Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/*
   2 * EDMA3 support for DaVinci
   3 *
   4 * Copyright (C) 2006-2009 Texas Instruments.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20#include <linux/err.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/edma.h>
  29#include <linux/of_address.h>
  30#include <linux/of_device.h>
  31#include <linux/of_dma.h>
  32#include <linux/of_irq.h>
  33#include <linux/pm_runtime.h>
  34
  35#include <linux/platform_data/edma.h>
  36
  37/* Offsets matching "struct edmacc_param" */
  38#define PARM_OPT		0x00
  39#define PARM_SRC		0x04
  40#define PARM_A_B_CNT		0x08
  41#define PARM_DST		0x0c
  42#define PARM_SRC_DST_BIDX	0x10
  43#define PARM_LINK_BCNTRLD	0x14
  44#define PARM_SRC_DST_CIDX	0x18
  45#define PARM_CCNT		0x1c
  46
  47#define PARM_SIZE		0x20
  48
  49/* Offsets for EDMA CC global channel registers and their shadows */
  50#define SH_ER		0x00	/* 64 bits */
  51#define SH_ECR		0x08	/* 64 bits */
  52#define SH_ESR		0x10	/* 64 bits */
  53#define SH_CER		0x18	/* 64 bits */
  54#define SH_EER		0x20	/* 64 bits */
  55#define SH_EECR		0x28	/* 64 bits */
  56#define SH_EESR		0x30	/* 64 bits */
  57#define SH_SER		0x38	/* 64 bits */
  58#define SH_SECR		0x40	/* 64 bits */
  59#define SH_IER		0x50	/* 64 bits */
  60#define SH_IECR		0x58	/* 64 bits */
  61#define SH_IESR		0x60	/* 64 bits */
  62#define SH_IPR		0x68	/* 64 bits */
  63#define SH_ICR		0x70	/* 64 bits */
  64#define SH_IEVAL	0x78
  65#define SH_QER		0x80
  66#define SH_QEER		0x84
  67#define SH_QEECR	0x88
  68#define SH_QEESR	0x8c
  69#define SH_QSER		0x90
  70#define SH_QSECR	0x94
  71#define SH_SIZE		0x200
  72
  73/* Offsets for EDMA CC global registers */
  74#define EDMA_REV	0x0000
  75#define EDMA_CCCFG	0x0004
  76#define EDMA_QCHMAP	0x0200	/* 8 registers */
  77#define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
  78#define EDMA_QDMAQNUM	0x0260
  79#define EDMA_QUETCMAP	0x0280
  80#define EDMA_QUEPRI	0x0284
  81#define EDMA_EMR	0x0300	/* 64 bits */
  82#define EDMA_EMCR	0x0308	/* 64 bits */
  83#define EDMA_QEMR	0x0310
  84#define EDMA_QEMCR	0x0314
  85#define EDMA_CCERR	0x0318
  86#define EDMA_CCERRCLR	0x031c
  87#define EDMA_EEVAL	0x0320
  88#define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
  89#define EDMA_QRAE	0x0380	/* 4 registers */
  90#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
  91#define EDMA_QSTAT	0x0600	/* 2 registers */
  92#define EDMA_QWMTHRA	0x0620
  93#define EDMA_QWMTHRB	0x0624
  94#define EDMA_CCSTAT	0x0640
  95
  96#define EDMA_M		0x1000	/* global channel registers */
  97#define EDMA_ECR	0x1008
  98#define EDMA_ECRH	0x100C
  99#define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
 100#define EDMA_PARM	0x4000	/* 128 param entries */
 101
 102#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 103
 104#define EDMA_DCHMAP	0x0100  /* 64 registers */
 105#define CHMAP_EXIST	BIT(24)
 106
 107#define EDMA_MAX_DMACH           64
 108#define EDMA_MAX_PARAMENTRY     512
 109
 110/*****************************************************************************/
 111
 112static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
 113
 114static inline unsigned int edma_read(unsigned ctlr, int offset)
 115{
 116	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
 117}
 118
 119static inline void edma_write(unsigned ctlr, int offset, int val)
 120{
 121	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
 122}
 123static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
 124		unsigned or)
 125{
 126	unsigned val = edma_read(ctlr, offset);
 127	val &= and;
 128	val |= or;
 129	edma_write(ctlr, offset, val);
 130}
 131static inline void edma_and(unsigned ctlr, int offset, unsigned and)
 132{
 133	unsigned val = edma_read(ctlr, offset);
 134	val &= and;
 135	edma_write(ctlr, offset, val);
 136}
 137static inline void edma_or(unsigned ctlr, int offset, unsigned or)
 138{
 139	unsigned val = edma_read(ctlr, offset);
 140	val |= or;
 141	edma_write(ctlr, offset, val);
 142}
 143static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
 144{
 145	return edma_read(ctlr, offset + (i << 2));
 146}
 147static inline void edma_write_array(unsigned ctlr, int offset, int i,
 148		unsigned val)
 149{
 150	edma_write(ctlr, offset + (i << 2), val);
 151}
 152static inline void edma_modify_array(unsigned ctlr, int offset, int i,
 153		unsigned and, unsigned or)
 154{
 155	edma_modify(ctlr, offset + (i << 2), and, or);
 156}
 157static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
 158{
 159	edma_or(ctlr, offset + (i << 2), or);
 160}
 161static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
 162		unsigned or)
 163{
 164	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
 165}
 166static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
 167		unsigned val)
 168{
 169	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
 170}
 171static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
 172{
 173	return edma_read(ctlr, EDMA_SHADOW0 + offset);
 174}
 175static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
 176		int i)
 177{
 178	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
 179}
 180static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
 181{
 182	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
 183}
 184static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
 185		unsigned val)
 186{
 187	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
 188}
 189static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
 190		int param_no)
 191{
 192	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
 193}
 194static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
 195		unsigned val)
 196{
 197	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
 198}
 199static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
 200		unsigned and, unsigned or)
 201{
 202	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
 203}
 204static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
 205		unsigned and)
 206{
 207	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
 208}
 209static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
 210		unsigned or)
 211{
 212	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
 213}
 214
 215static inline void set_bits(int offset, int len, unsigned long *p)
 216{
 217	for (; len > 0; len--)
 218		set_bit(offset + (len - 1), p);
 219}
 220
 221static inline void clear_bits(int offset, int len, unsigned long *p)
 222{
 223	for (; len > 0; len--)
 224		clear_bit(offset + (len - 1), p);
 225}
 226
 227/*****************************************************************************/
 228
 229/* actual number of DMA channels and slots on this silicon */
 230struct edma {
 231	/* how many dma resources of each type */
 232	unsigned	num_channels;
 233	unsigned	num_region;
 234	unsigned	num_slots;
 235	unsigned	num_tc;
 236	unsigned	num_cc;
 237	enum dma_event_q 	default_queue;
 238
 239	/* list of channels with no even trigger; terminated by "-1" */
 240	const s8	*noevent;
 241
 242	/* The edma_inuse bit for each PaRAM slot is clear unless the
 243	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 244	 */
 245	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 246
 247	/* The edma_unused bit for each channel is clear unless
 248	 * it is not being used on this platform. It uses a bit
 249	 * of SOC-specific initialization code.
 250	 */
 251	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
 252
 253	unsigned	irq_res_start;
 254	unsigned	irq_res_end;
 255
 256	struct dma_interrupt_data {
 257		void (*callback)(unsigned channel, unsigned short ch_status,
 258				void *data);
 259		void *data;
 260	} intr_data[EDMA_MAX_DMACH];
 261};
 262
 263static struct edma *edma_cc[EDMA_MAX_CC];
 264static int arch_num_cc;
 265
 266/* dummy param set used to (re)initialize parameter RAM slots */
 267static const struct edmacc_param dummy_paramset = {
 268	.link_bcntrld = 0xffff,
 269	.ccnt = 1,
 270};
 271
 272static const struct of_device_id edma_of_ids[] = {
 273	{ .compatible = "ti,edma3", },
 274	{}
 275};
 276
 277/*****************************************************************************/
 278
 279static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
 280		enum dma_event_q queue_no)
 281{
 282	int bit = (ch_no & 0x7) * 4;
 283
 284	/* default to low priority queue */
 285	if (queue_no == EVENTQ_DEFAULT)
 286		queue_no = edma_cc[ctlr]->default_queue;
 287
 288	queue_no &= 7;
 289	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
 290			~(0x7 << bit), queue_no << bit);
 291}
 292
 293static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
 294{
 295	int bit = queue_no * 4;
 296	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
 297}
 298
 299static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
 300		int priority)
 301{
 302	int bit = queue_no * 4;
 303	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
 304			((priority & 0x7) << bit));
 305}
 306
 307/**
 308 * map_dmach_param - Maps channel number to param entry number
 309 *
 310 * This maps the dma channel number to param entry numberter. In
 311 * other words using the DMA channel mapping registers a param entry
 312 * can be mapped to any channel
 313 *
 314 * Callers are responsible for ensuring the channel mapping logic is
 315 * included in that particular EDMA variant (Eg : dm646x)
 316 *
 317 */
 318static void __init map_dmach_param(unsigned ctlr)
 319{
 320	int i;
 321	for (i = 0; i < EDMA_MAX_DMACH; i++)
 322		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
 323}
 324
 325static inline void
 326setup_dma_interrupt(unsigned lch,
 327	void (*callback)(unsigned channel, u16 ch_status, void *data),
 328	void *data)
 329{
 330	unsigned ctlr;
 331
 332	ctlr = EDMA_CTLR(lch);
 333	lch = EDMA_CHAN_SLOT(lch);
 334
 335	if (!callback)
 336		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
 337				BIT(lch & 0x1f));
 338
 339	edma_cc[ctlr]->intr_data[lch].callback = callback;
 340	edma_cc[ctlr]->intr_data[lch].data = data;
 341
 342	if (callback) {
 343		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
 344				BIT(lch & 0x1f));
 345		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
 346				BIT(lch & 0x1f));
 347	}
 348}
 349
 350static int irq2ctlr(int irq)
 351{
 352	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
 353		return 0;
 354	else if (irq >= edma_cc[1]->irq_res_start &&
 355		irq <= edma_cc[1]->irq_res_end)
 356		return 1;
 357
 358	return -1;
 359}
 360
 361/******************************************************************************
 362 *
 363 * DMA interrupt handler
 364 *
 365 *****************************************************************************/
 366static irqreturn_t dma_irq_handler(int irq, void *data)
 367{
 368	int ctlr;
 369	u32 sh_ier;
 370	u32 sh_ipr;
 371	u32 bank;
 372
 373	ctlr = irq2ctlr(irq);
 374	if (ctlr < 0)
 375		return IRQ_NONE;
 376
 377	dev_dbg(data, "dma_irq_handler\n");
 378
 379	sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
 380	if (!sh_ipr) {
 381		sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
 382		if (!sh_ipr)
 383			return IRQ_NONE;
 384		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
 385		bank = 1;
 386	} else {
 387		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
 388		bank = 0;
 389	}
 390
 391	do {
 392		u32 slot;
 393		u32 channel;
 394
 395		dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
 396
 397		slot = __ffs(sh_ipr);
 398		sh_ipr &= ~(BIT(slot));
 399
 400		if (sh_ier & BIT(slot)) {
 401			channel = (bank << 5) | slot;
 402			/* Clear the corresponding IPR bits */
 403			edma_shadow0_write_array(ctlr, SH_ICR, bank,
 404					BIT(slot));
 405			if (edma_cc[ctlr]->intr_data[channel].callback)
 406				edma_cc[ctlr]->intr_data[channel].callback(
 407					channel, EDMA_DMA_COMPLETE,
 408					edma_cc[ctlr]->intr_data[channel].data);
 409		}
 410	} while (sh_ipr);
 411
 412	edma_shadow0_write(ctlr, SH_IEVAL, 1);
 413	return IRQ_HANDLED;
 414}
 415
 416/******************************************************************************
 417 *
 418 * DMA error interrupt handler
 419 *
 420 *****************************************************************************/
 421static irqreturn_t dma_ccerr_handler(int irq, void *data)
 422{
 423	int i;
 424	int ctlr;
 425	unsigned int cnt = 0;
 426
 427	ctlr = irq2ctlr(irq);
 428	if (ctlr < 0)
 429		return IRQ_NONE;
 430
 431	dev_dbg(data, "dma_ccerr_handler\n");
 432
 433	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 434	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 435	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 436	    (edma_read(ctlr, EDMA_CCERR) == 0))
 437		return IRQ_NONE;
 438
 439	while (1) {
 440		int j = -1;
 441		if (edma_read_array(ctlr, EDMA_EMR, 0))
 442			j = 0;
 443		else if (edma_read_array(ctlr, EDMA_EMR, 1))
 444			j = 1;
 445		if (j >= 0) {
 446			dev_dbg(data, "EMR%d %08x\n", j,
 447					edma_read_array(ctlr, EDMA_EMR, j));
 448			for (i = 0; i < 32; i++) {
 449				int k = (j << 5) + i;
 450				if (edma_read_array(ctlr, EDMA_EMR, j) &
 451							BIT(i)) {
 452					/* Clear the corresponding EMR bits */
 453					edma_write_array(ctlr, EDMA_EMCR, j,
 454							BIT(i));
 455					/* Clear any SER */
 456					edma_shadow0_write_array(ctlr, SH_SECR,
 457								j, BIT(i));
 458					if (edma_cc[ctlr]->intr_data[k].
 459								callback) {
 460						edma_cc[ctlr]->intr_data[k].
 461						callback(k,
 462						EDMA_DMA_CC_ERROR,
 463						edma_cc[ctlr]->intr_data
 464						[k].data);
 465					}
 466				}
 467			}
 468		} else if (edma_read(ctlr, EDMA_QEMR)) {
 469			dev_dbg(data, "QEMR %02x\n",
 470				edma_read(ctlr, EDMA_QEMR));
 471			for (i = 0; i < 8; i++) {
 472				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
 473					/* Clear the corresponding IPR bits */
 474					edma_write(ctlr, EDMA_QEMCR, BIT(i));
 475					edma_shadow0_write(ctlr, SH_QSECR,
 476								BIT(i));
 477
 478					/* NOTE:  not reported!! */
 479				}
 480			}
 481		} else if (edma_read(ctlr, EDMA_CCERR)) {
 482			dev_dbg(data, "CCERR %08x\n",
 483				edma_read(ctlr, EDMA_CCERR));
 484			/* FIXME:  CCERR.BIT(16) ignored!  much better
 485			 * to just write CCERRCLR with CCERR value...
 486			 */
 487			for (i = 0; i < 8; i++) {
 488				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
 489					/* Clear the corresponding IPR bits */
 490					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
 491
 492					/* NOTE:  not reported!! */
 493				}
 494			}
 495		}
 496		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 497		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 498		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 499		    (edma_read(ctlr, EDMA_CCERR) == 0))
 500			break;
 501		cnt++;
 502		if (cnt > 10)
 503			break;
 504	}
 505	edma_write(ctlr, EDMA_EEVAL, 1);
 506	return IRQ_HANDLED;
 507}
 508
 509static int reserve_contiguous_slots(int ctlr, unsigned int id,
 510				     unsigned int num_slots,
 511				     unsigned int start_slot)
 512{
 513	int i, j;
 514	unsigned int count = num_slots;
 515	int stop_slot = start_slot;
 516	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
 517
 518	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
 519		j = EDMA_CHAN_SLOT(i);
 520		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
 521			/* Record our current beginning slot */
 522			if (count == num_slots)
 523				stop_slot = i;
 524
 525			count--;
 526			set_bit(j, tmp_inuse);
 527
 528			if (count == 0)
 529				break;
 530		} else {
 531			clear_bit(j, tmp_inuse);
 532
 533			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
 534				stop_slot = i;
 535				break;
 536			} else {
 537				count = num_slots;
 538			}
 539		}
 540	}
 541
 542	/*
 543	 * We have to clear any bits that we set
 544	 * if we run out parameter RAM slots, i.e we do find a set
 545	 * of contiguous parameter RAM slots but do not find the exact number
 546	 * requested as we may reach the total number of parameter RAM slots
 547	 */
 548	if (i == edma_cc[ctlr]->num_slots)
 549		stop_slot = i;
 550
 551	j = start_slot;
 552	for_each_set_bit_from(j, tmp_inuse, stop_slot)
 553		clear_bit(j, edma_cc[ctlr]->edma_inuse);
 554
 555	if (count)
 556		return -EBUSY;
 557
 558	for (j = i - num_slots + 1; j <= i; ++j)
 559		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
 560			&dummy_paramset, PARM_SIZE);
 561
 562	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
 563}
 564
 565static int prepare_unused_channel_list(struct device *dev, void *data)
 566{
 567	struct platform_device *pdev = to_platform_device(dev);
 568	int i, count, ctlr;
 569	struct of_phandle_args  dma_spec;
 570
 571	if (dev->of_node) {
 572		count = of_property_count_strings(dev->of_node, "dma-names");
 573		if (count < 0)
 574			return 0;
 575		for (i = 0; i < count; i++) {
 576			if (of_parse_phandle_with_args(dev->of_node, "dmas",
 577						       "#dma-cells", i,
 578						       &dma_spec))
 579				continue;
 580
 581			if (!of_match_node(edma_of_ids, dma_spec.np)) {
 582				of_node_put(dma_spec.np);
 583				continue;
 584			}
 585
 586			clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
 587				  edma_cc[0]->edma_unused);
 588			of_node_put(dma_spec.np);
 589		}
 590		return 0;
 591	}
 592
 593	/* For non-OF case */
 594	for (i = 0; i < pdev->num_resources; i++) {
 595		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
 596				(int)pdev->resource[i].start >= 0) {
 597			ctlr = EDMA_CTLR(pdev->resource[i].start);
 598			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
 599				  edma_cc[ctlr]->edma_unused);
 600		}
 601	}
 602
 603	return 0;
 604}
 605
 606/*-----------------------------------------------------------------------*/
 607
 608static bool unused_chan_list_done;
 609
 610/* Resource alloc/free:  dma channels, parameter RAM slots */
 611
 612/**
 613 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 614 * @channel: specific channel to allocate; negative for "any unmapped channel"
 615 * @callback: optional; to be issued on DMA completion or errors
 616 * @data: passed to callback
 617 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 618 *	Controller (TC) executes requests using this channel.  Use
 619 *	EVENTQ_DEFAULT unless you really need a high priority queue.
 620 *
 621 * This allocates a DMA channel and its associated parameter RAM slot.
 622 * The parameter RAM is initialized to hold a dummy transfer.
 623 *
 624 * Normal use is to pass a specific channel number as @channel, to make
 625 * use of hardware events mapped to that channel.  When the channel will
 626 * be used only for software triggering or event chaining, channels not
 627 * mapped to hardware events (or mapped to unused events) are preferable.
 628 *
 629 * DMA transfers start from a channel using edma_start(), or by
 630 * chaining.  When the transfer described in that channel's parameter RAM
 631 * slot completes, that slot's data may be reloaded through a link.
 632 *
 633 * DMA errors are only reported to the @callback associated with the
 634 * channel driving that transfer, but transfer completion callbacks can
 635 * be sent to another channel under control of the TCC field in
 636 * the option word of the transfer's parameter RAM set.  Drivers must not
 637 * use DMA transfer completion callbacks for channels they did not allocate.
 638 * (The same applies to TCC codes used in transfer chaining.)
 639 *
 640 * Returns the number of the channel, else negative errno.
 641 */
 642int edma_alloc_channel(int channel,
 643		void (*callback)(unsigned channel, u16 ch_status, void *data),
 644		void *data,
 645		enum dma_event_q eventq_no)
 646{
 647	unsigned i, done = 0, ctlr = 0;
 648	int ret = 0;
 649
 650	if (!unused_chan_list_done) {
 651		/*
 652		 * Scan all the platform devices to find out the EDMA channels
 653		 * used and clear them in the unused list, making the rest
 654		 * available for ARM usage.
 655		 */
 656		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
 657				prepare_unused_channel_list);
 658		if (ret < 0)
 659			return ret;
 660
 661		unused_chan_list_done = true;
 662	}
 663
 664	if (channel >= 0) {
 665		ctlr = EDMA_CTLR(channel);
 666		channel = EDMA_CHAN_SLOT(channel);
 667	}
 668
 669	if (channel < 0) {
 670		for (i = 0; i < arch_num_cc; i++) {
 671			channel = 0;
 672			for (;;) {
 673				channel = find_next_bit(edma_cc[i]->edma_unused,
 674						edma_cc[i]->num_channels,
 675						channel);
 676				if (channel == edma_cc[i]->num_channels)
 677					break;
 678				if (!test_and_set_bit(channel,
 679						edma_cc[i]->edma_inuse)) {
 680					done = 1;
 681					ctlr = i;
 682					break;
 683				}
 684				channel++;
 685			}
 686			if (done)
 687				break;
 688		}
 689		if (!done)
 690			return -ENOMEM;
 691	} else if (channel >= edma_cc[ctlr]->num_channels) {
 692		return -EINVAL;
 693	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
 694		return -EBUSY;
 695	}
 696
 697	/* ensure access through shadow region 0 */
 698	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 699
 700	/* ensure no events are pending */
 701	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
 702	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 703			&dummy_paramset, PARM_SIZE);
 704
 705	if (callback)
 706		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
 707					callback, data);
 708
 709	map_dmach_queue(ctlr, channel, eventq_no);
 710
 711	return EDMA_CTLR_CHAN(ctlr, channel);
 712}
 713EXPORT_SYMBOL(edma_alloc_channel);
 714
 715
 716/**
 717 * edma_free_channel - deallocate DMA channel
 718 * @channel: dma channel returned from edma_alloc_channel()
 719 *
 720 * This deallocates the DMA channel and associated parameter RAM slot
 721 * allocated by edma_alloc_channel().
 722 *
 723 * Callers are responsible for ensuring the channel is inactive, and
 724 * will not be reactivated by linking, chaining, or software calls to
 725 * edma_start().
 726 */
 727void edma_free_channel(unsigned channel)
 728{
 729	unsigned ctlr;
 730
 731	ctlr = EDMA_CTLR(channel);
 732	channel = EDMA_CHAN_SLOT(channel);
 733
 734	if (channel >= edma_cc[ctlr]->num_channels)
 735		return;
 736
 737	setup_dma_interrupt(channel, NULL, NULL);
 738	/* REVISIT should probably take out of shadow region 0 */
 739
 740	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 741			&dummy_paramset, PARM_SIZE);
 742	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
 743}
 744EXPORT_SYMBOL(edma_free_channel);
 745
 746/**
 747 * edma_alloc_slot - allocate DMA parameter RAM
 748 * @slot: specific slot to allocate; negative for "any unused slot"
 749 *
 750 * This allocates a parameter RAM slot, initializing it to hold a
 751 * dummy transfer.  Slots allocated using this routine have not been
 752 * mapped to a hardware DMA channel, and will normally be used by
 753 * linking to them from a slot associated with a DMA channel.
 754 *
 755 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 756 * slots may be allocated on behalf of DSP firmware.
 757 *
 758 * Returns the number of the slot, else negative errno.
 759 */
 760int edma_alloc_slot(unsigned ctlr, int slot)
 761{
 762	if (!edma_cc[ctlr])
 763		return -EINVAL;
 764
 765	if (slot >= 0)
 766		slot = EDMA_CHAN_SLOT(slot);
 767
 768	if (slot < 0) {
 769		slot = edma_cc[ctlr]->num_channels;
 770		for (;;) {
 771			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
 772					edma_cc[ctlr]->num_slots, slot);
 773			if (slot == edma_cc[ctlr]->num_slots)
 774				return -ENOMEM;
 775			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
 776				break;
 777		}
 778	} else if (slot < edma_cc[ctlr]->num_channels ||
 779			slot >= edma_cc[ctlr]->num_slots) {
 780		return -EINVAL;
 781	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
 782		return -EBUSY;
 783	}
 784
 785	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 786			&dummy_paramset, PARM_SIZE);
 787
 788	return EDMA_CTLR_CHAN(ctlr, slot);
 789}
 790EXPORT_SYMBOL(edma_alloc_slot);
 791
 792/**
 793 * edma_free_slot - deallocate DMA parameter RAM
 794 * @slot: parameter RAM slot returned from edma_alloc_slot()
 795 *
 796 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 797 * Callers are responsible for ensuring the slot is inactive, and will
 798 * not be activated.
 799 */
 800void edma_free_slot(unsigned slot)
 801{
 802	unsigned ctlr;
 803
 804	ctlr = EDMA_CTLR(slot);
 805	slot = EDMA_CHAN_SLOT(slot);
 806
 807	if (slot < edma_cc[ctlr]->num_channels ||
 808		slot >= edma_cc[ctlr]->num_slots)
 809		return;
 810
 811	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 812			&dummy_paramset, PARM_SIZE);
 813	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
 814}
 815EXPORT_SYMBOL(edma_free_slot);
 816
 817
 818/**
 819 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
 820 * The API will return the starting point of a set of
 821 * contiguous parameter RAM slots that have been requested
 822 *
 823 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
 824 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 825 * @count: number of contiguous Paramter RAM slots
 826 * @slot  - the start value of Parameter RAM slot that should be passed if id
 827 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 828 *
 829 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
 830 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
 831 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
 832 *
 833 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
 834 * set of contiguous parameter RAM slots from the "slot" that is passed as an
 835 * argument to the API.
 836 *
 837 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
 838 * starts looking for a set of contiguous parameter RAMs from the "slot"
 839 * that is passed as an argument to the API. On failure the API will try to
 840 * find a set of contiguous Parameter RAM slots from the remaining Parameter
 841 * RAM slots
 842 */
 843int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
 844{
 845	/*
 846	 * The start slot requested should be greater than
 847	 * the number of channels and lesser than the total number
 848	 * of slots
 849	 */
 850	if ((id != EDMA_CONT_PARAMS_ANY) &&
 851		(slot < edma_cc[ctlr]->num_channels ||
 852		slot >= edma_cc[ctlr]->num_slots))
 853		return -EINVAL;
 854
 855	/*
 856	 * The number of parameter RAM slots requested cannot be less than 1
 857	 * and cannot be more than the number of slots minus the number of
 858	 * channels
 859	 */
 860	if (count < 1 || count >
 861		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
 862		return -EINVAL;
 863
 864	switch (id) {
 865	case EDMA_CONT_PARAMS_ANY:
 866		return reserve_contiguous_slots(ctlr, id, count,
 867						 edma_cc[ctlr]->num_channels);
 868	case EDMA_CONT_PARAMS_FIXED_EXACT:
 869	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
 870		return reserve_contiguous_slots(ctlr, id, count, slot);
 871	default:
 872		return -EINVAL;
 873	}
 874
 875}
 876EXPORT_SYMBOL(edma_alloc_cont_slots);
 877
 878/**
 879 * edma_free_cont_slots - deallocate DMA parameter RAM slots
 880 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
 881 * @count: the number of contiguous parameter RAM slots to be freed
 882 *
 883 * This deallocates the parameter RAM slots allocated by
 884 * edma_alloc_cont_slots.
 885 * Callers/applications need to keep track of sets of contiguous
 886 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
 887 * API.
 888 * Callers are responsible for ensuring the slots are inactive, and will
 889 * not be activated.
 890 */
 891int edma_free_cont_slots(unsigned slot, int count)
 892{
 893	unsigned ctlr, slot_to_free;
 894	int i;
 895
 896	ctlr = EDMA_CTLR(slot);
 897	slot = EDMA_CHAN_SLOT(slot);
 898
 899	if (slot < edma_cc[ctlr]->num_channels ||
 900		slot >= edma_cc[ctlr]->num_slots ||
 901		count < 1)
 902		return -EINVAL;
 903
 904	for (i = slot; i < slot + count; ++i) {
 905		ctlr = EDMA_CTLR(i);
 906		slot_to_free = EDMA_CHAN_SLOT(i);
 907
 908		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
 909			&dummy_paramset, PARM_SIZE);
 910		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
 911	}
 912
 913	return 0;
 914}
 915EXPORT_SYMBOL(edma_free_cont_slots);
 916
 917/*-----------------------------------------------------------------------*/
 918
 919/* Parameter RAM operations (i) -- read/write partial slots */
 920
 921/**
 922 * edma_set_src - set initial DMA source address in parameter RAM slot
 923 * @slot: parameter RAM slot being configured
 924 * @src_port: physical address of source (memory, controller FIFO, etc)
 925 * @addressMode: INCR, except in very rare cases
 926 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 927 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 928 *
 929 * Note that the source address is modified during the DMA transfer
 930 * according to edma_set_src_index().
 931 */
 932void edma_set_src(unsigned slot, dma_addr_t src_port,
 933				enum address_mode mode, enum fifo_width width)
 934{
 935	unsigned ctlr;
 936
 937	ctlr = EDMA_CTLR(slot);
 938	slot = EDMA_CHAN_SLOT(slot);
 939
 940	if (slot < edma_cc[ctlr]->num_slots) {
 941		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 942
 943		if (mode) {
 944			/* set SAM and program FWID */
 945			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 946		} else {
 947			/* clear SAM */
 948			i &= ~SAM;
 949		}
 950		edma_parm_write(ctlr, PARM_OPT, slot, i);
 951
 952		/* set the source port address
 953		   in source register of param structure */
 954		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
 955	}
 956}
 957EXPORT_SYMBOL(edma_set_src);
 958
 959/**
 960 * edma_set_dest - set initial DMA destination address in parameter RAM slot
 961 * @slot: parameter RAM slot being configured
 962 * @dest_port: physical address of destination (memory, controller FIFO, etc)
 963 * @addressMode: INCR, except in very rare cases
 964 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 965 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 966 *
 967 * Note that the destination address is modified during the DMA transfer
 968 * according to edma_set_dest_index().
 969 */
 970void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 971				 enum address_mode mode, enum fifo_width width)
 972{
 973	unsigned ctlr;
 974
 975	ctlr = EDMA_CTLR(slot);
 976	slot = EDMA_CHAN_SLOT(slot);
 977
 978	if (slot < edma_cc[ctlr]->num_slots) {
 979		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 980
 981		if (mode) {
 982			/* set DAM and program FWID */
 983			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 984		} else {
 985			/* clear DAM */
 986			i &= ~DAM;
 987		}
 988		edma_parm_write(ctlr, PARM_OPT, slot, i);
 989		/* set the destination port address
 990		   in dest register of param structure */
 991		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
 992	}
 993}
 994EXPORT_SYMBOL(edma_set_dest);
 995
 996/**
 997 * edma_get_position - returns the current transfer points
 998 * @slot: parameter RAM slot being examined
 999 * @src: pointer to source port position
1000 * @dst: pointer to destination port position
1001 *
1002 * Returns current source and destination addresses for a particular
1003 * parameter RAM slot.  Its channel should not be active when this is called.
1004 */
1005void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
1006{
1007	struct edmacc_param temp;
1008	unsigned ctlr;
1009
1010	ctlr = EDMA_CTLR(slot);
1011	slot = EDMA_CHAN_SLOT(slot);
1012
1013	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
1014	if (src != NULL)
1015		*src = temp.src;
1016	if (dst != NULL)
1017		*dst = temp.dst;
1018}
1019EXPORT_SYMBOL(edma_get_position);
1020
1021/**
1022 * edma_set_src_index - configure DMA source address indexing
1023 * @slot: parameter RAM slot being configured
1024 * @src_bidx: byte offset between source arrays in a frame
1025 * @src_cidx: byte offset between source frames in a block
1026 *
1027 * Offsets are specified to support either contiguous or discontiguous
1028 * memory transfers, or repeated access to a hardware register, as needed.
1029 * When accessing hardware registers, both offsets are normally zero.
1030 */
1031void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1032{
1033	unsigned ctlr;
1034
1035	ctlr = EDMA_CTLR(slot);
1036	slot = EDMA_CHAN_SLOT(slot);
1037
1038	if (slot < edma_cc[ctlr]->num_slots) {
1039		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1040				0xffff0000, src_bidx);
1041		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1042				0xffff0000, src_cidx);
1043	}
1044}
1045EXPORT_SYMBOL(edma_set_src_index);
1046
1047/**
1048 * edma_set_dest_index - configure DMA destination address indexing
1049 * @slot: parameter RAM slot being configured
1050 * @dest_bidx: byte offset between destination arrays in a frame
1051 * @dest_cidx: byte offset between destination frames in a block
1052 *
1053 * Offsets are specified to support either contiguous or discontiguous
1054 * memory transfers, or repeated access to a hardware register, as needed.
1055 * When accessing hardware registers, both offsets are normally zero.
1056 */
1057void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1058{
1059	unsigned ctlr;
1060
1061	ctlr = EDMA_CTLR(slot);
1062	slot = EDMA_CHAN_SLOT(slot);
1063
1064	if (slot < edma_cc[ctlr]->num_slots) {
1065		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1066				0x0000ffff, dest_bidx << 16);
1067		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1068				0x0000ffff, dest_cidx << 16);
1069	}
1070}
1071EXPORT_SYMBOL(edma_set_dest_index);
1072
1073/**
1074 * edma_set_transfer_params - configure DMA transfer parameters
1075 * @slot: parameter RAM slot being configured
1076 * @acnt: how many bytes per array (at least one)
1077 * @bcnt: how many arrays per frame (at least one)
1078 * @ccnt: how many frames per block (at least one)
1079 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1080 *	the value to reload into bcnt when it decrements to zero
1081 * @sync_mode: ASYNC or ABSYNC
1082 *
1083 * See the EDMA3 documentation to understand how to configure and link
1084 * transfers using the fields in PaRAM slots.  If you are not doing it
1085 * all at once with edma_write_slot(), you will use this routine
1086 * plus two calls each for source and destination, setting the initial
1087 * address and saying how to index that address.
1088 *
1089 * An example of an A-Synchronized transfer is a serial link using a
1090 * single word shift register.  In that case, @acnt would be equal to
1091 * that word size; the serial controller issues a DMA synchronization
1092 * event to transfer each word, and memory access by the DMA transfer
1093 * controller will be word-at-a-time.
1094 *
1095 * An example of an AB-Synchronized transfer is a device using a FIFO.
1096 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1097 * The controller with the FIFO issues DMA synchronization events when
1098 * the FIFO threshold is reached, and the DMA transfer controller will
1099 * transfer one frame to (or from) the FIFO.  It will probably use
1100 * efficient burst modes to access memory.
1101 */
1102void edma_set_transfer_params(unsigned slot,
1103		u16 acnt, u16 bcnt, u16 ccnt,
1104		u16 bcnt_rld, enum sync_dimension sync_mode)
1105{
1106	unsigned ctlr;
1107
1108	ctlr = EDMA_CTLR(slot);
1109	slot = EDMA_CHAN_SLOT(slot);
1110
1111	if (slot < edma_cc[ctlr]->num_slots) {
1112		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1113				0x0000ffff, bcnt_rld << 16);
1114		if (sync_mode == ASYNC)
1115			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1116		else
1117			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1118		/* Set the acount, bcount, ccount registers */
1119		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1120		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1121	}
1122}
1123EXPORT_SYMBOL(edma_set_transfer_params);
1124
1125/**
1126 * edma_link - link one parameter RAM slot to another
1127 * @from: parameter RAM slot originating the link
1128 * @to: parameter RAM slot which is the link target
1129 *
1130 * The originating slot should not be part of any active DMA transfer.
1131 */
1132void edma_link(unsigned from, unsigned to)
1133{
1134	unsigned ctlr_from, ctlr_to;
1135
1136	ctlr_from = EDMA_CTLR(from);
1137	from = EDMA_CHAN_SLOT(from);
1138	ctlr_to = EDMA_CTLR(to);
1139	to = EDMA_CHAN_SLOT(to);
1140
1141	if (from >= edma_cc[ctlr_from]->num_slots)
1142		return;
1143	if (to >= edma_cc[ctlr_to]->num_slots)
1144		return;
1145	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1146				PARM_OFFSET(to));
1147}
1148EXPORT_SYMBOL(edma_link);
1149
1150/**
1151 * edma_unlink - cut link from one parameter RAM slot
1152 * @from: parameter RAM slot originating the link
1153 *
1154 * The originating slot should not be part of any active DMA transfer.
1155 * Its link is set to 0xffff.
1156 */
1157void edma_unlink(unsigned from)
1158{
1159	unsigned ctlr;
1160
1161	ctlr = EDMA_CTLR(from);
1162	from = EDMA_CHAN_SLOT(from);
1163
1164	if (from >= edma_cc[ctlr]->num_slots)
1165		return;
1166	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1167}
1168EXPORT_SYMBOL(edma_unlink);
1169
1170/*-----------------------------------------------------------------------*/
1171
1172/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1173
1174/**
1175 * edma_write_slot - write parameter RAM data for slot
1176 * @slot: number of parameter RAM slot being modified
1177 * @param: data to be written into parameter RAM slot
1178 *
1179 * Use this to assign all parameters of a transfer at once.  This
1180 * allows more efficient setup of transfers than issuing multiple
1181 * calls to set up those parameters in small pieces, and provides
1182 * complete control over all transfer options.
1183 */
1184void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1185{
1186	unsigned ctlr;
1187
1188	ctlr = EDMA_CTLR(slot);
1189	slot = EDMA_CHAN_SLOT(slot);
1190
1191	if (slot >= edma_cc[ctlr]->num_slots)
1192		return;
1193	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1194			PARM_SIZE);
1195}
1196EXPORT_SYMBOL(edma_write_slot);
1197
1198/**
1199 * edma_read_slot - read parameter RAM data from slot
1200 * @slot: number of parameter RAM slot being copied
1201 * @param: where to store copy of parameter RAM data
1202 *
1203 * Use this to read data from a parameter RAM slot, perhaps to
1204 * save them as a template for later reuse.
1205 */
1206void edma_read_slot(unsigned slot, struct edmacc_param *param)
1207{
1208	unsigned ctlr;
1209
1210	ctlr = EDMA_CTLR(slot);
1211	slot = EDMA_CHAN_SLOT(slot);
1212
1213	if (slot >= edma_cc[ctlr]->num_slots)
1214		return;
1215	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1216			PARM_SIZE);
1217}
1218EXPORT_SYMBOL(edma_read_slot);
1219
1220/*-----------------------------------------------------------------------*/
1221
1222/* Various EDMA channel control operations */
1223
1224/**
1225 * edma_pause - pause dma on a channel
1226 * @channel: on which edma_start() has been called
1227 *
1228 * This temporarily disables EDMA hardware events on the specified channel,
1229 * preventing them from triggering new transfers on its behalf
1230 */
1231void edma_pause(unsigned channel)
1232{
1233	unsigned ctlr;
1234
1235	ctlr = EDMA_CTLR(channel);
1236	channel = EDMA_CHAN_SLOT(channel);
1237
1238	if (channel < edma_cc[ctlr]->num_channels) {
1239		unsigned int mask = BIT(channel & 0x1f);
1240
1241		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1242	}
1243}
1244EXPORT_SYMBOL(edma_pause);
1245
1246/**
1247 * edma_resume - resumes dma on a paused channel
1248 * @channel: on which edma_pause() has been called
1249 *
1250 * This re-enables EDMA hardware events on the specified channel.
1251 */
1252void edma_resume(unsigned channel)
1253{
1254	unsigned ctlr;
1255
1256	ctlr = EDMA_CTLR(channel);
1257	channel = EDMA_CHAN_SLOT(channel);
1258
1259	if (channel < edma_cc[ctlr]->num_channels) {
1260		unsigned int mask = BIT(channel & 0x1f);
1261
1262		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1263	}
1264}
1265EXPORT_SYMBOL(edma_resume);
1266
1267int edma_trigger_channel(unsigned channel)
1268{
1269	unsigned ctlr;
1270	unsigned int mask;
1271
1272	ctlr = EDMA_CTLR(channel);
1273	channel = EDMA_CHAN_SLOT(channel);
1274	mask = BIT(channel & 0x1f);
1275
1276	edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1277
1278	pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1279		 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1280	return 0;
1281}
1282EXPORT_SYMBOL(edma_trigger_channel);
1283
1284/**
1285 * edma_start - start dma on a channel
1286 * @channel: channel being activated
1287 *
1288 * Channels with event associations will be triggered by their hardware
1289 * events, and channels without such associations will be triggered by
1290 * software.  (At this writing there is no interface for using software
1291 * triggers except with channels that don't support hardware triggers.)
1292 *
1293 * Returns zero on success, else negative errno.
1294 */
1295int edma_start(unsigned channel)
1296{
1297	unsigned ctlr;
1298
1299	ctlr = EDMA_CTLR(channel);
1300	channel = EDMA_CHAN_SLOT(channel);
1301
1302	if (channel < edma_cc[ctlr]->num_channels) {
1303		int j = channel >> 5;
1304		unsigned int mask = BIT(channel & 0x1f);
1305
1306		/* EDMA channels without event association */
1307		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1308			pr_debug("EDMA: ESR%d %08x\n", j,
1309				edma_shadow0_read_array(ctlr, SH_ESR, j));
1310			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1311			return 0;
1312		}
1313
1314		/* EDMA channel with event association */
1315		pr_debug("EDMA: ER%d %08x\n", j,
1316			edma_shadow0_read_array(ctlr, SH_ER, j));
1317		/* Clear any pending event or error */
1318		edma_write_array(ctlr, EDMA_ECR, j, mask);
1319		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1320		/* Clear any SER */
1321		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1322		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1323		pr_debug("EDMA: EER%d %08x\n", j,
1324			edma_shadow0_read_array(ctlr, SH_EER, j));
1325		return 0;
1326	}
1327
1328	return -EINVAL;
1329}
1330EXPORT_SYMBOL(edma_start);
1331
1332/**
1333 * edma_stop - stops dma on the channel passed
1334 * @channel: channel being deactivated
1335 *
1336 * When @lch is a channel, any active transfer is paused and
1337 * all pending hardware events are cleared.  The current transfer
1338 * may not be resumed, and the channel's Parameter RAM should be
1339 * reinitialized before being reused.
1340 */
1341void edma_stop(unsigned channel)
1342{
1343	unsigned ctlr;
1344
1345	ctlr = EDMA_CTLR(channel);
1346	channel = EDMA_CHAN_SLOT(channel);
1347
1348	if (channel < edma_cc[ctlr]->num_channels) {
1349		int j = channel >> 5;
1350		unsigned int mask = BIT(channel & 0x1f);
1351
1352		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1353		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1354		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1355		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1356
1357		pr_debug("EDMA: EER%d %08x\n", j,
1358				edma_shadow0_read_array(ctlr, SH_EER, j));
1359
1360		/* REVISIT:  consider guarding against inappropriate event
1361		 * chaining by overwriting with dummy_paramset.
1362		 */
1363	}
1364}
1365EXPORT_SYMBOL(edma_stop);
1366
1367/******************************************************************************
1368 *
1369 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1370 * been removed before EDMA has finished.It is usedful for removable media.
1371 * Arguments:
1372 *      ch_no     - channel no
1373 *
1374 * Return: zero on success, or corresponding error no on failure
1375 *
1376 * FIXME this should not be needed ... edma_stop() should suffice.
1377 *
1378 *****************************************************************************/
1379
1380void edma_clean_channel(unsigned channel)
1381{
1382	unsigned ctlr;
1383
1384	ctlr = EDMA_CTLR(channel);
1385	channel = EDMA_CHAN_SLOT(channel);
1386
1387	if (channel < edma_cc[ctlr]->num_channels) {
1388		int j = (channel >> 5);
1389		unsigned int mask = BIT(channel & 0x1f);
1390
1391		pr_debug("EDMA: EMR%d %08x\n", j,
1392				edma_read_array(ctlr, EDMA_EMR, j));
1393		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1394		/* Clear the corresponding EMR bits */
1395		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1396		/* Clear any SER */
1397		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1398		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1399	}
1400}
1401EXPORT_SYMBOL(edma_clean_channel);
1402
1403/*
1404 * edma_clear_event - clear an outstanding event on the DMA channel
1405 * Arguments:
1406 *	channel - channel number
1407 */
1408void edma_clear_event(unsigned channel)
1409{
1410	unsigned ctlr;
1411
1412	ctlr = EDMA_CTLR(channel);
1413	channel = EDMA_CHAN_SLOT(channel);
1414
1415	if (channel >= edma_cc[ctlr]->num_channels)
1416		return;
1417	if (channel < 32)
1418		edma_write(ctlr, EDMA_ECR, BIT(channel));
1419	else
1420		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1421}
1422EXPORT_SYMBOL(edma_clear_event);
1423
1424#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1425
1426static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1427			       struct edma_soc_info *pdata, size_t sz)
1428{
1429	const char pname[] = "ti,edma-xbar-event-map";
1430	struct resource res;
1431	void __iomem *xbar;
1432	s16 (*xbar_chans)[2];
1433	size_t nelm = sz / sizeof(s16);
1434	u32 shift, offset, mux;
1435	int ret, i;
1436
1437	xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
1438	if (!xbar_chans)
1439		return -ENOMEM;
1440
1441	ret = of_address_to_resource(node, 1, &res);
1442	if (ret)
1443		return -ENOMEM;
1444
1445	xbar = devm_ioremap(dev, res.start, resource_size(&res));
1446	if (!xbar)
1447		return -ENOMEM;
1448
1449	ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
1450	if (ret)
1451		return -EIO;
1452
1453	/* Invalidate last entry for the other user of this mess */
1454	nelm >>= 1;
1455	xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1456
1457	for (i = 0; i < nelm; i++) {
1458		shift = (xbar_chans[i][1] & 0x03) << 3;
1459		offset = xbar_chans[i][1] & 0xfffffffc;
1460		mux = readl(xbar + offset);
1461		mux &= ~(0xff << shift);
1462		mux |= xbar_chans[i][0] << shift;
1463		writel(mux, (xbar + offset));
1464	}
1465
1466	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1467	return 0;
1468}
1469
1470static int edma_of_parse_dt(struct device *dev,
1471			    struct device_node *node,
1472			    struct edma_soc_info *pdata)
1473{
1474	int ret = 0, i;
1475	u32 value;
1476	struct property *prop;
1477	size_t sz;
1478	struct edma_rsv_info *rsv_info;
1479	s8 (*queue_tc_map)[2], (*queue_priority_map)[2];
1480
1481	memset(pdata, 0, sizeof(struct edma_soc_info));
1482
1483	ret = of_property_read_u32(node, "dma-channels", &value);
1484	if (ret < 0)
1485		return ret;
1486	pdata->n_channel = value;
1487
1488	ret = of_property_read_u32(node, "ti,edma-regions", &value);
1489	if (ret < 0)
1490		return ret;
1491	pdata->n_region = value;
1492
1493	ret = of_property_read_u32(node, "ti,edma-slots", &value);
1494	if (ret < 0)
1495		return ret;
1496	pdata->n_slot = value;
1497
1498	pdata->n_cc = 1;
1499
1500	rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1501	if (!rsv_info)
1502		return -ENOMEM;
1503	pdata->rsv = rsv_info;
1504
1505	queue_tc_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1506	if (!queue_tc_map)
1507		return -ENOMEM;
1508
1509	for (i = 0; i < 3; i++) {
1510		queue_tc_map[i][0] = i;
1511		queue_tc_map[i][1] = i;
1512	}
1513	queue_tc_map[i][0] = -1;
1514	queue_tc_map[i][1] = -1;
1515
1516	pdata->queue_tc_mapping = queue_tc_map;
1517
1518	queue_priority_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1519	if (!queue_priority_map)
1520		return -ENOMEM;
1521
1522	for (i = 0; i < 3; i++) {
1523		queue_priority_map[i][0] = i;
1524		queue_priority_map[i][1] = i;
1525	}
1526	queue_priority_map[i][0] = -1;
1527	queue_priority_map[i][1] = -1;
1528
1529	pdata->queue_priority_mapping = queue_priority_map;
1530
1531	pdata->default_queue = 0;
1532
1533	prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1534	if (prop)
1535		ret = edma_xbar_event_map(dev, node, pdata, sz);
1536
1537	return ret;
1538}
1539
1540static struct of_dma_filter_info edma_filter_info = {
1541	.filter_fn = edma_filter_fn,
1542};
1543
1544static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1545						      struct device_node *node)
1546{
1547	struct edma_soc_info *info;
1548	int ret;
1549
1550	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1551	if (!info)
1552		return ERR_PTR(-ENOMEM);
1553
1554	ret = edma_of_parse_dt(dev, node, info);
1555	if (ret)
1556		return ERR_PTR(ret);
1557
1558	dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1559	of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1560				   &edma_filter_info);
1561
1562	return info;
1563}
1564#else
1565static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1566						      struct device_node *node)
1567{
1568	return ERR_PTR(-ENOSYS);
1569}
1570#endif
1571
1572static int edma_probe(struct platform_device *pdev)
1573{
1574	struct edma_soc_info	**info = pdev->dev.platform_data;
1575	struct edma_soc_info    *ninfo[EDMA_MAX_CC] = {NULL};
1576	s8		(*queue_priority_mapping)[2];
1577	s8		(*queue_tc_mapping)[2];
1578	int			i, j, off, ln, found = 0;
1579	int			status = -1;
1580	const s16		(*rsv_chans)[2];
1581	const s16		(*rsv_slots)[2];
1582	const s16		(*xbar_chans)[2];
1583	int			irq[EDMA_MAX_CC] = {0, 0};
1584	int			err_irq[EDMA_MAX_CC] = {0, 0};
1585	struct resource		*r[EDMA_MAX_CC] = {NULL};
1586	struct resource		res[EDMA_MAX_CC];
1587	char			res_name[10];
1588	char			irq_name[10];
1589	struct device_node	*node = pdev->dev.of_node;
1590	struct device		*dev = &pdev->dev;
1591	int			ret;
1592
1593	if (node) {
1594		/* Check if this is a second instance registered */
1595		if (arch_num_cc) {
1596			dev_err(dev, "only one EDMA instance is supported via DT\n");
1597			return -ENODEV;
1598		}
1599
1600		ninfo[0] = edma_setup_info_from_dt(dev, node);
1601		if (IS_ERR(ninfo[0])) {
1602			dev_err(dev, "failed to get DT data\n");
1603			return PTR_ERR(ninfo[0]);
1604		}
1605
1606		info = ninfo;
1607	}
1608
1609	if (!info)
1610		return -ENODEV;
1611
1612	pm_runtime_enable(dev);
1613	ret = pm_runtime_get_sync(dev);
1614	if (ret < 0) {
1615		dev_err(dev, "pm_runtime_get_sync() failed\n");
1616		return ret;
1617	}
1618
1619	for (j = 0; j < EDMA_MAX_CC; j++) {
1620		if (!info[j]) {
1621			if (!found)
1622				return -ENODEV;
1623			break;
1624		}
1625		if (node) {
1626			ret = of_address_to_resource(node, j, &res[j]);
1627			if (!ret)
1628				r[j] = &res[j];
1629		} else {
1630			sprintf(res_name, "edma_cc%d", j);
1631			r[j] = platform_get_resource_byname(pdev,
1632						IORESOURCE_MEM,
1633						res_name);
1634		}
1635		if (!r[j]) {
1636			if (found)
1637				break;
1638			else
1639				return -ENODEV;
1640		} else {
1641			found = 1;
1642		}
1643
1644		edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1645		if (IS_ERR(edmacc_regs_base[j]))
1646			return PTR_ERR(edmacc_regs_base[j]);
1647
1648		edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1649					  GFP_KERNEL);
1650		if (!edma_cc[j])
1651			return -ENOMEM;
1652
1653		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1654							EDMA_MAX_DMACH);
1655		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1656							EDMA_MAX_PARAMENTRY);
1657		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1658							EDMA_MAX_CC);
1659
1660		edma_cc[j]->default_queue = info[j]->default_queue;
1661
1662		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1663			edmacc_regs_base[j]);
1664
1665		for (i = 0; i < edma_cc[j]->num_slots; i++)
1666			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1667					&dummy_paramset, PARM_SIZE);
1668
1669		/* Mark all channels as unused */
1670		memset(edma_cc[j]->edma_unused, 0xff,
1671			sizeof(edma_cc[j]->edma_unused));
1672
1673		if (info[j]->rsv) {
1674
1675			/* Clear the reserved channels in unused list */
1676			rsv_chans = info[j]->rsv->rsv_chans;
1677			if (rsv_chans) {
1678				for (i = 0; rsv_chans[i][0] != -1; i++) {
1679					off = rsv_chans[i][0];
1680					ln = rsv_chans[i][1];
1681					clear_bits(off, ln,
1682						  edma_cc[j]->edma_unused);
1683				}
1684			}
1685
1686			/* Set the reserved slots in inuse list */
1687			rsv_slots = info[j]->rsv->rsv_slots;
1688			if (rsv_slots) {
1689				for (i = 0; rsv_slots[i][0] != -1; i++) {
1690					off = rsv_slots[i][0];
1691					ln = rsv_slots[i][1];
1692					set_bits(off, ln,
1693						edma_cc[j]->edma_inuse);
1694				}
1695			}
1696		}
1697
1698		/* Clear the xbar mapped channels in unused list */
1699		xbar_chans = info[j]->xbar_chans;
1700		if (xbar_chans) {
1701			for (i = 0; xbar_chans[i][1] != -1; i++) {
1702				off = xbar_chans[i][1];
1703				clear_bits(off, 1,
1704					   edma_cc[j]->edma_unused);
1705			}
1706		}
1707
1708		if (node) {
1709			irq[j] = irq_of_parse_and_map(node, 0);
1710		} else {
1711			sprintf(irq_name, "edma%d", j);
1712			irq[j] = platform_get_irq_byname(pdev, irq_name);
1713		}
1714		edma_cc[j]->irq_res_start = irq[j];
1715		status = devm_request_irq(&pdev->dev, irq[j],
1716					  dma_irq_handler, 0, "edma",
1717					  &pdev->dev);
1718		if (status < 0) {
1719			dev_dbg(&pdev->dev,
1720				"devm_request_irq %d failed --> %d\n",
1721				irq[j], status);
1722			return status;
1723		}
1724
1725		if (node) {
1726			err_irq[j] = irq_of_parse_and_map(node, 2);
1727		} else {
1728			sprintf(irq_name, "edma%d_err", j);
1729			err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1730		}
1731		edma_cc[j]->irq_res_end = err_irq[j];
1732		status = devm_request_irq(&pdev->dev, err_irq[j],
1733					  dma_ccerr_handler, 0,
1734					  "edma_error", &pdev->dev);
1735		if (status < 0) {
1736			dev_dbg(&pdev->dev,
1737				"devm_request_irq %d failed --> %d\n",
1738				err_irq[j], status);
1739			return status;
1740		}
1741
1742		for (i = 0; i < edma_cc[j]->num_channels; i++)
1743			map_dmach_queue(j, i, info[j]->default_queue);
1744
1745		queue_tc_mapping = info[j]->queue_tc_mapping;
1746		queue_priority_mapping = info[j]->queue_priority_mapping;
1747
1748		/* Event queue to TC mapping */
1749		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1750			map_queue_tc(j, queue_tc_mapping[i][0],
1751					queue_tc_mapping[i][1]);
1752
1753		/* Event queue priority mapping */
1754		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1755			assign_priority_to_queue(j,
1756						queue_priority_mapping[i][0],
1757						queue_priority_mapping[i][1]);
1758
1759		/* Map the channel to param entry if channel mapping logic
1760		 * exist
1761		 */
1762		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1763			map_dmach_param(j);
1764
1765		for (i = 0; i < info[j]->n_region; i++) {
1766			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1767			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1768			edma_write_array(j, EDMA_QRAE, i, 0x0);
1769		}
1770		arch_num_cc++;
1771	}
1772
1773	return 0;
1774}
1775
1776static struct platform_driver edma_driver = {
1777	.driver = {
1778		.name	= "edma",
1779		.of_match_table = edma_of_ids,
1780	},
1781	.probe = edma_probe,
1782};
1783
1784static int __init edma_init(void)
1785{
1786	return platform_driver_probe(&edma_driver, edma_probe);
1787}
1788arch_initcall(edma_init);
1789