Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
 
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 
 
 
 114
 
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 
 
 
 
 
 
 
 
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 
 
 
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
 172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 174			[NEIGH_VAR_PROXY_QLEN] = 64,
 175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 178		},
 179	},
 180	.gc_interval	= 30 * HZ,
 181	.gc_thresh1	= 128,
 182	.gc_thresh2	= 512,
 183	.gc_thresh3	= 1024,
 184};
 185EXPORT_SYMBOL(arp_tbl);
 186
 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 188{
 189	switch (dev->type) {
 190	case ARPHRD_ETHER:
 191	case ARPHRD_FDDI:
 192	case ARPHRD_IEEE802:
 193		ip_eth_mc_map(addr, haddr);
 194		return 0;
 
 
 
 195	case ARPHRD_INFINIBAND:
 196		ip_ib_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	case ARPHRD_IPGRE:
 199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 200		return 0;
 201	default:
 202		if (dir) {
 203			memcpy(haddr, dev->broadcast, dev->addr_len);
 204			return 0;
 205		}
 206	}
 207	return -EINVAL;
 208}
 209
 210
 211static u32 arp_hash(const void *pkey,
 212		    const struct net_device *dev,
 213		    __u32 *hash_rnd)
 214{
 215	return arp_hashfn(pkey, dev, hash_rnd);
 216}
 217
 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 219{
 220	return neigh_key_eq32(neigh, pkey);
 221}
 222
 223static int arp_constructor(struct neighbour *neigh)
 224{
 225	__be32 addr;
 226	struct net_device *dev = neigh->dev;
 227	struct in_device *in_dev;
 228	struct neigh_parms *parms;
 229	u32 inaddr_any = INADDR_ANY;
 230
 231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 233
 234	addr = *(__be32 *)neigh->primary_key;
 235	rcu_read_lock();
 236	in_dev = __in_dev_get_rcu(dev);
 237	if (!in_dev) {
 238		rcu_read_unlock();
 239		return -EINVAL;
 240	}
 241
 242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 243
 244	parms = in_dev->arp_parms;
 245	__neigh_parms_put(neigh->parms);
 246	neigh->parms = neigh_parms_clone(parms);
 247	rcu_read_unlock();
 248
 249	if (!dev->header_ops) {
 250		neigh->nud_state = NUD_NOARP;
 251		neigh->ops = &arp_direct_ops;
 252		neigh->output = neigh_direct_output;
 253	} else {
 254		/* Good devices (checked by reading texts, but only Ethernet is
 255		   tested)
 256
 257		   ARPHRD_ETHER: (ethernet, apfddi)
 258		   ARPHRD_FDDI: (fddi)
 259		   ARPHRD_IEEE802: (tr)
 260		   ARPHRD_METRICOM: (strip)
 261		   ARPHRD_ARCNET:
 262		   etc. etc. etc.
 263
 264		   ARPHRD_IPDDP will also work, if author repairs it.
 265		   I did not it, because this driver does not work even
 266		   in old paradigm.
 267		 */
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269		if (neigh->type == RTN_MULTICAST) {
 270			neigh->nud_state = NUD_NOARP;
 271			arp_mc_map(addr, neigh->ha, dev, 1);
 272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 275		} else if (neigh->type == RTN_BROADCAST ||
 276			   (dev->flags & IFF_POINTOPOINT)) {
 277			neigh->nud_state = NUD_NOARP;
 278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 279		}
 280
 281		if (dev->header_ops->cache)
 282			neigh->ops = &arp_hh_ops;
 283		else
 284			neigh->ops = &arp_generic_ops;
 285
 286		if (neigh->nud_state & NUD_VALID)
 287			neigh->output = neigh->ops->connected_output;
 288		else
 289			neigh->output = neigh->ops->output;
 290	}
 291	return 0;
 292}
 293
 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 295{
 296	dst_link_failure(skb);
 297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
 298}
 299
 300/* Create and send an arp packet. */
 301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 302			 struct net_device *dev, __be32 src_ip,
 303			 const unsigned char *dest_hw,
 304			 const unsigned char *src_hw,
 305			 const unsigned char *target_hw,
 306			 struct dst_entry *dst)
 307{
 308	struct sk_buff *skb;
 309
 310	/* arp on this interface. */
 311	if (dev->flags & IFF_NOARP)
 312		return;
 313
 314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 315			 dest_hw, src_hw, target_hw);
 316	if (!skb)
 317		return;
 318
 319	skb_dst_set(skb, dst_clone(dst));
 320	arp_xmit(skb);
 321}
 322
 323void arp_send(int type, int ptype, __be32 dest_ip,
 324	      struct net_device *dev, __be32 src_ip,
 325	      const unsigned char *dest_hw, const unsigned char *src_hw,
 326	      const unsigned char *target_hw)
 327{
 328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 329		     target_hw, NULL);
 330}
 331EXPORT_SYMBOL(arp_send);
 332
 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 334{
 335	__be32 saddr = 0;
 336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 337	struct net_device *dev = neigh->dev;
 338	__be32 target = *(__be32 *)neigh->primary_key;
 339	int probes = atomic_read(&neigh->probes);
 340	struct in_device *in_dev;
 341	struct dst_entry *dst = NULL;
 342
 343	rcu_read_lock();
 344	in_dev = __in_dev_get_rcu(dev);
 345	if (!in_dev) {
 346		rcu_read_unlock();
 347		return;
 348	}
 349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 350	default:
 351	case 0:		/* By default announce any local IP */
 352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 354			saddr = ip_hdr(skb)->saddr;
 355		break;
 356	case 1:		/* Restrict announcements of saddr in same subnet */
 357		if (!skb)
 358			break;
 359		saddr = ip_hdr(skb)->saddr;
 360		if (inet_addr_type_dev_table(dev_net(dev), dev,
 361					     saddr) == RTN_LOCAL) {
 362			/* saddr should be known to target */
 363			if (inet_addr_onlink(in_dev, target, saddr))
 364				break;
 365		}
 366		saddr = 0;
 367		break;
 368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 369		break;
 370	}
 371	rcu_read_unlock();
 372
 373	if (!saddr)
 374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 375
 376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 377	if (probes < 0) {
 378		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
 379			pr_debug("trying to ucast probe in NUD_INVALID\n");
 380		neigh_ha_snapshot(dst_ha, neigh, dev);
 381		dst_hw = dst_ha;
 
 382	} else {
 383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 384		if (probes < 0) {
 
 385			neigh_app_ns(neigh);
 
 386			return;
 387		}
 388	}
 389
 390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 391		dst = skb_dst(skb);
 392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 393		     dst_hw, dev->dev_addr, NULL, dst);
 394}
 395
 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 397{
 398	struct net *net = dev_net(in_dev->dev);
 399	int scope;
 400
 401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 402	case 0:	/* Reply, the tip is already validated */
 403		return 0;
 404	case 1:	/* Reply only if tip is configured on the incoming interface */
 405		sip = 0;
 406		scope = RT_SCOPE_HOST;
 407		break;
 408	case 2:	/*
 409		 * Reply only if tip is configured on the incoming interface
 410		 * and is in same subnet as sip
 411		 */
 412		scope = RT_SCOPE_HOST;
 413		break;
 414	case 3:	/* Do not reply for scope host addresses */
 415		sip = 0;
 416		scope = RT_SCOPE_LINK;
 417		in_dev = NULL;
 418		break;
 419	case 4:	/* Reserved */
 420	case 5:
 421	case 6:
 422	case 7:
 423		return 0;
 424	case 8:	/* Do not reply */
 425		return 1;
 426	default:
 427		return 0;
 428	}
 429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 430}
 431
 432static int arp_accept(struct in_device *in_dev, __be32 sip)
 433{
 434	struct net *net = dev_net(in_dev->dev);
 435	int scope = RT_SCOPE_LINK;
 436
 437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
 438	case 0: /* Don't create new entries from garp */
 439		return 0;
 440	case 1: /* Create new entries from garp */
 441		return 1;
 442	case 2: /* Create a neighbor in the arp table only if sip
 443		 * is in the same subnet as an address configured
 444		 * on the interface that received the garp message
 445		 */
 446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
 447	default:
 448		return 0;
 449	}
 450}
 451
 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 453{
 454	struct rtable *rt;
 455	int flag = 0;
 456	/*unsigned long now; */
 457	struct net *net = dev_net(dev);
 458
 459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 460	if (IS_ERR(rt))
 461		return 1;
 462	if (rt->dst.dev != dev) {
 463		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 464		flag = 1;
 465	}
 466	ip_rt_put(rt);
 467	return flag;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470/*
 471 * Check if we can use proxy ARP for this path
 472 */
 473static inline int arp_fwd_proxy(struct in_device *in_dev,
 474				struct net_device *dev,	struct rtable *rt)
 475{
 476	struct in_device *out_dev;
 477	int imi, omi = -1;
 478
 479	if (rt->dst.dev == dev)
 480		return 0;
 481
 482	if (!IN_DEV_PROXY_ARP(in_dev))
 483		return 0;
 484	imi = IN_DEV_MEDIUM_ID(in_dev);
 485	if (imi == 0)
 486		return 1;
 487	if (imi == -1)
 488		return 0;
 489
 490	/* place to check for proxy_arp for routes */
 491
 492	out_dev = __in_dev_get_rcu(rt->dst.dev);
 493	if (out_dev)
 494		omi = IN_DEV_MEDIUM_ID(out_dev);
 495
 496	return omi != imi && omi != -1;
 497}
 498
 499/*
 500 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 501 *
 502 * RFC3069 supports proxy arp replies back to the same interface.  This
 503 * is done to support (ethernet) switch features, like RFC 3069, where
 504 * the individual ports are not allowed to communicate with each
 505 * other, BUT they are allowed to talk to the upstream router.  As
 506 * described in RFC 3069, it is possible to allow these hosts to
 507 * communicate through the upstream router, by proxy_arp'ing.
 508 *
 509 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 510 *
 511 *  This technology is known by different names:
 512 *    In RFC 3069 it is called VLAN Aggregation.
 513 *    Cisco and Allied Telesyn call it Private VLAN.
 514 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 515 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 516 *
 517 */
 518static inline int arp_fwd_pvlan(struct in_device *in_dev,
 519				struct net_device *dev,	struct rtable *rt,
 520				__be32 sip, __be32 tip)
 521{
 522	/* Private VLAN is only concerned about the same ethernet segment */
 523	if (rt->dst.dev != dev)
 524		return 0;
 525
 526	/* Don't reply on self probes (often done by windowz boxes)*/
 527	if (sip == tip)
 528		return 0;
 529
 530	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 531		return 1;
 532	else
 533		return 0;
 534}
 535
 536/*
 537 *	Interface to link layer: send routine and receive handler.
 538 */
 539
 540/*
 541 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 542 *	message.
 543 */
 544struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 545			   struct net_device *dev, __be32 src_ip,
 546			   const unsigned char *dest_hw,
 547			   const unsigned char *src_hw,
 548			   const unsigned char *target_hw)
 549{
 550	struct sk_buff *skb;
 551	struct arphdr *arp;
 552	unsigned char *arp_ptr;
 553	int hlen = LL_RESERVED_SPACE(dev);
 554	int tlen = dev->needed_tailroom;
 555
 556	/*
 557	 *	Allocate a buffer
 558	 */
 559
 560	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 561	if (!skb)
 562		return NULL;
 563
 564	skb_reserve(skb, hlen);
 565	skb_reset_network_header(skb);
 566	arp = skb_put(skb, arp_hdr_len(dev));
 567	skb->dev = dev;
 568	skb->protocol = htons(ETH_P_ARP);
 569	if (!src_hw)
 570		src_hw = dev->dev_addr;
 571	if (!dest_hw)
 572		dest_hw = dev->broadcast;
 573
 574	/*
 575	 *	Fill the device header for the ARP frame
 576	 */
 577	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 578		goto out;
 579
 580	/*
 581	 * Fill out the arp protocol part.
 582	 *
 583	 * The arp hardware type should match the device type, except for FDDI,
 584	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 585	 */
 586	/*
 587	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 588	 *	DIX code for the protocol. Make these device structure fields.
 589	 */
 590	switch (dev->type) {
 591	default:
 592		arp->ar_hrd = htons(dev->type);
 593		arp->ar_pro = htons(ETH_P_IP);
 594		break;
 595
 596#if IS_ENABLED(CONFIG_AX25)
 597	case ARPHRD_AX25:
 598		arp->ar_hrd = htons(ARPHRD_AX25);
 599		arp->ar_pro = htons(AX25_P_IP);
 600		break;
 601
 602#if IS_ENABLED(CONFIG_NETROM)
 603	case ARPHRD_NETROM:
 604		arp->ar_hrd = htons(ARPHRD_NETROM);
 605		arp->ar_pro = htons(AX25_P_IP);
 606		break;
 607#endif
 608#endif
 609
 610#if IS_ENABLED(CONFIG_FDDI)
 611	case ARPHRD_FDDI:
 612		arp->ar_hrd = htons(ARPHRD_ETHER);
 613		arp->ar_pro = htons(ETH_P_IP);
 614		break;
 615#endif
 
 
 
 
 
 
 616	}
 617
 618	arp->ar_hln = dev->addr_len;
 619	arp->ar_pln = 4;
 620	arp->ar_op = htons(type);
 621
 622	arp_ptr = (unsigned char *)(arp + 1);
 623
 624	memcpy(arp_ptr, src_hw, dev->addr_len);
 625	arp_ptr += dev->addr_len;
 626	memcpy(arp_ptr, &src_ip, 4);
 627	arp_ptr += 4;
 628
 629	switch (dev->type) {
 630#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 631	case ARPHRD_IEEE1394:
 632		break;
 633#endif
 634	default:
 635		if (target_hw)
 636			memcpy(arp_ptr, target_hw, dev->addr_len);
 637		else
 638			memset(arp_ptr, 0, dev->addr_len);
 639		arp_ptr += dev->addr_len;
 640	}
 641	memcpy(arp_ptr, &dest_ip, 4);
 642
 643	return skb;
 644
 645out:
 646	kfree_skb(skb);
 647	return NULL;
 648}
 649EXPORT_SYMBOL(arp_create);
 650
 651static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 652{
 653	return dev_queue_xmit(skb);
 654}
 655
 656/*
 657 *	Send an arp packet.
 658 */
 659void arp_xmit(struct sk_buff *skb)
 660{
 661	/* Send it off, maybe filter it using firewalling first.  */
 662	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 663		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 664		arp_xmit_finish);
 665}
 666EXPORT_SYMBOL(arp_xmit);
 667
 668static bool arp_is_garp(struct net *net, struct net_device *dev,
 669			int *addr_type, __be16 ar_op,
 670			__be32 sip, __be32 tip,
 671			unsigned char *sha, unsigned char *tha)
 
 
 
 672{
 673	bool is_garp = tip == sip;
 674
 675	/* Gratuitous ARP _replies_ also require target hwaddr to be
 676	 * the same as source.
 677	 */
 678	if (is_garp && ar_op == htons(ARPOP_REPLY))
 679		is_garp =
 680			/* IPv4 over IEEE 1394 doesn't provide target
 681			 * hardware address field in its ARP payload.
 682			 */
 683			tha &&
 684			!memcmp(tha, sha, dev->addr_len);
 685
 686	if (is_garp) {
 687		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 688		if (*addr_type != RTN_UNICAST)
 689			is_garp = false;
 690	}
 691	return is_garp;
 692}
 
 693
 694/*
 695 *	Process an arp request.
 696 */
 697
 698static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 699{
 700	struct net_device *dev = skb->dev;
 701	struct in_device *in_dev = __in_dev_get_rcu(dev);
 702	struct arphdr *arp;
 703	unsigned char *arp_ptr;
 704	struct rtable *rt;
 705	unsigned char *sha;
 706	unsigned char *tha = NULL;
 707	__be32 sip, tip;
 708	u16 dev_type = dev->type;
 709	int addr_type;
 710	struct neighbour *n;
 711	struct dst_entry *reply_dst = NULL;
 712	bool is_garp = false;
 713
 714	/* arp_rcv below verifies the ARP header and verifies the device
 715	 * is ARP'able.
 716	 */
 717
 718	if (!in_dev)
 719		goto out_free_skb;
 720
 721	arp = arp_hdr(skb);
 722
 723	switch (dev_type) {
 724	default:
 725		if (arp->ar_pro != htons(ETH_P_IP) ||
 726		    htons(dev_type) != arp->ar_hrd)
 727			goto out_free_skb;
 728		break;
 729	case ARPHRD_ETHER:
 
 730	case ARPHRD_FDDI:
 731	case ARPHRD_IEEE802:
 732		/*
 733		 * ETHERNET, and Fibre Channel (which are IEEE 802
 734		 * devices, according to RFC 2625) devices will accept ARP
 735		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 736		 * This is the case also of FDDI, where the RFC 1390 says that
 737		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 738		 * however, to be more robust, we'll accept both 1 (Ethernet)
 739		 * or 6 (IEEE 802.2)
 740		 */
 741		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 742		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 743		    arp->ar_pro != htons(ETH_P_IP))
 744			goto out_free_skb;
 745		break;
 746	case ARPHRD_AX25:
 747		if (arp->ar_pro != htons(AX25_P_IP) ||
 748		    arp->ar_hrd != htons(ARPHRD_AX25))
 749			goto out_free_skb;
 750		break;
 751	case ARPHRD_NETROM:
 752		if (arp->ar_pro != htons(AX25_P_IP) ||
 753		    arp->ar_hrd != htons(ARPHRD_NETROM))
 754			goto out_free_skb;
 755		break;
 756	}
 757
 758	/* Understand only these message types */
 759
 760	if (arp->ar_op != htons(ARPOP_REPLY) &&
 761	    arp->ar_op != htons(ARPOP_REQUEST))
 762		goto out_free_skb;
 763
 764/*
 765 *	Extract fields
 766 */
 767	arp_ptr = (unsigned char *)(arp + 1);
 768	sha	= arp_ptr;
 769	arp_ptr += dev->addr_len;
 770	memcpy(&sip, arp_ptr, 4);
 771	arp_ptr += 4;
 772	switch (dev_type) {
 773#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 774	case ARPHRD_IEEE1394:
 775		break;
 776#endif
 777	default:
 778		tha = arp_ptr;
 779		arp_ptr += dev->addr_len;
 780	}
 781	memcpy(&tip, arp_ptr, 4);
 782/*
 783 *	Check for bad requests for 127.x.x.x and requests for multicast
 784 *	addresses.  If this is one such, delete it.
 785 */
 786	if (ipv4_is_multicast(tip) ||
 787	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 788		goto out_free_skb;
 789
 790 /*
 791  *	For some 802.11 wireless deployments (and possibly other networks),
 792  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 793  *	and thus should not be accepted.
 794  */
 795	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 796		goto out_free_skb;
 797
 798/*
 799 *     Special case: We must set Frame Relay source Q.922 address
 800 */
 801	if (dev_type == ARPHRD_DLCI)
 802		sha = dev->broadcast;
 803
 804/*
 805 *  Process entry.  The idea here is we want to send a reply if it is a
 806 *  request for us or if it is a request for someone else that we hold
 807 *  a proxy for.  We want to add an entry to our cache if it is a reply
 808 *  to us or if it is a request for our address.
 809 *  (The assumption for this last is that if someone is requesting our
 810 *  address, they are probably intending to talk to us, so it saves time
 811 *  if we cache their address.  Their address is also probably not in
 812 *  our cache, since ours is not in their cache.)
 813 *
 814 *  Putting this another way, we only care about replies if they are to
 815 *  us, in which case we add them to the cache.  For requests, we care
 816 *  about those for us and those for our proxies.  We reply to both,
 817 *  and in the case of requests for us we add the requester to the arp
 818 *  cache.
 819 */
 820
 821	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 822		reply_dst = (struct dst_entry *)
 823			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 824						    GFP_ATOMIC);
 825
 826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 827	if (sip == 0) {
 828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 829		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 830		    !arp_ignore(in_dev, sip, tip))
 831			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 832				     sha, dev->dev_addr, sha, reply_dst);
 833		goto out_consume_skb;
 834	}
 835
 836	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 838
 839		rt = skb_rtable(skb);
 840		addr_type = rt->rt_type;
 841
 842		if (addr_type == RTN_LOCAL) {
 843			int dont_send;
 844
 845			dont_send = arp_ignore(in_dev, sip, tip);
 846			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 847				dont_send = arp_filter(sip, tip, dev);
 848			if (!dont_send) {
 849				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 850				if (n) {
 851					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852						     sip, dev, tip, sha,
 853						     dev->dev_addr, sha,
 854						     reply_dst);
 855					neigh_release(n);
 856				}
 857			}
 858			goto out_consume_skb;
 859		} else if (IN_DEV_FORWARD(in_dev)) {
 860			if (addr_type == RTN_UNICAST  &&
 861			    (arp_fwd_proxy(in_dev, dev, rt) ||
 862			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 863			     (rt->dst.dev != dev &&
 864			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 865				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 866				if (n)
 867					neigh_release(n);
 868
 869				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 870				    skb->pkt_type == PACKET_HOST ||
 871				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 872					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 873						     sip, dev, tip, sha,
 874						     dev->dev_addr, sha,
 875						     reply_dst);
 876				} else {
 877					pneigh_enqueue(&arp_tbl,
 878						       in_dev->arp_parms, skb);
 879					goto out_free_dst;
 880				}
 881				goto out_consume_skb;
 882			}
 883		}
 884	}
 885
 886	/* Update our ARP tables */
 887
 888	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 889
 890	addr_type = -1;
 891	if (n || arp_accept(in_dev, sip)) {
 892		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 893				      sip, tip, sha, tha);
 894	}
 895
 896	if (arp_accept(in_dev, sip)) {
 897		/* Unsolicited ARP is not accepted by default.
 898		   It is possible, that this option should be enabled for some
 899		   devices (strip is candidate)
 900		 */
 901		if (!n &&
 902		    (is_garp ||
 903		     (arp->ar_op == htons(ARPOP_REPLY) &&
 904		      (addr_type == RTN_UNICAST ||
 905		       (addr_type < 0 &&
 906			/* postpone calculation to as late as possible */
 907			inet_addr_type_dev_table(net, dev, sip) ==
 908				RTN_UNICAST)))))
 909			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 910	}
 911
 912	if (n) {
 913		int state = NUD_REACHABLE;
 914		int override;
 915
 916		/* If several different ARP replies follows back-to-back,
 917		   use the FIRST one. It is possible, if several proxy
 918		   agents are active. Taking the first reply prevents
 919		   arp trashing and chooses the fastest router.
 920		 */
 921		override = time_after(jiffies,
 922				      n->updated +
 923				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 924			   is_garp;
 925
 926		/* Broadcast replies and request packets
 927		   do not assert neighbour reachability.
 928		 */
 929		if (arp->ar_op != htons(ARPOP_REPLY) ||
 930		    skb->pkt_type != PACKET_HOST)
 931			state = NUD_STALE;
 932		neigh_update(n, sha, state,
 933			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 934		neigh_release(n);
 935	}
 936
 937out_consume_skb:
 938	consume_skb(skb);
 939
 940out_free_dst:
 941	dst_release(reply_dst);
 942	return NET_RX_SUCCESS;
 943
 944out_free_skb:
 945	kfree_skb(skb);
 946	return NET_RX_DROP;
 947}
 948
 949static void parp_redo(struct sk_buff *skb)
 950{
 951	arp_process(dev_net(skb->dev), NULL, skb);
 952}
 953
 954static int arp_is_multicast(const void *pkey)
 955{
 956	return ipv4_is_multicast(*((__be32 *)pkey));
 957}
 958
 959/*
 960 *	Receive an arp request from the device layer.
 961 */
 962
 963static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 964		   struct packet_type *pt, struct net_device *orig_dev)
 965{
 966	const struct arphdr *arp;
 967
 968	/* do not tweak dropwatch on an ARP we will ignore */
 969	if (dev->flags & IFF_NOARP ||
 970	    skb->pkt_type == PACKET_OTHERHOST ||
 971	    skb->pkt_type == PACKET_LOOPBACK)
 972		goto consumeskb;
 973
 974	skb = skb_share_check(skb, GFP_ATOMIC);
 975	if (!skb)
 976		goto out_of_mem;
 977
 978	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 979	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 980		goto freeskb;
 981
 982	arp = arp_hdr(skb);
 983	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 984		goto freeskb;
 985
 
 
 
 
 986	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 987
 988	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 989		       dev_net(dev), NULL, skb, dev, NULL,
 990		       arp_process);
 991
 992consumeskb:
 993	consume_skb(skb);
 994	return NET_RX_SUCCESS;
 995freeskb:
 996	kfree_skb(skb);
 997out_of_mem:
 998	return NET_RX_DROP;
 999}
1000
1001/*
1002 *	User level interface (ioctl)
1003 */
1004
1005/*
1006 *	Set (create) an ARP cache entry.
1007 */
1008
1009static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1010{
1011	if (!dev) {
1012		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1013		return 0;
1014	}
1015	if (__in_dev_get_rtnl(dev)) {
1016		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1017		return 0;
1018	}
1019	return -ENXIO;
1020}
1021
1022static int arp_req_set_public(struct net *net, struct arpreq *r,
1023		struct net_device *dev)
1024{
1025	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1027
1028	if (mask && mask != htonl(0xFFFFFFFF))
1029		return -EINVAL;
1030	if (!dev && (r->arp_flags & ATF_COM)) {
1031		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1032				      r->arp_ha.sa_data);
1033		if (!dev)
1034			return -ENODEV;
1035	}
1036	if (mask) {
1037		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1038			return -ENOBUFS;
1039		return 0;
1040	}
1041
1042	return arp_req_set_proxy(net, dev, 1);
1043}
1044
1045static int arp_req_set(struct net *net, struct arpreq *r,
1046		       struct net_device *dev)
1047{
1048	__be32 ip;
1049	struct neighbour *neigh;
1050	int err;
1051
1052	if (r->arp_flags & ATF_PUBL)
1053		return arp_req_set_public(net, r, dev);
1054
1055	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1056	if (r->arp_flags & ATF_PERM)
1057		r->arp_flags |= ATF_COM;
1058	if (!dev) {
1059		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1060
1061		if (IS_ERR(rt))
1062			return PTR_ERR(rt);
1063		dev = rt->dst.dev;
1064		ip_rt_put(rt);
1065		if (!dev)
1066			return -EINVAL;
1067	}
1068	switch (dev->type) {
1069#if IS_ENABLED(CONFIG_FDDI)
1070	case ARPHRD_FDDI:
1071		/*
1072		 * According to RFC 1390, FDDI devices should accept ARP
1073		 * hardware types of 1 (Ethernet).  However, to be more
1074		 * robust, we'll accept hardware types of either 1 (Ethernet)
1075		 * or 6 (IEEE 802.2).
1076		 */
1077		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1078		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1079		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1080			return -EINVAL;
1081		break;
1082#endif
1083	default:
1084		if (r->arp_ha.sa_family != dev->type)
1085			return -EINVAL;
1086		break;
1087	}
1088
1089	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1090	err = PTR_ERR(neigh);
1091	if (!IS_ERR(neigh)) {
1092		unsigned int state = NUD_STALE;
1093		if (r->arp_flags & ATF_PERM)
1094			state = NUD_PERMANENT;
1095		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1096				   r->arp_ha.sa_data : NULL, state,
1097				   NEIGH_UPDATE_F_OVERRIDE |
1098				   NEIGH_UPDATE_F_ADMIN, 0);
1099		neigh_release(neigh);
1100	}
1101	return err;
1102}
1103
1104static unsigned int arp_state_to_flags(struct neighbour *neigh)
1105{
1106	if (neigh->nud_state&NUD_PERMANENT)
1107		return ATF_PERM | ATF_COM;
1108	else if (neigh->nud_state&NUD_VALID)
1109		return ATF_COM;
1110	else
1111		return 0;
1112}
1113
1114/*
1115 *	Get an ARP cache entry.
1116 */
1117
1118static int arp_req_get(struct arpreq *r, struct net_device *dev)
1119{
1120	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1121	struct neighbour *neigh;
1122	int err = -ENXIO;
1123
1124	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125	if (neigh) {
1126		if (!(READ_ONCE(neigh->nud_state) & NUD_NOARP)) {
1127			read_lock_bh(&neigh->lock);
1128			memcpy(r->arp_ha.sa_data, neigh->ha,
1129			       min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1130			r->arp_flags = arp_state_to_flags(neigh);
1131			read_unlock_bh(&neigh->lock);
1132			r->arp_ha.sa_family = dev->type;
1133			strscpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1134			err = 0;
1135		}
1136		neigh_release(neigh);
 
1137	}
1138	return err;
1139}
1140
1141int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1142{
1143	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1144	int err = -ENXIO;
1145	struct neigh_table *tbl = &arp_tbl;
1146
1147	if (neigh) {
1148		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1149			neigh_release(neigh);
1150			return 0;
1151		}
1152
1153		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1154			err = neigh_update(neigh, NULL, NUD_FAILED,
1155					   NEIGH_UPDATE_F_OVERRIDE|
1156					   NEIGH_UPDATE_F_ADMIN, 0);
1157		write_lock_bh(&tbl->lock);
1158		neigh_release(neigh);
1159		neigh_remove_one(neigh, tbl);
1160		write_unlock_bh(&tbl->lock);
1161	}
1162
1163	return err;
1164}
 
1165
1166static int arp_req_delete_public(struct net *net, struct arpreq *r,
1167		struct net_device *dev)
1168{
1169	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1170	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1171
1172	if (mask == htonl(0xFFFFFFFF))
1173		return pneigh_delete(&arp_tbl, net, &ip, dev);
1174
1175	if (mask)
1176		return -EINVAL;
1177
1178	return arp_req_set_proxy(net, dev, 0);
1179}
1180
1181static int arp_req_delete(struct net *net, struct arpreq *r,
1182			  struct net_device *dev)
1183{
1184	__be32 ip;
1185
1186	if (r->arp_flags & ATF_PUBL)
1187		return arp_req_delete_public(net, r, dev);
1188
1189	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1190	if (!dev) {
1191		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1192		if (IS_ERR(rt))
1193			return PTR_ERR(rt);
1194		dev = rt->dst.dev;
1195		ip_rt_put(rt);
1196		if (!dev)
1197			return -EINVAL;
1198	}
1199	return arp_invalidate(dev, ip, true);
1200}
1201
1202/*
1203 *	Handle an ARP layer I/O control request.
1204 */
1205
1206int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1207{
1208	int err;
1209	struct arpreq r;
1210	struct net_device *dev = NULL;
1211
1212	switch (cmd) {
1213	case SIOCDARP:
1214	case SIOCSARP:
1215		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1216			return -EPERM;
1217		fallthrough;
1218	case SIOCGARP:
1219		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1220		if (err)
1221			return -EFAULT;
1222		break;
1223	default:
1224		return -EINVAL;
1225	}
1226
1227	if (r.arp_pa.sa_family != AF_INET)
1228		return -EPFNOSUPPORT;
1229
1230	if (!(r.arp_flags & ATF_PUBL) &&
1231	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1232		return -EINVAL;
1233	if (!(r.arp_flags & ATF_NETMASK))
1234		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1235							   htonl(0xFFFFFFFFUL);
1236	rtnl_lock();
1237	if (r.arp_dev[0]) {
1238		err = -ENODEV;
1239		dev = __dev_get_by_name(net, r.arp_dev);
1240		if (!dev)
1241			goto out;
1242
1243		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1244		if (!r.arp_ha.sa_family)
1245			r.arp_ha.sa_family = dev->type;
1246		err = -EINVAL;
1247		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1248			goto out;
1249	} else if (cmd == SIOCGARP) {
1250		err = -ENODEV;
1251		goto out;
1252	}
1253
1254	switch (cmd) {
1255	case SIOCDARP:
1256		err = arp_req_delete(net, &r, dev);
1257		break;
1258	case SIOCSARP:
1259		err = arp_req_set(net, &r, dev);
1260		break;
1261	case SIOCGARP:
1262		err = arp_req_get(&r, dev);
1263		break;
1264	}
1265out:
1266	rtnl_unlock();
1267	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1268		err = -EFAULT;
1269	return err;
1270}
1271
1272static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1273			    void *ptr)
1274{
1275	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1276	struct netdev_notifier_change_info *change_info;
1277	struct in_device *in_dev;
1278	bool evict_nocarrier;
1279
1280	switch (event) {
1281	case NETDEV_CHANGEADDR:
1282		neigh_changeaddr(&arp_tbl, dev);
1283		rt_cache_flush(dev_net(dev));
1284		break;
1285	case NETDEV_CHANGE:
1286		change_info = ptr;
1287		if (change_info->flags_changed & IFF_NOARP)
1288			neigh_changeaddr(&arp_tbl, dev);
1289
1290		in_dev = __in_dev_get_rtnl(dev);
1291		if (!in_dev)
1292			evict_nocarrier = true;
1293		else
1294			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1295
1296		if (evict_nocarrier && !netif_carrier_ok(dev))
1297			neigh_carrier_down(&arp_tbl, dev);
1298		break;
1299	default:
1300		break;
1301	}
1302
1303	return NOTIFY_DONE;
1304}
1305
1306static struct notifier_block arp_netdev_notifier = {
1307	.notifier_call = arp_netdev_event,
1308};
1309
1310/* Note, that it is not on notifier chain.
1311   It is necessary, that this routine was called after route cache will be
1312   flushed.
1313 */
1314void arp_ifdown(struct net_device *dev)
1315{
1316	neigh_ifdown(&arp_tbl, dev);
1317}
1318
1319
1320/*
1321 *	Called once on startup.
1322 */
1323
1324static struct packet_type arp_packet_type __read_mostly = {
1325	.type =	cpu_to_be16(ETH_P_ARP),
1326	.func =	arp_rcv,
1327};
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329#ifdef CONFIG_PROC_FS
1330#if IS_ENABLED(CONFIG_AX25)
1331
 
1332/*
1333 *	ax25 -> ASCII conversion
1334 */
1335static void ax2asc2(ax25_address *a, char *buf)
1336{
1337	char c, *s;
1338	int n;
1339
1340	for (n = 0, s = buf; n < 6; n++) {
1341		c = (a->ax25_call[n] >> 1) & 0x7F;
1342
1343		if (c != ' ')
1344			*s++ = c;
1345	}
1346
1347	*s++ = '-';
1348	n = (a->ax25_call[6] >> 1) & 0x0F;
1349	if (n > 9) {
1350		*s++ = '1';
1351		n -= 10;
1352	}
1353
1354	*s++ = n + '0';
1355	*s++ = '\0';
1356
1357	if (*buf == '\0' || *buf == '-') {
1358		buf[0] = '*';
1359		buf[1] = '\0';
1360	}
1361}
1362#endif /* CONFIG_AX25 */
1363
1364#define HBUFFERLEN 30
1365
1366static void arp_format_neigh_entry(struct seq_file *seq,
1367				   struct neighbour *n)
1368{
1369	char hbuffer[HBUFFERLEN];
1370	int k, j;
1371	char tbuf[16];
1372	struct net_device *dev = n->dev;
1373	int hatype = dev->type;
1374
1375	read_lock(&n->lock);
1376	/* Convert hardware address to XX:XX:XX:XX ... form. */
1377#if IS_ENABLED(CONFIG_AX25)
1378	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1379		ax2asc2((ax25_address *)n->ha, hbuffer);
1380	else {
1381#endif
1382	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1383		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1384		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1385		hbuffer[k++] = ':';
1386	}
1387	if (k != 0)
1388		--k;
1389	hbuffer[k] = 0;
1390#if IS_ENABLED(CONFIG_AX25)
1391	}
1392#endif
1393	sprintf(tbuf, "%pI4", n->primary_key);
1394	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1395		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1396	read_unlock(&n->lock);
1397}
1398
1399static void arp_format_pneigh_entry(struct seq_file *seq,
1400				    struct pneigh_entry *n)
1401{
1402	struct net_device *dev = n->dev;
1403	int hatype = dev ? dev->type : 0;
1404	char tbuf[16];
1405
1406	sprintf(tbuf, "%pI4", n->key);
1407	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1408		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1409		   dev ? dev->name : "*");
1410}
1411
1412static int arp_seq_show(struct seq_file *seq, void *v)
1413{
1414	if (v == SEQ_START_TOKEN) {
1415		seq_puts(seq, "IP address       HW type     Flags       "
1416			      "HW address            Mask     Device\n");
1417	} else {
1418		struct neigh_seq_state *state = seq->private;
1419
1420		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1421			arp_format_pneigh_entry(seq, v);
1422		else
1423			arp_format_neigh_entry(seq, v);
1424	}
1425
1426	return 0;
1427}
1428
1429static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1430{
1431	/* Don't want to confuse "arp -a" w/ magic entries,
1432	 * so we tell the generic iterator to skip NUD_NOARP.
1433	 */
1434	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1435}
1436
 
 
1437static const struct seq_operations arp_seq_ops = {
1438	.start	= arp_seq_start,
1439	.next	= neigh_seq_next,
1440	.stop	= neigh_seq_stop,
1441	.show	= arp_seq_show,
1442};
1443#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445static int __net_init arp_net_init(struct net *net)
1446{
1447	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1448			sizeof(struct neigh_seq_state)))
1449		return -ENOMEM;
1450	return 0;
1451}
1452
1453static void __net_exit arp_net_exit(struct net *net)
1454{
1455	remove_proc_entry("arp", net->proc_net);
1456}
1457
1458static struct pernet_operations arp_net_ops = {
1459	.init = arp_net_init,
1460	.exit = arp_net_exit,
1461};
1462
1463void __init arp_init(void)
1464{
1465	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
 
1466
1467	dev_add_pack(&arp_packet_type);
1468	register_pernet_subsys(&arp_net_ops);
1469#ifdef CONFIG_SYSCTL
1470	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1471#endif
1472	register_netdevice_notifier(&arp_netdev_notifier);
1473}
v3.1
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 
 
 
 
 
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 
 
 
 
 235
 
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328}
 
 329
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 
 
 
 
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 
 
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 
 
 
 
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
 
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
 
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
 
 
 
 
 
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
 
1122		neigh_release(neigh);
 
 
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
 
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
 
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
 
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
 
1448}
1449
1450#endif /* CONFIG_PROC_FS */