Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Cell Broadband Engine Performance Monitor
  4 *
  5 * (C) Copyright IBM Corporation 2001,2006
  6 *
  7 * Author:
  8 *    David Erb (djerb@us.ibm.com)
  9 *    Kevin Corry (kevcorry@us.ibm.com)
 10 */
 11
 12#include <linux/interrupt.h>
 13#include <linux/irqdomain.h>
 14#include <linux/types.h>
 15#include <linux/export.h>
 16#include <asm/io.h>
 17#include <asm/irq_regs.h>
 18#include <asm/machdep.h>
 19#include <asm/pmc.h>
 20#include <asm/reg.h>
 21#include <asm/spu.h>
 22#include <asm/cell-regs.h>
 23
 24#include "interrupt.h"
 25
 26/*
 27 * When writing to write-only mmio addresses, save a shadow copy. All of the
 28 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
 29 * pmd_regs.
 30 */
 31
 32#define WRITE_WO_MMIO(reg, x)					\
 33	do {							\
 34		u32 _x = (x);					\
 35		struct cbe_pmd_regs __iomem *pmd_regs;		\
 36		struct cbe_pmd_shadow_regs *shadow_regs;	\
 37		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
 38		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
 39		out_be64(&(pmd_regs->reg), (((u64)_x) << 32));	\
 40		shadow_regs->reg = _x;				\
 41	} while (0)
 42
 43#define READ_SHADOW_REG(val, reg)				\
 44	do {							\
 45		struct cbe_pmd_shadow_regs *shadow_regs;	\
 46		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
 47		(val) = shadow_regs->reg;			\
 48	} while (0)
 49
 50#define READ_MMIO_UPPER32(val, reg)				\
 51	do {							\
 52		struct cbe_pmd_regs __iomem *pmd_regs;		\
 53		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
 54		(val) = (u32)(in_be64(&pmd_regs->reg) >> 32);	\
 55	} while (0)
 56
 57/*
 58 * Physical counter registers.
 59 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
 60 */
 61
 62u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
 63{
 64	u32 val_in_latch, val = 0;
 65
 66	if (phys_ctr < NR_PHYS_CTRS) {
 67		READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
 68
 69		/* Read the latch or the actual counter, whichever is newer. */
 70		if (val_in_latch & (1 << phys_ctr)) {
 71			READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
 72		} else {
 73			READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
 74		}
 75	}
 76
 77	return val;
 78}
 79EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
 80
 81void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
 82{
 83	struct cbe_pmd_shadow_regs *shadow_regs;
 84	u32 pm_ctrl;
 85
 86	if (phys_ctr < NR_PHYS_CTRS) {
 87		/* Writing to a counter only writes to a hardware latch.
 88		 * The new value is not propagated to the actual counter
 89		 * until the performance monitor is enabled.
 90		 */
 91		WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
 92
 93		pm_ctrl = cbe_read_pm(cpu, pm_control);
 94		if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
 95			/* The counters are already active, so we need to
 96			 * rewrite the pm_control register to "re-enable"
 97			 * the PMU.
 98			 */
 99			cbe_write_pm(cpu, pm_control, pm_ctrl);
100		} else {
101			shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
102			shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
103		}
104	}
105}
106EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
107
108/*
109 * "Logical" counter registers.
110 * These will read/write 16-bits or 32-bits depending on the
111 * current size of the counter. Counters 4 - 7 are always 16-bit.
112 */
113
114u32 cbe_read_ctr(u32 cpu, u32 ctr)
115{
116	u32 val;
117	u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
118
119	val = cbe_read_phys_ctr(cpu, phys_ctr);
120
121	if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
122		val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
123
124	return val;
125}
126EXPORT_SYMBOL_GPL(cbe_read_ctr);
127
128void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
129{
130	u32 phys_ctr;
131	u32 phys_val;
132
133	phys_ctr = ctr & (NR_PHYS_CTRS - 1);
134
135	if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
136		phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
137
138		if (ctr < NR_PHYS_CTRS)
139			val = (val << 16) | (phys_val & 0xffff);
140		else
141			val = (val & 0xffff) | (phys_val & 0xffff0000);
142	}
143
144	cbe_write_phys_ctr(cpu, phys_ctr, val);
145}
146EXPORT_SYMBOL_GPL(cbe_write_ctr);
147
148/*
149 * Counter-control registers.
150 * Each "logical" counter has a corresponding control register.
151 */
152
153u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
154{
155	u32 pm07_control = 0;
156
157	if (ctr < NR_CTRS)
158		READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
159
160	return pm07_control;
161}
162EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
163
164void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
165{
166	if (ctr < NR_CTRS)
167		WRITE_WO_MMIO(pm07_control[ctr], val);
168}
169EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
170
171/*
172 * Other PMU control registers. Most of these are write-only.
173 */
174
175u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
176{
177	u32 val = 0;
178
179	switch (reg) {
180	case group_control:
181		READ_SHADOW_REG(val, group_control);
182		break;
183
184	case debug_bus_control:
185		READ_SHADOW_REG(val, debug_bus_control);
186		break;
187
188	case trace_address:
189		READ_MMIO_UPPER32(val, trace_address);
190		break;
191
192	case ext_tr_timer:
193		READ_SHADOW_REG(val, ext_tr_timer);
194		break;
195
196	case pm_status:
197		READ_MMIO_UPPER32(val, pm_status);
198		break;
199
200	case pm_control:
201		READ_SHADOW_REG(val, pm_control);
202		break;
203
204	case pm_interval:
205		READ_MMIO_UPPER32(val, pm_interval);
206		break;
207
208	case pm_start_stop:
209		READ_SHADOW_REG(val, pm_start_stop);
210		break;
211	}
212
213	return val;
214}
215EXPORT_SYMBOL_GPL(cbe_read_pm);
216
217void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
218{
219	switch (reg) {
220	case group_control:
221		WRITE_WO_MMIO(group_control, val);
222		break;
223
224	case debug_bus_control:
225		WRITE_WO_MMIO(debug_bus_control, val);
226		break;
227
228	case trace_address:
229		WRITE_WO_MMIO(trace_address, val);
230		break;
231
232	case ext_tr_timer:
233		WRITE_WO_MMIO(ext_tr_timer, val);
234		break;
235
236	case pm_status:
237		WRITE_WO_MMIO(pm_status, val);
238		break;
239
240	case pm_control:
241		WRITE_WO_MMIO(pm_control, val);
242		break;
243
244	case pm_interval:
245		WRITE_WO_MMIO(pm_interval, val);
246		break;
247
248	case pm_start_stop:
249		WRITE_WO_MMIO(pm_start_stop, val);
250		break;
251	}
252}
253EXPORT_SYMBOL_GPL(cbe_write_pm);
254
255/*
256 * Get/set the size of a physical counter to either 16 or 32 bits.
257 */
258
259u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
260{
261	u32 pm_ctrl, size = 0;
262
263	if (phys_ctr < NR_PHYS_CTRS) {
264		pm_ctrl = cbe_read_pm(cpu, pm_control);
265		size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
266	}
267
268	return size;
269}
270EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
271
272void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
273{
274	u32 pm_ctrl;
275
276	if (phys_ctr < NR_PHYS_CTRS) {
277		pm_ctrl = cbe_read_pm(cpu, pm_control);
278		switch (ctr_size) {
279		case 16:
280			pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
281			break;
282
283		case 32:
284			pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
285			break;
286		}
287		cbe_write_pm(cpu, pm_control, pm_ctrl);
288	}
289}
290EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
291
292/*
293 * Enable/disable the entire performance monitoring unit.
294 * When we enable the PMU, all pending writes to counters get committed.
295 */
296
297void cbe_enable_pm(u32 cpu)
298{
299	struct cbe_pmd_shadow_regs *shadow_regs;
300	u32 pm_ctrl;
301
302	shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
303	shadow_regs->counter_value_in_latch = 0;
304
305	pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
306	cbe_write_pm(cpu, pm_control, pm_ctrl);
307}
308EXPORT_SYMBOL_GPL(cbe_enable_pm);
309
310void cbe_disable_pm(u32 cpu)
311{
312	u32 pm_ctrl;
313	pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
314	cbe_write_pm(cpu, pm_control, pm_ctrl);
315}
316EXPORT_SYMBOL_GPL(cbe_disable_pm);
317
318/*
319 * Reading from the trace_buffer.
320 * The trace buffer is two 64-bit registers. Reading from
321 * the second half automatically increments the trace_address.
322 */
323
324void cbe_read_trace_buffer(u32 cpu, u64 *buf)
325{
326	struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
327
328	*buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
329	*buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
330}
331EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
332
333/*
334 * Enabling/disabling interrupts for the entire performance monitoring unit.
335 */
336
337u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
338{
339	/* Reading pm_status clears the interrupt bits. */
340	return cbe_read_pm(cpu, pm_status);
341}
342EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
343
344void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
345{
346	/* Set which node and thread will handle the next interrupt. */
347	iic_set_interrupt_routing(cpu, thread, 0);
348
349	/* Enable the interrupt bits in the pm_status register. */
350	if (mask)
351		cbe_write_pm(cpu, pm_status, mask);
352}
353EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
354
355void cbe_disable_pm_interrupts(u32 cpu)
356{
357	cbe_get_and_clear_pm_interrupts(cpu);
358	cbe_write_pm(cpu, pm_status, 0);
359}
360EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
361
362static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
363{
364	perf_irq(get_irq_regs());
365	return IRQ_HANDLED;
366}
367
368static int __init cbe_init_pm_irq(void)
369{
370	unsigned int irq;
371	int rc, node;
372
373	for_each_online_node(node) {
374		irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
375					       (node << IIC_IRQ_NODE_SHIFT));
376		if (!irq) {
377			printk("ERROR: Unable to allocate irq for node %d\n",
378			       node);
379			return -EINVAL;
380		}
381
382		rc = request_irq(irq, cbe_pm_irq,
383				 0, "cbe-pmu-0", NULL);
384		if (rc) {
385			printk("ERROR: Request for irq on node %d failed\n",
386			       node);
387			return rc;
388		}
389	}
390
391	return 0;
392}
393machine_arch_initcall(cell, cbe_init_pm_irq);
394
395void cbe_sync_irq(int node)
396{
397	unsigned int irq;
398
399	irq = irq_find_mapping(NULL,
400			       IIC_IRQ_IOEX_PMI
401			       | (node << IIC_IRQ_NODE_SHIFT));
402
403	if (!irq) {
404		printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
405		"for node %d\n", irq, node);
406		return;
407	}
408
409	synchronize_irq(irq);
410}
411EXPORT_SYMBOL_GPL(cbe_sync_irq);
412
  1/*
  2 * Cell Broadband Engine Performance Monitor
  3 *
  4 * (C) Copyright IBM Corporation 2001,2006
  5 *
  6 * Author:
  7 *    David Erb (djerb@us.ibm.com)
  8 *    Kevin Corry (kevcorry@us.ibm.com)
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License as published by
 12 * the Free Software Foundation; either version 2, or (at your option)
 13 * any later version.
 14 *
 15 * This program is distributed in the hope that it will be useful,
 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 18 * GNU General Public License for more details.
 19 *
 20 * You should have received a copy of the GNU General Public License
 21 * along with this program; if not, write to the Free Software
 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 23 */
 24
 25#include <linux/interrupt.h>
 26#include <linux/types.h>
 27#include <linux/export.h>
 28#include <asm/io.h>
 29#include <asm/irq_regs.h>
 30#include <asm/machdep.h>
 31#include <asm/pmc.h>
 32#include <asm/reg.h>
 33#include <asm/spu.h>
 34#include <asm/cell-regs.h>
 35
 36#include "interrupt.h"
 37
 38/*
 39 * When writing to write-only mmio addresses, save a shadow copy. All of the
 40 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
 41 * pmd_regs.
 42 */
 43
 44#define WRITE_WO_MMIO(reg, x)					\
 45	do {							\
 46		u32 _x = (x);					\
 47		struct cbe_pmd_regs __iomem *pmd_regs;		\
 48		struct cbe_pmd_shadow_regs *shadow_regs;	\
 49		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
 50		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
 51		out_be64(&(pmd_regs->reg), (((u64)_x) << 32));	\
 52		shadow_regs->reg = _x;				\
 53	} while (0)
 54
 55#define READ_SHADOW_REG(val, reg)				\
 56	do {							\
 57		struct cbe_pmd_shadow_regs *shadow_regs;	\
 58		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
 59		(val) = shadow_regs->reg;			\
 60	} while (0)
 61
 62#define READ_MMIO_UPPER32(val, reg)				\
 63	do {							\
 64		struct cbe_pmd_regs __iomem *pmd_regs;		\
 65		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
 66		(val) = (u32)(in_be64(&pmd_regs->reg) >> 32);	\
 67	} while (0)
 68
 69/*
 70 * Physical counter registers.
 71 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
 72 */
 73
 74u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
 75{
 76	u32 val_in_latch, val = 0;
 77
 78	if (phys_ctr < NR_PHYS_CTRS) {
 79		READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
 80
 81		/* Read the latch or the actual counter, whichever is newer. */
 82		if (val_in_latch & (1 << phys_ctr)) {
 83			READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
 84		} else {
 85			READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
 86		}
 87	}
 88
 89	return val;
 90}
 91EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
 92
 93void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
 94{
 95	struct cbe_pmd_shadow_regs *shadow_regs;
 96	u32 pm_ctrl;
 97
 98	if (phys_ctr < NR_PHYS_CTRS) {
 99		/* Writing to a counter only writes to a hardware latch.
100		 * The new value is not propagated to the actual counter
101		 * until the performance monitor is enabled.
102		 */
103		WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
104
105		pm_ctrl = cbe_read_pm(cpu, pm_control);
106		if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
107			/* The counters are already active, so we need to
108			 * rewrite the pm_control register to "re-enable"
109			 * the PMU.
110			 */
111			cbe_write_pm(cpu, pm_control, pm_ctrl);
112		} else {
113			shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
114			shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
115		}
116	}
117}
118EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
119
120/*
121 * "Logical" counter registers.
122 * These will read/write 16-bits or 32-bits depending on the
123 * current size of the counter. Counters 4 - 7 are always 16-bit.
124 */
125
126u32 cbe_read_ctr(u32 cpu, u32 ctr)
127{
128	u32 val;
129	u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
130
131	val = cbe_read_phys_ctr(cpu, phys_ctr);
132
133	if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
134		val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
135
136	return val;
137}
138EXPORT_SYMBOL_GPL(cbe_read_ctr);
139
140void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
141{
142	u32 phys_ctr;
143	u32 phys_val;
144
145	phys_ctr = ctr & (NR_PHYS_CTRS - 1);
146
147	if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
148		phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
149
150		if (ctr < NR_PHYS_CTRS)
151			val = (val << 16) | (phys_val & 0xffff);
152		else
153			val = (val & 0xffff) | (phys_val & 0xffff0000);
154	}
155
156	cbe_write_phys_ctr(cpu, phys_ctr, val);
157}
158EXPORT_SYMBOL_GPL(cbe_write_ctr);
159
160/*
161 * Counter-control registers.
162 * Each "logical" counter has a corresponding control register.
163 */
164
165u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
166{
167	u32 pm07_control = 0;
168
169	if (ctr < NR_CTRS)
170		READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
171
172	return pm07_control;
173}
174EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
175
176void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
177{
178	if (ctr < NR_CTRS)
179		WRITE_WO_MMIO(pm07_control[ctr], val);
180}
181EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
182
183/*
184 * Other PMU control registers. Most of these are write-only.
185 */
186
187u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
188{
189	u32 val = 0;
190
191	switch (reg) {
192	case group_control:
193		READ_SHADOW_REG(val, group_control);
194		break;
195
196	case debug_bus_control:
197		READ_SHADOW_REG(val, debug_bus_control);
198		break;
199
200	case trace_address:
201		READ_MMIO_UPPER32(val, trace_address);
202		break;
203
204	case ext_tr_timer:
205		READ_SHADOW_REG(val, ext_tr_timer);
206		break;
207
208	case pm_status:
209		READ_MMIO_UPPER32(val, pm_status);
210		break;
211
212	case pm_control:
213		READ_SHADOW_REG(val, pm_control);
214		break;
215
216	case pm_interval:
217		READ_MMIO_UPPER32(val, pm_interval);
218		break;
219
220	case pm_start_stop:
221		READ_SHADOW_REG(val, pm_start_stop);
222		break;
223	}
224
225	return val;
226}
227EXPORT_SYMBOL_GPL(cbe_read_pm);
228
229void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
230{
231	switch (reg) {
232	case group_control:
233		WRITE_WO_MMIO(group_control, val);
234		break;
235
236	case debug_bus_control:
237		WRITE_WO_MMIO(debug_bus_control, val);
238		break;
239
240	case trace_address:
241		WRITE_WO_MMIO(trace_address, val);
242		break;
243
244	case ext_tr_timer:
245		WRITE_WO_MMIO(ext_tr_timer, val);
246		break;
247
248	case pm_status:
249		WRITE_WO_MMIO(pm_status, val);
250		break;
251
252	case pm_control:
253		WRITE_WO_MMIO(pm_control, val);
254		break;
255
256	case pm_interval:
257		WRITE_WO_MMIO(pm_interval, val);
258		break;
259
260	case pm_start_stop:
261		WRITE_WO_MMIO(pm_start_stop, val);
262		break;
263	}
264}
265EXPORT_SYMBOL_GPL(cbe_write_pm);
266
267/*
268 * Get/set the size of a physical counter to either 16 or 32 bits.
269 */
270
271u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
272{
273	u32 pm_ctrl, size = 0;
274
275	if (phys_ctr < NR_PHYS_CTRS) {
276		pm_ctrl = cbe_read_pm(cpu, pm_control);
277		size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
278	}
279
280	return size;
281}
282EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
283
284void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
285{
286	u32 pm_ctrl;
287
288	if (phys_ctr < NR_PHYS_CTRS) {
289		pm_ctrl = cbe_read_pm(cpu, pm_control);
290		switch (ctr_size) {
291		case 16:
292			pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
293			break;
294
295		case 32:
296			pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
297			break;
298		}
299		cbe_write_pm(cpu, pm_control, pm_ctrl);
300	}
301}
302EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
303
304/*
305 * Enable/disable the entire performance monitoring unit.
306 * When we enable the PMU, all pending writes to counters get committed.
307 */
308
309void cbe_enable_pm(u32 cpu)
310{
311	struct cbe_pmd_shadow_regs *shadow_regs;
312	u32 pm_ctrl;
313
314	shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
315	shadow_regs->counter_value_in_latch = 0;
316
317	pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
318	cbe_write_pm(cpu, pm_control, pm_ctrl);
319}
320EXPORT_SYMBOL_GPL(cbe_enable_pm);
321
322void cbe_disable_pm(u32 cpu)
323{
324	u32 pm_ctrl;
325	pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
326	cbe_write_pm(cpu, pm_control, pm_ctrl);
327}
328EXPORT_SYMBOL_GPL(cbe_disable_pm);
329
330/*
331 * Reading from the trace_buffer.
332 * The trace buffer is two 64-bit registers. Reading from
333 * the second half automatically increments the trace_address.
334 */
335
336void cbe_read_trace_buffer(u32 cpu, u64 *buf)
337{
338	struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
339
340	*buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
341	*buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
342}
343EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
344
345/*
346 * Enabling/disabling interrupts for the entire performance monitoring unit.
347 */
348
349u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
350{
351	/* Reading pm_status clears the interrupt bits. */
352	return cbe_read_pm(cpu, pm_status);
353}
354EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
355
356void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
357{
358	/* Set which node and thread will handle the next interrupt. */
359	iic_set_interrupt_routing(cpu, thread, 0);
360
361	/* Enable the interrupt bits in the pm_status register. */
362	if (mask)
363		cbe_write_pm(cpu, pm_status, mask);
364}
365EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
366
367void cbe_disable_pm_interrupts(u32 cpu)
368{
369	cbe_get_and_clear_pm_interrupts(cpu);
370	cbe_write_pm(cpu, pm_status, 0);
371}
372EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
373
374static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
375{
376	perf_irq(get_irq_regs());
377	return IRQ_HANDLED;
378}
379
380static int __init cbe_init_pm_irq(void)
381{
382	unsigned int irq;
383	int rc, node;
384
385	for_each_online_node(node) {
386		irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
387					       (node << IIC_IRQ_NODE_SHIFT));
388		if (irq == NO_IRQ) {
389			printk("ERROR: Unable to allocate irq for node %d\n",
390			       node);
391			return -EINVAL;
392		}
393
394		rc = request_irq(irq, cbe_pm_irq,
395				 0, "cbe-pmu-0", NULL);
396		if (rc) {
397			printk("ERROR: Request for irq on node %d failed\n",
398			       node);
399			return rc;
400		}
401	}
402
403	return 0;
404}
405machine_arch_initcall(cell, cbe_init_pm_irq);
406
407void cbe_sync_irq(int node)
408{
409	unsigned int irq;
410
411	irq = irq_find_mapping(NULL,
412			       IIC_IRQ_IOEX_PMI
413			       | (node << IIC_IRQ_NODE_SHIFT));
414
415	if (irq == NO_IRQ) {
416		printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
417		"for node %d\n", irq, node);
418		return;
419	}
420
421	synchronize_irq(irq);
422}
423EXPORT_SYMBOL_GPL(cbe_sync_irq);
424