Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
  1// SPDX-License-Identifier: GPL-2.0+
  2/* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
  3 *
  4 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
  5 */
  6
  7#include <linux/bitfield.h>
  8#include <linux/brcmphy.h>
  9#include <linux/hwmon.h>
 10#include <linux/module.h>
 11#include <linux/phy.h>
 12
 13#include "bcm-phy-lib.h"
 14
 15/* RDB per-port registers
 16 */
 17#define BCM54140_RDB_ISR		0x00a	/* interrupt status */
 18#define BCM54140_RDB_IMR		0x00b	/* interrupt mask */
 19#define  BCM54140_RDB_INT_LINK		BIT(1)	/* link status changed */
 20#define  BCM54140_RDB_INT_SPEED		BIT(2)	/* link speed change */
 21#define  BCM54140_RDB_INT_DUPLEX	BIT(3)	/* duplex mode changed */
 22#define BCM54140_RDB_SPARE1		0x012	/* spare control 1 */
 23#define  BCM54140_RDB_SPARE1_LSLM	BIT(2)	/* link speed LED mode */
 24#define BCM54140_RDB_SPARE2		0x014	/* spare control 2 */
 25#define  BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */
 26#define  BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */
 27#define BCM54140_RDB_SPARE3		0x015	/* spare control 3 */
 28#define  BCM54140_RDB_SPARE3_BIT0	BIT(0)
 29#define BCM54140_RDB_LED_CTRL		0x019	/* LED control */
 30#define  BCM54140_RDB_LED_CTRL_ACTLINK0	BIT(4)
 31#define  BCM54140_RDB_LED_CTRL_ACTLINK1	BIT(8)
 32#define BCM54140_RDB_C_APWR		0x01a	/* auto power down control */
 33#define  BCM54140_RDB_C_APWR_SINGLE_PULSE	BIT(8)	/* single pulse */
 34#define  BCM54140_RDB_C_APWR_APD_MODE_DIS	0 /* ADP disable */
 35#define  BCM54140_RDB_C_APWR_APD_MODE_EN	1 /* ADP enable */
 36#define  BCM54140_RDB_C_APWR_APD_MODE_DIS2	2 /* ADP disable */
 37#define  BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG	3 /* ADP enable w/ aneg */
 38#define  BCM54140_RDB_C_APWR_APD_MODE_MASK	GENMASK(6, 5)
 39#define  BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */
 40#define  BCM54140_RDB_C_APWR_SLP_TIM_2_7 0	/* 2.7s */
 41#define  BCM54140_RDB_C_APWR_SLP_TIM_5_4 1	/* 5.4s */
 42#define BCM54140_RDB_C_PWR		0x02a	/* copper power control */
 43#define  BCM54140_RDB_C_PWR_ISOLATE	BIT(5)	/* super isolate mode */
 44#define BCM54140_RDB_C_MISC_CTRL	0x02f	/* misc copper control */
 45#define  BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4)	/* wirespeed enable */
 46
 47/* RDB global registers
 48 */
 49#define BCM54140_RDB_TOP_IMR		0x82d	/* interrupt mask */
 50#define  BCM54140_RDB_TOP_IMR_PORT0	BIT(4)
 51#define  BCM54140_RDB_TOP_IMR_PORT1	BIT(5)
 52#define  BCM54140_RDB_TOP_IMR_PORT2	BIT(6)
 53#define  BCM54140_RDB_TOP_IMR_PORT3	BIT(7)
 54#define BCM54140_RDB_MON_CTRL		0x831	/* monitor control */
 55#define  BCM54140_RDB_MON_CTRL_V_MODE	BIT(3)	/* voltage mode */
 56#define  BCM54140_RDB_MON_CTRL_SEL_MASK	GENMASK(2, 1)
 57#define  BCM54140_RDB_MON_CTRL_SEL_TEMP	0	/* meassure temperature */
 58#define  BCM54140_RDB_MON_CTRL_SEL_1V0	1	/* meassure AVDDL 1.0V */
 59#define  BCM54140_RDB_MON_CTRL_SEL_3V3	2	/* meassure AVDDH 3.3V */
 60#define  BCM54140_RDB_MON_CTRL_SEL_RR	3	/* meassure all round-robin */
 61#define  BCM54140_RDB_MON_CTRL_PWR_DOWN	BIT(0)	/* power-down monitor */
 62#define BCM54140_RDB_MON_TEMP_VAL	0x832	/* temperature value */
 63#define BCM54140_RDB_MON_TEMP_MAX	0x833	/* temperature high thresh */
 64#define BCM54140_RDB_MON_TEMP_MIN	0x834	/* temperature low thresh */
 65#define  BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
 66#define BCM54140_RDB_MON_1V0_VAL	0x835	/* AVDDL 1.0V value */
 67#define BCM54140_RDB_MON_1V0_MAX	0x836	/* AVDDL 1.0V high thresh */
 68#define BCM54140_RDB_MON_1V0_MIN	0x837	/* AVDDL 1.0V low thresh */
 69#define  BCM54140_RDB_MON_1V0_DATA_MASK	GENMASK(10, 0)
 70#define BCM54140_RDB_MON_3V3_VAL	0x838	/* AVDDH 3.3V value */
 71#define BCM54140_RDB_MON_3V3_MAX	0x839	/* AVDDH 3.3V high thresh */
 72#define BCM54140_RDB_MON_3V3_MIN	0x83a	/* AVDDH 3.3V low thresh */
 73#define  BCM54140_RDB_MON_3V3_DATA_MASK	GENMASK(11, 0)
 74#define BCM54140_RDB_MON_ISR		0x83b	/* interrupt status */
 75#define  BCM54140_RDB_MON_ISR_3V3	BIT(2)	/* AVDDH 3.3V alarm */
 76#define  BCM54140_RDB_MON_ISR_1V0	BIT(1)	/* AVDDL 1.0V alarm */
 77#define  BCM54140_RDB_MON_ISR_TEMP	BIT(0)	/* temperature alarm */
 78
 79/* According to the datasheet the formula is:
 80 *   T = 413.35 - (0.49055 * bits[9:0])
 81 */
 82#define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491)
 83#define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491)
 84
 85/* According to the datasheet the formula is:
 86 *   U = bits[11:0] / 1024 * 220 / 0.2
 87 *
 88 * Normalized:
 89 *   U = bits[11:0] / 4096 * 2514
 90 */
 91#define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
 92#define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)
 93
 94/* According to the datasheet the formula is:
 95 *   U = bits[10:0] / 1024 * 880 / 0.7
 96 *
 97 * Normalized:
 98 *   U = bits[10:0] / 2048 * 4400
 99 */
100#define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
101#define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)
102
103#define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \
104					  : BCM54140_HWMON_TO_IN_1V0(v))
105#define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \
106					    : BCM54140_HWMON_FROM_IN_1V0(v))
107#define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \
108					 : BCM54140_RDB_MON_1V0_DATA_MASK)
109#define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \
110					    : BCM54140_RDB_MON_1V0_VAL)
111#define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \
112					    : BCM54140_RDB_MON_1V0_MIN)
113#define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \
114					    : BCM54140_RDB_MON_1V0_MAX)
115#define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \
116					      : BCM54140_RDB_MON_ISR_1V0)
117
118/* This PHY has two different PHY IDs depening on its MODE_SEL pin. This
119 * pin choses between 4x SGMII and QSGMII mode:
120 *   AE02_5009 4x SGMII
121 *   AE02_5019 QSGMII
122 */
123#define BCM54140_PHY_ID_MASK	0xffffffe8
124
125#define BCM54140_PHY_ID_REV(phy_id)	((phy_id) & 0x7)
126#define BCM54140_REV_B0			1
127
128#define BCM54140_DEFAULT_DOWNSHIFT 5
129#define BCM54140_MAX_DOWNSHIFT 9
130
131enum bcm54140_global_phy {
132	BCM54140_BASE_ADDR = 0,
133};
134
135struct bcm54140_priv {
136	int port;
137	int base_addr;
138#if IS_ENABLED(CONFIG_HWMON)
139	/* protect the alarm bits */
140	struct mutex alarm_lock;
141	u16 alarm;
142#endif
143};
144
145#if IS_ENABLED(CONFIG_HWMON)
146static umode_t bcm54140_hwmon_is_visible(const void *data,
147					 enum hwmon_sensor_types type,
148					 u32 attr, int channel)
149{
150	switch (type) {
151	case hwmon_in:
152		switch (attr) {
153		case hwmon_in_min:
154		case hwmon_in_max:
155			return 0644;
156		case hwmon_in_label:
157		case hwmon_in_input:
158		case hwmon_in_alarm:
159			return 0444;
160		default:
161			return 0;
162		}
163	case hwmon_temp:
164		switch (attr) {
165		case hwmon_temp_min:
166		case hwmon_temp_max:
167			return 0644;
168		case hwmon_temp_input:
169		case hwmon_temp_alarm:
170			return 0444;
171		default:
172			return 0;
173		}
174	default:
175		return 0;
176	}
177}
178
179static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
180				     long *val)
181{
182	struct phy_device *phydev = dev_get_drvdata(dev);
183	struct bcm54140_priv *priv = phydev->priv;
184	int tmp, ret = 0;
185
186	mutex_lock(&priv->alarm_lock);
187
188	/* latch any alarm bits */
189	tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
190	if (tmp < 0) {
191		ret = tmp;
192		goto out;
193	}
194	priv->alarm |= tmp;
195
196	*val = !!(priv->alarm & bit);
197	priv->alarm &= ~bit;
198
199out:
200	mutex_unlock(&priv->alarm_lock);
201	return ret;
202}
203
204static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
205{
206	struct phy_device *phydev = dev_get_drvdata(dev);
207	u16 reg;
208	int tmp;
209
210	switch (attr) {
211	case hwmon_temp_input:
212		reg = BCM54140_RDB_MON_TEMP_VAL;
213		break;
214	case hwmon_temp_min:
215		reg = BCM54140_RDB_MON_TEMP_MIN;
216		break;
217	case hwmon_temp_max:
218		reg = BCM54140_RDB_MON_TEMP_MAX;
219		break;
220	case hwmon_temp_alarm:
221		return bcm54140_hwmon_read_alarm(dev,
222						 BCM54140_RDB_MON_ISR_TEMP,
223						 val);
224	default:
225		return -EOPNOTSUPP;
226	}
227
228	tmp = bcm_phy_read_rdb(phydev, reg);
229	if (tmp < 0)
230		return tmp;
231
232	*val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);
233
234	return 0;
235}
236
237static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
238				  int channel, long *val)
239{
240	struct phy_device *phydev = dev_get_drvdata(dev);
241	u16 bit, reg;
242	int tmp;
243
244	switch (attr) {
245	case hwmon_in_input:
246		reg = BCM54140_HWMON_IN_VAL_REG(channel);
247		break;
248	case hwmon_in_min:
249		reg = BCM54140_HWMON_IN_MIN_REG(channel);
250		break;
251	case hwmon_in_max:
252		reg = BCM54140_HWMON_IN_MAX_REG(channel);
253		break;
254	case hwmon_in_alarm:
255		bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
256		return bcm54140_hwmon_read_alarm(dev, bit, val);
257	default:
258		return -EOPNOTSUPP;
259	}
260
261	tmp = bcm_phy_read_rdb(phydev, reg);
262	if (tmp < 0)
263		return tmp;
264
265	tmp &= BCM54140_HWMON_IN_MASK(channel);
266	*val = BCM54140_HWMON_TO_IN(channel, tmp);
267
268	return 0;
269}
270
271static int bcm54140_hwmon_read(struct device *dev,
272			       enum hwmon_sensor_types type, u32 attr,
273			       int channel, long *val)
274{
275	switch (type) {
276	case hwmon_temp:
277		return bcm54140_hwmon_read_temp(dev, attr, val);
278	case hwmon_in:
279		return bcm54140_hwmon_read_in(dev, attr, channel, val);
280	default:
281		return -EOPNOTSUPP;
282	}
283}
284
285static const char *const bcm54140_hwmon_in_labels[] = {
286	"AVDDL",
287	"AVDDH",
288};
289
290static int bcm54140_hwmon_read_string(struct device *dev,
291				      enum hwmon_sensor_types type, u32 attr,
292				      int channel, const char **str)
293{
294	switch (type) {
295	case hwmon_in:
296		switch (attr) {
297		case hwmon_in_label:
298			*str = bcm54140_hwmon_in_labels[channel];
299			return 0;
300		default:
301			return -EOPNOTSUPP;
302		}
303	default:
304		return -EOPNOTSUPP;
305	}
306}
307
308static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
309				     int channel, long val)
310{
311	struct phy_device *phydev = dev_get_drvdata(dev);
312	u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
313	u16 reg;
314
315	val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
316			BCM54140_HWMON_TO_TEMP(0));
317
318	switch (attr) {
319	case hwmon_temp_min:
320		reg = BCM54140_RDB_MON_TEMP_MIN;
321		break;
322	case hwmon_temp_max:
323		reg = BCM54140_RDB_MON_TEMP_MAX;
324		break;
325	default:
326		return -EOPNOTSUPP;
327	}
328
329	return bcm_phy_modify_rdb(phydev, reg, mask,
330				  BCM54140_HWMON_FROM_TEMP(val));
331}
332
333static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
334				   int channel, long val)
335{
336	struct phy_device *phydev = dev_get_drvdata(dev);
337	u16 mask = BCM54140_HWMON_IN_MASK(channel);
338	u16 reg;
339
340	val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));
341
342	switch (attr) {
343	case hwmon_in_min:
344		reg = BCM54140_HWMON_IN_MIN_REG(channel);
345		break;
346	case hwmon_in_max:
347		reg = BCM54140_HWMON_IN_MAX_REG(channel);
348		break;
349	default:
350		return -EOPNOTSUPP;
351	}
352
353	return bcm_phy_modify_rdb(phydev, reg, mask,
354				  BCM54140_HWMON_FROM_IN(channel, val));
355}
356
357static int bcm54140_hwmon_write(struct device *dev,
358				enum hwmon_sensor_types type, u32 attr,
359				int channel, long val)
360{
361	switch (type) {
362	case hwmon_temp:
363		return bcm54140_hwmon_write_temp(dev, attr, channel, val);
364	case hwmon_in:
365		return bcm54140_hwmon_write_in(dev, attr, channel, val);
366	default:
367		return -EOPNOTSUPP;
368	}
369}
370
371static const struct hwmon_channel_info * const bcm54140_hwmon_info[] = {
372	HWMON_CHANNEL_INFO(temp,
373			   HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
374			   HWMON_T_ALARM),
375	HWMON_CHANNEL_INFO(in,
376			   HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
377			   HWMON_I_ALARM | HWMON_I_LABEL,
378			   HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
379			   HWMON_I_ALARM | HWMON_I_LABEL),
380	NULL
381};
382
383static const struct hwmon_ops bcm54140_hwmon_ops = {
384	.is_visible = bcm54140_hwmon_is_visible,
385	.read = bcm54140_hwmon_read,
386	.read_string = bcm54140_hwmon_read_string,
387	.write = bcm54140_hwmon_write,
388};
389
390static const struct hwmon_chip_info bcm54140_chip_info = {
391	.ops = &bcm54140_hwmon_ops,
392	.info = bcm54140_hwmon_info,
393};
394
395static int bcm54140_enable_monitoring(struct phy_device *phydev)
396{
397	u16 mask, set;
398
399	/* 3.3V voltage mode */
400	set = BCM54140_RDB_MON_CTRL_V_MODE;
401
402	/* select round-robin */
403	mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
404	set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
405			  BCM54140_RDB_MON_CTRL_SEL_RR);
406
407	/* remove power-down bit */
408	mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;
409
410	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);
411}
412
413static int bcm54140_probe_once(struct phy_device *phydev)
414{
415	struct device *hwmon;
416	int ret;
417
418	/* enable hardware monitoring */
419	ret = bcm54140_enable_monitoring(phydev);
420	if (ret)
421		return ret;
422
423	hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev,
424						     "BCM54140", phydev,
425						     &bcm54140_chip_info,
426						     NULL);
427	return PTR_ERR_OR_ZERO(hwmon);
428}
429#endif
430
431static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
432{
433	int ret;
434
435	phy_lock_mdio_bus(phydev);
436	ret = __phy_package_write(phydev, BCM54140_BASE_ADDR,
437				  MII_BCM54XX_RDB_ADDR, rdb);
438	if (ret < 0)
439		goto out;
440
441	ret = __phy_package_read(phydev, BCM54140_BASE_ADDR,
442				 MII_BCM54XX_RDB_DATA);
443
444out:
445	phy_unlock_mdio_bus(phydev);
446	return ret;
447}
448
449static int bcm54140_base_write_rdb(struct phy_device *phydev,
450				   u16 rdb, u16 val)
451{
452	int ret;
453
454	phy_lock_mdio_bus(phydev);
455	ret = __phy_package_write(phydev, BCM54140_BASE_ADDR,
456				  MII_BCM54XX_RDB_ADDR, rdb);
457	if (ret < 0)
458		goto out;
459
460	ret = __phy_package_write(phydev, BCM54140_BASE_ADDR,
461				  MII_BCM54XX_RDB_DATA, val);
462
463out:
464	phy_unlock_mdio_bus(phydev);
465	return ret;
466}
467
468/* Under some circumstances a core PLL may not lock, this will then prevent
469 * a successful link establishment. Restart the PLL after the voltages are
470 * stable to workaround this issue.
471 */
472static int bcm54140_b0_workaround(struct phy_device *phydev)
473{
474	int spare3;
475	int ret;
476
477	spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
478	if (spare3 < 0)
479		return spare3;
480
481	spare3 &= ~BCM54140_RDB_SPARE3_BIT0;
482
483	ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
484	if (ret)
485		return ret;
486
487	ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN);
488	if (ret)
489		return ret;
490
491	ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0);
492	if (ret)
493		return ret;
494
495	spare3 |= BCM54140_RDB_SPARE3_BIT0;
496
497	return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
498}
499
500/* The BCM54140 is a quad PHY where only the first port has access to the
501 * global register. Thus we need to find out its PHY address.
502 *
503 */
504static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
505{
506	struct bcm54140_priv *priv = phydev->priv;
507	struct mii_bus *bus = phydev->mdio.bus;
508	int addr, min_addr, max_addr;
509	int step = 1;
510	u32 phy_id;
511	int tmp;
512
513	min_addr = phydev->mdio.addr;
514	max_addr = phydev->mdio.addr;
515	addr = phydev->mdio.addr;
516
517	/* We scan forward and backwards and look for PHYs which have the
518	 * same phy_id like we do. Step 1 will scan forward, step 2
519	 * backwards. Once we are finished, we have a min_addr and
520	 * max_addr which resembles the range of PHY addresses of the same
521	 * type of PHY. There is one caveat; there may be many PHYs of
522	 * the same type, but we know that each PHY takes exactly 4
523	 * consecutive addresses. Therefore we can deduce our offset
524	 * to the base address of this quad PHY.
525	 */
526
527	while (1) {
528		if (step == 3) {
529			break;
530		} else if (step == 1) {
531			max_addr = addr;
532			addr++;
533		} else {
534			min_addr = addr;
535			addr--;
536		}
537
538		if (addr < 0 || addr >= PHY_MAX_ADDR) {
539			addr = phydev->mdio.addr;
540			step++;
541			continue;
542		}
543
544		/* read the PHY id */
545		tmp = mdiobus_read(bus, addr, MII_PHYSID1);
546		if (tmp < 0)
547			return tmp;
548		phy_id = tmp << 16;
549		tmp = mdiobus_read(bus, addr, MII_PHYSID2);
550		if (tmp < 0)
551			return tmp;
552		phy_id |= tmp;
553
554		/* see if it is still the same PHY */
555		if ((phy_id & phydev->drv->phy_id_mask) !=
556		    (phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
557			addr = phydev->mdio.addr;
558			step++;
559		}
560	}
561
562	/* The range we get should be a multiple of four. Please note that both
563	 * the min_addr and max_addr are inclusive. So we have to add one if we
564	 * subtract them.
565	 */
566	if ((max_addr - min_addr + 1) % 4) {
567		dev_err(&phydev->mdio.dev,
568			"Detected Quad PHY IDs %d..%d doesn't make sense.\n",
569			min_addr, max_addr);
570		return -EINVAL;
571	}
572
573	priv->port = (phydev->mdio.addr - min_addr) % 4;
574	priv->base_addr = phydev->mdio.addr - priv->port;
575
576	return 0;
577}
578
579static int bcm54140_probe(struct phy_device *phydev)
580{
581	struct bcm54140_priv *priv;
582	int ret;
583
584	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
585	if (!priv)
586		return -ENOMEM;
587
588	phydev->priv = priv;
589
590	ret = bcm54140_get_base_addr_and_port(phydev);
591	if (ret)
592		return ret;
593
594	devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0);
595
596#if IS_ENABLED(CONFIG_HWMON)
597	mutex_init(&priv->alarm_lock);
598
599	if (phy_package_init_once(phydev)) {
600		ret = bcm54140_probe_once(phydev);
601		if (ret)
602			return ret;
603	}
604#endif
605
606	phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n",
607		   priv->port, priv->base_addr);
608
609	return 0;
610}
611
612static int bcm54140_config_init(struct phy_device *phydev)
613{
614	u16 reg = 0xffff;
615	int ret;
616
617	/* Apply hardware errata */
618	if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
619		ret = bcm54140_b0_workaround(phydev);
620		if (ret)
621			return ret;
622	}
623
624	/* Unmask events we are interested in. */
625	reg &= ~(BCM54140_RDB_INT_DUPLEX |
626		 BCM54140_RDB_INT_SPEED |
627		 BCM54140_RDB_INT_LINK);
628	ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg);
629	if (ret)
630		return ret;
631
632	/* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
633	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
634				 0, BCM54140_RDB_SPARE1_LSLM);
635	if (ret)
636		return ret;
637
638	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
639				 0, BCM54140_RDB_LED_CTRL_ACTLINK0);
640	if (ret)
641		return ret;
642
643	/* disable super isolate mode */
644	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
645				  BCM54140_RDB_C_PWR_ISOLATE, 0);
646}
647
648static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev)
649{
650	int irq_status, irq_mask;
651
652	irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
653	if (irq_status < 0) {
654		phy_error(phydev);
655		return IRQ_NONE;
656	}
657
658	irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR);
659	if (irq_mask < 0) {
660		phy_error(phydev);
661		return IRQ_NONE;
662	}
663	irq_mask = ~irq_mask;
664
665	if (!(irq_status & irq_mask))
666		return IRQ_NONE;
667
668	phy_trigger_machine(phydev);
669
670	return IRQ_HANDLED;
671}
672
673static int bcm54140_ack_intr(struct phy_device *phydev)
674{
675	int reg;
676
677	/* clear pending interrupts */
678	reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
679	if (reg < 0)
680		return reg;
681
682	return 0;
683}
684
685static int bcm54140_config_intr(struct phy_device *phydev)
686{
687	struct bcm54140_priv *priv = phydev->priv;
688	static const u16 port_to_imr_bit[] = {
689		BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
690		BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
691	};
692	int reg, err;
693
694	if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
695		return -EINVAL;
696
697	reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
698	if (reg < 0)
699		return reg;
700
701	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
702		err = bcm54140_ack_intr(phydev);
703		if (err)
704			return err;
705
706		reg &= ~port_to_imr_bit[priv->port];
707		err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
708	} else {
709		reg |= port_to_imr_bit[priv->port];
710		err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
711		if (err)
712			return err;
713
714		err = bcm54140_ack_intr(phydev);
715	}
716
717	return err;
718}
719
720static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
721{
722	int val;
723
724	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
725	if (val < 0)
726		return val;
727
728	if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
729		*data = DOWNSHIFT_DEV_DISABLE;
730		return 0;
731	}
732
733	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
734	if (val < 0)
735		return val;
736
737	if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
738		*data = 1;
739	else
740		*data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;
741
742	return 0;
743}
744
745static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
746{
747	u16 mask, set;
748	int ret;
749
750	if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
751		return -EINVAL;
752
753	if (!cnt)
754		return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
755					  BCM54140_RDB_C_MISC_CTRL_WS_EN, 0);
756
757	if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
758		cnt = BCM54140_DEFAULT_DOWNSHIFT;
759
760	if (cnt == 1) {
761		mask = 0;
762		set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
763	} else {
764		mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
765		mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
766		set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
767	}
768	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
769				 mask, set);
770	if (ret)
771		return ret;
772
773	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
774				  0, BCM54140_RDB_C_MISC_CTRL_WS_EN);
775}
776
777static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
778{
779	int val;
780
781	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
782	if (val < 0)
783		return val;
784
785	switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
786	case BCM54140_RDB_C_APWR_APD_MODE_DIS:
787	case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
788		*tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
789		break;
790	case BCM54140_RDB_C_APWR_APD_MODE_EN:
791	case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
792		switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
793		case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
794			*tx_interval = 2700;
795			break;
796		case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
797			*tx_interval = 5400;
798			break;
799		}
800	}
801
802	return 0;
803}
804
805static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
806{
807	u16 mask, set;
808
809	mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
810	if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
811		set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
812				 BCM54140_RDB_C_APWR_APD_MODE_DIS);
813	else
814		set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
815				 BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);
816
817	/* enable single pulse mode */
818	set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;
819
820	/* set sleep timer */
821	mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
822	switch (tx_interval) {
823	case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
824	case ETHTOOL_PHY_EDPD_DISABLE:
825	case 2700:
826		set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
827		break;
828	case 5400:
829		set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
830		break;
831	default:
832		return -EINVAL;
833	}
834
835	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);
836}
837
838static int bcm54140_get_tunable(struct phy_device *phydev,
839				struct ethtool_tunable *tuna, void *data)
840{
841	switch (tuna->id) {
842	case ETHTOOL_PHY_DOWNSHIFT:
843		return bcm54140_get_downshift(phydev, data);
844	case ETHTOOL_PHY_EDPD:
845		return bcm54140_get_edpd(phydev, data);
846	default:
847		return -EOPNOTSUPP;
848	}
849}
850
851static int bcm54140_set_tunable(struct phy_device *phydev,
852				struct ethtool_tunable *tuna, const void *data)
853{
854	switch (tuna->id) {
855	case ETHTOOL_PHY_DOWNSHIFT:
856		return bcm54140_set_downshift(phydev, *(const u8 *)data);
857	case ETHTOOL_PHY_EDPD:
858		return bcm54140_set_edpd(phydev, *(const u16 *)data);
859	default:
860		return -EOPNOTSUPP;
861	}
862}
863
864static struct phy_driver bcm54140_drivers[] = {
865	{
866		.phy_id         = PHY_ID_BCM54140,
867		.phy_id_mask    = BCM54140_PHY_ID_MASK,
868		.name           = "Broadcom BCM54140",
869		.flags		= PHY_POLL_CABLE_TEST,
870		.features       = PHY_GBIT_FEATURES,
871		.config_init    = bcm54140_config_init,
872		.handle_interrupt = bcm54140_handle_interrupt,
873		.config_intr    = bcm54140_config_intr,
874		.probe		= bcm54140_probe,
875		.suspend	= genphy_suspend,
876		.resume		= genphy_resume,
877		.soft_reset	= genphy_soft_reset,
878		.get_tunable	= bcm54140_get_tunable,
879		.set_tunable	= bcm54140_set_tunable,
880		.cable_test_start = bcm_phy_cable_test_start_rdb,
881		.cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
882	},
883};
884module_phy_driver(bcm54140_drivers);
885
886static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
887	{ PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
888	{ }
889};
890
891MODULE_AUTHOR("Michael Walle");
892MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver");
893MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
894MODULE_LICENSE("GPL");
1