Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16#define pr_fmt(fmt) "IPv6: " fmt
17
18#include <linux/bpf.h>
19#include <linux/errno.h>
20#include <linux/types.h>
21#include <linux/net.h>
22#include <linux/route.h>
23#include <linux/netdevice.h>
24#include <linux/in6.h>
25#include <linux/init.h>
26#include <linux/list.h>
27#include <linux/slab.h>
28
29#include <net/ip.h>
30#include <net/ipv6.h>
31#include <net/ndisc.h>
32#include <net/addrconf.h>
33#include <net/lwtunnel.h>
34#include <net/fib_notifier.h>
35
36#include <net/ip_fib.h>
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
49};
50
51#ifdef CONFIG_IPV6_SUBTREES
52#define FWS_INIT FWS_S
53#else
54#define FWS_INIT FWS_L
55#endif
56
57static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63static int fib6_walk(struct net *net, struct fib6_walker *w);
64static int fib6_walk_continue(struct fib6_walker *w);
65
66/*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73static void fib6_gc_timer_cb(struct timer_list *t);
74
75#define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79{
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83}
84
85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86{
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90}
91
92static int fib6_new_sernum(struct net *net)
93{
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100 return new;
101}
102
103enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
105};
106
107void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108{
109 struct fib6_node *fn;
110
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115}
116
117/*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124/*
125 * test bit
126 */
127#if defined(__LITTLE_ENDIAN)
128# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129#else
130# define BITOP_BE32_SWIZZLE 0
131#endif
132
133static __be32 addr_bit_set(const void *token, int fn_bit)
134{
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145}
146
147struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148{
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
151
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
154
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
158
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
162
163 INIT_HLIST_NODE(&f6i->gc_link);
164
165 return f6i;
166}
167
168void fib6_info_destroy_rcu(struct rcu_head *head)
169{
170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171
172 WARN_ON(f6i->fib6_node);
173
174 if (f6i->nh)
175 nexthop_put(f6i->nh);
176 else
177 fib6_nh_release(f6i->fib6_nh);
178
179 ip_fib_metrics_put(f6i->fib6_metrics);
180 kfree(f6i);
181}
182EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183
184static struct fib6_node *node_alloc(struct net *net)
185{
186 struct fib6_node *fn;
187
188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 if (fn)
190 net->ipv6.rt6_stats->fib_nodes++;
191
192 return fn;
193}
194
195static void node_free_immediate(struct net *net, struct fib6_node *fn)
196{
197 kmem_cache_free(fib6_node_kmem, fn);
198 net->ipv6.rt6_stats->fib_nodes--;
199}
200
201static void node_free_rcu(struct rcu_head *head)
202{
203 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204
205 kmem_cache_free(fib6_node_kmem, fn);
206}
207
208static void node_free(struct net *net, struct fib6_node *fn)
209{
210 call_rcu(&fn->rcu, node_free_rcu);
211 net->ipv6.rt6_stats->fib_nodes--;
212}
213
214static void fib6_free_table(struct fib6_table *table)
215{
216 inetpeer_invalidate_tree(&table->tb6_peers);
217 kfree(table);
218}
219
220static void fib6_link_table(struct net *net, struct fib6_table *tb)
221{
222 unsigned int h;
223
224 /*
225 * Initialize table lock at a single place to give lockdep a key,
226 * tables aren't visible prior to being linked to the list.
227 */
228 spin_lock_init(&tb->tb6_lock);
229 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230
231 /*
232 * No protection necessary, this is the only list mutatation
233 * operation, tables never disappear once they exist.
234 */
235 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236}
237
238#ifdef CONFIG_IPV6_MULTIPLE_TABLES
239
240static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241{
242 struct fib6_table *table;
243
244 table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 if (table) {
246 table->tb6_id = id;
247 rcu_assign_pointer(table->tb6_root.leaf,
248 net->ipv6.fib6_null_entry);
249 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 inet_peer_base_init(&table->tb6_peers);
251 INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 }
253
254 return table;
255}
256
257struct fib6_table *fib6_new_table(struct net *net, u32 id)
258{
259 struct fib6_table *tb;
260
261 if (id == 0)
262 id = RT6_TABLE_MAIN;
263 tb = fib6_get_table(net, id);
264 if (tb)
265 return tb;
266
267 tb = fib6_alloc_table(net, id);
268 if (tb)
269 fib6_link_table(net, tb);
270
271 return tb;
272}
273EXPORT_SYMBOL_GPL(fib6_new_table);
274
275struct fib6_table *fib6_get_table(struct net *net, u32 id)
276{
277 struct fib6_table *tb;
278 struct hlist_head *head;
279 unsigned int h;
280
281 if (id == 0)
282 id = RT6_TABLE_MAIN;
283 h = id & (FIB6_TABLE_HASHSZ - 1);
284 rcu_read_lock();
285 head = &net->ipv6.fib_table_hash[h];
286 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 if (tb->tb6_id == id) {
288 rcu_read_unlock();
289 return tb;
290 }
291 }
292 rcu_read_unlock();
293
294 return NULL;
295}
296EXPORT_SYMBOL_GPL(fib6_get_table);
297
298static void __net_init fib6_tables_init(struct net *net)
299{
300 fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 fib6_link_table(net, net->ipv6.fib6_local_tbl);
302}
303#else
304
305struct fib6_table *fib6_new_table(struct net *net, u32 id)
306{
307 return fib6_get_table(net, id);
308}
309
310struct fib6_table *fib6_get_table(struct net *net, u32 id)
311{
312 return net->ipv6.fib6_main_tbl;
313}
314
315struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 const struct sk_buff *skb,
317 int flags, pol_lookup_t lookup)
318{
319 struct rt6_info *rt;
320
321 rt = pol_lookup_func(lookup,
322 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 if (rt->dst.error == -EAGAIN) {
324 ip6_rt_put_flags(rt, flags);
325 rt = net->ipv6.ip6_null_entry;
326 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 dst_hold(&rt->dst);
328 }
329
330 return &rt->dst;
331}
332
333/* called with rcu lock held; no reference taken on fib6_info */
334int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 struct fib6_result *res, int flags)
336{
337 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 res, flags);
339}
340
341static void __net_init fib6_tables_init(struct net *net)
342{
343 fib6_link_table(net, net->ipv6.fib6_main_tbl);
344}
345
346#endif
347
348unsigned int fib6_tables_seq_read(struct net *net)
349{
350 unsigned int h, fib_seq = 0;
351
352 rcu_read_lock();
353 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 struct fib6_table *tb;
356
357 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 fib_seq += tb->fib_seq;
359 }
360 rcu_read_unlock();
361
362 return fib_seq;
363}
364
365static int call_fib6_entry_notifier(struct notifier_block *nb,
366 enum fib_event_type event_type,
367 struct fib6_info *rt,
368 struct netlink_ext_ack *extack)
369{
370 struct fib6_entry_notifier_info info = {
371 .info.extack = extack,
372 .rt = rt,
373 };
374
375 return call_fib6_notifier(nb, event_type, &info.info);
376}
377
378static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 enum fib_event_type event_type,
380 struct fib6_info *rt,
381 unsigned int nsiblings,
382 struct netlink_ext_ack *extack)
383{
384 struct fib6_entry_notifier_info info = {
385 .info.extack = extack,
386 .rt = rt,
387 .nsiblings = nsiblings,
388 };
389
390 return call_fib6_notifier(nb, event_type, &info.info);
391}
392
393int call_fib6_entry_notifiers(struct net *net,
394 enum fib_event_type event_type,
395 struct fib6_info *rt,
396 struct netlink_ext_ack *extack)
397{
398 struct fib6_entry_notifier_info info = {
399 .info.extack = extack,
400 .rt = rt,
401 };
402
403 rt->fib6_table->fib_seq++;
404 return call_fib6_notifiers(net, event_type, &info.info);
405}
406
407int call_fib6_multipath_entry_notifiers(struct net *net,
408 enum fib_event_type event_type,
409 struct fib6_info *rt,
410 unsigned int nsiblings,
411 struct netlink_ext_ack *extack)
412{
413 struct fib6_entry_notifier_info info = {
414 .info.extack = extack,
415 .rt = rt,
416 .nsiblings = nsiblings,
417 };
418
419 rt->fib6_table->fib_seq++;
420 return call_fib6_notifiers(net, event_type, &info.info);
421}
422
423int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424{
425 struct fib6_entry_notifier_info info = {
426 .rt = rt,
427 .nsiblings = rt->fib6_nsiblings,
428 };
429
430 rt->fib6_table->fib_seq++;
431 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432}
433
434struct fib6_dump_arg {
435 struct net *net;
436 struct notifier_block *nb;
437 struct netlink_ext_ack *extack;
438};
439
440static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441{
442 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 int err;
444
445 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 return 0;
447
448 if (rt->fib6_nsiblings)
449 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 rt,
451 rt->fib6_nsiblings,
452 arg->extack);
453 else
454 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 arg->extack);
456
457 return err;
458}
459
460static int fib6_node_dump(struct fib6_walker *w)
461{
462 int err;
463
464 err = fib6_rt_dump(w->leaf, w->args);
465 w->leaf = NULL;
466 return err;
467}
468
469static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 struct fib6_walker *w)
471{
472 int err;
473
474 w->root = &tb->tb6_root;
475 spin_lock_bh(&tb->tb6_lock);
476 err = fib6_walk(net, w);
477 spin_unlock_bh(&tb->tb6_lock);
478 return err;
479}
480
481/* Called with rcu_read_lock() */
482int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 struct netlink_ext_ack *extack)
484{
485 struct fib6_dump_arg arg;
486 struct fib6_walker *w;
487 unsigned int h;
488 int err = 0;
489
490 w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 if (!w)
492 return -ENOMEM;
493
494 w->func = fib6_node_dump;
495 arg.net = net;
496 arg.nb = nb;
497 arg.extack = extack;
498 w->args = &arg;
499
500 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 struct fib6_table *tb;
503
504 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 err = fib6_table_dump(net, tb, w);
506 if (err)
507 goto out;
508 }
509 }
510
511out:
512 kfree(w);
513
514 /* The tree traversal function should never return a positive value. */
515 return err > 0 ? -EINVAL : err;
516}
517
518static int fib6_dump_node(struct fib6_walker *w)
519{
520 int res;
521 struct fib6_info *rt;
522
523 for_each_fib6_walker_rt(w) {
524 res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 if (res >= 0) {
526 /* Frame is full, suspend walking */
527 w->leaf = rt;
528
529 /* We'll restart from this node, so if some routes were
530 * already dumped, skip them next time.
531 */
532 w->skip_in_node += res;
533
534 return 1;
535 }
536 w->skip_in_node = 0;
537
538 /* Multipath routes are dumped in one route with the
539 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 * last sibling of this route (no need to dump the
541 * sibling routes again)
542 */
543 if (rt->fib6_nsiblings)
544 rt = list_last_entry(&rt->fib6_siblings,
545 struct fib6_info,
546 fib6_siblings);
547 }
548 w->leaf = NULL;
549 return 0;
550}
551
552static void fib6_dump_end(struct netlink_callback *cb)
553{
554 struct net *net = sock_net(cb->skb->sk);
555 struct fib6_walker *w = (void *)cb->args[2];
556
557 if (w) {
558 if (cb->args[4]) {
559 cb->args[4] = 0;
560 fib6_walker_unlink(net, w);
561 }
562 cb->args[2] = 0;
563 kfree(w);
564 }
565 cb->done = (void *)cb->args[3];
566 cb->args[1] = 3;
567}
568
569static int fib6_dump_done(struct netlink_callback *cb)
570{
571 fib6_dump_end(cb);
572 return cb->done ? cb->done(cb) : 0;
573}
574
575static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 struct netlink_callback *cb)
577{
578 struct net *net = sock_net(skb->sk);
579 struct fib6_walker *w;
580 int res;
581
582 w = (void *)cb->args[2];
583 w->root = &table->tb6_root;
584
585 if (cb->args[4] == 0) {
586 w->count = 0;
587 w->skip = 0;
588 w->skip_in_node = 0;
589
590 spin_lock_bh(&table->tb6_lock);
591 res = fib6_walk(net, w);
592 spin_unlock_bh(&table->tb6_lock);
593 if (res > 0) {
594 cb->args[4] = 1;
595 cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 }
597 } else {
598 int sernum = READ_ONCE(w->root->fn_sernum);
599 if (cb->args[5] != sernum) {
600 /* Begin at the root if the tree changed */
601 cb->args[5] = sernum;
602 w->state = FWS_INIT;
603 w->node = w->root;
604 w->skip = w->count;
605 w->skip_in_node = 0;
606 } else
607 w->skip = 0;
608
609 spin_lock_bh(&table->tb6_lock);
610 res = fib6_walk_continue(w);
611 spin_unlock_bh(&table->tb6_lock);
612 if (res <= 0) {
613 fib6_walker_unlink(net, w);
614 cb->args[4] = 0;
615 }
616 }
617
618 return res;
619}
620
621static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622{
623 struct rt6_rtnl_dump_arg arg = {
624 .filter.dump_exceptions = true,
625 .filter.dump_routes = true,
626 .filter.rtnl_held = true,
627 };
628 const struct nlmsghdr *nlh = cb->nlh;
629 struct net *net = sock_net(skb->sk);
630 unsigned int h, s_h;
631 unsigned int e = 0, s_e;
632 struct fib6_walker *w;
633 struct fib6_table *tb;
634 struct hlist_head *head;
635 int res = 0;
636
637 if (cb->strict_check) {
638 int err;
639
640 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
641 if (err < 0)
642 return err;
643 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
644 struct rtmsg *rtm = nlmsg_data(nlh);
645
646 if (rtm->rtm_flags & RTM_F_PREFIX)
647 arg.filter.flags = RTM_F_PREFIX;
648 }
649
650 w = (void *)cb->args[2];
651 if (!w) {
652 /* New dump:
653 *
654 * 1. allocate and initialize walker.
655 */
656 w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 if (!w)
658 return -ENOMEM;
659 w->func = fib6_dump_node;
660 cb->args[2] = (long)w;
661
662 /* 2. hook callback destructor.
663 */
664 cb->args[3] = (long)cb->done;
665 cb->done = fib6_dump_done;
666
667 }
668
669 arg.skb = skb;
670 arg.cb = cb;
671 arg.net = net;
672 w->args = &arg;
673
674 if (arg.filter.table_id) {
675 tb = fib6_get_table(net, arg.filter.table_id);
676 if (!tb) {
677 if (rtnl_msg_family(cb->nlh) != PF_INET6)
678 goto out;
679
680 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
681 return -ENOENT;
682 }
683
684 if (!cb->args[0]) {
685 res = fib6_dump_table(tb, skb, cb);
686 if (!res)
687 cb->args[0] = 1;
688 }
689 goto out;
690 }
691
692 s_h = cb->args[0];
693 s_e = cb->args[1];
694
695 rcu_read_lock();
696 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
697 e = 0;
698 head = &net->ipv6.fib_table_hash[h];
699 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
700 if (e < s_e)
701 goto next;
702 res = fib6_dump_table(tb, skb, cb);
703 if (res != 0)
704 goto out_unlock;
705next:
706 e++;
707 }
708 }
709out_unlock:
710 rcu_read_unlock();
711 cb->args[1] = e;
712 cb->args[0] = h;
713out:
714 res = res < 0 ? res : skb->len;
715 if (res <= 0)
716 fib6_dump_end(cb);
717 return res;
718}
719
720void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
721{
722 if (!f6i)
723 return;
724
725 if (f6i->fib6_metrics == &dst_default_metrics) {
726 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
727
728 if (!p)
729 return;
730
731 refcount_set(&p->refcnt, 1);
732 f6i->fib6_metrics = p;
733 }
734
735 f6i->fib6_metrics->metrics[metric - 1] = val;
736}
737
738/*
739 * Routing Table
740 *
741 * return the appropriate node for a routing tree "add" operation
742 * by either creating and inserting or by returning an existing
743 * node.
744 */
745
746static struct fib6_node *fib6_add_1(struct net *net,
747 struct fib6_table *table,
748 struct fib6_node *root,
749 struct in6_addr *addr, int plen,
750 int offset, int allow_create,
751 int replace_required,
752 struct netlink_ext_ack *extack)
753{
754 struct fib6_node *fn, *in, *ln;
755 struct fib6_node *pn = NULL;
756 struct rt6key *key;
757 int bit;
758 __be32 dir = 0;
759
760 /* insert node in tree */
761
762 fn = root;
763
764 do {
765 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
766 lockdep_is_held(&table->tb6_lock));
767 key = (struct rt6key *)((u8 *)leaf + offset);
768
769 /*
770 * Prefix match
771 */
772 if (plen < fn->fn_bit ||
773 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
774 if (!allow_create) {
775 if (replace_required) {
776 NL_SET_ERR_MSG(extack,
777 "Can not replace route - no match found");
778 pr_warn("Can't replace route, no match found\n");
779 return ERR_PTR(-ENOENT);
780 }
781 pr_warn("NLM_F_CREATE should be set when creating new route\n");
782 }
783 goto insert_above;
784 }
785
786 /*
787 * Exact match ?
788 */
789
790 if (plen == fn->fn_bit) {
791 /* clean up an intermediate node */
792 if (!(fn->fn_flags & RTN_RTINFO)) {
793 RCU_INIT_POINTER(fn->leaf, NULL);
794 fib6_info_release(leaf);
795 /* remove null_entry in the root node */
796 } else if (fn->fn_flags & RTN_TL_ROOT &&
797 rcu_access_pointer(fn->leaf) ==
798 net->ipv6.fib6_null_entry) {
799 RCU_INIT_POINTER(fn->leaf, NULL);
800 }
801
802 return fn;
803 }
804
805 /*
806 * We have more bits to go
807 */
808
809 /* Try to walk down on tree. */
810 dir = addr_bit_set(addr, fn->fn_bit);
811 pn = fn;
812 fn = dir ?
813 rcu_dereference_protected(fn->right,
814 lockdep_is_held(&table->tb6_lock)) :
815 rcu_dereference_protected(fn->left,
816 lockdep_is_held(&table->tb6_lock));
817 } while (fn);
818
819 if (!allow_create) {
820 /* We should not create new node because
821 * NLM_F_REPLACE was specified without NLM_F_CREATE
822 * I assume it is safe to require NLM_F_CREATE when
823 * REPLACE flag is used! Later we may want to remove the
824 * check for replace_required, because according
825 * to netlink specification, NLM_F_CREATE
826 * MUST be specified if new route is created.
827 * That would keep IPv6 consistent with IPv4
828 */
829 if (replace_required) {
830 NL_SET_ERR_MSG(extack,
831 "Can not replace route - no match found");
832 pr_warn("Can't replace route, no match found\n");
833 return ERR_PTR(-ENOENT);
834 }
835 pr_warn("NLM_F_CREATE should be set when creating new route\n");
836 }
837 /*
838 * We walked to the bottom of tree.
839 * Create new leaf node without children.
840 */
841
842 ln = node_alloc(net);
843
844 if (!ln)
845 return ERR_PTR(-ENOMEM);
846 ln->fn_bit = plen;
847 RCU_INIT_POINTER(ln->parent, pn);
848
849 if (dir)
850 rcu_assign_pointer(pn->right, ln);
851 else
852 rcu_assign_pointer(pn->left, ln);
853
854 return ln;
855
856
857insert_above:
858 /*
859 * split since we don't have a common prefix anymore or
860 * we have a less significant route.
861 * we've to insert an intermediate node on the list
862 * this new node will point to the one we need to create
863 * and the current
864 */
865
866 pn = rcu_dereference_protected(fn->parent,
867 lockdep_is_held(&table->tb6_lock));
868
869 /* find 1st bit in difference between the 2 addrs.
870
871 See comment in __ipv6_addr_diff: bit may be an invalid value,
872 but if it is >= plen, the value is ignored in any case.
873 */
874
875 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
876
877 /*
878 * (intermediate)[in]
879 * / \
880 * (new leaf node)[ln] (old node)[fn]
881 */
882 if (plen > bit) {
883 in = node_alloc(net);
884 ln = node_alloc(net);
885
886 if (!in || !ln) {
887 if (in)
888 node_free_immediate(net, in);
889 if (ln)
890 node_free_immediate(net, ln);
891 return ERR_PTR(-ENOMEM);
892 }
893
894 /*
895 * new intermediate node.
896 * RTN_RTINFO will
897 * be off since that an address that chooses one of
898 * the branches would not match less specific routes
899 * in the other branch
900 */
901
902 in->fn_bit = bit;
903
904 RCU_INIT_POINTER(in->parent, pn);
905 in->leaf = fn->leaf;
906 fib6_info_hold(rcu_dereference_protected(in->leaf,
907 lockdep_is_held(&table->tb6_lock)));
908
909 /* update parent pointer */
910 if (dir)
911 rcu_assign_pointer(pn->right, in);
912 else
913 rcu_assign_pointer(pn->left, in);
914
915 ln->fn_bit = plen;
916
917 RCU_INIT_POINTER(ln->parent, in);
918 rcu_assign_pointer(fn->parent, in);
919
920 if (addr_bit_set(addr, bit)) {
921 rcu_assign_pointer(in->right, ln);
922 rcu_assign_pointer(in->left, fn);
923 } else {
924 rcu_assign_pointer(in->left, ln);
925 rcu_assign_pointer(in->right, fn);
926 }
927 } else { /* plen <= bit */
928
929 /*
930 * (new leaf node)[ln]
931 * / \
932 * (old node)[fn] NULL
933 */
934
935 ln = node_alloc(net);
936
937 if (!ln)
938 return ERR_PTR(-ENOMEM);
939
940 ln->fn_bit = plen;
941
942 RCU_INIT_POINTER(ln->parent, pn);
943
944 if (addr_bit_set(&key->addr, plen))
945 RCU_INIT_POINTER(ln->right, fn);
946 else
947 RCU_INIT_POINTER(ln->left, fn);
948
949 rcu_assign_pointer(fn->parent, ln);
950
951 if (dir)
952 rcu_assign_pointer(pn->right, ln);
953 else
954 rcu_assign_pointer(pn->left, ln);
955 }
956 return ln;
957}
958
959static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
960 const struct fib6_info *match,
961 const struct fib6_table *table)
962{
963 int cpu;
964
965 if (!fib6_nh->rt6i_pcpu)
966 return;
967
968 /* release the reference to this fib entry from
969 * all of its cached pcpu routes
970 */
971 for_each_possible_cpu(cpu) {
972 struct rt6_info **ppcpu_rt;
973 struct rt6_info *pcpu_rt;
974
975 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
976 pcpu_rt = *ppcpu_rt;
977
978 /* only dropping the 'from' reference if the cached route
979 * is using 'match'. The cached pcpu_rt->from only changes
980 * from a fib6_info to NULL (ip6_dst_destroy); it can never
981 * change from one fib6_info reference to another
982 */
983 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
984 struct fib6_info *from;
985
986 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
987 fib6_info_release(from);
988 }
989 }
990}
991
992struct fib6_nh_pcpu_arg {
993 struct fib6_info *from;
994 const struct fib6_table *table;
995};
996
997static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
998{
999 struct fib6_nh_pcpu_arg *arg = _arg;
1000
1001 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
1002 return 0;
1003}
1004
1005static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1006 const struct fib6_table *table)
1007{
1008 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1009 * while we are cleaning them here.
1010 */
1011 f6i->fib6_destroying = 1;
1012 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1013
1014 if (f6i->nh) {
1015 struct fib6_nh_pcpu_arg arg = {
1016 .from = f6i,
1017 .table = table
1018 };
1019
1020 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1021 &arg);
1022 } else {
1023 struct fib6_nh *fib6_nh;
1024
1025 fib6_nh = f6i->fib6_nh;
1026 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1027 }
1028}
1029
1030static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1031 struct net *net)
1032{
1033 struct fib6_table *table = rt->fib6_table;
1034
1035 /* Flush all cached dst in exception table */
1036 rt6_flush_exceptions(rt);
1037 fib6_drop_pcpu_from(rt, table);
1038
1039 if (rt->nh && !list_empty(&rt->nh_list))
1040 list_del_init(&rt->nh_list);
1041
1042 if (refcount_read(&rt->fib6_ref) != 1) {
1043 /* This route is used as dummy address holder in some split
1044 * nodes. It is not leaked, but it still holds other resources,
1045 * which must be released in time. So, scan ascendant nodes
1046 * and replace dummy references to this route with references
1047 * to still alive ones.
1048 */
1049 while (fn) {
1050 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1051 lockdep_is_held(&table->tb6_lock));
1052 struct fib6_info *new_leaf;
1053 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1054 new_leaf = fib6_find_prefix(net, table, fn);
1055 fib6_info_hold(new_leaf);
1056
1057 rcu_assign_pointer(fn->leaf, new_leaf);
1058 fib6_info_release(rt);
1059 }
1060 fn = rcu_dereference_protected(fn->parent,
1061 lockdep_is_held(&table->tb6_lock));
1062 }
1063 }
1064
1065 fib6_clean_expires(rt);
1066 fib6_remove_gc_list(rt);
1067}
1068
1069/*
1070 * Insert routing information in a node.
1071 */
1072
1073static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1074 struct nl_info *info,
1075 struct netlink_ext_ack *extack)
1076{
1077 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1078 lockdep_is_held(&rt->fib6_table->tb6_lock));
1079 struct fib6_info *iter = NULL;
1080 struct fib6_info __rcu **ins;
1081 struct fib6_info __rcu **fallback_ins = NULL;
1082 int replace = (info->nlh &&
1083 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1084 int add = (!info->nlh ||
1085 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1086 int found = 0;
1087 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1088 bool notify_sibling_rt = false;
1089 u16 nlflags = NLM_F_EXCL;
1090 int err;
1091
1092 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1093 nlflags |= NLM_F_APPEND;
1094
1095 ins = &fn->leaf;
1096
1097 for (iter = leaf; iter;
1098 iter = rcu_dereference_protected(iter->fib6_next,
1099 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1100 /*
1101 * Search for duplicates
1102 */
1103
1104 if (iter->fib6_metric == rt->fib6_metric) {
1105 /*
1106 * Same priority level
1107 */
1108 if (info->nlh &&
1109 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1110 return -EEXIST;
1111
1112 nlflags &= ~NLM_F_EXCL;
1113 if (replace) {
1114 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1115 found++;
1116 break;
1117 }
1118 fallback_ins = fallback_ins ?: ins;
1119 goto next_iter;
1120 }
1121
1122 if (rt6_duplicate_nexthop(iter, rt)) {
1123 if (rt->fib6_nsiblings)
1124 rt->fib6_nsiblings = 0;
1125 if (!(iter->fib6_flags & RTF_EXPIRES))
1126 return -EEXIST;
1127 if (!(rt->fib6_flags & RTF_EXPIRES)) {
1128 fib6_clean_expires(iter);
1129 fib6_remove_gc_list(iter);
1130 } else {
1131 fib6_set_expires(iter, rt->expires);
1132 fib6_add_gc_list(iter);
1133 }
1134
1135 if (rt->fib6_pmtu)
1136 fib6_metric_set(iter, RTAX_MTU,
1137 rt->fib6_pmtu);
1138 return -EEXIST;
1139 }
1140 /* If we have the same destination and the same metric,
1141 * but not the same gateway, then the route we try to
1142 * add is sibling to this route, increment our counter
1143 * of siblings, and later we will add our route to the
1144 * list.
1145 * Only static routes (which don't have flag
1146 * RTF_EXPIRES) are used for ECMPv6.
1147 *
1148 * To avoid long list, we only had siblings if the
1149 * route have a gateway.
1150 */
1151 if (rt_can_ecmp &&
1152 rt6_qualify_for_ecmp(iter))
1153 rt->fib6_nsiblings++;
1154 }
1155
1156 if (iter->fib6_metric > rt->fib6_metric)
1157 break;
1158
1159next_iter:
1160 ins = &iter->fib6_next;
1161 }
1162
1163 if (fallback_ins && !found) {
1164 /* No matching route with same ecmp-able-ness found, replace
1165 * first matching route
1166 */
1167 ins = fallback_ins;
1168 iter = rcu_dereference_protected(*ins,
1169 lockdep_is_held(&rt->fib6_table->tb6_lock));
1170 found++;
1171 }
1172
1173 /* Reset round-robin state, if necessary */
1174 if (ins == &fn->leaf)
1175 fn->rr_ptr = NULL;
1176
1177 /* Link this route to others same route. */
1178 if (rt->fib6_nsiblings) {
1179 unsigned int fib6_nsiblings;
1180 struct fib6_info *sibling, *temp_sibling;
1181
1182 /* Find the first route that have the same metric */
1183 sibling = leaf;
1184 notify_sibling_rt = true;
1185 while (sibling) {
1186 if (sibling->fib6_metric == rt->fib6_metric &&
1187 rt6_qualify_for_ecmp(sibling)) {
1188 list_add_tail(&rt->fib6_siblings,
1189 &sibling->fib6_siblings);
1190 break;
1191 }
1192 sibling = rcu_dereference_protected(sibling->fib6_next,
1193 lockdep_is_held(&rt->fib6_table->tb6_lock));
1194 notify_sibling_rt = false;
1195 }
1196 /* For each sibling in the list, increment the counter of
1197 * siblings. BUG() if counters does not match, list of siblings
1198 * is broken!
1199 */
1200 fib6_nsiblings = 0;
1201 list_for_each_entry_safe(sibling, temp_sibling,
1202 &rt->fib6_siblings, fib6_siblings) {
1203 sibling->fib6_nsiblings++;
1204 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1205 fib6_nsiblings++;
1206 }
1207 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1208 rt6_multipath_rebalance(temp_sibling);
1209 }
1210
1211 /*
1212 * insert node
1213 */
1214 if (!replace) {
1215 if (!add)
1216 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1217
1218add:
1219 nlflags |= NLM_F_CREATE;
1220
1221 /* The route should only be notified if it is the first
1222 * route in the node or if it is added as a sibling
1223 * route to the first route in the node.
1224 */
1225 if (!info->skip_notify_kernel &&
1226 (notify_sibling_rt || ins == &fn->leaf)) {
1227 enum fib_event_type fib_event;
1228
1229 if (notify_sibling_rt)
1230 fib_event = FIB_EVENT_ENTRY_APPEND;
1231 else
1232 fib_event = FIB_EVENT_ENTRY_REPLACE;
1233 err = call_fib6_entry_notifiers(info->nl_net,
1234 fib_event, rt,
1235 extack);
1236 if (err) {
1237 struct fib6_info *sibling, *next_sibling;
1238
1239 /* If the route has siblings, then it first
1240 * needs to be unlinked from them.
1241 */
1242 if (!rt->fib6_nsiblings)
1243 return err;
1244
1245 list_for_each_entry_safe(sibling, next_sibling,
1246 &rt->fib6_siblings,
1247 fib6_siblings)
1248 sibling->fib6_nsiblings--;
1249 rt->fib6_nsiblings = 0;
1250 list_del_init(&rt->fib6_siblings);
1251 rt6_multipath_rebalance(next_sibling);
1252 return err;
1253 }
1254 }
1255
1256 rcu_assign_pointer(rt->fib6_next, iter);
1257 fib6_info_hold(rt);
1258 rcu_assign_pointer(rt->fib6_node, fn);
1259 rcu_assign_pointer(*ins, rt);
1260 if (!info->skip_notify)
1261 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1262 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1263
1264 if (!(fn->fn_flags & RTN_RTINFO)) {
1265 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1266 fn->fn_flags |= RTN_RTINFO;
1267 }
1268
1269 } else {
1270 int nsiblings;
1271
1272 if (!found) {
1273 if (add)
1274 goto add;
1275 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1276 return -ENOENT;
1277 }
1278
1279 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1280 err = call_fib6_entry_notifiers(info->nl_net,
1281 FIB_EVENT_ENTRY_REPLACE,
1282 rt, extack);
1283 if (err)
1284 return err;
1285 }
1286
1287 fib6_info_hold(rt);
1288 rcu_assign_pointer(rt->fib6_node, fn);
1289 rt->fib6_next = iter->fib6_next;
1290 rcu_assign_pointer(*ins, rt);
1291 if (!info->skip_notify)
1292 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1293 if (!(fn->fn_flags & RTN_RTINFO)) {
1294 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1295 fn->fn_flags |= RTN_RTINFO;
1296 }
1297 nsiblings = iter->fib6_nsiblings;
1298 iter->fib6_node = NULL;
1299 fib6_purge_rt(iter, fn, info->nl_net);
1300 if (rcu_access_pointer(fn->rr_ptr) == iter)
1301 fn->rr_ptr = NULL;
1302 fib6_info_release(iter);
1303
1304 if (nsiblings) {
1305 /* Replacing an ECMP route, remove all siblings */
1306 ins = &rt->fib6_next;
1307 iter = rcu_dereference_protected(*ins,
1308 lockdep_is_held(&rt->fib6_table->tb6_lock));
1309 while (iter) {
1310 if (iter->fib6_metric > rt->fib6_metric)
1311 break;
1312 if (rt6_qualify_for_ecmp(iter)) {
1313 *ins = iter->fib6_next;
1314 iter->fib6_node = NULL;
1315 fib6_purge_rt(iter, fn, info->nl_net);
1316 if (rcu_access_pointer(fn->rr_ptr) == iter)
1317 fn->rr_ptr = NULL;
1318 fib6_info_release(iter);
1319 nsiblings--;
1320 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1321 } else {
1322 ins = &iter->fib6_next;
1323 }
1324 iter = rcu_dereference_protected(*ins,
1325 lockdep_is_held(&rt->fib6_table->tb6_lock));
1326 }
1327 WARN_ON(nsiblings != 0);
1328 }
1329 }
1330
1331 return 0;
1332}
1333
1334static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1335{
1336 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1337 (rt->fib6_flags & RTF_EXPIRES))
1338 mod_timer(&net->ipv6.ip6_fib_timer,
1339 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1340}
1341
1342void fib6_force_start_gc(struct net *net)
1343{
1344 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1345 mod_timer(&net->ipv6.ip6_fib_timer,
1346 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1347}
1348
1349static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1350 int sernum)
1351{
1352 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1353 lockdep_is_held(&rt->fib6_table->tb6_lock));
1354
1355 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1356 smp_wmb();
1357 while (fn) {
1358 WRITE_ONCE(fn->fn_sernum, sernum);
1359 fn = rcu_dereference_protected(fn->parent,
1360 lockdep_is_held(&rt->fib6_table->tb6_lock));
1361 }
1362}
1363
1364void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1365{
1366 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1367}
1368
1369/* allow ipv4 to update sernum via ipv6_stub */
1370void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1371{
1372 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1373 fib6_update_sernum_upto_root(net, f6i);
1374 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1375}
1376
1377/*
1378 * Add routing information to the routing tree.
1379 * <destination addr>/<source addr>
1380 * with source addr info in sub-trees
1381 * Need to own table->tb6_lock
1382 */
1383
1384int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1385 struct nl_info *info, struct netlink_ext_ack *extack)
1386{
1387 struct fib6_table *table = rt->fib6_table;
1388 struct fib6_node *fn;
1389#ifdef CONFIG_IPV6_SUBTREES
1390 struct fib6_node *pn = NULL;
1391#endif
1392 int err = -ENOMEM;
1393 int allow_create = 1;
1394 int replace_required = 0;
1395
1396 if (info->nlh) {
1397 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1398 allow_create = 0;
1399 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1400 replace_required = 1;
1401 }
1402 if (!allow_create && !replace_required)
1403 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1404
1405 fn = fib6_add_1(info->nl_net, table, root,
1406 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1407 offsetof(struct fib6_info, fib6_dst), allow_create,
1408 replace_required, extack);
1409 if (IS_ERR(fn)) {
1410 err = PTR_ERR(fn);
1411 fn = NULL;
1412 goto out;
1413 }
1414
1415#ifdef CONFIG_IPV6_SUBTREES
1416 pn = fn;
1417
1418 if (rt->fib6_src.plen) {
1419 struct fib6_node *sn;
1420
1421 if (!rcu_access_pointer(fn->subtree)) {
1422 struct fib6_node *sfn;
1423
1424 /*
1425 * Create subtree.
1426 *
1427 * fn[main tree]
1428 * |
1429 * sfn[subtree root]
1430 * \
1431 * sn[new leaf node]
1432 */
1433
1434 /* Create subtree root node */
1435 sfn = node_alloc(info->nl_net);
1436 if (!sfn)
1437 goto failure;
1438
1439 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1440 rcu_assign_pointer(sfn->leaf,
1441 info->nl_net->ipv6.fib6_null_entry);
1442 sfn->fn_flags = RTN_ROOT;
1443
1444 /* Now add the first leaf node to new subtree */
1445
1446 sn = fib6_add_1(info->nl_net, table, sfn,
1447 &rt->fib6_src.addr, rt->fib6_src.plen,
1448 offsetof(struct fib6_info, fib6_src),
1449 allow_create, replace_required, extack);
1450
1451 if (IS_ERR(sn)) {
1452 /* If it is failed, discard just allocated
1453 root, and then (in failure) stale node
1454 in main tree.
1455 */
1456 node_free_immediate(info->nl_net, sfn);
1457 err = PTR_ERR(sn);
1458 goto failure;
1459 }
1460
1461 /* Now link new subtree to main tree */
1462 rcu_assign_pointer(sfn->parent, fn);
1463 rcu_assign_pointer(fn->subtree, sfn);
1464 } else {
1465 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1466 &rt->fib6_src.addr, rt->fib6_src.plen,
1467 offsetof(struct fib6_info, fib6_src),
1468 allow_create, replace_required, extack);
1469
1470 if (IS_ERR(sn)) {
1471 err = PTR_ERR(sn);
1472 goto failure;
1473 }
1474 }
1475
1476 if (!rcu_access_pointer(fn->leaf)) {
1477 if (fn->fn_flags & RTN_TL_ROOT) {
1478 /* put back null_entry for root node */
1479 rcu_assign_pointer(fn->leaf,
1480 info->nl_net->ipv6.fib6_null_entry);
1481 } else {
1482 fib6_info_hold(rt);
1483 rcu_assign_pointer(fn->leaf, rt);
1484 }
1485 }
1486 fn = sn;
1487 }
1488#endif
1489
1490 err = fib6_add_rt2node(fn, rt, info, extack);
1491 if (!err) {
1492 if (rt->nh)
1493 list_add(&rt->nh_list, &rt->nh->f6i_list);
1494 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1495
1496 if (rt->fib6_flags & RTF_EXPIRES)
1497 fib6_add_gc_list(rt);
1498
1499 fib6_start_gc(info->nl_net, rt);
1500 }
1501
1502out:
1503 if (err) {
1504#ifdef CONFIG_IPV6_SUBTREES
1505 /*
1506 * If fib6_add_1 has cleared the old leaf pointer in the
1507 * super-tree leaf node we have to find a new one for it.
1508 */
1509 if (pn != fn) {
1510 struct fib6_info *pn_leaf =
1511 rcu_dereference_protected(pn->leaf,
1512 lockdep_is_held(&table->tb6_lock));
1513 if (pn_leaf == rt) {
1514 pn_leaf = NULL;
1515 RCU_INIT_POINTER(pn->leaf, NULL);
1516 fib6_info_release(rt);
1517 }
1518 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1519 pn_leaf = fib6_find_prefix(info->nl_net, table,
1520 pn);
1521 if (!pn_leaf)
1522 pn_leaf =
1523 info->nl_net->ipv6.fib6_null_entry;
1524 fib6_info_hold(pn_leaf);
1525 rcu_assign_pointer(pn->leaf, pn_leaf);
1526 }
1527 }
1528#endif
1529 goto failure;
1530 } else if (fib6_requires_src(rt)) {
1531 fib6_routes_require_src_inc(info->nl_net);
1532 }
1533 return err;
1534
1535failure:
1536 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1537 * 1. fn is an intermediate node and we failed to add the new
1538 * route to it in both subtree creation failure and fib6_add_rt2node()
1539 * failure case.
1540 * 2. fn is the root node in the table and we fail to add the first
1541 * default route to it.
1542 */
1543 if (fn &&
1544 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1545 (fn->fn_flags & RTN_TL_ROOT &&
1546 !rcu_access_pointer(fn->leaf))))
1547 fib6_repair_tree(info->nl_net, table, fn);
1548 return err;
1549}
1550
1551/*
1552 * Routing tree lookup
1553 *
1554 */
1555
1556struct lookup_args {
1557 int offset; /* key offset on fib6_info */
1558 const struct in6_addr *addr; /* search key */
1559};
1560
1561static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1562 struct lookup_args *args)
1563{
1564 struct fib6_node *fn;
1565 __be32 dir;
1566
1567 if (unlikely(args->offset == 0))
1568 return NULL;
1569
1570 /*
1571 * Descend on a tree
1572 */
1573
1574 fn = root;
1575
1576 for (;;) {
1577 struct fib6_node *next;
1578
1579 dir = addr_bit_set(args->addr, fn->fn_bit);
1580
1581 next = dir ? rcu_dereference(fn->right) :
1582 rcu_dereference(fn->left);
1583
1584 if (next) {
1585 fn = next;
1586 continue;
1587 }
1588 break;
1589 }
1590
1591 while (fn) {
1592 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1593
1594 if (subtree || fn->fn_flags & RTN_RTINFO) {
1595 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1596 struct rt6key *key;
1597
1598 if (!leaf)
1599 goto backtrack;
1600
1601 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1602
1603 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1604#ifdef CONFIG_IPV6_SUBTREES
1605 if (subtree) {
1606 struct fib6_node *sfn;
1607 sfn = fib6_node_lookup_1(subtree,
1608 args + 1);
1609 if (!sfn)
1610 goto backtrack;
1611 fn = sfn;
1612 }
1613#endif
1614 if (fn->fn_flags & RTN_RTINFO)
1615 return fn;
1616 }
1617 }
1618backtrack:
1619 if (fn->fn_flags & RTN_ROOT)
1620 break;
1621
1622 fn = rcu_dereference(fn->parent);
1623 }
1624
1625 return NULL;
1626}
1627
1628/* called with rcu_read_lock() held
1629 */
1630struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1631 const struct in6_addr *daddr,
1632 const struct in6_addr *saddr)
1633{
1634 struct fib6_node *fn;
1635 struct lookup_args args[] = {
1636 {
1637 .offset = offsetof(struct fib6_info, fib6_dst),
1638 .addr = daddr,
1639 },
1640#ifdef CONFIG_IPV6_SUBTREES
1641 {
1642 .offset = offsetof(struct fib6_info, fib6_src),
1643 .addr = saddr,
1644 },
1645#endif
1646 {
1647 .offset = 0, /* sentinel */
1648 }
1649 };
1650
1651 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1652 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1653 fn = root;
1654
1655 return fn;
1656}
1657
1658/*
1659 * Get node with specified destination prefix (and source prefix,
1660 * if subtrees are used)
1661 * exact_match == true means we try to find fn with exact match of
1662 * the passed in prefix addr
1663 * exact_match == false means we try to find fn with longest prefix
1664 * match of the passed in prefix addr. This is useful for finding fn
1665 * for cached route as it will be stored in the exception table under
1666 * the node with longest prefix length.
1667 */
1668
1669
1670static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1671 const struct in6_addr *addr,
1672 int plen, int offset,
1673 bool exact_match)
1674{
1675 struct fib6_node *fn, *prev = NULL;
1676
1677 for (fn = root; fn ; ) {
1678 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1679 struct rt6key *key;
1680
1681 /* This node is being deleted */
1682 if (!leaf) {
1683 if (plen <= fn->fn_bit)
1684 goto out;
1685 else
1686 goto next;
1687 }
1688
1689 key = (struct rt6key *)((u8 *)leaf + offset);
1690
1691 /*
1692 * Prefix match
1693 */
1694 if (plen < fn->fn_bit ||
1695 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1696 goto out;
1697
1698 if (plen == fn->fn_bit)
1699 return fn;
1700
1701 if (fn->fn_flags & RTN_RTINFO)
1702 prev = fn;
1703
1704next:
1705 /*
1706 * We have more bits to go
1707 */
1708 if (addr_bit_set(addr, fn->fn_bit))
1709 fn = rcu_dereference(fn->right);
1710 else
1711 fn = rcu_dereference(fn->left);
1712 }
1713out:
1714 if (exact_match)
1715 return NULL;
1716 else
1717 return prev;
1718}
1719
1720struct fib6_node *fib6_locate(struct fib6_node *root,
1721 const struct in6_addr *daddr, int dst_len,
1722 const struct in6_addr *saddr, int src_len,
1723 bool exact_match)
1724{
1725 struct fib6_node *fn;
1726
1727 fn = fib6_locate_1(root, daddr, dst_len,
1728 offsetof(struct fib6_info, fib6_dst),
1729 exact_match);
1730
1731#ifdef CONFIG_IPV6_SUBTREES
1732 if (src_len) {
1733 WARN_ON(saddr == NULL);
1734 if (fn) {
1735 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1736
1737 if (subtree) {
1738 fn = fib6_locate_1(subtree, saddr, src_len,
1739 offsetof(struct fib6_info, fib6_src),
1740 exact_match);
1741 }
1742 }
1743 }
1744#endif
1745
1746 if (fn && fn->fn_flags & RTN_RTINFO)
1747 return fn;
1748
1749 return NULL;
1750}
1751
1752
1753/*
1754 * Deletion
1755 *
1756 */
1757
1758static struct fib6_info *fib6_find_prefix(struct net *net,
1759 struct fib6_table *table,
1760 struct fib6_node *fn)
1761{
1762 struct fib6_node *child_left, *child_right;
1763
1764 if (fn->fn_flags & RTN_ROOT)
1765 return net->ipv6.fib6_null_entry;
1766
1767 while (fn) {
1768 child_left = rcu_dereference_protected(fn->left,
1769 lockdep_is_held(&table->tb6_lock));
1770 child_right = rcu_dereference_protected(fn->right,
1771 lockdep_is_held(&table->tb6_lock));
1772 if (child_left)
1773 return rcu_dereference_protected(child_left->leaf,
1774 lockdep_is_held(&table->tb6_lock));
1775 if (child_right)
1776 return rcu_dereference_protected(child_right->leaf,
1777 lockdep_is_held(&table->tb6_lock));
1778
1779 fn = FIB6_SUBTREE(fn);
1780 }
1781 return NULL;
1782}
1783
1784/*
1785 * Called to trim the tree of intermediate nodes when possible. "fn"
1786 * is the node we want to try and remove.
1787 * Need to own table->tb6_lock
1788 */
1789
1790static struct fib6_node *fib6_repair_tree(struct net *net,
1791 struct fib6_table *table,
1792 struct fib6_node *fn)
1793{
1794 int children;
1795 int nstate;
1796 struct fib6_node *child;
1797 struct fib6_walker *w;
1798 int iter = 0;
1799
1800 /* Set fn->leaf to null_entry for root node. */
1801 if (fn->fn_flags & RTN_TL_ROOT) {
1802 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1803 return fn;
1804 }
1805
1806 for (;;) {
1807 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1808 lockdep_is_held(&table->tb6_lock));
1809 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1810 lockdep_is_held(&table->tb6_lock));
1811 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1812 lockdep_is_held(&table->tb6_lock));
1813 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1814 lockdep_is_held(&table->tb6_lock));
1815 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1816 lockdep_is_held(&table->tb6_lock));
1817 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1818 lockdep_is_held(&table->tb6_lock));
1819 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1820 lockdep_is_held(&table->tb6_lock));
1821 struct fib6_info *new_fn_leaf;
1822
1823 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1824 iter++;
1825
1826 WARN_ON(fn->fn_flags & RTN_RTINFO);
1827 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1828 WARN_ON(fn_leaf);
1829
1830 children = 0;
1831 child = NULL;
1832 if (fn_r) {
1833 child = fn_r;
1834 children |= 1;
1835 }
1836 if (fn_l) {
1837 child = fn_l;
1838 children |= 2;
1839 }
1840
1841 if (children == 3 || FIB6_SUBTREE(fn)
1842#ifdef CONFIG_IPV6_SUBTREES
1843 /* Subtree root (i.e. fn) may have one child */
1844 || (children && fn->fn_flags & RTN_ROOT)
1845#endif
1846 ) {
1847 new_fn_leaf = fib6_find_prefix(net, table, fn);
1848#if RT6_DEBUG >= 2
1849 if (!new_fn_leaf) {
1850 WARN_ON(!new_fn_leaf);
1851 new_fn_leaf = net->ipv6.fib6_null_entry;
1852 }
1853#endif
1854 fib6_info_hold(new_fn_leaf);
1855 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1856 return pn;
1857 }
1858
1859#ifdef CONFIG_IPV6_SUBTREES
1860 if (FIB6_SUBTREE(pn) == fn) {
1861 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1862 RCU_INIT_POINTER(pn->subtree, NULL);
1863 nstate = FWS_L;
1864 } else {
1865 WARN_ON(fn->fn_flags & RTN_ROOT);
1866#endif
1867 if (pn_r == fn)
1868 rcu_assign_pointer(pn->right, child);
1869 else if (pn_l == fn)
1870 rcu_assign_pointer(pn->left, child);
1871#if RT6_DEBUG >= 2
1872 else
1873 WARN_ON(1);
1874#endif
1875 if (child)
1876 rcu_assign_pointer(child->parent, pn);
1877 nstate = FWS_R;
1878#ifdef CONFIG_IPV6_SUBTREES
1879 }
1880#endif
1881
1882 read_lock(&net->ipv6.fib6_walker_lock);
1883 FOR_WALKERS(net, w) {
1884 if (!child) {
1885 if (w->node == fn) {
1886 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1887 w, w->state, nstate);
1888 w->node = pn;
1889 w->state = nstate;
1890 }
1891 } else {
1892 if (w->node == fn) {
1893 w->node = child;
1894 if (children&2) {
1895 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1896 w, w->state);
1897 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1898 } else {
1899 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1900 w, w->state);
1901 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1902 }
1903 }
1904 }
1905 }
1906 read_unlock(&net->ipv6.fib6_walker_lock);
1907
1908 node_free(net, fn);
1909 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1910 return pn;
1911
1912 RCU_INIT_POINTER(pn->leaf, NULL);
1913 fib6_info_release(pn_leaf);
1914 fn = pn;
1915 }
1916}
1917
1918static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1919 struct fib6_info __rcu **rtp, struct nl_info *info)
1920{
1921 struct fib6_info *leaf, *replace_rt = NULL;
1922 struct fib6_walker *w;
1923 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1924 lockdep_is_held(&table->tb6_lock));
1925 struct net *net = info->nl_net;
1926 bool notify_del = false;
1927
1928 /* If the deleted route is the first in the node and it is not part of
1929 * a multipath route, then we need to replace it with the next route
1930 * in the node, if exists.
1931 */
1932 leaf = rcu_dereference_protected(fn->leaf,
1933 lockdep_is_held(&table->tb6_lock));
1934 if (leaf == rt && !rt->fib6_nsiblings) {
1935 if (rcu_access_pointer(rt->fib6_next))
1936 replace_rt = rcu_dereference_protected(rt->fib6_next,
1937 lockdep_is_held(&table->tb6_lock));
1938 else
1939 notify_del = true;
1940 }
1941
1942 /* Unlink it */
1943 *rtp = rt->fib6_next;
1944 rt->fib6_node = NULL;
1945 net->ipv6.rt6_stats->fib_rt_entries--;
1946 net->ipv6.rt6_stats->fib_discarded_routes++;
1947
1948 /* Reset round-robin state, if necessary */
1949 if (rcu_access_pointer(fn->rr_ptr) == rt)
1950 fn->rr_ptr = NULL;
1951
1952 /* Remove this entry from other siblings */
1953 if (rt->fib6_nsiblings) {
1954 struct fib6_info *sibling, *next_sibling;
1955
1956 /* The route is deleted from a multipath route. If this
1957 * multipath route is the first route in the node, then we need
1958 * to emit a delete notification. Otherwise, we need to skip
1959 * the notification.
1960 */
1961 if (rt->fib6_metric == leaf->fib6_metric &&
1962 rt6_qualify_for_ecmp(leaf))
1963 notify_del = true;
1964 list_for_each_entry_safe(sibling, next_sibling,
1965 &rt->fib6_siblings, fib6_siblings)
1966 sibling->fib6_nsiblings--;
1967 rt->fib6_nsiblings = 0;
1968 list_del_init(&rt->fib6_siblings);
1969 rt6_multipath_rebalance(next_sibling);
1970 }
1971
1972 /* Adjust walkers */
1973 read_lock(&net->ipv6.fib6_walker_lock);
1974 FOR_WALKERS(net, w) {
1975 if (w->state == FWS_C && w->leaf == rt) {
1976 pr_debug("walker %p adjusted by delroute\n", w);
1977 w->leaf = rcu_dereference_protected(rt->fib6_next,
1978 lockdep_is_held(&table->tb6_lock));
1979 if (!w->leaf)
1980 w->state = FWS_U;
1981 }
1982 }
1983 read_unlock(&net->ipv6.fib6_walker_lock);
1984
1985 /* If it was last route, call fib6_repair_tree() to:
1986 * 1. For root node, put back null_entry as how the table was created.
1987 * 2. For other nodes, expunge its radix tree node.
1988 */
1989 if (!rcu_access_pointer(fn->leaf)) {
1990 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1991 fn->fn_flags &= ~RTN_RTINFO;
1992 net->ipv6.rt6_stats->fib_route_nodes--;
1993 }
1994 fn = fib6_repair_tree(net, table, fn);
1995 }
1996
1997 fib6_purge_rt(rt, fn, net);
1998
1999 if (!info->skip_notify_kernel) {
2000 if (notify_del)
2001 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2002 rt, NULL);
2003 else if (replace_rt)
2004 call_fib6_entry_notifiers_replace(net, replace_rt);
2005 }
2006 if (!info->skip_notify)
2007 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2008
2009 fib6_info_release(rt);
2010}
2011
2012/* Need to own table->tb6_lock */
2013int fib6_del(struct fib6_info *rt, struct nl_info *info)
2014{
2015 struct net *net = info->nl_net;
2016 struct fib6_info __rcu **rtp;
2017 struct fib6_info __rcu **rtp_next;
2018 struct fib6_table *table;
2019 struct fib6_node *fn;
2020
2021 if (rt == net->ipv6.fib6_null_entry)
2022 return -ENOENT;
2023
2024 table = rt->fib6_table;
2025 fn = rcu_dereference_protected(rt->fib6_node,
2026 lockdep_is_held(&table->tb6_lock));
2027 if (!fn)
2028 return -ENOENT;
2029
2030 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2031
2032 /*
2033 * Walk the leaf entries looking for ourself
2034 */
2035
2036 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2037 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2038 lockdep_is_held(&table->tb6_lock));
2039 if (rt == cur) {
2040 if (fib6_requires_src(cur))
2041 fib6_routes_require_src_dec(info->nl_net);
2042 fib6_del_route(table, fn, rtp, info);
2043 return 0;
2044 }
2045 rtp_next = &cur->fib6_next;
2046 }
2047 return -ENOENT;
2048}
2049
2050/*
2051 * Tree traversal function.
2052 *
2053 * Certainly, it is not interrupt safe.
2054 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2055 * It means, that we can modify tree during walking
2056 * and use this function for garbage collection, clone pruning,
2057 * cleaning tree when a device goes down etc. etc.
2058 *
2059 * It guarantees that every node will be traversed,
2060 * and that it will be traversed only once.
2061 *
2062 * Callback function w->func may return:
2063 * 0 -> continue walking.
2064 * positive value -> walking is suspended (used by tree dumps,
2065 * and probably by gc, if it will be split to several slices)
2066 * negative value -> terminate walking.
2067 *
2068 * The function itself returns:
2069 * 0 -> walk is complete.
2070 * >0 -> walk is incomplete (i.e. suspended)
2071 * <0 -> walk is terminated by an error.
2072 *
2073 * This function is called with tb6_lock held.
2074 */
2075
2076static int fib6_walk_continue(struct fib6_walker *w)
2077{
2078 struct fib6_node *fn, *pn, *left, *right;
2079
2080 /* w->root should always be table->tb6_root */
2081 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2082
2083 for (;;) {
2084 fn = w->node;
2085 if (!fn)
2086 return 0;
2087
2088 switch (w->state) {
2089#ifdef CONFIG_IPV6_SUBTREES
2090 case FWS_S:
2091 if (FIB6_SUBTREE(fn)) {
2092 w->node = FIB6_SUBTREE(fn);
2093 continue;
2094 }
2095 w->state = FWS_L;
2096 fallthrough;
2097#endif
2098 case FWS_L:
2099 left = rcu_dereference_protected(fn->left, 1);
2100 if (left) {
2101 w->node = left;
2102 w->state = FWS_INIT;
2103 continue;
2104 }
2105 w->state = FWS_R;
2106 fallthrough;
2107 case FWS_R:
2108 right = rcu_dereference_protected(fn->right, 1);
2109 if (right) {
2110 w->node = right;
2111 w->state = FWS_INIT;
2112 continue;
2113 }
2114 w->state = FWS_C;
2115 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2116 fallthrough;
2117 case FWS_C:
2118 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2119 int err;
2120
2121 if (w->skip) {
2122 w->skip--;
2123 goto skip;
2124 }
2125
2126 err = w->func(w);
2127 if (err)
2128 return err;
2129
2130 w->count++;
2131 continue;
2132 }
2133skip:
2134 w->state = FWS_U;
2135 fallthrough;
2136 case FWS_U:
2137 if (fn == w->root)
2138 return 0;
2139 pn = rcu_dereference_protected(fn->parent, 1);
2140 left = rcu_dereference_protected(pn->left, 1);
2141 right = rcu_dereference_protected(pn->right, 1);
2142 w->node = pn;
2143#ifdef CONFIG_IPV6_SUBTREES
2144 if (FIB6_SUBTREE(pn) == fn) {
2145 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2146 w->state = FWS_L;
2147 continue;
2148 }
2149#endif
2150 if (left == fn) {
2151 w->state = FWS_R;
2152 continue;
2153 }
2154 if (right == fn) {
2155 w->state = FWS_C;
2156 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2157 continue;
2158 }
2159#if RT6_DEBUG >= 2
2160 WARN_ON(1);
2161#endif
2162 }
2163 }
2164}
2165
2166static int fib6_walk(struct net *net, struct fib6_walker *w)
2167{
2168 int res;
2169
2170 w->state = FWS_INIT;
2171 w->node = w->root;
2172
2173 fib6_walker_link(net, w);
2174 res = fib6_walk_continue(w);
2175 if (res <= 0)
2176 fib6_walker_unlink(net, w);
2177 return res;
2178}
2179
2180static int fib6_clean_node(struct fib6_walker *w)
2181{
2182 int res;
2183 struct fib6_info *rt;
2184 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2185 struct nl_info info = {
2186 .nl_net = c->net,
2187 .skip_notify = c->skip_notify,
2188 };
2189
2190 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2191 READ_ONCE(w->node->fn_sernum) != c->sernum)
2192 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2193
2194 if (!c->func) {
2195 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2196 w->leaf = NULL;
2197 return 0;
2198 }
2199
2200 for_each_fib6_walker_rt(w) {
2201 res = c->func(rt, c->arg);
2202 if (res == -1) {
2203 w->leaf = rt;
2204 res = fib6_del(rt, &info);
2205 if (res) {
2206#if RT6_DEBUG >= 2
2207 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2208 __func__, rt,
2209 rcu_access_pointer(rt->fib6_node),
2210 res);
2211#endif
2212 continue;
2213 }
2214 return 0;
2215 } else if (res == -2) {
2216 if (WARN_ON(!rt->fib6_nsiblings))
2217 continue;
2218 rt = list_last_entry(&rt->fib6_siblings,
2219 struct fib6_info, fib6_siblings);
2220 continue;
2221 }
2222 WARN_ON(res != 0);
2223 }
2224 w->leaf = rt;
2225 return 0;
2226}
2227
2228/*
2229 * Convenient frontend to tree walker.
2230 *
2231 * func is called on each route.
2232 * It may return -2 -> skip multipath route.
2233 * -1 -> delete this route.
2234 * 0 -> continue walking
2235 */
2236
2237static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2238 int (*func)(struct fib6_info *, void *arg),
2239 int sernum, void *arg, bool skip_notify)
2240{
2241 struct fib6_cleaner c;
2242
2243 c.w.root = root;
2244 c.w.func = fib6_clean_node;
2245 c.w.count = 0;
2246 c.w.skip = 0;
2247 c.w.skip_in_node = 0;
2248 c.func = func;
2249 c.sernum = sernum;
2250 c.arg = arg;
2251 c.net = net;
2252 c.skip_notify = skip_notify;
2253
2254 fib6_walk(net, &c.w);
2255}
2256
2257static void __fib6_clean_all(struct net *net,
2258 int (*func)(struct fib6_info *, void *),
2259 int sernum, void *arg, bool skip_notify)
2260{
2261 struct fib6_table *table;
2262 struct hlist_head *head;
2263 unsigned int h;
2264
2265 rcu_read_lock();
2266 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2267 head = &net->ipv6.fib_table_hash[h];
2268 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2269 spin_lock_bh(&table->tb6_lock);
2270 fib6_clean_tree(net, &table->tb6_root,
2271 func, sernum, arg, skip_notify);
2272 spin_unlock_bh(&table->tb6_lock);
2273 }
2274 }
2275 rcu_read_unlock();
2276}
2277
2278void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2279 void *arg)
2280{
2281 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2282}
2283
2284void fib6_clean_all_skip_notify(struct net *net,
2285 int (*func)(struct fib6_info *, void *),
2286 void *arg)
2287{
2288 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2289}
2290
2291static void fib6_flush_trees(struct net *net)
2292{
2293 int new_sernum = fib6_new_sernum(net);
2294
2295 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2296}
2297
2298/*
2299 * Garbage collection
2300 */
2301
2302static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2303{
2304 unsigned long now = jiffies;
2305
2306 /*
2307 * check addrconf expiration here.
2308 * Routes are expired even if they are in use.
2309 */
2310
2311 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2312 if (time_after(now, rt->expires)) {
2313 pr_debug("expiring %p\n", rt);
2314 return -1;
2315 }
2316 gc_args->more++;
2317 }
2318
2319 /* Also age clones in the exception table.
2320 * Note, that clones are aged out
2321 * only if they are not in use now.
2322 */
2323 rt6_age_exceptions(rt, gc_args, now);
2324
2325 return 0;
2326}
2327
2328static void fib6_gc_table(struct net *net,
2329 struct fib6_table *tb6,
2330 struct fib6_gc_args *gc_args)
2331{
2332 struct fib6_info *rt;
2333 struct hlist_node *n;
2334 struct nl_info info = {
2335 .nl_net = net,
2336 .skip_notify = false,
2337 };
2338
2339 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2340 if (fib6_age(rt, gc_args) == -1)
2341 fib6_del(rt, &info);
2342}
2343
2344static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2345{
2346 struct fib6_table *table;
2347 struct hlist_head *head;
2348 unsigned int h;
2349
2350 rcu_read_lock();
2351 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2352 head = &net->ipv6.fib_table_hash[h];
2353 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2354 spin_lock_bh(&table->tb6_lock);
2355
2356 fib6_gc_table(net, table, gc_args);
2357
2358 spin_unlock_bh(&table->tb6_lock);
2359 }
2360 }
2361 rcu_read_unlock();
2362}
2363
2364void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2365{
2366 struct fib6_gc_args gc_args;
2367 unsigned long now;
2368
2369 if (force) {
2370 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2371 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2372 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2373 return;
2374 }
2375 gc_args.timeout = expires ? (int)expires :
2376 net->ipv6.sysctl.ip6_rt_gc_interval;
2377 gc_args.more = 0;
2378
2379 fib6_gc_all(net, &gc_args);
2380 now = jiffies;
2381 net->ipv6.ip6_rt_last_gc = now;
2382
2383 if (gc_args.more)
2384 mod_timer(&net->ipv6.ip6_fib_timer,
2385 round_jiffies(now
2386 + net->ipv6.sysctl.ip6_rt_gc_interval));
2387 else
2388 del_timer(&net->ipv6.ip6_fib_timer);
2389 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2390}
2391
2392static void fib6_gc_timer_cb(struct timer_list *t)
2393{
2394 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2395
2396 fib6_run_gc(0, arg, true);
2397}
2398
2399static int __net_init fib6_net_init(struct net *net)
2400{
2401 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2402 int err;
2403
2404 err = fib6_notifier_init(net);
2405 if (err)
2406 return err;
2407
2408 /* Default to 3-tuple */
2409 net->ipv6.sysctl.multipath_hash_fields =
2410 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2411
2412 spin_lock_init(&net->ipv6.fib6_gc_lock);
2413 rwlock_init(&net->ipv6.fib6_walker_lock);
2414 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2415 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2416
2417 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2418 if (!net->ipv6.rt6_stats)
2419 goto out_notifier;
2420
2421 /* Avoid false sharing : Use at least a full cache line */
2422 size = max_t(size_t, size, L1_CACHE_BYTES);
2423
2424 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2425 if (!net->ipv6.fib_table_hash)
2426 goto out_rt6_stats;
2427
2428 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2429 GFP_KERNEL);
2430 if (!net->ipv6.fib6_main_tbl)
2431 goto out_fib_table_hash;
2432
2433 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2434 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2435 net->ipv6.fib6_null_entry);
2436 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2437 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2438 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2439 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2440
2441#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2442 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2443 GFP_KERNEL);
2444 if (!net->ipv6.fib6_local_tbl)
2445 goto out_fib6_main_tbl;
2446 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2447 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2448 net->ipv6.fib6_null_entry);
2449 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2450 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2451 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2452 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2453#endif
2454 fib6_tables_init(net);
2455
2456 return 0;
2457
2458#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2459out_fib6_main_tbl:
2460 kfree(net->ipv6.fib6_main_tbl);
2461#endif
2462out_fib_table_hash:
2463 kfree(net->ipv6.fib_table_hash);
2464out_rt6_stats:
2465 kfree(net->ipv6.rt6_stats);
2466out_notifier:
2467 fib6_notifier_exit(net);
2468 return -ENOMEM;
2469}
2470
2471static void fib6_net_exit(struct net *net)
2472{
2473 unsigned int i;
2474
2475 del_timer_sync(&net->ipv6.ip6_fib_timer);
2476
2477 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2478 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2479 struct hlist_node *tmp;
2480 struct fib6_table *tb;
2481
2482 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2483 hlist_del(&tb->tb6_hlist);
2484 fib6_free_table(tb);
2485 }
2486 }
2487
2488 kfree(net->ipv6.fib_table_hash);
2489 kfree(net->ipv6.rt6_stats);
2490 fib6_notifier_exit(net);
2491}
2492
2493static struct pernet_operations fib6_net_ops = {
2494 .init = fib6_net_init,
2495 .exit = fib6_net_exit,
2496};
2497
2498int __init fib6_init(void)
2499{
2500 int ret = -ENOMEM;
2501
2502 fib6_node_kmem = KMEM_CACHE(fib6_node,
2503 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2504 if (!fib6_node_kmem)
2505 goto out;
2506
2507 ret = register_pernet_subsys(&fib6_net_ops);
2508 if (ret)
2509 goto out_kmem_cache_create;
2510
2511 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2512 inet6_dump_fib, 0);
2513 if (ret)
2514 goto out_unregister_subsys;
2515
2516 __fib6_flush_trees = fib6_flush_trees;
2517out:
2518 return ret;
2519
2520out_unregister_subsys:
2521 unregister_pernet_subsys(&fib6_net_ops);
2522out_kmem_cache_create:
2523 kmem_cache_destroy(fib6_node_kmem);
2524 goto out;
2525}
2526
2527void fib6_gc_cleanup(void)
2528{
2529 unregister_pernet_subsys(&fib6_net_ops);
2530 kmem_cache_destroy(fib6_node_kmem);
2531}
2532
2533#ifdef CONFIG_PROC_FS
2534static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2535{
2536 struct fib6_info *rt = v;
2537 struct ipv6_route_iter *iter = seq->private;
2538 struct fib6_nh *fib6_nh = rt->fib6_nh;
2539 unsigned int flags = rt->fib6_flags;
2540 const struct net_device *dev;
2541
2542 if (rt->nh)
2543 fib6_nh = nexthop_fib6_nh(rt->nh);
2544
2545 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2546
2547#ifdef CONFIG_IPV6_SUBTREES
2548 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2549#else
2550 seq_puts(seq, "00000000000000000000000000000000 00 ");
2551#endif
2552 if (fib6_nh->fib_nh_gw_family) {
2553 flags |= RTF_GATEWAY;
2554 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2555 } else {
2556 seq_puts(seq, "00000000000000000000000000000000");
2557 }
2558
2559 dev = fib6_nh->fib_nh_dev;
2560 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2561 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2562 flags, dev ? dev->name : "");
2563 iter->w.leaf = NULL;
2564 return 0;
2565}
2566
2567static int ipv6_route_yield(struct fib6_walker *w)
2568{
2569 struct ipv6_route_iter *iter = w->args;
2570
2571 if (!iter->skip)
2572 return 1;
2573
2574 do {
2575 iter->w.leaf = rcu_dereference_protected(
2576 iter->w.leaf->fib6_next,
2577 lockdep_is_held(&iter->tbl->tb6_lock));
2578 iter->skip--;
2579 if (!iter->skip && iter->w.leaf)
2580 return 1;
2581 } while (iter->w.leaf);
2582
2583 return 0;
2584}
2585
2586static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2587 struct net *net)
2588{
2589 memset(&iter->w, 0, sizeof(iter->w));
2590 iter->w.func = ipv6_route_yield;
2591 iter->w.root = &iter->tbl->tb6_root;
2592 iter->w.state = FWS_INIT;
2593 iter->w.node = iter->w.root;
2594 iter->w.args = iter;
2595 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2596 INIT_LIST_HEAD(&iter->w.lh);
2597 fib6_walker_link(net, &iter->w);
2598}
2599
2600static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2601 struct net *net)
2602{
2603 unsigned int h;
2604 struct hlist_node *node;
2605
2606 if (tbl) {
2607 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2608 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2609 } else {
2610 h = 0;
2611 node = NULL;
2612 }
2613
2614 while (!node && h < FIB6_TABLE_HASHSZ) {
2615 node = rcu_dereference(
2616 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2617 }
2618 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2619}
2620
2621static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2622{
2623 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2624
2625 if (iter->sernum != sernum) {
2626 iter->sernum = sernum;
2627 iter->w.state = FWS_INIT;
2628 iter->w.node = iter->w.root;
2629 WARN_ON(iter->w.skip);
2630 iter->w.skip = iter->w.count;
2631 }
2632}
2633
2634static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2635{
2636 int r;
2637 struct fib6_info *n;
2638 struct net *net = seq_file_net(seq);
2639 struct ipv6_route_iter *iter = seq->private;
2640
2641 ++(*pos);
2642 if (!v)
2643 goto iter_table;
2644
2645 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2646 if (n)
2647 return n;
2648
2649iter_table:
2650 ipv6_route_check_sernum(iter);
2651 spin_lock_bh(&iter->tbl->tb6_lock);
2652 r = fib6_walk_continue(&iter->w);
2653 spin_unlock_bh(&iter->tbl->tb6_lock);
2654 if (r > 0) {
2655 return iter->w.leaf;
2656 } else if (r < 0) {
2657 fib6_walker_unlink(net, &iter->w);
2658 return NULL;
2659 }
2660 fib6_walker_unlink(net, &iter->w);
2661
2662 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2663 if (!iter->tbl)
2664 return NULL;
2665
2666 ipv6_route_seq_setup_walk(iter, net);
2667 goto iter_table;
2668}
2669
2670static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2671 __acquires(RCU)
2672{
2673 struct net *net = seq_file_net(seq);
2674 struct ipv6_route_iter *iter = seq->private;
2675
2676 rcu_read_lock();
2677 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2678 iter->skip = *pos;
2679
2680 if (iter->tbl) {
2681 loff_t p = 0;
2682
2683 ipv6_route_seq_setup_walk(iter, net);
2684 return ipv6_route_seq_next(seq, NULL, &p);
2685 } else {
2686 return NULL;
2687 }
2688}
2689
2690static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2691{
2692 struct fib6_walker *w = &iter->w;
2693 return w->node && !(w->state == FWS_U && w->node == w->root);
2694}
2695
2696static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2697 __releases(RCU)
2698{
2699 struct net *net = seq_file_net(seq);
2700 struct ipv6_route_iter *iter = seq->private;
2701
2702 if (ipv6_route_iter_active(iter))
2703 fib6_walker_unlink(net, &iter->w);
2704
2705 rcu_read_unlock();
2706}
2707
2708#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2709static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2710 struct bpf_iter_meta *meta,
2711 void *v)
2712{
2713 struct bpf_iter__ipv6_route ctx;
2714
2715 ctx.meta = meta;
2716 ctx.rt = v;
2717 return bpf_iter_run_prog(prog, &ctx);
2718}
2719
2720static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2721{
2722 struct ipv6_route_iter *iter = seq->private;
2723 struct bpf_iter_meta meta;
2724 struct bpf_prog *prog;
2725 int ret;
2726
2727 meta.seq = seq;
2728 prog = bpf_iter_get_info(&meta, false);
2729 if (!prog)
2730 return ipv6_route_native_seq_show(seq, v);
2731
2732 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2733 iter->w.leaf = NULL;
2734
2735 return ret;
2736}
2737
2738static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2739{
2740 struct bpf_iter_meta meta;
2741 struct bpf_prog *prog;
2742
2743 if (!v) {
2744 meta.seq = seq;
2745 prog = bpf_iter_get_info(&meta, true);
2746 if (prog)
2747 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2748 }
2749
2750 ipv6_route_native_seq_stop(seq, v);
2751}
2752#else
2753static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2754{
2755 return ipv6_route_native_seq_show(seq, v);
2756}
2757
2758static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2759{
2760 ipv6_route_native_seq_stop(seq, v);
2761}
2762#endif
2763
2764const struct seq_operations ipv6_route_seq_ops = {
2765 .start = ipv6_route_seq_start,
2766 .next = ipv6_route_seq_next,
2767 .stop = ipv6_route_seq_stop,
2768 .show = ipv6_route_seq_show
2769};
2770#endif /* CONFIG_PROC_FS */
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21#include <linux/errno.h>
22#include <linux/types.h>
23#include <linux/net.h>
24#include <linux/route.h>
25#include <linux/netdevice.h>
26#include <linux/in6.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#ifdef CONFIG_PROC_FS
32#include <linux/proc_fs.h>
33#endif
34
35#include <net/ipv6.h>
36#include <net/ndisc.h>
37#include <net/addrconf.h>
38
39#include <net/ip6_fib.h>
40#include <net/ip6_route.h>
41
42#define RT6_DEBUG 2
43
44#if RT6_DEBUG >= 3
45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
46#else
47#define RT6_TRACE(x...) do { ; } while (0)
48#endif
49
50static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52enum fib_walk_state_t
53{
54#ifdef CONFIG_IPV6_SUBTREES
55 FWS_S,
56#endif
57 FWS_L,
58 FWS_R,
59 FWS_C,
60 FWS_U
61};
62
63struct fib6_cleaner_t
64{
65 struct fib6_walker_t w;
66 struct net *net;
67 int (*func)(struct rt6_info *, void *arg);
68 void *arg;
69};
70
71static DEFINE_RWLOCK(fib6_walker_lock);
72
73#ifdef CONFIG_IPV6_SUBTREES
74#define FWS_INIT FWS_S
75#else
76#define FWS_INIT FWS_L
77#endif
78
79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80 struct rt6_info *rt);
81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83static int fib6_walk(struct fib6_walker_t *w);
84static int fib6_walk_continue(struct fib6_walker_t *w);
85
86/*
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
91 */
92
93static __u32 rt_sernum;
94
95static void fib6_gc_timer_cb(unsigned long arg);
96
97static LIST_HEAD(fib6_walkers);
98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100static inline void fib6_walker_link(struct fib6_walker_t *w)
101{
102 write_lock_bh(&fib6_walker_lock);
103 list_add(&w->lh, &fib6_walkers);
104 write_unlock_bh(&fib6_walker_lock);
105}
106
107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108{
109 write_lock_bh(&fib6_walker_lock);
110 list_del(&w->lh);
111 write_unlock_bh(&fib6_walker_lock);
112}
113static __inline__ u32 fib6_new_sernum(void)
114{
115 u32 n = ++rt_sernum;
116 if ((__s32)n <= 0)
117 rt_sernum = n = 1;
118 return n;
119}
120
121/*
122 * Auxiliary address test functions for the radix tree.
123 *
124 * These assume a 32bit processor (although it will work on
125 * 64bit processors)
126 */
127
128/*
129 * test bit
130 */
131#if defined(__LITTLE_ENDIAN)
132# define BITOP_BE32_SWIZZLE (0x1F & ~7)
133#else
134# define BITOP_BE32_SWIZZLE 0
135#endif
136
137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138{
139 const __be32 *addr = token;
140 /*
141 * Here,
142 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143 * is optimized version of
144 * htonl(1 << ((~fn_bit)&0x1F))
145 * See include/asm-generic/bitops/le.h.
146 */
147 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148 addr[fn_bit >> 5];
149}
150
151static __inline__ struct fib6_node * node_alloc(void)
152{
153 struct fib6_node *fn;
154
155 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156
157 return fn;
158}
159
160static __inline__ void node_free(struct fib6_node * fn)
161{
162 kmem_cache_free(fib6_node_kmem, fn);
163}
164
165static __inline__ void rt6_release(struct rt6_info *rt)
166{
167 if (atomic_dec_and_test(&rt->rt6i_ref))
168 dst_free(&rt->dst);
169}
170
171static void fib6_link_table(struct net *net, struct fib6_table *tb)
172{
173 unsigned int h;
174
175 /*
176 * Initialize table lock at a single place to give lockdep a key,
177 * tables aren't visible prior to being linked to the list.
178 */
179 rwlock_init(&tb->tb6_lock);
180
181 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182
183 /*
184 * No protection necessary, this is the only list mutatation
185 * operation, tables never disappear once they exist.
186 */
187 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188}
189
190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
191
192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193{
194 struct fib6_table *table;
195
196 table = kzalloc(sizeof(*table), GFP_ATOMIC);
197 if (table != NULL) {
198 table->tb6_id = id;
199 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201 }
202
203 return table;
204}
205
206struct fib6_table *fib6_new_table(struct net *net, u32 id)
207{
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb != NULL)
218 fib6_link_table(net, tb);
219
220 return tb;
221}
222
223struct fib6_table *fib6_get_table(struct net *net, u32 id)
224{
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 struct hlist_node *node;
228 unsigned int h;
229
230 if (id == 0)
231 id = RT6_TABLE_MAIN;
232 h = id & (FIB6_TABLE_HASHSZ - 1);
233 rcu_read_lock();
234 head = &net->ipv6.fib_table_hash[h];
235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 if (tb->tb6_id == id) {
237 rcu_read_unlock();
238 return tb;
239 }
240 }
241 rcu_read_unlock();
242
243 return NULL;
244}
245
246static void __net_init fib6_tables_init(struct net *net)
247{
248 fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 fib6_link_table(net, net->ipv6.fib6_local_tbl);
250}
251#else
252
253struct fib6_table *fib6_new_table(struct net *net, u32 id)
254{
255 return fib6_get_table(net, id);
256}
257
258struct fib6_table *fib6_get_table(struct net *net, u32 id)
259{
260 return net->ipv6.fib6_main_tbl;
261}
262
263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 int flags, pol_lookup_t lookup)
265{
266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267}
268
269static void __net_init fib6_tables_init(struct net *net)
270{
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272}
273
274#endif
275
276static int fib6_dump_node(struct fib6_walker_t *w)
277{
278 int res;
279 struct rt6_info *rt;
280
281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 res = rt6_dump_route(rt, w->args);
283 if (res < 0) {
284 /* Frame is full, suspend walking */
285 w->leaf = rt;
286 return 1;
287 }
288 WARN_ON(res == 0);
289 }
290 w->leaf = NULL;
291 return 0;
292}
293
294static void fib6_dump_end(struct netlink_callback *cb)
295{
296 struct fib6_walker_t *w = (void*)cb->args[2];
297
298 if (w) {
299 if (cb->args[4]) {
300 cb->args[4] = 0;
301 fib6_walker_unlink(w);
302 }
303 cb->args[2] = 0;
304 kfree(w);
305 }
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
308}
309
310static int fib6_dump_done(struct netlink_callback *cb)
311{
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
314}
315
316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
318{
319 struct fib6_walker_t *w;
320 int res;
321
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
324
325 if (cb->args[4] == 0) {
326 w->count = 0;
327 w->skip = 0;
328
329 read_lock_bh(&table->tb6_lock);
330 res = fib6_walk(w);
331 read_unlock_bh(&table->tb6_lock);
332 if (res > 0) {
333 cb->args[4] = 1;
334 cb->args[5] = w->root->fn_sernum;
335 }
336 } else {
337 if (cb->args[5] != w->root->fn_sernum) {
338 /* Begin at the root if the tree changed */
339 cb->args[5] = w->root->fn_sernum;
340 w->state = FWS_INIT;
341 w->node = w->root;
342 w->skip = w->count;
343 } else
344 w->skip = 0;
345
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res <= 0) {
350 fib6_walker_unlink(w);
351 cb->args[4] = 0;
352 }
353 }
354
355 return res;
356}
357
358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359{
360 struct net *net = sock_net(skb->sk);
361 unsigned int h, s_h;
362 unsigned int e = 0, s_e;
363 struct rt6_rtnl_dump_arg arg;
364 struct fib6_walker_t *w;
365 struct fib6_table *tb;
366 struct hlist_node *node;
367 struct hlist_head *head;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (w == NULL) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (w == NULL)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 arg.net = net;
395 w->args = &arg;
396
397 rcu_read_lock();
398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 e = 0;
400 head = &net->ipv6.fib_table_hash[h];
401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 if (e < s_e)
403 goto next;
404 res = fib6_dump_table(tb, skb, cb);
405 if (res != 0)
406 goto out;
407next:
408 e++;
409 }
410 }
411out:
412 rcu_read_unlock();
413 cb->args[1] = e;
414 cb->args[0] = h;
415
416 res = res < 0 ? res : skb->len;
417 if (res <= 0)
418 fib6_dump_end(cb);
419 return res;
420}
421
422/*
423 * Routing Table
424 *
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
427 * node.
428 */
429
430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 int addrlen, int plen,
432 int offset)
433{
434 struct fib6_node *fn, *in, *ln;
435 struct fib6_node *pn = NULL;
436 struct rt6key *key;
437 int bit;
438 __be32 dir = 0;
439 __u32 sernum = fib6_new_sernum();
440
441 RT6_TRACE("fib6_add_1\n");
442
443 /* insert node in tree */
444
445 fn = root;
446
447 do {
448 key = (struct rt6key *)((u8 *)fn->leaf + offset);
449
450 /*
451 * Prefix match
452 */
453 if (plen < fn->fn_bit ||
454 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
455 goto insert_above;
456
457 /*
458 * Exact match ?
459 */
460
461 if (plen == fn->fn_bit) {
462 /* clean up an intermediate node */
463 if ((fn->fn_flags & RTN_RTINFO) == 0) {
464 rt6_release(fn->leaf);
465 fn->leaf = NULL;
466 }
467
468 fn->fn_sernum = sernum;
469
470 return fn;
471 }
472
473 /*
474 * We have more bits to go
475 */
476
477 /* Try to walk down on tree. */
478 fn->fn_sernum = sernum;
479 dir = addr_bit_set(addr, fn->fn_bit);
480 pn = fn;
481 fn = dir ? fn->right: fn->left;
482 } while (fn);
483
484 /*
485 * We walked to the bottom of tree.
486 * Create new leaf node without children.
487 */
488
489 ln = node_alloc();
490
491 if (ln == NULL)
492 return NULL;
493 ln->fn_bit = plen;
494
495 ln->parent = pn;
496 ln->fn_sernum = sernum;
497
498 if (dir)
499 pn->right = ln;
500 else
501 pn->left = ln;
502
503 return ln;
504
505
506insert_above:
507 /*
508 * split since we don't have a common prefix anymore or
509 * we have a less significant route.
510 * we've to insert an intermediate node on the list
511 * this new node will point to the one we need to create
512 * and the current
513 */
514
515 pn = fn->parent;
516
517 /* find 1st bit in difference between the 2 addrs.
518
519 See comment in __ipv6_addr_diff: bit may be an invalid value,
520 but if it is >= plen, the value is ignored in any case.
521 */
522
523 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
524
525 /*
526 * (intermediate)[in]
527 * / \
528 * (new leaf node)[ln] (old node)[fn]
529 */
530 if (plen > bit) {
531 in = node_alloc();
532 ln = node_alloc();
533
534 if (in == NULL || ln == NULL) {
535 if (in)
536 node_free(in);
537 if (ln)
538 node_free(ln);
539 return NULL;
540 }
541
542 /*
543 * new intermediate node.
544 * RTN_RTINFO will
545 * be off since that an address that chooses one of
546 * the branches would not match less specific routes
547 * in the other branch
548 */
549
550 in->fn_bit = bit;
551
552 in->parent = pn;
553 in->leaf = fn->leaf;
554 atomic_inc(&in->leaf->rt6i_ref);
555
556 in->fn_sernum = sernum;
557
558 /* update parent pointer */
559 if (dir)
560 pn->right = in;
561 else
562 pn->left = in;
563
564 ln->fn_bit = plen;
565
566 ln->parent = in;
567 fn->parent = in;
568
569 ln->fn_sernum = sernum;
570
571 if (addr_bit_set(addr, bit)) {
572 in->right = ln;
573 in->left = fn;
574 } else {
575 in->left = ln;
576 in->right = fn;
577 }
578 } else { /* plen <= bit */
579
580 /*
581 * (new leaf node)[ln]
582 * / \
583 * (old node)[fn] NULL
584 */
585
586 ln = node_alloc();
587
588 if (ln == NULL)
589 return NULL;
590
591 ln->fn_bit = plen;
592
593 ln->parent = pn;
594
595 ln->fn_sernum = sernum;
596
597 if (dir)
598 pn->right = ln;
599 else
600 pn->left = ln;
601
602 if (addr_bit_set(&key->addr, plen))
603 ln->right = fn;
604 else
605 ln->left = fn;
606
607 fn->parent = ln;
608 }
609 return ln;
610}
611
612/*
613 * Insert routing information in a node.
614 */
615
616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
617 struct nl_info *info)
618{
619 struct rt6_info *iter = NULL;
620 struct rt6_info **ins;
621
622 ins = &fn->leaf;
623
624 for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
625 /*
626 * Search for duplicates
627 */
628
629 if (iter->rt6i_metric == rt->rt6i_metric) {
630 /*
631 * Same priority level
632 */
633
634 if (iter->rt6i_dev == rt->rt6i_dev &&
635 iter->rt6i_idev == rt->rt6i_idev &&
636 ipv6_addr_equal(&iter->rt6i_gateway,
637 &rt->rt6i_gateway)) {
638 if (!(iter->rt6i_flags&RTF_EXPIRES))
639 return -EEXIST;
640 iter->rt6i_expires = rt->rt6i_expires;
641 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
642 iter->rt6i_flags &= ~RTF_EXPIRES;
643 iter->rt6i_expires = 0;
644 }
645 return -EEXIST;
646 }
647 }
648
649 if (iter->rt6i_metric > rt->rt6i_metric)
650 break;
651
652 ins = &iter->dst.rt6_next;
653 }
654
655 /* Reset round-robin state, if necessary */
656 if (ins == &fn->leaf)
657 fn->rr_ptr = NULL;
658
659 /*
660 * insert node
661 */
662
663 rt->dst.rt6_next = iter;
664 *ins = rt;
665 rt->rt6i_node = fn;
666 atomic_inc(&rt->rt6i_ref);
667 inet6_rt_notify(RTM_NEWROUTE, rt, info);
668 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
669
670 if ((fn->fn_flags & RTN_RTINFO) == 0) {
671 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
672 fn->fn_flags |= RTN_RTINFO;
673 }
674
675 return 0;
676}
677
678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
679{
680 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
681 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
682 mod_timer(&net->ipv6.ip6_fib_timer,
683 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
684}
685
686void fib6_force_start_gc(struct net *net)
687{
688 if (!timer_pending(&net->ipv6.ip6_fib_timer))
689 mod_timer(&net->ipv6.ip6_fib_timer,
690 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
691}
692
693/*
694 * Add routing information to the routing tree.
695 * <destination addr>/<source addr>
696 * with source addr info in sub-trees
697 */
698
699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
700{
701 struct fib6_node *fn, *pn = NULL;
702 int err = -ENOMEM;
703
704 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
706
707 if (fn == NULL)
708 goto out;
709
710 pn = fn;
711
712#ifdef CONFIG_IPV6_SUBTREES
713 if (rt->rt6i_src.plen) {
714 struct fib6_node *sn;
715
716 if (fn->subtree == NULL) {
717 struct fib6_node *sfn;
718
719 /*
720 * Create subtree.
721 *
722 * fn[main tree]
723 * |
724 * sfn[subtree root]
725 * \
726 * sn[new leaf node]
727 */
728
729 /* Create subtree root node */
730 sfn = node_alloc();
731 if (sfn == NULL)
732 goto st_failure;
733
734 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
735 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
736 sfn->fn_flags = RTN_ROOT;
737 sfn->fn_sernum = fib6_new_sernum();
738
739 /* Now add the first leaf node to new subtree */
740
741 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
742 sizeof(struct in6_addr), rt->rt6i_src.plen,
743 offsetof(struct rt6_info, rt6i_src));
744
745 if (sn == NULL) {
746 /* If it is failed, discard just allocated
747 root, and then (in st_failure) stale node
748 in main tree.
749 */
750 node_free(sfn);
751 goto st_failure;
752 }
753
754 /* Now link new subtree to main tree */
755 sfn->parent = fn;
756 fn->subtree = sfn;
757 } else {
758 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
759 sizeof(struct in6_addr), rt->rt6i_src.plen,
760 offsetof(struct rt6_info, rt6i_src));
761
762 if (sn == NULL)
763 goto st_failure;
764 }
765
766 if (fn->leaf == NULL) {
767 fn->leaf = rt;
768 atomic_inc(&rt->rt6i_ref);
769 }
770 fn = sn;
771 }
772#endif
773
774 err = fib6_add_rt2node(fn, rt, info);
775
776 if (err == 0) {
777 fib6_start_gc(info->nl_net, rt);
778 if (!(rt->rt6i_flags&RTF_CACHE))
779 fib6_prune_clones(info->nl_net, pn, rt);
780 }
781
782out:
783 if (err) {
784#ifdef CONFIG_IPV6_SUBTREES
785 /*
786 * If fib6_add_1 has cleared the old leaf pointer in the
787 * super-tree leaf node we have to find a new one for it.
788 */
789 if (pn != fn && pn->leaf == rt) {
790 pn->leaf = NULL;
791 atomic_dec(&rt->rt6i_ref);
792 }
793 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
794 pn->leaf = fib6_find_prefix(info->nl_net, pn);
795#if RT6_DEBUG >= 2
796 if (!pn->leaf) {
797 WARN_ON(pn->leaf == NULL);
798 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
799 }
800#endif
801 atomic_inc(&pn->leaf->rt6i_ref);
802 }
803#endif
804 dst_free(&rt->dst);
805 }
806 return err;
807
808#ifdef CONFIG_IPV6_SUBTREES
809 /* Subtree creation failed, probably main tree node
810 is orphan. If it is, shoot it.
811 */
812st_failure:
813 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
814 fib6_repair_tree(info->nl_net, fn);
815 dst_free(&rt->dst);
816 return err;
817#endif
818}
819
820/*
821 * Routing tree lookup
822 *
823 */
824
825struct lookup_args {
826 int offset; /* key offset on rt6_info */
827 const struct in6_addr *addr; /* search key */
828};
829
830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
831 struct lookup_args *args)
832{
833 struct fib6_node *fn;
834 __be32 dir;
835
836 if (unlikely(args->offset == 0))
837 return NULL;
838
839 /*
840 * Descend on a tree
841 */
842
843 fn = root;
844
845 for (;;) {
846 struct fib6_node *next;
847
848 dir = addr_bit_set(args->addr, fn->fn_bit);
849
850 next = dir ? fn->right : fn->left;
851
852 if (next) {
853 fn = next;
854 continue;
855 }
856
857 break;
858 }
859
860 while(fn) {
861 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
862 struct rt6key *key;
863
864 key = (struct rt6key *) ((u8 *) fn->leaf +
865 args->offset);
866
867 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
868#ifdef CONFIG_IPV6_SUBTREES
869 if (fn->subtree)
870 fn = fib6_lookup_1(fn->subtree, args + 1);
871#endif
872 if (!fn || fn->fn_flags & RTN_RTINFO)
873 return fn;
874 }
875 }
876
877 if (fn->fn_flags & RTN_ROOT)
878 break;
879
880 fn = fn->parent;
881 }
882
883 return NULL;
884}
885
886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
887 const struct in6_addr *saddr)
888{
889 struct fib6_node *fn;
890 struct lookup_args args[] = {
891 {
892 .offset = offsetof(struct rt6_info, rt6i_dst),
893 .addr = daddr,
894 },
895#ifdef CONFIG_IPV6_SUBTREES
896 {
897 .offset = offsetof(struct rt6_info, rt6i_src),
898 .addr = saddr,
899 },
900#endif
901 {
902 .offset = 0, /* sentinel */
903 }
904 };
905
906 fn = fib6_lookup_1(root, daddr ? args : args + 1);
907
908 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
909 fn = root;
910
911 return fn;
912}
913
914/*
915 * Get node with specified destination prefix (and source prefix,
916 * if subtrees are used)
917 */
918
919
920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
921 const struct in6_addr *addr,
922 int plen, int offset)
923{
924 struct fib6_node *fn;
925
926 for (fn = root; fn ; ) {
927 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
928
929 /*
930 * Prefix match
931 */
932 if (plen < fn->fn_bit ||
933 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
934 return NULL;
935
936 if (plen == fn->fn_bit)
937 return fn;
938
939 /*
940 * We have more bits to go
941 */
942 if (addr_bit_set(addr, fn->fn_bit))
943 fn = fn->right;
944 else
945 fn = fn->left;
946 }
947 return NULL;
948}
949
950struct fib6_node * fib6_locate(struct fib6_node *root,
951 const struct in6_addr *daddr, int dst_len,
952 const struct in6_addr *saddr, int src_len)
953{
954 struct fib6_node *fn;
955
956 fn = fib6_locate_1(root, daddr, dst_len,
957 offsetof(struct rt6_info, rt6i_dst));
958
959#ifdef CONFIG_IPV6_SUBTREES
960 if (src_len) {
961 WARN_ON(saddr == NULL);
962 if (fn && fn->subtree)
963 fn = fib6_locate_1(fn->subtree, saddr, src_len,
964 offsetof(struct rt6_info, rt6i_src));
965 }
966#endif
967
968 if (fn && fn->fn_flags&RTN_RTINFO)
969 return fn;
970
971 return NULL;
972}
973
974
975/*
976 * Deletion
977 *
978 */
979
980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
981{
982 if (fn->fn_flags&RTN_ROOT)
983 return net->ipv6.ip6_null_entry;
984
985 while(fn) {
986 if(fn->left)
987 return fn->left->leaf;
988
989 if(fn->right)
990 return fn->right->leaf;
991
992 fn = FIB6_SUBTREE(fn);
993 }
994 return NULL;
995}
996
997/*
998 * Called to trim the tree of intermediate nodes when possible. "fn"
999 * is the node we want to try and remove.
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003 struct fib6_node *fn)
1004{
1005 int children;
1006 int nstate;
1007 struct fib6_node *child, *pn;
1008 struct fib6_walker_t *w;
1009 int iter = 0;
1010
1011 for (;;) {
1012 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013 iter++;
1014
1015 WARN_ON(fn->fn_flags & RTN_RTINFO);
1016 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017 WARN_ON(fn->leaf != NULL);
1018
1019 children = 0;
1020 child = NULL;
1021 if (fn->right) child = fn->right, children |= 1;
1022 if (fn->left) child = fn->left, children |= 2;
1023
1024 if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026 /* Subtree root (i.e. fn) may have one child */
1027 || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029 ) {
1030 fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032 if (fn->leaf==NULL) {
1033 WARN_ON(!fn->leaf);
1034 fn->leaf = net->ipv6.ip6_null_entry;
1035 }
1036#endif
1037 atomic_inc(&fn->leaf->rt6i_ref);
1038 return fn->parent;
1039 }
1040
1041 pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043 if (FIB6_SUBTREE(pn) == fn) {
1044 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045 FIB6_SUBTREE(pn) = NULL;
1046 nstate = FWS_L;
1047 } else {
1048 WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050 if (pn->right == fn) pn->right = child;
1051 else if (pn->left == fn) pn->left = child;
1052#if RT6_DEBUG >= 2
1053 else
1054 WARN_ON(1);
1055#endif
1056 if (child)
1057 child->parent = pn;
1058 nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060 }
1061#endif
1062
1063 read_lock(&fib6_walker_lock);
1064 FOR_WALKERS(w) {
1065 if (child == NULL) {
1066 if (w->root == fn) {
1067 w->root = w->node = NULL;
1068 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069 } else if (w->node == fn) {
1070 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071 w->node = pn;
1072 w->state = nstate;
1073 }
1074 } else {
1075 if (w->root == fn) {
1076 w->root = child;
1077 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078 }
1079 if (w->node == fn) {
1080 w->node = child;
1081 if (children&2) {
1082 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084 } else {
1085 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087 }
1088 }
1089 }
1090 }
1091 read_unlock(&fib6_walker_lock);
1092
1093 node_free(fn);
1094 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095 return pn;
1096
1097 rt6_release(pn->leaf);
1098 pn->leaf = NULL;
1099 fn = pn;
1100 }
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104 struct nl_info *info)
1105{
1106 struct fib6_walker_t *w;
1107 struct rt6_info *rt = *rtp;
1108 struct net *net = info->nl_net;
1109
1110 RT6_TRACE("fib6_del_route\n");
1111
1112 /* Unlink it */
1113 *rtp = rt->dst.rt6_next;
1114 rt->rt6i_node = NULL;
1115 net->ipv6.rt6_stats->fib_rt_entries--;
1116 net->ipv6.rt6_stats->fib_discarded_routes++;
1117
1118 /* Reset round-robin state, if necessary */
1119 if (fn->rr_ptr == rt)
1120 fn->rr_ptr = NULL;
1121
1122 /* Adjust walkers */
1123 read_lock(&fib6_walker_lock);
1124 FOR_WALKERS(w) {
1125 if (w->state == FWS_C && w->leaf == rt) {
1126 RT6_TRACE("walker %p adjusted by delroute\n", w);
1127 w->leaf = rt->dst.rt6_next;
1128 if (w->leaf == NULL)
1129 w->state = FWS_U;
1130 }
1131 }
1132 read_unlock(&fib6_walker_lock);
1133
1134 rt->dst.rt6_next = NULL;
1135
1136 /* If it was last route, expunge its radix tree node */
1137 if (fn->leaf == NULL) {
1138 fn->fn_flags &= ~RTN_RTINFO;
1139 net->ipv6.rt6_stats->fib_route_nodes--;
1140 fn = fib6_repair_tree(net, fn);
1141 }
1142
1143 if (atomic_read(&rt->rt6i_ref) != 1) {
1144 /* This route is used as dummy address holder in some split
1145 * nodes. It is not leaked, but it still holds other resources,
1146 * which must be released in time. So, scan ascendant nodes
1147 * and replace dummy references to this route with references
1148 * to still alive ones.
1149 */
1150 while (fn) {
1151 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152 fn->leaf = fib6_find_prefix(net, fn);
1153 atomic_inc(&fn->leaf->rt6i_ref);
1154 rt6_release(rt);
1155 }
1156 fn = fn->parent;
1157 }
1158 /* No more references are possible at this point. */
1159 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160 }
1161
1162 inet6_rt_notify(RTM_DELROUTE, rt, info);
1163 rt6_release(rt);
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
1167{
1168 struct net *net = info->nl_net;
1169 struct fib6_node *fn = rt->rt6i_node;
1170 struct rt6_info **rtp;
1171
1172#if RT6_DEBUG >= 2
1173 if (rt->dst.obsolete>0) {
1174 WARN_ON(fn != NULL);
1175 return -ENOENT;
1176 }
1177#endif
1178 if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179 return -ENOENT;
1180
1181 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183 if (!(rt->rt6i_flags&RTF_CACHE)) {
1184 struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186 /* clones of this route might be in another subtree */
1187 if (rt->rt6i_src.plen) {
1188 while (!(pn->fn_flags&RTN_ROOT))
1189 pn = pn->parent;
1190 pn = pn->parent;
1191 }
1192#endif
1193 fib6_prune_clones(info->nl_net, pn, rt);
1194 }
1195
1196 /*
1197 * Walk the leaf entries looking for ourself
1198 */
1199
1200 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201 if (*rtp == rt) {
1202 fib6_del_route(fn, rtp, info);
1203 return 0;
1204 }
1205 }
1206 return -ENOENT;
1207}
1208
1209/*
1210 * Tree traversal function.
1211 *
1212 * Certainly, it is not interrupt safe.
1213 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 * It means, that we can modify tree during walking
1215 * and use this function for garbage collection, clone pruning,
1216 * cleaning tree when a device goes down etc. etc.
1217 *
1218 * It guarantees that every node will be traversed,
1219 * and that it will be traversed only once.
1220 *
1221 * Callback function w->func may return:
1222 * 0 -> continue walking.
1223 * positive value -> walking is suspended (used by tree dumps,
1224 * and probably by gc, if it will be split to several slices)
1225 * negative value -> terminate walking.
1226 *
1227 * The function itself returns:
1228 * 0 -> walk is complete.
1229 * >0 -> walk is incomplete (i.e. suspended)
1230 * <0 -> walk is terminated by an error.
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235 struct fib6_node *fn, *pn;
1236
1237 for (;;) {
1238 fn = w->node;
1239 if (fn == NULL)
1240 return 0;
1241
1242 if (w->prune && fn != w->root &&
1243 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244 w->state = FWS_C;
1245 w->leaf = fn->leaf;
1246 }
1247 switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249 case FWS_S:
1250 if (FIB6_SUBTREE(fn)) {
1251 w->node = FIB6_SUBTREE(fn);
1252 continue;
1253 }
1254 w->state = FWS_L;
1255#endif
1256 case FWS_L:
1257 if (fn->left) {
1258 w->node = fn->left;
1259 w->state = FWS_INIT;
1260 continue;
1261 }
1262 w->state = FWS_R;
1263 case FWS_R:
1264 if (fn->right) {
1265 w->node = fn->right;
1266 w->state = FWS_INIT;
1267 continue;
1268 }
1269 w->state = FWS_C;
1270 w->leaf = fn->leaf;
1271 case FWS_C:
1272 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273 int err;
1274
1275 if (w->count < w->skip) {
1276 w->count++;
1277 continue;
1278 }
1279
1280 err = w->func(w);
1281 if (err)
1282 return err;
1283
1284 w->count++;
1285 continue;
1286 }
1287 w->state = FWS_U;
1288 case FWS_U:
1289 if (fn == w->root)
1290 return 0;
1291 pn = fn->parent;
1292 w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294 if (FIB6_SUBTREE(pn) == fn) {
1295 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296 w->state = FWS_L;
1297 continue;
1298 }
1299#endif
1300 if (pn->left == fn) {
1301 w->state = FWS_R;
1302 continue;
1303 }
1304 if (pn->right == fn) {
1305 w->state = FWS_C;
1306 w->leaf = w->node->leaf;
1307 continue;
1308 }
1309#if RT6_DEBUG >= 2
1310 WARN_ON(1);
1311#endif
1312 }
1313 }
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318 int res;
1319
1320 w->state = FWS_INIT;
1321 w->node = w->root;
1322
1323 fib6_walker_link(w);
1324 res = fib6_walk_continue(w);
1325 if (res <= 0)
1326 fib6_walker_unlink(w);
1327 return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332 int res;
1333 struct rt6_info *rt;
1334 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335 struct nl_info info = {
1336 .nl_net = c->net,
1337 };
1338
1339 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1340 res = c->func(rt, c->arg);
1341 if (res < 0) {
1342 w->leaf = rt;
1343 res = fib6_del(rt, &info);
1344 if (res) {
1345#if RT6_DEBUG >= 2
1346 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1347#endif
1348 continue;
1349 }
1350 return 0;
1351 }
1352 WARN_ON(res != 0);
1353 }
1354 w->leaf = rt;
1355 return 0;
1356}
1357
1358/*
1359 * Convenient frontend to tree walker.
1360 *
1361 * func is called on each route.
1362 * It may return -1 -> delete this route.
1363 * 0 -> continue walking
1364 *
1365 * prune==1 -> only immediate children of node (certainly,
1366 * ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370 int (*func)(struct rt6_info *, void *arg),
1371 int prune, void *arg)
1372{
1373 struct fib6_cleaner_t c;
1374
1375 c.w.root = root;
1376 c.w.func = fib6_clean_node;
1377 c.w.prune = prune;
1378 c.w.count = 0;
1379 c.w.skip = 0;
1380 c.func = func;
1381 c.arg = arg;
1382 c.net = net;
1383
1384 fib6_walk(&c.w);
1385}
1386
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388 int prune, void *arg)
1389{
1390 struct fib6_table *table;
1391 struct hlist_node *node;
1392 struct hlist_head *head;
1393 unsigned int h;
1394
1395 rcu_read_lock();
1396 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397 head = &net->ipv6.fib_table_hash[h];
1398 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399 write_lock_bh(&table->tb6_lock);
1400 fib6_clean_tree(net, &table->tb6_root,
1401 func, prune, arg);
1402 write_unlock_bh(&table->tb6_lock);
1403 }
1404 }
1405 rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1409{
1410 if (rt->rt6i_flags & RTF_CACHE) {
1411 RT6_TRACE("pruning clone %p\n", rt);
1412 return -1;
1413 }
1414
1415 return 0;
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419 struct rt6_info *rt)
1420{
1421 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1422}
1423
1424/*
1425 * Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430 int timeout;
1431 int more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
1436 unsigned long now = jiffies;
1437
1438 /*
1439 * check addrconf expiration here.
1440 * Routes are expired even if they are in use.
1441 *
1442 * Also age clones. Note, that clones are aged out
1443 * only if they are not in use now.
1444 */
1445
1446 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447 if (time_after(now, rt->rt6i_expires)) {
1448 RT6_TRACE("expiring %p\n", rt);
1449 return -1;
1450 }
1451 gc_args.more++;
1452 } else if (rt->rt6i_flags & RTF_CACHE) {
1453 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455 RT6_TRACE("aging clone %p\n", rt);
1456 return -1;
1457 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458 (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459 RT6_TRACE("purging route %p via non-router but gateway\n",
1460 rt);
1461 return -1;
1462 }
1463 gc_args.more++;
1464 }
1465
1466 return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473 if (expires != ~0UL) {
1474 spin_lock_bh(&fib6_gc_lock);
1475 gc_args.timeout = expires ? (int)expires :
1476 net->ipv6.sysctl.ip6_rt_gc_interval;
1477 } else {
1478 if (!spin_trylock_bh(&fib6_gc_lock)) {
1479 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480 return;
1481 }
1482 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483 }
1484
1485 gc_args.more = icmp6_dst_gc();
1486
1487 fib6_clean_all(net, fib6_age, 0, NULL);
1488
1489 if (gc_args.more)
1490 mod_timer(&net->ipv6.ip6_fib_timer,
1491 round_jiffies(jiffies
1492 + net->ipv6.sysctl.ip6_rt_gc_interval));
1493 else
1494 del_timer(&net->ipv6.ip6_fib_timer);
1495 spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500 fib6_run_gc(0, (struct net *)arg);
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1506
1507 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1508
1509 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510 if (!net->ipv6.rt6_stats)
1511 goto out_timer;
1512
1513 /* Avoid false sharing : Use at least a full cache line */
1514 size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517 if (!net->ipv6.fib_table_hash)
1518 goto out_rt6_stats;
1519
1520 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521 GFP_KERNEL);
1522 if (!net->ipv6.fib6_main_tbl)
1523 goto out_fib_table_hash;
1524
1525 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1527 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532 GFP_KERNEL);
1533 if (!net->ipv6.fib6_local_tbl)
1534 goto out_fib6_main_tbl;
1535 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1537 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1539#endif
1540 fib6_tables_init(net);
1541
1542 return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546 kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549 kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551 kfree(net->ipv6.rt6_stats);
1552out_timer:
1553 return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558 rt6_ifdown(net, NULL);
1559 del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562 kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564 kfree(net->ipv6.fib6_main_tbl);
1565 kfree(net->ipv6.fib_table_hash);
1566 kfree(net->ipv6.rt6_stats);
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570 .init = fib6_net_init,
1571 .exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576 int ret = -ENOMEM;
1577
1578 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579 sizeof(struct fib6_node),
1580 0, SLAB_HWCACHE_ALIGN,
1581 NULL);
1582 if (!fib6_node_kmem)
1583 goto out;
1584
1585 ret = register_pernet_subsys(&fib6_net_ops);
1586 if (ret)
1587 goto out_kmem_cache_create;
1588
1589 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590 NULL);
1591 if (ret)
1592 goto out_unregister_subsys;
1593out:
1594 return ret;
1595
1596out_unregister_subsys:
1597 unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599 kmem_cache_destroy(fib6_node_kmem);
1600 goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605 unregister_pernet_subsys(&fib6_net_ops);
1606 kmem_cache_destroy(fib6_node_kmem);
1607}