Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
   4 *
   5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/ethtool.h>
  10#include <linux/ethtool_netlink.h>
  11#include <linux/types.h>
  12#include <linux/slab.h>
  13#include <linux/kernel.h>
  14#include <linux/string.h>
  15#include <linux/list.h>
  16#include <linux/errno.h>
  17#include <linux/skbuff.h>
  18#include <linux/math64.h>
  19#include <linux/module.h>
  20#include <linux/spinlock.h>
  21#include <linux/rcupdate.h>
  22#include <linux/time.h>
  23#include <net/gso.h>
  24#include <net/netlink.h>
  25#include <net/pkt_sched.h>
  26#include <net/pkt_cls.h>
  27#include <net/sch_generic.h>
  28#include <net/sock.h>
  29#include <net/tcp.h>
  30
  31#define TAPRIO_STAT_NOT_SET	(~0ULL)
  32
  33#include "sch_mqprio_lib.h"
  34
  35static LIST_HEAD(taprio_list);
  36static struct static_key_false taprio_have_broken_mqprio;
  37static struct static_key_false taprio_have_working_mqprio;
  38
  39#define TAPRIO_ALL_GATES_OPEN -1
  40
  41#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  42#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  43#define TAPRIO_SUPPORTED_FLAGS \
  44	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  45#define TAPRIO_FLAGS_INVALID U32_MAX
  46
  47struct sched_entry {
  48	/* Durations between this GCL entry and the GCL entry where the
  49	 * respective traffic class gate closes
  50	 */
  51	u64 gate_duration[TC_MAX_QUEUE];
  52	atomic_t budget[TC_MAX_QUEUE];
  53	/* The qdisc makes some effort so that no packet leaves
  54	 * after this time
  55	 */
  56	ktime_t gate_close_time[TC_MAX_QUEUE];
  57	struct list_head list;
  58	/* Used to calculate when to advance the schedule */
  59	ktime_t end_time;
  60	ktime_t next_txtime;
  61	int index;
  62	u32 gate_mask;
  63	u32 interval;
  64	u8 command;
  65};
  66
  67struct sched_gate_list {
  68	/* Longest non-zero contiguous gate durations per traffic class,
  69	 * or 0 if a traffic class gate never opens during the schedule.
  70	 */
  71	u64 max_open_gate_duration[TC_MAX_QUEUE];
  72	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
  73	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
  74	struct rcu_head rcu;
  75	struct list_head entries;
  76	size_t num_entries;
  77	ktime_t cycle_end_time;
  78	s64 cycle_time;
  79	s64 cycle_time_extension;
  80	s64 base_time;
  81};
  82
  83struct taprio_sched {
  84	struct Qdisc **qdiscs;
  85	struct Qdisc *root;
  86	u32 flags;
  87	enum tk_offsets tk_offset;
  88	int clockid;
  89	bool offloaded;
  90	bool detected_mqprio;
  91	bool broken_mqprio;
  92	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  93				    * speeds it's sub-nanoseconds per byte
  94				    */
  95
  96	/* Protects the update side of the RCU protected current_entry */
  97	spinlock_t current_entry_lock;
  98	struct sched_entry __rcu *current_entry;
  99	struct sched_gate_list __rcu *oper_sched;
 100	struct sched_gate_list __rcu *admin_sched;
 101	struct hrtimer advance_timer;
 102	struct list_head taprio_list;
 103	int cur_txq[TC_MAX_QUEUE];
 104	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
 105	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
 106	u32 txtime_delay;
 107};
 108
 109struct __tc_taprio_qopt_offload {
 110	refcount_t users;
 111	struct tc_taprio_qopt_offload offload;
 112};
 113
 114static void taprio_calculate_gate_durations(struct taprio_sched *q,
 115					    struct sched_gate_list *sched)
 116{
 117	struct net_device *dev = qdisc_dev(q->root);
 118	int num_tc = netdev_get_num_tc(dev);
 119	struct sched_entry *entry, *cur;
 120	int tc;
 121
 122	list_for_each_entry(entry, &sched->entries, list) {
 123		u32 gates_still_open = entry->gate_mask;
 124
 125		/* For each traffic class, calculate each open gate duration,
 126		 * starting at this schedule entry and ending at the schedule
 127		 * entry containing a gate close event for that TC.
 128		 */
 129		cur = entry;
 130
 131		do {
 132			if (!gates_still_open)
 133				break;
 134
 135			for (tc = 0; tc < num_tc; tc++) {
 136				if (!(gates_still_open & BIT(tc)))
 137					continue;
 138
 139				if (cur->gate_mask & BIT(tc))
 140					entry->gate_duration[tc] += cur->interval;
 141				else
 142					gates_still_open &= ~BIT(tc);
 143			}
 144
 145			cur = list_next_entry_circular(cur, &sched->entries, list);
 146		} while (cur != entry);
 147
 148		/* Keep track of the maximum gate duration for each traffic
 149		 * class, taking care to not confuse a traffic class which is
 150		 * temporarily closed with one that is always closed.
 151		 */
 152		for (tc = 0; tc < num_tc; tc++)
 153			if (entry->gate_duration[tc] &&
 154			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
 155				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
 156	}
 157}
 158
 159static bool taprio_entry_allows_tx(ktime_t skb_end_time,
 160				   struct sched_entry *entry, int tc)
 161{
 162	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
 163}
 164
 165static ktime_t sched_base_time(const struct sched_gate_list *sched)
 166{
 167	if (!sched)
 168		return KTIME_MAX;
 169
 170	return ns_to_ktime(sched->base_time);
 171}
 172
 173static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
 174{
 175	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
 176	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
 177
 178	switch (tk_offset) {
 179	case TK_OFFS_MAX:
 180		return mono;
 181	default:
 182		return ktime_mono_to_any(mono, tk_offset);
 183	}
 184}
 185
 186static ktime_t taprio_get_time(const struct taprio_sched *q)
 187{
 188	return taprio_mono_to_any(q, ktime_get());
 189}
 190
 191static void taprio_free_sched_cb(struct rcu_head *head)
 192{
 193	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 194	struct sched_entry *entry, *n;
 195
 196	list_for_each_entry_safe(entry, n, &sched->entries, list) {
 197		list_del(&entry->list);
 198		kfree(entry);
 199	}
 200
 201	kfree(sched);
 202}
 203
 204static void switch_schedules(struct taprio_sched *q,
 205			     struct sched_gate_list **admin,
 206			     struct sched_gate_list **oper)
 207{
 208	rcu_assign_pointer(q->oper_sched, *admin);
 209	rcu_assign_pointer(q->admin_sched, NULL);
 210
 211	if (*oper)
 212		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 213
 214	*oper = *admin;
 215	*admin = NULL;
 216}
 217
 218/* Get how much time has been already elapsed in the current cycle. */
 219static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 220{
 221	ktime_t time_since_sched_start;
 222	s32 time_elapsed;
 223
 224	time_since_sched_start = ktime_sub(time, sched->base_time);
 225	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 226
 227	return time_elapsed;
 228}
 229
 230static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 231				     struct sched_gate_list *admin,
 232				     struct sched_entry *entry,
 233				     ktime_t intv_start)
 234{
 235	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 236	ktime_t intv_end, cycle_ext_end, cycle_end;
 237
 238	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 239	intv_end = ktime_add_ns(intv_start, entry->interval);
 240	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 241
 242	if (ktime_before(intv_end, cycle_end))
 243		return intv_end;
 244	else if (admin && admin != sched &&
 245		 ktime_after(admin->base_time, cycle_end) &&
 246		 ktime_before(admin->base_time, cycle_ext_end))
 247		return admin->base_time;
 248	else
 249		return cycle_end;
 250}
 251
 252static int length_to_duration(struct taprio_sched *q, int len)
 253{
 254	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
 255}
 256
 257static int duration_to_length(struct taprio_sched *q, u64 duration)
 258{
 259	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
 260}
 261
 262/* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
 263 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
 264 * the maximum open gate durations at the given link speed.
 265 */
 266static void taprio_update_queue_max_sdu(struct taprio_sched *q,
 267					struct sched_gate_list *sched,
 268					struct qdisc_size_table *stab)
 269{
 270	struct net_device *dev = qdisc_dev(q->root);
 271	int num_tc = netdev_get_num_tc(dev);
 272	u32 max_sdu_from_user;
 273	u32 max_sdu_dynamic;
 274	u32 max_sdu;
 275	int tc;
 276
 277	for (tc = 0; tc < num_tc; tc++) {
 278		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
 279
 280		/* TC gate never closes => keep the queueMaxSDU
 281		 * selected by the user
 282		 */
 283		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
 284			max_sdu_dynamic = U32_MAX;
 285		} else {
 286			u32 max_frm_len;
 287
 288			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
 289			/* Compensate for L1 overhead from size table,
 290			 * but don't let the frame size go negative
 291			 */
 292			if (stab) {
 293				max_frm_len -= stab->szopts.overhead;
 294				max_frm_len = max_t(int, max_frm_len,
 295						    dev->hard_header_len + 1);
 296			}
 297			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
 298			if (max_sdu_dynamic > dev->max_mtu)
 299				max_sdu_dynamic = U32_MAX;
 300		}
 301
 302		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
 303
 304		if (max_sdu != U32_MAX) {
 305			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
 306			sched->max_sdu[tc] = max_sdu;
 307		} else {
 308			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
 309			sched->max_sdu[tc] = 0;
 310		}
 311	}
 312}
 313
 314/* Returns the entry corresponding to next available interval. If
 315 * validate_interval is set, it only validates whether the timestamp occurs
 316 * when the gate corresponding to the skb's traffic class is open.
 317 */
 318static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 319						  struct Qdisc *sch,
 320						  struct sched_gate_list *sched,
 321						  struct sched_gate_list *admin,
 322						  ktime_t time,
 323						  ktime_t *interval_start,
 324						  ktime_t *interval_end,
 325						  bool validate_interval)
 326{
 327	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 328	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 329	struct sched_entry *entry = NULL, *entry_found = NULL;
 330	struct taprio_sched *q = qdisc_priv(sch);
 331	struct net_device *dev = qdisc_dev(sch);
 332	bool entry_available = false;
 333	s32 cycle_elapsed;
 334	int tc, n;
 335
 336	tc = netdev_get_prio_tc_map(dev, skb->priority);
 337	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 338
 339	*interval_start = 0;
 340	*interval_end = 0;
 341
 342	if (!sched)
 343		return NULL;
 344
 345	cycle = sched->cycle_time;
 346	cycle_elapsed = get_cycle_time_elapsed(sched, time);
 347	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 348	cycle_end = ktime_add_ns(curr_intv_end, cycle);
 349
 350	list_for_each_entry(entry, &sched->entries, list) {
 351		curr_intv_start = curr_intv_end;
 352		curr_intv_end = get_interval_end_time(sched, admin, entry,
 353						      curr_intv_start);
 354
 355		if (ktime_after(curr_intv_start, cycle_end))
 356			break;
 357
 358		if (!(entry->gate_mask & BIT(tc)) ||
 359		    packet_transmit_time > entry->interval)
 360			continue;
 361
 362		txtime = entry->next_txtime;
 363
 364		if (ktime_before(txtime, time) || validate_interval) {
 365			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 366			if ((ktime_before(curr_intv_start, time) &&
 367			     ktime_before(transmit_end_time, curr_intv_end)) ||
 368			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
 369				entry_found = entry;
 370				*interval_start = curr_intv_start;
 371				*interval_end = curr_intv_end;
 372				break;
 373			} else if (!entry_available && !validate_interval) {
 374				/* Here, we are just trying to find out the
 375				 * first available interval in the next cycle.
 376				 */
 377				entry_available = true;
 378				entry_found = entry;
 379				*interval_start = ktime_add_ns(curr_intv_start, cycle);
 380				*interval_end = ktime_add_ns(curr_intv_end, cycle);
 381			}
 382		} else if (ktime_before(txtime, earliest_txtime) &&
 383			   !entry_available) {
 384			earliest_txtime = txtime;
 385			entry_found = entry;
 386			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 387			*interval_start = ktime_add(curr_intv_start, n * cycle);
 388			*interval_end = ktime_add(curr_intv_end, n * cycle);
 389		}
 390	}
 391
 392	return entry_found;
 393}
 394
 395static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 396{
 397	struct taprio_sched *q = qdisc_priv(sch);
 398	struct sched_gate_list *sched, *admin;
 399	ktime_t interval_start, interval_end;
 400	struct sched_entry *entry;
 401
 402	rcu_read_lock();
 403	sched = rcu_dereference(q->oper_sched);
 404	admin = rcu_dereference(q->admin_sched);
 405
 406	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 407				       &interval_start, &interval_end, true);
 408	rcu_read_unlock();
 409
 410	return entry;
 411}
 412
 413/* This returns the tstamp value set by TCP in terms of the set clock. */
 414static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 415{
 416	unsigned int offset = skb_network_offset(skb);
 417	const struct ipv6hdr *ipv6h;
 418	const struct iphdr *iph;
 419	struct ipv6hdr _ipv6h;
 420
 421	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 422	if (!ipv6h)
 423		return 0;
 424
 425	if (ipv6h->version == 4) {
 426		iph = (struct iphdr *)ipv6h;
 427		offset += iph->ihl * 4;
 428
 429		/* special-case 6in4 tunnelling, as that is a common way to get
 430		 * v6 connectivity in the home
 431		 */
 432		if (iph->protocol == IPPROTO_IPV6) {
 433			ipv6h = skb_header_pointer(skb, offset,
 434						   sizeof(_ipv6h), &_ipv6h);
 435
 436			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 437				return 0;
 438		} else if (iph->protocol != IPPROTO_TCP) {
 439			return 0;
 440		}
 441	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 442		return 0;
 443	}
 444
 445	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
 446}
 447
 448/* There are a few scenarios where we will have to modify the txtime from
 449 * what is read from next_txtime in sched_entry. They are:
 450 * 1. If txtime is in the past,
 451 *    a. The gate for the traffic class is currently open and packet can be
 452 *       transmitted before it closes, schedule the packet right away.
 453 *    b. If the gate corresponding to the traffic class is going to open later
 454 *       in the cycle, set the txtime of packet to the interval start.
 455 * 2. If txtime is in the future, there are packets corresponding to the
 456 *    current traffic class waiting to be transmitted. So, the following
 457 *    possibilities exist:
 458 *    a. We can transmit the packet before the window containing the txtime
 459 *       closes.
 460 *    b. The window might close before the transmission can be completed
 461 *       successfully. So, schedule the packet in the next open window.
 462 */
 463static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 464{
 465	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 466	struct taprio_sched *q = qdisc_priv(sch);
 467	struct sched_gate_list *sched, *admin;
 468	ktime_t minimum_time, now, txtime;
 469	int len, packet_transmit_time;
 470	struct sched_entry *entry;
 471	bool sched_changed;
 472
 473	now = taprio_get_time(q);
 474	minimum_time = ktime_add_ns(now, q->txtime_delay);
 475
 476	tcp_tstamp = get_tcp_tstamp(q, skb);
 477	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 478
 479	rcu_read_lock();
 480	admin = rcu_dereference(q->admin_sched);
 481	sched = rcu_dereference(q->oper_sched);
 482	if (admin && ktime_after(minimum_time, admin->base_time))
 483		switch_schedules(q, &admin, &sched);
 484
 485	/* Until the schedule starts, all the queues are open */
 486	if (!sched || ktime_before(minimum_time, sched->base_time)) {
 487		txtime = minimum_time;
 488		goto done;
 489	}
 490
 491	len = qdisc_pkt_len(skb);
 492	packet_transmit_time = length_to_duration(q, len);
 493
 494	do {
 495		sched_changed = false;
 496
 497		entry = find_entry_to_transmit(skb, sch, sched, admin,
 498					       minimum_time,
 499					       &interval_start, &interval_end,
 500					       false);
 501		if (!entry) {
 502			txtime = 0;
 503			goto done;
 504		}
 505
 506		txtime = entry->next_txtime;
 507		txtime = max_t(ktime_t, txtime, minimum_time);
 508		txtime = max_t(ktime_t, txtime, interval_start);
 509
 510		if (admin && admin != sched &&
 511		    ktime_after(txtime, admin->base_time)) {
 512			sched = admin;
 513			sched_changed = true;
 514			continue;
 515		}
 516
 517		transmit_end_time = ktime_add(txtime, packet_transmit_time);
 518		minimum_time = transmit_end_time;
 519
 520		/* Update the txtime of current entry to the next time it's
 521		 * interval starts.
 522		 */
 523		if (ktime_after(transmit_end_time, interval_end))
 524			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 525	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
 526
 527	entry->next_txtime = transmit_end_time;
 528
 529done:
 530	rcu_read_unlock();
 531	return txtime;
 532}
 533
 534/* Devices with full offload are expected to honor this in hardware */
 535static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
 536					     struct sk_buff *skb)
 537{
 538	struct taprio_sched *q = qdisc_priv(sch);
 539	struct net_device *dev = qdisc_dev(sch);
 540	struct sched_gate_list *sched;
 541	int prio = skb->priority;
 542	bool exceeds = false;
 543	u8 tc;
 544
 545	tc = netdev_get_prio_tc_map(dev, prio);
 546
 547	rcu_read_lock();
 548	sched = rcu_dereference(q->oper_sched);
 549	if (sched && skb->len > sched->max_frm_len[tc])
 550		exceeds = true;
 551	rcu_read_unlock();
 552
 553	return exceeds;
 554}
 555
 556static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
 557			      struct Qdisc *child, struct sk_buff **to_free)
 558{
 559	struct taprio_sched *q = qdisc_priv(sch);
 560
 561	/* sk_flags are only safe to use on full sockets. */
 562	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
 563		if (!is_valid_interval(skb, sch))
 564			return qdisc_drop(skb, sch, to_free);
 565	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 566		skb->tstamp = get_packet_txtime(skb, sch);
 567		if (!skb->tstamp)
 568			return qdisc_drop(skb, sch, to_free);
 569	}
 570
 571	qdisc_qstats_backlog_inc(sch, skb);
 572	sch->q.qlen++;
 573
 574	return qdisc_enqueue(skb, child, to_free);
 575}
 576
 577static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
 578				    struct Qdisc *child,
 579				    struct sk_buff **to_free)
 580{
 581	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
 582	netdev_features_t features = netif_skb_features(skb);
 583	struct sk_buff *segs, *nskb;
 584	int ret;
 585
 586	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 587	if (IS_ERR_OR_NULL(segs))
 588		return qdisc_drop(skb, sch, to_free);
 589
 590	skb_list_walk_safe(segs, segs, nskb) {
 591		skb_mark_not_on_list(segs);
 592		qdisc_skb_cb(segs)->pkt_len = segs->len;
 593		slen += segs->len;
 594
 595		/* FIXME: we should be segmenting to a smaller size
 596		 * rather than dropping these
 597		 */
 598		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
 599			ret = qdisc_drop(segs, sch, to_free);
 600		else
 601			ret = taprio_enqueue_one(segs, sch, child, to_free);
 602
 603		if (ret != NET_XMIT_SUCCESS) {
 604			if (net_xmit_drop_count(ret))
 605				qdisc_qstats_drop(sch);
 606		} else {
 607			numsegs++;
 608		}
 609	}
 610
 611	if (numsegs > 1)
 612		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
 613	consume_skb(skb);
 614
 615	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 616}
 617
 618/* Will not be called in the full offload case, since the TX queues are
 619 * attached to the Qdisc created using qdisc_create_dflt()
 620 */
 621static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 622			  struct sk_buff **to_free)
 623{
 624	struct taprio_sched *q = qdisc_priv(sch);
 625	struct Qdisc *child;
 626	int queue;
 627
 628	queue = skb_get_queue_mapping(skb);
 629
 630	child = q->qdiscs[queue];
 631	if (unlikely(!child))
 632		return qdisc_drop(skb, sch, to_free);
 633
 634	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
 635		/* Large packets might not be transmitted when the transmission
 636		 * duration exceeds any configured interval. Therefore, segment
 637		 * the skb into smaller chunks. Drivers with full offload are
 638		 * expected to handle this in hardware.
 639		 */
 640		if (skb_is_gso(skb))
 641			return taprio_enqueue_segmented(skb, sch, child,
 642							to_free);
 643
 644		return qdisc_drop(skb, sch, to_free);
 645	}
 646
 647	return taprio_enqueue_one(skb, sch, child, to_free);
 648}
 649
 650static struct sk_buff *taprio_peek(struct Qdisc *sch)
 651{
 652	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
 653	return NULL;
 654}
 655
 656static void taprio_set_budgets(struct taprio_sched *q,
 657			       struct sched_gate_list *sched,
 658			       struct sched_entry *entry)
 659{
 660	struct net_device *dev = qdisc_dev(q->root);
 661	int num_tc = netdev_get_num_tc(dev);
 662	int tc, budget;
 663
 664	for (tc = 0; tc < num_tc; tc++) {
 665		/* Traffic classes which never close have infinite budget */
 666		if (entry->gate_duration[tc] == sched->cycle_time)
 667			budget = INT_MAX;
 668		else
 669			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
 670					   atomic64_read(&q->picos_per_byte));
 671
 672		atomic_set(&entry->budget[tc], budget);
 673	}
 674}
 675
 676/* When an skb is sent, it consumes from the budget of all traffic classes */
 677static int taprio_update_budgets(struct sched_entry *entry, size_t len,
 678				 int tc_consumed, int num_tc)
 679{
 680	int tc, budget, new_budget = 0;
 681
 682	for (tc = 0; tc < num_tc; tc++) {
 683		budget = atomic_read(&entry->budget[tc]);
 684		/* Don't consume from infinite budget */
 685		if (budget == INT_MAX) {
 686			if (tc == tc_consumed)
 687				new_budget = budget;
 688			continue;
 689		}
 690
 691		if (tc == tc_consumed)
 692			new_budget = atomic_sub_return(len, &entry->budget[tc]);
 693		else
 694			atomic_sub(len, &entry->budget[tc]);
 695	}
 696
 697	return new_budget;
 698}
 699
 700static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
 701					       struct sched_entry *entry,
 702					       u32 gate_mask)
 703{
 704	struct taprio_sched *q = qdisc_priv(sch);
 705	struct net_device *dev = qdisc_dev(sch);
 706	struct Qdisc *child = q->qdiscs[txq];
 707	int num_tc = netdev_get_num_tc(dev);
 708	struct sk_buff *skb;
 709	ktime_t guard;
 710	int prio;
 711	int len;
 712	u8 tc;
 713
 714	if (unlikely(!child))
 715		return NULL;
 716
 717	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 718		goto skip_peek_checks;
 719
 720	skb = child->ops->peek(child);
 721	if (!skb)
 722		return NULL;
 723
 724	prio = skb->priority;
 725	tc = netdev_get_prio_tc_map(dev, prio);
 726
 727	if (!(gate_mask & BIT(tc)))
 728		return NULL;
 729
 730	len = qdisc_pkt_len(skb);
 731	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
 732
 733	/* In the case that there's no gate entry, there's no
 734	 * guard band ...
 735	 */
 736	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 737	    !taprio_entry_allows_tx(guard, entry, tc))
 738		return NULL;
 739
 740	/* ... and no budget. */
 741	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 742	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
 743		return NULL;
 744
 745skip_peek_checks:
 746	skb = child->ops->dequeue(child);
 747	if (unlikely(!skb))
 748		return NULL;
 749
 750	qdisc_bstats_update(sch, skb);
 751	qdisc_qstats_backlog_dec(sch, skb);
 752	sch->q.qlen--;
 753
 754	return skb;
 755}
 756
 757static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
 758{
 759	int offset = dev->tc_to_txq[tc].offset;
 760	int count = dev->tc_to_txq[tc].count;
 761
 762	(*txq)++;
 763	if (*txq == offset + count)
 764		*txq = offset;
 765}
 766
 767/* Prioritize higher traffic classes, and select among TXQs belonging to the
 768 * same TC using round robin
 769 */
 770static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
 771						  struct sched_entry *entry,
 772						  u32 gate_mask)
 773{
 774	struct taprio_sched *q = qdisc_priv(sch);
 775	struct net_device *dev = qdisc_dev(sch);
 776	int num_tc = netdev_get_num_tc(dev);
 777	struct sk_buff *skb;
 778	int tc;
 779
 780	for (tc = num_tc - 1; tc >= 0; tc--) {
 781		int first_txq = q->cur_txq[tc];
 782
 783		if (!(gate_mask & BIT(tc)))
 784			continue;
 785
 786		do {
 787			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
 788						      entry, gate_mask);
 789
 790			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
 791
 792			if (q->cur_txq[tc] >= dev->num_tx_queues)
 793				q->cur_txq[tc] = first_txq;
 794
 795			if (skb)
 796				return skb;
 797		} while (q->cur_txq[tc] != first_txq);
 798	}
 799
 800	return NULL;
 801}
 802
 803/* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
 804 * class other than to determine whether the gate is open or not
 805 */
 806static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
 807						   struct sched_entry *entry,
 808						   u32 gate_mask)
 809{
 810	struct net_device *dev = qdisc_dev(sch);
 811	struct sk_buff *skb;
 812	int i;
 813
 814	for (i = 0; i < dev->num_tx_queues; i++) {
 815		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
 816		if (skb)
 817			return skb;
 818	}
 819
 820	return NULL;
 821}
 822
 823/* Will not be called in the full offload case, since the TX queues are
 824 * attached to the Qdisc created using qdisc_create_dflt()
 825 */
 826static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 827{
 828	struct taprio_sched *q = qdisc_priv(sch);
 829	struct sk_buff *skb = NULL;
 830	struct sched_entry *entry;
 831	u32 gate_mask;
 832
 833	rcu_read_lock();
 834	entry = rcu_dereference(q->current_entry);
 835	/* if there's no entry, it means that the schedule didn't
 836	 * start yet, so force all gates to be open, this is in
 837	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 838	 * "AdminGateStates"
 839	 */
 840	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 841	if (!gate_mask)
 842		goto done;
 843
 844	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
 845	    !static_branch_likely(&taprio_have_working_mqprio)) {
 846		/* Single NIC kind which is broken */
 847		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
 848	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
 849		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
 850		/* Single NIC kind which prioritizes properly */
 851		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
 852	} else {
 853		/* Mixed NIC kinds present in system, need dynamic testing */
 854		if (q->broken_mqprio)
 855			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
 856		else
 857			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
 858	}
 859
 860done:
 861	rcu_read_unlock();
 862
 863	return skb;
 864}
 865
 866static bool should_restart_cycle(const struct sched_gate_list *oper,
 867				 const struct sched_entry *entry)
 868{
 869	if (list_is_last(&entry->list, &oper->entries))
 870		return true;
 871
 872	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
 873		return true;
 874
 875	return false;
 876}
 877
 878static bool should_change_schedules(const struct sched_gate_list *admin,
 879				    const struct sched_gate_list *oper,
 880				    ktime_t end_time)
 881{
 882	ktime_t next_base_time, extension_time;
 883
 884	if (!admin)
 885		return false;
 886
 887	next_base_time = sched_base_time(admin);
 888
 889	/* This is the simple case, the end_time would fall after
 890	 * the next schedule base_time.
 891	 */
 892	if (ktime_compare(next_base_time, end_time) <= 0)
 893		return true;
 894
 895	/* This is the cycle_time_extension case, if the end_time
 896	 * plus the amount that can be extended would fall after the
 897	 * next schedule base_time, we can extend the current schedule
 898	 * for that amount.
 899	 */
 900	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
 901
 902	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 903	 * how precisely the extension should be made. So after
 904	 * conformance testing, this logic may change.
 905	 */
 906	if (ktime_compare(next_base_time, extension_time) <= 0)
 907		return true;
 908
 909	return false;
 910}
 911
 912static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 913{
 914	struct taprio_sched *q = container_of(timer, struct taprio_sched,
 915					      advance_timer);
 916	struct net_device *dev = qdisc_dev(q->root);
 917	struct sched_gate_list *oper, *admin;
 918	int num_tc = netdev_get_num_tc(dev);
 919	struct sched_entry *entry, *next;
 920	struct Qdisc *sch = q->root;
 921	ktime_t end_time;
 922	int tc;
 923
 924	spin_lock(&q->current_entry_lock);
 925	entry = rcu_dereference_protected(q->current_entry,
 926					  lockdep_is_held(&q->current_entry_lock));
 927	oper = rcu_dereference_protected(q->oper_sched,
 928					 lockdep_is_held(&q->current_entry_lock));
 929	admin = rcu_dereference_protected(q->admin_sched,
 930					  lockdep_is_held(&q->current_entry_lock));
 931
 932	if (!oper)
 933		switch_schedules(q, &admin, &oper);
 934
 935	/* This can happen in two cases: 1. this is the very first run
 936	 * of this function (i.e. we weren't running any schedule
 937	 * previously); 2. The previous schedule just ended. The first
 938	 * entry of all schedules are pre-calculated during the
 939	 * schedule initialization.
 940	 */
 941	if (unlikely(!entry || entry->end_time == oper->base_time)) {
 942		next = list_first_entry(&oper->entries, struct sched_entry,
 943					list);
 944		end_time = next->end_time;
 945		goto first_run;
 946	}
 947
 948	if (should_restart_cycle(oper, entry)) {
 949		next = list_first_entry(&oper->entries, struct sched_entry,
 950					list);
 951		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
 952						    oper->cycle_time);
 953	} else {
 954		next = list_next_entry(entry, list);
 955	}
 956
 957	end_time = ktime_add_ns(entry->end_time, next->interval);
 958	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
 959
 960	for (tc = 0; tc < num_tc; tc++) {
 961		if (next->gate_duration[tc] == oper->cycle_time)
 962			next->gate_close_time[tc] = KTIME_MAX;
 963		else
 964			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
 965								 next->gate_duration[tc]);
 966	}
 967
 968	if (should_change_schedules(admin, oper, end_time)) {
 969		/* Set things so the next time this runs, the new
 970		 * schedule runs.
 971		 */
 972		end_time = sched_base_time(admin);
 973		switch_schedules(q, &admin, &oper);
 974	}
 975
 976	next->end_time = end_time;
 977	taprio_set_budgets(q, oper, next);
 978
 979first_run:
 980	rcu_assign_pointer(q->current_entry, next);
 981	spin_unlock(&q->current_entry_lock);
 982
 983	hrtimer_set_expires(&q->advance_timer, end_time);
 984
 985	rcu_read_lock();
 986	__netif_schedule(sch);
 987	rcu_read_unlock();
 988
 989	return HRTIMER_RESTART;
 990}
 991
 992static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 993	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
 994	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
 995	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 996	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 997};
 998
 999static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1000	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1001							    TC_QOPT_MAX_QUEUE),
1002	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1003	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1004							      TC_FP_EXPRESS,
1005							      TC_FP_PREEMPTIBLE),
1006};
1007
1008static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1009	.min = 0,
1010	.max = INT_MAX,
1011};
1012
1013static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1014	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1015		.len = sizeof(struct tc_mqprio_qopt)
1016	},
1017	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1018	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1019	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1020	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1021	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1022		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1023	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1024	[TCA_TAPRIO_ATTR_FLAGS]                      =
1025		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1026	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1027	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1028};
1029
1030static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1031			    struct sched_entry *entry,
1032			    struct netlink_ext_ack *extack)
1033{
1034	int min_duration = length_to_duration(q, ETH_ZLEN);
1035	u32 interval = 0;
1036
1037	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1038		entry->command = nla_get_u8(
1039			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1040
1041	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1042		entry->gate_mask = nla_get_u32(
1043			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1044
1045	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1046		interval = nla_get_u32(
1047			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1048
1049	/* The interval should allow at least the minimum ethernet
1050	 * frame to go out.
1051	 */
1052	if (interval < min_duration) {
1053		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1054		return -EINVAL;
1055	}
1056
1057	entry->interval = interval;
1058
1059	return 0;
1060}
1061
1062static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1063			     struct sched_entry *entry, int index,
1064			     struct netlink_ext_ack *extack)
1065{
1066	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1067	int err;
1068
1069	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1070					  entry_policy, NULL);
1071	if (err < 0) {
1072		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1073		return -EINVAL;
1074	}
1075
1076	entry->index = index;
1077
1078	return fill_sched_entry(q, tb, entry, extack);
1079}
1080
1081static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1082			    struct sched_gate_list *sched,
1083			    struct netlink_ext_ack *extack)
1084{
1085	struct nlattr *n;
1086	int err, rem;
1087	int i = 0;
1088
1089	if (!list)
1090		return -EINVAL;
1091
1092	nla_for_each_nested(n, list, rem) {
1093		struct sched_entry *entry;
1094
1095		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1096			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1097			continue;
1098		}
1099
1100		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1101		if (!entry) {
1102			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1103			return -ENOMEM;
1104		}
1105
1106		err = parse_sched_entry(q, n, entry, i, extack);
1107		if (err < 0) {
1108			kfree(entry);
1109			return err;
1110		}
1111
1112		list_add_tail(&entry->list, &sched->entries);
1113		i++;
1114	}
1115
1116	sched->num_entries = i;
1117
1118	return i;
1119}
1120
1121static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1122				 struct sched_gate_list *new,
1123				 struct netlink_ext_ack *extack)
1124{
1125	int err = 0;
1126
1127	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1128		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1129		return -ENOTSUPP;
1130	}
1131
1132	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1133		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1134
1135	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1136		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1137
1138	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1139		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1140
1141	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1142		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1143				       new, extack);
1144	if (err < 0)
1145		return err;
1146
1147	if (!new->cycle_time) {
1148		struct sched_entry *entry;
1149		ktime_t cycle = 0;
1150
1151		list_for_each_entry(entry, &new->entries, list)
1152			cycle = ktime_add_ns(cycle, entry->interval);
1153
1154		if (cycle < 0 || cycle > INT_MAX) {
1155			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1156			return -EINVAL;
1157		}
1158
1159		new->cycle_time = cycle;
1160	}
1161
1162	if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1163		NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1164		return -EINVAL;
1165	}
1166
1167	taprio_calculate_gate_durations(q, new);
1168
1169	return 0;
1170}
1171
1172static int taprio_parse_mqprio_opt(struct net_device *dev,
1173				   struct tc_mqprio_qopt *qopt,
1174				   struct netlink_ext_ack *extack,
1175				   u32 taprio_flags)
1176{
1177	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1178
1179	if (!qopt && !dev->num_tc) {
1180		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1181		return -EINVAL;
1182	}
1183
1184	/* If num_tc is already set, it means that the user already
1185	 * configured the mqprio part
1186	 */
1187	if (dev->num_tc)
1188		return 0;
1189
1190	/* taprio imposes that traffic classes map 1:n to tx queues */
1191	if (qopt->num_tc > dev->num_tx_queues) {
1192		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1193		return -EINVAL;
1194	}
1195
1196	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1197	 * different TCs to overlap, and just validate the TXQ ranges.
1198	 */
1199	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1200				    extack);
1201}
1202
1203static int taprio_get_start_time(struct Qdisc *sch,
1204				 struct sched_gate_list *sched,
1205				 ktime_t *start)
1206{
1207	struct taprio_sched *q = qdisc_priv(sch);
1208	ktime_t now, base, cycle;
1209	s64 n;
1210
1211	base = sched_base_time(sched);
1212	now = taprio_get_time(q);
1213
1214	if (ktime_after(base, now)) {
1215		*start = base;
1216		return 0;
1217	}
1218
1219	cycle = sched->cycle_time;
1220
1221	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1222	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1223	 * something went really wrong. In that case, we should warn about this
1224	 * inconsistent state and return error.
1225	 */
1226	if (WARN_ON(!cycle))
1227		return -EFAULT;
1228
1229	/* Schedule the start time for the beginning of the next
1230	 * cycle.
1231	 */
1232	n = div64_s64(ktime_sub_ns(now, base), cycle);
1233	*start = ktime_add_ns(base, (n + 1) * cycle);
1234	return 0;
1235}
1236
1237static void setup_first_end_time(struct taprio_sched *q,
1238				 struct sched_gate_list *sched, ktime_t base)
1239{
1240	struct net_device *dev = qdisc_dev(q->root);
1241	int num_tc = netdev_get_num_tc(dev);
1242	struct sched_entry *first;
1243	ktime_t cycle;
1244	int tc;
1245
1246	first = list_first_entry(&sched->entries,
1247				 struct sched_entry, list);
1248
1249	cycle = sched->cycle_time;
1250
1251	/* FIXME: find a better place to do this */
1252	sched->cycle_end_time = ktime_add_ns(base, cycle);
1253
1254	first->end_time = ktime_add_ns(base, first->interval);
1255	taprio_set_budgets(q, sched, first);
1256
1257	for (tc = 0; tc < num_tc; tc++) {
1258		if (first->gate_duration[tc] == sched->cycle_time)
1259			first->gate_close_time[tc] = KTIME_MAX;
1260		else
1261			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1262	}
1263
1264	rcu_assign_pointer(q->current_entry, NULL);
1265}
1266
1267static void taprio_start_sched(struct Qdisc *sch,
1268			       ktime_t start, struct sched_gate_list *new)
1269{
1270	struct taprio_sched *q = qdisc_priv(sch);
1271	ktime_t expires;
1272
1273	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1274		return;
1275
1276	expires = hrtimer_get_expires(&q->advance_timer);
1277	if (expires == 0)
1278		expires = KTIME_MAX;
1279
1280	/* If the new schedule starts before the next expiration, we
1281	 * reprogram it to the earliest one, so we change the admin
1282	 * schedule to the operational one at the right time.
1283	 */
1284	start = min_t(ktime_t, start, expires);
1285
1286	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1287}
1288
1289static void taprio_set_picos_per_byte(struct net_device *dev,
1290				      struct taprio_sched *q)
1291{
1292	struct ethtool_link_ksettings ecmd;
1293	int speed = SPEED_10;
1294	int picos_per_byte;
1295	int err;
1296
1297	err = __ethtool_get_link_ksettings(dev, &ecmd);
1298	if (err < 0)
1299		goto skip;
1300
1301	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1302		speed = ecmd.base.speed;
1303
1304skip:
1305	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1306
1307	atomic64_set(&q->picos_per_byte, picos_per_byte);
1308	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1309		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1310		   ecmd.base.speed);
1311}
1312
1313static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1314			       void *ptr)
1315{
1316	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1317	struct sched_gate_list *oper, *admin;
1318	struct qdisc_size_table *stab;
1319	struct taprio_sched *q;
1320
1321	ASSERT_RTNL();
1322
1323	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1324		return NOTIFY_DONE;
1325
1326	list_for_each_entry(q, &taprio_list, taprio_list) {
1327		if (dev != qdisc_dev(q->root))
1328			continue;
1329
1330		taprio_set_picos_per_byte(dev, q);
1331
1332		stab = rtnl_dereference(q->root->stab);
1333
1334		oper = rtnl_dereference(q->oper_sched);
1335		if (oper)
1336			taprio_update_queue_max_sdu(q, oper, stab);
1337
1338		admin = rtnl_dereference(q->admin_sched);
1339		if (admin)
1340			taprio_update_queue_max_sdu(q, admin, stab);
1341
1342		break;
1343	}
1344
1345	return NOTIFY_DONE;
1346}
1347
1348static void setup_txtime(struct taprio_sched *q,
1349			 struct sched_gate_list *sched, ktime_t base)
1350{
1351	struct sched_entry *entry;
1352	u64 interval = 0;
1353
1354	list_for_each_entry(entry, &sched->entries, list) {
1355		entry->next_txtime = ktime_add_ns(base, interval);
1356		interval += entry->interval;
1357	}
1358}
1359
1360static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1361{
1362	struct __tc_taprio_qopt_offload *__offload;
1363
1364	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1365			    GFP_KERNEL);
1366	if (!__offload)
1367		return NULL;
1368
1369	refcount_set(&__offload->users, 1);
1370
1371	return &__offload->offload;
1372}
1373
1374struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1375						  *offload)
1376{
1377	struct __tc_taprio_qopt_offload *__offload;
1378
1379	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1380				 offload);
1381
1382	refcount_inc(&__offload->users);
1383
1384	return offload;
1385}
1386EXPORT_SYMBOL_GPL(taprio_offload_get);
1387
1388void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1389{
1390	struct __tc_taprio_qopt_offload *__offload;
1391
1392	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1393				 offload);
1394
1395	if (!refcount_dec_and_test(&__offload->users))
1396		return;
1397
1398	kfree(__offload);
1399}
1400EXPORT_SYMBOL_GPL(taprio_offload_free);
1401
1402/* The function will only serve to keep the pointers to the "oper" and "admin"
1403 * schedules valid in relation to their base times, so when calling dump() the
1404 * users looks at the right schedules.
1405 * When using full offload, the admin configuration is promoted to oper at the
1406 * base_time in the PHC time domain.  But because the system time is not
1407 * necessarily in sync with that, we can't just trigger a hrtimer to call
1408 * switch_schedules at the right hardware time.
1409 * At the moment we call this by hand right away from taprio, but in the future
1410 * it will be useful to create a mechanism for drivers to notify taprio of the
1411 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1412 * This is left as TODO.
1413 */
1414static void taprio_offload_config_changed(struct taprio_sched *q)
1415{
1416	struct sched_gate_list *oper, *admin;
1417
1418	oper = rtnl_dereference(q->oper_sched);
1419	admin = rtnl_dereference(q->admin_sched);
1420
1421	switch_schedules(q, &admin, &oper);
1422}
1423
1424static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1425{
1426	u32 i, queue_mask = 0;
1427
1428	for (i = 0; i < dev->num_tc; i++) {
1429		u32 offset, count;
1430
1431		if (!(tc_mask & BIT(i)))
1432			continue;
1433
1434		offset = dev->tc_to_txq[i].offset;
1435		count = dev->tc_to_txq[i].count;
1436
1437		queue_mask |= GENMASK(offset + count - 1, offset);
1438	}
1439
1440	return queue_mask;
1441}
1442
1443static void taprio_sched_to_offload(struct net_device *dev,
1444				    struct sched_gate_list *sched,
1445				    struct tc_taprio_qopt_offload *offload,
1446				    const struct tc_taprio_caps *caps)
1447{
1448	struct sched_entry *entry;
1449	int i = 0;
1450
1451	offload->base_time = sched->base_time;
1452	offload->cycle_time = sched->cycle_time;
1453	offload->cycle_time_extension = sched->cycle_time_extension;
1454
1455	list_for_each_entry(entry, &sched->entries, list) {
1456		struct tc_taprio_sched_entry *e = &offload->entries[i];
1457
1458		e->command = entry->command;
1459		e->interval = entry->interval;
1460		if (caps->gate_mask_per_txq)
1461			e->gate_mask = tc_map_to_queue_mask(dev,
1462							    entry->gate_mask);
1463		else
1464			e->gate_mask = entry->gate_mask;
1465
1466		i++;
1467	}
1468
1469	offload->num_entries = i;
1470}
1471
1472static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1473{
1474	struct net_device *dev = qdisc_dev(q->root);
1475	struct tc_taprio_caps caps;
1476
1477	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1478				 &caps, sizeof(caps));
1479
1480	q->broken_mqprio = caps.broken_mqprio;
1481	if (q->broken_mqprio)
1482		static_branch_inc(&taprio_have_broken_mqprio);
1483	else
1484		static_branch_inc(&taprio_have_working_mqprio);
1485
1486	q->detected_mqprio = true;
1487}
1488
1489static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1490{
1491	if (!q->detected_mqprio)
1492		return;
1493
1494	if (q->broken_mqprio)
1495		static_branch_dec(&taprio_have_broken_mqprio);
1496	else
1497		static_branch_dec(&taprio_have_working_mqprio);
1498}
1499
1500static int taprio_enable_offload(struct net_device *dev,
1501				 struct taprio_sched *q,
1502				 struct sched_gate_list *sched,
1503				 struct netlink_ext_ack *extack)
1504{
1505	const struct net_device_ops *ops = dev->netdev_ops;
1506	struct tc_taprio_qopt_offload *offload;
1507	struct tc_taprio_caps caps;
1508	int tc, err = 0;
1509
1510	if (!ops->ndo_setup_tc) {
1511		NL_SET_ERR_MSG(extack,
1512			       "Device does not support taprio offload");
1513		return -EOPNOTSUPP;
1514	}
1515
1516	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1517				 &caps, sizeof(caps));
1518
1519	if (!caps.supports_queue_max_sdu) {
1520		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1521			if (q->max_sdu[tc]) {
1522				NL_SET_ERR_MSG_MOD(extack,
1523						   "Device does not handle queueMaxSDU");
1524				return -EOPNOTSUPP;
1525			}
1526		}
1527	}
1528
1529	offload = taprio_offload_alloc(sched->num_entries);
1530	if (!offload) {
1531		NL_SET_ERR_MSG(extack,
1532			       "Not enough memory for enabling offload mode");
1533		return -ENOMEM;
1534	}
1535	offload->cmd = TAPRIO_CMD_REPLACE;
1536	offload->extack = extack;
1537	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1538	offload->mqprio.extack = extack;
1539	taprio_sched_to_offload(dev, sched, offload, &caps);
1540	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1541
1542	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1543		offload->max_sdu[tc] = q->max_sdu[tc];
1544
1545	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1546	if (err < 0) {
1547		NL_SET_ERR_MSG_WEAK(extack,
1548				    "Device failed to setup taprio offload");
1549		goto done;
1550	}
1551
1552	q->offloaded = true;
1553
1554done:
1555	/* The offload structure may linger around via a reference taken by the
1556	 * device driver, so clear up the netlink extack pointer so that the
1557	 * driver isn't tempted to dereference data which stopped being valid
1558	 */
1559	offload->extack = NULL;
1560	offload->mqprio.extack = NULL;
1561	taprio_offload_free(offload);
1562
1563	return err;
1564}
1565
1566static int taprio_disable_offload(struct net_device *dev,
1567				  struct taprio_sched *q,
1568				  struct netlink_ext_ack *extack)
1569{
1570	const struct net_device_ops *ops = dev->netdev_ops;
1571	struct tc_taprio_qopt_offload *offload;
1572	int err;
1573
1574	if (!q->offloaded)
1575		return 0;
1576
1577	offload = taprio_offload_alloc(0);
1578	if (!offload) {
1579		NL_SET_ERR_MSG(extack,
1580			       "Not enough memory to disable offload mode");
1581		return -ENOMEM;
1582	}
1583	offload->cmd = TAPRIO_CMD_DESTROY;
1584
1585	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1586	if (err < 0) {
1587		NL_SET_ERR_MSG(extack,
1588			       "Device failed to disable offload");
1589		goto out;
1590	}
1591
1592	q->offloaded = false;
1593
1594out:
1595	taprio_offload_free(offload);
1596
1597	return err;
1598}
1599
1600/* If full offload is enabled, the only possible clockid is the net device's
1601 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1602 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1603 * in sync with the specified clockid via a user space daemon such as phc2sys.
1604 * For both software taprio and txtime-assist, the clockid is used for the
1605 * hrtimer that advances the schedule and hence mandatory.
1606 */
1607static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1608				struct netlink_ext_ack *extack)
1609{
1610	struct taprio_sched *q = qdisc_priv(sch);
1611	struct net_device *dev = qdisc_dev(sch);
1612	int err = -EINVAL;
1613
1614	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1615		const struct ethtool_ops *ops = dev->ethtool_ops;
1616		struct ethtool_ts_info info = {
1617			.cmd = ETHTOOL_GET_TS_INFO,
1618			.phc_index = -1,
1619		};
1620
1621		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1622			NL_SET_ERR_MSG(extack,
1623				       "The 'clockid' cannot be specified for full offload");
1624			goto out;
1625		}
1626
1627		if (ops && ops->get_ts_info)
1628			err = ops->get_ts_info(dev, &info);
1629
1630		if (err || info.phc_index < 0) {
1631			NL_SET_ERR_MSG(extack,
1632				       "Device does not have a PTP clock");
1633			err = -ENOTSUPP;
1634			goto out;
1635		}
1636	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1637		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1638		enum tk_offsets tk_offset;
1639
1640		/* We only support static clockids and we don't allow
1641		 * for it to be modified after the first init.
1642		 */
1643		if (clockid < 0 ||
1644		    (q->clockid != -1 && q->clockid != clockid)) {
1645			NL_SET_ERR_MSG(extack,
1646				       "Changing the 'clockid' of a running schedule is not supported");
1647			err = -ENOTSUPP;
1648			goto out;
1649		}
1650
1651		switch (clockid) {
1652		case CLOCK_REALTIME:
1653			tk_offset = TK_OFFS_REAL;
1654			break;
1655		case CLOCK_MONOTONIC:
1656			tk_offset = TK_OFFS_MAX;
1657			break;
1658		case CLOCK_BOOTTIME:
1659			tk_offset = TK_OFFS_BOOT;
1660			break;
1661		case CLOCK_TAI:
1662			tk_offset = TK_OFFS_TAI;
1663			break;
1664		default:
1665			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1666			err = -EINVAL;
1667			goto out;
1668		}
1669		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1670		WRITE_ONCE(q->tk_offset, tk_offset);
1671
1672		q->clockid = clockid;
1673	} else {
1674		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1675		goto out;
1676	}
1677
1678	/* Everything went ok, return success. */
1679	err = 0;
1680
1681out:
1682	return err;
1683}
1684
1685static int taprio_parse_tc_entry(struct Qdisc *sch,
1686				 struct nlattr *opt,
1687				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1688				 u32 fp[TC_QOPT_MAX_QUEUE],
1689				 unsigned long *seen_tcs,
1690				 struct netlink_ext_ack *extack)
1691{
1692	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1693	struct net_device *dev = qdisc_dev(sch);
1694	int err, tc;
1695	u32 val;
1696
1697	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1698			       taprio_tc_policy, extack);
1699	if (err < 0)
1700		return err;
1701
1702	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1703		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1704		return -EINVAL;
1705	}
1706
1707	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1708	if (tc >= TC_QOPT_MAX_QUEUE) {
1709		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1710		return -ERANGE;
1711	}
1712
1713	if (*seen_tcs & BIT(tc)) {
1714		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1715		return -EINVAL;
1716	}
1717
1718	*seen_tcs |= BIT(tc);
1719
1720	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1721		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1722		if (val > dev->max_mtu) {
1723			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1724			return -ERANGE;
1725		}
1726
1727		max_sdu[tc] = val;
1728	}
1729
1730	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1731		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1732
1733	return 0;
1734}
1735
1736static int taprio_parse_tc_entries(struct Qdisc *sch,
1737				   struct nlattr *opt,
1738				   struct netlink_ext_ack *extack)
1739{
1740	struct taprio_sched *q = qdisc_priv(sch);
1741	struct net_device *dev = qdisc_dev(sch);
1742	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1743	bool have_preemption = false;
1744	unsigned long seen_tcs = 0;
1745	u32 fp[TC_QOPT_MAX_QUEUE];
1746	struct nlattr *n;
1747	int tc, rem;
1748	int err = 0;
1749
1750	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1751		max_sdu[tc] = q->max_sdu[tc];
1752		fp[tc] = q->fp[tc];
1753	}
1754
1755	nla_for_each_nested(n, opt, rem) {
1756		if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1757			continue;
1758
1759		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1760					    extack);
1761		if (err)
1762			return err;
1763	}
1764
1765	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1766		q->max_sdu[tc] = max_sdu[tc];
1767		q->fp[tc] = fp[tc];
1768		if (fp[tc] != TC_FP_EXPRESS)
1769			have_preemption = true;
1770	}
1771
1772	if (have_preemption) {
1773		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1774			NL_SET_ERR_MSG(extack,
1775				       "Preemption only supported with full offload");
1776			return -EOPNOTSUPP;
1777		}
1778
1779		if (!ethtool_dev_mm_supported(dev)) {
1780			NL_SET_ERR_MSG(extack,
1781				       "Device does not support preemption");
1782			return -EOPNOTSUPP;
1783		}
1784	}
1785
1786	return err;
1787}
1788
1789static int taprio_mqprio_cmp(const struct net_device *dev,
1790			     const struct tc_mqprio_qopt *mqprio)
1791{
1792	int i;
1793
1794	if (!mqprio || mqprio->num_tc != dev->num_tc)
1795		return -1;
1796
1797	for (i = 0; i < mqprio->num_tc; i++)
1798		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1799		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1800			return -1;
1801
1802	for (i = 0; i <= TC_BITMASK; i++)
1803		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1804			return -1;
1805
1806	return 0;
1807}
1808
1809static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1810			 struct netlink_ext_ack *extack)
1811{
1812	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1813	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1814	struct sched_gate_list *oper, *admin, *new_admin;
1815	struct taprio_sched *q = qdisc_priv(sch);
1816	struct net_device *dev = qdisc_dev(sch);
1817	struct tc_mqprio_qopt *mqprio = NULL;
1818	unsigned long flags;
1819	u32 taprio_flags;
1820	ktime_t start;
1821	int i, err;
1822
1823	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1824					  taprio_policy, extack);
1825	if (err < 0)
1826		return err;
1827
1828	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1829		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1830
1831	/* The semantics of the 'flags' argument in relation to 'change()'
1832	 * requests, are interpreted following two rules (which are applied in
1833	 * this order): (1) an omitted 'flags' argument is interpreted as
1834	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1835	 * changed.
1836	 */
1837	taprio_flags = tb[TCA_TAPRIO_ATTR_FLAGS] ? nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]) : 0;
1838
1839	/* txtime-assist and full offload are mutually exclusive */
1840	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1841	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1842		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1843				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1844		return -EINVAL;
1845	}
1846
1847	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1848		NL_SET_ERR_MSG_MOD(extack,
1849				   "Changing 'flags' of a running schedule is not supported");
1850		return -EOPNOTSUPP;
1851	}
1852	q->flags = taprio_flags;
1853
1854	/* Needed for length_to_duration() during netlink attribute parsing */
1855	taprio_set_picos_per_byte(dev, q);
1856
1857	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1858	if (err < 0)
1859		return err;
1860
1861	err = taprio_parse_tc_entries(sch, opt, extack);
1862	if (err)
1863		return err;
1864
1865	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1866	if (!new_admin) {
1867		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1868		return -ENOMEM;
1869	}
1870	INIT_LIST_HEAD(&new_admin->entries);
1871
1872	oper = rtnl_dereference(q->oper_sched);
1873	admin = rtnl_dereference(q->admin_sched);
1874
1875	/* no changes - no new mqprio settings */
1876	if (!taprio_mqprio_cmp(dev, mqprio))
1877		mqprio = NULL;
1878
1879	if (mqprio && (oper || admin)) {
1880		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1881		err = -ENOTSUPP;
1882		goto free_sched;
1883	}
1884
1885	if (mqprio) {
1886		err = netdev_set_num_tc(dev, mqprio->num_tc);
1887		if (err)
1888			goto free_sched;
1889		for (i = 0; i < mqprio->num_tc; i++) {
1890			netdev_set_tc_queue(dev, i,
1891					    mqprio->count[i],
1892					    mqprio->offset[i]);
1893			q->cur_txq[i] = mqprio->offset[i];
1894		}
1895
1896		/* Always use supplied priority mappings */
1897		for (i = 0; i <= TC_BITMASK; i++)
1898			netdev_set_prio_tc_map(dev, i,
1899					       mqprio->prio_tc_map[i]);
1900	}
1901
1902	err = parse_taprio_schedule(q, tb, new_admin, extack);
1903	if (err < 0)
1904		goto free_sched;
1905
1906	if (new_admin->num_entries == 0) {
1907		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1908		err = -EINVAL;
1909		goto free_sched;
1910	}
1911
1912	err = taprio_parse_clockid(sch, tb, extack);
1913	if (err < 0)
1914		goto free_sched;
1915
1916	taprio_update_queue_max_sdu(q, new_admin, stab);
1917
1918	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1919		err = taprio_enable_offload(dev, q, new_admin, extack);
1920	else
1921		err = taprio_disable_offload(dev, q, extack);
1922	if (err)
1923		goto free_sched;
1924
1925	/* Protects against enqueue()/dequeue() */
1926	spin_lock_bh(qdisc_lock(sch));
1927
1928	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1929		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1930			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1931			err = -EINVAL;
1932			goto unlock;
1933		}
1934
1935		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1936	}
1937
1938	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1939	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1940	    !hrtimer_active(&q->advance_timer)) {
1941		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1942		q->advance_timer.function = advance_sched;
1943	}
1944
1945	err = taprio_get_start_time(sch, new_admin, &start);
1946	if (err < 0) {
1947		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1948		goto unlock;
1949	}
1950
1951	setup_txtime(q, new_admin, start);
1952
1953	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1954		if (!oper) {
1955			rcu_assign_pointer(q->oper_sched, new_admin);
1956			err = 0;
1957			new_admin = NULL;
1958			goto unlock;
1959		}
1960
1961		rcu_assign_pointer(q->admin_sched, new_admin);
1962		if (admin)
1963			call_rcu(&admin->rcu, taprio_free_sched_cb);
1964	} else {
1965		setup_first_end_time(q, new_admin, start);
1966
1967		/* Protects against advance_sched() */
1968		spin_lock_irqsave(&q->current_entry_lock, flags);
1969
1970		taprio_start_sched(sch, start, new_admin);
1971
1972		rcu_assign_pointer(q->admin_sched, new_admin);
1973		if (admin)
1974			call_rcu(&admin->rcu, taprio_free_sched_cb);
1975
1976		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1977
1978		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1979			taprio_offload_config_changed(q);
1980	}
1981
1982	new_admin = NULL;
1983	err = 0;
1984
1985	if (!stab)
1986		NL_SET_ERR_MSG_MOD(extack,
1987				   "Size table not specified, frame length estimations may be inaccurate");
1988
1989unlock:
1990	spin_unlock_bh(qdisc_lock(sch));
1991
1992free_sched:
1993	if (new_admin)
1994		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1995
1996	return err;
1997}
1998
1999static void taprio_reset(struct Qdisc *sch)
2000{
2001	struct taprio_sched *q = qdisc_priv(sch);
2002	struct net_device *dev = qdisc_dev(sch);
2003	int i;
2004
2005	hrtimer_cancel(&q->advance_timer);
2006
2007	if (q->qdiscs) {
2008		for (i = 0; i < dev->num_tx_queues; i++)
2009			if (q->qdiscs[i])
2010				qdisc_reset(q->qdiscs[i]);
2011	}
2012}
2013
2014static void taprio_destroy(struct Qdisc *sch)
2015{
2016	struct taprio_sched *q = qdisc_priv(sch);
2017	struct net_device *dev = qdisc_dev(sch);
2018	struct sched_gate_list *oper, *admin;
2019	unsigned int i;
2020
2021	list_del(&q->taprio_list);
2022
2023	/* Note that taprio_reset() might not be called if an error
2024	 * happens in qdisc_create(), after taprio_init() has been called.
2025	 */
2026	hrtimer_cancel(&q->advance_timer);
2027	qdisc_synchronize(sch);
2028
2029	taprio_disable_offload(dev, q, NULL);
2030
2031	if (q->qdiscs) {
2032		for (i = 0; i < dev->num_tx_queues; i++)
2033			qdisc_put(q->qdiscs[i]);
2034
2035		kfree(q->qdiscs);
2036	}
2037	q->qdiscs = NULL;
2038
2039	netdev_reset_tc(dev);
2040
2041	oper = rtnl_dereference(q->oper_sched);
2042	admin = rtnl_dereference(q->admin_sched);
2043
2044	if (oper)
2045		call_rcu(&oper->rcu, taprio_free_sched_cb);
2046
2047	if (admin)
2048		call_rcu(&admin->rcu, taprio_free_sched_cb);
2049
2050	taprio_cleanup_broken_mqprio(q);
2051}
2052
2053static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2054		       struct netlink_ext_ack *extack)
2055{
2056	struct taprio_sched *q = qdisc_priv(sch);
2057	struct net_device *dev = qdisc_dev(sch);
2058	int i, tc;
2059
2060	spin_lock_init(&q->current_entry_lock);
2061
2062	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2063	q->advance_timer.function = advance_sched;
2064
2065	q->root = sch;
2066
2067	/* We only support static clockids. Use an invalid value as default
2068	 * and get the valid one on taprio_change().
2069	 */
2070	q->clockid = -1;
2071	q->flags = TAPRIO_FLAGS_INVALID;
2072
2073	list_add(&q->taprio_list, &taprio_list);
2074
2075	if (sch->parent != TC_H_ROOT) {
2076		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2077		return -EOPNOTSUPP;
2078	}
2079
2080	if (!netif_is_multiqueue(dev)) {
2081		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2082		return -EOPNOTSUPP;
2083	}
2084
2085	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2086			    GFP_KERNEL);
2087	if (!q->qdiscs)
2088		return -ENOMEM;
2089
2090	if (!opt)
2091		return -EINVAL;
2092
2093	for (i = 0; i < dev->num_tx_queues; i++) {
2094		struct netdev_queue *dev_queue;
2095		struct Qdisc *qdisc;
2096
2097		dev_queue = netdev_get_tx_queue(dev, i);
2098		qdisc = qdisc_create_dflt(dev_queue,
2099					  &pfifo_qdisc_ops,
2100					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2101						    TC_H_MIN(i + 1)),
2102					  extack);
2103		if (!qdisc)
2104			return -ENOMEM;
2105
2106		if (i < dev->real_num_tx_queues)
2107			qdisc_hash_add(qdisc, false);
2108
2109		q->qdiscs[i] = qdisc;
2110	}
2111
2112	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2113		q->fp[tc] = TC_FP_EXPRESS;
2114
2115	taprio_detect_broken_mqprio(q);
2116
2117	return taprio_change(sch, opt, extack);
2118}
2119
2120static void taprio_attach(struct Qdisc *sch)
2121{
2122	struct taprio_sched *q = qdisc_priv(sch);
2123	struct net_device *dev = qdisc_dev(sch);
2124	unsigned int ntx;
2125
2126	/* Attach underlying qdisc */
2127	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2128		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2129		struct Qdisc *old, *dev_queue_qdisc;
2130
2131		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2132			struct Qdisc *qdisc = q->qdiscs[ntx];
2133
2134			/* In offload mode, the root taprio qdisc is bypassed
2135			 * and the netdev TX queues see the children directly
2136			 */
2137			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2138			dev_queue_qdisc = qdisc;
2139		} else {
2140			/* In software mode, attach the root taprio qdisc
2141			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2142			 * goes through taprio_enqueue().
2143			 */
2144			dev_queue_qdisc = sch;
2145		}
2146		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2147		/* The qdisc's refcount requires to be elevated once
2148		 * for each netdev TX queue it is grafted onto
2149		 */
2150		qdisc_refcount_inc(dev_queue_qdisc);
2151		if (old)
2152			qdisc_put(old);
2153	}
2154}
2155
2156static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2157					     unsigned long cl)
2158{
2159	struct net_device *dev = qdisc_dev(sch);
2160	unsigned long ntx = cl - 1;
2161
2162	if (ntx >= dev->num_tx_queues)
2163		return NULL;
2164
2165	return netdev_get_tx_queue(dev, ntx);
2166}
2167
2168static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2169			struct Qdisc *new, struct Qdisc **old,
2170			struct netlink_ext_ack *extack)
2171{
2172	struct taprio_sched *q = qdisc_priv(sch);
2173	struct net_device *dev = qdisc_dev(sch);
2174	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2175
2176	if (!dev_queue)
2177		return -EINVAL;
2178
2179	if (dev->flags & IFF_UP)
2180		dev_deactivate(dev);
2181
2182	/* In offload mode, the child Qdisc is directly attached to the netdev
2183	 * TX queue, and thus, we need to keep its refcount elevated in order
2184	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2185	 * However, save the reference to the new qdisc in the private array in
2186	 * both software and offload cases, to have an up-to-date reference to
2187	 * our children.
2188	 */
2189	*old = q->qdiscs[cl - 1];
2190	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2191		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2192		if (new)
2193			qdisc_refcount_inc(new);
2194		if (*old)
2195			qdisc_put(*old);
2196	}
2197
2198	q->qdiscs[cl - 1] = new;
2199	if (new)
2200		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2201
2202	if (dev->flags & IFF_UP)
2203		dev_activate(dev);
2204
2205	return 0;
2206}
2207
2208static int dump_entry(struct sk_buff *msg,
2209		      const struct sched_entry *entry)
2210{
2211	struct nlattr *item;
2212
2213	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2214	if (!item)
2215		return -ENOSPC;
2216
2217	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2218		goto nla_put_failure;
2219
2220	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2221		goto nla_put_failure;
2222
2223	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2224			entry->gate_mask))
2225		goto nla_put_failure;
2226
2227	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2228			entry->interval))
2229		goto nla_put_failure;
2230
2231	return nla_nest_end(msg, item);
2232
2233nla_put_failure:
2234	nla_nest_cancel(msg, item);
2235	return -1;
2236}
2237
2238static int dump_schedule(struct sk_buff *msg,
2239			 const struct sched_gate_list *root)
2240{
2241	struct nlattr *entry_list;
2242	struct sched_entry *entry;
2243
2244	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2245			root->base_time, TCA_TAPRIO_PAD))
2246		return -1;
2247
2248	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2249			root->cycle_time, TCA_TAPRIO_PAD))
2250		return -1;
2251
2252	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2253			root->cycle_time_extension, TCA_TAPRIO_PAD))
2254		return -1;
2255
2256	entry_list = nla_nest_start_noflag(msg,
2257					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2258	if (!entry_list)
2259		goto error_nest;
2260
2261	list_for_each_entry(entry, &root->entries, list) {
2262		if (dump_entry(msg, entry) < 0)
2263			goto error_nest;
2264	}
2265
2266	nla_nest_end(msg, entry_list);
2267	return 0;
2268
2269error_nest:
2270	nla_nest_cancel(msg, entry_list);
2271	return -1;
2272}
2273
2274static int taprio_dump_tc_entries(struct sk_buff *skb,
2275				  struct taprio_sched *q,
2276				  struct sched_gate_list *sched)
2277{
2278	struct nlattr *n;
2279	int tc;
2280
2281	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2282		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2283		if (!n)
2284			return -EMSGSIZE;
2285
2286		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2287			goto nla_put_failure;
2288
2289		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2290				sched->max_sdu[tc]))
2291			goto nla_put_failure;
2292
2293		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2294			goto nla_put_failure;
2295
2296		nla_nest_end(skb, n);
2297	}
2298
2299	return 0;
2300
2301nla_put_failure:
2302	nla_nest_cancel(skb, n);
2303	return -EMSGSIZE;
2304}
2305
2306static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2307{
2308	if (val == TAPRIO_STAT_NOT_SET)
2309		return 0;
2310	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2311		return -EMSGSIZE;
2312	return 0;
2313}
2314
2315static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2316			      struct tc_taprio_qopt_offload *offload,
2317			      struct tc_taprio_qopt_stats *stats)
2318{
2319	struct net_device *dev = qdisc_dev(sch);
2320	const struct net_device_ops *ops;
2321	struct sk_buff *skb = d->skb;
2322	struct nlattr *xstats;
2323	int err;
2324
2325	ops = qdisc_dev(sch)->netdev_ops;
2326
2327	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2328	 * with sch->flags depending on whether the device reports taprio
2329	 * stats, and I'm not sure whether that's a good idea, considering
2330	 * that stats are optional to the offload itself
2331	 */
2332	if (!ops->ndo_setup_tc)
2333		return 0;
2334
2335	memset(stats, 0xff, sizeof(*stats));
2336
2337	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2338	if (err == -EOPNOTSUPP)
2339		return 0;
2340	if (err)
2341		return err;
2342
2343	xstats = nla_nest_start(skb, TCA_STATS_APP);
2344	if (!xstats)
2345		goto err;
2346
2347	if (taprio_put_stat(skb, stats->window_drops,
2348			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2349	    taprio_put_stat(skb, stats->tx_overruns,
2350			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2351		goto err_cancel;
2352
2353	nla_nest_end(skb, xstats);
2354
2355	return 0;
2356
2357err_cancel:
2358	nla_nest_cancel(skb, xstats);
2359err:
2360	return -EMSGSIZE;
2361}
2362
2363static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2364{
2365	struct tc_taprio_qopt_offload offload = {
2366		.cmd = TAPRIO_CMD_STATS,
2367	};
2368
2369	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2370}
2371
2372static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2373{
2374	struct taprio_sched *q = qdisc_priv(sch);
2375	struct net_device *dev = qdisc_dev(sch);
2376	struct sched_gate_list *oper, *admin;
2377	struct tc_mqprio_qopt opt = { 0 };
2378	struct nlattr *nest, *sched_nest;
2379
2380	oper = rtnl_dereference(q->oper_sched);
2381	admin = rtnl_dereference(q->admin_sched);
2382
2383	mqprio_qopt_reconstruct(dev, &opt);
2384
2385	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2386	if (!nest)
2387		goto start_error;
2388
2389	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2390		goto options_error;
2391
2392	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2393	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2394		goto options_error;
2395
2396	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2397		goto options_error;
2398
2399	if (q->txtime_delay &&
2400	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2401		goto options_error;
2402
2403	if (oper && taprio_dump_tc_entries(skb, q, oper))
2404		goto options_error;
2405
2406	if (oper && dump_schedule(skb, oper))
2407		goto options_error;
2408
2409	if (!admin)
2410		goto done;
2411
2412	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2413	if (!sched_nest)
2414		goto options_error;
2415
2416	if (dump_schedule(skb, admin))
2417		goto admin_error;
2418
2419	nla_nest_end(skb, sched_nest);
2420
2421done:
2422	return nla_nest_end(skb, nest);
2423
2424admin_error:
2425	nla_nest_cancel(skb, sched_nest);
2426
2427options_error:
2428	nla_nest_cancel(skb, nest);
2429
2430start_error:
2431	return -ENOSPC;
2432}
2433
2434static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2435{
2436	struct taprio_sched *q = qdisc_priv(sch);
2437	struct net_device *dev = qdisc_dev(sch);
2438	unsigned int ntx = cl - 1;
2439
2440	if (ntx >= dev->num_tx_queues)
2441		return NULL;
2442
2443	return q->qdiscs[ntx];
2444}
2445
2446static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2447{
2448	unsigned int ntx = TC_H_MIN(classid);
2449
2450	if (!taprio_queue_get(sch, ntx))
2451		return 0;
2452	return ntx;
2453}
2454
2455static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2456			     struct sk_buff *skb, struct tcmsg *tcm)
2457{
2458	struct Qdisc *child = taprio_leaf(sch, cl);
2459
2460	tcm->tcm_parent = TC_H_ROOT;
2461	tcm->tcm_handle |= TC_H_MIN(cl);
2462	tcm->tcm_info = child->handle;
2463
2464	return 0;
2465}
2466
2467static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2468				   struct gnet_dump *d)
2469	__releases(d->lock)
2470	__acquires(d->lock)
2471{
2472	struct Qdisc *child = taprio_leaf(sch, cl);
2473	struct tc_taprio_qopt_offload offload = {
2474		.cmd = TAPRIO_CMD_QUEUE_STATS,
2475		.queue_stats = {
2476			.queue = cl - 1,
2477		},
2478	};
2479
2480	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2481	    qdisc_qstats_copy(d, child) < 0)
2482		return -1;
2483
2484	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2485}
2486
2487static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2488{
2489	struct net_device *dev = qdisc_dev(sch);
2490	unsigned long ntx;
2491
2492	if (arg->stop)
2493		return;
2494
2495	arg->count = arg->skip;
2496	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2497		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2498			break;
2499	}
2500}
2501
2502static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2503						struct tcmsg *tcm)
2504{
2505	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2506}
2507
2508static const struct Qdisc_class_ops taprio_class_ops = {
2509	.graft		= taprio_graft,
2510	.leaf		= taprio_leaf,
2511	.find		= taprio_find,
2512	.walk		= taprio_walk,
2513	.dump		= taprio_dump_class,
2514	.dump_stats	= taprio_dump_class_stats,
2515	.select_queue	= taprio_select_queue,
2516};
2517
2518static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2519	.cl_ops		= &taprio_class_ops,
2520	.id		= "taprio",
2521	.priv_size	= sizeof(struct taprio_sched),
2522	.init		= taprio_init,
2523	.change		= taprio_change,
2524	.destroy	= taprio_destroy,
2525	.reset		= taprio_reset,
2526	.attach		= taprio_attach,
2527	.peek		= taprio_peek,
2528	.dequeue	= taprio_dequeue,
2529	.enqueue	= taprio_enqueue,
2530	.dump		= taprio_dump,
2531	.dump_stats	= taprio_dump_stats,
2532	.owner		= THIS_MODULE,
2533};
2534MODULE_ALIAS_NET_SCH("taprio");
2535
2536static struct notifier_block taprio_device_notifier = {
2537	.notifier_call = taprio_dev_notifier,
2538};
2539
2540static int __init taprio_module_init(void)
2541{
2542	int err = register_netdevice_notifier(&taprio_device_notifier);
2543
2544	if (err)
2545		return err;
2546
2547	return register_qdisc(&taprio_qdisc_ops);
2548}
2549
2550static void __exit taprio_module_exit(void)
2551{
2552	unregister_qdisc(&taprio_qdisc_ops);
2553	unregister_netdevice_notifier(&taprio_device_notifier);
2554}
2555
2556module_init(taprio_module_init);
2557module_exit(taprio_module_exit);
2558MODULE_LICENSE("GPL");
2559MODULE_DESCRIPTION("Time Aware Priority qdisc");