if (IS_GEN2(dev)) {
122		/* As far as we know, the 865 doesn't have these bit 6
123		 * swizzling issues.
124		 */
125		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
126		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128		uint32_t dcc;
129
130		/* On 9xx chipsets, channel interleave by the CPU is
131		 * determined by DCC.  For single-channel, neither the CPU
132		 * nor the GPU do swizzling.  For dual channel interleaved,
133		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
134		 * 9 for Y tiled.  The CPU's interleave is independent, and
135		 * can be based on either bit 11 (haven't seen this yet) or
136		 * bit 17 (common).
137		 */
138		dcc = I915_READ(DCC);
139		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
140		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
141		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
142			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144			break;
145		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
147				/* This is the base swizzling by the GPU for
148				 * tiled buffers.
149				 */
150				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
151				swizzle_y = I915_BIT_6_SWIZZLE_9;
152			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
153				/* Bit 11 swizzling by the CPU in addition. */
154				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
155				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
156			} else {
157				/* Bit 17 swizzling by the CPU in addition. */
158				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
159				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160			}
161			break;
162		}
163		if (dcc == 0xffffffff) {
164			DRM_ERROR("Couldn't read from MCHBAR.  "
165				  "Disabling tiling.\n");
166			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
167			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
168		}
169	} else {
170		/* The 965, G33, and newer, have a very flexible memory
171		 * configuration.  It will enable dual-channel mode
172		 * (interleaving) on as much memory as it can, and the GPU
173		 * will additionally sometimes enable different bit 6
174		 * swizzling for tiled objects from the CPU.
175		 *
176		 * Here's what I found on the G965:
177		 *    slot fill         memory size  swizzling
178		 * 0A   0B   1A   1B    1-ch   2-ch
179		 * 512  0    0    0     512    0     O
180		 * 512  0    512  0     16     1008  X
181		 * 512  0    0    512   16     1008  X
182		 * 0    512  0    512   16     1008  X
183		 * 1024 1024 1024 0     2048   1024  O
184		 *
185		 * We could probably detect this based on either the DRB
186		 * matching, which was the case for the swizzling required in
187		 * the table above, or from the 1-ch value being less than
188		 * the minimum size of a rank.
189		 */
190		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
191			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
192			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
193		} else {
194			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
195			swizzle_y = I915_BIT_6_SWIZZLE_9;
196		}
197	}
198
199	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
200	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
201}
202
203/* Check pitch constriants for all chips & tiling formats */
204static bool
205i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
206{
207	int tile_width;
208
209	/* Linear is always fine */
210	if (tiling_mode == I915_TILING_NONE)
211		return true;
212
213	if (IS_GEN2(dev) ||
214	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215		tile_width = 128;
216	else
217		tile_width = 512;
218
219	/* check maximum stride & object size */
220	/* i965+ stores the end address of the gtt mapping in the fence
221	 * reg, so dont bother to check the size */
222	if (INTEL_INFO(dev)->gen >= 7) {
223		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
224			return false;
225	} else if (INTEL_INFO(dev)->gen >= 4) {
226		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
227			return false;
228	} else {
229		if (stride > 8192)
230			return false;
231
232		if (IS_GEN3(dev)) {
233			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
234				return false;
235		} else {
236			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
237				return false;
238		}
239	}
240
241	if (stride < tile_width)
242		return false;
243
244	/* 965+ just needs multiples of tile width */
245	if (INTEL_INFO(dev)->gen >= 4) {
246		if (stride & (tile_width - 1))
247			return false;
248		return true;
249	}
250
251	/* Pre-965 needs power of two tile widths */
252	if (stride & (stride - 1))
253		return false;
254
255	return true;
256}
257
258/* Is the current GTT allocation valid for the change in tiling? */
259static bool
260i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
261{
262	u32 size;
263
264	if (tiling_mode == I915_TILING_NONE)
265		return true;
266
267	if (INTEL_INFO(obj->base.dev)->gen >= 4)
268		return true;
269
270	if (INTEL_INFO(obj->base.dev)->gen == 3) {
271		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
272			return false;
273	} else {
274		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
275			return false;
276	}
277
278	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
279	if (i915_gem_obj_ggtt_size(obj) != size)
280		return false;
281
282	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
283		return false;
284
285	return true;
286}
287
288/**
289 * Sets the tiling mode of an object, returning the required swizzling of
290 * bit 6 of addresses in the object.
291 */
292int
293i915_gem_set_tiling(struct drm_device *dev, void *data,
294		   struct drm_file *file)
295{
296	struct drm_i915_gem_set_tiling *args = data;
297	struct drm_i915_private *dev_priv = dev->dev_private;
298	struct drm_i915_gem_object *obj;
299	int ret = 0;
300
301	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
302	if (&obj->base == NULL)
303		return -ENOENT;
304
305	if (!i915_tiling_ok(dev,
306			    args->stride, obj->base.size, args->tiling_mode)) {
307		drm_gem_object_unreference_unlocked(&obj->base);
308		return -EINVAL;
309	}
310
311	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
312		drm_gem_object_unreference_unlocked(&obj->base);
313		return -EBUSY;
314	}
315
316	if (args->tiling_mode == I915_TILING_NONE) {
317		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
318		args->stride = 0;
319	} else {
320		if (args->tiling_mode == I915_TILING_X)
321			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
322		else
323			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
324
325		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
326		 * from aborting the application on sw fallbacks to bit 17,
327		 * and we use the pread/pwrite bit17 paths to swizzle for it.
328		 * If there was a user that was relying on the swizzle
329		 * information for drm_intel_bo_map()ed reads/writes this would
330		 * break it, but we don't have any of those.
331		 */
332		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
333			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
334		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
335			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
336
337		/* If we can't handle the swizzling, make it untiled. */
338		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
339			args->tiling_mode = I915_TILING_NONE;
340			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
341			args->stride = 0;
342		}
343	}
344
345	mutex_lock(&dev->struct_mutex);
346	if (args->tiling_mode != obj->tiling_mode ||
347	    args->stride != obj->stride) {
348		/* We need to rebind the object if its current allocation
349		 * no longer meets the alignment restrictions for its new
350		 * tiling mode. Otherwise we can just leave it alone, but
351		 * need to ensure that any fence register is updated before
352		 * the next fenced (either through the GTT or by the BLT unit
353		 * on older GPUs) access.
354		 *
355		 * After updating the tiling parameters, we then flag whether
356		 * we need to update an associated fence register. Note this
357		 * has to also include the unfenced register the GPU uses
358		 * whilst executing a fenced command for an untiled object.
359		 */
360
361		obj->map_and_fenceable =
362			!i915_gem_obj_ggtt_bound(obj) ||
363			(i915_gem_obj_ggtt_offset(obj) +
364			 obj->base.size <= dev_priv->gtt.mappable_end &&
365			 i915_gem_object_fence_ok(obj, args->tiling_mode));
366
367		/* Rebind if we need a change of alignment */
368		if (!obj->map_and_fenceable) {
369			u32 unfenced_align =
370				i915_gem_get_gtt_alignment(dev, obj->base.size,
371							    args->tiling_mode,
372							    false);
373			if (i915_gem_obj_ggtt_offset(obj) & (unfenced_align - 1))
374				ret = i915_gem_object_ggtt_unbind(obj);
375		}
376
377		if (ret == 0) {
378			obj->fence_dirty =
379				obj->fenced_gpu_access ||
380				obj->fence_reg != I915_FENCE_REG_NONE;
381
382			obj->tiling_mode = args->tiling_mode;
383			obj->stride = args->stride;
384
385			/* Force the fence to be reacquired for GTT access */
386			i915_gem_release_mmap(obj);
387		}
388	}
389	/* we have to maintain this existing ABI... */
390	args->stride = obj->stride;
391	args->tiling_mode = obj->tiling_mode;
392
393	/* Try to preallocate memory required to save swizzling on put-pages */
394	if (i915_gem_object_needs_bit17_swizzle(obj)) {
395		if (obj->bit_17 == NULL) {
396			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
397					      sizeof(long), GFP_KERNEL);
398		}
399	} else {
400		kfree(obj->bit_17);
401		obj->bit_17 = NULL;
402	}
403
404	drm_gem_object_unreference(&obj->base);
405	mutex_unlock(&dev->struct_mutex);
406
407	return ret;
408}
409
410/**
411 * Returns the current tiling mode and required bit 6 swizzling for the object.
412 */
413int
414i915_gem_get_tiling(struct drm_device *dev, void *data,
415		   struct drm_file *file)
416{
417	struct drm_i915_gem_get_tiling *args = data;
418	struct drm_i915_private *dev_priv = dev->dev_private;
419	struct drm_i915_gem_object *obj;
420
421	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
422	if (&obj->base == NULL)
423		return -ENOENT;
424
425	mutex_lock(&dev->struct_mutex);
426
427	args->tiling_mode = obj->tiling_mode;
428	switch (obj->tiling_mode) {
429	case I915_TILING_X:
430		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
431		break;
432	case I915_TILING_Y:
433		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
434		break;
435	case I915_TILING_NONE:
436		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
437		break;
438	default:
439		DRM_ERROR("unknown tiling mode\n");
440	}
441
442	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
443	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
444		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
445	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
446		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
447
448	drm_gem_object_unreference(&obj->base);
449	mutex_unlock(&dev->struct_mutex);
450
451	return 0;
452}
453
454/**
455 * Swap every 64 bytes of this page around, to account for it having a new
456 * bit 17 of its physical address and therefore being interpreted differently
457 * by the GPU.
458 */
459static void
460i915_gem_swizzle_page(struct page *page)
461{
462	char temp[64];
463	char *vaddr;
464	int i;
465
466	vaddr = kmap(page);
467
468	for (i = 0; i < PAGE_SIZE; i += 128) {
469		memcpy(temp, &vaddr[i], 64);
470		memcpy(&vaddr[i], &vaddr[i + 64], 64);
471		memcpy(&vaddr[i + 64], temp, 64);
472	}
473
474	kunmap(page);
475}
476
477void
478i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
479{
480	struct sg_page_iter sg_iter;
481	int i;
482
483	if (obj->bit_17 == NULL)
484		return;
485
486	i = 0;
487	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
488		struct page *page = sg_page_iter_page(&sg_iter);
489		char new_bit_17 = page_to_phys(page) >> 17;
490		if ((new_bit_17 & 0x1) !=
491		    (test_bit(i, obj->bit_17) != 0)) {
492			i915_gem_swizzle_page(page);
493			set_page_dirty(page);
494		}
495		i++;
496	}
497}
498
499void
500i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
501{
502	struct sg_page_iter sg_iter;
503	int page_count = obj->base.size >> PAGE_SHIFT;
504	int i;
505
506	if (obj->bit_17 == NULL) {
507		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
508				      sizeof(long), GFP_KERNEL);
509		if (obj->bit_17 == NULL) {
510			DRM_ERROR("Failed to allocate memory for bit 17 "
511				  "record\n");
512			return;
513		}
514	}
515
516	i = 0;
517	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
518		if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
519			__set_bit(i, obj->bit_17);
520		else
521			__clear_bit(i, obj->bit_17);
522		i++;
523	}
524}