Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/rslib.h>
 17#include <linux/slab.h>
 18#include <linux/uaccess.h>
 19#include <linux/vmalloc.h>
 20#include <linux/mm.h>
 21#include <asm/page.h>
 22
 23#include "ram_internal.h"
 24
 25/**
 26 * struct persistent_ram_buffer - persistent circular RAM buffer
 27 *
 28 * @sig: Signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 29 * @start: First valid byte in the buffer.
 30 * @size: Number of valid bytes in the buffer.
 31 * @data: The contents of the buffer.
 32 */
 33struct persistent_ram_buffer {
 34	uint32_t    sig;
 35	atomic_t    start;
 36	atomic_t    size;
 37	uint8_t     data[];
 38};
 39
 40#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 41
 42static inline size_t buffer_size(struct persistent_ram_zone *prz)
 43{
 44	return atomic_read(&prz->buffer->size);
 45}
 46
 47static inline size_t buffer_start(struct persistent_ram_zone *prz)
 48{
 49	return atomic_read(&prz->buffer->start);
 50}
 51
 52/* increase and wrap the start pointer, returning the old value */
 53static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 54{
 55	int old;
 56	int new;
 57	unsigned long flags = 0;
 58
 59	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 60		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 61
 62	old = atomic_read(&prz->buffer->start);
 63	new = old + a;
 64	while (unlikely(new >= prz->buffer_size))
 65		new -= prz->buffer_size;
 66	atomic_set(&prz->buffer->start, new);
 67
 68	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 69		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 70
 71	return old;
 72}
 73
 74/* increase the size counter until it hits the max size */
 75static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 76{
 77	size_t old;
 78	size_t new;
 79	unsigned long flags = 0;
 80
 81	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 82		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 83
 84	old = atomic_read(&prz->buffer->size);
 85	if (old == prz->buffer_size)
 86		goto exit;
 87
 88	new = old + a;
 89	if (new > prz->buffer_size)
 90		new = prz->buffer_size;
 91	atomic_set(&prz->buffer->size, new);
 92
 93exit:
 94	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 95		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 96}
 97
 98static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 99	uint8_t *data, size_t len, uint8_t *ecc)
100{
101	int i;
102
103	/* Initialize the parity buffer */
104	memset(prz->ecc_info.par, 0,
105	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
106	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
107	for (i = 0; i < prz->ecc_info.ecc_size; i++)
108		ecc[i] = prz->ecc_info.par[i];
109}
110
111static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
112	void *data, size_t len, uint8_t *ecc)
113{
114	int i;
115
116	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117		prz->ecc_info.par[i] = ecc[i];
118	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
119				NULL, 0, NULL, 0, NULL);
120}
121
122static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123	unsigned int start, unsigned int count)
124{
125	struct persistent_ram_buffer *buffer = prz->buffer;
126	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127	uint8_t *block;
128	uint8_t *par;
129	int ecc_block_size = prz->ecc_info.block_size;
130	int ecc_size = prz->ecc_info.ecc_size;
131	int size = ecc_block_size;
132
133	if (!ecc_size)
134		return;
135
136	block = buffer->data + (start & ~(ecc_block_size - 1));
137	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138
139	do {
140		if (block + ecc_block_size > buffer_end)
141			size = buffer_end - block;
142		persistent_ram_encode_rs8(prz, block, size, par);
143		block += ecc_block_size;
144		par += ecc_size;
145	} while (block < buffer->data + start + count);
146}
147
148static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149{
150	struct persistent_ram_buffer *buffer = prz->buffer;
151
152	if (!prz->ecc_info.ecc_size)
153		return;
154
155	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156				  prz->par_header);
157}
158
159static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160{
161	struct persistent_ram_buffer *buffer = prz->buffer;
162	uint8_t *block;
163	uint8_t *par;
164
165	if (!prz->ecc_info.ecc_size)
166		return;
167
168	block = buffer->data;
169	par = prz->par_buffer;
170	while (block < buffer->data + buffer_size(prz)) {
171		int numerr;
172		int size = prz->ecc_info.block_size;
173		if (block + size > buffer->data + prz->buffer_size)
174			size = buffer->data + prz->buffer_size - block;
175		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176		if (numerr > 0) {
177			pr_devel("error in block %p, %d\n", block, numerr);
178			prz->corrected_bytes += numerr;
179		} else if (numerr < 0) {
180			pr_devel("uncorrectable error in block %p\n", block);
181			prz->bad_blocks++;
182		}
183		block += prz->ecc_info.block_size;
184		par += prz->ecc_info.ecc_size;
185	}
186}
187
188static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189				   struct persistent_ram_ecc_info *ecc_info)
190{
191	int numerr;
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	size_t ecc_blocks;
194	size_t ecc_total;
195
196	if (!ecc_info || !ecc_info->ecc_size)
197		return 0;
198
199	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203
204	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205				  prz->ecc_info.block_size +
206				  prz->ecc_info.ecc_size);
207	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208	if (ecc_total >= prz->buffer_size) {
209		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210		       __func__, prz->ecc_info.ecc_size,
211		       ecc_total, prz->buffer_size);
212		return -EINVAL;
213	}
214
215	prz->buffer_size -= ecc_total;
216	prz->par_buffer = buffer->data + prz->buffer_size;
217	prz->par_header = prz->par_buffer +
218			  ecc_blocks * prz->ecc_info.ecc_size;
219
220	/*
221	 * first consecutive root is 0
222	 * primitive element to generate roots = 1
223	 */
224	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225				  0, 1, prz->ecc_info.ecc_size);
226	if (prz->rs_decoder == NULL) {
227		pr_info("init_rs failed\n");
228		return -EINVAL;
229	}
230
231	/* allocate workspace instead of using stack VLA */
232	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
233					  sizeof(*prz->ecc_info.par),
234					  GFP_KERNEL);
235	if (!prz->ecc_info.par) {
236		pr_err("cannot allocate ECC parity workspace\n");
237		return -ENOMEM;
238	}
239
240	prz->corrected_bytes = 0;
241	prz->bad_blocks = 0;
242
243	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
244					   prz->par_header);
245	if (numerr > 0) {
246		pr_info("error in header, %d\n", numerr);
247		prz->corrected_bytes += numerr;
248	} else if (numerr < 0) {
249		pr_info_ratelimited("uncorrectable error in header\n");
250		prz->bad_blocks++;
251	}
252
253	return 0;
254}
255
256ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
257	char *str, size_t len)
258{
259	ssize_t ret;
260
261	if (!prz->ecc_info.ecc_size)
262		return 0;
263
264	if (prz->corrected_bytes || prz->bad_blocks)
265		ret = snprintf(str, len, ""
266			"\nECC: %d Corrected bytes, %d unrecoverable blocks\n",
267			prz->corrected_bytes, prz->bad_blocks);
268	else
269		ret = snprintf(str, len, "\nECC: No errors detected\n");
270
271	return ret;
272}
273
274static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
275	const void *s, unsigned int start, unsigned int count)
276{
277	struct persistent_ram_buffer *buffer = prz->buffer;
278	memcpy_toio(buffer->data + start, s, count);
279	persistent_ram_update_ecc(prz, start, count);
280}
281
282static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
283	const void __user *s, unsigned int start, unsigned int count)
284{
285	struct persistent_ram_buffer *buffer = prz->buffer;
286	int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ?
287		-EFAULT : 0;
288	persistent_ram_update_ecc(prz, start, count);
289	return ret;
290}
291
292void persistent_ram_save_old(struct persistent_ram_zone *prz)
293{
294	struct persistent_ram_buffer *buffer = prz->buffer;
295	size_t size = buffer_size(prz);
296	size_t start = buffer_start(prz);
297
298	if (!size)
299		return;
300
301	if (!prz->old_log) {
302		persistent_ram_ecc_old(prz);
303		prz->old_log = kvzalloc(size, GFP_KERNEL);
304	}
305	if (!prz->old_log) {
306		pr_err("failed to allocate buffer\n");
307		return;
308	}
309
310	prz->old_log_size = size;
311	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
312	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
313}
314
315int notrace persistent_ram_write(struct persistent_ram_zone *prz,
316	const void *s, unsigned int count)
317{
318	int rem;
319	int c = count;
320	size_t start;
321
322	if (unlikely(c > prz->buffer_size)) {
323		s += c - prz->buffer_size;
324		c = prz->buffer_size;
325	}
326
327	buffer_size_add(prz, c);
328
329	start = buffer_start_add(prz, c);
330
331	rem = prz->buffer_size - start;
332	if (unlikely(rem < c)) {
333		persistent_ram_update(prz, s, start, rem);
334		s += rem;
335		c -= rem;
336		start = 0;
337	}
338	persistent_ram_update(prz, s, start, c);
339
340	persistent_ram_update_header_ecc(prz);
341
342	return count;
343}
344
345int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
346	const void __user *s, unsigned int count)
347{
348	int rem, ret = 0, c = count;
349	size_t start;
350
351	if (unlikely(c > prz->buffer_size)) {
352		s += c - prz->buffer_size;
353		c = prz->buffer_size;
354	}
355
356	buffer_size_add(prz, c);
357
358	start = buffer_start_add(prz, c);
359
360	rem = prz->buffer_size - start;
361	if (unlikely(rem < c)) {
362		ret = persistent_ram_update_user(prz, s, start, rem);
363		s += rem;
364		c -= rem;
365		start = 0;
366	}
367	if (likely(!ret))
368		ret = persistent_ram_update_user(prz, s, start, c);
369
370	persistent_ram_update_header_ecc(prz);
371
372	return unlikely(ret) ? ret : count;
373}
374
375size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
376{
377	return prz->old_log_size;
378}
379
380void *persistent_ram_old(struct persistent_ram_zone *prz)
381{
382	return prz->old_log;
383}
384
385void persistent_ram_free_old(struct persistent_ram_zone *prz)
386{
387	kvfree(prz->old_log);
388	prz->old_log = NULL;
389	prz->old_log_size = 0;
390}
391
392void persistent_ram_zap(struct persistent_ram_zone *prz)
393{
394	atomic_set(&prz->buffer->start, 0);
395	atomic_set(&prz->buffer->size, 0);
396	persistent_ram_update_header_ecc(prz);
397}
398
399#define MEM_TYPE_WCOMBINE	0
400#define MEM_TYPE_NONCACHED	1
401#define MEM_TYPE_NORMAL		2
402
403static void *persistent_ram_vmap(phys_addr_t start, size_t size,
404		unsigned int memtype)
405{
406	struct page **pages;
407	phys_addr_t page_start;
408	unsigned int page_count;
409	pgprot_t prot;
410	unsigned int i;
411	void *vaddr;
412
413	page_start = start - offset_in_page(start);
414	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
415
416	switch (memtype) {
417	case MEM_TYPE_NORMAL:
418		prot = PAGE_KERNEL;
419		break;
420	case MEM_TYPE_NONCACHED:
421		prot = pgprot_noncached(PAGE_KERNEL);
422		break;
423	case MEM_TYPE_WCOMBINE:
424		prot = pgprot_writecombine(PAGE_KERNEL);
425		break;
426	default:
427		pr_err("invalid mem_type=%d\n", memtype);
428		return NULL;
429	}
430
431	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
432	if (!pages) {
433		pr_err("%s: Failed to allocate array for %u pages\n",
434		       __func__, page_count);
435		return NULL;
436	}
437
438	for (i = 0; i < page_count; i++) {
439		phys_addr_t addr = page_start + i * PAGE_SIZE;
440		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
441	}
442	/*
443	 * VM_IOREMAP used here to bypass this region during vread()
444	 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
445	 */
446	vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
447	kfree(pages);
448
449	/*
450	 * Since vmap() uses page granularity, we must add the offset
451	 * into the page here, to get the byte granularity address
452	 * into the mapping to represent the actual "start" location.
453	 */
454	return vaddr + offset_in_page(start);
455}
456
457static void *persistent_ram_iomap(phys_addr_t start, size_t size,
458		unsigned int memtype, char *label)
459{
460	void *va;
461
462	if (!request_mem_region(start, size, label ?: "ramoops")) {
463		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
464			label ?: "ramoops",
465			(unsigned long long)size, (unsigned long long)start);
466		return NULL;
467	}
468
469	if (memtype)
470		va = ioremap(start, size);
471	else
472		va = ioremap_wc(start, size);
473
474	/*
475	 * Since request_mem_region() and ioremap() are byte-granularity
476	 * there is no need handle anything special like we do when the
477	 * vmap() case in persistent_ram_vmap() above.
478	 */
479	return va;
480}
481
482static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
483		struct persistent_ram_zone *prz, int memtype)
484{
485	prz->paddr = start;
486	prz->size = size;
487
488	if (pfn_valid(start >> PAGE_SHIFT))
489		prz->vaddr = persistent_ram_vmap(start, size, memtype);
490	else
491		prz->vaddr = persistent_ram_iomap(start, size, memtype,
492						  prz->label);
493
494	if (!prz->vaddr) {
495		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
496			(unsigned long long)size, (unsigned long long)start);
497		return -ENOMEM;
498	}
499
500	prz->buffer = prz->vaddr;
501	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
502
503	return 0;
504}
505
506static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
507				    struct persistent_ram_ecc_info *ecc_info)
508{
509	int ret;
510	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
511
512	ret = persistent_ram_init_ecc(prz, ecc_info);
513	if (ret) {
514		pr_warn("ECC failed %s\n", prz->label);
515		return ret;
516	}
517
518	sig ^= PERSISTENT_RAM_SIG;
519
520	if (prz->buffer->sig == sig) {
521		if (buffer_size(prz) == 0 && buffer_start(prz) == 0) {
522			pr_debug("found existing empty buffer\n");
523			return 0;
524		}
525
526		if (buffer_size(prz) > prz->buffer_size ||
527		    buffer_start(prz) > buffer_size(prz)) {
528			pr_info("found existing invalid buffer, size %zu, start %zu\n",
529				buffer_size(prz), buffer_start(prz));
530			zap = true;
531		} else {
532			pr_debug("found existing buffer, size %zu, start %zu\n",
533				 buffer_size(prz), buffer_start(prz));
534			persistent_ram_save_old(prz);
535		}
536	} else {
537		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
538			 prz->buffer->sig);
539		prz->buffer->sig = sig;
540		zap = true;
541	}
542
543	/* Reset missing, invalid, or single-use memory area. */
544	if (zap)
545		persistent_ram_zap(prz);
546
547	return 0;
548}
549
550void persistent_ram_free(struct persistent_ram_zone **_prz)
551{
552	struct persistent_ram_zone *prz;
553
554	if (!_prz)
555		return;
556
557	prz = *_prz;
558	if (!prz)
559		return;
560
561	if (prz->vaddr) {
562		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
563			/* We must vunmap() at page-granularity. */
564			vunmap(prz->vaddr - offset_in_page(prz->paddr));
565		} else {
566			iounmap(prz->vaddr);
567			release_mem_region(prz->paddr, prz->size);
568		}
569		prz->vaddr = NULL;
570	}
571	if (prz->rs_decoder) {
572		free_rs(prz->rs_decoder);
573		prz->rs_decoder = NULL;
574	}
575	kfree(prz->ecc_info.par);
576	prz->ecc_info.par = NULL;
577
578	persistent_ram_free_old(prz);
579	kfree(prz->label);
580	kfree(prz);
581	*_prz = NULL;
582}
583
584struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
585			u32 sig, struct persistent_ram_ecc_info *ecc_info,
586			unsigned int memtype, u32 flags, char *label)
587{
588	struct persistent_ram_zone *prz;
589	int ret = -ENOMEM;
590
591	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
592	if (!prz) {
593		pr_err("failed to allocate persistent ram zone\n");
594		goto err;
595	}
596
597	/* Initialize general buffer state. */
598	raw_spin_lock_init(&prz->buffer_lock);
599	prz->flags = flags;
600	prz->label = kstrdup(label, GFP_KERNEL);
601	if (!prz->label)
602		goto err;
603
604	ret = persistent_ram_buffer_map(start, size, prz, memtype);
605	if (ret)
606		goto err;
607
608	ret = persistent_ram_post_init(prz, sig, ecc_info);
609	if (ret)
610		goto err;
611
612	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
613		prz->label, prz->size, (unsigned long long)prz->paddr,
614		sizeof(*prz->buffer), prz->buffer_size,
615		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
616		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
617
618	return prz;
619err:
620	persistent_ram_free(&prz);
621	return ERR_PTR(ret);
622}
  1/*
  2 * Copyright (C) 2012 Google, Inc.
  3 *
  4 * This software is licensed under the terms of the GNU General Public
  5 * License version 2, as published by the Free Software Foundation, and
  6 * may be copied, distributed, and modified under those terms.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 */
 14
 15#include <linux/device.h>
 16#include <linux/err.h>
 17#include <linux/errno.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/io.h>
 21#include <linux/list.h>
 22#include <linux/memblock.h>
 23#include <linux/rslib.h>
 24#include <linux/slab.h>
 25#include <linux/vmalloc.h>
 26#include <linux/pstore_ram.h>
 27#include <asm/page.h>
 28
 29struct persistent_ram_buffer {
 30	uint32_t    sig;
 31	atomic_t    start;
 32	atomic_t    size;
 33	uint8_t     data[0];
 34};
 35
 36#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 37
 38static inline size_t buffer_size(struct persistent_ram_zone *prz)
 39{
 40	return atomic_read(&prz->buffer->size);
 41}
 42
 43static inline size_t buffer_start(struct persistent_ram_zone *prz)
 44{
 45	return atomic_read(&prz->buffer->start);
 46}
 47
 48/* increase and wrap the start pointer, returning the old value */
 49static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
 50{
 51	int old;
 52	int new;
 53
 54	do {
 55		old = atomic_read(&prz->buffer->start);
 56		new = old + a;
 57		while (unlikely(new >= prz->buffer_size))
 58			new -= prz->buffer_size;
 59	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
 60
 61	return old;
 62}
 63
 64/* increase the size counter until it hits the max size */
 65static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
 66{
 67	size_t old;
 68	size_t new;
 69
 70	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
 71		return;
 72
 73	do {
 74		old = atomic_read(&prz->buffer->size);
 75		new = old + a;
 76		if (new > prz->buffer_size)
 77			new = prz->buffer_size;
 78	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
 79}
 80
 81static DEFINE_RAW_SPINLOCK(buffer_lock);
 82
 83/* increase and wrap the start pointer, returning the old value */
 84static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
 85{
 86	int old;
 87	int new;
 88	unsigned long flags;
 89
 90	raw_spin_lock_irqsave(&buffer_lock, flags);
 91
 92	old = atomic_read(&prz->buffer->start);
 93	new = old + a;
 94	while (unlikely(new >= prz->buffer_size))
 95		new -= prz->buffer_size;
 96	atomic_set(&prz->buffer->start, new);
 97
 98	raw_spin_unlock_irqrestore(&buffer_lock, flags);
 99
100	return old;
101}
102
103/* increase the size counter until it hits the max size */
104static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
105{
106	size_t old;
107	size_t new;
108	unsigned long flags;
109
110	raw_spin_lock_irqsave(&buffer_lock, flags);
111
112	old = atomic_read(&prz->buffer->size);
113	if (old == prz->buffer_size)
114		goto exit;
115
116	new = old + a;
117	if (new > prz->buffer_size)
118		new = prz->buffer_size;
119	atomic_set(&prz->buffer->size, new);
120
121exit:
122	raw_spin_unlock_irqrestore(&buffer_lock, flags);
123}
124
125static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
126static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
127
128static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
129	uint8_t *data, size_t len, uint8_t *ecc)
130{
131	int i;
132	uint16_t par[prz->ecc_info.ecc_size];
133
134	/* Initialize the parity buffer */
135	memset(par, 0, sizeof(par));
136	encode_rs8(prz->rs_decoder, data, len, par, 0);
137	for (i = 0; i < prz->ecc_info.ecc_size; i++)
138		ecc[i] = par[i];
139}
140
141static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
142	void *data, size_t len, uint8_t *ecc)
143{
144	int i;
145	uint16_t par[prz->ecc_info.ecc_size];
146
147	for (i = 0; i < prz->ecc_info.ecc_size; i++)
148		par[i] = ecc[i];
149	return decode_rs8(prz->rs_decoder, data, par, len,
150				NULL, 0, NULL, 0, NULL);
151}
152
153static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
154	unsigned int start, unsigned int count)
155{
156	struct persistent_ram_buffer *buffer = prz->buffer;
157	uint8_t *buffer_end = buffer->data + prz->buffer_size;
158	uint8_t *block;
159	uint8_t *par;
160	int ecc_block_size = prz->ecc_info.block_size;
161	int ecc_size = prz->ecc_info.ecc_size;
162	int size = ecc_block_size;
163
164	if (!ecc_size)
165		return;
166
167	block = buffer->data + (start & ~(ecc_block_size - 1));
168	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
169
170	do {
171		if (block + ecc_block_size > buffer_end)
172			size = buffer_end - block;
173		persistent_ram_encode_rs8(prz, block, size, par);
174		block += ecc_block_size;
175		par += ecc_size;
176	} while (block < buffer->data + start + count);
177}
178
179static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
180{
181	struct persistent_ram_buffer *buffer = prz->buffer;
182
183	if (!prz->ecc_info.ecc_size)
184		return;
185
186	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
187				  prz->par_header);
188}
189
190static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
191{
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	uint8_t *block;
194	uint8_t *par;
195
196	if (!prz->ecc_info.ecc_size)
197		return;
198
199	block = buffer->data;
200	par = prz->par_buffer;
201	while (block < buffer->data + buffer_size(prz)) {
202		int numerr;
203		int size = prz->ecc_info.block_size;
204		if (block + size > buffer->data + prz->buffer_size)
205			size = buffer->data + prz->buffer_size - block;
206		numerr = persistent_ram_decode_rs8(prz, block, size, par);
207		if (numerr > 0) {
208			pr_devel("persistent_ram: error in block %p, %d\n",
209			       block, numerr);
210			prz->corrected_bytes += numerr;
211		} else if (numerr < 0) {
212			pr_devel("persistent_ram: uncorrectable error in block %p\n",
213				block);
214			prz->bad_blocks++;
215		}
216		block += prz->ecc_info.block_size;
217		par += prz->ecc_info.ecc_size;
218	}
219}
220
221static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222				   struct persistent_ram_ecc_info *ecc_info)
223{
224	int numerr;
225	struct persistent_ram_buffer *buffer = prz->buffer;
226	int ecc_blocks;
227	size_t ecc_total;
228
229	if (!ecc_info || !ecc_info->ecc_size)
230		return 0;
231
232	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
236
237	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238				  prz->ecc_info.block_size +
239				  prz->ecc_info.ecc_size);
240	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241	if (ecc_total >= prz->buffer_size) {
242		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243		       __func__, prz->ecc_info.ecc_size,
244		       ecc_total, prz->buffer_size);
245		return -EINVAL;
246	}
247
248	prz->buffer_size -= ecc_total;
249	prz->par_buffer = buffer->data + prz->buffer_size;
250	prz->par_header = prz->par_buffer +
251			  ecc_blocks * prz->ecc_info.ecc_size;
252
253	/*
254	 * first consecutive root is 0
255	 * primitive element to generate roots = 1
256	 */
257	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258				  0, 1, prz->ecc_info.ecc_size);
259	if (prz->rs_decoder == NULL) {
260		pr_info("persistent_ram: init_rs failed\n");
261		return -EINVAL;
262	}
263
264	prz->corrected_bytes = 0;
265	prz->bad_blocks = 0;
266
267	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268					   prz->par_header);
269	if (numerr > 0) {
270		pr_info("persistent_ram: error in header, %d\n", numerr);
271		prz->corrected_bytes += numerr;
272	} else if (numerr < 0) {
273		pr_info("persistent_ram: uncorrectable error in header\n");
274		prz->bad_blocks++;
275	}
276
277	return 0;
278}
279
280ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281	char *str, size_t len)
282{
283	ssize_t ret;
284
285	if (!prz->ecc_info.ecc_size)
286		return 0;
287
288	if (prz->corrected_bytes || prz->bad_blocks)
289		ret = snprintf(str, len, ""
290			"\n%d Corrected bytes, %d unrecoverable blocks\n",
291			prz->corrected_bytes, prz->bad_blocks);
292	else
293		ret = snprintf(str, len, "\nNo errors detected\n");
294
295	return ret;
296}
297
298static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299	const void *s, unsigned int start, unsigned int count)
300{
301	struct persistent_ram_buffer *buffer = prz->buffer;
302	memcpy(buffer->data + start, s, count);
303	persistent_ram_update_ecc(prz, start, count);
304}
305
306void persistent_ram_save_old(struct persistent_ram_zone *prz)
307{
308	struct persistent_ram_buffer *buffer = prz->buffer;
309	size_t size = buffer_size(prz);
310	size_t start = buffer_start(prz);
311
312	if (!size)
313		return;
314
315	if (!prz->old_log) {
316		persistent_ram_ecc_old(prz);
317		prz->old_log = kmalloc(size, GFP_KERNEL);
318	}
319	if (!prz->old_log) {
320		pr_err("persistent_ram: failed to allocate buffer\n");
321		return;
322	}
323
324	prz->old_log_size = size;
325	memcpy(prz->old_log, &buffer->data[start], size - start);
326	memcpy(prz->old_log + size - start, &buffer->data[0], start);
327}
328
329int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330	const void *s, unsigned int count)
331{
332	int rem;
333	int c = count;
334	size_t start;
335
336	if (unlikely(c > prz->buffer_size)) {
337		s += c - prz->buffer_size;
338		c = prz->buffer_size;
339	}
340
341	buffer_size_add(prz, c);
342
343	start = buffer_start_add(prz, c);
344
345	rem = prz->buffer_size - start;
346	if (unlikely(rem < c)) {
347		persistent_ram_update(prz, s, start, rem);
348		s += rem;
349		c -= rem;
350		start = 0;
351	}
352	persistent_ram_update(prz, s, start, c);
353
354	persistent_ram_update_header_ecc(prz);
355
356	return count;
357}
358
359size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
360{
361	return prz->old_log_size;
362}
363
364void *persistent_ram_old(struct persistent_ram_zone *prz)
365{
366	return prz->old_log;
367}
368
369void persistent_ram_free_old(struct persistent_ram_zone *prz)
370{
371	kfree(prz->old_log);
372	prz->old_log = NULL;
373	prz->old_log_size = 0;
374}
375
376void persistent_ram_zap(struct persistent_ram_zone *prz)
377{
378	atomic_set(&prz->buffer->start, 0);
379	atomic_set(&prz->buffer->size, 0);
380	persistent_ram_update_header_ecc(prz);
381}
382
383static void *persistent_ram_vmap(phys_addr_t start, size_t size)
384{
385	struct page **pages;
386	phys_addr_t page_start;
387	unsigned int page_count;
388	pgprot_t prot;
389	unsigned int i;
390	void *vaddr;
391
392	page_start = start - offset_in_page(start);
393	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
394
395	prot = pgprot_noncached(PAGE_KERNEL);
396
397	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
398	if (!pages) {
399		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
400			page_count);
401		return NULL;
402	}
403
404	for (i = 0; i < page_count; i++) {
405		phys_addr_t addr = page_start + i * PAGE_SIZE;
406		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
407	}
408	vaddr = vmap(pages, page_count, VM_MAP, prot);
409	kfree(pages);
410
411	return vaddr;
412}
413
414static void *persistent_ram_iomap(phys_addr_t start, size_t size)
415{
416	if (!request_mem_region(start, size, "persistent_ram")) {
417		pr_err("request mem region (0x%llx@0x%llx) failed\n",
418			(unsigned long long)size, (unsigned long long)start);
419		return NULL;
420	}
421
422	buffer_start_add = buffer_start_add_locked;
423	buffer_size_add = buffer_size_add_locked;
424
425	return ioremap(start, size);
426}
427
428static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
429		struct persistent_ram_zone *prz)
430{
431	prz->paddr = start;
432	prz->size = size;
433
434	if (pfn_valid(start >> PAGE_SHIFT))
435		prz->vaddr = persistent_ram_vmap(start, size);
436	else
437		prz->vaddr = persistent_ram_iomap(start, size);
438
439	if (!prz->vaddr) {
440		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
441			(unsigned long long)size, (unsigned long long)start);
442		return -ENOMEM;
443	}
444
445	prz->buffer = prz->vaddr + offset_in_page(start);
446	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
447
448	return 0;
449}
450
451static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
452				    struct persistent_ram_ecc_info *ecc_info)
453{
454	int ret;
455
456	ret = persistent_ram_init_ecc(prz, ecc_info);
457	if (ret)
458		return ret;
459
460	sig ^= PERSISTENT_RAM_SIG;
461
462	if (prz->buffer->sig == sig) {
463		if (buffer_size(prz) > prz->buffer_size ||
464		    buffer_start(prz) > buffer_size(prz))
465			pr_info("persistent_ram: found existing invalid buffer,"
466				" size %zu, start %zu\n",
467			       buffer_size(prz), buffer_start(prz));
468		else {
469			pr_debug("persistent_ram: found existing buffer,"
470				" size %zu, start %zu\n",
471			       buffer_size(prz), buffer_start(prz));
472			persistent_ram_save_old(prz);
473			return 0;
474		}
475	} else {
476		pr_debug("persistent_ram: no valid data in buffer"
477			" (sig = 0x%08x)\n", prz->buffer->sig);
478	}
479
480	prz->buffer->sig = sig;
481	persistent_ram_zap(prz);
482
483	return 0;
484}
485
486void persistent_ram_free(struct persistent_ram_zone *prz)
487{
488	if (!prz)
489		return;
490
491	if (prz->vaddr) {
492		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
493			vunmap(prz->vaddr);
494		} else {
495			iounmap(prz->vaddr);
496			release_mem_region(prz->paddr, prz->size);
497		}
498		prz->vaddr = NULL;
499	}
500	persistent_ram_free_old(prz);
501	kfree(prz);
502}
503
504struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
505			u32 sig, struct persistent_ram_ecc_info *ecc_info)
506{
507	struct persistent_ram_zone *prz;
508	int ret = -ENOMEM;
509
510	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
511	if (!prz) {
512		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
513		goto err;
514	}
515
516	ret = persistent_ram_buffer_map(start, size, prz);
517	if (ret)
518		goto err;
519
520	ret = persistent_ram_post_init(prz, sig, ecc_info);
521	if (ret)
522		goto err;
523
524	return prz;
525err:
526	persistent_ram_free(prz);
527	return ERR_PTR(ret);
528}