Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.9.4
    1// SPDX-License-Identifier: GPL-2.0-or-later
    2/*
    3 *      NET3    Protocol independent device support routines.
 
 
 
 
 
    4 *
    5 *	Derived from the non IP parts of dev.c 1.0.19
    6 *              Authors:	Ross Biro
    7 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
    8 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
    9 *
   10 *	Additional Authors:
   11 *		Florian la Roche <rzsfl@rz.uni-sb.de>
   12 *		Alan Cox <gw4pts@gw4pts.ampr.org>
   13 *		David Hinds <dahinds@users.sourceforge.net>
   14 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
   15 *		Adam Sulmicki <adam@cfar.umd.edu>
   16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
   17 *
   18 *	Changes:
   19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
   20 *                                      to 2 if register_netdev gets called
   21 *                                      before net_dev_init & also removed a
   22 *                                      few lines of code in the process.
   23 *		Alan Cox	:	device private ioctl copies fields back.
   24 *		Alan Cox	:	Transmit queue code does relevant
   25 *					stunts to keep the queue safe.
   26 *		Alan Cox	:	Fixed double lock.
   27 *		Alan Cox	:	Fixed promisc NULL pointer trap
   28 *		????????	:	Support the full private ioctl range
   29 *		Alan Cox	:	Moved ioctl permission check into
   30 *					drivers
   31 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
   32 *		Alan Cox	:	100 backlog just doesn't cut it when
   33 *					you start doing multicast video 8)
   34 *		Alan Cox	:	Rewrote net_bh and list manager.
   35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
   36 *		Alan Cox	:	Took out transmit every packet pass
   37 *					Saved a few bytes in the ioctl handler
   38 *		Alan Cox	:	Network driver sets packet type before
   39 *					calling netif_rx. Saves a function
   40 *					call a packet.
   41 *		Alan Cox	:	Hashed net_bh()
   42 *		Richard Kooijman:	Timestamp fixes.
   43 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
   44 *		Alan Cox	:	Device lock protection.
   45 *              Alan Cox        :       Fixed nasty side effect of device close
   46 *					changes.
   47 *		Rudi Cilibrasi	:	Pass the right thing to
   48 *					set_mac_address()
   49 *		Dave Miller	:	32bit quantity for the device lock to
   50 *					make it work out on a Sparc.
   51 *		Bjorn Ekwall	:	Added KERNELD hack.
   52 *		Alan Cox	:	Cleaned up the backlog initialise.
   53 *		Craig Metz	:	SIOCGIFCONF fix if space for under
   54 *					1 device.
   55 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
   56 *					is no device open function.
   57 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
   58 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
   59 *		Cyrus Durgin	:	Cleaned for KMOD
   60 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
   61 *					A network device unload needs to purge
   62 *					the backlog queue.
   63 *	Paul Rusty Russell	:	SIOCSIFNAME
   64 *              Pekka Riikonen  :	Netdev boot-time settings code
   65 *              Andrew Morton   :       Make unregister_netdevice wait
   66 *                                      indefinitely on dev->refcnt
   67 *              J Hadi Salim    :       - Backlog queue sampling
   68 *				        - netif_rx() feedback
   69 */
   70
   71#include <linux/uaccess.h>
   72#include <linux/bitmap.h>
 
   73#include <linux/capability.h>
   74#include <linux/cpu.h>
   75#include <linux/types.h>
   76#include <linux/kernel.h>
   77#include <linux/hash.h>
   78#include <linux/slab.h>
   79#include <linux/sched.h>
   80#include <linux/sched/mm.h>
   81#include <linux/mutex.h>
   82#include <linux/rwsem.h>
   83#include <linux/string.h>
   84#include <linux/mm.h>
   85#include <linux/socket.h>
   86#include <linux/sockios.h>
   87#include <linux/errno.h>
   88#include <linux/interrupt.h>
   89#include <linux/if_ether.h>
   90#include <linux/netdevice.h>
   91#include <linux/etherdevice.h>
   92#include <linux/ethtool.h>
 
   93#include <linux/skbuff.h>
   94#include <linux/kthread.h>
   95#include <linux/bpf.h>
   96#include <linux/bpf_trace.h>
   97#include <net/net_namespace.h>
   98#include <net/sock.h>
   99#include <net/busy_poll.h>
  100#include <linux/rtnetlink.h>
 
 
  101#include <linux/stat.h>
  102#include <net/dsa.h>
  103#include <net/dst.h>
  104#include <net/dst_metadata.h>
  105#include <net/gro.h>
  106#include <net/pkt_sched.h>
  107#include <net/pkt_cls.h>
  108#include <net/checksum.h>
  109#include <net/xfrm.h>
  110#include <net/tcx.h>
  111#include <linux/highmem.h>
  112#include <linux/init.h>
 
  113#include <linux/module.h>
  114#include <linux/netpoll.h>
  115#include <linux/rcupdate.h>
  116#include <linux/delay.h>
 
  117#include <net/iw_handler.h>
  118#include <asm/current.h>
  119#include <linux/audit.h>
  120#include <linux/dmaengine.h>
  121#include <linux/err.h>
  122#include <linux/ctype.h>
  123#include <linux/if_arp.h>
  124#include <linux/if_vlan.h>
  125#include <linux/ip.h>
  126#include <net/ip.h>
  127#include <net/mpls.h>
  128#include <linux/ipv6.h>
  129#include <linux/in.h>
  130#include <linux/jhash.h>
  131#include <linux/random.h>
  132#include <trace/events/napi.h>
  133#include <trace/events/net.h>
  134#include <trace/events/skb.h>
  135#include <trace/events/qdisc.h>
  136#include <trace/events/xdp.h>
  137#include <linux/inetdevice.h>
  138#include <linux/cpu_rmap.h>
  139#include <linux/static_key.h>
  140#include <linux/hashtable.h>
  141#include <linux/vmalloc.h>
  142#include <linux/if_macvlan.h>
  143#include <linux/errqueue.h>
  144#include <linux/hrtimer.h>
  145#include <linux/netfilter_netdev.h>
  146#include <linux/crash_dump.h>
  147#include <linux/sctp.h>
  148#include <net/udp_tunnel.h>
  149#include <linux/net_namespace.h>
  150#include <linux/indirect_call_wrapper.h>
  151#include <net/devlink.h>
  152#include <linux/pm_runtime.h>
  153#include <linux/prandom.h>
  154#include <linux/once_lite.h>
  155#include <net/netdev_rx_queue.h>
  156#include <net/page_pool/types.h>
  157#include <net/page_pool/helpers.h>
  158#include <net/rps.h>
  159
  160#include "dev.h"
  161#include "net-sysfs.h"
  162
  163static DEFINE_SPINLOCK(ptype_lock);
  164struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
  165
  166static int netif_rx_internal(struct sk_buff *skb);
  167static int call_netdevice_notifiers_extack(unsigned long val,
  168					   struct net_device *dev,
  169					   struct netlink_ext_ack *extack);
  170
  171static DEFINE_MUTEX(ifalias_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  172
  173/* protects napi_hash addition/deletion and napi_gen_id */
  174static DEFINE_SPINLOCK(napi_hash_lock);
  175
  176static unsigned int napi_gen_id = NR_CPUS;
  177static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 
  178
  179static DECLARE_RWSEM(devnet_rename_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  180
  181static inline void dev_base_seq_inc(struct net *net)
  182{
  183	unsigned int val = net->dev_base_seq + 1;
  184
  185	WRITE_ONCE(net->dev_base_seq, val ?: 1);
  186}
  187
  188static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
  189{
  190	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
  191
  192	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
  193}
  194
  195static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
  196{
  197	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
  198}
  199
  200static inline void rps_lock_irqsave(struct softnet_data *sd,
  201				    unsigned long *flags)
  202{
  203	if (IS_ENABLED(CONFIG_RPS))
  204		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
  205	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  206		local_irq_save(*flags);
  207}
  208
  209static inline void rps_lock_irq_disable(struct softnet_data *sd)
  210{
  211	if (IS_ENABLED(CONFIG_RPS))
  212		spin_lock_irq(&sd->input_pkt_queue.lock);
  213	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  214		local_irq_disable();
  215}
  216
  217static inline void rps_unlock_irq_restore(struct softnet_data *sd,
  218					  unsigned long *flags)
  219{
  220	if (IS_ENABLED(CONFIG_RPS))
  221		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
  222	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  223		local_irq_restore(*flags);
  224}
  225
  226static inline void rps_unlock_irq_enable(struct softnet_data *sd)
  227{
  228	if (IS_ENABLED(CONFIG_RPS))
  229		spin_unlock_irq(&sd->input_pkt_queue.lock);
  230	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  231		local_irq_enable();
  232}
  233
  234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
  235						       const char *name)
  236{
  237	struct netdev_name_node *name_node;
  238
  239	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
  240	if (!name_node)
  241		return NULL;
  242	INIT_HLIST_NODE(&name_node->hlist);
  243	name_node->dev = dev;
  244	name_node->name = name;
  245	return name_node;
  246}
  247
  248static struct netdev_name_node *
  249netdev_name_node_head_alloc(struct net_device *dev)
  250{
  251	struct netdev_name_node *name_node;
  252
  253	name_node = netdev_name_node_alloc(dev, dev->name);
  254	if (!name_node)
  255		return NULL;
  256	INIT_LIST_HEAD(&name_node->list);
  257	return name_node;
  258}
  259
  260static void netdev_name_node_free(struct netdev_name_node *name_node)
  261{
  262	kfree(name_node);
  263}
  264
  265static void netdev_name_node_add(struct net *net,
  266				 struct netdev_name_node *name_node)
  267{
  268	hlist_add_head_rcu(&name_node->hlist,
  269			   dev_name_hash(net, name_node->name));
  270}
  271
  272static void netdev_name_node_del(struct netdev_name_node *name_node)
  273{
  274	hlist_del_rcu(&name_node->hlist);
  275}
  276
  277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
  278							const char *name)
  279{
  280	struct hlist_head *head = dev_name_hash(net, name);
  281	struct netdev_name_node *name_node;
  282
  283	hlist_for_each_entry(name_node, head, hlist)
  284		if (!strcmp(name_node->name, name))
  285			return name_node;
  286	return NULL;
  287}
  288
  289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
  290							    const char *name)
  291{
  292	struct hlist_head *head = dev_name_hash(net, name);
  293	struct netdev_name_node *name_node;
  294
  295	hlist_for_each_entry_rcu(name_node, head, hlist)
  296		if (!strcmp(name_node->name, name))
  297			return name_node;
  298	return NULL;
  299}
  300
  301bool netdev_name_in_use(struct net *net, const char *name)
  302{
  303	return netdev_name_node_lookup(net, name);
  304}
  305EXPORT_SYMBOL(netdev_name_in_use);
  306
  307int netdev_name_node_alt_create(struct net_device *dev, const char *name)
  308{
  309	struct netdev_name_node *name_node;
  310	struct net *net = dev_net(dev);
  311
  312	name_node = netdev_name_node_lookup(net, name);
  313	if (name_node)
  314		return -EEXIST;
  315	name_node = netdev_name_node_alloc(dev, name);
  316	if (!name_node)
  317		return -ENOMEM;
  318	netdev_name_node_add(net, name_node);
  319	/* The node that holds dev->name acts as a head of per-device list. */
  320	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
  321
  322	return 0;
  323}
  324
  325static void netdev_name_node_alt_free(struct rcu_head *head)
  326{
  327	struct netdev_name_node *name_node =
  328		container_of(head, struct netdev_name_node, rcu);
  329
  330	kfree(name_node->name);
  331	netdev_name_node_free(name_node);
  332}
  333
  334static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
  335{
  336	netdev_name_node_del(name_node);
  337	list_del(&name_node->list);
  338	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
  339}
  340
  341int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
  342{
  343	struct netdev_name_node *name_node;
  344	struct net *net = dev_net(dev);
  345
  346	name_node = netdev_name_node_lookup(net, name);
  347	if (!name_node)
  348		return -ENOENT;
  349	/* lookup might have found our primary name or a name belonging
  350	 * to another device.
  351	 */
  352	if (name_node == dev->name_node || name_node->dev != dev)
  353		return -EINVAL;
  354
  355	__netdev_name_node_alt_destroy(name_node);
  356	return 0;
  357}
  358
  359static void netdev_name_node_alt_flush(struct net_device *dev)
  360{
  361	struct netdev_name_node *name_node, *tmp;
  362
  363	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
  364		list_del(&name_node->list);
  365		netdev_name_node_alt_free(&name_node->rcu);
  366	}
  367}
  368
  369/* Device list insertion */
  370static void list_netdevice(struct net_device *dev)
  371{
  372	struct netdev_name_node *name_node;
  373	struct net *net = dev_net(dev);
  374
  375	ASSERT_RTNL();
  376
 
  377	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
  378	netdev_name_node_add(net, dev->name_node);
  379	hlist_add_head_rcu(&dev->index_hlist,
  380			   dev_index_hash(net, dev->ifindex));
  381
  382	netdev_for_each_altname(dev, name_node)
  383		netdev_name_node_add(net, name_node);
  384
  385	/* We reserved the ifindex, this can't fail */
  386	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
  387
  388	dev_base_seq_inc(net);
 
 
  389}
  390
  391/* Device list removal
  392 * caller must respect a RCU grace period before freeing/reusing dev
  393 */
  394static void unlist_netdevice(struct net_device *dev)
  395{
  396	struct netdev_name_node *name_node;
  397	struct net *net = dev_net(dev);
  398
  399	ASSERT_RTNL();
  400
  401	xa_erase(&net->dev_by_index, dev->ifindex);
  402
  403	netdev_for_each_altname(dev, name_node)
  404		netdev_name_node_del(name_node);
  405
  406	/* Unlink dev from the device chain */
 
  407	list_del_rcu(&dev->dev_list);
  408	netdev_name_node_del(dev->name_node);
  409	hlist_del_rcu(&dev->index_hlist);
 
  410
  411	dev_base_seq_inc(dev_net(dev));
  412}
  413
  414/*
  415 *	Our notifier list
  416 */
  417
  418static RAW_NOTIFIER_HEAD(netdev_chain);
  419
  420/*
  421 *	Device drivers call our routines to queue packets here. We empty the
  422 *	queue in the local softnet handler.
  423 */
  424
  425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
  426EXPORT_PER_CPU_SYMBOL(softnet_data);
  427
  428/* Page_pool has a lockless array/stack to alloc/recycle pages.
  429 * PP consumers must pay attention to run APIs in the appropriate context
  430 * (e.g. NAPI context).
  431 */
  432static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
  433
  434#ifdef CONFIG_LOCKDEP
  435/*
  436 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
  437 * according to dev->type
  438 */
  439static const unsigned short netdev_lock_type[] = {
  440	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
  441	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
  442	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
  443	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
  444	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
  445	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
  446	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
  447	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
  448	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
  449	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
  450	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
  451	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
  452	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
  453	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
  454	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
  455
  456static const char *const netdev_lock_name[] = {
  457	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
  458	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
  459	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
  460	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
  461	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
  462	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
  463	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
  464	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
  465	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
  466	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
  467	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
  468	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
  469	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
  470	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
  471	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 
 
  472
  473static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
  474static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
  475
  476static inline unsigned short netdev_lock_pos(unsigned short dev_type)
  477{
  478	int i;
  479
  480	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
  481		if (netdev_lock_type[i] == dev_type)
  482			return i;
  483	/* the last key is used by default */
  484	return ARRAY_SIZE(netdev_lock_type) - 1;
  485}
  486
  487static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  488						 unsigned short dev_type)
  489{
  490	int i;
  491
  492	i = netdev_lock_pos(dev_type);
  493	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
  494				   netdev_lock_name[i]);
  495}
  496
  497static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  498{
  499	int i;
  500
  501	i = netdev_lock_pos(dev->type);
  502	lockdep_set_class_and_name(&dev->addr_list_lock,
  503				   &netdev_addr_lock_key[i],
  504				   netdev_lock_name[i]);
  505}
  506#else
  507static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  508						 unsigned short dev_type)
  509{
  510}
  511
  512static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  513{
  514}
  515#endif
  516
  517/*******************************************************************************
  518 *
  519 *		Protocol management and registration routines
  520 *
  521 *******************************************************************************/
  522
 
 
 
  523
  524/*
  525 *	Add a protocol ID to the list. Now that the input handler is
  526 *	smarter we can dispense with all the messy stuff that used to be
  527 *	here.
  528 *
  529 *	BEWARE!!! Protocol handlers, mangling input packets,
  530 *	MUST BE last in hash buckets and checking protocol handlers
  531 *	MUST start from promiscuous ptype_all chain in net_bh.
  532 *	It is true now, do not change it.
  533 *	Explanation follows: if protocol handler, mangling packet, will
  534 *	be the first on list, it is not able to sense, that packet
  535 *	is cloned and should be copied-on-write, so that it will
  536 *	change it and subsequent readers will get broken packet.
  537 *							--ANK (980803)
  538 */
  539
  540static inline struct list_head *ptype_head(const struct packet_type *pt)
  541{
  542	if (pt->type == htons(ETH_P_ALL))
  543		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
  544	else
  545		return pt->dev ? &pt->dev->ptype_specific :
  546				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
  547}
  548
  549/**
  550 *	dev_add_pack - add packet handler
  551 *	@pt: packet type declaration
  552 *
  553 *	Add a protocol handler to the networking stack. The passed &packet_type
  554 *	is linked into kernel lists and may not be freed until it has been
  555 *	removed from the kernel lists.
  556 *
  557 *	This call does not sleep therefore it can not
  558 *	guarantee all CPU's that are in middle of receiving packets
  559 *	will see the new packet type (until the next received packet).
  560 */
  561
  562void dev_add_pack(struct packet_type *pt)
  563{
  564	struct list_head *head = ptype_head(pt);
  565
  566	spin_lock(&ptype_lock);
  567	list_add_rcu(&pt->list, head);
  568	spin_unlock(&ptype_lock);
  569}
  570EXPORT_SYMBOL(dev_add_pack);
  571
  572/**
  573 *	__dev_remove_pack	 - remove packet handler
  574 *	@pt: packet type declaration
  575 *
  576 *	Remove a protocol handler that was previously added to the kernel
  577 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  578 *	from the kernel lists and can be freed or reused once this function
  579 *	returns.
  580 *
  581 *      The packet type might still be in use by receivers
  582 *	and must not be freed until after all the CPU's have gone
  583 *	through a quiescent state.
  584 */
  585void __dev_remove_pack(struct packet_type *pt)
  586{
  587	struct list_head *head = ptype_head(pt);
  588	struct packet_type *pt1;
  589
  590	spin_lock(&ptype_lock);
  591
  592	list_for_each_entry(pt1, head, list) {
  593		if (pt == pt1) {
  594			list_del_rcu(&pt->list);
  595			goto out;
  596		}
  597	}
  598
  599	pr_warn("dev_remove_pack: %p not found\n", pt);
  600out:
  601	spin_unlock(&ptype_lock);
  602}
  603EXPORT_SYMBOL(__dev_remove_pack);
  604
  605/**
  606 *	dev_remove_pack	 - remove packet handler
  607 *	@pt: packet type declaration
  608 *
  609 *	Remove a protocol handler that was previously added to the kernel
  610 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  611 *	from the kernel lists and can be freed or reused once this function
  612 *	returns.
  613 *
  614 *	This call sleeps to guarantee that no CPU is looking at the packet
  615 *	type after return.
  616 */
  617void dev_remove_pack(struct packet_type *pt)
  618{
  619	__dev_remove_pack(pt);
  620
  621	synchronize_net();
  622}
  623EXPORT_SYMBOL(dev_remove_pack);
  624
 
  625
  626/*******************************************************************************
  627 *
  628 *			    Device Interface Subroutines
  629 *
  630 *******************************************************************************/
 
  631
  632/**
  633 *	dev_get_iflink	- get 'iflink' value of a interface
  634 *	@dev: targeted interface
 
  635 *
  636 *	Indicates the ifindex the interface is linked to.
  637 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
 
  638 */
  639
  640int dev_get_iflink(const struct net_device *dev)
  641{
  642	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
  643		return dev->netdev_ops->ndo_get_iflink(dev);
 
 
 
 
 
 
 
 
 
 
  644
  645	return READ_ONCE(dev->ifindex);
  646}
  647EXPORT_SYMBOL(dev_get_iflink);
  648
  649/**
  650 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
  651 *	@dev: targeted interface
  652 *	@skb: The packet.
  653 *
  654 *	For better visibility of tunnel traffic OVS needs to retrieve
  655 *	egress tunnel information for a packet. Following API allows
  656 *	user to get this info.
 
  657 */
  658int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
  659{
  660	struct ip_tunnel_info *info;
  661
  662	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
  663		return -EINVAL;
  664
  665	info = skb_tunnel_info_unclone(skb);
  666	if (!info)
  667		return -ENOMEM;
  668	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
  669		return -EINVAL;
  670
  671	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 
 
 
 
 
 
 
 
 
 
  672}
  673EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 
  674
  675static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
 
 
 
 
 
 
 
 
 
 
  676{
  677	int k = stack->num_paths++;
 
 
  678
  679	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
  680		return NULL;
 
 
 
 
 
 
  681
  682	return &stack->path[k];
 
 
 
  683}
  684
  685int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
  686			  struct net_device_path_stack *stack)
 
 
  687{
  688	const struct net_device *last_dev;
  689	struct net_device_path_ctx ctx = {
  690		.dev	= dev,
  691	};
  692	struct net_device_path *path;
  693	int ret = 0;
  694
  695	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
  696	stack->num_paths = 0;
  697	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
  698		last_dev = ctx.dev;
  699		path = dev_fwd_path(stack);
  700		if (!path)
  701			return -1;
  702
  703		memset(path, 0, sizeof(struct net_device_path));
  704		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
  705		if (ret < 0)
  706			return -1;
 
 
 
 
 
 
  707
  708		if (WARN_ON_ONCE(last_dev == ctx.dev))
  709			return -1;
  710	}
  711
  712	if (!ctx.dev)
  713		return ret;
  714
  715	path = dev_fwd_path(stack);
  716	if (!path)
  717		return -1;
  718	path->type = DEV_PATH_ETHERNET;
  719	path->dev = ctx.dev;
  720
  721	return ret;
  722}
  723EXPORT_SYMBOL_GPL(dev_fill_forward_path);
  724
  725/**
  726 *	__dev_get_by_name	- find a device by its name
  727 *	@net: the applicable net namespace
  728 *	@name: name to find
  729 *
  730 *	Find an interface by name. Must be called under RTNL semaphore.
  731 *	If the name is found a pointer to the device is returned.
  732 *	If the name is not found then %NULL is returned. The
  733 *	reference counters are not incremented so the caller must be
  734 *	careful with locks.
  735 */
  736
  737struct net_device *__dev_get_by_name(struct net *net, const char *name)
  738{
  739	struct netdev_name_node *node_name;
 
 
  740
  741	node_name = netdev_name_node_lookup(net, name);
  742	return node_name ? node_name->dev : NULL;
 
 
 
  743}
  744EXPORT_SYMBOL(__dev_get_by_name);
  745
  746/**
  747 * dev_get_by_name_rcu	- find a device by its name
  748 * @net: the applicable net namespace
  749 * @name: name to find
  750 *
  751 * Find an interface by name.
  752 * If the name is found a pointer to the device is returned.
  753 * If the name is not found then %NULL is returned.
  754 * The reference counters are not incremented so the caller must be
  755 * careful with locks. The caller must hold RCU lock.
  756 */
  757
  758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
  759{
  760	struct netdev_name_node *node_name;
  761
  762	node_name = netdev_name_node_lookup_rcu(net, name);
  763	return node_name ? node_name->dev : NULL;
  764}
  765EXPORT_SYMBOL(dev_get_by_name_rcu);
  766
  767/* Deprecated for new users, call netdev_get_by_name() instead */
  768struct net_device *dev_get_by_name(struct net *net, const char *name)
  769{
  770	struct net_device *dev;
 
  771
  772	rcu_read_lock();
  773	dev = dev_get_by_name_rcu(net, name);
  774	dev_hold(dev);
  775	rcu_read_unlock();
  776	return dev;
  777}
  778EXPORT_SYMBOL(dev_get_by_name);
  779
  780/**
  781 *	netdev_get_by_name() - find a device by its name
  782 *	@net: the applicable net namespace
  783 *	@name: name to find
  784 *	@tracker: tracking object for the acquired reference
  785 *	@gfp: allocation flags for the tracker
  786 *
  787 *	Find an interface by name. This can be called from any
  788 *	context and does its own locking. The returned handle has
  789 *	the usage count incremented and the caller must use netdev_put() to
  790 *	release it when it is no longer needed. %NULL is returned if no
  791 *	matching device is found.
  792 */
  793struct net_device *netdev_get_by_name(struct net *net, const char *name,
  794				      netdevice_tracker *tracker, gfp_t gfp)
  795{
  796	struct net_device *dev;
  797
  798	dev = dev_get_by_name(net, name);
 
  799	if (dev)
  800		netdev_tracker_alloc(dev, tracker, gfp);
 
  801	return dev;
  802}
  803EXPORT_SYMBOL(netdev_get_by_name);
  804
  805/**
  806 *	__dev_get_by_index - find a device by its ifindex
  807 *	@net: the applicable net namespace
  808 *	@ifindex: index of device
  809 *
  810 *	Search for an interface by index. Returns %NULL if the device
  811 *	is not found or a pointer to the device. The device has not
  812 *	had its reference counter increased so the caller must be careful
  813 *	about locking. The caller must hold the RTNL semaphore.
 
  814 */
  815
  816struct net_device *__dev_get_by_index(struct net *net, int ifindex)
  817{
 
  818	struct net_device *dev;
  819	struct hlist_head *head = dev_index_hash(net, ifindex);
  820
  821	hlist_for_each_entry(dev, head, index_hlist)
  822		if (dev->ifindex == ifindex)
  823			return dev;
  824
  825	return NULL;
  826}
  827EXPORT_SYMBOL(__dev_get_by_index);
  828
  829/**
  830 *	dev_get_by_index_rcu - find a device by its ifindex
  831 *	@net: the applicable net namespace
  832 *	@ifindex: index of device
  833 *
  834 *	Search for an interface by index. Returns %NULL if the device
  835 *	is not found or a pointer to the device. The device has not
  836 *	had its reference counter increased so the caller must be careful
  837 *	about locking. The caller must hold RCU lock.
  838 */
  839
  840struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
  841{
 
  842	struct net_device *dev;
  843	struct hlist_head *head = dev_index_hash(net, ifindex);
  844
  845	hlist_for_each_entry_rcu(dev, head, index_hlist)
  846		if (dev->ifindex == ifindex)
  847			return dev;
  848
  849	return NULL;
  850}
  851EXPORT_SYMBOL(dev_get_by_index_rcu);
  852
  853/* Deprecated for new users, call netdev_get_by_index() instead */
  854struct net_device *dev_get_by_index(struct net *net, int ifindex)
  855{
  856	struct net_device *dev;
  857
  858	rcu_read_lock();
  859	dev = dev_get_by_index_rcu(net, ifindex);
  860	dev_hold(dev);
  861	rcu_read_unlock();
  862	return dev;
  863}
  864EXPORT_SYMBOL(dev_get_by_index);
  865
  866/**
  867 *	netdev_get_by_index() - find a device by its ifindex
  868 *	@net: the applicable net namespace
  869 *	@ifindex: index of device
  870 *	@tracker: tracking object for the acquired reference
  871 *	@gfp: allocation flags for the tracker
  872 *
  873 *	Search for an interface by index. Returns NULL if the device
  874 *	is not found or a pointer to the device. The device returned has
  875 *	had a reference added and the pointer is safe until the user calls
  876 *	netdev_put() to indicate they have finished with it.
  877 */
  878struct net_device *netdev_get_by_index(struct net *net, int ifindex,
  879				       netdevice_tracker *tracker, gfp_t gfp)
  880{
  881	struct net_device *dev;
  882
  883	dev = dev_get_by_index(net, ifindex);
  884	if (dev)
  885		netdev_tracker_alloc(dev, tracker, gfp);
  886	return dev;
  887}
  888EXPORT_SYMBOL(netdev_get_by_index);
  889
  890/**
  891 *	dev_get_by_napi_id - find a device by napi_id
  892 *	@napi_id: ID of the NAPI struct
  893 *
  894 *	Search for an interface by NAPI ID. Returns %NULL if the device
  895 *	is not found or a pointer to the device. The device has not had
  896 *	its reference counter increased so the caller must be careful
  897 *	about locking. The caller must hold RCU lock.
  898 */
  899
  900struct net_device *dev_get_by_napi_id(unsigned int napi_id)
  901{
  902	struct napi_struct *napi;
  903
  904	WARN_ON_ONCE(!rcu_read_lock_held());
  905
  906	if (napi_id < MIN_NAPI_ID)
  907		return NULL;
  908
  909	napi = napi_by_id(napi_id);
  910
  911	return napi ? napi->dev : NULL;
  912}
  913EXPORT_SYMBOL(dev_get_by_napi_id);
  914
  915/**
  916 *	netdev_get_name - get a netdevice name, knowing its ifindex.
  917 *	@net: network namespace
  918 *	@name: a pointer to the buffer where the name will be stored.
  919 *	@ifindex: the ifindex of the interface to get the name from.
  920 */
  921int netdev_get_name(struct net *net, char *name, int ifindex)
  922{
  923	struct net_device *dev;
  924	int ret;
  925
  926	down_read(&devnet_rename_sem);
  927	rcu_read_lock();
  928
  929	dev = dev_get_by_index_rcu(net, ifindex);
  930	if (!dev) {
  931		ret = -ENODEV;
  932		goto out;
  933	}
  934
  935	strcpy(name, dev->name);
  936
  937	ret = 0;
  938out:
  939	rcu_read_unlock();
  940	up_read(&devnet_rename_sem);
  941	return ret;
  942}
 
  943
  944/**
  945 *	dev_getbyhwaddr_rcu - find a device by its hardware address
  946 *	@net: the applicable net namespace
  947 *	@type: media type of device
  948 *	@ha: hardware address
  949 *
  950 *	Search for an interface by MAC address. Returns NULL if the device
  951 *	is not found or a pointer to the device.
  952 *	The caller must hold RCU or RTNL.
  953 *	The returned device has not had its ref count increased
  954 *	and the caller must therefore be careful about locking
  955 *
  956 */
  957
  958struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
  959				       const char *ha)
  960{
  961	struct net_device *dev;
  962
  963	for_each_netdev_rcu(net, dev)
  964		if (dev->type == type &&
  965		    !memcmp(dev->dev_addr, ha, dev->addr_len))
  966			return dev;
  967
  968	return NULL;
  969}
  970EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
  971
 
 
 
 
 
 
 
 
 
 
 
 
 
  972struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
  973{
  974	struct net_device *dev, *ret = NULL;
  975
  976	rcu_read_lock();
  977	for_each_netdev_rcu(net, dev)
  978		if (dev->type == type) {
  979			dev_hold(dev);
  980			ret = dev;
  981			break;
  982		}
  983	rcu_read_unlock();
  984	return ret;
  985}
  986EXPORT_SYMBOL(dev_getfirstbyhwtype);
  987
  988/**
  989 *	__dev_get_by_flags - find any device with given flags
  990 *	@net: the applicable net namespace
  991 *	@if_flags: IFF_* values
  992 *	@mask: bitmask of bits in if_flags to check
  993 *
  994 *	Search for any interface with the given flags. Returns NULL if a device
  995 *	is not found or a pointer to the device. Must be called inside
  996 *	rtnl_lock(), and result refcount is unchanged.
  997 */
  998
  999struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 1000				      unsigned short mask)
 1001{
 1002	struct net_device *dev, *ret;
 1003
 1004	ASSERT_RTNL();
 1005
 1006	ret = NULL;
 1007	for_each_netdev(net, dev) {
 1008		if (((dev->flags ^ if_flags) & mask) == 0) {
 1009			ret = dev;
 1010			break;
 1011		}
 1012	}
 1013	return ret;
 1014}
 1015EXPORT_SYMBOL(__dev_get_by_flags);
 1016
 1017/**
 1018 *	dev_valid_name - check if name is okay for network device
 1019 *	@name: name string
 1020 *
 1021 *	Network device names need to be valid file names to
 1022 *	allow sysfs to work.  We also disallow any kind of
 1023 *	whitespace.
 1024 */
 1025bool dev_valid_name(const char *name)
 1026{
 1027	if (*name == '\0')
 1028		return false;
 1029	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
 1030		return false;
 1031	if (!strcmp(name, ".") || !strcmp(name, ".."))
 1032		return false;
 1033
 1034	while (*name) {
 1035		if (*name == '/' || *name == ':' || isspace(*name))
 1036			return false;
 1037		name++;
 1038	}
 1039	return true;
 1040}
 1041EXPORT_SYMBOL(dev_valid_name);
 1042
 1043/**
 1044 *	__dev_alloc_name - allocate a name for a device
 1045 *	@net: network namespace to allocate the device name in
 1046 *	@name: name format string
 1047 *	@res: result name string
 1048 *
 1049 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1050 *	id. It scans list of devices to build up a free map, then chooses
 1051 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1052 *	while allocating the name and adding the device in order to avoid
 1053 *	duplicates.
 1054 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1055 *	Returns the number of the unit assigned or a negative errno code.
 1056 */
 1057
 1058static int __dev_alloc_name(struct net *net, const char *name, char *res)
 1059{
 1060	int i = 0;
 1061	const char *p;
 1062	const int max_netdevices = 8*PAGE_SIZE;
 1063	unsigned long *inuse;
 1064	struct net_device *d;
 1065	char buf[IFNAMSIZ];
 1066
 1067	/* Verify the string as this thing may have come from the user.
 1068	 * There must be one "%d" and no other "%" characters.
 1069	 */
 1070	p = strchr(name, '%');
 1071	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
 1072		return -EINVAL;
 1073
 1074	/* Use one page as a bit array of possible slots */
 1075	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
 1076	if (!inuse)
 1077		return -ENOMEM;
 1078
 1079	for_each_netdev(net, d) {
 1080		struct netdev_name_node *name_node;
 
 
 1081
 1082		netdev_for_each_altname(d, name_node) {
 1083			if (!sscanf(name_node->name, name, &i))
 1084				continue;
 1085			if (i < 0 || i >= max_netdevices)
 1086				continue;
 1087
 1088			/* avoid cases where sscanf is not exact inverse of printf */
 1089			snprintf(buf, IFNAMSIZ, name, i);
 1090			if (!strncmp(buf, name_node->name, IFNAMSIZ))
 1091				__set_bit(i, inuse);
 1092		}
 1093		if (!sscanf(d->name, name, &i))
 1094			continue;
 1095		if (i < 0 || i >= max_netdevices)
 1096			continue;
 1097
 1098		/* avoid cases where sscanf is not exact inverse of printf */
 1099		snprintf(buf, IFNAMSIZ, name, i);
 1100		if (!strncmp(buf, d->name, IFNAMSIZ))
 1101			__set_bit(i, inuse);
 1102	}
 1103
 1104	i = find_first_zero_bit(inuse, max_netdevices);
 1105	bitmap_free(inuse);
 1106	if (i == max_netdevices)
 1107		return -ENFILE;
 1108
 1109	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
 1110	strscpy(buf, name, IFNAMSIZ);
 1111	snprintf(res, IFNAMSIZ, buf, i);
 1112	return i;
 1113}
 1114
 1115/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
 1116static int dev_prep_valid_name(struct net *net, struct net_device *dev,
 1117			       const char *want_name, char *out_name,
 1118			       int dup_errno)
 1119{
 1120	if (!dev_valid_name(want_name))
 1121		return -EINVAL;
 1122
 1123	if (strchr(want_name, '%'))
 1124		return __dev_alloc_name(net, want_name, out_name);
 1125
 1126	if (netdev_name_in_use(net, want_name))
 1127		return -dup_errno;
 1128	if (out_name != want_name)
 1129		strscpy(out_name, want_name, IFNAMSIZ);
 1130	return 0;
 1131}
 1132
 1133/**
 1134 *	dev_alloc_name - allocate a name for a device
 1135 *	@dev: device
 1136 *	@name: name format string
 1137 *
 1138 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1139 *	id. It scans list of devices to build up a free map, then chooses
 1140 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1141 *	while allocating the name and adding the device in order to avoid
 1142 *	duplicates.
 1143 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1144 *	Returns the number of the unit assigned or a negative errno code.
 1145 */
 1146
 1147int dev_alloc_name(struct net_device *dev, const char *name)
 1148{
 1149	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
 
 
 
 
 
 
 
 
 
 1150}
 1151EXPORT_SYMBOL(dev_alloc_name);
 1152
 1153static int dev_get_valid_name(struct net *net, struct net_device *dev,
 1154			      const char *name)
 1155{
 1156	int ret;
 
 
 
 
 
 
 1157
 1158	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
 1159	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 1160}
 1161
 1162/**
 1163 *	dev_change_name - change name of a device
 1164 *	@dev: device
 1165 *	@newname: name (or format string) must be at least IFNAMSIZ
 1166 *
 1167 *	Change name of a device, can pass format strings "eth%d".
 1168 *	for wildcarding.
 1169 */
 1170int dev_change_name(struct net_device *dev, const char *newname)
 1171{
 1172	unsigned char old_assign_type;
 1173	char oldname[IFNAMSIZ];
 1174	int err = 0;
 1175	int ret;
 1176	struct net *net;
 1177
 1178	ASSERT_RTNL();
 1179	BUG_ON(!dev_net(dev));
 1180
 1181	net = dev_net(dev);
 
 
 1182
 1183	down_write(&devnet_rename_sem);
 1184
 1185	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
 1186		up_write(&devnet_rename_sem);
 1187		return 0;
 1188	}
 1189
 1190	memcpy(oldname, dev->name, IFNAMSIZ);
 1191
 1192	err = dev_get_valid_name(net, dev, newname);
 1193	if (err < 0) {
 1194		up_write(&devnet_rename_sem);
 1195		return err;
 1196	}
 1197
 1198	if (oldname[0] && !strchr(oldname, '%'))
 1199		netdev_info(dev, "renamed from %s%s\n", oldname,
 1200			    dev->flags & IFF_UP ? " (while UP)" : "");
 1201
 1202	old_assign_type = dev->name_assign_type;
 1203	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
 1204
 1205rollback:
 1206	ret = device_rename(&dev->dev, dev->name);
 1207	if (ret) {
 1208		memcpy(dev->name, oldname, IFNAMSIZ);
 1209		WRITE_ONCE(dev->name_assign_type, old_assign_type);
 1210		up_write(&devnet_rename_sem);
 1211		return ret;
 1212	}
 1213
 1214	up_write(&devnet_rename_sem);
 1215
 1216	netdev_adjacent_rename_links(dev, oldname);
 1217
 1218	netdev_name_node_del(dev->name_node);
 1219
 1220	synchronize_net();
 1221
 1222	netdev_name_node_add(net, dev->name_node);
 1223
 1224	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
 1225	ret = notifier_to_errno(ret);
 1226
 1227	if (ret) {
 1228		/* err >= 0 after dev_alloc_name() or stores the first errno */
 1229		if (err >= 0) {
 1230			err = ret;
 1231			down_write(&devnet_rename_sem);
 1232			memcpy(dev->name, oldname, IFNAMSIZ);
 1233			memcpy(oldname, newname, IFNAMSIZ);
 1234			WRITE_ONCE(dev->name_assign_type, old_assign_type);
 1235			old_assign_type = NET_NAME_RENAMED;
 1236			goto rollback;
 1237		} else {
 1238			netdev_err(dev, "name change rollback failed: %d\n",
 1239				   ret);
 
 1240		}
 1241	}
 1242
 1243	return err;
 1244}
 1245
 1246/**
 1247 *	dev_set_alias - change ifalias of a device
 1248 *	@dev: device
 1249 *	@alias: name up to IFALIASZ
 1250 *	@len: limit of bytes to copy from info
 1251 *
 1252 *	Set ifalias for a device,
 1253 */
 1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
 1255{
 1256	struct dev_ifalias *new_alias = NULL;
 1257
 1258	if (len >= IFALIASZ)
 1259		return -EINVAL;
 1260
 1261	if (len) {
 1262		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
 1263		if (!new_alias)
 1264			return -ENOMEM;
 1265
 1266		memcpy(new_alias->ifalias, alias, len);
 1267		new_alias->ifalias[len] = 0;
 1268	}
 1269
 1270	mutex_lock(&ifalias_mutex);
 1271	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
 1272					mutex_is_locked(&ifalias_mutex));
 1273	mutex_unlock(&ifalias_mutex);
 1274
 1275	if (new_alias)
 1276		kfree_rcu(new_alias, rcuhead);
 1277
 
 1278	return len;
 1279}
 1280EXPORT_SYMBOL(dev_set_alias);
 1281
 1282/**
 1283 *	dev_get_alias - get ifalias of a device
 1284 *	@dev: device
 1285 *	@name: buffer to store name of ifalias
 1286 *	@len: size of buffer
 1287 *
 1288 *	get ifalias for a device.  Caller must make sure dev cannot go
 1289 *	away,  e.g. rcu read lock or own a reference count to device.
 1290 */
 1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
 1292{
 1293	const struct dev_ifalias *alias;
 1294	int ret = 0;
 1295
 1296	rcu_read_lock();
 1297	alias = rcu_dereference(dev->ifalias);
 1298	if (alias)
 1299		ret = snprintf(name, len, "%s", alias->ifalias);
 1300	rcu_read_unlock();
 1301
 1302	return ret;
 1303}
 1304
 1305/**
 1306 *	netdev_features_change - device changes features
 1307 *	@dev: device to cause notification
 1308 *
 1309 *	Called to indicate a device has changed features.
 1310 */
 1311void netdev_features_change(struct net_device *dev)
 1312{
 1313	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
 1314}
 1315EXPORT_SYMBOL(netdev_features_change);
 1316
 1317/**
 1318 *	netdev_state_change - device changes state
 1319 *	@dev: device to cause notification
 1320 *
 1321 *	Called to indicate a device has changed state. This function calls
 1322 *	the notifier chains for netdev_chain and sends a NEWLINK message
 1323 *	to the routing socket.
 1324 */
 1325void netdev_state_change(struct net_device *dev)
 1326{
 1327	if (dev->flags & IFF_UP) {
 1328		struct netdev_notifier_change_info change_info = {
 1329			.info.dev = dev,
 1330		};
 1331
 1332		call_netdevice_notifiers_info(NETDEV_CHANGE,
 1333					      &change_info.info);
 1334		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
 1335	}
 1336}
 1337EXPORT_SYMBOL(netdev_state_change);
 1338
 1339/**
 1340 * __netdev_notify_peers - notify network peers about existence of @dev,
 1341 * to be called when rtnl lock is already held.
 1342 * @dev: network device
 1343 *
 1344 * Generate traffic such that interested network peers are aware of
 1345 * @dev, such as by generating a gratuitous ARP. This may be used when
 1346 * a device wants to inform the rest of the network about some sort of
 1347 * reconfiguration such as a failover event or virtual machine
 1348 * migration.
 1349 */
 1350void __netdev_notify_peers(struct net_device *dev)
 1351{
 1352	ASSERT_RTNL();
 1353	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
 1354	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
 1355}
 1356EXPORT_SYMBOL(__netdev_notify_peers);
 1357
 1358/**
 1359 * netdev_notify_peers - notify network peers about existence of @dev
 1360 * @dev: network device
 
 1361 *
 1362 * Generate traffic such that interested network peers are aware of
 1363 * @dev, such as by generating a gratuitous ARP. This may be used when
 1364 * a device wants to inform the rest of the network about some sort of
 1365 * reconfiguration such as a failover event or virtual machine
 1366 * migration.
 1367 */
 1368void netdev_notify_peers(struct net_device *dev)
 1369{
 1370	rtnl_lock();
 1371	__netdev_notify_peers(dev);
 1372	rtnl_unlock();
 1373}
 1374EXPORT_SYMBOL(netdev_notify_peers);
 1375
 1376static int napi_threaded_poll(void *data);
 1377
 1378static int napi_kthread_create(struct napi_struct *n)
 1379{
 1380	int err = 0;
 
 1381
 1382	/* Create and wake up the kthread once to put it in
 1383	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
 1384	 * warning and work with loadavg.
 1385	 */
 1386	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
 1387				n->dev->name, n->napi_id);
 1388	if (IS_ERR(n->thread)) {
 1389		err = PTR_ERR(n->thread);
 1390		pr_err("kthread_run failed with err %d\n", err);
 1391		n->thread = NULL;
 1392	}
 1393
 1394	return err;
 
 
 
 
 
 
 
 
 1395}
 
 1396
 1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1398{
 1399	const struct net_device_ops *ops = dev->netdev_ops;
 1400	int ret;
 1401
 1402	ASSERT_RTNL();
 1403	dev_addr_check(dev);
 1404
 1405	if (!netif_device_present(dev)) {
 1406		/* may be detached because parent is runtime-suspended */
 1407		if (dev->dev.parent)
 1408			pm_runtime_resume(dev->dev.parent);
 1409		if (!netif_device_present(dev))
 1410			return -ENODEV;
 1411	}
 1412
 1413	/* Block netpoll from trying to do any rx path servicing.
 1414	 * If we don't do this there is a chance ndo_poll_controller
 1415	 * or ndo_poll may be running while we open the device
 1416	 */
 1417	netpoll_poll_disable(dev);
 1418
 1419	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
 1420	ret = notifier_to_errno(ret);
 1421	if (ret)
 1422		return ret;
 1423
 1424	set_bit(__LINK_STATE_START, &dev->state);
 1425
 1426	if (ops->ndo_validate_addr)
 1427		ret = ops->ndo_validate_addr(dev);
 1428
 1429	if (!ret && ops->ndo_open)
 1430		ret = ops->ndo_open(dev);
 1431
 1432	netpoll_poll_enable(dev);
 1433
 1434	if (ret)
 1435		clear_bit(__LINK_STATE_START, &dev->state);
 1436	else {
 1437		dev->flags |= IFF_UP;
 
 1438		dev_set_rx_mode(dev);
 1439		dev_activate(dev);
 1440		add_device_randomness(dev->dev_addr, dev->addr_len);
 1441	}
 1442
 1443	return ret;
 1444}
 1445
 1446/**
 1447 *	dev_open	- prepare an interface for use.
 1448 *	@dev: device to open
 1449 *	@extack: netlink extended ack
 1450 *
 1451 *	Takes a device from down to up state. The device's private open
 1452 *	function is invoked and then the multicast lists are loaded. Finally
 1453 *	the device is moved into the up state and a %NETDEV_UP message is
 1454 *	sent to the netdev notifier chain.
 1455 *
 1456 *	Calling this function on an active interface is a nop. On a failure
 1457 *	a negative errno code is returned.
 1458 */
 1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1460{
 1461	int ret;
 1462
 1463	if (dev->flags & IFF_UP)
 1464		return 0;
 1465
 1466	ret = __dev_open(dev, extack);
 1467	if (ret < 0)
 1468		return ret;
 1469
 1470	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1471	call_netdevice_notifiers(NETDEV_UP, dev);
 1472
 1473	return ret;
 1474}
 1475EXPORT_SYMBOL(dev_open);
 1476
 1477static void __dev_close_many(struct list_head *head)
 1478{
 1479	struct net_device *dev;
 1480
 1481	ASSERT_RTNL();
 1482	might_sleep();
 1483
 1484	list_for_each_entry(dev, head, close_list) {
 1485		/* Temporarily disable netpoll until the interface is down */
 1486		netpoll_poll_disable(dev);
 1487
 1488		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
 1489
 1490		clear_bit(__LINK_STATE_START, &dev->state);
 1491
 1492		/* Synchronize to scheduled poll. We cannot touch poll list, it
 1493		 * can be even on different cpu. So just clear netif_running().
 1494		 *
 1495		 * dev->stop() will invoke napi_disable() on all of it's
 1496		 * napi_struct instances on this device.
 1497		 */
 1498		smp_mb__after_atomic(); /* Commit netif_running(). */
 1499	}
 1500
 1501	dev_deactivate_many(head);
 1502
 1503	list_for_each_entry(dev, head, close_list) {
 1504		const struct net_device_ops *ops = dev->netdev_ops;
 1505
 1506		/*
 1507		 *	Call the device specific close. This cannot fail.
 1508		 *	Only if device is UP
 1509		 *
 1510		 *	We allow it to be called even after a DETACH hot-plug
 1511		 *	event.
 1512		 */
 1513		if (ops->ndo_stop)
 1514			ops->ndo_stop(dev);
 1515
 1516		dev->flags &= ~IFF_UP;
 1517		netpoll_poll_enable(dev);
 1518	}
 
 
 1519}
 1520
 1521static void __dev_close(struct net_device *dev)
 1522{
 
 1523	LIST_HEAD(single);
 1524
 1525	list_add(&dev->close_list, &single);
 1526	__dev_close_many(&single);
 1527	list_del(&single);
 
 1528}
 1529
 1530void dev_close_many(struct list_head *head, bool unlink)
 1531{
 1532	struct net_device *dev, *tmp;
 
 1533
 1534	/* Remove the devices that don't need to be closed */
 1535	list_for_each_entry_safe(dev, tmp, head, close_list)
 1536		if (!(dev->flags & IFF_UP))
 1537			list_del_init(&dev->close_list);
 1538
 1539	__dev_close_many(head);
 1540
 1541	list_for_each_entry_safe(dev, tmp, head, close_list) {
 1542		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1543		call_netdevice_notifiers(NETDEV_DOWN, dev);
 1544		if (unlink)
 1545			list_del_init(&dev->close_list);
 1546	}
 
 
 
 
 1547}
 1548EXPORT_SYMBOL(dev_close_many);
 1549
 1550/**
 1551 *	dev_close - shutdown an interface.
 1552 *	@dev: device to shutdown
 1553 *
 1554 *	This function moves an active device into down state. A
 1555 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
 1556 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
 1557 *	chain.
 1558 */
 1559void dev_close(struct net_device *dev)
 1560{
 1561	if (dev->flags & IFF_UP) {
 1562		LIST_HEAD(single);
 1563
 1564		list_add(&dev->close_list, &single);
 1565		dev_close_many(&single, true);
 1566		list_del(&single);
 1567	}
 
 1568}
 1569EXPORT_SYMBOL(dev_close);
 1570
 1571
 1572/**
 1573 *	dev_disable_lro - disable Large Receive Offload on a device
 1574 *	@dev: device
 1575 *
 1576 *	Disable Large Receive Offload (LRO) on a net device.  Must be
 1577 *	called under RTNL.  This is needed if received packets may be
 1578 *	forwarded to another interface.
 1579 */
 1580void dev_disable_lro(struct net_device *dev)
 1581{
 1582	struct net_device *lower_dev;
 1583	struct list_head *iter;
 1584
 1585	dev->wanted_features &= ~NETIF_F_LRO;
 1586	netdev_update_features(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 1587
 
 1588	if (unlikely(dev->features & NETIF_F_LRO))
 1589		netdev_WARN(dev, "failed to disable LRO!\n");
 1590
 1591	netdev_for_each_lower_dev(dev, lower_dev, iter)
 1592		dev_disable_lro(lower_dev);
 1593}
 1594EXPORT_SYMBOL(dev_disable_lro);
 1595
 1596/**
 1597 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
 1598 *	@dev: device
 1599 *
 1600 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
 1601 *	called under RTNL.  This is needed if Generic XDP is installed on
 1602 *	the device.
 1603 */
 1604static void dev_disable_gro_hw(struct net_device *dev)
 1605{
 1606	dev->wanted_features &= ~NETIF_F_GRO_HW;
 1607	netdev_update_features(dev);
 1608
 1609	if (unlikely(dev->features & NETIF_F_GRO_HW))
 1610		netdev_WARN(dev, "failed to disable GRO_HW!\n");
 1611}
 1612
 1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
 1614{
 1615#define N(val) 						\
 1616	case NETDEV_##val:				\
 1617		return "NETDEV_" __stringify(val);
 1618	switch (cmd) {
 1619	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
 1620	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
 1621	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
 1622	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
 1623	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
 1624	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
 1625	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
 1626	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
 1627	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
 1628	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
 1629	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
 1630	N(XDP_FEAT_CHANGE)
 1631	}
 1632#undef N
 1633	return "UNKNOWN_NETDEV_EVENT";
 1634}
 1635EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
 1636
 1637static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
 1638				   struct net_device *dev)
 1639{
 1640	struct netdev_notifier_info info = {
 1641		.dev = dev,
 1642	};
 1643
 1644	return nb->notifier_call(nb, val, &info);
 1645}
 1646
 1647static int call_netdevice_register_notifiers(struct notifier_block *nb,
 1648					     struct net_device *dev)
 1649{
 1650	int err;
 1651
 1652	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
 1653	err = notifier_to_errno(err);
 1654	if (err)
 1655		return err;
 1656
 1657	if (!(dev->flags & IFF_UP))
 1658		return 0;
 1659
 1660	call_netdevice_notifier(nb, NETDEV_UP, dev);
 1661	return 0;
 1662}
 1663
 1664static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
 1665						struct net_device *dev)
 1666{
 1667	if (dev->flags & IFF_UP) {
 1668		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
 1669					dev);
 1670		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
 1671	}
 1672	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
 1673}
 1674
 1675static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
 1676						 struct net *net)
 1677{
 1678	struct net_device *dev;
 1679	int err;
 1680
 1681	for_each_netdev(net, dev) {
 1682		err = call_netdevice_register_notifiers(nb, dev);
 1683		if (err)
 1684			goto rollback;
 1685	}
 1686	return 0;
 1687
 1688rollback:
 1689	for_each_netdev_continue_reverse(net, dev)
 1690		call_netdevice_unregister_notifiers(nb, dev);
 1691	return err;
 1692}
 1693
 1694static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
 1695						    struct net *net)
 1696{
 1697	struct net_device *dev;
 1698
 1699	for_each_netdev(net, dev)
 1700		call_netdevice_unregister_notifiers(nb, dev);
 1701}
 1702
 1703static int dev_boot_phase = 1;
 1704
 1705/**
 1706 * register_netdevice_notifier - register a network notifier block
 1707 * @nb: notifier
 1708 *
 1709 * Register a notifier to be called when network device events occur.
 1710 * The notifier passed is linked into the kernel structures and must
 1711 * not be reused until it has been unregistered. A negative errno code
 1712 * is returned on a failure.
 1713 *
 1714 * When registered all registration and up events are replayed
 1715 * to the new notifier to allow device to have a race free
 1716 * view of the network device list.
 1717 */
 1718
 1719int register_netdevice_notifier(struct notifier_block *nb)
 1720{
 
 
 1721	struct net *net;
 1722	int err;
 1723
 1724	/* Close race with setup_net() and cleanup_net() */
 1725	down_write(&pernet_ops_rwsem);
 1726	rtnl_lock();
 1727	err = raw_notifier_chain_register(&netdev_chain, nb);
 1728	if (err)
 1729		goto unlock;
 1730	if (dev_boot_phase)
 1731		goto unlock;
 1732	for_each_net(net) {
 1733		err = call_netdevice_register_net_notifiers(nb, net);
 1734		if (err)
 1735			goto rollback;
 
 
 
 
 
 
 
 
 1736	}
 1737
 1738unlock:
 1739	rtnl_unlock();
 1740	up_write(&pernet_ops_rwsem);
 1741	return err;
 1742
 1743rollback:
 1744	for_each_net_continue_reverse(net)
 1745		call_netdevice_unregister_net_notifiers(nb, net);
 
 
 
 
 
 
 
 
 
 
 
 
 1746
 1747	raw_notifier_chain_unregister(&netdev_chain, nb);
 1748	goto unlock;
 1749}
 1750EXPORT_SYMBOL(register_netdevice_notifier);
 1751
 1752/**
 1753 * unregister_netdevice_notifier - unregister a network notifier block
 1754 * @nb: notifier
 1755 *
 1756 * Unregister a notifier previously registered by
 1757 * register_netdevice_notifier(). The notifier is unlinked into the
 1758 * kernel structures and may then be reused. A negative errno code
 1759 * is returned on a failure.
 1760 *
 1761 * After unregistering unregister and down device events are synthesized
 1762 * for all devices on the device list to the removed notifier to remove
 1763 * the need for special case cleanup code.
 1764 */
 1765
 1766int unregister_netdevice_notifier(struct notifier_block *nb)
 1767{
 1768	struct net *net;
 1769	int err;
 1770
 1771	/* Close race with setup_net() and cleanup_net() */
 1772	down_write(&pernet_ops_rwsem);
 1773	rtnl_lock();
 1774	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 1775	if (err)
 1776		goto unlock;
 1777
 1778	for_each_net(net)
 1779		call_netdevice_unregister_net_notifiers(nb, net);
 1780
 1781unlock:
 1782	rtnl_unlock();
 1783	up_write(&pernet_ops_rwsem);
 1784	return err;
 1785}
 1786EXPORT_SYMBOL(unregister_netdevice_notifier);
 1787
 1788static int __register_netdevice_notifier_net(struct net *net,
 1789					     struct notifier_block *nb,
 1790					     bool ignore_call_fail)
 1791{
 1792	int err;
 1793
 1794	err = raw_notifier_chain_register(&net->netdev_chain, nb);
 1795	if (err)
 1796		return err;
 1797	if (dev_boot_phase)
 1798		return 0;
 1799
 1800	err = call_netdevice_register_net_notifiers(nb, net);
 1801	if (err && !ignore_call_fail)
 1802		goto chain_unregister;
 1803
 1804	return 0;
 1805
 1806chain_unregister:
 1807	raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1808	return err;
 1809}
 1810
 1811static int __unregister_netdevice_notifier_net(struct net *net,
 1812					       struct notifier_block *nb)
 1813{
 1814	int err;
 1815
 1816	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1817	if (err)
 1818		return err;
 1819
 1820	call_netdevice_unregister_net_notifiers(nb, net);
 1821	return 0;
 1822}
 1823
 1824/**
 1825 * register_netdevice_notifier_net - register a per-netns network notifier block
 1826 * @net: network namespace
 1827 * @nb: notifier
 1828 *
 1829 * Register a notifier to be called when network device events occur.
 1830 * The notifier passed is linked into the kernel structures and must
 1831 * not be reused until it has been unregistered. A negative errno code
 1832 * is returned on a failure.
 1833 *
 1834 * When registered all registration and up events are replayed
 1835 * to the new notifier to allow device to have a race free
 1836 * view of the network device list.
 1837 */
 1838
 1839int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
 1840{
 1841	int err;
 1842
 1843	rtnl_lock();
 1844	err = __register_netdevice_notifier_net(net, nb, false);
 1845	rtnl_unlock();
 1846	return err;
 1847}
 1848EXPORT_SYMBOL(register_netdevice_notifier_net);
 1849
 1850/**
 1851 * unregister_netdevice_notifier_net - unregister a per-netns
 1852 *                                     network notifier block
 1853 * @net: network namespace
 1854 * @nb: notifier
 1855 *
 1856 * Unregister a notifier previously registered by
 1857 * register_netdevice_notifier_net(). The notifier is unlinked from the
 1858 * kernel structures and may then be reused. A negative errno code
 1859 * is returned on a failure.
 1860 *
 1861 * After unregistering unregister and down device events are synthesized
 1862 * for all devices on the device list to the removed notifier to remove
 1863 * the need for special case cleanup code.
 1864 */
 1865
 1866int unregister_netdevice_notifier_net(struct net *net,
 1867				      struct notifier_block *nb)
 1868{
 1869	int err;
 1870
 1871	rtnl_lock();
 1872	err = __unregister_netdevice_notifier_net(net, nb);
 1873	rtnl_unlock();
 1874	return err;
 1875}
 1876EXPORT_SYMBOL(unregister_netdevice_notifier_net);
 1877
 1878static void __move_netdevice_notifier_net(struct net *src_net,
 1879					  struct net *dst_net,
 1880					  struct notifier_block *nb)
 1881{
 1882	__unregister_netdevice_notifier_net(src_net, nb);
 1883	__register_netdevice_notifier_net(dst_net, nb, true);
 1884}
 1885
 1886int register_netdevice_notifier_dev_net(struct net_device *dev,
 1887					struct notifier_block *nb,
 1888					struct netdev_net_notifier *nn)
 1889{
 1890	int err;
 1891
 1892	rtnl_lock();
 1893	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
 1894	if (!err) {
 1895		nn->nb = nb;
 1896		list_add(&nn->list, &dev->net_notifier_list);
 1897	}
 1898	rtnl_unlock();
 1899	return err;
 1900}
 1901EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
 1902
 1903int unregister_netdevice_notifier_dev_net(struct net_device *dev,
 1904					  struct notifier_block *nb,
 1905					  struct netdev_net_notifier *nn)
 1906{
 1907	int err;
 1908
 1909	rtnl_lock();
 1910	list_del(&nn->list);
 1911	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
 1912	rtnl_unlock();
 1913	return err;
 1914}
 1915EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
 1916
 1917static void move_netdevice_notifiers_dev_net(struct net_device *dev,
 1918					     struct net *net)
 1919{
 1920	struct netdev_net_notifier *nn;
 1921
 1922	list_for_each_entry(nn, &dev->net_notifier_list, list)
 1923		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
 1924}
 1925
 1926/**
 1927 *	call_netdevice_notifiers_info - call all network notifier blocks
 1928 *	@val: value passed unmodified to notifier function
 1929 *	@info: notifier information data
 1930 *
 1931 *	Call all network notifier blocks.  Parameters and return value
 1932 *	are as for raw_notifier_call_chain().
 1933 */
 1934
 1935int call_netdevice_notifiers_info(unsigned long val,
 1936				  struct netdev_notifier_info *info)
 1937{
 1938	struct net *net = dev_net(info->dev);
 1939	int ret;
 1940
 1941	ASSERT_RTNL();
 1942
 1943	/* Run per-netns notifier block chain first, then run the global one.
 1944	 * Hopefully, one day, the global one is going to be removed after
 1945	 * all notifier block registrators get converted to be per-netns.
 1946	 */
 1947	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
 1948	if (ret & NOTIFY_STOP_MASK)
 1949		return ret;
 1950	return raw_notifier_call_chain(&netdev_chain, val, info);
 1951}
 1952
 1953/**
 1954 *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
 1955 *	                                       for and rollback on error
 1956 *	@val_up: value passed unmodified to notifier function
 1957 *	@val_down: value passed unmodified to the notifier function when
 1958 *	           recovering from an error on @val_up
 1959 *	@info: notifier information data
 1960 *
 1961 *	Call all per-netns network notifier blocks, but not notifier blocks on
 1962 *	the global notifier chain. Parameters and return value are as for
 1963 *	raw_notifier_call_chain_robust().
 1964 */
 1965
 1966static int
 1967call_netdevice_notifiers_info_robust(unsigned long val_up,
 1968				     unsigned long val_down,
 1969				     struct netdev_notifier_info *info)
 1970{
 1971	struct net *net = dev_net(info->dev);
 1972
 1973	ASSERT_RTNL();
 1974
 1975	return raw_notifier_call_chain_robust(&net->netdev_chain,
 1976					      val_up, val_down, info);
 1977}
 1978
 1979static int call_netdevice_notifiers_extack(unsigned long val,
 1980					   struct net_device *dev,
 1981					   struct netlink_ext_ack *extack)
 1982{
 1983	struct netdev_notifier_info info = {
 1984		.dev = dev,
 1985		.extack = extack,
 1986	};
 1987
 1988	return call_netdevice_notifiers_info(val, &info);
 1989}
 1990
 1991/**
 1992 *	call_netdevice_notifiers - call all network notifier blocks
 1993 *      @val: value passed unmodified to notifier function
 1994 *      @dev: net_device pointer passed unmodified to notifier function
 1995 *
 1996 *	Call all network notifier blocks.  Parameters and return value
 1997 *	are as for raw_notifier_call_chain().
 1998 */
 1999
 2000int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
 2001{
 2002	return call_netdevice_notifiers_extack(val, dev, NULL);
 
 2003}
 2004EXPORT_SYMBOL(call_netdevice_notifiers);
 2005
 2006/**
 2007 *	call_netdevice_notifiers_mtu - call all network notifier blocks
 2008 *	@val: value passed unmodified to notifier function
 2009 *	@dev: net_device pointer passed unmodified to notifier function
 2010 *	@arg: additional u32 argument passed to the notifier function
 2011 *
 2012 *	Call all network notifier blocks.  Parameters and return value
 2013 *	are as for raw_notifier_call_chain().
 2014 */
 2015static int call_netdevice_notifiers_mtu(unsigned long val,
 2016					struct net_device *dev, u32 arg)
 2017{
 2018	struct netdev_notifier_info_ext info = {
 2019		.info.dev = dev,
 2020		.ext.mtu = arg,
 2021	};
 2022
 2023	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
 2024
 2025	return call_netdevice_notifiers_info(val, &info.info);
 2026}
 2027
 2028#ifdef CONFIG_NET_INGRESS
 2029static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
 2030
 2031void net_inc_ingress_queue(void)
 2032{
 2033	static_branch_inc(&ingress_needed_key);
 2034}
 2035EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
 2036
 2037void net_dec_ingress_queue(void)
 2038{
 2039	static_branch_dec(&ingress_needed_key);
 2040}
 2041EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
 2042#endif
 2043
 2044#ifdef CONFIG_NET_EGRESS
 2045static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
 2046
 2047void net_inc_egress_queue(void)
 2048{
 2049	static_branch_inc(&egress_needed_key);
 2050}
 2051EXPORT_SYMBOL_GPL(net_inc_egress_queue);
 2052
 2053void net_dec_egress_queue(void)
 2054{
 2055	static_branch_dec(&egress_needed_key);
 2056}
 2057EXPORT_SYMBOL_GPL(net_dec_egress_queue);
 2058#endif
 2059
 2060DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
 2061EXPORT_SYMBOL(netstamp_needed_key);
 2062#ifdef CONFIG_JUMP_LABEL
 2063static atomic_t netstamp_needed_deferred;
 2064static atomic_t netstamp_wanted;
 2065static void netstamp_clear(struct work_struct *work)
 2066{
 2067	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
 2068	int wanted;
 2069
 2070	wanted = atomic_add_return(deferred, &netstamp_wanted);
 2071	if (wanted > 0)
 2072		static_branch_enable(&netstamp_needed_key);
 2073	else
 2074		static_branch_disable(&netstamp_needed_key);
 2075}
 2076static DECLARE_WORK(netstamp_work, netstamp_clear);
 2077#endif
 2078
 2079void net_enable_timestamp(void)
 2080{
 2081#ifdef CONFIG_JUMP_LABEL
 2082	int wanted = atomic_read(&netstamp_wanted);
 2083
 2084	while (wanted > 0) {
 2085		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
 2086			return;
 2087	}
 2088	atomic_inc(&netstamp_needed_deferred);
 2089	schedule_work(&netstamp_work);
 2090#else
 2091	static_branch_inc(&netstamp_needed_key);
 2092#endif
 2093}
 2094EXPORT_SYMBOL(net_enable_timestamp);
 2095
 2096void net_disable_timestamp(void)
 2097{
 2098#ifdef CONFIG_JUMP_LABEL
 2099	int wanted = atomic_read(&netstamp_wanted);
 2100
 2101	while (wanted > 1) {
 2102		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
 2103			return;
 2104	}
 2105	atomic_dec(&netstamp_needed_deferred);
 2106	schedule_work(&netstamp_work);
 2107#else
 2108	static_branch_dec(&netstamp_needed_key);
 2109#endif
 2110}
 2111EXPORT_SYMBOL(net_disable_timestamp);
 2112
 2113static inline void net_timestamp_set(struct sk_buff *skb)
 2114{
 2115	skb->tstamp = 0;
 2116	skb->mono_delivery_time = 0;
 2117	if (static_branch_unlikely(&netstamp_needed_key))
 2118		skb->tstamp = ktime_get_real();
 2119}
 2120
 2121#define net_timestamp_check(COND, SKB)				\
 2122	if (static_branch_unlikely(&netstamp_needed_key)) {	\
 2123		if ((COND) && !(SKB)->tstamp)			\
 2124			(SKB)->tstamp = ktime_get_real();	\
 2125	}							\
 2126
 2127bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
 2128{
 2129	return __is_skb_forwardable(dev, skb, true);
 
 2130}
 2131EXPORT_SYMBOL_GPL(is_skb_forwardable);
 2132
 2133static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
 2134			      bool check_mtu)
 2135{
 2136	int ret = ____dev_forward_skb(dev, skb, check_mtu);
 2137
 2138	if (likely(!ret)) {
 2139		skb->protocol = eth_type_trans(skb, dev);
 2140		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
 2141	}
 2142
 2143	return ret;
 2144}
 
 2145
 2146int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2147{
 2148	return __dev_forward_skb2(dev, skb, true);
 
 
 
 
 2149}
 2150EXPORT_SYMBOL_GPL(__dev_forward_skb);
 2151
 2152/**
 2153 * dev_forward_skb - loopback an skb to another netif
 2154 *
 2155 * @dev: destination network device
 2156 * @skb: buffer to forward
 2157 *
 2158 * return values:
 2159 *	NET_RX_SUCCESS	(no congestion)
 2160 *	NET_RX_DROP     (packet was dropped, but freed)
 2161 *
 2162 * dev_forward_skb can be used for injecting an skb from the
 2163 * start_xmit function of one device into the receive queue
 2164 * of another device.
 2165 *
 2166 * The receiving device may be in another namespace, so
 2167 * we have to clear all information in the skb that could
 2168 * impact namespace isolation.
 2169 */
 2170int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2171{
 2172	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
 2173}
 2174EXPORT_SYMBOL_GPL(dev_forward_skb);
 
 
 
 
 2175
 2176int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
 2177{
 2178	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
 
 
 
 
 
 
 
 
 
 
 2179}
 
 2180
 2181static inline int deliver_skb(struct sk_buff *skb,
 2182			      struct packet_type *pt_prev,
 2183			      struct net_device *orig_dev)
 2184{
 2185	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 2186		return -ENOMEM;
 2187	refcount_inc(&skb->users);
 2188	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 2189}
 2190
 2191static inline void deliver_ptype_list_skb(struct sk_buff *skb,
 2192					  struct packet_type **pt,
 2193					  struct net_device *orig_dev,
 2194					  __be16 type,
 2195					  struct list_head *ptype_list)
 2196{
 2197	struct packet_type *ptype, *pt_prev = *pt;
 2198
 2199	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2200		if (ptype->type != type)
 2201			continue;
 2202		if (pt_prev)
 2203			deliver_skb(skb, pt_prev, orig_dev);
 2204		pt_prev = ptype;
 2205	}
 2206	*pt = pt_prev;
 2207}
 2208
 2209static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
 2210{
 2211	if (!ptype->af_packet_priv || !skb->sk)
 2212		return false;
 2213
 2214	if (ptype->id_match)
 2215		return ptype->id_match(ptype, skb->sk);
 2216	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
 2217		return true;
 2218
 2219	return false;
 2220}
 2221
 2222/**
 2223 * dev_nit_active - return true if any network interface taps are in use
 2224 *
 2225 * @dev: network device to check for the presence of taps
 2226 */
 2227bool dev_nit_active(struct net_device *dev)
 2228{
 2229	return !list_empty(&net_hotdata.ptype_all) ||
 2230	       !list_empty(&dev->ptype_all);
 2231}
 2232EXPORT_SYMBOL_GPL(dev_nit_active);
 2233
 2234/*
 2235 *	Support routine. Sends outgoing frames to any network
 2236 *	taps currently in use.
 2237 */
 2238
 2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
 2240{
 2241	struct list_head *ptype_list = &net_hotdata.ptype_all;
 2242	struct packet_type *ptype, *pt_prev = NULL;
 2243	struct sk_buff *skb2 = NULL;
 
 2244
 2245	rcu_read_lock();
 2246again:
 2247	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2248		if (READ_ONCE(ptype->ignore_outgoing))
 2249			continue;
 2250
 2251		/* Never send packets back to the socket
 2252		 * they originated from - MvS (miquels@drinkel.ow.org)
 2253		 */
 2254		if (skb_loop_sk(ptype, skb))
 2255			continue;
 
 
 
 
 
 
 2256
 2257		if (pt_prev) {
 2258			deliver_skb(skb2, pt_prev, skb->dev);
 2259			pt_prev = ptype;
 2260			continue;
 2261		}
 2262
 2263		/* need to clone skb, done only once */
 2264		skb2 = skb_clone(skb, GFP_ATOMIC);
 2265		if (!skb2)
 2266			goto out_unlock;
 2267
 2268		net_timestamp_set(skb2);
 2269
 2270		/* skb->nh should be correctly
 2271		 * set by sender, so that the second statement is
 2272		 * just protection against buggy protocols.
 2273		 */
 2274		skb_reset_mac_header(skb2);
 2275
 2276		if (skb_network_header(skb2) < skb2->data ||
 2277		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
 2278			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
 2279					     ntohs(skb2->protocol),
 2280					     dev->name);
 2281			skb_reset_network_header(skb2);
 2282		}
 2283
 2284		skb2->transport_header = skb2->network_header;
 2285		skb2->pkt_type = PACKET_OUTGOING;
 2286		pt_prev = ptype;
 2287	}
 
 
 
 
 
 2288
 2289	if (ptype_list == &net_hotdata.ptype_all) {
 2290		ptype_list = &dev->ptype_all;
 2291		goto again;
 2292	}
 2293out_unlock:
 2294	if (pt_prev) {
 2295		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
 2296			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
 2297		else
 2298			kfree_skb(skb2);
 2299	}
 
 
 2300	rcu_read_unlock();
 2301}
 2302EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
 2303
 2304/**
 2305 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 2306 * @dev: Network device
 2307 * @txq: number of queues available
 2308 *
 2309 * If real_num_tx_queues is changed the tc mappings may no longer be
 2310 * valid. To resolve this verify the tc mapping remains valid and if
 2311 * not NULL the mapping. With no priorities mapping to this
 2312 * offset/count pair it will no longer be used. In the worst case TC0
 2313 * is invalid nothing can be done so disable priority mappings. If is
 2314 * expected that drivers will fix this mapping if they can before
 2315 * calling netif_set_real_num_tx_queues.
 2316 */
 2317static void netif_setup_tc(struct net_device *dev, unsigned int txq)
 2318{
 2319	int i;
 2320	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2321
 2322	/* If TC0 is invalidated disable TC mapping */
 2323	if (tc->offset + tc->count > txq) {
 2324		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
 
 
 2325		dev->num_tc = 0;
 2326		return;
 2327	}
 2328
 2329	/* Invalidated prio to tc mappings set to TC0 */
 2330	for (i = 1; i < TC_BITMASK + 1; i++) {
 2331		int q = netdev_get_prio_tc_map(dev, i);
 2332
 2333		tc = &dev->tc_to_txq[q];
 2334		if (tc->offset + tc->count > txq) {
 2335			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
 2336				    i, q);
 
 
 
 2337			netdev_set_prio_tc_map(dev, i, 0);
 2338		}
 2339	}
 2340}
 2341
 2342int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
 2343{
 2344	if (dev->num_tc) {
 2345		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2346		int i;
 2347
 2348		/* walk through the TCs and see if it falls into any of them */
 2349		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
 2350			if ((txq - tc->offset) < tc->count)
 2351				return i;
 2352		}
 2353
 2354		/* didn't find it, just return -1 to indicate no match */
 2355		return -1;
 2356	}
 2357
 2358	return 0;
 2359}
 2360EXPORT_SYMBOL(netdev_txq_to_tc);
 2361
 2362#ifdef CONFIG_XPS
 2363static struct static_key xps_needed __read_mostly;
 2364static struct static_key xps_rxqs_needed __read_mostly;
 2365static DEFINE_MUTEX(xps_map_mutex);
 2366#define xmap_dereference(P)		\
 2367	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
 2368
 2369static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
 2370			     struct xps_dev_maps *old_maps, int tci, u16 index)
 2371{
 2372	struct xps_map *map = NULL;
 2373	int pos;
 2374
 2375	map = xmap_dereference(dev_maps->attr_map[tci]);
 2376	if (!map)
 2377		return false;
 2378
 2379	for (pos = map->len; pos--;) {
 2380		if (map->queues[pos] != index)
 2381			continue;
 2382
 2383		if (map->len > 1) {
 2384			map->queues[pos] = map->queues[--map->len];
 2385			break;
 2386		}
 2387
 2388		if (old_maps)
 2389			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
 2390		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2391		kfree_rcu(map, rcu);
 2392		return false;
 2393	}
 2394
 2395	return true;
 2396}
 2397
 2398static bool remove_xps_queue_cpu(struct net_device *dev,
 2399				 struct xps_dev_maps *dev_maps,
 2400				 int cpu, u16 offset, u16 count)
 2401{
 2402	int num_tc = dev_maps->num_tc;
 2403	bool active = false;
 2404	int tci;
 2405
 2406	for (tci = cpu * num_tc; num_tc--; tci++) {
 2407		int i, j;
 2408
 2409		for (i = count, j = offset; i--; j++) {
 2410			if (!remove_xps_queue(dev_maps, NULL, tci, j))
 2411				break;
 2412		}
 2413
 2414		active |= i < 0;
 2415	}
 2416
 2417	return active;
 2418}
 2419
 2420static void reset_xps_maps(struct net_device *dev,
 2421			   struct xps_dev_maps *dev_maps,
 2422			   enum xps_map_type type)
 2423{
 2424	static_key_slow_dec_cpuslocked(&xps_needed);
 2425	if (type == XPS_RXQS)
 2426		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
 2427
 2428	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
 2429
 2430	kfree_rcu(dev_maps, rcu);
 2431}
 2432
 2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
 2434			   u16 offset, u16 count)
 2435{
 2436	struct xps_dev_maps *dev_maps;
 2437	bool active = false;
 2438	int i, j;
 2439
 2440	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2441	if (!dev_maps)
 2442		return;
 2443
 2444	for (j = 0; j < dev_maps->nr_ids; j++)
 2445		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
 2446	if (!active)
 2447		reset_xps_maps(dev, dev_maps, type);
 2448
 2449	if (type == XPS_CPUS) {
 2450		for (i = offset + (count - 1); count--; i--)
 2451			netdev_queue_numa_node_write(
 2452				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
 2453	}
 2454}
 2455
 2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
 2457				   u16 count)
 2458{
 2459	if (!static_key_false(&xps_needed))
 2460		return;
 2461
 2462	cpus_read_lock();
 2463	mutex_lock(&xps_map_mutex);
 2464
 2465	if (static_key_false(&xps_rxqs_needed))
 2466		clean_xps_maps(dev, XPS_RXQS, offset, count);
 2467
 2468	clean_xps_maps(dev, XPS_CPUS, offset, count);
 2469
 2470	mutex_unlock(&xps_map_mutex);
 2471	cpus_read_unlock();
 2472}
 2473
 2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 2475{
 2476	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
 2477}
 2478
 2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
 2480				      u16 index, bool is_rxqs_map)
 2481{
 2482	struct xps_map *new_map;
 2483	int alloc_len = XPS_MIN_MAP_ALLOC;
 2484	int i, pos;
 2485
 2486	for (pos = 0; map && pos < map->len; pos++) {
 2487		if (map->queues[pos] != index)
 2488			continue;
 2489		return map;
 2490	}
 2491
 2492	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
 2493	if (map) {
 2494		if (pos < map->alloc_len)
 2495			return map;
 2496
 2497		alloc_len = map->alloc_len * 2;
 2498	}
 2499
 2500	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
 2501	 *  map
 2502	 */
 2503	if (is_rxqs_map)
 2504		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
 2505	else
 2506		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
 2507				       cpu_to_node(attr_index));
 2508	if (!new_map)
 2509		return NULL;
 2510
 2511	for (i = 0; i < pos; i++)
 2512		new_map->queues[i] = map->queues[i];
 2513	new_map->alloc_len = alloc_len;
 2514	new_map->len = pos;
 2515
 2516	return new_map;
 2517}
 2518
 2519/* Copy xps maps at a given index */
 2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
 2521			      struct xps_dev_maps *new_dev_maps, int index,
 2522			      int tc, bool skip_tc)
 2523{
 2524	int i, tci = index * dev_maps->num_tc;
 2525	struct xps_map *map;
 2526
 2527	/* copy maps belonging to foreign traffic classes */
 2528	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2529		if (i == tc && skip_tc)
 2530			continue;
 2531
 2532		/* fill in the new device map from the old device map */
 2533		map = xmap_dereference(dev_maps->attr_map[tci]);
 2534		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2535	}
 2536}
 2537
 2538/* Must be called under cpus_read_lock */
 2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
 2540			  u16 index, enum xps_map_type type)
 2541{
 2542	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
 2543	const unsigned long *online_mask = NULL;
 2544	bool active = false, copy = false;
 2545	int i, j, tci, numa_node_id = -2;
 2546	int maps_sz, num_tc = 1, tc = 0;
 2547	struct xps_map *map, *new_map;
 2548	unsigned int nr_ids;
 2549
 2550	WARN_ON_ONCE(index >= dev->num_tx_queues);
 2551
 2552	if (dev->num_tc) {
 2553		/* Do not allow XPS on subordinate device directly */
 2554		num_tc = dev->num_tc;
 2555		if (num_tc < 0)
 2556			return -EINVAL;
 2557
 2558		/* If queue belongs to subordinate dev use its map */
 2559		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
 2560
 2561		tc = netdev_txq_to_tc(dev, index);
 2562		if (tc < 0)
 2563			return -EINVAL;
 2564	}
 2565
 2566	mutex_lock(&xps_map_mutex);
 2567
 2568	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2569	if (type == XPS_RXQS) {
 2570		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
 2571		nr_ids = dev->num_rx_queues;
 2572	} else {
 2573		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
 2574		if (num_possible_cpus() > 1)
 2575			online_mask = cpumask_bits(cpu_online_mask);
 2576		nr_ids = nr_cpu_ids;
 2577	}
 2578
 2579	if (maps_sz < L1_CACHE_BYTES)
 2580		maps_sz = L1_CACHE_BYTES;
 2581
 2582	/* The old dev_maps could be larger or smaller than the one we're
 2583	 * setting up now, as dev->num_tc or nr_ids could have been updated in
 2584	 * between. We could try to be smart, but let's be safe instead and only
 2585	 * copy foreign traffic classes if the two map sizes match.
 2586	 */
 2587	if (dev_maps &&
 2588	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
 2589		copy = true;
 2590
 2591	/* allocate memory for queue storage */
 2592	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
 2593	     j < nr_ids;) {
 2594		if (!new_dev_maps) {
 2595			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
 2596			if (!new_dev_maps) {
 2597				mutex_unlock(&xps_map_mutex);
 2598				return -ENOMEM;
 2599			}
 2600
 2601			new_dev_maps->nr_ids = nr_ids;
 2602			new_dev_maps->num_tc = num_tc;
 2603		}
 2604
 2605		tci = j * num_tc + tc;
 2606		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
 2607
 2608		map = expand_xps_map(map, j, index, type == XPS_RXQS);
 2609		if (!map)
 2610			goto error;
 2611
 2612		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2613	}
 2614
 2615	if (!new_dev_maps)
 2616		goto out_no_new_maps;
 2617
 2618	if (!dev_maps) {
 2619		/* Increment static keys at most once per type */
 2620		static_key_slow_inc_cpuslocked(&xps_needed);
 2621		if (type == XPS_RXQS)
 2622			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
 2623	}
 2624
 2625	for (j = 0; j < nr_ids; j++) {
 2626		bool skip_tc = false;
 2627
 2628		tci = j * num_tc + tc;
 2629		if (netif_attr_test_mask(j, mask, nr_ids) &&
 2630		    netif_attr_test_online(j, online_mask, nr_ids)) {
 2631			/* add tx-queue to CPU/rx-queue maps */
 2632			int pos = 0;
 2633
 2634			skip_tc = true;
 2635
 2636			map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2637			while ((pos < map->len) && (map->queues[pos] != index))
 2638				pos++;
 2639
 2640			if (pos == map->len)
 2641				map->queues[map->len++] = index;
 2642#ifdef CONFIG_NUMA
 2643			if (type == XPS_CPUS) {
 2644				if (numa_node_id == -2)
 2645					numa_node_id = cpu_to_node(j);
 2646				else if (numa_node_id != cpu_to_node(j))
 2647					numa_node_id = -1;
 2648			}
 2649#endif
 2650		}
 2651
 2652		if (copy)
 2653			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
 2654					  skip_tc);
 2655	}
 2656
 2657	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
 2658
 2659	/* Cleanup old maps */
 2660	if (!dev_maps)
 2661		goto out_no_old_maps;
 2662
 2663	for (j = 0; j < dev_maps->nr_ids; j++) {
 2664		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
 2665			map = xmap_dereference(dev_maps->attr_map[tci]);
 2666			if (!map)
 2667				continue;
 2668
 2669			if (copy) {
 2670				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2671				if (map == new_map)
 2672					continue;
 2673			}
 2674
 2675			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2676			kfree_rcu(map, rcu);
 2677		}
 2678	}
 2679
 2680	old_dev_maps = dev_maps;
 2681
 2682out_no_old_maps:
 2683	dev_maps = new_dev_maps;
 2684	active = true;
 2685
 2686out_no_new_maps:
 2687	if (type == XPS_CPUS)
 2688		/* update Tx queue numa node */
 2689		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
 2690					     (numa_node_id >= 0) ?
 2691					     numa_node_id : NUMA_NO_NODE);
 2692
 2693	if (!dev_maps)
 2694		goto out_no_maps;
 2695
 2696	/* removes tx-queue from unused CPUs/rx-queues */
 2697	for (j = 0; j < dev_maps->nr_ids; j++) {
 2698		tci = j * dev_maps->num_tc;
 2699
 2700		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2701			if (i == tc &&
 2702			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
 2703			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
 2704				continue;
 2705
 2706			active |= remove_xps_queue(dev_maps,
 2707						   copy ? old_dev_maps : NULL,
 2708						   tci, index);
 2709		}
 2710	}
 2711
 2712	if (old_dev_maps)
 2713		kfree_rcu(old_dev_maps, rcu);
 2714
 2715	/* free map if not active */
 2716	if (!active)
 2717		reset_xps_maps(dev, dev_maps, type);
 2718
 2719out_no_maps:
 2720	mutex_unlock(&xps_map_mutex);
 2721
 2722	return 0;
 2723error:
 2724	/* remove any maps that we added */
 2725	for (j = 0; j < nr_ids; j++) {
 2726		for (i = num_tc, tci = j * num_tc; i--; tci++) {
 2727			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2728			map = copy ?
 2729			      xmap_dereference(dev_maps->attr_map[tci]) :
 2730			      NULL;
 2731			if (new_map && new_map != map)
 2732				kfree(new_map);
 2733		}
 2734	}
 2735
 2736	mutex_unlock(&xps_map_mutex);
 2737
 2738	kfree(new_dev_maps);
 2739	return -ENOMEM;
 2740}
 2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
 2742
 2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
 2744			u16 index)
 2745{
 2746	int ret;
 2747
 2748	cpus_read_lock();
 2749	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
 2750	cpus_read_unlock();
 2751
 2752	return ret;
 2753}
 2754EXPORT_SYMBOL(netif_set_xps_queue);
 2755
 2756#endif
 2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
 2758{
 2759	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2760
 2761	/* Unbind any subordinate channels */
 2762	while (txq-- != &dev->_tx[0]) {
 2763		if (txq->sb_dev)
 2764			netdev_unbind_sb_channel(dev, txq->sb_dev);
 2765	}
 2766}
 2767
 2768void netdev_reset_tc(struct net_device *dev)
 2769{
 2770#ifdef CONFIG_XPS
 2771	netif_reset_xps_queues_gt(dev, 0);
 2772#endif
 2773	netdev_unbind_all_sb_channels(dev);
 2774
 2775	/* Reset TC configuration of device */
 2776	dev->num_tc = 0;
 2777	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
 2778	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
 2779}
 2780EXPORT_SYMBOL(netdev_reset_tc);
 2781
 2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
 2783{
 2784	if (tc >= dev->num_tc)
 2785		return -EINVAL;
 2786
 2787#ifdef CONFIG_XPS
 2788	netif_reset_xps_queues(dev, offset, count);
 2789#endif
 2790	dev->tc_to_txq[tc].count = count;
 2791	dev->tc_to_txq[tc].offset = offset;
 2792	return 0;
 2793}
 2794EXPORT_SYMBOL(netdev_set_tc_queue);
 2795
 2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
 2797{
 2798	if (num_tc > TC_MAX_QUEUE)
 2799		return -EINVAL;
 2800
 2801#ifdef CONFIG_XPS
 2802	netif_reset_xps_queues_gt(dev, 0);
 2803#endif
 2804	netdev_unbind_all_sb_channels(dev);
 2805
 2806	dev->num_tc = num_tc;
 2807	return 0;
 2808}
 2809EXPORT_SYMBOL(netdev_set_num_tc);
 2810
 2811void netdev_unbind_sb_channel(struct net_device *dev,
 2812			      struct net_device *sb_dev)
 2813{
 2814	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2815
 2816#ifdef CONFIG_XPS
 2817	netif_reset_xps_queues_gt(sb_dev, 0);
 2818#endif
 2819	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
 2820	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
 2821
 2822	while (txq-- != &dev->_tx[0]) {
 2823		if (txq->sb_dev == sb_dev)
 2824			txq->sb_dev = NULL;
 2825	}
 2826}
 2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
 2828
 2829int netdev_bind_sb_channel_queue(struct net_device *dev,
 2830				 struct net_device *sb_dev,
 2831				 u8 tc, u16 count, u16 offset)
 2832{
 2833	/* Make certain the sb_dev and dev are already configured */
 2834	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
 2835		return -EINVAL;
 2836
 2837	/* We cannot hand out queues we don't have */
 2838	if ((offset + count) > dev->real_num_tx_queues)
 2839		return -EINVAL;
 2840
 2841	/* Record the mapping */
 2842	sb_dev->tc_to_txq[tc].count = count;
 2843	sb_dev->tc_to_txq[tc].offset = offset;
 2844
 2845	/* Provide a way for Tx queue to find the tc_to_txq map or
 2846	 * XPS map for itself.
 2847	 */
 2848	while (count--)
 2849		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
 2850
 2851	return 0;
 2852}
 2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
 2854
 2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
 2856{
 2857	/* Do not use a multiqueue device to represent a subordinate channel */
 2858	if (netif_is_multiqueue(dev))
 2859		return -ENODEV;
 2860
 2861	/* We allow channels 1 - 32767 to be used for subordinate channels.
 2862	 * Channel 0 is meant to be "native" mode and used only to represent
 2863	 * the main root device. We allow writing 0 to reset the device back
 2864	 * to normal mode after being used as a subordinate channel.
 2865	 */
 2866	if (channel > S16_MAX)
 2867		return -EINVAL;
 2868
 2869	dev->num_tc = -channel;
 2870
 2871	return 0;
 2872}
 2873EXPORT_SYMBOL(netdev_set_sb_channel);
 2874
 2875/*
 2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
 2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
 2878 */
 2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
 2880{
 2881	bool disabling;
 2882	int rc;
 2883
 2884	disabling = txq < dev->real_num_tx_queues;
 2885
 2886	if (txq < 1 || txq > dev->num_tx_queues)
 2887		return -EINVAL;
 2888
 2889	if (dev->reg_state == NETREG_REGISTERED ||
 2890	    dev->reg_state == NETREG_UNREGISTERING) {
 2891		ASSERT_RTNL();
 2892
 2893		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
 2894						  txq);
 2895		if (rc)
 2896			return rc;
 2897
 2898		if (dev->num_tc)
 2899			netif_setup_tc(dev, txq);
 2900
 2901		dev_qdisc_change_real_num_tx(dev, txq);
 2902
 2903		dev->real_num_tx_queues = txq;
 2904
 2905		if (disabling) {
 2906			synchronize_net();
 2907			qdisc_reset_all_tx_gt(dev, txq);
 2908#ifdef CONFIG_XPS
 2909			netif_reset_xps_queues_gt(dev, txq);
 2910#endif
 2911		}
 2912	} else {
 2913		dev->real_num_tx_queues = txq;
 2914	}
 2915
 
 2916	return 0;
 2917}
 2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
 2919
 2920#ifdef CONFIG_SYSFS
 2921/**
 2922 *	netif_set_real_num_rx_queues - set actual number of RX queues used
 2923 *	@dev: Network device
 2924 *	@rxq: Actual number of RX queues
 2925 *
 2926 *	This must be called either with the rtnl_lock held or before
 2927 *	registration of the net device.  Returns 0 on success, or a
 2928 *	negative error code.  If called before registration, it always
 2929 *	succeeds.
 2930 */
 2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
 2932{
 2933	int rc;
 2934
 2935	if (rxq < 1 || rxq > dev->num_rx_queues)
 2936		return -EINVAL;
 2937
 2938	if (dev->reg_state == NETREG_REGISTERED) {
 2939		ASSERT_RTNL();
 2940
 2941		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
 2942						  rxq);
 2943		if (rc)
 2944			return rc;
 2945	}
 2946
 2947	dev->real_num_rx_queues = rxq;
 2948	return 0;
 2949}
 2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
 2951#endif
 2952
 2953/**
 2954 *	netif_set_real_num_queues - set actual number of RX and TX queues used
 2955 *	@dev: Network device
 2956 *	@txq: Actual number of TX queues
 2957 *	@rxq: Actual number of RX queues
 2958 *
 2959 *	Set the real number of both TX and RX queues.
 2960 *	Does nothing if the number of queues is already correct.
 2961 */
 2962int netif_set_real_num_queues(struct net_device *dev,
 2963			      unsigned int txq, unsigned int rxq)
 2964{
 2965	unsigned int old_rxq = dev->real_num_rx_queues;
 2966	int err;
 2967
 2968	if (txq < 1 || txq > dev->num_tx_queues ||
 2969	    rxq < 1 || rxq > dev->num_rx_queues)
 2970		return -EINVAL;
 2971
 2972	/* Start from increases, so the error path only does decreases -
 2973	 * decreases can't fail.
 2974	 */
 2975	if (rxq > dev->real_num_rx_queues) {
 2976		err = netif_set_real_num_rx_queues(dev, rxq);
 2977		if (err)
 2978			return err;
 2979	}
 2980	if (txq > dev->real_num_tx_queues) {
 2981		err = netif_set_real_num_tx_queues(dev, txq);
 2982		if (err)
 2983			goto undo_rx;
 2984	}
 2985	if (rxq < dev->real_num_rx_queues)
 2986		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
 2987	if (txq < dev->real_num_tx_queues)
 2988		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
 2989
 2990	return 0;
 2991undo_rx:
 2992	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
 2993	return err;
 2994}
 2995EXPORT_SYMBOL(netif_set_real_num_queues);
 2996
 2997/**
 2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
 2999 * @dev:	netdev to update
 3000 * @size:	max skb->len of a TSO frame
 3001 *
 3002 * Set the limit on the size of TSO super-frames the device can handle.
 3003 * Unless explicitly set the stack will assume the value of
 3004 * %GSO_LEGACY_MAX_SIZE.
 3005 */
 3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
 3007{
 3008	dev->tso_max_size = min(GSO_MAX_SIZE, size);
 3009	if (size < READ_ONCE(dev->gso_max_size))
 3010		netif_set_gso_max_size(dev, size);
 3011	if (size < READ_ONCE(dev->gso_ipv4_max_size))
 3012		netif_set_gso_ipv4_max_size(dev, size);
 3013}
 3014EXPORT_SYMBOL(netif_set_tso_max_size);
 3015
 3016/**
 3017 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
 3018 * @dev:	netdev to update
 3019 * @segs:	max number of TCP segments
 3020 *
 3021 * Set the limit on the number of TCP segments the device can generate from
 3022 * a single TSO super-frame.
 3023 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
 3024 */
 3025void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
 3026{
 3027	dev->tso_max_segs = segs;
 3028	if (segs < READ_ONCE(dev->gso_max_segs))
 3029		netif_set_gso_max_segs(dev, segs);
 3030}
 3031EXPORT_SYMBOL(netif_set_tso_max_segs);
 3032
 3033/**
 3034 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
 3035 * @to:		netdev to update
 3036 * @from:	netdev from which to copy the limits
 3037 */
 3038void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
 3039{
 3040	netif_set_tso_max_size(to, from->tso_max_size);
 3041	netif_set_tso_max_segs(to, from->tso_max_segs);
 3042}
 3043EXPORT_SYMBOL(netif_inherit_tso_max);
 3044
 3045/**
 3046 * netif_get_num_default_rss_queues - default number of RSS queues
 3047 *
 3048 * Default value is the number of physical cores if there are only 1 or 2, or
 3049 * divided by 2 if there are more.
 3050 */
 3051int netif_get_num_default_rss_queues(void)
 3052{
 3053	cpumask_var_t cpus;
 3054	int cpu, count = 0;
 3055
 3056	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
 3057		return 1;
 3058
 3059	cpumask_copy(cpus, cpu_online_mask);
 3060	for_each_cpu(cpu, cpus) {
 3061		++count;
 3062		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
 3063	}
 3064	free_cpumask_var(cpus);
 3065
 3066	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
 3067}
 3068EXPORT_SYMBOL(netif_get_num_default_rss_queues);
 3069
 3070static void __netif_reschedule(struct Qdisc *q)
 3071{
 3072	struct softnet_data *sd;
 3073	unsigned long flags;
 3074
 3075	local_irq_save(flags);
 3076	sd = this_cpu_ptr(&softnet_data);
 3077	q->next_sched = NULL;
 3078	*sd->output_queue_tailp = q;
 3079	sd->output_queue_tailp = &q->next_sched;
 3080	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3081	local_irq_restore(flags);
 3082}
 3083
 3084void __netif_schedule(struct Qdisc *q)
 3085{
 3086	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
 3087		__netif_reschedule(q);
 3088}
 3089EXPORT_SYMBOL(__netif_schedule);
 3090
 3091struct dev_kfree_skb_cb {
 3092	enum skb_drop_reason reason;
 3093};
 3094
 3095static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
 3096{
 3097	return (struct dev_kfree_skb_cb *)skb->cb;
 3098}
 3099
 3100void netif_schedule_queue(struct netdev_queue *txq)
 3101{
 3102	rcu_read_lock();
 3103	if (!netif_xmit_stopped(txq)) {
 3104		struct Qdisc *q = rcu_dereference(txq->qdisc);
 3105
 3106		__netif_schedule(q);
 3107	}
 3108	rcu_read_unlock();
 3109}
 3110EXPORT_SYMBOL(netif_schedule_queue);
 3111
 3112void netif_tx_wake_queue(struct netdev_queue *dev_queue)
 3113{
 3114	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
 3115		struct Qdisc *q;
 
 3116
 3117		rcu_read_lock();
 3118		q = rcu_dereference(dev_queue->qdisc);
 3119		__netif_schedule(q);
 3120		rcu_read_unlock();
 
 
 3121	}
 3122}
 3123EXPORT_SYMBOL(netif_tx_wake_queue);
 3124
 3125void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3126{
 3127	unsigned long flags;
 3128
 3129	if (unlikely(!skb))
 3130		return;
 3131
 3132	if (likely(refcount_read(&skb->users) == 1)) {
 3133		smp_rmb();
 3134		refcount_set(&skb->users, 0);
 3135	} else if (likely(!refcount_dec_and_test(&skb->users))) {
 3136		return;
 3137	}
 3138	get_kfree_skb_cb(skb)->reason = reason;
 3139	local_irq_save(flags);
 3140	skb->next = __this_cpu_read(softnet_data.completion_queue);
 3141	__this_cpu_write(softnet_data.completion_queue, skb);
 3142	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3143	local_irq_restore(flags);
 3144}
 3145EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
 3146
 3147void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3148{
 3149	if (in_hardirq() || irqs_disabled())
 3150		dev_kfree_skb_irq_reason(skb, reason);
 3151	else
 3152		kfree_skb_reason(skb, reason);
 3153}
 3154EXPORT_SYMBOL(dev_kfree_skb_any_reason);
 3155
 3156
 3157/**
 3158 * netif_device_detach - mark device as removed
 3159 * @dev: network device
 3160 *
 3161 * Mark device as removed from system and therefore no longer available.
 3162 */
 3163void netif_device_detach(struct net_device *dev)
 3164{
 3165	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3166	    netif_running(dev)) {
 3167		netif_tx_stop_all_queues(dev);
 3168	}
 3169}
 3170EXPORT_SYMBOL(netif_device_detach);
 3171
 3172/**
 3173 * netif_device_attach - mark device as attached
 3174 * @dev: network device
 3175 *
 3176 * Mark device as attached from system and restart if needed.
 3177 */
 3178void netif_device_attach(struct net_device *dev)
 3179{
 3180	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3181	    netif_running(dev)) {
 3182		netif_tx_wake_all_queues(dev);
 3183		__netdev_watchdog_up(dev);
 3184	}
 3185}
 3186EXPORT_SYMBOL(netif_device_attach);
 3187
 3188/*
 3189 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
 3190 * to be used as a distribution range.
 3191 */
 3192static u16 skb_tx_hash(const struct net_device *dev,
 3193		       const struct net_device *sb_dev,
 3194		       struct sk_buff *skb)
 3195{
 3196	u32 hash;
 3197	u16 qoffset = 0;
 3198	u16 qcount = dev->real_num_tx_queues;
 3199
 3200	if (dev->num_tc) {
 3201		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
 3202
 3203		qoffset = sb_dev->tc_to_txq[tc].offset;
 3204		qcount = sb_dev->tc_to_txq[tc].count;
 3205		if (unlikely(!qcount)) {
 3206			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
 3207					     sb_dev->name, qoffset, tc);
 3208			qoffset = 0;
 3209			qcount = dev->real_num_tx_queues;
 3210		}
 3211	}
 3212
 3213	if (skb_rx_queue_recorded(skb)) {
 3214		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
 3215		hash = skb_get_rx_queue(skb);
 3216		if (hash >= qoffset)
 3217			hash -= qoffset;
 3218		while (unlikely(hash >= qcount))
 3219			hash -= qcount;
 3220		return hash + qoffset;
 3221	}
 3222
 3223	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
 3224}
 3225
 3226void skb_warn_bad_offload(const struct sk_buff *skb)
 3227{
 3228	static const netdev_features_t null_features;
 3229	struct net_device *dev = skb->dev;
 3230	const char *name = "";
 3231
 3232	if (!net_ratelimit())
 3233		return;
 3234
 3235	if (dev) {
 3236		if (dev->dev.parent)
 3237			name = dev_driver_string(dev->dev.parent);
 3238		else
 3239			name = netdev_name(dev);
 3240	}
 3241	skb_dump(KERN_WARNING, skb, false);
 3242	WARN(1, "%s: caps=(%pNF, %pNF)\n",
 3243	     name, dev ? &dev->features : &null_features,
 3244	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
 3245}
 
 
 3246
 3247/*
 3248 * Invalidate hardware checksum when packet is to be mangled, and
 3249 * complete checksum manually on outgoing path.
 3250 */
 3251int skb_checksum_help(struct sk_buff *skb)
 3252{
 3253	__wsum csum;
 3254	int ret = 0, offset;
 3255
 3256	if (skb->ip_summed == CHECKSUM_COMPLETE)
 3257		goto out_set_summed;
 3258
 3259	if (unlikely(skb_is_gso(skb))) {
 3260		skb_warn_bad_offload(skb);
 3261		return -EINVAL;
 3262	}
 3263
 3264	/* Before computing a checksum, we should make sure no frag could
 3265	 * be modified by an external entity : checksum could be wrong.
 3266	 */
 3267	if (skb_has_shared_frag(skb)) {
 3268		ret = __skb_linearize(skb);
 3269		if (ret)
 3270			goto out;
 3271	}
 3272
 3273	offset = skb_checksum_start_offset(skb);
 3274	ret = -EINVAL;
 3275	if (unlikely(offset >= skb_headlen(skb))) {
 3276		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3277		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
 3278			  offset, skb_headlen(skb));
 3279		goto out;
 3280	}
 3281	csum = skb_checksum(skb, offset, skb->len - offset, 0);
 3282
 3283	offset += skb->csum_offset;
 3284	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
 3285		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3286		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
 3287			  offset + sizeof(__sum16), skb_headlen(skb));
 3288		goto out;
 
 
 3289	}
 3290	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
 3291	if (ret)
 3292		goto out;
 3293
 3294	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
 3295out_set_summed:
 3296	skb->ip_summed = CHECKSUM_NONE;
 3297out:
 3298	return ret;
 3299}
 3300EXPORT_SYMBOL(skb_checksum_help);
 3301
 3302int skb_crc32c_csum_help(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 3303{
 3304	__le32 crc32c_csum;
 3305	int ret = 0, offset, start;
 
 
 
 3306
 3307	if (skb->ip_summed != CHECKSUM_PARTIAL)
 3308		goto out;
 3309
 3310	if (unlikely(skb_is_gso(skb)))
 3311		goto out;
 3312
 3313	/* Before computing a checksum, we should make sure no frag could
 3314	 * be modified by an external entity : checksum could be wrong.
 3315	 */
 3316	if (unlikely(skb_has_shared_frag(skb))) {
 3317		ret = __skb_linearize(skb);
 3318		if (ret)
 3319			goto out;
 3320	}
 3321	start = skb_checksum_start_offset(skb);
 3322	offset = start + offsetof(struct sctphdr, checksum);
 3323	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
 3324		ret = -EINVAL;
 3325		goto out;
 3326	}
 3327
 3328	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
 3329	if (ret)
 3330		goto out;
 3331
 3332	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
 3333						  skb->len - start, ~(__u32)0,
 3334						  crc32c_csum_stub));
 3335	*(__le32 *)(skb->data + offset) = crc32c_csum;
 3336	skb_reset_csum_not_inet(skb);
 3337out:
 3338	return ret;
 3339}
 3340
 3341__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
 3342{
 3343	__be16 type = skb->protocol;
 3344
 3345	/* Tunnel gso handlers can set protocol to ethernet. */
 3346	if (type == htons(ETH_P_TEB)) {
 3347		struct ethhdr *eth;
 3348
 3349		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
 3350			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3351
 3352		eth = (struct ethhdr *)skb->data;
 3353		type = eth->h_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 3354	}
 
 3355
 3356	return vlan_get_protocol_and_depth(skb, type, depth);
 3357}
 3358
 
 
 
 3359
 3360/* Take action when hardware reception checksum errors are detected. */
 3361#ifdef CONFIG_BUG
 3362static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3363{
 3364	netdev_err(dev, "hw csum failure\n");
 3365	skb_dump(KERN_ERR, skb, true);
 3366	dump_stack();
 3367}
 3368
 3369void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3370{
 3371	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
 3372}
 3373EXPORT_SYMBOL(netdev_rx_csum_fault);
 3374#endif
 3375
 3376/* XXX: check that highmem exists at all on the given machine. */
 
 
 
 
 3377static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
 3378{
 3379#ifdef CONFIG_HIGHMEM
 3380	int i;
 3381
 3382	if (!(dev->features & NETIF_F_HIGHDMA)) {
 3383		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 3384			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
 
 
 
 3385
 3386			if (PageHighMem(skb_frag_page(frag)))
 
 
 
 
 3387				return 1;
 3388		}
 3389	}
 3390#endif
 3391	return 0;
 3392}
 3393
 3394/* If MPLS offload request, verify we are testing hardware MPLS features
 3395 * instead of standard features for the netdev.
 3396 */
 3397#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
 3398static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3399					   netdev_features_t features,
 3400					   __be16 type)
 3401{
 3402	if (eth_p_mpls(type))
 3403		features &= skb->dev->mpls_features;
 3404
 3405	return features;
 3406}
 3407#else
 3408static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3409					   netdev_features_t features,
 3410					   __be16 type)
 3411{
 3412	return features;
 3413}
 3414#endif
 3415
 3416static netdev_features_t harmonize_features(struct sk_buff *skb,
 3417	netdev_features_t features)
 3418{
 3419	__be16 type;
 3420
 3421	type = skb_network_protocol(skb, NULL);
 3422	features = net_mpls_features(skb, features, type);
 3423
 3424	if (skb->ip_summed != CHECKSUM_NONE &&
 3425	    !can_checksum_protocol(features, type)) {
 3426		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
 3427	}
 3428	if (illegal_highdma(skb->dev, skb))
 3429		features &= ~NETIF_F_SG;
 3430
 3431	return features;
 
 
 3432}
 3433
 3434netdev_features_t passthru_features_check(struct sk_buff *skb,
 3435					  struct net_device *dev,
 3436					  netdev_features_t features)
 3437{
 3438	return features;
 3439}
 3440EXPORT_SYMBOL(passthru_features_check);
 3441
 3442static netdev_features_t dflt_features_check(struct sk_buff *skb,
 3443					     struct net_device *dev,
 3444					     netdev_features_t features)
 3445{
 3446	return vlan_features_check(skb, features);
 3447}
 3448
 3449static netdev_features_t gso_features_check(const struct sk_buff *skb,
 3450					    struct net_device *dev,
 3451					    netdev_features_t features)
 3452{
 3453	u16 gso_segs = skb_shinfo(skb)->gso_segs;
 3454
 3455	if (gso_segs > READ_ONCE(dev->gso_max_segs))
 3456		return features & ~NETIF_F_GSO_MASK;
 
 3457
 3458	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
 3459		return features & ~NETIF_F_GSO_MASK;
 3460
 3461	if (!skb_shinfo(skb)->gso_type) {
 3462		skb_warn_bad_offload(skb);
 3463		return features & ~NETIF_F_GSO_MASK;
 3464	}
 3465
 3466	/* Support for GSO partial features requires software
 3467	 * intervention before we can actually process the packets
 3468	 * so we need to strip support for any partial features now
 3469	 * and we can pull them back in after we have partially
 3470	 * segmented the frame.
 3471	 */
 3472	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
 3473		features &= ~dev->gso_partial_features;
 3474
 3475	/* Make sure to clear the IPv4 ID mangling feature if the
 3476	 * IPv4 header has the potential to be fragmented.
 3477	 */
 3478	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
 3479		struct iphdr *iph = skb->encapsulation ?
 3480				    inner_ip_hdr(skb) : ip_hdr(skb);
 
 
 3481
 3482		if (!(iph->frag_off & htons(IP_DF)))
 3483			features &= ~NETIF_F_TSO_MANGLEID;
 
 
 
 
 
 3484	}
 3485
 3486	return features;
 3487}
 3488
 3489netdev_features_t netif_skb_features(struct sk_buff *skb)
 3490{
 3491	struct net_device *dev = skb->dev;
 3492	netdev_features_t features = dev->features;
 3493
 3494	if (skb_is_gso(skb))
 3495		features = gso_features_check(skb, dev, features);
 3496
 3497	/* If encapsulation offload request, verify we are testing
 3498	 * hardware encapsulation features instead of standard
 3499	 * features for the netdev
 3500	 */
 3501	if (skb->encapsulation)
 3502		features &= dev->hw_enc_features;
 3503
 3504	if (skb_vlan_tagged(skb))
 3505		features = netdev_intersect_features(features,
 3506						     dev->vlan_features |
 3507						     NETIF_F_HW_VLAN_CTAG_TX |
 3508						     NETIF_F_HW_VLAN_STAG_TX);
 3509
 3510	if (dev->netdev_ops->ndo_features_check)
 3511		features &= dev->netdev_ops->ndo_features_check(skb, dev,
 3512								features);
 3513	else
 3514		features &= dflt_features_check(skb, dev, features);
 3515
 3516	return harmonize_features(skb, features);
 3517}
 3518EXPORT_SYMBOL(netif_skb_features);
 3519
 3520static int xmit_one(struct sk_buff *skb, struct net_device *dev,
 3521		    struct netdev_queue *txq, bool more)
 3522{
 3523	unsigned int len;
 3524	int rc;
 3525
 3526	if (dev_nit_active(dev))
 3527		dev_queue_xmit_nit(skb, dev);
 3528
 3529	len = skb->len;
 3530	trace_net_dev_start_xmit(skb, dev);
 3531	rc = netdev_start_xmit(skb, dev, txq, more);
 3532	trace_net_dev_xmit(skb, rc, dev, len);
 3533
 3534	return rc;
 3535}
 3536
 3537struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
 3538				    struct netdev_queue *txq, int *ret)
 3539{
 3540	struct sk_buff *skb = first;
 3541	int rc = NETDEV_TX_OK;
 3542
 3543	while (skb) {
 3544		struct sk_buff *next = skb->next;
 
 
 
 
 3545
 3546		skb_mark_not_on_list(skb);
 3547		rc = xmit_one(skb, dev, txq, next != NULL);
 3548		if (unlikely(!dev_xmit_complete(rc))) {
 3549			skb->next = next;
 3550			goto out;
 3551		}
 3552
 3553		skb = next;
 3554		if (netif_tx_queue_stopped(txq) && skb) {
 3555			rc = NETDEV_TX_BUSY;
 3556			break;
 3557		}
 
 3558	}
 3559
 3560out:
 3561	*ret = rc;
 3562	return skb;
 3563}
 
 3564
 3565static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
 3566					  netdev_features_t features)
 3567{
 3568	if (skb_vlan_tag_present(skb) &&
 3569	    !vlan_hw_offload_capable(features, skb->vlan_proto))
 3570		skb = __vlan_hwaccel_push_inside(skb);
 3571	return skb;
 
 
 
 
 
 
 
 
 3572}
 3573
 3574int skb_csum_hwoffload_help(struct sk_buff *skb,
 3575			    const netdev_features_t features)
 3576{
 3577	if (unlikely(skb_csum_is_sctp(skb)))
 3578		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
 3579			skb_crc32c_csum_help(skb);
 3580
 3581	if (features & NETIF_F_HW_CSUM)
 3582		return 0;
 3583
 3584	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
 3585		switch (skb->csum_offset) {
 3586		case offsetof(struct tcphdr, check):
 3587		case offsetof(struct udphdr, check):
 3588			return 0;
 3589		}
 3590	}
 3591
 3592	return skb_checksum_help(skb);
 3593}
 3594EXPORT_SYMBOL(skb_csum_hwoffload_help);
 
 
 
 3595
 3596static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
 3597{
 3598	netdev_features_t features;
 3599
 3600	features = netif_skb_features(skb);
 3601	skb = validate_xmit_vlan(skb, features);
 3602	if (unlikely(!skb))
 3603		goto out_null;
 3604
 3605	skb = sk_validate_xmit_skb(skb, dev);
 3606	if (unlikely(!skb))
 3607		goto out_null;
 3608
 3609	if (netif_needs_gso(skb, features)) {
 3610		struct sk_buff *segs;
 
 
 
 3611
 3612		segs = skb_gso_segment(skb, features);
 3613		if (IS_ERR(segs)) {
 3614			goto out_kfree_skb;
 3615		} else if (segs) {
 3616			consume_skb(skb);
 3617			skb = segs;
 3618		}
 3619	} else {
 3620		if (skb_needs_linearize(skb, features) &&
 3621		    __skb_linearize(skb))
 3622			goto out_kfree_skb;
 3623
 3624		/* If packet is not checksummed and device does not
 3625		 * support checksumming for this protocol, complete
 3626		 * checksumming here.
 3627		 */
 3628		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 3629			if (skb->encapsulation)
 3630				skb_set_inner_transport_header(skb,
 3631							       skb_checksum_start_offset(skb));
 3632			else
 3633				skb_set_transport_header(skb,
 3634							 skb_checksum_start_offset(skb));
 3635			if (skb_csum_hwoffload_help(skb, features))
 3636				goto out_kfree_skb;
 
 
 
 
 
 
 
 
 
 
 
 
 3637		}
 
 
 
 
 
 
 
 3638	}
 3639
 3640	skb = validate_xmit_xfrm(skb, features, again);
 
 
 3641
 3642	return skb;
 
 
 
 
 
 
 
 
 3643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3644out_kfree_skb:
 3645	kfree_skb(skb);
 3646out_null:
 3647	dev_core_stats_tx_dropped_inc(dev);
 3648	return NULL;
 3649}
 3650
 3651struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
 
 
 
 
 
 
 
 3652{
 3653	struct sk_buff *next, *head = NULL, *tail;
 
 
 3654
 3655	for (; skb != NULL; skb = next) {
 3656		next = skb->next;
 3657		skb_mark_not_on_list(skb);
 
 
 
 3658
 3659		/* in case skb wont be segmented, point to itself */
 3660		skb->prev = skb;
 
 
 
 3661
 3662		skb = validate_xmit_skb(skb, dev, again);
 3663		if (!skb)
 3664			continue;
 
 
 3665
 3666		if (!head)
 3667			head = skb;
 3668		else
 3669			tail->next = skb;
 3670		/* If skb was segmented, skb->prev points to
 3671		 * the last segment. If not, it still contains skb.
 3672		 */
 3673		tail = skb->prev;
 3674	}
 3675	return head;
 3676}
 3677EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
 3678
 3679static void qdisc_pkt_len_init(struct sk_buff *skb)
 3680{
 3681	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 3682
 3683	qdisc_skb_cb(skb)->pkt_len = skb->len;
 3684
 3685	/* To get more precise estimation of bytes sent on wire,
 3686	 * we add to pkt_len the headers size of all segments
 3687	 */
 3688	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
 3689		u16 gso_segs = shinfo->gso_segs;
 3690		unsigned int hdr_len;
 3691
 3692		/* mac layer + network layer */
 3693		hdr_len = skb_transport_offset(skb);
 3694
 3695		/* + transport layer */
 3696		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
 3697			const struct tcphdr *th;
 3698			struct tcphdr _tcphdr;
 3699
 3700			th = skb_header_pointer(skb, hdr_len,
 3701						sizeof(_tcphdr), &_tcphdr);
 3702			if (likely(th))
 3703				hdr_len += __tcp_hdrlen(th);
 3704		} else {
 3705			struct udphdr _udphdr;
 3706
 3707			if (skb_header_pointer(skb, hdr_len,
 3708					       sizeof(_udphdr), &_udphdr))
 3709				hdr_len += sizeof(struct udphdr);
 3710		}
 
 
 
 
 3711
 3712		if (shinfo->gso_type & SKB_GSO_DODGY)
 3713			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
 3714						shinfo->gso_size);
 
 
 
 3715
 3716		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3717	}
 
 
 
 
 
 
 3718}
 3719
 3720static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
 3721			     struct sk_buff **to_free,
 3722			     struct netdev_queue *txq)
 3723{
 3724	int rc;
 
 3725
 3726	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
 3727	if (rc == NET_XMIT_SUCCESS)
 3728		trace_qdisc_enqueue(q, txq, skb);
 3729	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3730}
 3731
 3732static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
 3733				 struct net_device *dev,
 3734				 struct netdev_queue *txq)
 3735{
 3736	spinlock_t *root_lock = qdisc_lock(q);
 3737	struct sk_buff *to_free = NULL;
 3738	bool contended;
 3739	int rc;
 3740
 
 3741	qdisc_calculate_pkt_len(skb, q);
 3742
 3743	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
 3744
 3745	if (q->flags & TCQ_F_NOLOCK) {
 3746		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
 3747		    qdisc_run_begin(q)) {
 3748			/* Retest nolock_qdisc_is_empty() within the protection
 3749			 * of q->seqlock to protect from racing with requeuing.
 3750			 */
 3751			if (unlikely(!nolock_qdisc_is_empty(q))) {
 3752				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3753				__qdisc_run(q);
 3754				qdisc_run_end(q);
 3755
 3756				goto no_lock_out;
 3757			}
 3758
 3759			qdisc_bstats_cpu_update(q, skb);
 3760			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
 3761			    !nolock_qdisc_is_empty(q))
 3762				__qdisc_run(q);
 3763
 3764			qdisc_run_end(q);
 3765			return NET_XMIT_SUCCESS;
 3766		}
 3767
 3768		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3769		qdisc_run(q);
 3770
 3771no_lock_out:
 3772		if (unlikely(to_free))
 3773			kfree_skb_list_reason(to_free,
 3774					      tcf_get_drop_reason(to_free));
 3775		return rc;
 3776	}
 3777
 3778	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
 3779		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
 3780		return NET_XMIT_DROP;
 3781	}
 3782	/*
 3783	 * Heuristic to force contended enqueues to serialize on a
 3784	 * separate lock before trying to get qdisc main lock.
 3785	 * This permits qdisc->running owner to get the lock more
 3786	 * often and dequeue packets faster.
 3787	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
 3788	 * and then other tasks will only enqueue packets. The packets will be
 3789	 * sent after the qdisc owner is scheduled again. To prevent this
 3790	 * scenario the task always serialize on the lock.
 3791	 */
 3792	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
 3793	if (unlikely(contended))
 3794		spin_lock(&q->busylock);
 3795
 3796	spin_lock(root_lock);
 3797	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
 3798		__qdisc_drop(skb, &to_free);
 3799		rc = NET_XMIT_DROP;
 3800	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
 3801		   qdisc_run_begin(q)) {
 3802		/*
 3803		 * This is a work-conserving queue; there are no old skbs
 3804		 * waiting to be sent out; and the qdisc is not running -
 3805		 * xmit the skb directly.
 3806		 */
 
 
 3807
 3808		qdisc_bstats_update(q, skb);
 3809
 3810		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
 3811			if (unlikely(contended)) {
 3812				spin_unlock(&q->busylock);
 3813				contended = false;
 3814			}
 3815			__qdisc_run(q);
 3816		}
 
 3817
 3818		qdisc_run_end(q);
 3819		rc = NET_XMIT_SUCCESS;
 3820	} else {
 3821		WRITE_ONCE(q->owner, smp_processor_id());
 3822		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3823		WRITE_ONCE(q->owner, -1);
 3824		if (qdisc_run_begin(q)) {
 3825			if (unlikely(contended)) {
 3826				spin_unlock(&q->busylock);
 3827				contended = false;
 3828			}
 3829			__qdisc_run(q);
 3830			qdisc_run_end(q);
 3831		}
 3832	}
 3833	spin_unlock(root_lock);
 3834	if (unlikely(to_free))
 3835		kfree_skb_list_reason(to_free,
 3836				      tcf_get_drop_reason(to_free));
 3837	if (unlikely(contended))
 3838		spin_unlock(&q->busylock);
 3839	return rc;
 3840}
 3841
 3842#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 3843static void skb_update_prio(struct sk_buff *skb)
 3844{
 3845	const struct netprio_map *map;
 3846	const struct sock *sk;
 3847	unsigned int prioidx;
 3848
 3849	if (skb->priority)
 3850		return;
 3851	map = rcu_dereference_bh(skb->dev->priomap);
 3852	if (!map)
 3853		return;
 3854	sk = skb_to_full_sk(skb);
 3855	if (!sk)
 3856		return;
 3857
 3858	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
 3859
 3860	if (prioidx < map->priomap_len)
 3861		skb->priority = map->priomap[prioidx];
 3862}
 3863#else
 3864#define skb_update_prio(skb)
 3865#endif
 3866
 3867/**
 3868 *	dev_loopback_xmit - loop back @skb
 3869 *	@net: network namespace this loopback is happening in
 3870 *	@sk:  sk needed to be a netfilter okfn
 3871 *	@skb: buffer to transmit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3872 */
 3873int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
 3874{
 3875	skb_reset_mac_header(skb);
 3876	__skb_pull(skb, skb_network_offset(skb));
 3877	skb->pkt_type = PACKET_LOOPBACK;
 3878	if (skb->ip_summed == CHECKSUM_NONE)
 3879		skb->ip_summed = CHECKSUM_UNNECESSARY;
 3880	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
 3881	skb_dst_force(skb);
 3882	netif_rx(skb);
 3883	return 0;
 3884}
 3885EXPORT_SYMBOL(dev_loopback_xmit);
 3886
 3887#ifdef CONFIG_NET_EGRESS
 3888static struct netdev_queue *
 3889netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
 3890{
 3891	int qm = skb_get_queue_mapping(skb);
 3892
 3893	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
 3894}
 3895
 3896static bool netdev_xmit_txqueue_skipped(void)
 3897{
 3898	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
 3899}
 3900
 3901void netdev_xmit_skip_txqueue(bool skip)
 3902{
 3903	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
 3904}
 3905EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
 3906#endif /* CONFIG_NET_EGRESS */
 3907
 3908#ifdef CONFIG_NET_XGRESS
 3909static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
 3910		  enum skb_drop_reason *drop_reason)
 3911{
 3912	int ret = TC_ACT_UNSPEC;
 3913#ifdef CONFIG_NET_CLS_ACT
 3914	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
 3915	struct tcf_result res;
 3916
 3917	if (!miniq)
 3918		return ret;
 3919
 3920	tc_skb_cb(skb)->mru = 0;
 3921	tc_skb_cb(skb)->post_ct = false;
 3922	tcf_set_drop_reason(skb, *drop_reason);
 3923
 3924	mini_qdisc_bstats_cpu_update(miniq, skb);
 3925	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
 3926	/* Only tcf related quirks below. */
 3927	switch (ret) {
 3928	case TC_ACT_SHOT:
 3929		*drop_reason = tcf_get_drop_reason(skb);
 3930		mini_qdisc_qstats_cpu_drop(miniq);
 3931		break;
 3932	case TC_ACT_OK:
 3933	case TC_ACT_RECLASSIFY:
 3934		skb->tc_index = TC_H_MIN(res.classid);
 3935		break;
 3936	}
 3937#endif /* CONFIG_NET_CLS_ACT */
 3938	return ret;
 3939}
 3940
 3941static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
 3942
 3943void tcx_inc(void)
 3944{
 3945	static_branch_inc(&tcx_needed_key);
 3946}
 3947
 3948void tcx_dec(void)
 3949{
 3950	static_branch_dec(&tcx_needed_key);
 3951}
 3952
 3953static __always_inline enum tcx_action_base
 3954tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
 3955	const bool needs_mac)
 3956{
 3957	const struct bpf_mprog_fp *fp;
 3958	const struct bpf_prog *prog;
 3959	int ret = TCX_NEXT;
 3960
 3961	if (needs_mac)
 3962		__skb_push(skb, skb->mac_len);
 3963	bpf_mprog_foreach_prog(entry, fp, prog) {
 3964		bpf_compute_data_pointers(skb);
 3965		ret = bpf_prog_run(prog, skb);
 3966		if (ret != TCX_NEXT)
 3967			break;
 3968	}
 3969	if (needs_mac)
 3970		__skb_pull(skb, skb->mac_len);
 3971	return tcx_action_code(skb, ret);
 3972}
 3973
 3974static __always_inline struct sk_buff *
 3975sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 3976		   struct net_device *orig_dev, bool *another)
 3977{
 3978	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
 3979	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
 3980	int sch_ret;
 3981
 3982	if (!entry)
 3983		return skb;
 3984	if (*pt_prev) {
 3985		*ret = deliver_skb(skb, *pt_prev, orig_dev);
 3986		*pt_prev = NULL;
 3987	}
 3988
 3989	qdisc_skb_cb(skb)->pkt_len = skb->len;
 3990	tcx_set_ingress(skb, true);
 3991
 3992	if (static_branch_unlikely(&tcx_needed_key)) {
 3993		sch_ret = tcx_run(entry, skb, true);
 3994		if (sch_ret != TC_ACT_UNSPEC)
 3995			goto ingress_verdict;
 3996	}
 3997	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 3998ingress_verdict:
 3999	switch (sch_ret) {
 4000	case TC_ACT_REDIRECT:
 4001		/* skb_mac_header check was done by BPF, so we can safely
 4002		 * push the L2 header back before redirecting to another
 4003		 * netdev.
 4004		 */
 4005		__skb_push(skb, skb->mac_len);
 4006		if (skb_do_redirect(skb) == -EAGAIN) {
 4007			__skb_pull(skb, skb->mac_len);
 4008			*another = true;
 4009			break;
 4010		}
 4011		*ret = NET_RX_SUCCESS;
 4012		return NULL;
 4013	case TC_ACT_SHOT:
 4014		kfree_skb_reason(skb, drop_reason);
 4015		*ret = NET_RX_DROP;
 4016		return NULL;
 4017	/* used by tc_run */
 4018	case TC_ACT_STOLEN:
 4019	case TC_ACT_QUEUED:
 4020	case TC_ACT_TRAP:
 4021		consume_skb(skb);
 4022		fallthrough;
 4023	case TC_ACT_CONSUMED:
 4024		*ret = NET_RX_SUCCESS;
 4025		return NULL;
 4026	}
 4027
 4028	return skb;
 4029}
 4030
 4031static __always_inline struct sk_buff *
 4032sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4033{
 4034	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
 4035	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
 4036	int sch_ret;
 4037
 4038	if (!entry)
 4039		return skb;
 4040
 4041	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
 4042	 * already set by the caller.
 4043	 */
 4044	if (static_branch_unlikely(&tcx_needed_key)) {
 4045		sch_ret = tcx_run(entry, skb, false);
 4046		if (sch_ret != TC_ACT_UNSPEC)
 4047			goto egress_verdict;
 4048	}
 4049	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4050egress_verdict:
 4051	switch (sch_ret) {
 4052	case TC_ACT_REDIRECT:
 4053		/* No need to push/pop skb's mac_header here on egress! */
 4054		skb_do_redirect(skb);
 4055		*ret = NET_XMIT_SUCCESS;
 4056		return NULL;
 4057	case TC_ACT_SHOT:
 4058		kfree_skb_reason(skb, drop_reason);
 4059		*ret = NET_XMIT_DROP;
 4060		return NULL;
 4061	/* used by tc_run */
 4062	case TC_ACT_STOLEN:
 4063	case TC_ACT_QUEUED:
 4064	case TC_ACT_TRAP:
 4065		consume_skb(skb);
 4066		fallthrough;
 4067	case TC_ACT_CONSUMED:
 4068		*ret = NET_XMIT_SUCCESS;
 4069		return NULL;
 4070	}
 4071
 4072	return skb;
 4073}
 4074#else
 4075static __always_inline struct sk_buff *
 4076sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 4077		   struct net_device *orig_dev, bool *another)
 4078{
 4079	return skb;
 4080}
 4081
 4082static __always_inline struct sk_buff *
 4083sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4084{
 4085	return skb;
 4086}
 4087#endif /* CONFIG_NET_XGRESS */
 4088
 4089#ifdef CONFIG_XPS
 4090static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
 4091			       struct xps_dev_maps *dev_maps, unsigned int tci)
 4092{
 4093	int tc = netdev_get_prio_tc_map(dev, skb->priority);
 4094	struct xps_map *map;
 4095	int queue_index = -1;
 4096
 4097	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
 4098		return queue_index;
 4099
 4100	tci *= dev_maps->num_tc;
 4101	tci += tc;
 4102
 4103	map = rcu_dereference(dev_maps->attr_map[tci]);
 4104	if (map) {
 4105		if (map->len == 1)
 4106			queue_index = map->queues[0];
 4107		else
 4108			queue_index = map->queues[reciprocal_scale(
 4109						skb_get_hash(skb), map->len)];
 4110		if (unlikely(queue_index >= dev->real_num_tx_queues))
 4111			queue_index = -1;
 4112	}
 4113	return queue_index;
 4114}
 4115#endif
 4116
 4117static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
 4118			 struct sk_buff *skb)
 4119{
 4120#ifdef CONFIG_XPS
 4121	struct xps_dev_maps *dev_maps;
 4122	struct sock *sk = skb->sk;
 4123	int queue_index = -1;
 4124
 4125	if (!static_key_false(&xps_needed))
 4126		return -1;
 4127
 4128	rcu_read_lock();
 4129	if (!static_key_false(&xps_rxqs_needed))
 4130		goto get_cpus_map;
 4131
 4132	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
 4133	if (dev_maps) {
 4134		int tci = sk_rx_queue_get(sk);
 4135
 4136		if (tci >= 0)
 4137			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4138							  tci);
 4139	}
 4140
 4141get_cpus_map:
 4142	if (queue_index < 0) {
 4143		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
 4144		if (dev_maps) {
 4145			unsigned int tci = skb->sender_cpu - 1;
 4146
 4147			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4148							  tci);
 4149		}
 4150	}
 4151	rcu_read_unlock();
 4152
 4153	return queue_index;
 4154#else
 4155	return -1;
 4156#endif
 4157}
 4158
 4159u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
 4160		     struct net_device *sb_dev)
 4161{
 4162	return 0;
 4163}
 4164EXPORT_SYMBOL(dev_pick_tx_zero);
 4165
 4166u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
 4167		       struct net_device *sb_dev)
 4168{
 4169	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
 4170}
 4171EXPORT_SYMBOL(dev_pick_tx_cpu_id);
 4172
 4173u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
 4174		     struct net_device *sb_dev)
 4175{
 4176	struct sock *sk = skb->sk;
 4177	int queue_index = sk_tx_queue_get(sk);
 4178
 4179	sb_dev = sb_dev ? : dev;
 4180
 4181	if (queue_index < 0 || skb->ooo_okay ||
 4182	    queue_index >= dev->real_num_tx_queues) {
 4183		int new_index = get_xps_queue(dev, sb_dev, skb);
 4184
 4185		if (new_index < 0)
 4186			new_index = skb_tx_hash(dev, sb_dev, skb);
 4187
 4188		if (queue_index != new_index && sk &&
 4189		    sk_fullsock(sk) &&
 4190		    rcu_access_pointer(sk->sk_dst_cache))
 4191			sk_tx_queue_set(sk, new_index);
 4192
 4193		queue_index = new_index;
 4194	}
 4195
 4196	return queue_index;
 4197}
 4198EXPORT_SYMBOL(netdev_pick_tx);
 4199
 4200struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
 4201					 struct sk_buff *skb,
 4202					 struct net_device *sb_dev)
 4203{
 4204	int queue_index = 0;
 4205
 4206#ifdef CONFIG_XPS
 4207	u32 sender_cpu = skb->sender_cpu - 1;
 4208
 4209	if (sender_cpu >= (u32)NR_CPUS)
 4210		skb->sender_cpu = raw_smp_processor_id() + 1;
 4211#endif
 4212
 4213	if (dev->real_num_tx_queues != 1) {
 4214		const struct net_device_ops *ops = dev->netdev_ops;
 4215
 4216		if (ops->ndo_select_queue)
 4217			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
 4218		else
 4219			queue_index = netdev_pick_tx(dev, skb, sb_dev);
 4220
 4221		queue_index = netdev_cap_txqueue(dev, queue_index);
 4222	}
 4223
 4224	skb_set_queue_mapping(skb, queue_index);
 4225	return netdev_get_tx_queue(dev, queue_index);
 4226}
 4227
 4228/**
 4229 * __dev_queue_xmit() - transmit a buffer
 4230 * @skb:	buffer to transmit
 4231 * @sb_dev:	suboordinate device used for L2 forwarding offload
 4232 *
 4233 * Queue a buffer for transmission to a network device. The caller must
 4234 * have set the device and priority and built the buffer before calling
 4235 * this function. The function can be called from an interrupt.
 4236 *
 4237 * When calling this method, interrupts MUST be enabled. This is because
 4238 * the BH enable code must have IRQs enabled so that it will not deadlock.
 4239 *
 4240 * Regardless of the return value, the skb is consumed, so it is currently
 4241 * difficult to retry a send to this method. (You can bump the ref count
 4242 * before sending to hold a reference for retry if you are careful.)
 4243 *
 4244 * Return:
 4245 * * 0				- buffer successfully transmitted
 4246 * * positive qdisc return code	- NET_XMIT_DROP etc.
 4247 * * negative errno		- other errors
 4248 */
 4249int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
 4250{
 4251	struct net_device *dev = skb->dev;
 4252	struct netdev_queue *txq = NULL;
 4253	struct Qdisc *q;
 4254	int rc = -ENOMEM;
 4255	bool again = false;
 4256
 4257	skb_reset_mac_header(skb);
 4258	skb_assert_len(skb);
 4259
 4260	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
 4261		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
 4262
 4263	/* Disable soft irqs for various locks below. Also
 4264	 * stops preemption for RCU.
 4265	 */
 4266	rcu_read_lock_bh();
 4267
 4268	skb_update_prio(skb);
 4269
 4270	qdisc_pkt_len_init(skb);
 4271	tcx_set_ingress(skb, false);
 4272#ifdef CONFIG_NET_EGRESS
 4273	if (static_branch_unlikely(&egress_needed_key)) {
 4274		if (nf_hook_egress_active()) {
 4275			skb = nf_hook_egress(skb, &rc, dev);
 4276			if (!skb)
 4277				goto out;
 4278		}
 4279
 4280		netdev_xmit_skip_txqueue(false);
 4281
 4282		nf_skip_egress(skb, true);
 4283		skb = sch_handle_egress(skb, &rc, dev);
 4284		if (!skb)
 4285			goto out;
 4286		nf_skip_egress(skb, false);
 4287
 4288		if (netdev_xmit_txqueue_skipped())
 4289			txq = netdev_tx_queue_mapping(dev, skb);
 4290	}
 4291#endif
 4292	/* If device/qdisc don't need skb->dst, release it right now while
 4293	 * its hot in this cpu cache.
 4294	 */
 4295	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
 4296		skb_dst_drop(skb);
 4297	else
 4298		skb_dst_force(skb);
 4299
 4300	if (!txq)
 4301		txq = netdev_core_pick_tx(dev, skb, sb_dev);
 4302
 4303	q = rcu_dereference_bh(txq->qdisc);
 4304
 
 
 
 4305	trace_net_dev_queue(skb);
 4306	if (q->enqueue) {
 4307		rc = __dev_xmit_skb(skb, q, dev, txq);
 4308		goto out;
 4309	}
 4310
 4311	/* The device has no queue. Common case for software devices:
 4312	 * loopback, all the sorts of tunnels...
 4313
 4314	 * Really, it is unlikely that netif_tx_lock protection is necessary
 4315	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
 4316	 * counters.)
 4317	 * However, it is possible, that they rely on protection
 4318	 * made by us here.
 4319
 4320	 * Check this and shot the lock. It is not prone from deadlocks.
 4321	 *Either shot noqueue qdisc, it is even simpler 8)
 4322	 */
 4323	if (dev->flags & IFF_UP) {
 4324		int cpu = smp_processor_id(); /* ok because BHs are off */
 4325
 4326		/* Other cpus might concurrently change txq->xmit_lock_owner
 4327		 * to -1 or to their cpu id, but not to our id.
 4328		 */
 4329		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
 4330			if (dev_xmit_recursion())
 4331				goto recursion_alert;
 4332
 4333			skb = validate_xmit_skb(skb, dev, &again);
 4334			if (!skb)
 4335				goto out;
 4336
 4337			HARD_TX_LOCK(dev, txq, cpu);
 4338
 4339			if (!netif_xmit_stopped(txq)) {
 4340				dev_xmit_recursion_inc();
 4341				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
 4342				dev_xmit_recursion_dec();
 4343				if (dev_xmit_complete(rc)) {
 4344					HARD_TX_UNLOCK(dev, txq);
 4345					goto out;
 4346				}
 4347			}
 4348			HARD_TX_UNLOCK(dev, txq);
 4349			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
 4350					     dev->name);
 
 4351		} else {
 4352			/* Recursion is detected! It is possible,
 4353			 * unfortunately
 4354			 */
 4355recursion_alert:
 4356			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
 4357					     dev->name);
 
 4358		}
 4359	}
 4360
 4361	rc = -ENETDOWN;
 4362	rcu_read_unlock_bh();
 4363
 4364	dev_core_stats_tx_dropped_inc(dev);
 4365	kfree_skb_list(skb);
 4366	return rc;
 4367out:
 4368	rcu_read_unlock_bh();
 4369	return rc;
 4370}
 4371EXPORT_SYMBOL(__dev_queue_xmit);
 4372
 4373int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
 4374{
 4375	struct net_device *dev = skb->dev;
 4376	struct sk_buff *orig_skb = skb;
 4377	struct netdev_queue *txq;
 4378	int ret = NETDEV_TX_BUSY;
 4379	bool again = false;
 4380
 4381	if (unlikely(!netif_running(dev) ||
 4382		     !netif_carrier_ok(dev)))
 4383		goto drop;
 4384
 4385	skb = validate_xmit_skb_list(skb, dev, &again);
 4386	if (skb != orig_skb)
 4387		goto drop;
 4388
 4389	skb_set_queue_mapping(skb, queue_id);
 4390	txq = skb_get_tx_queue(dev, skb);
 4391
 4392	local_bh_disable();
 4393
 4394	dev_xmit_recursion_inc();
 4395	HARD_TX_LOCK(dev, txq, smp_processor_id());
 4396	if (!netif_xmit_frozen_or_drv_stopped(txq))
 4397		ret = netdev_start_xmit(skb, dev, txq, false);
 4398	HARD_TX_UNLOCK(dev, txq);
 4399	dev_xmit_recursion_dec();
 4400
 4401	local_bh_enable();
 4402	return ret;
 4403drop:
 4404	dev_core_stats_tx_dropped_inc(dev);
 4405	kfree_skb_list(skb);
 4406	return NET_XMIT_DROP;
 4407}
 4408EXPORT_SYMBOL(__dev_direct_xmit);
 4409
 4410/*************************************************************************
 4411 *			Receiver routines
 4412 *************************************************************************/
 4413
 4414unsigned int sysctl_skb_defer_max __read_mostly = 64;
 4415int weight_p __read_mostly = 64;           /* old backlog weight */
 4416int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
 4417int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
 4418
 4419/* Called with irq disabled */
 4420static inline void ____napi_schedule(struct softnet_data *sd,
 4421				     struct napi_struct *napi)
 4422{
 4423	struct task_struct *thread;
 
 
 4424
 4425	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4426
 4427	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
 4428		/* Paired with smp_mb__before_atomic() in
 4429		 * napi_enable()/dev_set_threaded().
 4430		 * Use READ_ONCE() to guarantee a complete
 4431		 * read on napi->thread. Only call
 4432		 * wake_up_process() when it's not NULL.
 4433		 */
 4434		thread = READ_ONCE(napi->thread);
 4435		if (thread) {
 4436			/* Avoid doing set_bit() if the thread is in
 4437			 * INTERRUPTIBLE state, cause napi_thread_wait()
 4438			 * makes sure to proceed with napi polling
 4439			 * if the thread is explicitly woken from here.
 4440			 */
 4441			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
 4442				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
 4443			wake_up_process(thread);
 4444			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4445		}
 4446	}
 4447
 4448	list_add_tail(&napi->poll_list, &sd->poll_list);
 4449	WRITE_ONCE(napi->list_owner, smp_processor_id());
 4450	/* If not called from net_rx_action()
 4451	 * we have to raise NET_RX_SOFTIRQ.
 4452	 */
 4453	if (!sd->in_net_rx_action)
 4454		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 4455}
 
 4456
 4457#ifdef CONFIG_RPS
 4458
 4459struct static_key_false rps_needed __read_mostly;
 4460EXPORT_SYMBOL(rps_needed);
 4461struct static_key_false rfs_needed __read_mostly;
 4462EXPORT_SYMBOL(rfs_needed);
 4463
 4464static struct rps_dev_flow *
 4465set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4466	    struct rps_dev_flow *rflow, u16 next_cpu)
 4467{
 4468	if (next_cpu < nr_cpu_ids) {
 
 
 
 4469#ifdef CONFIG_RFS_ACCEL
 4470		struct netdev_rx_queue *rxqueue;
 4471		struct rps_dev_flow_table *flow_table;
 4472		struct rps_dev_flow *old_rflow;
 4473		u32 flow_id;
 4474		u16 rxq_index;
 4475		int rc;
 4476
 4477		/* Should we steer this flow to a different hardware queue? */
 4478		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
 4479		    !(dev->features & NETIF_F_NTUPLE))
 4480			goto out;
 4481		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
 4482		if (rxq_index == skb_get_rx_queue(skb))
 4483			goto out;
 4484
 4485		rxqueue = dev->_rx + rxq_index;
 4486		flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4487		if (!flow_table)
 4488			goto out;
 4489		flow_id = skb_get_hash(skb) & flow_table->mask;
 4490		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
 4491							rxq_index, flow_id);
 4492		if (rc < 0)
 4493			goto out;
 4494		old_rflow = rflow;
 4495		rflow = &flow_table->flows[flow_id];
 
 4496		rflow->filter = rc;
 4497		if (old_rflow->filter == rflow->filter)
 4498			old_rflow->filter = RPS_NO_FILTER;
 4499	out:
 4500#endif
 4501		rflow->last_qtail =
 4502			per_cpu(softnet_data, next_cpu).input_queue_head;
 4503	}
 4504
 4505	rflow->cpu = next_cpu;
 4506	return rflow;
 4507}
 4508
 4509/*
 4510 * get_rps_cpu is called from netif_receive_skb and returns the target
 4511 * CPU from the RPS map of the receiving queue for a given skb.
 4512 * rcu_read_lock must be held on entry.
 4513 */
 4514static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4515		       struct rps_dev_flow **rflowp)
 4516{
 4517	const struct rps_sock_flow_table *sock_flow_table;
 4518	struct netdev_rx_queue *rxqueue = dev->_rx;
 4519	struct rps_dev_flow_table *flow_table;
 4520	struct rps_map *map;
 
 
 4521	int cpu = -1;
 4522	u32 tcpu;
 4523	u32 hash;
 4524
 4525	if (skb_rx_queue_recorded(skb)) {
 4526		u16 index = skb_get_rx_queue(skb);
 4527
 4528		if (unlikely(index >= dev->real_num_rx_queues)) {
 4529			WARN_ONCE(dev->real_num_rx_queues > 1,
 4530				  "%s received packet on queue %u, but number "
 4531				  "of RX queues is %u\n",
 4532				  dev->name, index, dev->real_num_rx_queues);
 4533			goto done;
 4534		}
 4535		rxqueue += index;
 4536	}
 4537
 4538	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
 4539
 4540	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4541	map = rcu_dereference(rxqueue->rps_map);
 4542	if (!flow_table && !map)
 
 
 
 
 
 
 
 
 4543		goto done;
 
 4544
 4545	skb_reset_network_header(skb);
 4546	hash = skb_get_hash(skb);
 4547	if (!hash)
 4548		goto done;
 4549
 4550	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
 
 4551	if (flow_table && sock_flow_table) {
 
 4552		struct rps_dev_flow *rflow;
 4553		u32 next_cpu;
 4554		u32 ident;
 4555
 4556		/* First check into global flow table if there is a match.
 4557		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
 4558		 */
 4559		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
 4560		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
 4561			goto try_rps;
 4562
 4563		next_cpu = ident & net_hotdata.rps_cpu_mask;
 4564
 4565		/* OK, now we know there is a match,
 4566		 * we can look at the local (per receive queue) flow table
 4567		 */
 4568		rflow = &flow_table->flows[hash & flow_table->mask];
 4569		tcpu = rflow->cpu;
 4570
 
 
 
 4571		/*
 4572		 * If the desired CPU (where last recvmsg was done) is
 4573		 * different from current CPU (one in the rx-queue flow
 4574		 * table entry), switch if one of the following holds:
 4575		 *   - Current CPU is unset (>= nr_cpu_ids).
 4576		 *   - Current CPU is offline.
 4577		 *   - The current CPU's queue tail has advanced beyond the
 4578		 *     last packet that was enqueued using this table entry.
 4579		 *     This guarantees that all previous packets for the flow
 4580		 *     have been dequeued, thus preserving in order delivery.
 4581		 */
 4582		if (unlikely(tcpu != next_cpu) &&
 4583		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
 4584		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
 4585		      rflow->last_qtail)) >= 0)) {
 4586			tcpu = next_cpu;
 4587			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 4588		}
 4589
 4590		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
 4591			*rflowp = rflow;
 4592			cpu = tcpu;
 4593			goto done;
 4594		}
 4595	}
 4596
 4597try_rps:
 4598
 4599	if (map) {
 4600		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
 
 4601		if (cpu_online(tcpu)) {
 4602			cpu = tcpu;
 4603			goto done;
 4604		}
 4605	}
 4606
 4607done:
 4608	return cpu;
 4609}
 4610
 4611#ifdef CONFIG_RFS_ACCEL
 4612
 4613/**
 4614 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
 4615 * @dev: Device on which the filter was set
 4616 * @rxq_index: RX queue index
 4617 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
 4618 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
 4619 *
 4620 * Drivers that implement ndo_rx_flow_steer() should periodically call
 4621 * this function for each installed filter and remove the filters for
 4622 * which it returns %true.
 4623 */
 4624bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
 4625			 u32 flow_id, u16 filter_id)
 4626{
 4627	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
 4628	struct rps_dev_flow_table *flow_table;
 4629	struct rps_dev_flow *rflow;
 4630	bool expire = true;
 4631	unsigned int cpu;
 4632
 4633	rcu_read_lock();
 4634	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4635	if (flow_table && flow_id <= flow_table->mask) {
 4636		rflow = &flow_table->flows[flow_id];
 4637		cpu = READ_ONCE(rflow->cpu);
 4638		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
 4639		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
 4640			   rflow->last_qtail) <
 4641		     (int)(10 * flow_table->mask)))
 4642			expire = false;
 4643	}
 4644	rcu_read_unlock();
 4645	return expire;
 4646}
 4647EXPORT_SYMBOL(rps_may_expire_flow);
 4648
 4649#endif /* CONFIG_RFS_ACCEL */
 4650
 4651/* Called from hardirq (IPI) context */
 4652static void rps_trigger_softirq(void *data)
 4653{
 4654	struct softnet_data *sd = data;
 4655
 4656	____napi_schedule(sd, &sd->backlog);
 4657	sd->received_rps++;
 4658}
 4659
 4660#endif /* CONFIG_RPS */
 4661
 4662/* Called from hardirq (IPI) context */
 4663static void trigger_rx_softirq(void *data)
 4664{
 4665	struct softnet_data *sd = data;
 4666
 4667	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4668	smp_store_release(&sd->defer_ipi_scheduled, 0);
 4669}
 4670
 4671/*
 4672 * After we queued a packet into sd->input_pkt_queue,
 4673 * we need to make sure this queue is serviced soon.
 4674 *
 4675 * - If this is another cpu queue, link it to our rps_ipi_list,
 4676 *   and make sure we will process rps_ipi_list from net_rx_action().
 4677 *
 4678 * - If this is our own queue, NAPI schedule our backlog.
 4679 *   Note that this also raises NET_RX_SOFTIRQ.
 4680 */
 4681static void napi_schedule_rps(struct softnet_data *sd)
 4682{
 4683	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
 4684
 4685#ifdef CONFIG_RPS
 
 
 4686	if (sd != mysd) {
 4687		sd->rps_ipi_next = mysd->rps_ipi_list;
 4688		mysd->rps_ipi_list = sd;
 4689
 4690		/* If not called from net_rx_action() or napi_threaded_poll()
 4691		 * we have to raise NET_RX_SOFTIRQ.
 4692		 */
 4693		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
 4694			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4695		return;
 4696	}
 4697#endif /* CONFIG_RPS */
 4698	__napi_schedule_irqoff(&mysd->backlog);
 4699}
 4700
 4701#ifdef CONFIG_NET_FLOW_LIMIT
 4702int netdev_flow_limit_table_len __read_mostly = (1 << 12);
 4703#endif
 4704
 4705static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
 4706{
 4707#ifdef CONFIG_NET_FLOW_LIMIT
 4708	struct sd_flow_limit *fl;
 4709	struct softnet_data *sd;
 4710	unsigned int old_flow, new_flow;
 4711
 4712	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
 4713		return false;
 4714
 4715	sd = this_cpu_ptr(&softnet_data);
 4716
 4717	rcu_read_lock();
 4718	fl = rcu_dereference(sd->flow_limit);
 4719	if (fl) {
 4720		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
 4721		old_flow = fl->history[fl->history_head];
 4722		fl->history[fl->history_head] = new_flow;
 4723
 4724		fl->history_head++;
 4725		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
 4726
 4727		if (likely(fl->buckets[old_flow]))
 4728			fl->buckets[old_flow]--;
 4729
 4730		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
 4731			fl->count++;
 4732			rcu_read_unlock();
 4733			return true;
 4734		}
 4735	}
 4736	rcu_read_unlock();
 4737#endif
 4738	return false;
 4739}
 4740
 4741/*
 4742 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
 4743 * queue (may be a remote CPU queue).
 4744 */
 4745static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
 4746			      unsigned int *qtail)
 4747{
 4748	enum skb_drop_reason reason;
 4749	struct softnet_data *sd;
 4750	unsigned long flags;
 4751	unsigned int qlen;
 4752
 4753	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 4754	sd = &per_cpu(softnet_data, cpu);
 4755
 4756	rps_lock_irqsave(sd, &flags);
 4757	if (!netif_running(skb->dev))
 4758		goto drop;
 4759	qlen = skb_queue_len(&sd->input_pkt_queue);
 4760	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
 4761	    !skb_flow_limit(skb, qlen)) {
 4762		if (qlen) {
 4763enqueue:
 4764			__skb_queue_tail(&sd->input_pkt_queue, skb);
 4765			input_queue_tail_incr_save(sd, qtail);
 4766			rps_unlock_irq_restore(sd, &flags);
 
 4767			return NET_RX_SUCCESS;
 4768		}
 4769
 4770		/* Schedule NAPI for backlog device
 4771		 * We can use non atomic operation since we own the queue lock
 4772		 */
 4773		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
 4774			napi_schedule_rps(sd);
 
 
 4775		goto enqueue;
 4776	}
 4777	reason = SKB_DROP_REASON_CPU_BACKLOG;
 4778
 4779drop:
 4780	sd->dropped++;
 4781	rps_unlock_irq_restore(sd, &flags);
 4782
 4783	dev_core_stats_rx_dropped_inc(skb->dev);
 4784	kfree_skb_reason(skb, reason);
 4785	return NET_RX_DROP;
 4786}
 4787
 4788static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
 4789{
 4790	struct net_device *dev = skb->dev;
 4791	struct netdev_rx_queue *rxqueue;
 4792
 4793	rxqueue = dev->_rx;
 4794
 4795	if (skb_rx_queue_recorded(skb)) {
 4796		u16 index = skb_get_rx_queue(skb);
 4797
 4798		if (unlikely(index >= dev->real_num_rx_queues)) {
 4799			WARN_ONCE(dev->real_num_rx_queues > 1,
 4800				  "%s received packet on queue %u, but number "
 4801				  "of RX queues is %u\n",
 4802				  dev->name, index, dev->real_num_rx_queues);
 4803
 4804			return rxqueue; /* Return first rxqueue */
 4805		}
 4806		rxqueue += index;
 4807	}
 4808	return rxqueue;
 4809}
 4810
 4811u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
 4812			     struct bpf_prog *xdp_prog)
 4813{
 4814	void *orig_data, *orig_data_end, *hard_start;
 4815	struct netdev_rx_queue *rxqueue;
 4816	bool orig_bcast, orig_host;
 4817	u32 mac_len, frame_sz;
 4818	__be16 orig_eth_type;
 4819	struct ethhdr *eth;
 4820	u32 metalen, act;
 4821	int off;
 4822
 4823	/* The XDP program wants to see the packet starting at the MAC
 4824	 * header.
 4825	 */
 4826	mac_len = skb->data - skb_mac_header(skb);
 4827	hard_start = skb->data - skb_headroom(skb);
 4828
 4829	/* SKB "head" area always have tailroom for skb_shared_info */
 4830	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
 4831	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 4832
 4833	rxqueue = netif_get_rxqueue(skb);
 4834	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
 4835	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
 4836			 skb_headlen(skb) + mac_len, true);
 4837	if (skb_is_nonlinear(skb)) {
 4838		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
 4839		xdp_buff_set_frags_flag(xdp);
 4840	} else {
 4841		xdp_buff_clear_frags_flag(xdp);
 4842	}
 4843
 4844	orig_data_end = xdp->data_end;
 4845	orig_data = xdp->data;
 4846	eth = (struct ethhdr *)xdp->data;
 4847	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
 4848	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
 4849	orig_eth_type = eth->h_proto;
 4850
 4851	act = bpf_prog_run_xdp(xdp_prog, xdp);
 4852
 4853	/* check if bpf_xdp_adjust_head was used */
 4854	off = xdp->data - orig_data;
 4855	if (off) {
 4856		if (off > 0)
 4857			__skb_pull(skb, off);
 4858		else if (off < 0)
 4859			__skb_push(skb, -off);
 4860
 4861		skb->mac_header += off;
 4862		skb_reset_network_header(skb);
 4863	}
 4864
 4865	/* check if bpf_xdp_adjust_tail was used */
 4866	off = xdp->data_end - orig_data_end;
 4867	if (off != 0) {
 4868		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
 4869		skb->len += off; /* positive on grow, negative on shrink */
 4870	}
 4871
 4872	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
 4873	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
 4874	 */
 4875	if (xdp_buff_has_frags(xdp))
 4876		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
 4877	else
 4878		skb->data_len = 0;
 4879
 4880	/* check if XDP changed eth hdr such SKB needs update */
 4881	eth = (struct ethhdr *)xdp->data;
 4882	if ((orig_eth_type != eth->h_proto) ||
 4883	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
 4884						  skb->dev->dev_addr)) ||
 4885	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
 4886		__skb_push(skb, ETH_HLEN);
 4887		skb->pkt_type = PACKET_HOST;
 4888		skb->protocol = eth_type_trans(skb, skb->dev);
 4889	}
 4890
 4891	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
 4892	 * before calling us again on redirect path. We do not call do_redirect
 4893	 * as we leave that up to the caller.
 4894	 *
 4895	 * Caller is responsible for managing lifetime of skb (i.e. calling
 4896	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
 4897	 */
 4898	switch (act) {
 4899	case XDP_REDIRECT:
 4900	case XDP_TX:
 4901		__skb_push(skb, mac_len);
 4902		break;
 4903	case XDP_PASS:
 4904		metalen = xdp->data - xdp->data_meta;
 4905		if (metalen)
 4906			skb_metadata_set(skb, metalen);
 4907		break;
 4908	}
 4909
 4910	return act;
 4911}
 4912
 4913static int
 4914netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
 4915{
 4916	struct sk_buff *skb = *pskb;
 4917	int err, hroom, troom;
 4918
 4919	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
 4920		return 0;
 4921
 4922	/* In case we have to go down the path and also linearize,
 4923	 * then lets do the pskb_expand_head() work just once here.
 4924	 */
 4925	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
 4926	troom = skb->tail + skb->data_len - skb->end;
 4927	err = pskb_expand_head(skb,
 4928			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
 4929			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
 4930	if (err)
 4931		return err;
 4932
 4933	return skb_linearize(skb);
 4934}
 4935
 4936static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
 4937				     struct xdp_buff *xdp,
 4938				     struct bpf_prog *xdp_prog)
 4939{
 4940	struct sk_buff *skb = *pskb;
 4941	u32 mac_len, act = XDP_DROP;
 4942
 4943	/* Reinjected packets coming from act_mirred or similar should
 4944	 * not get XDP generic processing.
 4945	 */
 4946	if (skb_is_redirected(skb))
 4947		return XDP_PASS;
 4948
 4949	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
 4950	 * bytes. This is the guarantee that also native XDP provides,
 4951	 * thus we need to do it here as well.
 4952	 */
 4953	mac_len = skb->data - skb_mac_header(skb);
 4954	__skb_push(skb, mac_len);
 4955
 4956	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
 4957	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
 4958		if (netif_skb_check_for_xdp(pskb, xdp_prog))
 4959			goto do_drop;
 4960	}
 4961
 4962	__skb_pull(*pskb, mac_len);
 4963
 4964	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
 4965	switch (act) {
 4966	case XDP_REDIRECT:
 4967	case XDP_TX:
 4968	case XDP_PASS:
 4969		break;
 4970	default:
 4971		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
 4972		fallthrough;
 4973	case XDP_ABORTED:
 4974		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
 4975		fallthrough;
 4976	case XDP_DROP:
 4977	do_drop:
 4978		kfree_skb(*pskb);
 4979		break;
 4980	}
 4981
 4982	return act;
 
 
 4983}
 4984
 4985/* When doing generic XDP we have to bypass the qdisc layer and the
 4986 * network taps in order to match in-driver-XDP behavior. This also means
 4987 * that XDP packets are able to starve other packets going through a qdisc,
 4988 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
 4989 * queues, so they do not have this starvation issue.
 
 
 
 
 
 
 
 
 4990 */
 4991void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
 4992{
 4993	struct net_device *dev = skb->dev;
 4994	struct netdev_queue *txq;
 4995	bool free_skb = true;
 4996	int cpu, rc;
 4997
 4998	txq = netdev_core_pick_tx(dev, skb, NULL);
 4999	cpu = smp_processor_id();
 5000	HARD_TX_LOCK(dev, txq, cpu);
 5001	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
 5002		rc = netdev_start_xmit(skb, dev, txq, 0);
 5003		if (dev_xmit_complete(rc))
 5004			free_skb = false;
 5005	}
 5006	HARD_TX_UNLOCK(dev, txq);
 5007	if (free_skb) {
 5008		trace_xdp_exception(dev, xdp_prog, XDP_TX);
 5009		dev_core_stats_tx_dropped_inc(dev);
 5010		kfree_skb(skb);
 5011	}
 5012}
 5013
 5014static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
 5015
 5016int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
 5017{
 5018	if (xdp_prog) {
 5019		struct xdp_buff xdp;
 5020		u32 act;
 5021		int err;
 5022
 5023		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
 5024		if (act != XDP_PASS) {
 5025			switch (act) {
 5026			case XDP_REDIRECT:
 5027				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
 5028							      &xdp, xdp_prog);
 5029				if (err)
 5030					goto out_redir;
 5031				break;
 5032			case XDP_TX:
 5033				generic_xdp_tx(*pskb, xdp_prog);
 5034				break;
 5035			}
 5036			return XDP_DROP;
 5037		}
 5038	}
 5039	return XDP_PASS;
 5040out_redir:
 5041	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
 5042	return XDP_DROP;
 5043}
 5044EXPORT_SYMBOL_GPL(do_xdp_generic);
 5045
 5046static int netif_rx_internal(struct sk_buff *skb)
 5047{
 5048	int ret;
 5049
 5050	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 
 
 5051
 5052	trace_netif_rx(skb);
 
 5053
 
 5054#ifdef CONFIG_RPS
 5055	if (static_branch_unlikely(&rps_needed)) {
 5056		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5057		int cpu;
 5058
 
 5059		rcu_read_lock();
 5060
 5061		cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5062		if (cpu < 0)
 5063			cpu = smp_processor_id();
 5064
 5065		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5066
 5067		rcu_read_unlock();
 5068	} else
 5069#endif
 
 5070	{
 5071		unsigned int qtail;
 5072
 5073		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
 5074	}
 
 5075	return ret;
 5076}
 
 5077
 5078/**
 5079 *	__netif_rx	-	Slightly optimized version of netif_rx
 5080 *	@skb: buffer to post
 5081 *
 5082 *	This behaves as netif_rx except that it does not disable bottom halves.
 5083 *	As a result this function may only be invoked from the interrupt context
 5084 *	(either hard or soft interrupt).
 5085 */
 5086int __netif_rx(struct sk_buff *skb)
 5087{
 5088	int ret;
 5089
 5090	lockdep_assert_once(hardirq_count() | softirq_count());
 5091
 5092	trace_netif_rx_entry(skb);
 5093	ret = netif_rx_internal(skb);
 5094	trace_netif_rx_exit(ret);
 5095	return ret;
 5096}
 5097EXPORT_SYMBOL(__netif_rx);
 5098
 5099/**
 5100 *	netif_rx	-	post buffer to the network code
 5101 *	@skb: buffer to post
 5102 *
 5103 *	This function receives a packet from a device driver and queues it for
 5104 *	the upper (protocol) levels to process via the backlog NAPI device. It
 5105 *	always succeeds. The buffer may be dropped during processing for
 5106 *	congestion control or by the protocol layers.
 5107 *	The network buffer is passed via the backlog NAPI device. Modern NIC
 5108 *	driver should use NAPI and GRO.
 5109 *	This function can used from interrupt and from process context. The
 5110 *	caller from process context must not disable interrupts before invoking
 5111 *	this function.
 5112 *
 5113 *	return values:
 5114 *	NET_RX_SUCCESS	(no congestion)
 5115 *	NET_RX_DROP     (packet was dropped)
 5116 *
 5117 */
 5118int netif_rx(struct sk_buff *skb)
 5119{
 5120	bool need_bh_off = !(hardirq_count() | softirq_count());
 5121	int ret;
 5122
 5123	if (need_bh_off)
 5124		local_bh_disable();
 5125	trace_netif_rx_entry(skb);
 5126	ret = netif_rx_internal(skb);
 5127	trace_netif_rx_exit(ret);
 5128	if (need_bh_off)
 5129		local_bh_enable();
 5130	return ret;
 5131}
 5132EXPORT_SYMBOL(netif_rx);
 5133
 5134static __latent_entropy void net_tx_action(struct softirq_action *h)
 5135{
 5136	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 5137
 5138	if (sd->completion_queue) {
 5139		struct sk_buff *clist;
 5140
 5141		local_irq_disable();
 5142		clist = sd->completion_queue;
 5143		sd->completion_queue = NULL;
 5144		local_irq_enable();
 5145
 5146		while (clist) {
 5147			struct sk_buff *skb = clist;
 5148
 5149			clist = clist->next;
 5150
 5151			WARN_ON(refcount_read(&skb->users));
 5152			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
 5153				trace_consume_skb(skb, net_tx_action);
 5154			else
 5155				trace_kfree_skb(skb, net_tx_action,
 5156						get_kfree_skb_cb(skb)->reason);
 5157
 5158			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
 5159				__kfree_skb(skb);
 5160			else
 5161				__napi_kfree_skb(skb,
 5162						 get_kfree_skb_cb(skb)->reason);
 5163		}
 5164	}
 5165
 5166	if (sd->output_queue) {
 5167		struct Qdisc *head;
 5168
 5169		local_irq_disable();
 5170		head = sd->output_queue;
 5171		sd->output_queue = NULL;
 5172		sd->output_queue_tailp = &sd->output_queue;
 5173		local_irq_enable();
 5174
 5175		rcu_read_lock();
 5176
 5177		while (head) {
 5178			struct Qdisc *q = head;
 5179			spinlock_t *root_lock = NULL;
 5180
 5181			head = head->next_sched;
 5182
 5183			/* We need to make sure head->next_sched is read
 5184			 * before clearing __QDISC_STATE_SCHED
 5185			 */
 5186			smp_mb__before_atomic();
 5187
 5188			if (!(q->flags & TCQ_F_NOLOCK)) {
 5189				root_lock = qdisc_lock(q);
 5190				spin_lock(root_lock);
 5191			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
 5192						     &q->state))) {
 5193				/* There is a synchronize_net() between
 5194				 * STATE_DEACTIVATED flag being set and
 5195				 * qdisc_reset()/some_qdisc_is_busy() in
 5196				 * dev_deactivate(), so we can safely bail out
 5197				 * early here to avoid data race between
 5198				 * qdisc_deactivate() and some_qdisc_is_busy()
 5199				 * for lockless qdisc.
 5200				 */
 5201				clear_bit(__QDISC_STATE_SCHED, &q->state);
 5202				continue;
 5203			}
 5204
 5205			clear_bit(__QDISC_STATE_SCHED, &q->state);
 5206			qdisc_run(q);
 5207			if (root_lock)
 5208				spin_unlock(root_lock);
 
 
 
 
 
 
 
 
 
 
 5209		}
 5210
 5211		rcu_read_unlock();
 5212	}
 5213
 5214	xfrm_dev_backlog(sd);
 5215}
 5216
 5217#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
 
 5218/* This hook is defined here for ATM LANE */
 5219int (*br_fdb_test_addr_hook)(struct net_device *dev,
 5220			     unsigned char *addr) __read_mostly;
 5221EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
 5222#endif
 5223
 5224/**
 5225 *	netdev_is_rx_handler_busy - check if receive handler is registered
 5226 *	@dev: device to check
 5227 *
 5228 *	Check if a receive handler is already registered for a given device.
 5229 *	Return true if there one.
 
 5230 *
 5231 *	The caller must hold the rtnl_mutex.
 5232 */
 5233bool netdev_is_rx_handler_busy(struct net_device *dev)
 5234{
 5235	ASSERT_RTNL();
 5236	return dev && rtnl_dereference(dev->rx_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5237}
 5238EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5239
 5240/**
 5241 *	netdev_rx_handler_register - register receive handler
 5242 *	@dev: device to register a handler for
 5243 *	@rx_handler: receive handler to register
 5244 *	@rx_handler_data: data pointer that is used by rx handler
 5245 *
 5246 *	Register a receive handler for a device. This handler will then be
 5247 *	called from __netif_receive_skb. A negative errno code is returned
 5248 *	on a failure.
 5249 *
 5250 *	The caller must hold the rtnl_mutex.
 5251 *
 5252 *	For a general description of rx_handler, see enum rx_handler_result.
 5253 */
 5254int netdev_rx_handler_register(struct net_device *dev,
 5255			       rx_handler_func_t *rx_handler,
 5256			       void *rx_handler_data)
 5257{
 5258	if (netdev_is_rx_handler_busy(dev))
 5259		return -EBUSY;
 5260
 5261	if (dev->priv_flags & IFF_NO_RX_HANDLER)
 5262		return -EINVAL;
 5263
 5264	/* Note: rx_handler_data must be set before rx_handler */
 5265	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
 5266	rcu_assign_pointer(dev->rx_handler, rx_handler);
 5267
 5268	return 0;
 5269}
 5270EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
 5271
 5272/**
 5273 *	netdev_rx_handler_unregister - unregister receive handler
 5274 *	@dev: device to unregister a handler from
 5275 *
 5276 *	Unregister a receive handler from a device.
 5277 *
 5278 *	The caller must hold the rtnl_mutex.
 5279 */
 5280void netdev_rx_handler_unregister(struct net_device *dev)
 5281{
 5282
 5283	ASSERT_RTNL();
 5284	RCU_INIT_POINTER(dev->rx_handler, NULL);
 5285	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
 5286	 * section has a guarantee to see a non NULL rx_handler_data
 5287	 * as well.
 5288	 */
 5289	synchronize_net();
 5290	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
 5291}
 5292EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
 5293
 5294/*
 5295 * Limit the use of PFMEMALLOC reserves to those protocols that implement
 5296 * the special handling of PFMEMALLOC skbs.
 5297 */
 5298static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
 5299{
 5300	switch (skb->protocol) {
 5301	case htons(ETH_P_ARP):
 5302	case htons(ETH_P_IP):
 5303	case htons(ETH_P_IPV6):
 5304	case htons(ETH_P_8021Q):
 5305	case htons(ETH_P_8021AD):
 5306		return true;
 5307	default:
 5308		return false;
 5309	}
 5310}
 5311
 5312static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
 5313			     int *ret, struct net_device *orig_dev)
 5314{
 5315	if (nf_hook_ingress_active(skb)) {
 5316		int ingress_retval;
 5317
 5318		if (*pt_prev) {
 5319			*ret = deliver_skb(skb, *pt_prev, orig_dev);
 5320			*pt_prev = NULL;
 5321		}
 5322
 5323		rcu_read_lock();
 5324		ingress_retval = nf_hook_ingress(skb);
 5325		rcu_read_unlock();
 5326		return ingress_retval;
 5327	}
 5328	return 0;
 5329}
 5330
 5331static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
 5332				    struct packet_type **ppt_prev)
 5333{
 5334	struct packet_type *ptype, *pt_prev;
 5335	rx_handler_func_t *rx_handler;
 5336	struct sk_buff *skb = *pskb;
 5337	struct net_device *orig_dev;
 
 5338	bool deliver_exact = false;
 5339	int ret = NET_RX_DROP;
 5340	__be16 type;
 5341
 5342	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 
 5343
 5344	trace_netif_receive_skb(skb);
 5345
 
 
 
 
 
 
 5346	orig_dev = skb->dev;
 5347
 5348	skb_reset_network_header(skb);
 5349	if (!skb_transport_header_was_set(skb))
 5350		skb_reset_transport_header(skb);
 5351	skb_reset_mac_len(skb);
 5352
 5353	pt_prev = NULL;
 5354
 
 
 5355another_round:
 5356	skb->skb_iif = skb->dev->ifindex;
 5357
 5358	__this_cpu_inc(softnet_data.processed);
 5359
 5360	if (static_branch_unlikely(&generic_xdp_needed_key)) {
 5361		int ret2;
 5362
 5363		migrate_disable();
 5364		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
 5365				      &skb);
 5366		migrate_enable();
 5367
 5368		if (ret2 != XDP_PASS) {
 5369			ret = NET_RX_DROP;
 5370			goto out;
 5371		}
 5372	}
 5373
 5374	if (eth_type_vlan(skb->protocol)) {
 5375		skb = skb_vlan_untag(skb);
 5376		if (unlikely(!skb))
 5377			goto out;
 5378	}
 5379
 5380	if (skb_skip_tc_classify(skb))
 5381		goto skip_classify;
 5382
 5383	if (pfmemalloc)
 5384		goto skip_taps;
 5385
 5386	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
 5387		if (pt_prev)
 5388			ret = deliver_skb(skb, pt_prev, orig_dev);
 5389		pt_prev = ptype;
 5390	}
 5391
 5392	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
 5393		if (pt_prev)
 5394			ret = deliver_skb(skb, pt_prev, orig_dev);
 5395		pt_prev = ptype;
 5396	}
 5397
 5398skip_taps:
 5399#ifdef CONFIG_NET_INGRESS
 5400	if (static_branch_unlikely(&ingress_needed_key)) {
 5401		bool another = false;
 5402
 5403		nf_skip_egress(skb, true);
 5404		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
 5405					 &another);
 5406		if (another)
 5407			goto another_round;
 5408		if (!skb)
 5409			goto out;
 5410
 5411		nf_skip_egress(skb, false);
 5412		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
 5413			goto out;
 5414	}
 5415#endif
 5416	skb_reset_redirect(skb);
 5417skip_classify:
 5418	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
 5419		goto drop;
 5420
 5421	if (skb_vlan_tag_present(skb)) {
 5422		if (pt_prev) {
 5423			ret = deliver_skb(skb, pt_prev, orig_dev);
 5424			pt_prev = NULL;
 
 5425		}
 5426		if (vlan_do_receive(&skb))
 5427			goto another_round;
 5428		else if (unlikely(!skb))
 5429			goto out;
 5430	}
 5431
 
 
 
 
 
 
 
 5432	rx_handler = rcu_dereference(skb->dev->rx_handler);
 5433	if (rx_handler) {
 5434		if (pt_prev) {
 5435			ret = deliver_skb(skb, pt_prev, orig_dev);
 5436			pt_prev = NULL;
 5437		}
 5438		switch (rx_handler(&skb)) {
 5439		case RX_HANDLER_CONSUMED:
 5440			ret = NET_RX_SUCCESS;
 5441			goto out;
 5442		case RX_HANDLER_ANOTHER:
 5443			goto another_round;
 5444		case RX_HANDLER_EXACT:
 5445			deliver_exact = true;
 5446			break;
 5447		case RX_HANDLER_PASS:
 5448			break;
 5449		default:
 5450			BUG();
 5451		}
 5452	}
 5453
 5454	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
 5455check_vlan_id:
 5456		if (skb_vlan_tag_get_id(skb)) {
 5457			/* Vlan id is non 0 and vlan_do_receive() above couldn't
 5458			 * find vlan device.
 5459			 */
 5460			skb->pkt_type = PACKET_OTHERHOST;
 5461		} else if (eth_type_vlan(skb->protocol)) {
 5462			/* Outer header is 802.1P with vlan 0, inner header is
 5463			 * 802.1Q or 802.1AD and vlan_do_receive() above could
 5464			 * not find vlan dev for vlan id 0.
 5465			 */
 5466			__vlan_hwaccel_clear_tag(skb);
 5467			skb = skb_vlan_untag(skb);
 5468			if (unlikely(!skb))
 5469				goto out;
 5470			if (vlan_do_receive(&skb))
 5471				/* After stripping off 802.1P header with vlan 0
 5472				 * vlan dev is found for inner header.
 5473				 */
 5474				goto another_round;
 5475			else if (unlikely(!skb))
 5476				goto out;
 5477			else
 5478				/* We have stripped outer 802.1P vlan 0 header.
 5479				 * But could not find vlan dev.
 5480				 * check again for vlan id to set OTHERHOST.
 5481				 */
 5482				goto check_vlan_id;
 5483		}
 5484		/* Note: we might in the future use prio bits
 5485		 * and set skb->priority like in vlan_do_receive()
 5486		 * For the time being, just ignore Priority Code Point
 5487		 */
 5488		__vlan_hwaccel_clear_tag(skb);
 5489	}
 5490
 5491	type = skb->protocol;
 5492
 5493	/* deliver only exact match when indicated */
 5494	if (likely(!deliver_exact)) {
 5495		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5496				       &ptype_base[ntohs(type) &
 5497						   PTYPE_HASH_MASK]);
 5498	}
 5499
 5500	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5501			       &orig_dev->ptype_specific);
 5502
 5503	if (unlikely(skb->dev != orig_dev)) {
 5504		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5505				       &skb->dev->ptype_specific);
 
 
 
 
 5506	}
 5507
 5508	if (pt_prev) {
 5509		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 5510			goto drop;
 5511		*ppt_prev = pt_prev;
 5512	} else {
 5513drop:
 5514		if (!deliver_exact)
 5515			dev_core_stats_rx_dropped_inc(skb->dev);
 5516		else
 5517			dev_core_stats_rx_nohandler_inc(skb->dev);
 5518		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
 5519		/* Jamal, now you will not able to escape explaining
 5520		 * me how you were going to use this. :-)
 5521		 */
 5522		ret = NET_RX_DROP;
 5523	}
 5524
 5525out:
 5526	/* The invariant here is that if *ppt_prev is not NULL
 5527	 * then skb should also be non-NULL.
 5528	 *
 5529	 * Apparently *ppt_prev assignment above holds this invariant due to
 5530	 * skb dereferencing near it.
 5531	 */
 5532	*pskb = skb;
 5533	return ret;
 5534}
 5535
 5536static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
 5537{
 5538	struct net_device *orig_dev = skb->dev;
 5539	struct packet_type *pt_prev = NULL;
 5540	int ret;
 5541
 5542	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5543	if (pt_prev)
 5544		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
 5545					 skb->dev, pt_prev, orig_dev);
 5546	return ret;
 5547}
 5548
 5549/**
 5550 *	netif_receive_skb_core - special purpose version of netif_receive_skb
 5551 *	@skb: buffer to process
 5552 *
 5553 *	More direct receive version of netif_receive_skb().  It should
 5554 *	only be used by callers that have a need to skip RPS and Generic XDP.
 5555 *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
 5556 *
 5557 *	This function may only be called from softirq context and interrupts
 5558 *	should be enabled.
 5559 *
 5560 *	Return values (usually ignored):
 5561 *	NET_RX_SUCCESS: no congestion
 5562 *	NET_RX_DROP: packet was dropped
 5563 */
 5564int netif_receive_skb_core(struct sk_buff *skb)
 5565{
 5566	int ret;
 
 5567
 5568	rcu_read_lock();
 5569	ret = __netif_receive_skb_one_core(skb, false);
 5570	rcu_read_unlock();
 5571
 5572	return ret;
 5573}
 5574EXPORT_SYMBOL(netif_receive_skb_core);
 
 5575
 5576static inline void __netif_receive_skb_list_ptype(struct list_head *head,
 5577						  struct packet_type *pt_prev,
 5578						  struct net_device *orig_dev)
 5579{
 5580	struct sk_buff *skb, *next;
 5581
 5582	if (!pt_prev)
 5583		return;
 5584	if (list_empty(head))
 5585		return;
 5586	if (pt_prev->list_func != NULL)
 5587		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
 5588				   ip_list_rcv, head, pt_prev, orig_dev);
 5589	else
 5590		list_for_each_entry_safe(skb, next, head, list) {
 5591			skb_list_del_init(skb);
 5592			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 5593		}
 
 
 
 
 
 
 5594}
 
 5595
 5596static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
 5597{
 5598	/* Fast-path assumptions:
 5599	 * - There is no RX handler.
 5600	 * - Only one packet_type matches.
 5601	 * If either of these fails, we will end up doing some per-packet
 5602	 * processing in-line, then handling the 'last ptype' for the whole
 5603	 * sublist.  This can't cause out-of-order delivery to any single ptype,
 5604	 * because the 'last ptype' must be constant across the sublist, and all
 5605	 * other ptypes are handled per-packet.
 5606	 */
 5607	/* Current (common) ptype of sublist */
 5608	struct packet_type *pt_curr = NULL;
 5609	/* Current (common) orig_dev of sublist */
 5610	struct net_device *od_curr = NULL;
 5611	struct list_head sublist;
 5612	struct sk_buff *skb, *next;
 5613
 5614	INIT_LIST_HEAD(&sublist);
 5615	list_for_each_entry_safe(skb, next, head, list) {
 5616		struct net_device *orig_dev = skb->dev;
 5617		struct packet_type *pt_prev = NULL;
 5618
 5619		skb_list_del_init(skb);
 5620		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5621		if (!pt_prev)
 5622			continue;
 5623		if (pt_curr != pt_prev || od_curr != orig_dev) {
 5624			/* dispatch old sublist */
 5625			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 5626			/* start new sublist */
 5627			INIT_LIST_HEAD(&sublist);
 5628			pt_curr = pt_prev;
 5629			od_curr = orig_dev;
 5630		}
 5631		list_add_tail(&skb->list, &sublist);
 5632	}
 
 5633
 5634	/* dispatch final sublist */
 5635	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 
 
 
 
 
 5636}
 5637
 5638static int __netif_receive_skb(struct sk_buff *skb)
 5639{
 5640	int ret;
 
 
 
 5641
 5642	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
 5643		unsigned int noreclaim_flag;
 
 
 5644
 5645		/*
 5646		 * PFMEMALLOC skbs are special, they should
 5647		 * - be delivered to SOCK_MEMALLOC sockets only
 5648		 * - stay away from userspace
 5649		 * - have bounded memory usage
 5650		 *
 5651		 * Use PF_MEMALLOC as this saves us from propagating the allocation
 5652		 * context down to all allocation sites.
 5653		 */
 5654		noreclaim_flag = memalloc_noreclaim_save();
 5655		ret = __netif_receive_skb_one_core(skb, true);
 5656		memalloc_noreclaim_restore(noreclaim_flag);
 5657	} else
 5658		ret = __netif_receive_skb_one_core(skb, false);
 5659
 5660	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 5661}
 5662
 5663static void __netif_receive_skb_list(struct list_head *head)
 5664{
 5665	unsigned long noreclaim_flag = 0;
 5666	struct sk_buff *skb, *next;
 5667	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
 5668
 5669	list_for_each_entry_safe(skb, next, head, list) {
 5670		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
 5671			struct list_head sublist;
 5672
 5673			/* Handle the previous sublist */
 5674			list_cut_before(&sublist, head, &skb->list);
 5675			if (!list_empty(&sublist))
 5676				__netif_receive_skb_list_core(&sublist, pfmemalloc);
 5677			pfmemalloc = !pfmemalloc;
 5678			/* See comments in __netif_receive_skb */
 5679			if (pfmemalloc)
 5680				noreclaim_flag = memalloc_noreclaim_save();
 5681			else
 5682				memalloc_noreclaim_restore(noreclaim_flag);
 5683		}
 5684	}
 5685	/* Handle the remaining sublist */
 5686	if (!list_empty(head))
 5687		__netif_receive_skb_list_core(head, pfmemalloc);
 5688	/* Restore pflags */
 5689	if (pfmemalloc)
 5690		memalloc_noreclaim_restore(noreclaim_flag);
 5691}
 
 5692
 5693static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
 5694{
 5695	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
 5696	struct bpf_prog *new = xdp->prog;
 5697	int ret = 0;
 
 
 
 
 5698
 5699	switch (xdp->command) {
 5700	case XDP_SETUP_PROG:
 5701		rcu_assign_pointer(dev->xdp_prog, new);
 5702		if (old)
 5703			bpf_prog_put(old);
 5704
 5705		if (old && !new) {
 5706			static_branch_dec(&generic_xdp_needed_key);
 5707		} else if (new && !old) {
 5708			static_branch_inc(&generic_xdp_needed_key);
 5709			dev_disable_lro(dev);
 5710			dev_disable_gro_hw(dev);
 5711		}
 5712		break;
 5713
 5714	default:
 5715		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 5716		break;
 5717	}
 
 5718
 5719	return ret;
 5720}
 5721
 5722static int netif_receive_skb_internal(struct sk_buff *skb)
 5723{
 5724	int ret;
 5725
 5726	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 
 5727
 5728	if (skb_defer_rx_timestamp(skb))
 5729		return NET_RX_SUCCESS;
 
 
 
 5730
 5731	rcu_read_lock();
 5732#ifdef CONFIG_RPS
 5733	if (static_branch_unlikely(&rps_needed)) {
 5734		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5735		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5736
 5737		if (cpu >= 0) {
 5738			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5739			rcu_read_unlock();
 5740			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5741		}
 5742	}
 5743#endif
 5744	ret = __netif_receive_skb(skb);
 5745	rcu_read_unlock();
 5746	return ret;
 
 
 
 
 5747}
 
 5748
 5749void netif_receive_skb_list_internal(struct list_head *head)
 
 5750{
 5751	struct sk_buff *skb, *next;
 5752	struct list_head sublist;
 5753
 5754	INIT_LIST_HEAD(&sublist);
 5755	list_for_each_entry_safe(skb, next, head, list) {
 5756		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
 5757				    skb);
 5758		skb_list_del_init(skb);
 5759		if (!skb_defer_rx_timestamp(skb))
 5760			list_add_tail(&skb->list, &sublist);
 5761	}
 5762	list_splice_init(&sublist, head);
 5763
 5764	rcu_read_lock();
 5765#ifdef CONFIG_RPS
 5766	if (static_branch_unlikely(&rps_needed)) {
 5767		list_for_each_entry_safe(skb, next, head, list) {
 5768			struct rps_dev_flow voidflow, *rflow = &voidflow;
 5769			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5770
 5771			if (cpu >= 0) {
 5772				/* Will be handled, remove from list */
 5773				skb_list_del_init(skb);
 5774				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5775			}
 5776		}
 5777	}
 5778#endif
 5779	__netif_receive_skb_list(head);
 5780	rcu_read_unlock();
 5781}
 5782
 5783/**
 5784 *	netif_receive_skb - process receive buffer from network
 5785 *	@skb: buffer to process
 5786 *
 5787 *	netif_receive_skb() is the main receive data processing function.
 5788 *	It always succeeds. The buffer may be dropped during processing
 5789 *	for congestion control or by the protocol layers.
 5790 *
 5791 *	This function may only be called from softirq context and interrupts
 5792 *	should be enabled.
 5793 *
 5794 *	Return values (usually ignored):
 5795 *	NET_RX_SUCCESS: no congestion
 5796 *	NET_RX_DROP: packet was dropped
 5797 */
 5798int netif_receive_skb(struct sk_buff *skb)
 5799{
 5800	int ret;
 
 
 
 
 5801
 5802	trace_netif_receive_skb_entry(skb);
 
 
 
 5803
 5804	ret = netif_receive_skb_internal(skb);
 5805	trace_netif_receive_skb_exit(ret);
 
 
 5806
 5807	return ret;
 5808}
 5809EXPORT_SYMBOL(netif_receive_skb);
 5810
 5811/**
 5812 *	netif_receive_skb_list - process many receive buffers from network
 5813 *	@head: list of skbs to process.
 5814 *
 5815 *	Since return value of netif_receive_skb() is normally ignored, and
 5816 *	wouldn't be meaningful for a list, this function returns void.
 5817 *
 5818 *	This function may only be called from softirq context and interrupts
 5819 *	should be enabled.
 5820 */
 5821void netif_receive_skb_list(struct list_head *head)
 5822{
 5823	struct sk_buff *skb;
 
 
 5824
 5825	if (list_empty(head))
 5826		return;
 5827	if (trace_netif_receive_skb_list_entry_enabled()) {
 5828		list_for_each_entry(skb, head, list)
 5829			trace_netif_receive_skb_list_entry(skb);
 
 5830	}
 5831	netif_receive_skb_list_internal(head);
 5832	trace_netif_receive_skb_list_exit(0);
 5833}
 5834EXPORT_SYMBOL(netif_receive_skb_list);
 5835
 5836static DEFINE_PER_CPU(struct work_struct, flush_works);
 
 
 
 
 
 
 5837
 5838/* Network device is going away, flush any packets still pending */
 5839static void flush_backlog(struct work_struct *work)
 5840{
 5841	struct sk_buff *skb, *tmp;
 5842	struct softnet_data *sd;
 
 
 
 5843
 5844	local_bh_disable();
 5845	sd = this_cpu_ptr(&softnet_data);
 5846
 5847	rps_lock_irq_disable(sd);
 5848	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
 5849		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5850			__skb_unlink(skb, &sd->input_pkt_queue);
 5851			dev_kfree_skb_irq(skb);
 5852			input_queue_head_incr(sd);
 5853		}
 5854	}
 5855	rps_unlock_irq_enable(sd);
 5856
 5857	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
 5858		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5859			__skb_unlink(skb, &sd->process_queue);
 5860			kfree_skb(skb);
 5861			input_queue_head_incr(sd);
 5862		}
 5863	}
 5864	local_bh_enable();
 5865}
 
 5866
 5867static bool flush_required(int cpu)
 
 5868{
 5869#if IS_ENABLED(CONFIG_RPS)
 5870	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
 5871	bool do_flush;
 
 5872
 5873	rps_lock_irq_disable(sd);
 
 
 
 
 5874
 5875	/* as insertion into process_queue happens with the rps lock held,
 5876	 * process_queue access may race only with dequeue
 5877	 */
 5878	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
 5879		   !skb_queue_empty_lockless(&sd->process_queue);
 5880	rps_unlock_irq_enable(sd);
 5881
 5882	return do_flush;
 5883#endif
 5884	/* without RPS we can't safely check input_pkt_queue: during a
 5885	 * concurrent remote skb_queue_splice() we can detect as empty both
 5886	 * input_pkt_queue and process_queue even if the latter could end-up
 5887	 * containing a lot of packets.
 5888	 */
 5889	return true;
 5890}
 
 5891
 5892static void flush_all_backlogs(void)
 5893{
 5894	static cpumask_t flush_cpus;
 5895	unsigned int cpu;
 
 
 5896
 5897	/* since we are under rtnl lock protection we can use static data
 5898	 * for the cpumask and avoid allocating on stack the possibly
 5899	 * large mask
 5900	 */
 5901	ASSERT_RTNL();
 5902
 5903	cpus_read_lock();
 
 5904
 5905	cpumask_clear(&flush_cpus);
 5906	for_each_online_cpu(cpu) {
 5907		if (flush_required(cpu)) {
 5908			queue_work_on(cpu, system_highpri_wq,
 5909				      per_cpu_ptr(&flush_works, cpu));
 5910			cpumask_set_cpu(cpu, &flush_cpus);
 
 
 
 5911		}
 5912	}
 5913
 5914	/* we can have in flight packet[s] on the cpus we are not flushing,
 5915	 * synchronize_net() in unregister_netdevice_many() will take care of
 5916	 * them
 
 
 5917	 */
 5918	for_each_cpu(cpu, &flush_cpus)
 5919		flush_work(per_cpu_ptr(&flush_works, cpu));
 5920
 5921	cpus_read_unlock();
 
 5922}
 
 5923
 5924static void net_rps_send_ipi(struct softnet_data *remsd)
 5925{
 5926#ifdef CONFIG_RPS
 5927	while (remsd) {
 5928		struct softnet_data *next = remsd->rps_ipi_next;
 5929
 5930		if (cpu_online(remsd->cpu))
 5931			smp_call_function_single_async(remsd->cpu, &remsd->csd);
 5932		remsd = next;
 5933	}
 5934#endif
 5935}
 
 5936
 5937/*
 5938 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
 5939 * Note: called with local irq disabled, but exits with local irq enabled.
 5940 */
 5941static void net_rps_action_and_irq_enable(struct softnet_data *sd)
 5942{
 5943#ifdef CONFIG_RPS
 5944	struct softnet_data *remsd = sd->rps_ipi_list;
 5945
 5946	if (remsd) {
 5947		sd->rps_ipi_list = NULL;
 5948
 5949		local_irq_enable();
 5950
 5951		/* Send pending IPI's to kick RPS processing on remote cpus. */
 5952		net_rps_send_ipi(remsd);
 
 
 
 
 
 
 
 5953	} else
 5954#endif
 5955		local_irq_enable();
 5956}
 5957
 5958static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
 5959{
 5960#ifdef CONFIG_RPS
 5961	return sd->rps_ipi_list != NULL;
 5962#else
 5963	return false;
 5964#endif
 5965}
 5966
 5967static int process_backlog(struct napi_struct *napi, int quota)
 5968{
 5969	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
 5970	bool again = true;
 5971	int work = 0;
 
 5972
 
 5973	/* Check if we have pending ipi, its better to send them now,
 5974	 * not waiting net_rx_action() end.
 5975	 */
 5976	if (sd_has_rps_ipi_waiting(sd)) {
 5977		local_irq_disable();
 5978		net_rps_action_and_irq_enable(sd);
 5979	}
 5980
 5981	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
 5982	while (again) {
 
 5983		struct sk_buff *skb;
 
 5984
 5985		while ((skb = __skb_dequeue(&sd->process_queue))) {
 5986			rcu_read_lock();
 5987			__netif_receive_skb(skb);
 5988			rcu_read_unlock();
 5989			input_queue_head_incr(sd);
 5990			if (++work >= quota)
 
 5991				return work;
 5992
 5993		}
 5994
 5995		rps_lock_irq_disable(sd);
 5996		if (skb_queue_empty(&sd->input_pkt_queue)) {
 
 
 
 
 
 5997			/*
 5998			 * Inline a custom version of __napi_complete().
 5999			 * only current cpu owns and manipulates this napi,
 6000			 * and NAPI_STATE_SCHED is the only possible flag set
 6001			 * on backlog.
 6002			 * We can use a plain write instead of clear_bit(),
 6003			 * and we dont need an smp_mb() memory barrier.
 6004			 */
 
 6005			napi->state = 0;
 6006			again = false;
 6007		} else {
 6008			skb_queue_splice_tail_init(&sd->input_pkt_queue,
 6009						   &sd->process_queue);
 6010		}
 6011		rps_unlock_irq_enable(sd);
 6012	}
 
 6013
 6014	return work;
 6015}
 6016
 6017/**
 6018 * __napi_schedule - schedule for receive
 6019 * @n: entry to schedule
 6020 *
 6021 * The entry's receive function will be scheduled to run.
 6022 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
 6023 */
 6024void __napi_schedule(struct napi_struct *n)
 6025{
 6026	unsigned long flags;
 6027
 6028	local_irq_save(flags);
 6029	____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6030	local_irq_restore(flags);
 6031}
 6032EXPORT_SYMBOL(__napi_schedule);
 6033
 6034/**
 6035 *	napi_schedule_prep - check if napi can be scheduled
 6036 *	@n: napi context
 6037 *
 6038 * Test if NAPI routine is already running, and if not mark
 6039 * it as running.  This is used as a condition variable to
 6040 * insure only one NAPI poll instance runs.  We also make
 6041 * sure there is no pending NAPI disable.
 6042 */
 6043bool napi_schedule_prep(struct napi_struct *n)
 6044{
 6045	unsigned long new, val = READ_ONCE(n->state);
 
 6046
 6047	do {
 6048		if (unlikely(val & NAPIF_STATE_DISABLE))
 6049			return false;
 6050		new = val | NAPIF_STATE_SCHED;
 6051
 6052		/* Sets STATE_MISSED bit if STATE_SCHED was already set
 6053		 * This was suggested by Alexander Duyck, as compiler
 6054		 * emits better code than :
 6055		 * if (val & NAPIF_STATE_SCHED)
 6056		 *     new |= NAPIF_STATE_MISSED;
 6057		 */
 6058		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
 6059						   NAPIF_STATE_MISSED;
 6060	} while (!try_cmpxchg(&n->state, &val, new));
 6061
 6062	return !(val & NAPIF_STATE_SCHED);
 6063}
 6064EXPORT_SYMBOL(napi_schedule_prep);
 6065
 6066/**
 6067 * __napi_schedule_irqoff - schedule for receive
 6068 * @n: entry to schedule
 6069 *
 6070 * Variant of __napi_schedule() assuming hard irqs are masked.
 6071 *
 6072 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
 6073 * because the interrupt disabled assumption might not be true
 6074 * due to force-threaded interrupts and spinlock substitution.
 6075 */
 6076void __napi_schedule_irqoff(struct napi_struct *n)
 6077{
 6078	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6079		____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6080	else
 6081		__napi_schedule(n);
 6082}
 6083EXPORT_SYMBOL(__napi_schedule_irqoff);
 6084
 6085bool napi_complete_done(struct napi_struct *n, int work_done)
 6086{
 6087	unsigned long flags, val, new, timeout = 0;
 6088	bool ret = true;
 6089
 6090	/*
 6091	 * 1) Don't let napi dequeue from the cpu poll list
 6092	 *    just in case its running on a different cpu.
 6093	 * 2) If we are busy polling, do nothing here, we have
 6094	 *    the guarantee we will be called later.
 6095	 */
 6096	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
 6097				 NAPIF_STATE_IN_BUSY_POLL)))
 6098		return false;
 6099
 6100	if (work_done) {
 6101		if (n->gro_bitmask)
 6102			timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6103		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
 6104	}
 6105	if (n->defer_hard_irqs_count > 0) {
 6106		n->defer_hard_irqs_count--;
 6107		timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6108		if (timeout)
 6109			ret = false;
 6110	}
 6111	if (n->gro_bitmask) {
 6112		/* When the NAPI instance uses a timeout and keeps postponing
 6113		 * it, we need to bound somehow the time packets are kept in
 6114		 * the GRO layer
 6115		 */
 6116		napi_gro_flush(n, !!timeout);
 6117	}
 6118
 6119	gro_normal_list(n);
 6120
 6121	if (unlikely(!list_empty(&n->poll_list))) {
 6122		/* If n->poll_list is not empty, we need to mask irqs */
 6123		local_irq_save(flags);
 6124		list_del_init(&n->poll_list);
 6125		local_irq_restore(flags);
 6126	}
 6127	WRITE_ONCE(n->list_owner, -1);
 6128
 6129	val = READ_ONCE(n->state);
 6130	do {
 6131		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
 6132
 6133		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
 6134			      NAPIF_STATE_SCHED_THREADED |
 6135			      NAPIF_STATE_PREFER_BUSY_POLL);
 6136
 6137		/* If STATE_MISSED was set, leave STATE_SCHED set,
 6138		 * because we will call napi->poll() one more time.
 6139		 * This C code was suggested by Alexander Duyck to help gcc.
 6140		 */
 6141		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
 6142						    NAPIF_STATE_SCHED;
 6143	} while (!try_cmpxchg(&n->state, &val, new));
 6144
 6145	if (unlikely(val & NAPIF_STATE_MISSED)) {
 6146		__napi_schedule(n);
 6147		return false;
 6148	}
 6149
 6150	if (timeout)
 6151		hrtimer_start(&n->timer, ns_to_ktime(timeout),
 6152			      HRTIMER_MODE_REL_PINNED);
 6153	return ret;
 6154}
 6155EXPORT_SYMBOL(napi_complete_done);
 6156
 6157/* must be called under rcu_read_lock(), as we dont take a reference */
 6158struct napi_struct *napi_by_id(unsigned int napi_id)
 6159{
 6160	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
 6161	struct napi_struct *napi;
 6162
 6163	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
 6164		if (napi->napi_id == napi_id)
 6165			return napi;
 6166
 6167	return NULL;
 6168}
 6169
 6170static void skb_defer_free_flush(struct softnet_data *sd)
 6171{
 6172	struct sk_buff *skb, *next;
 6173
 6174	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
 6175	if (!READ_ONCE(sd->defer_list))
 6176		return;
 6177
 6178	spin_lock(&sd->defer_lock);
 6179	skb = sd->defer_list;
 6180	sd->defer_list = NULL;
 6181	sd->defer_count = 0;
 6182	spin_unlock(&sd->defer_lock);
 6183
 6184	while (skb != NULL) {
 6185		next = skb->next;
 6186		napi_consume_skb(skb, 1);
 6187		skb = next;
 6188	}
 6189}
 6190
 6191#if defined(CONFIG_NET_RX_BUSY_POLL)
 6192
 6193static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
 6194{
 6195	if (!skip_schedule) {
 6196		gro_normal_list(napi);
 6197		__napi_schedule(napi);
 6198		return;
 6199	}
 6200
 6201	if (napi->gro_bitmask) {
 6202		/* flush too old packets
 6203		 * If HZ < 1000, flush all packets.
 6204		 */
 6205		napi_gro_flush(napi, HZ >= 1000);
 6206	}
 6207
 6208	gro_normal_list(napi);
 6209	clear_bit(NAPI_STATE_SCHED, &napi->state);
 6210}
 6211
 6212enum {
 6213	NAPI_F_PREFER_BUSY_POLL	= 1,
 6214	NAPI_F_END_ON_RESCHED	= 2,
 6215};
 6216
 6217static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
 6218			   unsigned flags, u16 budget)
 6219{
 6220	bool skip_schedule = false;
 6221	unsigned long timeout;
 6222	int rc;
 6223
 6224	/* Busy polling means there is a high chance device driver hard irq
 6225	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
 6226	 * set in napi_schedule_prep().
 6227	 * Since we are about to call napi->poll() once more, we can safely
 6228	 * clear NAPI_STATE_MISSED.
 6229	 *
 6230	 * Note: x86 could use a single "lock and ..." instruction
 6231	 * to perform these two clear_bit()
 6232	 */
 6233	clear_bit(NAPI_STATE_MISSED, &napi->state);
 6234	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
 6235
 6236	local_bh_disable();
 6237
 6238	if (flags & NAPI_F_PREFER_BUSY_POLL) {
 6239		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
 6240		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
 6241		if (napi->defer_hard_irqs_count && timeout) {
 6242			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
 6243			skip_schedule = true;
 6244		}
 6245	}
 6246
 6247	/* All we really want here is to re-enable device interrupts.
 6248	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
 6249	 */
 6250	rc = napi->poll(napi, budget);
 6251	/* We can't gro_normal_list() here, because napi->poll() might have
 6252	 * rearmed the napi (napi_complete_done()) in which case it could
 6253	 * already be running on another CPU.
 6254	 */
 6255	trace_napi_poll(napi, rc, budget);
 6256	netpoll_poll_unlock(have_poll_lock);
 6257	if (rc == budget)
 6258		__busy_poll_stop(napi, skip_schedule);
 6259	local_bh_enable();
 6260}
 6261
 6262static void __napi_busy_loop(unsigned int napi_id,
 6263		      bool (*loop_end)(void *, unsigned long),
 6264		      void *loop_end_arg, unsigned flags, u16 budget)
 6265{
 6266	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
 6267	int (*napi_poll)(struct napi_struct *napi, int budget);
 6268	void *have_poll_lock = NULL;
 6269	struct napi_struct *napi;
 6270
 6271	WARN_ON_ONCE(!rcu_read_lock_held());
 6272
 6273restart:
 6274	napi_poll = NULL;
 6275
 6276	napi = napi_by_id(napi_id);
 6277	if (!napi)
 6278		return;
 6279
 6280	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6281		preempt_disable();
 6282	for (;;) {
 6283		int work = 0;
 6284
 6285		local_bh_disable();
 6286		if (!napi_poll) {
 6287			unsigned long val = READ_ONCE(napi->state);
 6288
 6289			/* If multiple threads are competing for this napi,
 6290			 * we avoid dirtying napi->state as much as we can.
 6291			 */
 6292			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
 6293				   NAPIF_STATE_IN_BUSY_POLL)) {
 6294				if (flags & NAPI_F_PREFER_BUSY_POLL)
 6295					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6296				goto count;
 6297			}
 6298			if (cmpxchg(&napi->state, val,
 6299				    val | NAPIF_STATE_IN_BUSY_POLL |
 6300					  NAPIF_STATE_SCHED) != val) {
 6301				if (flags & NAPI_F_PREFER_BUSY_POLL)
 6302					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6303				goto count;
 6304			}
 6305			have_poll_lock = netpoll_poll_lock(napi);
 6306			napi_poll = napi->poll;
 6307		}
 6308		work = napi_poll(napi, budget);
 6309		trace_napi_poll(napi, work, budget);
 6310		gro_normal_list(napi);
 6311count:
 6312		if (work > 0)
 6313			__NET_ADD_STATS(dev_net(napi->dev),
 6314					LINUX_MIB_BUSYPOLLRXPACKETS, work);
 6315		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
 6316		local_bh_enable();
 6317
 6318		if (!loop_end || loop_end(loop_end_arg, start_time))
 6319			break;
 6320
 6321		if (unlikely(need_resched())) {
 6322			if (flags & NAPI_F_END_ON_RESCHED)
 6323				break;
 6324			if (napi_poll)
 6325				busy_poll_stop(napi, have_poll_lock, flags, budget);
 6326			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6327				preempt_enable();
 6328			rcu_read_unlock();
 6329			cond_resched();
 6330			rcu_read_lock();
 6331			if (loop_end(loop_end_arg, start_time))
 6332				return;
 6333			goto restart;
 6334		}
 6335		cpu_relax();
 6336	}
 6337	if (napi_poll)
 6338		busy_poll_stop(napi, have_poll_lock, flags, budget);
 6339	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6340		preempt_enable();
 6341}
 6342
 6343void napi_busy_loop_rcu(unsigned int napi_id,
 6344			bool (*loop_end)(void *, unsigned long),
 6345			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6346{
 6347	unsigned flags = NAPI_F_END_ON_RESCHED;
 6348
 6349	if (prefer_busy_poll)
 6350		flags |= NAPI_F_PREFER_BUSY_POLL;
 6351
 6352	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
 6353}
 6354
 6355void napi_busy_loop(unsigned int napi_id,
 6356		    bool (*loop_end)(void *, unsigned long),
 6357		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6358{
 6359	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
 6360
 6361	rcu_read_lock();
 6362	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
 6363	rcu_read_unlock();
 6364}
 6365EXPORT_SYMBOL(napi_busy_loop);
 6366
 6367#endif /* CONFIG_NET_RX_BUSY_POLL */
 6368
 6369static void napi_hash_add(struct napi_struct *napi)
 6370{
 6371	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
 6372		return;
 6373
 6374	spin_lock(&napi_hash_lock);
 6375
 6376	/* 0..NR_CPUS range is reserved for sender_cpu use */
 6377	do {
 6378		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
 6379			napi_gen_id = MIN_NAPI_ID;
 6380	} while (napi_by_id(napi_gen_id));
 6381	napi->napi_id = napi_gen_id;
 6382
 6383	hlist_add_head_rcu(&napi->napi_hash_node,
 6384			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
 6385
 6386	spin_unlock(&napi_hash_lock);
 6387}
 6388
 6389/* Warning : caller is responsible to make sure rcu grace period
 6390 * is respected before freeing memory containing @napi
 6391 */
 6392static void napi_hash_del(struct napi_struct *napi)
 6393{
 6394	spin_lock(&napi_hash_lock);
 6395
 6396	hlist_del_init_rcu(&napi->napi_hash_node);
 6397
 6398	spin_unlock(&napi_hash_lock);
 6399}
 6400
 6401static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
 6402{
 6403	struct napi_struct *napi;
 6404
 6405	napi = container_of(timer, struct napi_struct, timer);
 6406
 6407	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
 6408	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
 6409	 */
 6410	if (!napi_disable_pending(napi) &&
 6411	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
 6412		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6413		__napi_schedule_irqoff(napi);
 6414	}
 6415
 6416	return HRTIMER_NORESTART;
 6417}
 6418
 6419static void init_gro_hash(struct napi_struct *napi)
 6420{
 6421	int i;
 6422
 6423	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6424		INIT_LIST_HEAD(&napi->gro_hash[i].list);
 6425		napi->gro_hash[i].count = 0;
 6426	}
 6427	napi->gro_bitmask = 0;
 6428}
 6429
 6430int dev_set_threaded(struct net_device *dev, bool threaded)
 6431{
 6432	struct napi_struct *napi;
 6433	int err = 0;
 6434
 6435	if (dev->threaded == threaded)
 6436		return 0;
 6437
 6438	if (threaded) {
 6439		list_for_each_entry(napi, &dev->napi_list, dev_list) {
 6440			if (!napi->thread) {
 6441				err = napi_kthread_create(napi);
 6442				if (err) {
 6443					threaded = false;
 6444					break;
 6445				}
 6446			}
 6447		}
 6448	}
 6449
 6450	dev->threaded = threaded;
 6451
 6452	/* Make sure kthread is created before THREADED bit
 6453	 * is set.
 6454	 */
 6455	smp_mb__before_atomic();
 6456
 6457	/* Setting/unsetting threaded mode on a napi might not immediately
 6458	 * take effect, if the current napi instance is actively being
 6459	 * polled. In this case, the switch between threaded mode and
 6460	 * softirq mode will happen in the next round of napi_schedule().
 6461	 * This should not cause hiccups/stalls to the live traffic.
 6462	 */
 6463	list_for_each_entry(napi, &dev->napi_list, dev_list)
 6464		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
 6465
 6466	return err;
 6467}
 6468EXPORT_SYMBOL(dev_set_threaded);
 6469
 6470/**
 6471 * netif_queue_set_napi - Associate queue with the napi
 6472 * @dev: device to which NAPI and queue belong
 6473 * @queue_index: Index of queue
 6474 * @type: queue type as RX or TX
 6475 * @napi: NAPI context, pass NULL to clear previously set NAPI
 6476 *
 6477 * Set queue with its corresponding napi context. This should be done after
 6478 * registering the NAPI handler for the queue-vector and the queues have been
 6479 * mapped to the corresponding interrupt vector.
 6480 */
 6481void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
 6482			  enum netdev_queue_type type, struct napi_struct *napi)
 6483{
 6484	struct netdev_rx_queue *rxq;
 6485	struct netdev_queue *txq;
 6486
 6487	if (WARN_ON_ONCE(napi && !napi->dev))
 6488		return;
 6489	if (dev->reg_state >= NETREG_REGISTERED)
 6490		ASSERT_RTNL();
 6491
 6492	switch (type) {
 6493	case NETDEV_QUEUE_TYPE_RX:
 6494		rxq = __netif_get_rx_queue(dev, queue_index);
 6495		rxq->napi = napi;
 6496		return;
 6497	case NETDEV_QUEUE_TYPE_TX:
 6498		txq = netdev_get_tx_queue(dev, queue_index);
 6499		txq->napi = napi;
 6500		return;
 6501	default:
 6502		return;
 6503	}
 6504}
 6505EXPORT_SYMBOL(netif_queue_set_napi);
 6506
 6507void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
 6508			   int (*poll)(struct napi_struct *, int), int weight)
 6509{
 6510	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
 6511		return;
 6512
 6513	INIT_LIST_HEAD(&napi->poll_list);
 6514	INIT_HLIST_NODE(&napi->napi_hash_node);
 6515	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 6516	napi->timer.function = napi_watchdog;
 6517	init_gro_hash(napi);
 6518	napi->skb = NULL;
 6519	INIT_LIST_HEAD(&napi->rx_list);
 6520	napi->rx_count = 0;
 6521	napi->poll = poll;
 6522	if (weight > NAPI_POLL_WEIGHT)
 6523		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
 6524				weight);
 6525	napi->weight = weight;
 
 6526	napi->dev = dev;
 6527#ifdef CONFIG_NETPOLL
 
 6528	napi->poll_owner = -1;
 6529#endif
 6530	napi->list_owner = -1;
 6531	set_bit(NAPI_STATE_SCHED, &napi->state);
 6532	set_bit(NAPI_STATE_NPSVC, &napi->state);
 6533	list_add_rcu(&napi->dev_list, &dev->napi_list);
 6534	napi_hash_add(napi);
 6535	napi_get_frags_check(napi);
 6536	/* Create kthread for this napi if dev->threaded is set.
 6537	 * Clear dev->threaded if kthread creation failed so that
 6538	 * threaded mode will not be enabled in napi_enable().
 6539	 */
 6540	if (dev->threaded && napi_kthread_create(napi))
 6541		dev->threaded = 0;
 6542	netif_napi_set_irq(napi, -1);
 6543}
 6544EXPORT_SYMBOL(netif_napi_add_weight);
 6545
 6546void napi_disable(struct napi_struct *n)
 6547{
 6548	unsigned long val, new;
 6549
 6550	might_sleep();
 6551	set_bit(NAPI_STATE_DISABLE, &n->state);
 6552
 6553	val = READ_ONCE(n->state);
 6554	do {
 6555		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
 6556			usleep_range(20, 200);
 6557			val = READ_ONCE(n->state);
 6558		}
 6559
 6560		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
 6561		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
 6562	} while (!try_cmpxchg(&n->state, &val, new));
 6563
 6564	hrtimer_cancel(&n->timer);
 6565
 6566	clear_bit(NAPI_STATE_DISABLE, &n->state);
 6567}
 6568EXPORT_SYMBOL(napi_disable);
 6569
 6570/**
 6571 *	napi_enable - enable NAPI scheduling
 6572 *	@n: NAPI context
 6573 *
 6574 * Resume NAPI from being scheduled on this context.
 6575 * Must be paired with napi_disable.
 6576 */
 6577void napi_enable(struct napi_struct *n)
 6578{
 6579	unsigned long new, val = READ_ONCE(n->state);
 6580
 6581	do {
 6582		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
 6583
 6584		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
 6585		if (n->dev->threaded && n->thread)
 6586			new |= NAPIF_STATE_THREADED;
 6587	} while (!try_cmpxchg(&n->state, &val, new));
 6588}
 6589EXPORT_SYMBOL(napi_enable);
 6590
 6591static void flush_gro_hash(struct napi_struct *napi)
 6592{
 6593	int i;
 6594
 6595	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6596		struct sk_buff *skb, *n;
 6597
 6598		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
 6599			kfree_skb(skb);
 6600		napi->gro_hash[i].count = 0;
 6601	}
 6602}
 6603
 6604/* Must be called in process context */
 6605void __netif_napi_del(struct napi_struct *napi)
 6606{
 6607	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
 6608		return;
 6609
 6610	napi_hash_del(napi);
 6611	list_del_rcu(&napi->dev_list);
 6612	napi_free_frags(napi);
 6613
 6614	flush_gro_hash(napi);
 6615	napi->gro_bitmask = 0;
 6616
 6617	if (napi->thread) {
 6618		kthread_stop(napi->thread);
 6619		napi->thread = NULL;
 6620	}
 6621}
 6622EXPORT_SYMBOL(__netif_napi_del);
 6623
 6624static int __napi_poll(struct napi_struct *n, bool *repoll)
 6625{
 6626	int work, weight;
 6627
 6628	weight = n->weight;
 6629
 6630	/* This NAPI_STATE_SCHED test is for avoiding a race
 6631	 * with netpoll's poll_napi().  Only the entity which
 6632	 * obtains the lock and sees NAPI_STATE_SCHED set will
 6633	 * actually make the ->poll() call.  Therefore we avoid
 6634	 * accidentally calling ->poll() when NAPI is not scheduled.
 6635	 */
 6636	work = 0;
 6637	if (napi_is_scheduled(n)) {
 6638		work = n->poll(n, weight);
 6639		trace_napi_poll(n, work, weight);
 6640
 6641		xdp_do_check_flushed(n);
 6642	}
 6643
 6644	if (unlikely(work > weight))
 6645		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
 6646				n->poll, work, weight);
 6647
 6648	if (likely(work < weight))
 6649		return work;
 6650
 6651	/* Drivers must not modify the NAPI state if they
 6652	 * consume the entire weight.  In such cases this code
 6653	 * still "owns" the NAPI instance and therefore can
 6654	 * move the instance around on the list at-will.
 6655	 */
 6656	if (unlikely(napi_disable_pending(n))) {
 6657		napi_complete(n);
 6658		return work;
 6659	}
 6660
 6661	/* The NAPI context has more processing work, but busy-polling
 6662	 * is preferred. Exit early.
 6663	 */
 6664	if (napi_prefer_busy_poll(n)) {
 6665		if (napi_complete_done(n, work)) {
 6666			/* If timeout is not set, we need to make sure
 6667			 * that the NAPI is re-scheduled.
 6668			 */
 6669			napi_schedule(n);
 6670		}
 6671		return work;
 6672	}
 6673
 6674	if (n->gro_bitmask) {
 6675		/* flush too old packets
 6676		 * If HZ < 1000, flush all packets.
 6677		 */
 6678		napi_gro_flush(n, HZ >= 1000);
 6679	}
 6680
 6681	gro_normal_list(n);
 6682
 6683	/* Some drivers may have called napi_schedule
 6684	 * prior to exhausting their budget.
 6685	 */
 6686	if (unlikely(!list_empty(&n->poll_list))) {
 6687		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
 6688			     n->dev ? n->dev->name : "backlog");
 6689		return work;
 6690	}
 6691
 6692	*repoll = true;
 6693
 6694	return work;
 6695}
 6696
 6697static int napi_poll(struct napi_struct *n, struct list_head *repoll)
 6698{
 6699	bool do_repoll = false;
 6700	void *have;
 6701	int work;
 6702
 6703	list_del_init(&n->poll_list);
 6704
 6705	have = netpoll_poll_lock(n);
 6706
 6707	work = __napi_poll(n, &do_repoll);
 6708
 6709	if (do_repoll)
 6710		list_add_tail(&n->poll_list, repoll);
 6711
 6712	netpoll_poll_unlock(have);
 6713
 6714	return work;
 6715}
 6716
 6717static int napi_thread_wait(struct napi_struct *napi)
 6718{
 6719	bool woken = false;
 6720
 6721	set_current_state(TASK_INTERRUPTIBLE);
 6722
 6723	while (!kthread_should_stop()) {
 6724		/* Testing SCHED_THREADED bit here to make sure the current
 6725		 * kthread owns this napi and could poll on this napi.
 6726		 * Testing SCHED bit is not enough because SCHED bit might be
 6727		 * set by some other busy poll thread or by napi_disable().
 6728		 */
 6729		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
 6730			WARN_ON(!list_empty(&napi->poll_list));
 6731			__set_current_state(TASK_RUNNING);
 6732			return 0;
 6733		}
 6734
 6735		schedule();
 6736		/* woken being true indicates this thread owns this napi. */
 6737		woken = true;
 6738		set_current_state(TASK_INTERRUPTIBLE);
 6739	}
 6740	__set_current_state(TASK_RUNNING);
 6741
 6742	return -1;
 
 6743}
 
 6744
 6745static int napi_threaded_poll(void *data)
 6746{
 6747	struct napi_struct *napi = data;
 6748	struct softnet_data *sd;
 
 6749	void *have;
 6750
 6751	while (!napi_thread_wait(napi)) {
 6752		unsigned long last_qs = jiffies;
 6753
 6754		for (;;) {
 6755			bool repoll = false;
 6756
 6757			local_bh_disable();
 6758			sd = this_cpu_ptr(&softnet_data);
 6759			sd->in_napi_threaded_poll = true;
 6760
 6761			have = netpoll_poll_lock(napi);
 6762			__napi_poll(napi, &repoll);
 6763			netpoll_poll_unlock(have);
 6764
 6765			sd->in_napi_threaded_poll = false;
 6766			barrier();
 6767
 6768			if (sd_has_rps_ipi_waiting(sd)) {
 6769				local_irq_disable();
 6770				net_rps_action_and_irq_enable(sd);
 6771			}
 6772			skb_defer_free_flush(sd);
 6773			local_bh_enable();
 6774
 6775			if (!repoll)
 6776				break;
 6777
 6778			rcu_softirq_qs_periodic(last_qs);
 6779			cond_resched();
 6780		}
 6781	}
 6782	return 0;
 6783}
 6784
 6785static __latent_entropy void net_rx_action(struct softirq_action *h)
 6786{
 6787	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 6788	unsigned long time_limit = jiffies +
 6789		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
 6790	int budget = READ_ONCE(net_hotdata.netdev_budget);
 6791	LIST_HEAD(list);
 6792	LIST_HEAD(repoll);
 6793
 6794start:
 6795	sd->in_net_rx_action = true;
 6796	local_irq_disable();
 6797	list_splice_init(&sd->poll_list, &list);
 6798	local_irq_enable();
 6799
 6800	for (;;) {
 6801		struct napi_struct *n;
 
 6802
 6803		skb_defer_free_flush(sd);
 6804
 6805		if (list_empty(&list)) {
 6806			if (list_empty(&repoll)) {
 6807				sd->in_net_rx_action = false;
 6808				barrier();
 6809				/* We need to check if ____napi_schedule()
 6810				 * had refilled poll_list while
 6811				 * sd->in_net_rx_action was true.
 6812				 */
 6813				if (!list_empty(&sd->poll_list))
 6814					goto start;
 6815				if (!sd_has_rps_ipi_waiting(sd))
 6816					goto end;
 6817			}
 6818			break;
 6819		}
 6820
 6821		n = list_first_entry(&list, struct napi_struct, poll_list);
 6822		budget -= napi_poll(n, &repoll);
 6823
 6824		/* If softirq window is exhausted then punt.
 6825		 * Allow this to run for 2 jiffies since which will allow
 6826		 * an average latency of 1.5/HZ.
 6827		 */
 6828		if (unlikely(budget <= 0 ||
 6829			     time_after_eq(jiffies, time_limit))) {
 6830			sd->time_squeeze++;
 6831			break;
 6832		}
 6833	}
 6834
 6835	local_irq_disable();
 6836
 6837	list_splice_tail_init(&sd->poll_list, &list);
 6838	list_splice_tail(&repoll, &list);
 6839	list_splice(&list, &sd->poll_list);
 6840	if (!list_empty(&sd->poll_list))
 6841		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 6842	else
 6843		sd->in_net_rx_action = false;
 6844
 6845	net_rps_action_and_irq_enable(sd);
 6846end:;
 6847}
 
 
 
 6848
 6849struct netdev_adjacent {
 6850	struct net_device *dev;
 6851	netdevice_tracker dev_tracker;
 6852
 6853	/* upper master flag, there can only be one master device per list */
 6854	bool master;
 6855
 6856	/* lookup ignore flag */
 6857	bool ignore;
 
 
 
 
 
 
 
 
 
 6858
 6859	/* counter for the number of times this device was added to us */
 6860	u16 ref_nr;
 6861
 6862	/* private field for the users */
 6863	void *private;
 6864
 6865	struct list_head list;
 6866	struct rcu_head rcu;
 6867};
 6868
 6869static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
 6870						 struct list_head *adj_list)
 6871{
 6872	struct netdev_adjacent *adj;
 
 
 
 
 
 
 
 
 
 6873
 6874	list_for_each_entry(adj, adj_list, list) {
 6875		if (adj->dev == adj_dev)
 6876			return adj;
 6877	}
 6878	return NULL;
 6879}
 6880
 6881static int ____netdev_has_upper_dev(struct net_device *upper_dev,
 6882				    struct netdev_nested_priv *priv)
 6883{
 6884	struct net_device *dev = (struct net_device *)priv->data;
 6885
 6886	return upper_dev == dev;
 6887}
 6888
 6889/**
 6890 * netdev_has_upper_dev - Check if device is linked to an upper device
 6891 * @dev: device
 6892 * @upper_dev: upper device to check
 6893 *
 6894 * Find out if a device is linked to specified upper device and return true
 6895 * in case it is. Note that this checks only immediate upper device,
 6896 * not through a complete stack of devices. The caller must hold the RTNL lock.
 6897 */
 6898bool netdev_has_upper_dev(struct net_device *dev,
 6899			  struct net_device *upper_dev)
 6900{
 6901	struct netdev_nested_priv priv = {
 6902		.data = (void *)upper_dev,
 6903	};
 6904
 6905	ASSERT_RTNL();
 6906
 6907	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6908					     &priv);
 6909}
 6910EXPORT_SYMBOL(netdev_has_upper_dev);
 6911
 6912/**
 6913 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
 6914 * @dev: device
 6915 * @upper_dev: upper device to check
 6916 *
 6917 * Find out if a device is linked to specified upper device and return true
 6918 * in case it is. Note that this checks the entire upper device chain.
 6919 * The caller must hold rcu lock.
 6920 */
 6921
 6922bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
 6923				  struct net_device *upper_dev)
 6924{
 6925	struct netdev_nested_priv priv = {
 6926		.data = (void *)upper_dev,
 6927	};
 6928
 6929	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6930					       &priv);
 
 
 6931}
 6932EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
 6933
 6934/**
 6935 * netdev_has_any_upper_dev - Check if device is linked to some device
 6936 * @dev: device
 6937 *
 6938 * Find out if a device is linked to an upper device and return true in case
 6939 * it is. The caller must hold the RTNL lock.
 6940 */
 6941bool netdev_has_any_upper_dev(struct net_device *dev)
 6942{
 6943	ASSERT_RTNL();
 6944
 6945	return !list_empty(&dev->adj_list.upper);
 6946}
 6947EXPORT_SYMBOL(netdev_has_any_upper_dev);
 6948
 6949/**
 6950 * netdev_master_upper_dev_get - Get master upper device
 6951 * @dev: device
 
 6952 *
 6953 * Find a master upper device and return pointer to it or NULL in case
 6954 * it's not there. The caller must hold the RTNL lock.
 
 6955 */
 6956struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
 6957{
 6958	struct netdev_adjacent *upper;
 6959
 6960	ASSERT_RTNL();
 6961
 6962	if (list_empty(&dev->adj_list.upper))
 6963		return NULL;
 6964
 6965	upper = list_first_entry(&dev->adj_list.upper,
 6966				 struct netdev_adjacent, list);
 6967	if (likely(upper->master))
 6968		return upper->dev;
 6969	return NULL;
 6970}
 6971EXPORT_SYMBOL(netdev_master_upper_dev_get);
 6972
 6973static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
 6974{
 6975	struct netdev_adjacent *upper;
 6976
 6977	ASSERT_RTNL();
 6978
 6979	if (list_empty(&dev->adj_list.upper))
 6980		return NULL;
 6981
 6982	upper = list_first_entry(&dev->adj_list.upper,
 6983				 struct netdev_adjacent, list);
 6984	if (likely(upper->master) && !upper->ignore)
 6985		return upper->dev;
 6986	return NULL;
 6987}
 6988
 6989/**
 6990 * netdev_has_any_lower_dev - Check if device is linked to some device
 6991 * @dev: device
 6992 *
 6993 * Find out if a device is linked to a lower device and return true in case
 6994 * it is. The caller must hold the RTNL lock.
 6995 */
 6996static bool netdev_has_any_lower_dev(struct net_device *dev)
 6997{
 6998	ASSERT_RTNL();
 6999
 7000	return !list_empty(&dev->adj_list.lower);
 7001}
 7002
 7003void *netdev_adjacent_get_private(struct list_head *adj_list)
 7004{
 7005	struct netdev_adjacent *adj;
 7006
 7007	adj = list_entry(adj_list, struct netdev_adjacent, list);
 7008
 7009	return adj->private;
 7010}
 7011EXPORT_SYMBOL(netdev_adjacent_get_private);
 7012
 7013/**
 7014 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
 7015 * @dev: device
 7016 * @iter: list_head ** of the current position
 7017 *
 7018 * Gets the next device from the dev's upper list, starting from iter
 7019 * position. The caller must hold RCU read lock.
 7020 */
 7021struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
 7022						 struct list_head **iter)
 7023{
 7024	struct netdev_adjacent *upper;
 7025
 7026	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7027
 7028	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7029
 7030	if (&upper->list == &dev->adj_list.upper)
 7031		return NULL;
 7032
 7033	*iter = &upper->list;
 7034
 7035	return upper->dev;
 7036}
 7037EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
 7038
 7039static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
 7040						  struct list_head **iter,
 7041						  bool *ignore)
 7042{
 7043	struct netdev_adjacent *upper;
 7044
 7045	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
 7046
 7047	if (&upper->list == &dev->adj_list.upper)
 7048		return NULL;
 7049
 7050	*iter = &upper->list;
 7051	*ignore = upper->ignore;
 7052
 7053	return upper->dev;
 7054}
 7055
 7056static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
 7057						    struct list_head **iter)
 7058{
 7059	struct netdev_adjacent *upper;
 7060
 7061	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7062
 7063	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7064
 7065	if (&upper->list == &dev->adj_list.upper)
 7066		return NULL;
 7067
 7068	*iter = &upper->list;
 7069
 7070	return upper->dev;
 7071}
 7072
 7073static int __netdev_walk_all_upper_dev(struct net_device *dev,
 7074				       int (*fn)(struct net_device *dev,
 7075					 struct netdev_nested_priv *priv),
 7076				       struct netdev_nested_priv *priv)
 7077{
 7078	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7079	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7080	int ret, cur = 0;
 7081	bool ignore;
 7082
 7083	now = dev;
 7084	iter = &dev->adj_list.upper;
 7085
 7086	while (1) {
 7087		if (now != dev) {
 7088			ret = fn(now, priv);
 7089			if (ret)
 7090				return ret;
 7091		}
 7092
 7093		next = NULL;
 7094		while (1) {
 7095			udev = __netdev_next_upper_dev(now, &iter, &ignore);
 7096			if (!udev)
 7097				break;
 7098			if (ignore)
 7099				continue;
 7100
 7101			next = udev;
 7102			niter = &udev->adj_list.upper;
 7103			dev_stack[cur] = now;
 7104			iter_stack[cur++] = iter;
 7105			break;
 7106		}
 7107
 7108		if (!next) {
 7109			if (!cur)
 7110				return 0;
 7111			next = dev_stack[--cur];
 7112			niter = iter_stack[cur];
 7113		}
 7114
 7115		now = next;
 7116		iter = niter;
 
 
 
 7117	}
 7118
 7119	return 0;
 7120}
 7121
 7122int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
 7123				  int (*fn)(struct net_device *dev,
 7124					    struct netdev_nested_priv *priv),
 7125				  struct netdev_nested_priv *priv)
 7126{
 7127	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7128	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7129	int ret, cur = 0;
 7130
 7131	now = dev;
 7132	iter = &dev->adj_list.upper;
 7133
 7134	while (1) {
 7135		if (now != dev) {
 7136			ret = fn(now, priv);
 7137			if (ret)
 7138				return ret;
 7139		}
 7140
 7141		next = NULL;
 7142		while (1) {
 7143			udev = netdev_next_upper_dev_rcu(now, &iter);
 7144			if (!udev)
 7145				break;
 7146
 7147			next = udev;
 7148			niter = &udev->adj_list.upper;
 7149			dev_stack[cur] = now;
 7150			iter_stack[cur++] = iter;
 7151			break;
 7152		}
 7153
 7154		if (!next) {
 7155			if (!cur)
 7156				return 0;
 7157			next = dev_stack[--cur];
 7158			niter = iter_stack[cur];
 7159		}
 7160
 7161		now = next;
 7162		iter = niter;
 7163	}
 7164
 
 
 7165	return 0;
 7166}
 7167EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
 7168
 7169static bool __netdev_has_upper_dev(struct net_device *dev,
 7170				   struct net_device *upper_dev)
 7171{
 7172	struct netdev_nested_priv priv = {
 7173		.flags = 0,
 7174		.data = (void *)upper_dev,
 7175	};
 7176
 7177	ASSERT_RTNL();
 7178
 7179	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
 7180					   &priv);
 7181}
 7182
 7183/**
 7184 * netdev_lower_get_next_private - Get the next ->private from the
 7185 *				   lower neighbour list
 7186 * @dev: device
 7187 * @iter: list_head ** of the current position
 7188 *
 7189 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7190 * list, starting from iter position. The caller must hold either hold the
 7191 * RTNL lock or its own locking that guarantees that the neighbour lower
 7192 * list will remain unchanged.
 7193 */
 7194void *netdev_lower_get_next_private(struct net_device *dev,
 7195				    struct list_head **iter)
 7196{
 7197	struct netdev_adjacent *lower;
 7198
 7199	lower = list_entry(*iter, struct netdev_adjacent, list);
 7200
 7201	if (&lower->list == &dev->adj_list.lower)
 7202		return NULL;
 7203
 7204	*iter = lower->list.next;
 7205
 7206	return lower->private;
 7207}
 7208EXPORT_SYMBOL(netdev_lower_get_next_private);
 7209
 7210/**
 7211 * netdev_lower_get_next_private_rcu - Get the next ->private from the
 7212 *				       lower neighbour list, RCU
 7213 *				       variant
 7214 * @dev: device
 7215 * @iter: list_head ** of the current position
 7216 *
 7217 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7218 * list, starting from iter position. The caller must hold RCU read lock.
 7219 */
 7220void *netdev_lower_get_next_private_rcu(struct net_device *dev,
 7221					struct list_head **iter)
 7222{
 7223	struct netdev_adjacent *lower;
 7224
 7225	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 7226
 7227	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7228
 7229	if (&lower->list == &dev->adj_list.lower)
 7230		return NULL;
 7231
 7232	*iter = &lower->list;
 7233
 7234	return lower->private;
 7235}
 7236EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
 7237
 7238/**
 7239 * netdev_lower_get_next - Get the next device from the lower neighbour
 7240 *                         list
 7241 * @dev: device
 7242 * @iter: list_head ** of the current position
 7243 *
 7244 * Gets the next netdev_adjacent from the dev's lower neighbour
 7245 * list, starting from iter position. The caller must hold RTNL lock or
 7246 * its own locking that guarantees that the neighbour lower
 7247 * list will remain unchanged.
 7248 */
 7249void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
 7250{
 7251	struct netdev_adjacent *lower;
 7252
 7253	lower = list_entry(*iter, struct netdev_adjacent, list);
 7254
 7255	if (&lower->list == &dev->adj_list.lower)
 7256		return NULL;
 7257
 7258	*iter = lower->list.next;
 7259
 7260	return lower->dev;
 7261}
 7262EXPORT_SYMBOL(netdev_lower_get_next);
 7263
 7264static struct net_device *netdev_next_lower_dev(struct net_device *dev,
 7265						struct list_head **iter)
 7266{
 7267	struct netdev_adjacent *lower;
 7268
 7269	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7270
 7271	if (&lower->list == &dev->adj_list.lower)
 7272		return NULL;
 7273
 7274	*iter = &lower->list;
 7275
 7276	return lower->dev;
 7277}
 7278
 7279static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
 7280						  struct list_head **iter,
 7281						  bool *ignore)
 7282{
 7283	struct netdev_adjacent *lower;
 7284
 7285	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7286
 7287	if (&lower->list == &dev->adj_list.lower)
 7288		return NULL;
 7289
 7290	*iter = &lower->list;
 7291	*ignore = lower->ignore;
 7292
 7293	return lower->dev;
 7294}
 7295
 7296int netdev_walk_all_lower_dev(struct net_device *dev,
 7297			      int (*fn)(struct net_device *dev,
 7298					struct netdev_nested_priv *priv),
 7299			      struct netdev_nested_priv *priv)
 7300{
 7301	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7302	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7303	int ret, cur = 0;
 
 
 
 7304
 7305	now = dev;
 7306	iter = &dev->adj_list.lower;
 
 7307
 7308	while (1) {
 7309		if (now != dev) {
 7310			ret = fn(now, priv);
 7311			if (ret)
 7312				return ret;
 7313		}
 7314
 7315		next = NULL;
 7316		while (1) {
 7317			ldev = netdev_next_lower_dev(now, &iter);
 7318			if (!ldev)
 7319				break;
 7320
 7321			next = ldev;
 7322			niter = &ldev->adj_list.lower;
 7323			dev_stack[cur] = now;
 7324			iter_stack[cur++] = iter;
 7325			break;
 7326		}
 7327
 7328		if (!next) {
 7329			if (!cur)
 7330				return 0;
 7331			next = dev_stack[--cur];
 7332			niter = iter_stack[cur];
 
 
 
 
 
 
 
 
 
 7333		}
 7334
 7335		now = next;
 7336		iter = niter;
 7337	}
 7338
 7339	return 0;
 7340}
 7341EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
 7342
 7343static int __netdev_walk_all_lower_dev(struct net_device *dev,
 7344				       int (*fn)(struct net_device *dev,
 7345					 struct netdev_nested_priv *priv),
 7346				       struct netdev_nested_priv *priv)
 7347{
 7348	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7349	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7350	int ret, cur = 0;
 7351	bool ignore;
 7352
 7353	now = dev;
 7354	iter = &dev->adj_list.lower;
 7355
 7356	while (1) {
 7357		if (now != dev) {
 7358			ret = fn(now, priv);
 7359			if (ret)
 7360				return ret;
 7361		}
 7362
 7363		next = NULL;
 7364		while (1) {
 7365			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
 7366			if (!ldev)
 7367				break;
 7368			if (ignore)
 7369				continue;
 7370
 7371			next = ldev;
 7372			niter = &ldev->adj_list.lower;
 7373			dev_stack[cur] = now;
 7374			iter_stack[cur++] = iter;
 7375			break;
 7376		}
 7377
 7378		if (!next) {
 7379			if (!cur)
 7380				return 0;
 7381			next = dev_stack[--cur];
 7382			niter = iter_stack[cur];
 7383		}
 7384
 7385		now = next;
 7386		iter = niter;
 7387	}
 7388
 7389	return 0;
 
 
 
 7390}
 7391
 7392struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
 7393					     struct list_head **iter)
 
 
 
 
 
 7394{
 7395	struct netdev_adjacent *lower;
 
 
 7396
 7397	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7398	if (&lower->list == &dev->adj_list.lower)
 7399		return NULL;
 7400
 7401	*iter = &lower->list;
 
 
 
 7402
 7403	return lower->dev;
 7404}
 7405EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
 7406
 7407static u8 __netdev_upper_depth(struct net_device *dev)
 7408{
 7409	struct net_device *udev;
 7410	struct list_head *iter;
 7411	u8 max_depth = 0;
 7412	bool ignore;
 7413
 7414	for (iter = &dev->adj_list.upper,
 7415	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
 7416	     udev;
 7417	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
 7418		if (ignore)
 7419			continue;
 7420		if (max_depth < udev->upper_level)
 7421			max_depth = udev->upper_level;
 7422	}
 7423
 7424	return max_depth;
 
 7425}
 7426
 7427static u8 __netdev_lower_depth(struct net_device *dev)
 
 7428{
 7429	struct net_device *ldev;
 7430	struct list_head *iter;
 7431	u8 max_depth = 0;
 7432	bool ignore;
 7433
 7434	for (iter = &dev->adj_list.lower,
 7435	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
 7436	     ldev;
 7437	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
 7438		if (ignore)
 7439			continue;
 7440		if (max_depth < ldev->lower_level)
 7441			max_depth = ldev->lower_level;
 7442	}
 7443
 7444	return max_depth;
 7445}
 7446
 7447static int __netdev_update_upper_level(struct net_device *dev,
 7448				       struct netdev_nested_priv *__unused)
 7449{
 7450	dev->upper_level = __netdev_upper_depth(dev) + 1;
 7451	return 0;
 7452}
 7453
 7454#ifdef CONFIG_LOCKDEP
 7455static LIST_HEAD(net_unlink_list);
 7456
 7457static void net_unlink_todo(struct net_device *dev)
 7458{
 7459	if (list_empty(&dev->unlink_list))
 7460		list_add_tail(&dev->unlink_list, &net_unlink_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 7461}
 7462#endif
 7463
 7464static int __netdev_update_lower_level(struct net_device *dev,
 7465				       struct netdev_nested_priv *priv)
 
 
 
 7466{
 7467	dev->lower_level = __netdev_lower_depth(dev) + 1;
 7468
 7469#ifdef CONFIG_LOCKDEP
 7470	if (!priv)
 7471		return 0;
 7472
 7473	if (priv->flags & NESTED_SYNC_IMM)
 7474		dev->nested_level = dev->lower_level - 1;
 7475	if (priv->flags & NESTED_SYNC_TODO)
 7476		net_unlink_todo(dev);
 7477#endif
 7478	return 0;
 7479}
 7480
 7481int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
 7482				  int (*fn)(struct net_device *dev,
 7483					    struct netdev_nested_priv *priv),
 7484				  struct netdev_nested_priv *priv)
 7485{
 7486	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7487	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7488	int ret, cur = 0;
 7489
 7490	now = dev;
 7491	iter = &dev->adj_list.lower;
 7492
 7493	while (1) {
 7494		if (now != dev) {
 7495			ret = fn(now, priv);
 7496			if (ret)
 7497				return ret;
 7498		}
 7499
 7500		next = NULL;
 7501		while (1) {
 7502			ldev = netdev_next_lower_dev_rcu(now, &iter);
 7503			if (!ldev)
 7504				break;
 7505
 7506			next = ldev;
 7507			niter = &ldev->adj_list.lower;
 7508			dev_stack[cur] = now;
 7509			iter_stack[cur++] = iter;
 7510			break;
 7511		}
 7512
 7513		if (!next) {
 7514			if (!cur)
 7515				return 0;
 7516			next = dev_stack[--cur];
 7517			niter = iter_stack[cur];
 7518		}
 7519
 7520		now = next;
 7521		iter = niter;
 7522	}
 7523
 7524	return 0;
 7525}
 7526EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
 7527
 7528/**
 7529 * netdev_lower_get_first_private_rcu - Get the first ->private from the
 7530 *				       lower neighbour list, RCU
 7531 *				       variant
 7532 * @dev: device
 7533 *
 7534 * Gets the first netdev_adjacent->private from the dev's lower neighbour
 7535 * list. The caller must hold RCU read lock.
 7536 */
 7537void *netdev_lower_get_first_private_rcu(struct net_device *dev)
 7538{
 7539	struct netdev_adjacent *lower;
 7540
 7541	lower = list_first_or_null_rcu(&dev->adj_list.lower,
 7542			struct netdev_adjacent, list);
 7543	if (lower)
 7544		return lower->private;
 7545	return NULL;
 7546}
 7547EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
 7548
 7549/**
 7550 * netdev_master_upper_dev_get_rcu - Get master upper device
 7551 * @dev: device
 7552 *
 7553 * Find a master upper device and return pointer to it or NULL in case
 7554 * it's not there. The caller must hold the RCU read lock.
 7555 */
 7556struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
 7557{
 7558	struct netdev_adjacent *upper;
 7559
 7560	upper = list_first_or_null_rcu(&dev->adj_list.upper,
 7561				       struct netdev_adjacent, list);
 7562	if (upper && likely(upper->master))
 7563		return upper->dev;
 7564	return NULL;
 7565}
 7566EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
 7567
 7568static int netdev_adjacent_sysfs_add(struct net_device *dev,
 7569			      struct net_device *adj_dev,
 7570			      struct list_head *dev_list)
 7571{
 7572	char linkname[IFNAMSIZ+7];
 7573
 7574	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7575		"upper_%s" : "lower_%s", adj_dev->name);
 7576	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
 7577				 linkname);
 7578}
 7579static void netdev_adjacent_sysfs_del(struct net_device *dev,
 7580			       char *name,
 7581			       struct list_head *dev_list)
 7582{
 7583	char linkname[IFNAMSIZ+7];
 7584
 7585	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7586		"upper_%s" : "lower_%s", name);
 7587	sysfs_remove_link(&(dev->dev.kobj), linkname);
 7588}
 7589
 7590static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
 7591						 struct net_device *adj_dev,
 7592						 struct list_head *dev_list)
 7593{
 7594	return (dev_list == &dev->adj_list.upper ||
 7595		dev_list == &dev->adj_list.lower) &&
 7596		net_eq(dev_net(dev), dev_net(adj_dev));
 7597}
 7598
 7599static int __netdev_adjacent_dev_insert(struct net_device *dev,
 7600					struct net_device *adj_dev,
 7601					struct list_head *dev_list,
 7602					void *private, bool master)
 7603{
 7604	struct netdev_adjacent *adj;
 7605	int ret;
 7606
 7607	adj = __netdev_find_adj(adj_dev, dev_list);
 7608
 7609	if (adj) {
 7610		adj->ref_nr += 1;
 7611		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
 7612			 dev->name, adj_dev->name, adj->ref_nr);
 7613
 7614		return 0;
 7615	}
 7616
 7617	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
 7618	if (!adj)
 7619		return -ENOMEM;
 7620
 7621	adj->dev = adj_dev;
 7622	adj->master = master;
 7623	adj->ref_nr = 1;
 7624	adj->private = private;
 7625	adj->ignore = false;
 7626	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
 7627
 7628	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
 7629		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
 7630
 7631	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
 7632		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
 7633		if (ret)
 7634			goto free_adj;
 7635	}
 7636
 7637	/* Ensure that master link is always the first item in list. */
 7638	if (master) {
 7639		ret = sysfs_create_link(&(dev->dev.kobj),
 7640					&(adj_dev->dev.kobj), "master");
 7641		if (ret)
 7642			goto remove_symlinks;
 7643
 7644		list_add_rcu(&adj->list, dev_list);
 7645	} else {
 7646		list_add_tail_rcu(&adj->list, dev_list);
 7647	}
 7648
 
 
 
 
 7649	return 0;
 7650
 7651remove_symlinks:
 7652	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7653		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7654free_adj:
 7655	netdev_put(adj_dev, &adj->dev_tracker);
 7656	kfree(adj);
 7657
 7658	return ret;
 7659}
 7660
 7661static void __netdev_adjacent_dev_remove(struct net_device *dev,
 7662					 struct net_device *adj_dev,
 7663					 u16 ref_nr,
 7664					 struct list_head *dev_list)
 7665{
 7666	struct netdev_adjacent *adj;
 7667
 7668	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
 7669		 dev->name, adj_dev->name, ref_nr);
 7670
 7671	adj = __netdev_find_adj(adj_dev, dev_list);
 7672
 7673	if (!adj) {
 7674		pr_err("Adjacency does not exist for device %s from %s\n",
 7675		       dev->name, adj_dev->name);
 7676		WARN_ON(1);
 7677		return;
 7678	}
 7679
 7680	if (adj->ref_nr > ref_nr) {
 7681		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
 7682			 dev->name, adj_dev->name, ref_nr,
 7683			 adj->ref_nr - ref_nr);
 7684		adj->ref_nr -= ref_nr;
 7685		return;
 7686	}
 7687
 7688	if (adj->master)
 7689		sysfs_remove_link(&(dev->dev.kobj), "master");
 7690
 7691	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7692		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7693
 7694	list_del_rcu(&adj->list);
 7695	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
 7696		 adj_dev->name, dev->name, adj_dev->name);
 7697	netdev_put(adj_dev, &adj->dev_tracker);
 7698	kfree_rcu(adj, rcu);
 7699}
 7700
 7701static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
 7702					    struct net_device *upper_dev,
 7703					    struct list_head *up_list,
 7704					    struct list_head *down_list,
 7705					    void *private, bool master)
 7706{
 7707	int ret;
 7708
 7709	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
 7710					   private, master);
 7711	if (ret)
 7712		return ret;
 7713
 7714	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
 7715					   private, false);
 7716	if (ret) {
 7717		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
 7718		return ret;
 7719	}
 7720
 7721	return 0;
 7722}
 7723
 7724static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
 7725					       struct net_device *upper_dev,
 7726					       u16 ref_nr,
 7727					       struct list_head *up_list,
 7728					       struct list_head *down_list)
 7729{
 7730	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
 7731	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
 7732}
 7733
 7734static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
 7735						struct net_device *upper_dev,
 7736						void *private, bool master)
 7737{
 7738	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
 7739						&dev->adj_list.upper,
 7740						&upper_dev->adj_list.lower,
 7741						private, master);
 7742}
 7743
 7744static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
 7745						   struct net_device *upper_dev)
 7746{
 7747	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
 7748					   &dev->adj_list.upper,
 7749					   &upper_dev->adj_list.lower);
 7750}
 7751
 7752static int __netdev_upper_dev_link(struct net_device *dev,
 7753				   struct net_device *upper_dev, bool master,
 7754				   void *upper_priv, void *upper_info,
 7755				   struct netdev_nested_priv *priv,
 7756				   struct netlink_ext_ack *extack)
 7757{
 7758	struct netdev_notifier_changeupper_info changeupper_info = {
 7759		.info = {
 7760			.dev = dev,
 7761			.extack = extack,
 7762		},
 7763		.upper_dev = upper_dev,
 7764		.master = master,
 7765		.linking = true,
 7766		.upper_info = upper_info,
 7767	};
 7768	struct net_device *master_dev;
 7769	int ret = 0;
 7770
 7771	ASSERT_RTNL();
 7772
 7773	if (dev == upper_dev)
 7774		return -EBUSY;
 7775
 7776	/* To prevent loops, check if dev is not upper device to upper_dev. */
 7777	if (__netdev_has_upper_dev(upper_dev, dev))
 7778		return -EBUSY;
 7779
 7780	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
 7781		return -EMLINK;
 7782
 7783	if (!master) {
 7784		if (__netdev_has_upper_dev(dev, upper_dev))
 7785			return -EEXIST;
 7786	} else {
 7787		master_dev = __netdev_master_upper_dev_get(dev);
 7788		if (master_dev)
 7789			return master_dev == upper_dev ? -EEXIST : -EBUSY;
 7790	}
 7791
 7792	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7793					    &changeupper_info.info);
 7794	ret = notifier_to_errno(ret);
 7795	if (ret)
 7796		return ret;
 7797
 7798	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
 7799						   master);
 7800	if (ret)
 7801		return ret;
 7802
 7803	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7804					    &changeupper_info.info);
 7805	ret = notifier_to_errno(ret);
 7806	if (ret)
 7807		goto rollback;
 7808
 7809	__netdev_update_upper_level(dev, NULL);
 7810	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7811
 7812	__netdev_update_lower_level(upper_dev, priv);
 7813	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7814				    priv);
 7815
 7816	return 0;
 7817
 7818rollback:
 7819	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7820
 7821	return ret;
 7822}
 7823
 7824/**
 7825 * netdev_upper_dev_link - Add a link to the upper device
 7826 * @dev: device
 7827 * @upper_dev: new upper device
 7828 * @extack: netlink extended ack
 7829 *
 7830 * Adds a link to device which is upper to this one. The caller must hold
 7831 * the RTNL lock. On a failure a negative errno code is returned.
 7832 * On success the reference counts are adjusted and the function
 7833 * returns zero.
 7834 */
 7835int netdev_upper_dev_link(struct net_device *dev,
 7836			  struct net_device *upper_dev,
 7837			  struct netlink_ext_ack *extack)
 7838{
 7839	struct netdev_nested_priv priv = {
 7840		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7841		.data = NULL,
 7842	};
 7843
 7844	return __netdev_upper_dev_link(dev, upper_dev, false,
 7845				       NULL, NULL, &priv, extack);
 7846}
 7847EXPORT_SYMBOL(netdev_upper_dev_link);
 7848
 7849/**
 7850 * netdev_master_upper_dev_link - Add a master link to the upper device
 7851 * @dev: device
 7852 * @upper_dev: new upper device
 7853 * @upper_priv: upper device private
 7854 * @upper_info: upper info to be passed down via notifier
 7855 * @extack: netlink extended ack
 7856 *
 7857 * Adds a link to device which is upper to this one. In this case, only
 7858 * one master upper device can be linked, although other non-master devices
 7859 * might be linked as well. The caller must hold the RTNL lock.
 7860 * On a failure a negative errno code is returned. On success the reference
 7861 * counts are adjusted and the function returns zero.
 7862 */
 7863int netdev_master_upper_dev_link(struct net_device *dev,
 7864				 struct net_device *upper_dev,
 7865				 void *upper_priv, void *upper_info,
 7866				 struct netlink_ext_ack *extack)
 7867{
 7868	struct netdev_nested_priv priv = {
 7869		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7870		.data = NULL,
 7871	};
 7872
 7873	return __netdev_upper_dev_link(dev, upper_dev, true,
 7874				       upper_priv, upper_info, &priv, extack);
 7875}
 7876EXPORT_SYMBOL(netdev_master_upper_dev_link);
 7877
 7878static void __netdev_upper_dev_unlink(struct net_device *dev,
 7879				      struct net_device *upper_dev,
 7880				      struct netdev_nested_priv *priv)
 7881{
 7882	struct netdev_notifier_changeupper_info changeupper_info = {
 7883		.info = {
 7884			.dev = dev,
 7885		},
 7886		.upper_dev = upper_dev,
 7887		.linking = false,
 7888	};
 7889
 7890	ASSERT_RTNL();
 7891
 7892	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
 7893
 7894	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7895				      &changeupper_info.info);
 7896
 7897	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7898
 7899	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7900				      &changeupper_info.info);
 7901
 7902	__netdev_update_upper_level(dev, NULL);
 7903	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7904
 7905	__netdev_update_lower_level(upper_dev, priv);
 7906	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7907				    priv);
 7908}
 7909
 7910/**
 7911 * netdev_upper_dev_unlink - Removes a link to upper device
 7912 * @dev: device
 7913 * @upper_dev: new upper device
 7914 *
 7915 * Removes a link to device which is upper to this one. The caller must hold
 7916 * the RTNL lock.
 7917 */
 7918void netdev_upper_dev_unlink(struct net_device *dev,
 7919			     struct net_device *upper_dev)
 7920{
 7921	struct netdev_nested_priv priv = {
 7922		.flags = NESTED_SYNC_TODO,
 7923		.data = NULL,
 7924	};
 7925
 7926	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
 7927}
 7928EXPORT_SYMBOL(netdev_upper_dev_unlink);
 7929
 7930static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
 7931				      struct net_device *lower_dev,
 7932				      bool val)
 7933{
 7934	struct netdev_adjacent *adj;
 7935
 7936	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
 7937	if (adj)
 7938		adj->ignore = val;
 7939
 7940	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
 7941	if (adj)
 7942		adj->ignore = val;
 7943}
 
 
 7944
 7945static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
 7946					struct net_device *lower_dev)
 7947{
 7948	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
 7949}
 7950
 7951static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
 7952				       struct net_device *lower_dev)
 7953{
 7954	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
 7955}
 
 
 7956
 7957int netdev_adjacent_change_prepare(struct net_device *old_dev,
 7958				   struct net_device *new_dev,
 7959				   struct net_device *dev,
 7960				   struct netlink_ext_ack *extack)
 7961{
 7962	struct netdev_nested_priv priv = {
 7963		.flags = 0,
 7964		.data = NULL,
 7965	};
 7966	int err;
 7967
 7968	if (!new_dev)
 7969		return 0;
 7970
 7971	if (old_dev && new_dev != old_dev)
 7972		netdev_adjacent_dev_disable(dev, old_dev);
 7973	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
 7974				      extack);
 7975	if (err) {
 7976		if (old_dev && new_dev != old_dev)
 7977			netdev_adjacent_dev_enable(dev, old_dev);
 7978		return err;
 7979	}
 7980
 7981	return 0;
 7982}
 7983EXPORT_SYMBOL(netdev_adjacent_change_prepare);
 7984
 7985void netdev_adjacent_change_commit(struct net_device *old_dev,
 7986				   struct net_device *new_dev,
 7987				   struct net_device *dev)
 7988{
 7989	struct netdev_nested_priv priv = {
 7990		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7991		.data = NULL,
 7992	};
 7993
 7994	if (!new_dev || !old_dev)
 7995		return;
 7996
 7997	if (new_dev == old_dev)
 7998		return;
 7999
 8000	netdev_adjacent_dev_enable(dev, old_dev);
 8001	__netdev_upper_dev_unlink(old_dev, dev, &priv);
 8002}
 8003EXPORT_SYMBOL(netdev_adjacent_change_commit);
 8004
 8005void netdev_adjacent_change_abort(struct net_device *old_dev,
 8006				  struct net_device *new_dev,
 8007				  struct net_device *dev)
 8008{
 8009	struct netdev_nested_priv priv = {
 8010		.flags = 0,
 8011		.data = NULL,
 8012	};
 8013
 8014	if (!new_dev)
 8015		return;
 8016
 8017	if (old_dev && new_dev != old_dev)
 8018		netdev_adjacent_dev_enable(dev, old_dev);
 8019
 8020	__netdev_upper_dev_unlink(new_dev, dev, &priv);
 8021}
 8022EXPORT_SYMBOL(netdev_adjacent_change_abort);
 8023
 8024/**
 8025 * netdev_bonding_info_change - Dispatch event about slave change
 8026 * @dev: device
 8027 * @bonding_info: info to dispatch
 8028 *
 8029 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
 8030 * The caller must hold the RTNL lock.
 8031 */
 8032void netdev_bonding_info_change(struct net_device *dev,
 8033				struct netdev_bonding_info *bonding_info)
 8034{
 8035	struct netdev_notifier_bonding_info info = {
 8036		.info.dev = dev,
 8037	};
 8038
 8039	memcpy(&info.bonding_info, bonding_info,
 8040	       sizeof(struct netdev_bonding_info));
 8041	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
 8042				      &info.info);
 8043}
 8044EXPORT_SYMBOL(netdev_bonding_info_change);
 8045
 8046static int netdev_offload_xstats_enable_l3(struct net_device *dev,
 8047					   struct netlink_ext_ack *extack)
 8048{
 8049	struct netdev_notifier_offload_xstats_info info = {
 8050		.info.dev = dev,
 8051		.info.extack = extack,
 8052		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8053	};
 8054	int err;
 8055	int rc;
 8056
 8057	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
 8058					 GFP_KERNEL);
 8059	if (!dev->offload_xstats_l3)
 8060		return -ENOMEM;
 8061
 8062	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
 8063						  NETDEV_OFFLOAD_XSTATS_DISABLE,
 8064						  &info.info);
 8065	err = notifier_to_errno(rc);
 8066	if (err)
 8067		goto free_stats;
 8068
 8069	return 0;
 8070
 8071free_stats:
 8072	kfree(dev->offload_xstats_l3);
 8073	dev->offload_xstats_l3 = NULL;
 8074	return err;
 8075}
 8076
 8077int netdev_offload_xstats_enable(struct net_device *dev,
 8078				 enum netdev_offload_xstats_type type,
 8079				 struct netlink_ext_ack *extack)
 8080{
 8081	ASSERT_RTNL();
 8082
 8083	if (netdev_offload_xstats_enabled(dev, type))
 8084		return -EALREADY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 8085
 8086	switch (type) {
 8087	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8088		return netdev_offload_xstats_enable_l3(dev, extack);
 
 8089	}
 8090
 8091	WARN_ON(1);
 8092	return -EINVAL;
 8093}
 8094EXPORT_SYMBOL(netdev_offload_xstats_enable);
 8095
 8096static void netdev_offload_xstats_disable_l3(struct net_device *dev)
 
 8097{
 8098	struct netdev_notifier_offload_xstats_info info = {
 8099		.info.dev = dev,
 8100		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8101	};
 8102
 8103	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
 8104				      &info.info);
 8105	kfree(dev->offload_xstats_l3);
 8106	dev->offload_xstats_l3 = NULL;
 8107}
 8108
 8109int netdev_offload_xstats_disable(struct net_device *dev,
 8110				  enum netdev_offload_xstats_type type)
 8111{
 8112	ASSERT_RTNL();
 8113
 8114	if (!netdev_offload_xstats_enabled(dev, type))
 8115		return -EALREADY;
 
 
 
 
 
 8116
 8117	switch (type) {
 8118	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8119		netdev_offload_xstats_disable_l3(dev);
 8120		return 0;
 8121	}
 8122
 8123	WARN_ON(1);
 8124	return -EINVAL;
 8125}
 8126EXPORT_SYMBOL(netdev_offload_xstats_disable);
 8127
 8128static void netdev_offload_xstats_disable_all(struct net_device *dev)
 8129{
 8130	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
 8131}
 8132
 8133static struct rtnl_hw_stats64 *
 8134netdev_offload_xstats_get_ptr(const struct net_device *dev,
 8135			      enum netdev_offload_xstats_type type)
 8136{
 8137	switch (type) {
 8138	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8139		return dev->offload_xstats_l3;
 8140	}
 8141
 8142	WARN_ON(1);
 8143	return NULL;
 8144}
 8145
 8146bool netdev_offload_xstats_enabled(const struct net_device *dev,
 8147				   enum netdev_offload_xstats_type type)
 8148{
 8149	ASSERT_RTNL();
 8150
 8151	return netdev_offload_xstats_get_ptr(dev, type);
 8152}
 8153EXPORT_SYMBOL(netdev_offload_xstats_enabled);
 8154
 8155struct netdev_notifier_offload_xstats_ru {
 8156	bool used;
 
 
 
 
 8157};
 8158
 8159struct netdev_notifier_offload_xstats_rd {
 8160	struct rtnl_hw_stats64 stats;
 8161	bool used;
 8162};
 8163
 8164static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
 8165				  const struct rtnl_hw_stats64 *src)
 8166{
 8167	dest->rx_packets	  += src->rx_packets;
 8168	dest->tx_packets	  += src->tx_packets;
 8169	dest->rx_bytes		  += src->rx_bytes;
 8170	dest->tx_bytes		  += src->tx_bytes;
 8171	dest->rx_errors		  += src->rx_errors;
 8172	dest->tx_errors		  += src->tx_errors;
 8173	dest->rx_dropped	  += src->rx_dropped;
 8174	dest->tx_dropped	  += src->tx_dropped;
 8175	dest->multicast		  += src->multicast;
 8176}
 8177
 8178static int netdev_offload_xstats_get_used(struct net_device *dev,
 8179					  enum netdev_offload_xstats_type type,
 8180					  bool *p_used,
 8181					  struct netlink_ext_ack *extack)
 8182{
 8183	struct netdev_notifier_offload_xstats_ru report_used = {};
 8184	struct netdev_notifier_offload_xstats_info info = {
 8185		.info.dev = dev,
 8186		.info.extack = extack,
 8187		.type = type,
 8188		.report_used = &report_used,
 8189	};
 8190	int rc;
 8191
 8192	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
 8193	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
 8194					   &info.info);
 8195	*p_used = report_used.used;
 8196	return notifier_to_errno(rc);
 8197}
 8198
 8199static int netdev_offload_xstats_get_stats(struct net_device *dev,
 8200					   enum netdev_offload_xstats_type type,
 8201					   struct rtnl_hw_stats64 *p_stats,
 8202					   bool *p_used,
 8203					   struct netlink_ext_ack *extack)
 8204{
 8205	struct netdev_notifier_offload_xstats_rd report_delta = {};
 8206	struct netdev_notifier_offload_xstats_info info = {
 8207		.info.dev = dev,
 8208		.info.extack = extack,
 8209		.type = type,
 8210		.report_delta = &report_delta,
 8211	};
 8212	struct rtnl_hw_stats64 *stats;
 8213	int rc;
 8214
 8215	stats = netdev_offload_xstats_get_ptr(dev, type);
 8216	if (WARN_ON(!stats))
 8217		return -EINVAL;
 8218
 8219	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
 8220					   &info.info);
 8221
 8222	/* Cache whatever we got, even if there was an error, otherwise the
 8223	 * successful stats retrievals would get lost.
 8224	 */
 8225	netdev_hw_stats64_add(stats, &report_delta.stats);
 8226
 8227	if (p_stats)
 8228		*p_stats = *stats;
 8229	*p_used = report_delta.used;
 8230
 8231	return notifier_to_errno(rc);
 8232}
 8233
 8234int netdev_offload_xstats_get(struct net_device *dev,
 8235			      enum netdev_offload_xstats_type type,
 8236			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
 8237			      struct netlink_ext_ack *extack)
 8238{
 8239	ASSERT_RTNL();
 8240
 8241	if (p_stats)
 8242		return netdev_offload_xstats_get_stats(dev, type, p_stats,
 8243						       p_used, extack);
 8244	else
 8245		return netdev_offload_xstats_get_used(dev, type, p_used,
 8246						      extack);
 8247}
 8248EXPORT_SYMBOL(netdev_offload_xstats_get);
 8249
 8250void
 8251netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
 8252				   const struct rtnl_hw_stats64 *stats)
 8253{
 8254	report_delta->used = true;
 8255	netdev_hw_stats64_add(&report_delta->stats, stats);
 8256}
 8257EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
 8258
 8259void
 8260netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
 8261{
 8262	report_used->used = true;
 
 
 
 
 
 
 
 
 8263}
 8264EXPORT_SYMBOL(netdev_offload_xstats_report_used);
 8265
 8266void netdev_offload_xstats_push_delta(struct net_device *dev,
 8267				      enum netdev_offload_xstats_type type,
 8268				      const struct rtnl_hw_stats64 *p_stats)
 8269{
 8270	struct rtnl_hw_stats64 *stats;
 8271
 8272	ASSERT_RTNL();
 8273
 8274	stats = netdev_offload_xstats_get_ptr(dev, type);
 8275	if (WARN_ON(!stats))
 8276		return;
 8277
 8278	netdev_hw_stats64_add(stats, p_stats);
 8279}
 8280EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
 8281
 8282/**
 8283 * netdev_get_xmit_slave - Get the xmit slave of master device
 8284 * @dev: device
 8285 * @skb: The packet
 8286 * @all_slaves: assume all the slaves are active
 8287 *
 8288 * The reference counters are not incremented so the caller must be
 8289 * careful with locks. The caller must hold RCU lock.
 8290 * %NULL is returned if no slave is found.
 8291 */
 8292
 8293struct net_device *netdev_get_xmit_slave(struct net_device *dev,
 8294					 struct sk_buff *skb,
 8295					 bool all_slaves)
 8296{
 8297	const struct net_device_ops *ops = dev->netdev_ops;
 8298
 8299	if (!ops->ndo_get_xmit_slave)
 8300		return NULL;
 8301	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
 8302}
 8303EXPORT_SYMBOL(netdev_get_xmit_slave);
 8304
 8305static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
 8306						  struct sock *sk)
 8307{
 8308	const struct net_device_ops *ops = dev->netdev_ops;
 8309
 8310	if (!ops->ndo_sk_get_lower_dev)
 8311		return NULL;
 8312	return ops->ndo_sk_get_lower_dev(dev, sk);
 8313}
 8314
 8315/**
 8316 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
 8317 * @dev: device
 8318 * @sk: the socket
 8319 *
 8320 * %NULL is returned if no lower device is found.
 
 
 
 8321 */
 8322
 8323struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
 8324					    struct sock *sk)
 8325{
 8326	struct net_device *lower;
 8327
 8328	lower = netdev_sk_get_lower_dev(dev, sk);
 8329	while (lower) {
 8330		dev = lower;
 8331		lower = netdev_sk_get_lower_dev(dev, sk);
 8332	}
 8333
 8334	return dev;
 8335}
 8336EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
 8337
 8338static void netdev_adjacent_add_links(struct net_device *dev)
 8339{
 8340	struct netdev_adjacent *iter;
 8341
 8342	struct net *net = dev_net(dev);
 8343
 8344	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8345		if (!net_eq(net, dev_net(iter->dev)))
 8346			continue;
 8347		netdev_adjacent_sysfs_add(iter->dev, dev,
 8348					  &iter->dev->adj_list.lower);
 8349		netdev_adjacent_sysfs_add(dev, iter->dev,
 8350					  &dev->adj_list.upper);
 8351	}
 8352
 8353	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8354		if (!net_eq(net, dev_net(iter->dev)))
 8355			continue;
 8356		netdev_adjacent_sysfs_add(iter->dev, dev,
 8357					  &iter->dev->adj_list.upper);
 8358		netdev_adjacent_sysfs_add(dev, iter->dev,
 8359					  &dev->adj_list.lower);
 8360	}
 8361}
 8362
 8363static void netdev_adjacent_del_links(struct net_device *dev)
 8364{
 8365	struct netdev_adjacent *iter;
 8366
 8367	struct net *net = dev_net(dev);
 8368
 8369	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8370		if (!net_eq(net, dev_net(iter->dev)))
 8371			continue;
 8372		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8373					  &iter->dev->adj_list.lower);
 8374		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8375					  &dev->adj_list.upper);
 8376	}
 8377
 8378	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8379		if (!net_eq(net, dev_net(iter->dev)))
 8380			continue;
 8381		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8382					  &iter->dev->adj_list.upper);
 8383		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8384					  &dev->adj_list.lower);
 8385	}
 8386}
 8387
 8388void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
 8389{
 8390	struct netdev_adjacent *iter;
 8391
 8392	struct net *net = dev_net(dev);
 8393
 8394	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8395		if (!net_eq(net, dev_net(iter->dev)))
 8396			continue;
 8397		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8398					  &iter->dev->adj_list.lower);
 8399		netdev_adjacent_sysfs_add(iter->dev, dev,
 8400					  &iter->dev->adj_list.lower);
 8401	}
 8402
 8403	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8404		if (!net_eq(net, dev_net(iter->dev)))
 8405			continue;
 8406		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8407					  &iter->dev->adj_list.upper);
 8408		netdev_adjacent_sysfs_add(iter->dev, dev,
 8409					  &iter->dev->adj_list.upper);
 8410	}
 8411}
 8412
 8413void *netdev_lower_dev_get_private(struct net_device *dev,
 8414				   struct net_device *lower_dev)
 8415{
 8416	struct netdev_adjacent *lower;
 8417
 8418	if (!lower_dev)
 8419		return NULL;
 8420	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
 8421	if (!lower)
 8422		return NULL;
 8423
 8424	return lower->private;
 8425}
 8426EXPORT_SYMBOL(netdev_lower_dev_get_private);
 8427
 8428
 8429/**
 8430 * netdev_lower_state_changed - Dispatch event about lower device state change
 8431 * @lower_dev: device
 8432 * @lower_state_info: state to dispatch
 8433 *
 8434 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
 8435 * The caller must hold the RTNL lock.
 
 
 8436 */
 8437void netdev_lower_state_changed(struct net_device *lower_dev,
 8438				void *lower_state_info)
 8439{
 8440	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
 8441		.info.dev = lower_dev,
 8442	};
 8443
 8444	ASSERT_RTNL();
 8445	changelowerstate_info.lower_state_info = lower_state_info;
 8446	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
 8447				      &changelowerstate_info.info);
 
 
 
 
 
 
 
 
 8448}
 8449EXPORT_SYMBOL(netdev_lower_state_changed);
 8450
 8451static void dev_change_rx_flags(struct net_device *dev, int flags)
 8452{
 8453	const struct net_device_ops *ops = dev->netdev_ops;
 8454
 8455	if (ops->ndo_change_rx_flags)
 8456		ops->ndo_change_rx_flags(dev, flags);
 8457}
 8458
 8459static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
 8460{
 8461	unsigned int old_flags = dev->flags;
 8462	kuid_t uid;
 8463	kgid_t gid;
 8464
 8465	ASSERT_RTNL();
 8466
 8467	dev->flags |= IFF_PROMISC;
 8468	dev->promiscuity += inc;
 8469	if (dev->promiscuity == 0) {
 8470		/*
 8471		 * Avoid overflow.
 8472		 * If inc causes overflow, untouch promisc and return error.
 8473		 */
 8474		if (inc < 0)
 8475			dev->flags &= ~IFF_PROMISC;
 8476		else {
 8477			dev->promiscuity -= inc;
 8478			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
 
 
 8479			return -EOVERFLOW;
 8480		}
 8481	}
 8482	if (dev->flags != old_flags) {
 8483		netdev_info(dev, "%s promiscuous mode\n",
 8484			    dev->flags & IFF_PROMISC ? "entered" : "left");
 
 8485		if (audit_enabled) {
 8486			current_uid_gid(&uid, &gid);
 8487			audit_log(audit_context(), GFP_ATOMIC,
 8488				  AUDIT_ANOM_PROMISCUOUS,
 8489				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
 8490				  dev->name, (dev->flags & IFF_PROMISC),
 8491				  (old_flags & IFF_PROMISC),
 8492				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
 8493				  from_kuid(&init_user_ns, uid),
 8494				  from_kgid(&init_user_ns, gid),
 8495				  audit_get_sessionid(current));
 8496		}
 8497
 8498		dev_change_rx_flags(dev, IFF_PROMISC);
 8499	}
 8500	if (notify)
 8501		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
 8502	return 0;
 8503}
 8504
 8505/**
 8506 *	dev_set_promiscuity	- update promiscuity count on a device
 8507 *	@dev: device
 8508 *	@inc: modifier
 8509 *
 8510 *	Add or remove promiscuity from a device. While the count in the device
 8511 *	remains above zero the interface remains promiscuous. Once it hits zero
 8512 *	the device reverts back to normal filtering operation. A negative inc
 8513 *	value is used to drop promiscuity on the device.
 8514 *	Return 0 if successful or a negative errno code on error.
 8515 */
 8516int dev_set_promiscuity(struct net_device *dev, int inc)
 8517{
 8518	unsigned int old_flags = dev->flags;
 8519	int err;
 8520
 8521	err = __dev_set_promiscuity(dev, inc, true);
 8522	if (err < 0)
 8523		return err;
 8524	if (dev->flags != old_flags)
 8525		dev_set_rx_mode(dev);
 8526	return err;
 8527}
 8528EXPORT_SYMBOL(dev_set_promiscuity);
 8529
 8530static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
 
 
 
 
 
 
 
 
 
 
 
 
 
 8531{
 8532	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
 8533
 8534	ASSERT_RTNL();
 8535
 8536	dev->flags |= IFF_ALLMULTI;
 8537	dev->allmulti += inc;
 8538	if (dev->allmulti == 0) {
 8539		/*
 8540		 * Avoid overflow.
 8541		 * If inc causes overflow, untouch allmulti and return error.
 8542		 */
 8543		if (inc < 0)
 8544			dev->flags &= ~IFF_ALLMULTI;
 8545		else {
 8546			dev->allmulti -= inc;
 8547			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
 
 
 8548			return -EOVERFLOW;
 8549		}
 8550	}
 8551	if (dev->flags ^ old_flags) {
 8552		netdev_info(dev, "%s allmulticast mode\n",
 8553			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
 8554		dev_change_rx_flags(dev, IFF_ALLMULTI);
 8555		dev_set_rx_mode(dev);
 8556		if (notify)
 8557			__dev_notify_flags(dev, old_flags,
 8558					   dev->gflags ^ old_gflags, 0, NULL);
 8559	}
 8560	return 0;
 8561}
 8562
 8563/**
 8564 *	dev_set_allmulti	- update allmulti count on a device
 8565 *	@dev: device
 8566 *	@inc: modifier
 8567 *
 8568 *	Add or remove reception of all multicast frames to a device. While the
 8569 *	count in the device remains above zero the interface remains listening
 8570 *	to all interfaces. Once it hits zero the device reverts back to normal
 8571 *	filtering operation. A negative @inc value is used to drop the counter
 8572 *	when releasing a resource needing all multicasts.
 8573 *	Return 0 if successful or a negative errno code on error.
 8574 */
 8575
 8576int dev_set_allmulti(struct net_device *dev, int inc)
 8577{
 8578	return __dev_set_allmulti(dev, inc, true);
 8579}
 8580EXPORT_SYMBOL(dev_set_allmulti);
 8581
 8582/*
 8583 *	Upload unicast and multicast address lists to device and
 8584 *	configure RX filtering. When the device doesn't support unicast
 8585 *	filtering it is put in promiscuous mode while unicast addresses
 8586 *	are present.
 8587 */
 8588void __dev_set_rx_mode(struct net_device *dev)
 8589{
 8590	const struct net_device_ops *ops = dev->netdev_ops;
 8591
 8592	/* dev_open will call this function so the list will stay sane. */
 8593	if (!(dev->flags&IFF_UP))
 8594		return;
 8595
 8596	if (!netif_device_present(dev))
 8597		return;
 8598
 8599	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
 
 
 8600		/* Unicast addresses changes may only happen under the rtnl,
 8601		 * therefore calling __dev_set_promiscuity here is safe.
 8602		 */
 8603		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
 8604			__dev_set_promiscuity(dev, 1, false);
 8605			dev->uc_promisc = true;
 8606		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
 8607			__dev_set_promiscuity(dev, -1, false);
 8608			dev->uc_promisc = false;
 8609		}
 8610	}
 8611
 8612	if (ops->ndo_set_rx_mode)
 8613		ops->ndo_set_rx_mode(dev);
 
 8614}
 8615
 8616void dev_set_rx_mode(struct net_device *dev)
 8617{
 8618	netif_addr_lock_bh(dev);
 8619	__dev_set_rx_mode(dev);
 8620	netif_addr_unlock_bh(dev);
 8621}
 8622
 8623/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8624 *	dev_get_flags - get flags reported to userspace
 8625 *	@dev: device
 8626 *
 8627 *	Get the combination of flag bits exported through APIs to userspace.
 8628 */
 8629unsigned int dev_get_flags(const struct net_device *dev)
 8630{
 8631	unsigned int flags;
 8632
 8633	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
 8634				IFF_ALLMULTI |
 8635				IFF_RUNNING |
 8636				IFF_LOWER_UP |
 8637				IFF_DORMANT)) |
 8638		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
 8639				IFF_ALLMULTI));
 8640
 8641	if (netif_running(dev)) {
 8642		if (netif_oper_up(dev))
 8643			flags |= IFF_RUNNING;
 8644		if (netif_carrier_ok(dev))
 8645			flags |= IFF_LOWER_UP;
 8646		if (netif_dormant(dev))
 8647			flags |= IFF_DORMANT;
 8648	}
 8649
 8650	return flags;
 8651}
 8652EXPORT_SYMBOL(dev_get_flags);
 8653
 8654int __dev_change_flags(struct net_device *dev, unsigned int flags,
 8655		       struct netlink_ext_ack *extack)
 8656{
 8657	unsigned int old_flags = dev->flags;
 8658	int ret;
 8659
 8660	ASSERT_RTNL();
 8661
 8662	/*
 8663	 *	Set the flags on our device.
 8664	 */
 8665
 8666	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
 8667			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
 8668			       IFF_AUTOMEDIA)) |
 8669		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
 8670				    IFF_ALLMULTI));
 8671
 8672	/*
 8673	 *	Load in the correct multicast list now the flags have changed.
 8674	 */
 8675
 8676	if ((old_flags ^ flags) & IFF_MULTICAST)
 8677		dev_change_rx_flags(dev, IFF_MULTICAST);
 8678
 8679	dev_set_rx_mode(dev);
 8680
 8681	/*
 8682	 *	Have we downed the interface. We handle IFF_UP ourselves
 8683	 *	according to user attempts to set it, rather than blindly
 8684	 *	setting it.
 8685	 */
 8686
 8687	ret = 0;
 8688	if ((old_flags ^ flags) & IFF_UP) {
 8689		if (old_flags & IFF_UP)
 8690			__dev_close(dev);
 8691		else
 8692			ret = __dev_open(dev, extack);
 8693	}
 8694
 8695	if ((flags ^ dev->gflags) & IFF_PROMISC) {
 8696		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 8697		unsigned int old_flags = dev->flags;
 8698
 8699		dev->gflags ^= IFF_PROMISC;
 8700
 8701		if (__dev_set_promiscuity(dev, inc, false) >= 0)
 8702			if (dev->flags != old_flags)
 8703				dev_set_rx_mode(dev);
 8704	}
 8705
 8706	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
 8707	 * is important. Some (broken) drivers set IFF_PROMISC, when
 8708	 * IFF_ALLMULTI is requested not asking us and not reporting.
 8709	 */
 8710	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
 8711		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
 8712
 8713		dev->gflags ^= IFF_ALLMULTI;
 8714		__dev_set_allmulti(dev, inc, false);
 8715	}
 8716
 8717	return ret;
 8718}
 8719
 8720void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
 8721			unsigned int gchanges, u32 portid,
 8722			const struct nlmsghdr *nlh)
 8723{
 8724	unsigned int changes = dev->flags ^ old_flags;
 8725
 8726	if (gchanges)
 8727		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
 8728
 8729	if (changes & IFF_UP) {
 8730		if (dev->flags & IFF_UP)
 8731			call_netdevice_notifiers(NETDEV_UP, dev);
 8732		else
 8733			call_netdevice_notifiers(NETDEV_DOWN, dev);
 8734	}
 8735
 8736	if (dev->flags & IFF_UP &&
 8737	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
 8738		struct netdev_notifier_change_info change_info = {
 8739			.info = {
 8740				.dev = dev,
 8741			},
 8742			.flags_changed = changes,
 8743		};
 8744
 8745		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
 8746	}
 8747}
 8748
 8749/**
 8750 *	dev_change_flags - change device settings
 8751 *	@dev: device
 8752 *	@flags: device state flags
 8753 *	@extack: netlink extended ack
 8754 *
 8755 *	Change settings on device based state flags. The flags are
 8756 *	in the userspace exported format.
 8757 */
 8758int dev_change_flags(struct net_device *dev, unsigned int flags,
 8759		     struct netlink_ext_ack *extack)
 8760{
 8761	int ret;
 8762	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
 8763
 8764	ret = __dev_change_flags(dev, flags, extack);
 8765	if (ret < 0)
 8766		return ret;
 8767
 8768	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
 8769	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
 
 
 
 8770	return ret;
 8771}
 8772EXPORT_SYMBOL(dev_change_flags);
 8773
 8774int __dev_set_mtu(struct net_device *dev, int new_mtu)
 8775{
 8776	const struct net_device_ops *ops = dev->netdev_ops;
 8777
 8778	if (ops->ndo_change_mtu)
 8779		return ops->ndo_change_mtu(dev, new_mtu);
 8780
 8781	/* Pairs with all the lockless reads of dev->mtu in the stack */
 8782	WRITE_ONCE(dev->mtu, new_mtu);
 8783	return 0;
 8784}
 8785EXPORT_SYMBOL(__dev_set_mtu);
 8786
 8787int dev_validate_mtu(struct net_device *dev, int new_mtu,
 8788		     struct netlink_ext_ack *extack)
 8789{
 8790	/* MTU must be positive, and in range */
 8791	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
 8792		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
 8793		return -EINVAL;
 8794	}
 8795
 8796	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
 8797		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
 8798		return -EINVAL;
 8799	}
 8800	return 0;
 8801}
 8802
 8803/**
 8804 *	dev_set_mtu_ext - Change maximum transfer unit
 8805 *	@dev: device
 8806 *	@new_mtu: new transfer unit
 8807 *	@extack: netlink extended ack
 8808 *
 8809 *	Change the maximum transfer size of the network device.
 8810 */
 8811int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
 8812		    struct netlink_ext_ack *extack)
 8813{
 8814	int err, orig_mtu;
 
 8815
 8816	if (new_mtu == dev->mtu)
 8817		return 0;
 8818
 8819	err = dev_validate_mtu(dev, new_mtu, extack);
 8820	if (err)
 8821		return err;
 8822
 8823	if (!netif_device_present(dev))
 8824		return -ENODEV;
 8825
 8826	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
 8827	err = notifier_to_errno(err);
 8828	if (err)
 8829		return err;
 8830
 8831	orig_mtu = dev->mtu;
 8832	err = __dev_set_mtu(dev, new_mtu);
 8833
 8834	if (!err) {
 8835		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8836						   orig_mtu);
 8837		err = notifier_to_errno(err);
 8838		if (err) {
 8839			/* setting mtu back and notifying everyone again,
 8840			 * so that they have a chance to revert changes.
 8841			 */
 8842			__dev_set_mtu(dev, orig_mtu);
 8843			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8844						     new_mtu);
 8845		}
 8846	}
 8847	return err;
 8848}
 8849
 8850int dev_set_mtu(struct net_device *dev, int new_mtu)
 8851{
 8852	struct netlink_ext_ack extack;
 8853	int err;
 8854
 8855	memset(&extack, 0, sizeof(extack));
 8856	err = dev_set_mtu_ext(dev, new_mtu, &extack);
 8857	if (err && extack._msg)
 8858		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
 8859	return err;
 8860}
 8861EXPORT_SYMBOL(dev_set_mtu);
 8862
 8863/**
 8864 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
 8865 *	@dev: device
 8866 *	@new_len: new tx queue length
 8867 */
 8868int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
 8869{
 8870	unsigned int orig_len = dev->tx_queue_len;
 8871	int res;
 8872
 8873	if (new_len != (unsigned int)new_len)
 8874		return -ERANGE;
 8875
 8876	if (new_len != orig_len) {
 8877		dev->tx_queue_len = new_len;
 8878		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
 8879		res = notifier_to_errno(res);
 8880		if (res)
 8881			goto err_rollback;
 8882		res = dev_qdisc_change_tx_queue_len(dev);
 8883		if (res)
 8884			goto err_rollback;
 8885	}
 8886
 8887	return 0;
 8888
 8889err_rollback:
 8890	netdev_err(dev, "refused to change device tx_queue_len\n");
 8891	dev->tx_queue_len = orig_len;
 8892	return res;
 8893}
 8894
 8895/**
 8896 *	dev_set_group - Change group this device belongs to
 8897 *	@dev: device
 8898 *	@new_group: group this device should belong to
 8899 */
 8900void dev_set_group(struct net_device *dev, int new_group)
 8901{
 8902	dev->group = new_group;
 8903}
 8904
 8905/**
 8906 *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
 8907 *	@dev: device
 8908 *	@addr: new address
 8909 *	@extack: netlink extended ack
 8910 */
 8911int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
 8912			      struct netlink_ext_ack *extack)
 8913{
 8914	struct netdev_notifier_pre_changeaddr_info info = {
 8915		.info.dev = dev,
 8916		.info.extack = extack,
 8917		.dev_addr = addr,
 8918	};
 8919	int rc;
 8920
 8921	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
 8922	return notifier_to_errno(rc);
 8923}
 8924EXPORT_SYMBOL(dev_pre_changeaddr_notify);
 8925
 8926/**
 8927 *	dev_set_mac_address - Change Media Access Control Address
 8928 *	@dev: device
 8929 *	@sa: new address
 8930 *	@extack: netlink extended ack
 8931 *
 8932 *	Change the hardware (MAC) address of the device
 8933 */
 8934int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
 8935			struct netlink_ext_ack *extack)
 8936{
 8937	const struct net_device_ops *ops = dev->netdev_ops;
 8938	int err;
 8939
 8940	if (!ops->ndo_set_mac_address)
 8941		return -EOPNOTSUPP;
 8942	if (sa->sa_family != dev->type)
 8943		return -EINVAL;
 8944	if (!netif_device_present(dev))
 8945		return -ENODEV;
 8946	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
 8947	if (err)
 8948		return err;
 8949	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
 8950		err = ops->ndo_set_mac_address(dev, sa);
 8951		if (err)
 8952			return err;
 8953	}
 8954	dev->addr_assign_type = NET_ADDR_SET;
 8955	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
 8956	add_device_randomness(dev->dev_addr, dev->addr_len);
 8957	return 0;
 8958}
 8959EXPORT_SYMBOL(dev_set_mac_address);
 8960
 8961DECLARE_RWSEM(dev_addr_sem);
 8962
 8963int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
 8964			     struct netlink_ext_ack *extack)
 8965{
 8966	int ret;
 8967
 8968	down_write(&dev_addr_sem);
 8969	ret = dev_set_mac_address(dev, sa, extack);
 8970	up_write(&dev_addr_sem);
 8971	return ret;
 8972}
 8973EXPORT_SYMBOL(dev_set_mac_address_user);
 8974
 8975int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
 8976{
 8977	size_t size = sizeof(sa->sa_data_min);
 8978	struct net_device *dev;
 8979	int ret = 0;
 8980
 8981	down_read(&dev_addr_sem);
 8982	rcu_read_lock();
 8983
 8984	dev = dev_get_by_name_rcu(net, dev_name);
 8985	if (!dev) {
 8986		ret = -ENODEV;
 8987		goto unlock;
 8988	}
 8989	if (!dev->addr_len)
 8990		memset(sa->sa_data, 0, size);
 8991	else
 8992		memcpy(sa->sa_data, dev->dev_addr,
 8993		       min_t(size_t, size, dev->addr_len));
 8994	sa->sa_family = dev->type;
 8995
 8996unlock:
 8997	rcu_read_unlock();
 8998	up_read(&dev_addr_sem);
 8999	return ret;
 9000}
 9001EXPORT_SYMBOL(dev_get_mac_address);
 9002
 9003/**
 9004 *	dev_change_carrier - Change device carrier
 9005 *	@dev: device
 9006 *	@new_carrier: new value
 9007 *
 9008 *	Change device carrier
 9009 */
 9010int dev_change_carrier(struct net_device *dev, bool new_carrier)
 9011{
 9012	const struct net_device_ops *ops = dev->netdev_ops;
 
 9013
 9014	if (!ops->ndo_change_carrier)
 9015		return -EOPNOTSUPP;
 9016	if (!netif_device_present(dev))
 9017		return -ENODEV;
 9018	return ops->ndo_change_carrier(dev, new_carrier);
 9019}
 9020
 9021/**
 9022 *	dev_get_phys_port_id - Get device physical port ID
 9023 *	@dev: device
 9024 *	@ppid: port ID
 9025 *
 9026 *	Get device physical port ID
 9027 */
 9028int dev_get_phys_port_id(struct net_device *dev,
 9029			 struct netdev_phys_item_id *ppid)
 9030{
 9031	const struct net_device_ops *ops = dev->netdev_ops;
 9032
 9033	if (!ops->ndo_get_phys_port_id)
 9034		return -EOPNOTSUPP;
 9035	return ops->ndo_get_phys_port_id(dev, ppid);
 9036}
 9037
 9038/**
 9039 *	dev_get_phys_port_name - Get device physical port name
 9040 *	@dev: device
 9041 *	@name: port name
 9042 *	@len: limit of bytes to copy to name
 9043 *
 9044 *	Get device physical port name
 9045 */
 9046int dev_get_phys_port_name(struct net_device *dev,
 9047			   char *name, size_t len)
 9048{
 9049	const struct net_device_ops *ops = dev->netdev_ops;
 9050	int err;
 9051
 9052	if (ops->ndo_get_phys_port_name) {
 9053		err = ops->ndo_get_phys_port_name(dev, name, len);
 9054		if (err != -EOPNOTSUPP)
 9055			return err;
 9056	}
 9057	return devlink_compat_phys_port_name_get(dev, name, len);
 9058}
 
 9059
 9060/**
 9061 *	dev_get_port_parent_id - Get the device's port parent identifier
 9062 *	@dev: network device
 9063 *	@ppid: pointer to a storage for the port's parent identifier
 9064 *	@recurse: allow/disallow recursion to lower devices
 9065 *
 9066 *	Get the devices's port parent identifier
 9067 */
 9068int dev_get_port_parent_id(struct net_device *dev,
 9069			   struct netdev_phys_item_id *ppid,
 9070			   bool recurse)
 9071{
 9072	const struct net_device_ops *ops = dev->netdev_ops;
 9073	struct netdev_phys_item_id first = { };
 9074	struct net_device *lower_dev;
 9075	struct list_head *iter;
 9076	int err;
 9077
 9078	if (ops->ndo_get_port_parent_id) {
 9079		err = ops->ndo_get_port_parent_id(dev, ppid);
 9080		if (err != -EOPNOTSUPP)
 9081			return err;
 9082	}
 
 
 
 9083
 9084	err = devlink_compat_switch_id_get(dev, ppid);
 9085	if (!recurse || err != -EOPNOTSUPP)
 9086		return err;
 9087
 9088	netdev_for_each_lower_dev(dev, lower_dev, iter) {
 9089		err = dev_get_port_parent_id(lower_dev, ppid, true);
 9090		if (err)
 9091			break;
 9092		if (!first.id_len)
 9093			first = *ppid;
 9094		else if (memcmp(&first, ppid, sizeof(*ppid)))
 9095			return -EOPNOTSUPP;
 9096	}
 
 
 9097
 
 9098	return err;
 9099}
 9100EXPORT_SYMBOL(dev_get_port_parent_id);
 9101
 9102/**
 9103 *	netdev_port_same_parent_id - Indicate if two network devices have
 9104 *	the same port parent identifier
 9105 *	@a: first network device
 9106 *	@b: second network device
 9107 */
 9108bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
 9109{
 9110	struct netdev_phys_item_id a_id = { };
 9111	struct netdev_phys_item_id b_id = { };
 9112
 9113	if (dev_get_port_parent_id(a, &a_id, true) ||
 9114	    dev_get_port_parent_id(b, &b_id, true))
 9115		return false;
 9116
 9117	return netdev_phys_item_id_same(&a_id, &b_id);
 9118}
 9119EXPORT_SYMBOL(netdev_port_same_parent_id);
 9120
 9121/**
 9122 *	dev_change_proto_down - set carrier according to proto_down.
 9123 *
 9124 *	@dev: device
 9125 *	@proto_down: new value
 9126 */
 9127int dev_change_proto_down(struct net_device *dev, bool proto_down)
 9128{
 9129	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
 9130		return -EOPNOTSUPP;
 9131	if (!netif_device_present(dev))
 9132		return -ENODEV;
 9133	if (proto_down)
 9134		netif_carrier_off(dev);
 9135	else
 9136		netif_carrier_on(dev);
 9137	dev->proto_down = proto_down;
 9138	return 0;
 9139}
 9140
 9141/**
 9142 *	dev_change_proto_down_reason - proto down reason
 9143 *
 9144 *	@dev: device
 9145 *	@mask: proto down mask
 9146 *	@value: proto down value
 9147 */
 9148void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
 9149				  u32 value)
 9150{
 9151	int b;
 9152
 9153	if (!mask) {
 9154		dev->proto_down_reason = value;
 9155	} else {
 9156		for_each_set_bit(b, &mask, 32) {
 9157			if (value & (1 << b))
 9158				dev->proto_down_reason |= BIT(b);
 9159			else
 9160				dev->proto_down_reason &= ~BIT(b);
 9161		}
 9162	}
 9163}
 9164
 9165struct bpf_xdp_link {
 9166	struct bpf_link link;
 9167	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
 9168	int flags;
 9169};
 9170
 9171static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
 9172{
 9173	if (flags & XDP_FLAGS_HW_MODE)
 9174		return XDP_MODE_HW;
 9175	if (flags & XDP_FLAGS_DRV_MODE)
 9176		return XDP_MODE_DRV;
 9177	if (flags & XDP_FLAGS_SKB_MODE)
 9178		return XDP_MODE_SKB;
 9179	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
 9180}
 9181
 9182static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
 9183{
 9184	switch (mode) {
 9185	case XDP_MODE_SKB:
 9186		return generic_xdp_install;
 9187	case XDP_MODE_DRV:
 9188	case XDP_MODE_HW:
 9189		return dev->netdev_ops->ndo_bpf;
 9190	default:
 9191		return NULL;
 9192	}
 9193}
 9194
 9195static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
 9196					 enum bpf_xdp_mode mode)
 9197{
 9198	return dev->xdp_state[mode].link;
 9199}
 9200
 9201static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
 9202				     enum bpf_xdp_mode mode)
 9203{
 9204	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
 9205
 9206	if (link)
 9207		return link->link.prog;
 9208	return dev->xdp_state[mode].prog;
 9209}
 9210
 9211u8 dev_xdp_prog_count(struct net_device *dev)
 9212{
 9213	u8 count = 0;
 9214	int i;
 
 
 
 9215
 9216	for (i = 0; i < __MAX_XDP_MODE; i++)
 9217		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
 9218			count++;
 9219	return count;
 9220}
 9221EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
 
 9222
 9223u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
 9224{
 9225	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
 
 
 
 
 9226
 9227	return prog ? prog->aux->id : 0;
 9228}
 
 
 
 
 
 9229
 9230static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
 9231			     struct bpf_xdp_link *link)
 9232{
 9233	dev->xdp_state[mode].link = link;
 9234	dev->xdp_state[mode].prog = NULL;
 9235}
 9236
 9237static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
 9238			     struct bpf_prog *prog)
 9239{
 9240	dev->xdp_state[mode].link = NULL;
 9241	dev->xdp_state[mode].prog = prog;
 9242}
 9243
 9244static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
 9245			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
 9246			   u32 flags, struct bpf_prog *prog)
 9247{
 9248	struct netdev_bpf xdp;
 9249	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9250
 9251	memset(&xdp, 0, sizeof(xdp));
 9252	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
 9253	xdp.extack = extack;
 9254	xdp.flags = flags;
 9255	xdp.prog = prog;
 9256
 9257	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
 9258	 * "moved" into driver), so they don't increment it on their own, but
 9259	 * they do decrement refcnt when program is detached or replaced.
 9260	 * Given net_device also owns link/prog, we need to bump refcnt here
 9261	 * to prevent drivers from underflowing it.
 9262	 */
 9263	if (prog)
 9264		bpf_prog_inc(prog);
 9265	err = bpf_op(dev, &xdp);
 9266	if (err) {
 9267		if (prog)
 9268			bpf_prog_put(prog);
 9269		return err;
 9270	}
 9271
 9272	if (mode != XDP_MODE_HW)
 9273		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
 9274
 9275	return 0;
 9276}
 9277
 9278static void dev_xdp_uninstall(struct net_device *dev)
 9279{
 9280	struct bpf_xdp_link *link;
 9281	struct bpf_prog *prog;
 9282	enum bpf_xdp_mode mode;
 9283	bpf_op_t bpf_op;
 9284
 9285	ASSERT_RTNL();
 9286
 9287	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
 9288		prog = dev_xdp_prog(dev, mode);
 9289		if (!prog)
 9290			continue;
 9291
 9292		bpf_op = dev_xdp_bpf_op(dev, mode);
 9293		if (!bpf_op)
 9294			continue;
 9295
 9296		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9297
 9298		/* auto-detach link from net device */
 9299		link = dev_xdp_link(dev, mode);
 9300		if (link)
 9301			link->dev = NULL;
 9302		else
 9303			bpf_prog_put(prog);
 9304
 9305		dev_xdp_set_link(dev, mode, NULL);
 9306	}
 9307}
 
 
 
 
 
 
 
 
 9308
 9309static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
 9310			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
 9311			  struct bpf_prog *old_prog, u32 flags)
 9312{
 9313	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
 9314	struct bpf_prog *cur_prog;
 9315	struct net_device *upper;
 9316	struct list_head *iter;
 9317	enum bpf_xdp_mode mode;
 9318	bpf_op_t bpf_op;
 9319	int err;
 9320
 9321	ASSERT_RTNL();
 
 
 
 9322
 9323	/* either link or prog attachment, never both */
 9324	if (link && (new_prog || old_prog))
 9325		return -EINVAL;
 9326	/* link supports only XDP mode flags */
 9327	if (link && (flags & ~XDP_FLAGS_MODES)) {
 9328		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
 9329		return -EINVAL;
 9330	}
 9331	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
 9332	if (num_modes > 1) {
 9333		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
 9334		return -EINVAL;
 9335	}
 9336	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
 9337	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
 9338		NL_SET_ERR_MSG(extack,
 9339			       "More than one program loaded, unset mode is ambiguous");
 9340		return -EINVAL;
 9341	}
 9342	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
 9343	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
 9344		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
 9345		return -EINVAL;
 9346	}
 
 
 9347
 9348	mode = dev_xdp_mode(dev, flags);
 9349	/* can't replace attached link */
 9350	if (dev_xdp_link(dev, mode)) {
 9351		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
 9352		return -EBUSY;
 9353	}
 9354
 9355	/* don't allow if an upper device already has a program */
 9356	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
 9357		if (dev_xdp_prog_count(upper) > 0) {
 9358			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
 9359			return -EEXIST;
 9360		}
 9361	}
 9362
 9363	cur_prog = dev_xdp_prog(dev, mode);
 9364	/* can't replace attached prog with link */
 9365	if (link && cur_prog) {
 9366		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
 9367		return -EBUSY;
 9368	}
 9369	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
 9370		NL_SET_ERR_MSG(extack, "Active program does not match expected");
 9371		return -EEXIST;
 9372	}
 9373
 9374	/* put effective new program into new_prog */
 9375	if (link)
 9376		new_prog = link->link.prog;
 9377
 9378	if (new_prog) {
 9379		bool offload = mode == XDP_MODE_HW;
 9380		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
 9381					       ? XDP_MODE_DRV : XDP_MODE_SKB;
 9382
 9383		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
 9384			NL_SET_ERR_MSG(extack, "XDP program already attached");
 9385			return -EBUSY;
 9386		}
 9387		if (!offload && dev_xdp_prog(dev, other_mode)) {
 9388			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
 9389			return -EEXIST;
 9390		}
 9391		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
 9392			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
 9393			return -EINVAL;
 9394		}
 9395		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
 9396			NL_SET_ERR_MSG(extack, "Program bound to different device");
 9397			return -EINVAL;
 9398		}
 9399		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
 9400			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
 9401			return -EINVAL;
 9402		}
 9403		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
 9404			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
 9405			return -EINVAL;
 
 
 9406		}
 9407	}
 9408
 9409	/* don't call drivers if the effective program didn't change */
 9410	if (new_prog != cur_prog) {
 9411		bpf_op = dev_xdp_bpf_op(dev, mode);
 9412		if (!bpf_op) {
 9413			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
 9414			return -EOPNOTSUPP;
 
 
 
 
 
 9415		}
 
 9416
 9417		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
 9418		if (err)
 9419			return err;
 9420	}
 9421
 9422	if (link)
 9423		dev_xdp_set_link(dev, mode, link);
 9424	else
 9425		dev_xdp_set_prog(dev, mode, new_prog);
 9426	if (cur_prog)
 9427		bpf_prog_put(cur_prog);
 9428
 9429	return 0;
 9430}
 9431
 9432static int dev_xdp_attach_link(struct net_device *dev,
 9433			       struct netlink_ext_ack *extack,
 9434			       struct bpf_xdp_link *link)
 9435{
 9436	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
 9437}
 9438
 9439static int dev_xdp_detach_link(struct net_device *dev,
 9440			       struct netlink_ext_ack *extack,
 9441			       struct bpf_xdp_link *link)
 9442{
 9443	enum bpf_xdp_mode mode;
 9444	bpf_op_t bpf_op;
 9445
 9446	ASSERT_RTNL();
 9447
 9448	mode = dev_xdp_mode(dev, link->flags);
 9449	if (dev_xdp_link(dev, mode) != link)
 9450		return -EINVAL;
 9451
 9452	bpf_op = dev_xdp_bpf_op(dev, mode);
 9453	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9454	dev_xdp_set_link(dev, mode, NULL);
 9455	return 0;
 9456}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9457
 9458static void bpf_xdp_link_release(struct bpf_link *link)
 9459{
 9460	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 
 
 
 
 
 9461
 9462	rtnl_lock();
 9463
 9464	/* if racing with net_device's tear down, xdp_link->dev might be
 9465	 * already NULL, in which case link was already auto-detached
 9466	 */
 9467	if (xdp_link->dev) {
 9468		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
 9469		xdp_link->dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9470	}
 9471
 9472	rtnl_unlock();
 9473}
 9474
 9475static int bpf_xdp_link_detach(struct bpf_link *link)
 9476{
 9477	bpf_xdp_link_release(link);
 9478	return 0;
 9479}
 9480
 9481static void bpf_xdp_link_dealloc(struct bpf_link *link)
 
 
 
 
 
 
 
 
 9482{
 9483	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9484
 9485	kfree(xdp_link);
 
 
 
 
 9486}
 9487
 9488static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
 9489				     struct seq_file *seq)
 9490{
 9491	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9492	u32 ifindex = 0;
 9493
 9494	rtnl_lock();
 9495	if (xdp_link->dev)
 9496		ifindex = xdp_link->dev->ifindex;
 9497	rtnl_unlock();
 9498
 9499	seq_printf(seq, "ifindex:\t%u\n", ifindex);
 9500}
 9501
 9502static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
 9503				       struct bpf_link_info *info)
 9504{
 9505	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9506	u32 ifindex = 0;
 9507
 9508	rtnl_lock();
 9509	if (xdp_link->dev)
 9510		ifindex = xdp_link->dev->ifindex;
 9511	rtnl_unlock();
 9512
 9513	info->xdp.ifindex = ifindex;
 9514	return 0;
 9515}
 9516
 9517static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
 9518			       struct bpf_prog *old_prog)
 9519{
 9520	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9521	enum bpf_xdp_mode mode;
 9522	bpf_op_t bpf_op;
 9523	int err = 0;
 9524
 9525	rtnl_lock();
 9526
 9527	/* link might have been auto-released already, so fail */
 9528	if (!xdp_link->dev) {
 9529		err = -ENOLINK;
 9530		goto out_unlock;
 9531	}
 9532
 9533	if (old_prog && link->prog != old_prog) {
 9534		err = -EPERM;
 9535		goto out_unlock;
 9536	}
 9537	old_prog = link->prog;
 9538	if (old_prog->type != new_prog->type ||
 9539	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
 9540		err = -EINVAL;
 9541		goto out_unlock;
 9542	}
 9543
 9544	if (old_prog == new_prog) {
 9545		/* no-op, don't disturb drivers */
 9546		bpf_prog_put(new_prog);
 9547		goto out_unlock;
 9548	}
 9549
 9550	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
 9551	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
 9552	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
 9553			      xdp_link->flags, new_prog);
 9554	if (err)
 9555		goto out_unlock;
 9556
 9557	old_prog = xchg(&link->prog, new_prog);
 9558	bpf_prog_put(old_prog);
 9559
 9560out_unlock:
 9561	rtnl_unlock();
 9562	return err;
 9563}
 9564
 9565static const struct bpf_link_ops bpf_xdp_link_lops = {
 9566	.release = bpf_xdp_link_release,
 9567	.dealloc = bpf_xdp_link_dealloc,
 9568	.detach = bpf_xdp_link_detach,
 9569	.show_fdinfo = bpf_xdp_link_show_fdinfo,
 9570	.fill_link_info = bpf_xdp_link_fill_link_info,
 9571	.update_prog = bpf_xdp_link_update,
 9572};
 9573
 9574int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
 9575{
 9576	struct net *net = current->nsproxy->net_ns;
 9577	struct bpf_link_primer link_primer;
 9578	struct netlink_ext_ack extack = {};
 9579	struct bpf_xdp_link *link;
 9580	struct net_device *dev;
 9581	int err, fd;
 9582
 9583	rtnl_lock();
 9584	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
 9585	if (!dev) {
 9586		rtnl_unlock();
 9587		return -EINVAL;
 
 9588	}
 9589
 9590	link = kzalloc(sizeof(*link), GFP_USER);
 9591	if (!link) {
 9592		err = -ENOMEM;
 9593		goto unlock;
 9594	}
 9595
 9596	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
 9597	link->dev = dev;
 9598	link->flags = attr->link_create.flags;
 9599
 9600	err = bpf_link_prime(&link->link, &link_primer);
 9601	if (err) {
 9602		kfree(link);
 9603		goto unlock;
 9604	}
 9605
 9606	err = dev_xdp_attach_link(dev, &extack, link);
 9607	rtnl_unlock();
 9608
 9609	if (err) {
 9610		link->dev = NULL;
 9611		bpf_link_cleanup(&link_primer);
 9612		trace_bpf_xdp_link_attach_failed(extack._msg);
 9613		goto out_put_dev;
 9614	}
 9615
 9616	fd = bpf_link_settle(&link_primer);
 9617	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
 9618	dev_put(dev);
 9619	return fd;
 9620
 9621unlock:
 9622	rtnl_unlock();
 9623
 9624out_put_dev:
 9625	dev_put(dev);
 9626	return err;
 9627}
 9628
 9629/**
 9630 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
 9631 *	@dev: device
 9632 *	@extack: netlink extended ack
 9633 *	@fd: new program fd or negative value to clear
 9634 *	@expected_fd: old program fd that userspace expects to replace or clear
 9635 *	@flags: xdp-related flags
 9636 *
 9637 *	Set or clear a bpf program for a device
 9638 */
 9639int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
 9640		      int fd, int expected_fd, u32 flags)
 9641{
 9642	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
 9643	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
 9644	int err;
 9645
 9646	ASSERT_RTNL();
 
 
 
 
 9647
 9648	if (fd >= 0) {
 9649		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
 9650						 mode != XDP_MODE_SKB);
 9651		if (IS_ERR(new_prog))
 9652			return PTR_ERR(new_prog);
 9653	}
 9654
 9655	if (expected_fd >= 0) {
 9656		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
 9657						 mode != XDP_MODE_SKB);
 9658		if (IS_ERR(old_prog)) {
 9659			err = PTR_ERR(old_prog);
 9660			old_prog = NULL;
 9661			goto err_out;
 9662		}
 9663	}
 9664
 9665	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
 9666
 9667err_out:
 9668	if (err && new_prog)
 9669		bpf_prog_put(new_prog);
 9670	if (old_prog)
 9671		bpf_prog_put(old_prog);
 9672	return err;
 9673}
 9674
 9675/**
 9676 * dev_index_reserve() - allocate an ifindex in a namespace
 9677 * @net: the applicable net namespace
 9678 * @ifindex: requested ifindex, pass %0 to get one allocated
 9679 *
 9680 * Allocate a ifindex for a new device. Caller must either use the ifindex
 9681 * to store the device (via list_netdevice()) or call dev_index_release()
 9682 * to give the index up.
 9683 *
 9684 * Return: a suitable unique value for a new device interface number or -errno.
 9685 */
 9686static int dev_index_reserve(struct net *net, u32 ifindex)
 9687{
 9688	int err;
 9689
 9690	if (ifindex > INT_MAX) {
 9691		DEBUG_NET_WARN_ON_ONCE(1);
 9692		return -EINVAL;
 9693	}
 9694
 9695	if (!ifindex)
 9696		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
 9697				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
 9698	else
 9699		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
 9700	if (err < 0)
 9701		return err;
 9702
 9703	return ifindex;
 9704}
 9705
 9706static void dev_index_release(struct net *net, int ifindex)
 9707{
 9708	/* Expect only unused indexes, unlist_netdevice() removes the used */
 9709	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
 9710}
 9711
 9712/* Delayed registration/unregisteration */
 9713LIST_HEAD(net_todo_list);
 9714DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
 9715atomic_t dev_unreg_count = ATOMIC_INIT(0);
 9716
 9717static void net_set_todo(struct net_device *dev)
 9718{
 9719	list_add_tail(&dev->todo_list, &net_todo_list);
 9720}
 9721
 9722static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
 9723	struct net_device *upper, netdev_features_t features)
 9724{
 9725	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9726	netdev_features_t feature;
 9727	int feature_bit;
 9728
 9729	for_each_netdev_feature(upper_disables, feature_bit) {
 9730		feature = __NETIF_F_BIT(feature_bit);
 9731		if (!(upper->wanted_features & feature)
 9732		    && (features & feature)) {
 9733			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
 9734				   &feature, upper->name);
 9735			features &= ~feature;
 9736		}
 9737	}
 9738
 9739	return features;
 9740}
 9741
 9742static void netdev_sync_lower_features(struct net_device *upper,
 9743	struct net_device *lower, netdev_features_t features)
 9744{
 9745	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9746	netdev_features_t feature;
 9747	int feature_bit;
 9748
 9749	for_each_netdev_feature(upper_disables, feature_bit) {
 9750		feature = __NETIF_F_BIT(feature_bit);
 9751		if (!(features & feature) && (lower->features & feature)) {
 9752			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
 9753				   &feature, lower->name);
 9754			lower->wanted_features &= ~feature;
 9755			__netdev_update_features(lower);
 9756
 9757			if (unlikely(lower->features & feature))
 9758				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
 9759					    &feature, lower->name);
 9760			else
 9761				netdev_features_change(lower);
 9762		}
 9763	}
 9764}
 9765
 9766static netdev_features_t netdev_fix_features(struct net_device *dev,
 9767	netdev_features_t features)
 9768{
 9769	/* Fix illegal checksum combinations */
 9770	if ((features & NETIF_F_HW_CSUM) &&
 9771	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
 9772		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
 9773		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
 9774	}
 9775
 9776	/* TSO requires that SG is present as well. */
 9777	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
 9778		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
 9779		features &= ~NETIF_F_ALL_TSO;
 9780	}
 9781
 9782	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
 9783					!(features & NETIF_F_IP_CSUM)) {
 9784		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
 9785		features &= ~NETIF_F_TSO;
 9786		features &= ~NETIF_F_TSO_ECN;
 
 9787	}
 9788
 9789	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
 9790					 !(features & NETIF_F_IPV6_CSUM)) {
 9791		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
 9792		features &= ~NETIF_F_TSO6;
 9793	}
 9794
 9795	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
 9796	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
 9797		features &= ~NETIF_F_TSO_MANGLEID;
 9798
 9799	/* TSO ECN requires that TSO is present as well. */
 9800	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
 9801		features &= ~NETIF_F_TSO_ECN;
 9802
 9803	/* Software GSO depends on SG. */
 9804	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
 9805		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
 9806		features &= ~NETIF_F_GSO;
 9807	}
 9808
 9809	/* GSO partial features require GSO partial be set */
 9810	if ((features & dev->gso_partial_features) &&
 9811	    !(features & NETIF_F_GSO_PARTIAL)) {
 9812		netdev_dbg(dev,
 9813			   "Dropping partially supported GSO features since no GSO partial.\n");
 9814		features &= ~dev->gso_partial_features;
 9815	}
 9816
 9817	if (!(features & NETIF_F_RXCSUM)) {
 9818		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
 9819		 * successfully merged by hardware must also have the
 9820		 * checksum verified by hardware.  If the user does not
 9821		 * want to enable RXCSUM, logically, we should disable GRO_HW.
 9822		 */
 9823		if (features & NETIF_F_GRO_HW) {
 9824			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
 9825			features &= ~NETIF_F_GRO_HW;
 9826		}
 9827	}
 9828
 9829	/* LRO/HW-GRO features cannot be combined with RX-FCS */
 9830	if (features & NETIF_F_RXFCS) {
 9831		if (features & NETIF_F_LRO) {
 9832			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
 9833			features &= ~NETIF_F_LRO;
 9834		}
 9835
 9836		if (features & NETIF_F_GRO_HW) {
 9837			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
 9838			features &= ~NETIF_F_GRO_HW;
 9839		}
 9840	}
 9841
 9842	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
 9843		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
 9844		features &= ~NETIF_F_LRO;
 9845	}
 9846
 9847	if (features & NETIF_F_HW_TLS_TX) {
 9848		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
 9849			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
 9850		bool hw_csum = features & NETIF_F_HW_CSUM;
 9851
 9852		if (!ip_csum && !hw_csum) {
 9853			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
 9854			features &= ~NETIF_F_HW_TLS_TX;
 
 9855		}
 9856	}
 9857
 9858	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
 9859		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
 9860		features &= ~NETIF_F_HW_TLS_RX;
 9861	}
 9862
 9863	return features;
 9864}
 9865
 9866int __netdev_update_features(struct net_device *dev)
 9867{
 9868	struct net_device *upper, *lower;
 9869	netdev_features_t features;
 9870	struct list_head *iter;
 9871	int err = -1;
 9872
 9873	ASSERT_RTNL();
 9874
 9875	features = netdev_get_wanted_features(dev);
 9876
 9877	if (dev->netdev_ops->ndo_fix_features)
 9878		features = dev->netdev_ops->ndo_fix_features(dev, features);
 9879
 9880	/* driver might be less strict about feature dependencies */
 9881	features = netdev_fix_features(dev, features);
 9882
 9883	/* some features can't be enabled if they're off on an upper device */
 9884	netdev_for_each_upper_dev_rcu(dev, upper, iter)
 9885		features = netdev_sync_upper_features(dev, upper, features);
 9886
 9887	if (dev->features == features)
 9888		goto sync_lower;
 9889
 9890	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
 9891		&dev->features, &features);
 9892
 9893	if (dev->netdev_ops->ndo_set_features)
 9894		err = dev->netdev_ops->ndo_set_features(dev, features);
 9895	else
 9896		err = 0;
 9897
 9898	if (unlikely(err < 0)) {
 9899		netdev_err(dev,
 9900			"set_features() failed (%d); wanted %pNF, left %pNF\n",
 9901			err, &features, &dev->features);
 9902		/* return non-0 since some features might have changed and
 9903		 * it's better to fire a spurious notification than miss it
 9904		 */
 9905		return -1;
 9906	}
 9907
 9908sync_lower:
 9909	/* some features must be disabled on lower devices when disabled
 9910	 * on an upper device (think: bonding master or bridge)
 9911	 */
 9912	netdev_for_each_lower_dev(dev, lower, iter)
 9913		netdev_sync_lower_features(dev, lower, features);
 9914
 9915	if (!err) {
 9916		netdev_features_t diff = features ^ dev->features;
 9917
 9918		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9919			/* udp_tunnel_{get,drop}_rx_info both need
 9920			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
 9921			 * device, or they won't do anything.
 9922			 * Thus we need to update dev->features
 9923			 * *before* calling udp_tunnel_get_rx_info,
 9924			 * but *after* calling udp_tunnel_drop_rx_info.
 9925			 */
 9926			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9927				dev->features = features;
 9928				udp_tunnel_get_rx_info(dev);
 9929			} else {
 9930				udp_tunnel_drop_rx_info(dev);
 9931			}
 9932		}
 9933
 9934		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9935			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9936				dev->features = features;
 9937				err |= vlan_get_rx_ctag_filter_info(dev);
 9938			} else {
 9939				vlan_drop_rx_ctag_filter_info(dev);
 9940			}
 9941		}
 9942
 9943		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
 9944			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
 9945				dev->features = features;
 9946				err |= vlan_get_rx_stag_filter_info(dev);
 9947			} else {
 9948				vlan_drop_rx_stag_filter_info(dev);
 9949			}
 9950		}
 9951
 9952		dev->features = features;
 9953	}
 9954
 9955	return err < 0 ? 0 : 1;
 9956}
 9957
 9958/**
 9959 *	netdev_update_features - recalculate device features
 9960 *	@dev: the device to check
 9961 *
 9962 *	Recalculate dev->features set and send notifications if it
 9963 *	has changed. Should be called after driver or hardware dependent
 9964 *	conditions might have changed that influence the features.
 9965 */
 9966void netdev_update_features(struct net_device *dev)
 9967{
 9968	if (__netdev_update_features(dev))
 9969		netdev_features_change(dev);
 9970}
 9971EXPORT_SYMBOL(netdev_update_features);
 9972
 9973/**
 9974 *	netdev_change_features - recalculate device features
 9975 *	@dev: the device to check
 9976 *
 9977 *	Recalculate dev->features set and send notifications even
 9978 *	if they have not changed. Should be called instead of
 9979 *	netdev_update_features() if also dev->vlan_features might
 9980 *	have changed to allow the changes to be propagated to stacked
 9981 *	VLAN devices.
 9982 */
 9983void netdev_change_features(struct net_device *dev)
 9984{
 9985	__netdev_update_features(dev);
 9986	netdev_features_change(dev);
 9987}
 9988EXPORT_SYMBOL(netdev_change_features);
 9989
 9990/**
 9991 *	netif_stacked_transfer_operstate -	transfer operstate
 9992 *	@rootdev: the root or lower level device to transfer state from
 9993 *	@dev: the device to transfer operstate to
 9994 *
 9995 *	Transfer operational state from root to device. This is normally
 9996 *	called when a stacking relationship exists between the root
 9997 *	device and the device(a leaf device).
 9998 */
 9999void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10000					struct net_device *dev)
10001{
10002	if (rootdev->operstate == IF_OPER_DORMANT)
10003		netif_dormant_on(dev);
10004	else
10005		netif_dormant_off(dev);
10006
10007	if (rootdev->operstate == IF_OPER_TESTING)
10008		netif_testing_on(dev);
10009	else
10010		netif_testing_off(dev);
10011
10012	if (netif_carrier_ok(rootdev))
10013		netif_carrier_on(dev);
10014	else
10015		netif_carrier_off(dev);
10016}
10017EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10018
 
10019static int netif_alloc_rx_queues(struct net_device *dev)
10020{
10021	unsigned int i, count = dev->num_rx_queues;
10022	struct netdev_rx_queue *rx;
10023	size_t sz = count * sizeof(*rx);
10024	int err = 0;
10025
10026	BUG_ON(count < 1);
10027
10028	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029	if (!rx)
 
10030		return -ENOMEM;
10031
10032	dev->_rx = rx;
10033
10034	for (i = 0; i < count; i++) {
10035		rx[i].dev = dev;
10036
10037		/* XDP RX-queue setup */
10038		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10039		if (err < 0)
10040			goto err_rxq_info;
10041	}
10042	return 0;
10043
10044err_rxq_info:
10045	/* Rollback successful reg's and free other resources */
10046	while (i--)
10047		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10048	kvfree(dev->_rx);
10049	dev->_rx = NULL;
10050	return err;
10051}
10052
10053static void netif_free_rx_queues(struct net_device *dev)
10054{
10055	unsigned int i, count = dev->num_rx_queues;
10056
10057	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10058	if (!dev->_rx)
10059		return;
10060
10061	for (i = 0; i < count; i++)
10062		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10063
10064	kvfree(dev->_rx);
10065}
 
10066
10067static void netdev_init_one_queue(struct net_device *dev,
10068				  struct netdev_queue *queue, void *_unused)
10069{
10070	/* Initialize queue lock */
10071	spin_lock_init(&queue->_xmit_lock);
10072	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10073	queue->xmit_lock_owner = -1;
10074	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10075	queue->dev = dev;
10076#ifdef CONFIG_BQL
10077	dql_init(&queue->dql, HZ);
10078#endif
10079}
10080
10081static void netif_free_tx_queues(struct net_device *dev)
10082{
10083	kvfree(dev->_tx);
10084}
10085
10086static int netif_alloc_netdev_queues(struct net_device *dev)
10087{
10088	unsigned int count = dev->num_tx_queues;
10089	struct netdev_queue *tx;
10090	size_t sz = count * sizeof(*tx);
10091
10092	if (count < 1 || count > 0xffff)
10093		return -EINVAL;
10094
10095	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096	if (!tx)
 
 
10097		return -ENOMEM;
10098
10099	dev->_tx = tx;
10100
10101	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10102	spin_lock_init(&dev->tx_global_lock);
10103
10104	return 0;
10105}
10106
10107void netif_tx_stop_all_queues(struct net_device *dev)
10108{
10109	unsigned int i;
10110
10111	for (i = 0; i < dev->num_tx_queues; i++) {
10112		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10113
10114		netif_tx_stop_queue(txq);
10115	}
10116}
10117EXPORT_SYMBOL(netif_tx_stop_all_queues);
10118
10119static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10120{
10121	void __percpu *v;
10122
10123	/* Drivers implementing ndo_get_peer_dev must support tstat
10124	 * accounting, so that skb_do_redirect() can bump the dev's
10125	 * RX stats upon network namespace switch.
10126	 */
10127	if (dev->netdev_ops->ndo_get_peer_dev &&
10128	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10129		return -EOPNOTSUPP;
10130
10131	switch (dev->pcpu_stat_type) {
10132	case NETDEV_PCPU_STAT_NONE:
10133		return 0;
10134	case NETDEV_PCPU_STAT_LSTATS:
10135		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10136		break;
10137	case NETDEV_PCPU_STAT_TSTATS:
10138		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10139		break;
10140	case NETDEV_PCPU_STAT_DSTATS:
10141		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10142		break;
10143	default:
10144		return -EINVAL;
10145	}
10146
10147	return v ? 0 : -ENOMEM;
10148}
10149
10150static void netdev_do_free_pcpu_stats(struct net_device *dev)
10151{
10152	switch (dev->pcpu_stat_type) {
10153	case NETDEV_PCPU_STAT_NONE:
10154		return;
10155	case NETDEV_PCPU_STAT_LSTATS:
10156		free_percpu(dev->lstats);
10157		break;
10158	case NETDEV_PCPU_STAT_TSTATS:
10159		free_percpu(dev->tstats);
10160		break;
10161	case NETDEV_PCPU_STAT_DSTATS:
10162		free_percpu(dev->dstats);
10163		break;
10164	}
10165}
10166
10167/**
10168 * register_netdevice() - register a network device
10169 * @dev: device to register
10170 *
10171 * Take a prepared network device structure and make it externally accessible.
10172 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10173 * Callers must hold the rtnl lock - you may want register_netdev()
10174 * instead of this.
 
 
 
 
 
 
 
10175 */
 
10176int register_netdevice(struct net_device *dev)
10177{
10178	int ret;
10179	struct net *net = dev_net(dev);
10180
10181	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10182		     NETDEV_FEATURE_COUNT);
10183	BUG_ON(dev_boot_phase);
10184	ASSERT_RTNL();
10185
10186	might_sleep();
10187
10188	/* When net_device's are persistent, this will be fatal. */
10189	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10190	BUG_ON(!net);
10191
10192	ret = ethtool_check_ops(dev->ethtool_ops);
10193	if (ret)
10194		return ret;
10195
10196	spin_lock_init(&dev->addr_list_lock);
10197	netdev_set_addr_lockdep_class(dev);
10198
10199	ret = dev_get_valid_name(net, dev, dev->name);
10200	if (ret < 0)
10201		goto out;
10202
10203	ret = -ENOMEM;
10204	dev->name_node = netdev_name_node_head_alloc(dev);
10205	if (!dev->name_node)
10206		goto out;
10207
10208	/* Init, if this function is available */
10209	if (dev->netdev_ops->ndo_init) {
10210		ret = dev->netdev_ops->ndo_init(dev);
10211		if (ret) {
10212			if (ret > 0)
10213				ret = -EIO;
10214			goto err_free_name;
10215		}
10216	}
10217
10218	if (((dev->hw_features | dev->features) &
10219	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10220	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10221	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10222		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10223		ret = -EINVAL;
10224		goto err_uninit;
10225	}
10226
10227	ret = netdev_do_alloc_pcpu_stats(dev);
10228	if (ret)
10229		goto err_uninit;
10230
10231	ret = dev_index_reserve(net, dev->ifindex);
10232	if (ret < 0)
10233		goto err_free_pcpu;
10234	dev->ifindex = ret;
10235
10236	/* Transfer changeable features to wanted_features and enable
10237	 * software offloads (GSO and GRO).
10238	 */
10239	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10240	dev->features |= NETIF_F_SOFT_FEATURES;
10241
10242	if (dev->udp_tunnel_nic_info) {
10243		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10244		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10245	}
10246
10247	dev->wanted_features = dev->features & dev->hw_features;
10248
10249	if (!(dev->flags & IFF_LOOPBACK))
10250		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10251
10252	/* If IPv4 TCP segmentation offload is supported we should also
10253	 * allow the device to enable segmenting the frame with the option
10254	 * of ignoring a static IP ID value.  This doesn't enable the
10255	 * feature itself but allows the user to enable it later.
10256	 */
10257	if (dev->hw_features & NETIF_F_TSO)
10258		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10259	if (dev->vlan_features & NETIF_F_TSO)
10260		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10261	if (dev->mpls_features & NETIF_F_TSO)
10262		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10263	if (dev->hw_enc_features & NETIF_F_TSO)
10264		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10265
10266	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10267	 */
10268	dev->vlan_features |= NETIF_F_HIGHDMA;
10269
10270	/* Make NETIF_F_SG inheritable to tunnel devices.
10271	 */
10272	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10273
10274	/* Make NETIF_F_SG inheritable to MPLS.
10275	 */
10276	dev->mpls_features |= NETIF_F_SG;
10277
10278	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10279	ret = notifier_to_errno(ret);
10280	if (ret)
10281		goto err_ifindex_release;
10282
10283	ret = netdev_register_kobject(dev);
10284
10285	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10286
10287	if (ret)
10288		goto err_uninit_notify;
 
10289
10290	__netdev_update_features(dev);
10291
10292	/*
10293	 *	Default initial state at registry is that the
10294	 *	device is present.
10295	 */
10296
10297	set_bit(__LINK_STATE_PRESENT, &dev->state);
10298
10299	linkwatch_init_dev(dev);
10300
10301	dev_init_scheduler(dev);
10302
10303	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10304	list_netdevice(dev);
10305
10306	add_device_randomness(dev->dev_addr, dev->addr_len);
10307
10308	/* If the device has permanent device address, driver should
10309	 * set dev_addr and also addr_assign_type should be set to
10310	 * NET_ADDR_PERM (default value).
10311	 */
10312	if (dev->addr_assign_type == NET_ADDR_PERM)
10313		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10314
10315	/* Notify protocols, that a new device appeared. */
10316	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10317	ret = notifier_to_errno(ret);
10318	if (ret) {
10319		/* Expect explicit free_netdev() on failure */
10320		dev->needs_free_netdev = false;
10321		unregister_netdevice_queue(dev, NULL);
10322		goto out;
10323	}
10324	/*
10325	 *	Prevent userspace races by waiting until the network
10326	 *	device is fully setup before sending notifications.
10327	 */
10328	if (!dev->rtnl_link_ops ||
10329	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10330		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10331
10332out:
10333	return ret;
10334
10335err_uninit_notify:
10336	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10337err_ifindex_release:
10338	dev_index_release(net, dev->ifindex);
10339err_free_pcpu:
10340	netdev_do_free_pcpu_stats(dev);
10341err_uninit:
10342	if (dev->netdev_ops->ndo_uninit)
10343		dev->netdev_ops->ndo_uninit(dev);
10344	if (dev->priv_destructor)
10345		dev->priv_destructor(dev);
10346err_free_name:
10347	netdev_name_node_free(dev->name_node);
10348	goto out;
10349}
10350EXPORT_SYMBOL(register_netdevice);
10351
10352/**
10353 *	init_dummy_netdev	- init a dummy network device for NAPI
10354 *	@dev: device to init
10355 *
10356 *	This takes a network device structure and initialize the minimum
10357 *	amount of fields so it can be used to schedule NAPI polls without
10358 *	registering a full blown interface. This is to be used by drivers
10359 *	that need to tie several hardware interfaces to a single NAPI
10360 *	poll scheduler due to HW limitations.
10361 */
10362void init_dummy_netdev(struct net_device *dev)
10363{
10364	/* Clear everything. Note we don't initialize spinlocks
10365	 * are they aren't supposed to be taken by any of the
10366	 * NAPI code and this dummy netdev is supposed to be
10367	 * only ever used for NAPI polls
10368	 */
10369	memset(dev, 0, sizeof(struct net_device));
10370
10371	/* make sure we BUG if trying to hit standard
10372	 * register/unregister code path
10373	 */
10374	dev->reg_state = NETREG_DUMMY;
10375
10376	/* NAPI wants this */
10377	INIT_LIST_HEAD(&dev->napi_list);
10378
10379	/* a dummy interface is started by default */
10380	set_bit(__LINK_STATE_PRESENT, &dev->state);
10381	set_bit(__LINK_STATE_START, &dev->state);
10382
10383	/* napi_busy_loop stats accounting wants this */
10384	dev_net_set(dev, &init_net);
10385
10386	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10387	 * because users of this 'device' dont need to change
10388	 * its refcount.
10389	 */
 
 
10390}
10391EXPORT_SYMBOL_GPL(init_dummy_netdev);
10392
10393
10394/**
10395 *	register_netdev	- register a network device
10396 *	@dev: device to register
10397 *
10398 *	Take a completed network device structure and add it to the kernel
10399 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10400 *	chain. 0 is returned on success. A negative errno code is returned
10401 *	on a failure to set up the device, or if the name is a duplicate.
10402 *
10403 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10404 *	and expands the device name if you passed a format string to
10405 *	alloc_netdev.
10406 */
10407int register_netdev(struct net_device *dev)
10408{
10409	int err;
10410
10411	if (rtnl_lock_killable())
10412		return -EINTR;
10413	err = register_netdevice(dev);
10414	rtnl_unlock();
10415	return err;
10416}
10417EXPORT_SYMBOL(register_netdev);
10418
10419int netdev_refcnt_read(const struct net_device *dev)
10420{
10421#ifdef CONFIG_PCPU_DEV_REFCNT
10422	int i, refcnt = 0;
10423
10424	for_each_possible_cpu(i)
10425		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10426	return refcnt;
10427#else
10428	return refcount_read(&dev->dev_refcnt);
10429#endif
10430}
10431EXPORT_SYMBOL(netdev_refcnt_read);
10432
10433int netdev_unregister_timeout_secs __read_mostly = 10;
10434
10435#define WAIT_REFS_MIN_MSECS 1
10436#define WAIT_REFS_MAX_MSECS 250
10437/**
10438 * netdev_wait_allrefs_any - wait until all references are gone.
10439 * @list: list of net_devices to wait on
10440 *
10441 * This is called when unregistering network devices.
10442 *
10443 * Any protocol or device that holds a reference should register
10444 * for netdevice notification, and cleanup and put back the
10445 * reference if they receive an UNREGISTER event.
10446 * We can get stuck here if buggy protocols don't correctly
10447 * call dev_put.
10448 */
10449static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10450{
10451	unsigned long rebroadcast_time, warning_time;
10452	struct net_device *dev;
10453	int wait = 0;
10454
10455	rebroadcast_time = warning_time = jiffies;
10456
10457	list_for_each_entry(dev, list, todo_list)
10458		if (netdev_refcnt_read(dev) == 1)
10459			return dev;
10460
10461	while (true) {
10462		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10463			rtnl_lock();
10464
10465			/* Rebroadcast unregister notification */
10466			list_for_each_entry(dev, list, todo_list)
10467				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10468
10469			__rtnl_unlock();
10470			rcu_barrier();
10471			rtnl_lock();
10472
10473			list_for_each_entry(dev, list, todo_list)
10474				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10475					     &dev->state)) {
10476					/* We must not have linkwatch events
10477					 * pending on unregister. If this
10478					 * happens, we simply run the queue
10479					 * unscheduled, resulting in a noop
10480					 * for this device.
10481					 */
10482					linkwatch_run_queue();
10483					break;
10484				}
10485
10486			__rtnl_unlock();
10487
10488			rebroadcast_time = jiffies;
10489		}
10490
10491		rcu_barrier();
10492
10493		if (!wait) {
10494			wait = WAIT_REFS_MIN_MSECS;
10495		} else {
10496			msleep(wait);
10497			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10498		}
10499
10500		list_for_each_entry(dev, list, todo_list)
10501			if (netdev_refcnt_read(dev) == 1)
10502				return dev;
10503
10504		if (time_after(jiffies, warning_time +
10505			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10506			list_for_each_entry(dev, list, todo_list) {
10507				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10508					 dev->name, netdev_refcnt_read(dev));
10509				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10510			}
10511
 
 
 
 
 
10512			warning_time = jiffies;
10513		}
10514	}
10515}
10516
10517/* The sequence is:
10518 *
10519 *	rtnl_lock();
10520 *	...
10521 *	register_netdevice(x1);
10522 *	register_netdevice(x2);
10523 *	...
10524 *	unregister_netdevice(y1);
10525 *	unregister_netdevice(y2);
10526 *      ...
10527 *	rtnl_unlock();
10528 *	free_netdev(y1);
10529 *	free_netdev(y2);
10530 *
10531 * We are invoked by rtnl_unlock().
10532 * This allows us to deal with problems:
10533 * 1) We can delete sysfs objects which invoke hotplug
10534 *    without deadlocking with linkwatch via keventd.
10535 * 2) Since we run with the RTNL semaphore not held, we can sleep
10536 *    safely in order to wait for the netdev refcnt to drop to zero.
10537 *
10538 * We must not return until all unregister events added during
10539 * the interval the lock was held have been completed.
10540 */
10541void netdev_run_todo(void)
10542{
10543	struct net_device *dev, *tmp;
10544	struct list_head list;
10545	int cnt;
10546#ifdef CONFIG_LOCKDEP
10547	struct list_head unlink_list;
10548
10549	list_replace_init(&net_unlink_list, &unlink_list);
10550
10551	while (!list_empty(&unlink_list)) {
10552		struct net_device *dev = list_first_entry(&unlink_list,
10553							  struct net_device,
10554							  unlink_list);
10555		list_del_init(&dev->unlink_list);
10556		dev->nested_level = dev->lower_level - 1;
10557	}
10558#endif
10559
10560	/* Snapshot list, allow later requests */
10561	list_replace_init(&net_todo_list, &list);
10562
10563	__rtnl_unlock();
10564
10565	/* Wait for rcu callbacks to finish before next phase */
10566	if (!list_empty(&list))
10567		rcu_barrier();
 
10568
10569	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10570		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10571			netdev_WARN(dev, "run_todo but not unregistering\n");
10572			list_del(&dev->todo_list);
 
10573			continue;
10574		}
10575
10576		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10577		linkwatch_sync_dev(dev);
10578	}
10579
10580	cnt = 0;
10581	while (!list_empty(&list)) {
10582		dev = netdev_wait_allrefs_any(&list);
10583		list_del(&dev->todo_list);
10584
10585		/* paranoia */
10586		BUG_ON(netdev_refcnt_read(dev) != 1);
10587		BUG_ON(!list_empty(&dev->ptype_all));
10588		BUG_ON(!list_empty(&dev->ptype_specific));
10589		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10590		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10591
10592		netdev_do_free_pcpu_stats(dev);
10593		if (dev->priv_destructor)
10594			dev->priv_destructor(dev);
10595		if (dev->needs_free_netdev)
10596			free_netdev(dev);
10597
10598		cnt++;
 
10599
10600		/* Free network device */
10601		kobject_put(&dev->dev.kobj);
10602	}
10603	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10604		wake_up(&netdev_unregistering_wq);
10605}
10606
10607/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10608 * all the same fields in the same order as net_device_stats, with only
10609 * the type differing, but rtnl_link_stats64 may have additional fields
10610 * at the end for newer counters.
10611 */
10612void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10613			     const struct net_device_stats *netdev_stats)
10614{
10615	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10616	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
 
 
 
 
10617	u64 *dst = (u64 *)stats64;
10618
10619	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
 
10620	for (i = 0; i < n; i++)
10621		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10622	/* zero out counters that only exist in rtnl_link_stats64 */
10623	memset((char *)stats64 + n * sizeof(u64), 0,
10624	       sizeof(*stats64) - n * sizeof(u64));
10625}
10626EXPORT_SYMBOL(netdev_stats_to_stats64);
10627
10628static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10629		struct net_device *dev)
10630{
10631	struct net_device_core_stats __percpu *p;
10632
10633	p = alloc_percpu_gfp(struct net_device_core_stats,
10634			     GFP_ATOMIC | __GFP_NOWARN);
10635
10636	if (p && cmpxchg(&dev->core_stats, NULL, p))
10637		free_percpu(p);
10638
10639	/* This READ_ONCE() pairs with the cmpxchg() above */
10640	return READ_ONCE(dev->core_stats);
10641}
10642
10643noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10644{
10645	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10646	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10647	unsigned long __percpu *field;
10648
10649	if (unlikely(!p)) {
10650		p = netdev_core_stats_alloc(dev);
10651		if (!p)
10652			return;
10653	}
10654
10655	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10656	this_cpu_inc(*field);
10657}
10658EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10659
10660/**
10661 *	dev_get_stats	- get network device statistics
10662 *	@dev: device to get statistics from
10663 *	@storage: place to store stats
10664 *
10665 *	Get network statistics from device. Return @storage.
10666 *	The device driver may provide its own method by setting
10667 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10668 *	otherwise the internal statistics structure is used.
10669 */
10670struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10671					struct rtnl_link_stats64 *storage)
10672{
10673	const struct net_device_ops *ops = dev->netdev_ops;
10674	const struct net_device_core_stats __percpu *p;
10675
10676	if (ops->ndo_get_stats64) {
10677		memset(storage, 0, sizeof(*storage));
10678		ops->ndo_get_stats64(dev, storage);
10679	} else if (ops->ndo_get_stats) {
10680		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10681	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10682		dev_get_tstats64(dev, storage);
10683	} else {
10684		netdev_stats_to_stats64(storage, &dev->stats);
10685	}
10686
10687	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10688	p = READ_ONCE(dev->core_stats);
10689	if (p) {
10690		const struct net_device_core_stats *core_stats;
10691		int i;
10692
10693		for_each_possible_cpu(i) {
10694			core_stats = per_cpu_ptr(p, i);
10695			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10696			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10697			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10698			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10699		}
10700	}
10701	return storage;
10702}
10703EXPORT_SYMBOL(dev_get_stats);
10704
10705/**
10706 *	dev_fetch_sw_netstats - get per-cpu network device statistics
10707 *	@s: place to store stats
10708 *	@netstats: per-cpu network stats to read from
10709 *
10710 *	Read per-cpu network statistics and populate the related fields in @s.
10711 */
10712void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10713			   const struct pcpu_sw_netstats __percpu *netstats)
10714{
10715	int cpu;
10716
10717	for_each_possible_cpu(cpu) {
10718		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10719		const struct pcpu_sw_netstats *stats;
10720		unsigned int start;
10721
10722		stats = per_cpu_ptr(netstats, cpu);
10723		do {
10724			start = u64_stats_fetch_begin(&stats->syncp);
10725			rx_packets = u64_stats_read(&stats->rx_packets);
10726			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10727			tx_packets = u64_stats_read(&stats->tx_packets);
10728			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10729		} while (u64_stats_fetch_retry(&stats->syncp, start));
10730
10731		s->rx_packets += rx_packets;
10732		s->rx_bytes   += rx_bytes;
10733		s->tx_packets += tx_packets;
10734		s->tx_bytes   += tx_bytes;
10735	}
10736}
10737EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10738
10739/**
10740 *	dev_get_tstats64 - ndo_get_stats64 implementation
10741 *	@dev: device to get statistics from
10742 *	@s: place to store stats
10743 *
10744 *	Populate @s from dev->stats and dev->tstats. Can be used as
10745 *	ndo_get_stats64() callback.
10746 */
10747void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10748{
10749	netdev_stats_to_stats64(s, &dev->stats);
10750	dev_fetch_sw_netstats(s, dev->tstats);
10751}
10752EXPORT_SYMBOL_GPL(dev_get_tstats64);
10753
10754struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10755{
10756	struct netdev_queue *queue = dev_ingress_queue(dev);
10757
10758#ifdef CONFIG_NET_CLS_ACT
10759	if (queue)
10760		return queue;
10761	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10762	if (!queue)
10763		return NULL;
10764	netdev_init_one_queue(dev, queue, NULL);
10765	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10766	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10767	rcu_assign_pointer(dev->ingress_queue, queue);
10768#endif
10769	return queue;
10770}
10771
10772static const struct ethtool_ops default_ethtool_ops;
10773
10774void netdev_set_default_ethtool_ops(struct net_device *dev,
10775				    const struct ethtool_ops *ops)
10776{
10777	if (dev->ethtool_ops == &default_ethtool_ops)
10778		dev->ethtool_ops = ops;
10779}
10780EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10781
10782/**
10783 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10784 * @dev: netdev to enable the IRQ coalescing on
10785 *
10786 * Sets a conservative default for SW IRQ coalescing. Users can use
10787 * sysfs attributes to override the default values.
10788 */
10789void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10790{
10791	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10792
10793	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10794		dev->gro_flush_timeout = 20000;
10795		dev->napi_defer_hard_irqs = 1;
10796	}
10797}
10798EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10799
10800void netdev_freemem(struct net_device *dev)
10801{
10802	char *addr = (char *)dev - dev->padded;
10803
10804	kvfree(addr);
10805}
10806
10807/**
10808 * alloc_netdev_mqs - allocate network device
10809 * @sizeof_priv: size of private data to allocate space for
10810 * @name: device name format string
10811 * @name_assign_type: origin of device name
10812 * @setup: callback to initialize device
10813 * @txqs: the number of TX subqueues to allocate
10814 * @rxqs: the number of RX subqueues to allocate
10815 *
10816 * Allocates a struct net_device with private data area for driver use
10817 * and performs basic initialization.  Also allocates subqueue structs
10818 * for each queue on the device.
10819 */
10820struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10821		unsigned char name_assign_type,
10822		void (*setup)(struct net_device *),
10823		unsigned int txqs, unsigned int rxqs)
10824{
10825	struct net_device *dev;
10826	unsigned int alloc_size;
10827	struct net_device *p;
10828
10829	BUG_ON(strlen(name) >= sizeof(dev->name));
10830
10831	if (txqs < 1) {
10832		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
 
10833		return NULL;
10834	}
10835
 
10836	if (rxqs < 1) {
10837		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
 
10838		return NULL;
10839	}
 
10840
10841	alloc_size = sizeof(struct net_device);
10842	if (sizeof_priv) {
10843		/* ensure 32-byte alignment of private area */
10844		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10845		alloc_size += sizeof_priv;
10846	}
10847	/* ensure 32-byte alignment of whole construct */
10848	alloc_size += NETDEV_ALIGN - 1;
10849
10850	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10851	if (!p)
 
10852		return NULL;
 
10853
10854	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10855	dev->padded = (char *)dev - (char *)p;
10856
10857	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10858#ifdef CONFIG_PCPU_DEV_REFCNT
10859	dev->pcpu_refcnt = alloc_percpu(int);
10860	if (!dev->pcpu_refcnt)
10861		goto free_dev;
10862	__dev_hold(dev);
10863#else
10864	refcount_set(&dev->dev_refcnt, 1);
10865#endif
10866
10867	if (dev_addr_init(dev))
10868		goto free_pcpu;
10869
10870	dev_mc_init(dev);
10871	dev_uc_init(dev);
10872
10873	dev_net_set(dev, &init_net);
10874
10875	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10876	dev->xdp_zc_max_segs = 1;
10877	dev->gso_max_segs = GSO_MAX_SEGS;
10878	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10879	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10880	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10881	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10882	dev->tso_max_segs = TSO_MAX_SEGS;
10883	dev->upper_level = 1;
10884	dev->lower_level = 1;
10885#ifdef CONFIG_LOCKDEP
10886	dev->nested_level = 0;
10887	INIT_LIST_HEAD(&dev->unlink_list);
10888#endif
10889
10890	INIT_LIST_HEAD(&dev->napi_list);
10891	INIT_LIST_HEAD(&dev->unreg_list);
10892	INIT_LIST_HEAD(&dev->close_list);
10893	INIT_LIST_HEAD(&dev->link_watch_list);
10894	INIT_LIST_HEAD(&dev->adj_list.upper);
10895	INIT_LIST_HEAD(&dev->adj_list.lower);
10896	INIT_LIST_HEAD(&dev->ptype_all);
10897	INIT_LIST_HEAD(&dev->ptype_specific);
10898	INIT_LIST_HEAD(&dev->net_notifier_list);
10899#ifdef CONFIG_NET_SCHED
10900	hash_init(dev->qdisc_hash);
10901#endif
10902	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10903	setup(dev);
10904
10905	if (!dev->tx_queue_len) {
10906		dev->priv_flags |= IFF_NO_QUEUE;
10907		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10908	}
10909
10910	dev->num_tx_queues = txqs;
10911	dev->real_num_tx_queues = txqs;
10912	if (netif_alloc_netdev_queues(dev))
10913		goto free_all;
10914
 
10915	dev->num_rx_queues = rxqs;
10916	dev->real_num_rx_queues = rxqs;
10917	if (netif_alloc_rx_queues(dev))
10918		goto free_all;
 
10919
10920	strcpy(dev->name, name);
10921	dev->name_assign_type = name_assign_type;
10922	dev->group = INIT_NETDEV_GROUP;
10923	if (!dev->ethtool_ops)
10924		dev->ethtool_ops = &default_ethtool_ops;
10925
10926	nf_hook_netdev_init(dev);
10927
10928	return dev;
10929
10930free_all:
10931	free_netdev(dev);
10932	return NULL;
10933
10934free_pcpu:
10935#ifdef CONFIG_PCPU_DEV_REFCNT
10936	free_percpu(dev->pcpu_refcnt);
10937free_dev:
 
 
10938#endif
10939	netdev_freemem(dev);
 
 
10940	return NULL;
10941}
10942EXPORT_SYMBOL(alloc_netdev_mqs);
10943
10944/**
10945 * free_netdev - free network device
10946 * @dev: device
10947 *
10948 * This function does the last stage of destroying an allocated device
10949 * interface. The reference to the device object is released. If this
10950 * is the last reference then it will be freed.Must be called in process
10951 * context.
10952 */
10953void free_netdev(struct net_device *dev)
10954{
10955	struct napi_struct *p, *n;
10956
10957	might_sleep();
10958
10959	/* When called immediately after register_netdevice() failed the unwind
10960	 * handling may still be dismantling the device. Handle that case by
10961	 * deferring the free.
10962	 */
10963	if (dev->reg_state == NETREG_UNREGISTERING) {
10964		ASSERT_RTNL();
10965		dev->needs_free_netdev = true;
10966		return;
10967	}
10968
10969	netif_free_tx_queues(dev);
10970	netif_free_rx_queues(dev);
 
 
10971
10972	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10973
10974	/* Flush device addresses */
10975	dev_addr_flush(dev);
10976
10977	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10978		netif_napi_del(p);
10979
10980	ref_tracker_dir_exit(&dev->refcnt_tracker);
10981#ifdef CONFIG_PCPU_DEV_REFCNT
10982	free_percpu(dev->pcpu_refcnt);
10983	dev->pcpu_refcnt = NULL;
10984#endif
10985	free_percpu(dev->core_stats);
10986	dev->core_stats = NULL;
10987	free_percpu(dev->xdp_bulkq);
10988	dev->xdp_bulkq = NULL;
10989
10990	/*  Compatibility with error handling in drivers */
10991	if (dev->reg_state == NETREG_UNINITIALIZED) {
10992		netdev_freemem(dev);
10993		return;
10994	}
10995
10996	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10997	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10998
10999	/* will free via device release */
11000	put_device(&dev->dev);
11001}
11002EXPORT_SYMBOL(free_netdev);
11003
11004/**
11005 *	synchronize_net -  Synchronize with packet receive processing
11006 *
11007 *	Wait for packets currently being received to be done.
11008 *	Does not block later packets from starting.
11009 */
11010void synchronize_net(void)
11011{
11012	might_sleep();
11013	if (rtnl_is_locked())
11014		synchronize_rcu_expedited();
11015	else
11016		synchronize_rcu();
11017}
11018EXPORT_SYMBOL(synchronize_net);
11019
11020/**
11021 *	unregister_netdevice_queue - remove device from the kernel
11022 *	@dev: device
11023 *	@head: list
11024 *
11025 *	This function shuts down a device interface and removes it
11026 *	from the kernel tables.
11027 *	If head not NULL, device is queued to be unregistered later.
11028 *
11029 *	Callers must hold the rtnl semaphore.  You may want
11030 *	unregister_netdev() instead of this.
11031 */
11032
11033void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11034{
11035	ASSERT_RTNL();
11036
11037	if (head) {
11038		list_move_tail(&dev->unreg_list, head);
11039	} else {
11040		LIST_HEAD(single);
11041
11042		list_add(&dev->unreg_list, &single);
11043		unregister_netdevice_many(&single);
11044	}
11045}
11046EXPORT_SYMBOL(unregister_netdevice_queue);
11047
11048void unregister_netdevice_many_notify(struct list_head *head,
11049				      u32 portid, const struct nlmsghdr *nlh)
11050{
11051	struct net_device *dev, *tmp;
11052	LIST_HEAD(close_head);
11053	int cnt = 0;
11054
11055	BUG_ON(dev_boot_phase);
11056	ASSERT_RTNL();
11057
11058	if (list_empty(head))
11059		return;
11060
11061	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11062		/* Some devices call without registering
11063		 * for initialization unwind. Remove those
11064		 * devices and proceed with the remaining.
11065		 */
11066		if (dev->reg_state == NETREG_UNINITIALIZED) {
11067			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11068				 dev->name, dev);
11069
11070			WARN_ON(1);
11071			list_del(&dev->unreg_list);
11072			continue;
11073		}
11074		dev->dismantle = true;
11075		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11076	}
11077
11078	/* If device is running, close it first. */
11079	list_for_each_entry(dev, head, unreg_list)
11080		list_add_tail(&dev->close_list, &close_head);
11081	dev_close_many(&close_head, true);
11082
11083	list_for_each_entry(dev, head, unreg_list) {
11084		/* And unlink it from device chain. */
11085		unlist_netdevice(dev);
11086		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11087	}
11088	flush_all_backlogs();
11089
11090	synchronize_net();
11091
11092	list_for_each_entry(dev, head, unreg_list) {
11093		struct sk_buff *skb = NULL;
11094
11095		/* Shutdown queueing discipline. */
11096		dev_shutdown(dev);
11097		dev_tcx_uninstall(dev);
11098		dev_xdp_uninstall(dev);
11099		bpf_dev_bound_netdev_unregister(dev);
11100
11101		netdev_offload_xstats_disable_all(dev);
11102
11103		/* Notify protocols, that we are about to destroy
11104		 * this device. They should clean all the things.
11105		 */
11106		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11107
11108		if (!dev->rtnl_link_ops ||
11109		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11110			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11111						     GFP_KERNEL, NULL, 0,
11112						     portid, nlh);
11113
11114		/*
11115		 *	Flush the unicast and multicast chains
11116		 */
11117		dev_uc_flush(dev);
11118		dev_mc_flush(dev);
11119
11120		netdev_name_node_alt_flush(dev);
11121		netdev_name_node_free(dev->name_node);
11122
11123		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11124
11125		if (dev->netdev_ops->ndo_uninit)
11126			dev->netdev_ops->ndo_uninit(dev);
11127
11128		if (skb)
11129			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11130
11131		/* Notifier chain MUST detach us all upper devices. */
11132		WARN_ON(netdev_has_any_upper_dev(dev));
11133		WARN_ON(netdev_has_any_lower_dev(dev));
11134
11135		/* Remove entries from kobject tree */
11136		netdev_unregister_kobject(dev);
11137#ifdef CONFIG_XPS
11138		/* Remove XPS queueing entries */
11139		netif_reset_xps_queues_gt(dev, 0);
11140#endif
11141	}
11142
11143	synchronize_net();
11144
11145	list_for_each_entry(dev, head, unreg_list) {
11146		netdev_put(dev, &dev->dev_registered_tracker);
11147		net_set_todo(dev);
11148		cnt++;
11149	}
11150	atomic_add(cnt, &dev_unreg_count);
11151
11152	list_del(head);
11153}
 
11154
11155/**
11156 *	unregister_netdevice_many - unregister many devices
11157 *	@head: list of devices
11158 *
11159 *  Note: As most callers use a stack allocated list_head,
11160 *  we force a list_del() to make sure stack wont be corrupted later.
11161 */
11162void unregister_netdevice_many(struct list_head *head)
11163{
11164	unregister_netdevice_many_notify(head, 0, NULL);
 
 
 
 
 
 
11165}
11166EXPORT_SYMBOL(unregister_netdevice_many);
11167
11168/**
11169 *	unregister_netdev - remove device from the kernel
11170 *	@dev: device
11171 *
11172 *	This function shuts down a device interface and removes it
11173 *	from the kernel tables.
11174 *
11175 *	This is just a wrapper for unregister_netdevice that takes
11176 *	the rtnl semaphore.  In general you want to use this and not
11177 *	unregister_netdevice.
11178 */
11179void unregister_netdev(struct net_device *dev)
11180{
11181	rtnl_lock();
11182	unregister_netdevice(dev);
11183	rtnl_unlock();
11184}
11185EXPORT_SYMBOL(unregister_netdev);
11186
11187/**
11188 *	__dev_change_net_namespace - move device to different nethost namespace
11189 *	@dev: device
11190 *	@net: network namespace
11191 *	@pat: If not NULL name pattern to try if the current device name
11192 *	      is already taken in the destination network namespace.
11193 *	@new_ifindex: If not zero, specifies device index in the target
11194 *	              namespace.
11195 *
11196 *	This function shuts down a device interface and moves it
11197 *	to a new network namespace. On success 0 is returned, on
11198 *	a failure a netagive errno code is returned.
11199 *
11200 *	Callers must hold the rtnl semaphore.
11201 */
11202
11203int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11204			       const char *pat, int new_ifindex)
11205{
11206	struct netdev_name_node *name_node;
11207	struct net *net_old = dev_net(dev);
11208	char new_name[IFNAMSIZ] = {};
11209	int err, new_nsid;
11210
11211	ASSERT_RTNL();
11212
11213	/* Don't allow namespace local devices to be moved. */
11214	err = -EINVAL;
11215	if (dev->features & NETIF_F_NETNS_LOCAL)
11216		goto out;
11217
11218	/* Ensure the device has been registrered */
 
11219	if (dev->reg_state != NETREG_REGISTERED)
11220		goto out;
11221
11222	/* Get out if there is nothing todo */
11223	err = 0;
11224	if (net_eq(net_old, net))
11225		goto out;
11226
11227	/* Pick the destination device name, and ensure
11228	 * we can use it in the destination network namespace.
11229	 */
11230	err = -EEXIST;
11231	if (netdev_name_in_use(net, dev->name)) {
11232		/* We get here if we can't use the current device name */
11233		if (!pat)
11234			goto out;
11235		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11236		if (err < 0)
11237			goto out;
11238	}
11239	/* Check that none of the altnames conflicts. */
11240	err = -EEXIST;
11241	netdev_for_each_altname(dev, name_node)
11242		if (netdev_name_in_use(net, name_node->name))
11243			goto out;
11244
11245	/* Check that new_ifindex isn't used yet. */
11246	if (new_ifindex) {
11247		err = dev_index_reserve(net, new_ifindex);
11248		if (err < 0)
11249			goto out;
11250	} else {
11251		/* If there is an ifindex conflict assign a new one */
11252		err = dev_index_reserve(net, dev->ifindex);
11253		if (err == -EBUSY)
11254			err = dev_index_reserve(net, 0);
11255		if (err < 0)
11256			goto out;
11257		new_ifindex = err;
11258	}
11259
11260	/*
11261	 * And now a mini version of register_netdevice unregister_netdevice.
11262	 */
11263
11264	/* If device is running close it first. */
11265	dev_close(dev);
11266
11267	/* And unlink it from device chain */
 
11268	unlist_netdevice(dev);
11269
11270	synchronize_net();
11271
11272	/* Shutdown queueing discipline. */
11273	dev_shutdown(dev);
11274
11275	/* Notify protocols, that we are about to destroy
11276	 * this device. They should clean all the things.
11277	 *
11278	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11279	 * This is wanted because this way 8021q and macvlan know
11280	 * the device is just moving and can keep their slaves up.
11281	 */
11282	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11283	rcu_barrier();
11284
11285	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11286
11287	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11288			    new_ifindex);
 
 
 
 
11289
11290	/*
11291	 *	Flush the unicast and multicast chains
11292	 */
11293	dev_uc_flush(dev);
11294	dev_mc_flush(dev);
11295
11296	/* Send a netdev-removed uevent to the old namespace */
11297	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11298	netdev_adjacent_del_links(dev);
11299
11300	/* Move per-net netdevice notifiers that are following the netdevice */
11301	move_netdevice_notifiers_dev_net(dev, net);
11302
11303	/* Actually switch the network namespace */
11304	dev_net_set(dev, net);
11305	dev->ifindex = new_ifindex;
11306
11307	if (new_name[0]) /* Rename the netdev to prepared name */
11308		strscpy(dev->name, new_name, IFNAMSIZ);
 
 
 
 
 
11309
11310	/* Fixup kobjects */
11311	dev_set_uevent_suppress(&dev->dev, 1);
11312	err = device_rename(&dev->dev, dev->name);
11313	dev_set_uevent_suppress(&dev->dev, 0);
11314	WARN_ON(err);
11315
11316	/* Send a netdev-add uevent to the new namespace */
11317	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11318	netdev_adjacent_add_links(dev);
11319
11320	/* Adapt owner in case owning user namespace of target network
11321	 * namespace is different from the original one.
11322	 */
11323	err = netdev_change_owner(dev, net_old, net);
11324	WARN_ON(err);
11325
11326	/* Add the device back in the hashes */
11327	list_netdevice(dev);
11328
11329	/* Notify protocols, that a new device appeared. */
11330	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11331
11332	/*
11333	 *	Prevent userspace races by waiting until the network
11334	 *	device is fully setup before sending notifications.
11335	 */
11336	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11337
11338	synchronize_net();
11339	err = 0;
11340out:
11341	return err;
11342}
11343EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11344
11345static int dev_cpu_dead(unsigned int oldcpu)
 
 
11346{
11347	struct sk_buff **list_skb;
11348	struct sk_buff *skb;
11349	unsigned int cpu;
11350	struct softnet_data *sd, *oldsd, *remsd = NULL;
 
 
 
11351
11352	local_irq_disable();
11353	cpu = smp_processor_id();
11354	sd = &per_cpu(softnet_data, cpu);
11355	oldsd = &per_cpu(softnet_data, oldcpu);
11356
11357	/* Find end of our completion_queue. */
11358	list_skb = &sd->completion_queue;
11359	while (*list_skb)
11360		list_skb = &(*list_skb)->next;
11361	/* Append completion queue from offline CPU. */
11362	*list_skb = oldsd->completion_queue;
11363	oldsd->completion_queue = NULL;
11364
11365	/* Append output queue from offline CPU. */
11366	if (oldsd->output_queue) {
11367		*sd->output_queue_tailp = oldsd->output_queue;
11368		sd->output_queue_tailp = oldsd->output_queue_tailp;
11369		oldsd->output_queue = NULL;
11370		oldsd->output_queue_tailp = &oldsd->output_queue;
11371	}
11372	/* Append NAPI poll list from offline CPU, with one exception :
11373	 * process_backlog() must be called by cpu owning percpu backlog.
11374	 * We properly handle process_queue & input_pkt_queue later.
11375	 */
11376	while (!list_empty(&oldsd->poll_list)) {
11377		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11378							    struct napi_struct,
11379							    poll_list);
11380
11381		list_del_init(&napi->poll_list);
11382		if (napi->poll == process_backlog)
11383			napi->state = 0;
11384		else
11385			____napi_schedule(sd, napi);
11386	}
11387
11388	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11389	local_irq_enable();
11390
11391#ifdef CONFIG_RPS
11392	remsd = oldsd->rps_ipi_list;
11393	oldsd->rps_ipi_list = NULL;
11394#endif
11395	/* send out pending IPI's on offline CPU */
11396	net_rps_send_ipi(remsd);
11397
11398	/* Process offline CPU's input_pkt_queue */
11399	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11400		netif_rx(skb);
11401		input_queue_head_incr(oldsd);
11402	}
11403	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11404		netif_rx(skb);
11405		input_queue_head_incr(oldsd);
11406	}
11407
11408	return 0;
11409}
11410
 
11411/**
11412 *	netdev_increment_features - increment feature set by one
11413 *	@all: current feature set
11414 *	@one: new feature set
11415 *	@mask: mask feature set
11416 *
11417 *	Computes a new feature set after adding a device with feature set
11418 *	@one to the master device with current feature set @all.  Will not
11419 *	enable anything that is off in @mask. Returns the new feature set.
11420 */
11421netdev_features_t netdev_increment_features(netdev_features_t all,
11422	netdev_features_t one, netdev_features_t mask)
11423{
11424	if (mask & NETIF_F_HW_CSUM)
11425		mask |= NETIF_F_CSUM_MASK;
11426	mask |= NETIF_F_VLAN_CHALLENGED;
11427
11428	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11429	all &= one | ~NETIF_F_ALL_FOR_ALL;
11430
 
 
 
 
11431	/* If one device supports hw checksumming, set for all. */
11432	if (all & NETIF_F_HW_CSUM)
11433		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11434
11435	return all;
11436}
11437EXPORT_SYMBOL(netdev_increment_features);
11438
11439static struct hlist_head * __net_init netdev_create_hash(void)
11440{
11441	int i;
11442	struct hlist_head *hash;
11443
11444	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11445	if (hash != NULL)
11446		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11447			INIT_HLIST_HEAD(&hash[i]);
11448
11449	return hash;
11450}
11451
11452/* Initialize per network namespace state */
11453static int __net_init netdev_init(struct net *net)
11454{
11455	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11456		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11457
11458	INIT_LIST_HEAD(&net->dev_base_head);
11459
11460	net->dev_name_head = netdev_create_hash();
11461	if (net->dev_name_head == NULL)
11462		goto err_name;
11463
11464	net->dev_index_head = netdev_create_hash();
11465	if (net->dev_index_head == NULL)
11466		goto err_idx;
11467
11468	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11469
11470	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11471
11472	return 0;
11473
11474err_idx:
11475	kfree(net->dev_name_head);
11476err_name:
11477	return -ENOMEM;
11478}
11479
11480/**
11481 *	netdev_drivername - network driver for the device
11482 *	@dev: network device
11483 *
11484 *	Determine network driver for device.
11485 */
11486const char *netdev_drivername(const struct net_device *dev)
11487{
11488	const struct device_driver *driver;
11489	const struct device *parent;
11490	const char *empty = "";
11491
11492	parent = dev->dev.parent;
11493	if (!parent)
11494		return empty;
11495
11496	driver = parent->driver;
11497	if (driver && driver->name)
11498		return driver->name;
11499	return empty;
11500}
11501
11502static void __netdev_printk(const char *level, const struct net_device *dev,
11503			    struct va_format *vaf)
11504{
11505	if (dev && dev->dev.parent) {
11506		dev_printk_emit(level[1] - '0',
11507				dev->dev.parent,
11508				"%s %s %s%s: %pV",
11509				dev_driver_string(dev->dev.parent),
11510				dev_name(dev->dev.parent),
11511				netdev_name(dev), netdev_reg_state(dev),
11512				vaf);
11513	} else if (dev) {
11514		printk("%s%s%s: %pV",
11515		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11516	} else {
11517		printk("%s(NULL net_device): %pV", level, vaf);
11518	}
11519}
11520
11521void netdev_printk(const char *level, const struct net_device *dev,
11522		   const char *format, ...)
11523{
11524	struct va_format vaf;
11525	va_list args;
 
11526
11527	va_start(args, format);
11528
11529	vaf.fmt = format;
11530	vaf.va = &args;
11531
11532	__netdev_printk(level, dev, &vaf);
11533
11534	va_end(args);
 
 
11535}
11536EXPORT_SYMBOL(netdev_printk);
11537
11538#define define_netdev_printk_level(func, level)			\
11539void func(const struct net_device *dev, const char *fmt, ...)	\
11540{								\
 
11541	struct va_format vaf;					\
11542	va_list args;						\
11543								\
11544	va_start(args, fmt);					\
11545								\
11546	vaf.fmt = fmt;						\
11547	vaf.va = &args;						\
11548								\
11549	__netdev_printk(level, dev, &vaf);			\
11550								\
11551	va_end(args);						\
 
 
11552}								\
11553EXPORT_SYMBOL(func);
11554
11555define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11556define_netdev_printk_level(netdev_alert, KERN_ALERT);
11557define_netdev_printk_level(netdev_crit, KERN_CRIT);
11558define_netdev_printk_level(netdev_err, KERN_ERR);
11559define_netdev_printk_level(netdev_warn, KERN_WARNING);
11560define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11561define_netdev_printk_level(netdev_info, KERN_INFO);
11562
11563static void __net_exit netdev_exit(struct net *net)
11564{
11565	kfree(net->dev_name_head);
11566	kfree(net->dev_index_head);
11567	xa_destroy(&net->dev_by_index);
11568	if (net != &init_net)
11569		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11570}
11571
11572static struct pernet_operations __net_initdata netdev_net_ops = {
11573	.init = netdev_init,
11574	.exit = netdev_exit,
11575};
11576
11577static void __net_exit default_device_exit_net(struct net *net)
11578{
11579	struct netdev_name_node *name_node, *tmp;
11580	struct net_device *dev, *aux;
11581	/*
11582	 * Push all migratable network devices back to the
11583	 * initial network namespace
11584	 */
11585	ASSERT_RTNL();
11586	for_each_netdev_safe(net, dev, aux) {
11587		int err;
11588		char fb_name[IFNAMSIZ];
11589
11590		/* Ignore unmoveable devices (i.e. loopback) */
11591		if (dev->features & NETIF_F_NETNS_LOCAL)
11592			continue;
11593
11594		/* Leave virtual devices for the generic cleanup */
11595		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11596			continue;
11597
11598		/* Push remaining network devices to init_net */
11599		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11600		if (netdev_name_in_use(&init_net, fb_name))
11601			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11602
11603		netdev_for_each_altname_safe(dev, name_node, tmp)
11604			if (netdev_name_in_use(&init_net, name_node->name))
11605				__netdev_name_node_alt_destroy(name_node);
11606
11607		err = dev_change_net_namespace(dev, &init_net, fb_name);
11608		if (err) {
11609			pr_emerg("%s: failed to move %s to init_net: %d\n",
11610				 __func__, dev->name, err);
11611			BUG();
11612		}
11613	}
 
11614}
11615
11616static void __net_exit default_device_exit_batch(struct list_head *net_list)
11617{
11618	/* At exit all network devices most be removed from a network
11619	 * namespace.  Do this in the reverse order of registration.
11620	 * Do this across as many network namespaces as possible to
11621	 * improve batching efficiency.
11622	 */
11623	struct net_device *dev;
11624	struct net *net;
11625	LIST_HEAD(dev_kill_list);
11626
11627	rtnl_lock();
11628	list_for_each_entry(net, net_list, exit_list) {
11629		default_device_exit_net(net);
11630		cond_resched();
11631	}
11632
11633	list_for_each_entry(net, net_list, exit_list) {
11634		for_each_netdev_reverse(net, dev) {
11635			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11636				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11637			else
11638				unregister_netdevice_queue(dev, &dev_kill_list);
11639		}
11640	}
11641	unregister_netdevice_many(&dev_kill_list);
 
11642	rtnl_unlock();
11643}
11644
11645static struct pernet_operations __net_initdata default_device_ops = {
 
11646	.exit_batch = default_device_exit_batch,
11647};
11648
11649static void __init net_dev_struct_check(void)
11650{
11651	/* TX read-mostly hotpath */
11652	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11653	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11654	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11655	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11656	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11657	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11658	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11659	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11660	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11661	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11662	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11663	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11664	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11665#ifdef CONFIG_XPS
11666	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11667#endif
11668#ifdef CONFIG_NETFILTER_EGRESS
11669	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11670#endif
11671#ifdef CONFIG_NET_XGRESS
11672	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11673#endif
11674	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11675
11676	/* TXRX read-mostly hotpath */
11677	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11678	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11679	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11680	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11681	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11682	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11683	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11684
11685	/* RX read-mostly hotpath */
11686	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11687	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11688	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11689	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11690	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11691	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11692	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11693	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11694	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11695	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11696	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11697#ifdef CONFIG_NETPOLL
11698	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11699#endif
11700#ifdef CONFIG_NET_XGRESS
11701	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11702#endif
11703	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11704}
11705
11706/*
11707 *	Initialize the DEV module. At boot time this walks the device list and
11708 *	unhooks any devices that fail to initialise (normally hardware not
11709 *	present) and leaves us with a valid list of present and active devices.
11710 *
11711 */
11712
11713/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11714#define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11715
11716static int net_page_pool_create(int cpuid)
11717{
11718#if IS_ENABLED(CONFIG_PAGE_POOL)
11719	struct page_pool_params page_pool_params = {
11720		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11721		.flags = PP_FLAG_SYSTEM_POOL,
11722		.nid = NUMA_NO_NODE,
11723	};
11724	struct page_pool *pp_ptr;
11725
11726	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11727	if (IS_ERR(pp_ptr))
11728		return -ENOMEM;
11729
11730	per_cpu(system_page_pool, cpuid) = pp_ptr;
11731#endif
11732	return 0;
11733}
11734
11735/*
11736 *       This is called single threaded during boot, so no need
11737 *       to take the rtnl semaphore.
11738 */
11739static int __init net_dev_init(void)
11740{
11741	int i, rc = -ENOMEM;
11742
11743	BUG_ON(!dev_boot_phase);
11744
11745	net_dev_struct_check();
11746
11747	if (dev_proc_init())
11748		goto out;
11749
11750	if (netdev_kobject_init())
11751		goto out;
11752
 
11753	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11754		INIT_LIST_HEAD(&ptype_base[i]);
11755
11756	if (register_pernet_subsys(&netdev_net_ops))
11757		goto out;
11758
11759	/*
11760	 *	Initialise the packet receive queues.
11761	 */
11762
11763	for_each_possible_cpu(i) {
11764		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11765		struct softnet_data *sd = &per_cpu(softnet_data, i);
11766
11767		INIT_WORK(flush, flush_backlog);
11768
11769		skb_queue_head_init(&sd->input_pkt_queue);
11770		skb_queue_head_init(&sd->process_queue);
11771#ifdef CONFIG_XFRM_OFFLOAD
11772		skb_queue_head_init(&sd->xfrm_backlog);
11773#endif
11774		INIT_LIST_HEAD(&sd->poll_list);
 
11775		sd->output_queue_tailp = &sd->output_queue;
11776#ifdef CONFIG_RPS
11777		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
 
 
11778		sd->cpu = i;
11779#endif
11780		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11781		spin_lock_init(&sd->defer_lock);
11782
11783		init_gro_hash(&sd->backlog);
11784		sd->backlog.poll = process_backlog;
11785		sd->backlog.weight = weight_p;
11786
11787		if (net_page_pool_create(i))
11788			goto out;
11789	}
11790
11791	dev_boot_phase = 0;
11792
11793	/* The loopback device is special if any other network devices
11794	 * is present in a network namespace the loopback device must
11795	 * be present. Since we now dynamically allocate and free the
11796	 * loopback device ensure this invariant is maintained by
11797	 * keeping the loopback device as the first device on the
11798	 * list of network devices.  Ensuring the loopback devices
11799	 * is the first device that appears and the last network device
11800	 * that disappears.
11801	 */
11802	if (register_pernet_device(&loopback_net_ops))
11803		goto out;
11804
11805	if (register_pernet_device(&default_device_ops))
11806		goto out;
11807
11808	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11809	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11810
11811	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11812				       NULL, dev_cpu_dead);
11813	WARN_ON(rc < 0);
11814	rc = 0;
11815out:
11816	if (rc < 0) {
11817		for_each_possible_cpu(i) {
11818			struct page_pool *pp_ptr;
11819
11820			pp_ptr = per_cpu(system_page_pool, i);
11821			if (!pp_ptr)
11822				continue;
11823
11824			page_pool_destroy(pp_ptr);
11825			per_cpu(system_page_pool, i) = NULL;
11826		}
11827	}
11828
11829	return rc;
11830}
11831
11832subsys_initcall(net_dev_init);
v3.1
 
   1/*
   2 * 	NET3	Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 * 		Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *              			to 2 if register_netdev gets called
  25 *              			before net_dev_init & also removed a
  26 *              			few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *		Alan Cox	: 	Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *              			indefinitely on dev->refcnt
  71 * 		J Hadi Salim	:	- Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <asm/system.h>
  77#include <linux/bitops.h>
  78#include <linux/capability.h>
  79#include <linux/cpu.h>
  80#include <linux/types.h>
  81#include <linux/kernel.h>
  82#include <linux/hash.h>
  83#include <linux/slab.h>
  84#include <linux/sched.h>
 
  85#include <linux/mutex.h>
 
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
 
 
 
  98#include <net/net_namespace.h>
  99#include <net/sock.h>
 
 100#include <linux/rtnetlink.h>
 101#include <linux/proc_fs.h>
 102#include <linux/seq_file.h>
 103#include <linux/stat.h>
 
 104#include <net/dst.h>
 
 
 105#include <net/pkt_sched.h>
 
 106#include <net/checksum.h>
 107#include <net/xfrm.h>
 
 108#include <linux/highmem.h>
 109#include <linux/init.h>
 110#include <linux/kmod.h>
 111#include <linux/module.h>
 112#include <linux/netpoll.h>
 113#include <linux/rcupdate.h>
 114#include <linux/delay.h>
 115#include <net/wext.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 
 126#include <linux/ipv6.h>
 127#include <linux/in.h>
 128#include <linux/jhash.h>
 129#include <linux/random.h>
 130#include <trace/events/napi.h>
 131#include <trace/events/net.h>
 132#include <trace/events/skb.h>
 133#include <linux/pci.h>
 
 134#include <linux/inetdevice.h>
 135#include <linux/cpu_rmap.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 
 137#include "net-sysfs.h"
 138
 139/* Instead of increasing this, you should create a hash table. */
 140#define MAX_GRO_SKBS 8
 141
 142/* This should be increased if a protocol with a bigger head is added. */
 143#define GRO_MAX_HEAD (MAX_HEADER + 128)
 
 
 144
 145/*
 146 *	The list of packet types we will receive (as opposed to discard)
 147 *	and the routines to invoke.
 148 *
 149 *	Why 16. Because with 16 the only overlap we get on a hash of the
 150 *	low nibble of the protocol value is RARP/SNAP/X.25.
 151 *
 152 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
 153 *             sure which should go first, but I bet it won't make much
 154 *             difference if we are running VLANs.  The good news is that
 155 *             this protocol won't be in the list unless compiled in, so
 156 *             the average user (w/out VLANs) will not be adversely affected.
 157 *             --BLG
 158 *
 159 *		0800	IP
 160 *		8100    802.1Q VLAN
 161 *		0001	802.3
 162 *		0002	AX.25
 163 *		0004	802.2
 164 *		8035	RARP
 165 *		0005	SNAP
 166 *		0805	X.25
 167 *		0806	ARP
 168 *		8137	IPX
 169 *		0009	Localtalk
 170 *		86DD	IPv6
 171 */
 172
 173#define PTYPE_HASH_SIZE	(16)
 174#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
 175
 176static DEFINE_SPINLOCK(ptype_lock);
 177static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 178static struct list_head ptype_all __read_mostly;	/* Taps */
 179
 180/*
 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 182 * semaphore.
 183 *
 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 185 *
 186 * Writers must hold the rtnl semaphore while they loop through the
 187 * dev_base_head list, and hold dev_base_lock for writing when they do the
 188 * actual updates.  This allows pure readers to access the list even
 189 * while a writer is preparing to update it.
 190 *
 191 * To put it another way, dev_base_lock is held for writing only to
 192 * protect against pure readers; the rtnl semaphore provides the
 193 * protection against other writers.
 194 *
 195 * See, for example usages, register_netdevice() and
 196 * unregister_netdevice(), which must be called with the rtnl
 197 * semaphore held.
 198 */
 199DEFINE_RWLOCK(dev_base_lock);
 200EXPORT_SYMBOL(dev_base_lock);
 201
 202static inline void dev_base_seq_inc(struct net *net)
 203{
 204	while (++net->dev_base_seq == 0);
 
 
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 
 210	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 211}
 212
 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 214{
 215	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 216}
 217
 218static inline void rps_lock(struct softnet_data *sd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219{
 220#ifdef CONFIG_RPS
 221	spin_lock(&sd->input_pkt_queue.lock);
 222#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223}
 224
 225static inline void rps_unlock(struct softnet_data *sd)
 226{
 227#ifdef CONFIG_RPS
 228	spin_unlock(&sd->input_pkt_queue.lock);
 229#endif
 
 
 
 230}
 231
 232/* Device list insertion */
 233static int list_netdevice(struct net_device *dev)
 234{
 
 235	struct net *net = dev_net(dev);
 236
 237	ASSERT_RTNL();
 238
 239	write_lock_bh(&dev_base_lock);
 240	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 241	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 242	hlist_add_head_rcu(&dev->index_hlist,
 243			   dev_index_hash(net, dev->ifindex));
 244	write_unlock_bh(&dev_base_lock);
 
 
 
 
 
 245
 246	dev_base_seq_inc(net);
 247
 248	return 0;
 249}
 250
 251/* Device list removal
 252 * caller must respect a RCU grace period before freeing/reusing dev
 253 */
 254static void unlist_netdevice(struct net_device *dev)
 255{
 
 
 
 256	ASSERT_RTNL();
 257
 
 
 
 
 
 258	/* Unlink dev from the device chain */
 259	write_lock_bh(&dev_base_lock);
 260	list_del_rcu(&dev->dev_list);
 261	hlist_del_rcu(&dev->name_hlist);
 262	hlist_del_rcu(&dev->index_hlist);
 263	write_unlock_bh(&dev_base_lock);
 264
 265	dev_base_seq_inc(dev_net(dev));
 266}
 267
 268/*
 269 *	Our notifier list
 270 */
 271
 272static RAW_NOTIFIER_HEAD(netdev_chain);
 273
 274/*
 275 *	Device drivers call our routines to queue packets here. We empty the
 276 *	queue in the local softnet handler.
 277 */
 278
 279DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 280EXPORT_PER_CPU_SYMBOL(softnet_data);
 281
 
 
 
 
 
 
 282#ifdef CONFIG_LOCKDEP
 283/*
 284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 285 * according to dev->type
 286 */
 287static const unsigned short netdev_lock_type[] =
 288	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 289	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 290	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 291	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 292	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 293	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 294	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 295	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 296	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 297	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 298	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 299	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 300	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
 301	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
 302	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
 303	 ARPHRD_VOID, ARPHRD_NONE};
 304
 305static const char *const netdev_lock_name[] =
 306	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 307	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 308	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 309	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 310	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 311	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 312	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 313	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 314	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 315	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 316	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 317	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 318	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
 319	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
 320	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
 321	 "_xmit_VOID", "_xmit_NONE"};
 322
 323static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 324static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 325
 326static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 327{
 328	int i;
 329
 330	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 331		if (netdev_lock_type[i] == dev_type)
 332			return i;
 333	/* the last key is used by default */
 334	return ARRAY_SIZE(netdev_lock_type) - 1;
 335}
 336
 337static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 338						 unsigned short dev_type)
 339{
 340	int i;
 341
 342	i = netdev_lock_pos(dev_type);
 343	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 344				   netdev_lock_name[i]);
 345}
 346
 347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 348{
 349	int i;
 350
 351	i = netdev_lock_pos(dev->type);
 352	lockdep_set_class_and_name(&dev->addr_list_lock,
 353				   &netdev_addr_lock_key[i],
 354				   netdev_lock_name[i]);
 355}
 356#else
 357static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 358						 unsigned short dev_type)
 359{
 360}
 
 361static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 362{
 363}
 364#endif
 365
 366/*******************************************************************************
 
 
 
 
 367
 368		Protocol management and registration routines
 369
 370*******************************************************************************/
 371
 372/*
 373 *	Add a protocol ID to the list. Now that the input handler is
 374 *	smarter we can dispense with all the messy stuff that used to be
 375 *	here.
 376 *
 377 *	BEWARE!!! Protocol handlers, mangling input packets,
 378 *	MUST BE last in hash buckets and checking protocol handlers
 379 *	MUST start from promiscuous ptype_all chain in net_bh.
 380 *	It is true now, do not change it.
 381 *	Explanation follows: if protocol handler, mangling packet, will
 382 *	be the first on list, it is not able to sense, that packet
 383 *	is cloned and should be copied-on-write, so that it will
 384 *	change it and subsequent readers will get broken packet.
 385 *							--ANK (980803)
 386 */
 387
 388static inline struct list_head *ptype_head(const struct packet_type *pt)
 389{
 390	if (pt->type == htons(ETH_P_ALL))
 391		return &ptype_all;
 392	else
 393		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 
 394}
 395
 396/**
 397 *	dev_add_pack - add packet handler
 398 *	@pt: packet type declaration
 399 *
 400 *	Add a protocol handler to the networking stack. The passed &packet_type
 401 *	is linked into kernel lists and may not be freed until it has been
 402 *	removed from the kernel lists.
 403 *
 404 *	This call does not sleep therefore it can not
 405 *	guarantee all CPU's that are in middle of receiving packets
 406 *	will see the new packet type (until the next received packet).
 407 */
 408
 409void dev_add_pack(struct packet_type *pt)
 410{
 411	struct list_head *head = ptype_head(pt);
 412
 413	spin_lock(&ptype_lock);
 414	list_add_rcu(&pt->list, head);
 415	spin_unlock(&ptype_lock);
 416}
 417EXPORT_SYMBOL(dev_add_pack);
 418
 419/**
 420 *	__dev_remove_pack	 - remove packet handler
 421 *	@pt: packet type declaration
 422 *
 423 *	Remove a protocol handler that was previously added to the kernel
 424 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 425 *	from the kernel lists and can be freed or reused once this function
 426 *	returns.
 427 *
 428 *      The packet type might still be in use by receivers
 429 *	and must not be freed until after all the CPU's have gone
 430 *	through a quiescent state.
 431 */
 432void __dev_remove_pack(struct packet_type *pt)
 433{
 434	struct list_head *head = ptype_head(pt);
 435	struct packet_type *pt1;
 436
 437	spin_lock(&ptype_lock);
 438
 439	list_for_each_entry(pt1, head, list) {
 440		if (pt == pt1) {
 441			list_del_rcu(&pt->list);
 442			goto out;
 443		}
 444	}
 445
 446	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
 447out:
 448	spin_unlock(&ptype_lock);
 449}
 450EXPORT_SYMBOL(__dev_remove_pack);
 451
 452/**
 453 *	dev_remove_pack	 - remove packet handler
 454 *	@pt: packet type declaration
 455 *
 456 *	Remove a protocol handler that was previously added to the kernel
 457 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 458 *	from the kernel lists and can be freed or reused once this function
 459 *	returns.
 460 *
 461 *	This call sleeps to guarantee that no CPU is looking at the packet
 462 *	type after return.
 463 */
 464void dev_remove_pack(struct packet_type *pt)
 465{
 466	__dev_remove_pack(pt);
 467
 468	synchronize_net();
 469}
 470EXPORT_SYMBOL(dev_remove_pack);
 471
 472/******************************************************************************
 473
 474		      Device Boot-time Settings Routines
 475
 476*******************************************************************************/
 477
 478/* Boot time configuration table */
 479static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 480
 481/**
 482 *	netdev_boot_setup_add	- add new setup entry
 483 *	@name: name of the device
 484 *	@map: configured settings for the device
 485 *
 486 *	Adds new setup entry to the dev_boot_setup list.  The function
 487 *	returns 0 on error and 1 on success.  This is a generic routine to
 488 *	all netdevices.
 489 */
 490static int netdev_boot_setup_add(char *name, struct ifmap *map)
 
 491{
 492	struct netdev_boot_setup *s;
 493	int i;
 494
 495	s = dev_boot_setup;
 496	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 497		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 498			memset(s[i].name, 0, sizeof(s[i].name));
 499			strlcpy(s[i].name, name, IFNAMSIZ);
 500			memcpy(&s[i].map, map, sizeof(s[i].map));
 501			break;
 502		}
 503	}
 504
 505	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 506}
 
 507
 508/**
 509 *	netdev_boot_setup_check	- check boot time settings
 510 *	@dev: the netdevice
 
 511 *
 512 * 	Check boot time settings for the device.
 513 *	The found settings are set for the device to be used
 514 *	later in the device probing.
 515 *	Returns 0 if no settings found, 1 if they are.
 516 */
 517int netdev_boot_setup_check(struct net_device *dev)
 518{
 519	struct netdev_boot_setup *s = dev_boot_setup;
 520	int i;
 
 
 
 
 
 
 
 
 521
 522	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 523		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 524		    !strcmp(dev->name, s[i].name)) {
 525			dev->irq 	= s[i].map.irq;
 526			dev->base_addr 	= s[i].map.base_addr;
 527			dev->mem_start 	= s[i].map.mem_start;
 528			dev->mem_end 	= s[i].map.mem_end;
 529			return 1;
 530		}
 531	}
 532	return 0;
 533}
 534EXPORT_SYMBOL(netdev_boot_setup_check);
 535
 536
 537/**
 538 *	netdev_boot_base	- get address from boot time settings
 539 *	@prefix: prefix for network device
 540 *	@unit: id for network device
 541 *
 542 * 	Check boot time settings for the base address of device.
 543 *	The found settings are set for the device to be used
 544 *	later in the device probing.
 545 *	Returns 0 if no settings found.
 546 */
 547unsigned long netdev_boot_base(const char *prefix, int unit)
 548{
 549	const struct netdev_boot_setup *s = dev_boot_setup;
 550	char name[IFNAMSIZ];
 551	int i;
 552
 553	sprintf(name, "%s%d", prefix, unit);
 554
 555	/*
 556	 * If device already registered then return base of 1
 557	 * to indicate not to probe for this interface
 558	 */
 559	if (__dev_get_by_name(&init_net, name))
 560		return 1;
 561
 562	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 563		if (!strcmp(name, s[i].name))
 564			return s[i].map.base_addr;
 565	return 0;
 566}
 567
 568/*
 569 * Saves at boot time configured settings for any netdevice.
 570 */
 571int __init netdev_boot_setup(char *str)
 572{
 573	int ints[5];
 574	struct ifmap map;
 
 
 
 
 575
 576	str = get_options(str, ARRAY_SIZE(ints), ints);
 577	if (!str || !*str)
 578		return 0;
 
 
 
 
 579
 580	/* Save settings */
 581	memset(&map, 0, sizeof(map));
 582	if (ints[0] > 0)
 583		map.irq = ints[1];
 584	if (ints[0] > 1)
 585		map.base_addr = ints[2];
 586	if (ints[0] > 2)
 587		map.mem_start = ints[3];
 588	if (ints[0] > 3)
 589		map.mem_end = ints[4];
 590
 591	/* Add new entry to the list */
 592	return netdev_boot_setup_add(str, &map);
 593}
 594
 595__setup("netdev=", netdev_boot_setup);
 
 596
 597/*******************************************************************************
 
 
 
 
 598
 599			    Device Interface Subroutines
 600
 601*******************************************************************************/
 602
 603/**
 604 *	__dev_get_by_name	- find a device by its name
 605 *	@net: the applicable net namespace
 606 *	@name: name to find
 607 *
 608 *	Find an interface by name. Must be called under RTNL semaphore
 609 *	or @dev_base_lock. If the name is found a pointer to the device
 610 *	is returned. If the name is not found then %NULL is returned. The
 611 *	reference counters are not incremented so the caller must be
 612 *	careful with locks.
 613 */
 614
 615struct net_device *__dev_get_by_name(struct net *net, const char *name)
 616{
 617	struct hlist_node *p;
 618	struct net_device *dev;
 619	struct hlist_head *head = dev_name_hash(net, name);
 620
 621	hlist_for_each_entry(dev, p, head, name_hlist)
 622		if (!strncmp(dev->name, name, IFNAMSIZ))
 623			return dev;
 624
 625	return NULL;
 626}
 627EXPORT_SYMBOL(__dev_get_by_name);
 628
 629/**
 630 *	dev_get_by_name_rcu	- find a device by its name
 631 *	@net: the applicable net namespace
 632 *	@name: name to find
 633 *
 634 *	Find an interface by name.
 635 *	If the name is found a pointer to the device is returned.
 636 * 	If the name is not found then %NULL is returned.
 637 *	The reference counters are not incremented so the caller must be
 638 *	careful with locks. The caller must hold RCU lock.
 639 */
 640
 641struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 642{
 643	struct hlist_node *p;
 
 
 
 
 
 
 
 
 
 644	struct net_device *dev;
 645	struct hlist_head *head = dev_name_hash(net, name);
 646
 647	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
 648		if (!strncmp(dev->name, name, IFNAMSIZ))
 649			return dev;
 650
 651	return NULL;
 652}
 653EXPORT_SYMBOL(dev_get_by_name_rcu);
 654
 655/**
 656 *	dev_get_by_name		- find a device by its name
 657 *	@net: the applicable net namespace
 658 *	@name: name to find
 
 
 659 *
 660 *	Find an interface by name. This can be called from any
 661 *	context and does its own locking. The returned handle has
 662 *	the usage count incremented and the caller must use dev_put() to
 663 *	release it when it is no longer needed. %NULL is returned if no
 664 *	matching device is found.
 665 */
 666
 667struct net_device *dev_get_by_name(struct net *net, const char *name)
 668{
 669	struct net_device *dev;
 670
 671	rcu_read_lock();
 672	dev = dev_get_by_name_rcu(net, name);
 673	if (dev)
 674		dev_hold(dev);
 675	rcu_read_unlock();
 676	return dev;
 677}
 678EXPORT_SYMBOL(dev_get_by_name);
 679
 680/**
 681 *	__dev_get_by_index - find a device by its ifindex
 682 *	@net: the applicable net namespace
 683 *	@ifindex: index of device
 684 *
 685 *	Search for an interface by index. Returns %NULL if the device
 686 *	is not found or a pointer to the device. The device has not
 687 *	had its reference counter increased so the caller must be careful
 688 *	about locking. The caller must hold either the RTNL semaphore
 689 *	or @dev_base_lock.
 690 */
 691
 692struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 693{
 694	struct hlist_node *p;
 695	struct net_device *dev;
 696	struct hlist_head *head = dev_index_hash(net, ifindex);
 697
 698	hlist_for_each_entry(dev, p, head, index_hlist)
 699		if (dev->ifindex == ifindex)
 700			return dev;
 701
 702	return NULL;
 703}
 704EXPORT_SYMBOL(__dev_get_by_index);
 705
 706/**
 707 *	dev_get_by_index_rcu - find a device by its ifindex
 708 *	@net: the applicable net namespace
 709 *	@ifindex: index of device
 710 *
 711 *	Search for an interface by index. Returns %NULL if the device
 712 *	is not found or a pointer to the device. The device has not
 713 *	had its reference counter increased so the caller must be careful
 714 *	about locking. The caller must hold RCU lock.
 715 */
 716
 717struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 718{
 719	struct hlist_node *p;
 720	struct net_device *dev;
 721	struct hlist_head *head = dev_index_hash(net, ifindex);
 722
 723	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
 724		if (dev->ifindex == ifindex)
 725			return dev;
 726
 727	return NULL;
 728}
 729EXPORT_SYMBOL(dev_get_by_index_rcu);
 730
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732/**
 733 *	dev_get_by_index - find a device by its ifindex
 734 *	@net: the applicable net namespace
 735 *	@ifindex: index of device
 
 
 736 *
 737 *	Search for an interface by index. Returns NULL if the device
 738 *	is not found or a pointer to the device. The device returned has
 739 *	had a reference added and the pointer is safe until the user calls
 740 *	dev_put to indicate they have finished with it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741 */
 742
 743struct net_device *dev_get_by_index(struct net *net, int ifindex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744{
 745	struct net_device *dev;
 
 746
 
 747	rcu_read_lock();
 
 748	dev = dev_get_by_index_rcu(net, ifindex);
 749	if (dev)
 750		dev_hold(dev);
 
 
 
 
 
 
 
 751	rcu_read_unlock();
 752	return dev;
 
 753}
 754EXPORT_SYMBOL(dev_get_by_index);
 755
 756/**
 757 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 758 *	@net: the applicable net namespace
 759 *	@type: media type of device
 760 *	@ha: hardware address
 761 *
 762 *	Search for an interface by MAC address. Returns NULL if the device
 763 *	is not found or a pointer to the device.
 764 *	The caller must hold RCU or RTNL.
 765 *	The returned device has not had its ref count increased
 766 *	and the caller must therefore be careful about locking
 767 *
 768 */
 769
 770struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 771				       const char *ha)
 772{
 773	struct net_device *dev;
 774
 775	for_each_netdev_rcu(net, dev)
 776		if (dev->type == type &&
 777		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 778			return dev;
 779
 780	return NULL;
 781}
 782EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 783
 784struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 785{
 786	struct net_device *dev;
 787
 788	ASSERT_RTNL();
 789	for_each_netdev(net, dev)
 790		if (dev->type == type)
 791			return dev;
 792
 793	return NULL;
 794}
 795EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 796
 797struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 798{
 799	struct net_device *dev, *ret = NULL;
 800
 801	rcu_read_lock();
 802	for_each_netdev_rcu(net, dev)
 803		if (dev->type == type) {
 804			dev_hold(dev);
 805			ret = dev;
 806			break;
 807		}
 808	rcu_read_unlock();
 809	return ret;
 810}
 811EXPORT_SYMBOL(dev_getfirstbyhwtype);
 812
 813/**
 814 *	dev_get_by_flags_rcu - find any device with given flags
 815 *	@net: the applicable net namespace
 816 *	@if_flags: IFF_* values
 817 *	@mask: bitmask of bits in if_flags to check
 818 *
 819 *	Search for any interface with the given flags. Returns NULL if a device
 820 *	is not found or a pointer to the device. Must be called inside
 821 *	rcu_read_lock(), and result refcount is unchanged.
 822 */
 823
 824struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
 825				    unsigned short mask)
 826{
 827	struct net_device *dev, *ret;
 828
 
 
 829	ret = NULL;
 830	for_each_netdev_rcu(net, dev) {
 831		if (((dev->flags ^ if_flags) & mask) == 0) {
 832			ret = dev;
 833			break;
 834		}
 835	}
 836	return ret;
 837}
 838EXPORT_SYMBOL(dev_get_by_flags_rcu);
 839
 840/**
 841 *	dev_valid_name - check if name is okay for network device
 842 *	@name: name string
 843 *
 844 *	Network device names need to be valid file names to
 845 *	to allow sysfs to work.  We also disallow any kind of
 846 *	whitespace.
 847 */
 848int dev_valid_name(const char *name)
 849{
 850	if (*name == '\0')
 851		return 0;
 852	if (strlen(name) >= IFNAMSIZ)
 853		return 0;
 854	if (!strcmp(name, ".") || !strcmp(name, ".."))
 855		return 0;
 856
 857	while (*name) {
 858		if (*name == '/' || isspace(*name))
 859			return 0;
 860		name++;
 861	}
 862	return 1;
 863}
 864EXPORT_SYMBOL(dev_valid_name);
 865
 866/**
 867 *	__dev_alloc_name - allocate a name for a device
 868 *	@net: network namespace to allocate the device name in
 869 *	@name: name format string
 870 *	@buf:  scratch buffer and result name string
 871 *
 872 *	Passed a format string - eg "lt%d" it will try and find a suitable
 873 *	id. It scans list of devices to build up a free map, then chooses
 874 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 875 *	while allocating the name and adding the device in order to avoid
 876 *	duplicates.
 877 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 878 *	Returns the number of the unit assigned or a negative errno code.
 879 */
 880
 881static int __dev_alloc_name(struct net *net, const char *name, char *buf)
 882{
 883	int i = 0;
 884	const char *p;
 885	const int max_netdevices = 8*PAGE_SIZE;
 886	unsigned long *inuse;
 887	struct net_device *d;
 
 888
 889	p = strnchr(name, IFNAMSIZ-1, '%');
 890	if (p) {
 891		/*
 892		 * Verify the string as this thing may have come from
 893		 * the user.  There must be either one "%d" and no other "%"
 894		 * characters.
 895		 */
 896		if (p[1] != 'd' || strchr(p + 2, '%'))
 897			return -EINVAL;
 
 
 898
 899		/* Use one page as a bit array of possible slots */
 900		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 901		if (!inuse)
 902			return -ENOMEM;
 903
 904		for_each_netdev(net, d) {
 905			if (!sscanf(d->name, name, &i))
 906				continue;
 907			if (i < 0 || i >= max_netdevices)
 908				continue;
 909
 910			/*  avoid cases where sscanf is not exact inverse of printf */
 911			snprintf(buf, IFNAMSIZ, name, i);
 912			if (!strncmp(buf, d->name, IFNAMSIZ))
 913				set_bit(i, inuse);
 914		}
 
 
 
 
 915
 916		i = find_first_zero_bit(inuse, max_netdevices);
 917		free_page((unsigned long) inuse);
 
 
 918	}
 919
 920	if (buf != name)
 921		snprintf(buf, IFNAMSIZ, name, i);
 922	if (!__dev_get_by_name(net, buf))
 923		return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925	/* It is possible to run out of possible slots
 926	 * when the name is long and there isn't enough space left
 927	 * for the digits, or if all bits are used.
 928	 */
 929	return -ENFILE;
 930}
 931
 932/**
 933 *	dev_alloc_name - allocate a name for a device
 934 *	@dev: device
 935 *	@name: name format string
 936 *
 937 *	Passed a format string - eg "lt%d" it will try and find a suitable
 938 *	id. It scans list of devices to build up a free map, then chooses
 939 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 940 *	while allocating the name and adding the device in order to avoid
 941 *	duplicates.
 942 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 943 *	Returns the number of the unit assigned or a negative errno code.
 944 */
 945
 946int dev_alloc_name(struct net_device *dev, const char *name)
 947{
 948	char buf[IFNAMSIZ];
 949	struct net *net;
 950	int ret;
 951
 952	BUG_ON(!dev_net(dev));
 953	net = dev_net(dev);
 954	ret = __dev_alloc_name(net, name, buf);
 955	if (ret >= 0)
 956		strlcpy(dev->name, buf, IFNAMSIZ);
 957	return ret;
 958}
 959EXPORT_SYMBOL(dev_alloc_name);
 960
 961static int dev_get_valid_name(struct net_device *dev, const char *name)
 
 962{
 963	struct net *net;
 964
 965	BUG_ON(!dev_net(dev));
 966	net = dev_net(dev);
 967
 968	if (!dev_valid_name(name))
 969		return -EINVAL;
 970
 971	if (strchr(name, '%'))
 972		return dev_alloc_name(dev, name);
 973	else if (__dev_get_by_name(net, name))
 974		return -EEXIST;
 975	else if (dev->name != name)
 976		strlcpy(dev->name, name, IFNAMSIZ);
 977
 978	return 0;
 979}
 980
 981/**
 982 *	dev_change_name - change name of a device
 983 *	@dev: device
 984 *	@newname: name (or format string) must be at least IFNAMSIZ
 985 *
 986 *	Change name of a device, can pass format strings "eth%d".
 987 *	for wildcarding.
 988 */
 989int dev_change_name(struct net_device *dev, const char *newname)
 990{
 
 991	char oldname[IFNAMSIZ];
 992	int err = 0;
 993	int ret;
 994	struct net *net;
 995
 996	ASSERT_RTNL();
 997	BUG_ON(!dev_net(dev));
 998
 999	net = dev_net(dev);
1000	if (dev->flags & IFF_UP)
1001		return -EBUSY;
1002
1003	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
 
 
 
1004		return 0;
 
1005
1006	memcpy(oldname, dev->name, IFNAMSIZ);
1007
1008	err = dev_get_valid_name(dev, newname);
1009	if (err < 0)
 
1010		return err;
 
 
 
 
 
 
 
 
1011
1012rollback:
1013	ret = device_rename(&dev->dev, dev->name);
1014	if (ret) {
1015		memcpy(dev->name, oldname, IFNAMSIZ);
 
 
1016		return ret;
1017	}
1018
1019	write_lock_bh(&dev_base_lock);
1020	hlist_del_rcu(&dev->name_hlist);
1021	write_unlock_bh(&dev_base_lock);
1022
1023	synchronize_rcu();
1024
1025	write_lock_bh(&dev_base_lock);
1026	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1027	write_unlock_bh(&dev_base_lock);
1028
1029	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1030	ret = notifier_to_errno(ret);
1031
1032	if (ret) {
1033		/* err >= 0 after dev_alloc_name() or stores the first errno */
1034		if (err >= 0) {
1035			err = ret;
 
1036			memcpy(dev->name, oldname, IFNAMSIZ);
 
 
 
1037			goto rollback;
1038		} else {
1039			printk(KERN_ERR
1040			       "%s: name change rollback failed: %d.\n",
1041			       dev->name, ret);
1042		}
1043	}
1044
1045	return err;
1046}
1047
1048/**
1049 *	dev_set_alias - change ifalias of a device
1050 *	@dev: device
1051 *	@alias: name up to IFALIASZ
1052 *	@len: limit of bytes to copy from info
1053 *
1054 *	Set ifalias for a device,
1055 */
1056int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057{
1058	ASSERT_RTNL();
1059
1060	if (len >= IFALIASZ)
1061		return -EINVAL;
1062
1063	if (!len) {
1064		if (dev->ifalias) {
1065			kfree(dev->ifalias);
1066			dev->ifalias = NULL;
1067		}
1068		return 0;
 
1069	}
1070
1071	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072	if (!dev->ifalias)
1073		return -ENOMEM;
 
 
 
 
1074
1075	strlcpy(dev->ifalias, alias, len+1);
1076	return len;
1077}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
 
 
 
 
 
 
 
 
1079
1080/**
1081 *	netdev_features_change - device changes features
1082 *	@dev: device to cause notification
1083 *
1084 *	Called to indicate a device has changed features.
1085 */
1086void netdev_features_change(struct net_device *dev)
1087{
1088	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089}
1090EXPORT_SYMBOL(netdev_features_change);
1091
1092/**
1093 *	netdev_state_change - device changes state
1094 *	@dev: device to cause notification
1095 *
1096 *	Called to indicate a device has changed state. This function calls
1097 *	the notifier chains for netdev_chain and sends a NEWLINK message
1098 *	to the routing socket.
1099 */
1100void netdev_state_change(struct net_device *dev)
1101{
1102	if (dev->flags & IFF_UP) {
1103		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
 
 
 
 
 
1105	}
1106}
1107EXPORT_SYMBOL(netdev_state_change);
1108
1109int netdev_bonding_change(struct net_device *dev, unsigned long event)
 
 
 
 
 
 
 
 
 
 
 
1110{
1111	return call_netdevice_notifiers(event, dev);
 
 
1112}
1113EXPORT_SYMBOL(netdev_bonding_change);
1114
1115/**
1116 *	dev_load 	- load a network module
1117 *	@net: the applicable net namespace
1118 *	@name: name of interface
1119 *
1120 *	If a network interface is not present and the process has suitable
1121 *	privileges this function loads the module. If module loading is not
1122 *	available in this kernel then it becomes a nop.
 
 
1123 */
 
 
 
 
 
 
 
 
 
1124
1125void dev_load(struct net *net, const char *name)
1126{
1127	struct net_device *dev;
1128	int no_module;
1129
1130	rcu_read_lock();
1131	dev = dev_get_by_name_rcu(net, name);
1132	rcu_read_unlock();
 
 
 
 
 
 
 
 
1133
1134	no_module = !dev;
1135	if (no_module && capable(CAP_NET_ADMIN))
1136		no_module = request_module("netdev-%s", name);
1137	if (no_module && capable(CAP_SYS_MODULE)) {
1138		if (!request_module("%s", name))
1139			pr_err("Loading kernel module for a network device "
1140"with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1141"instead\n", name);
1142	}
1143}
1144EXPORT_SYMBOL(dev_load);
1145
1146static int __dev_open(struct net_device *dev)
1147{
1148	const struct net_device_ops *ops = dev->netdev_ops;
1149	int ret;
1150
1151	ASSERT_RTNL();
 
1152
1153	if (!netif_device_present(dev))
1154		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
1155
1156	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157	ret = notifier_to_errno(ret);
1158	if (ret)
1159		return ret;
1160
1161	set_bit(__LINK_STATE_START, &dev->state);
1162
1163	if (ops->ndo_validate_addr)
1164		ret = ops->ndo_validate_addr(dev);
1165
1166	if (!ret && ops->ndo_open)
1167		ret = ops->ndo_open(dev);
1168
 
 
1169	if (ret)
1170		clear_bit(__LINK_STATE_START, &dev->state);
1171	else {
1172		dev->flags |= IFF_UP;
1173		net_dmaengine_get();
1174		dev_set_rx_mode(dev);
1175		dev_activate(dev);
 
1176	}
1177
1178	return ret;
1179}
1180
1181/**
1182 *	dev_open	- prepare an interface for use.
1183 *	@dev:	device to open
 
1184 *
1185 *	Takes a device from down to up state. The device's private open
1186 *	function is invoked and then the multicast lists are loaded. Finally
1187 *	the device is moved into the up state and a %NETDEV_UP message is
1188 *	sent to the netdev notifier chain.
1189 *
1190 *	Calling this function on an active interface is a nop. On a failure
1191 *	a negative errno code is returned.
1192 */
1193int dev_open(struct net_device *dev)
1194{
1195	int ret;
1196
1197	if (dev->flags & IFF_UP)
1198		return 0;
1199
1200	ret = __dev_open(dev);
1201	if (ret < 0)
1202		return ret;
1203
1204	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205	call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207	return ret;
1208}
1209EXPORT_SYMBOL(dev_open);
1210
1211static int __dev_close_many(struct list_head *head)
1212{
1213	struct net_device *dev;
1214
1215	ASSERT_RTNL();
1216	might_sleep();
1217
1218	list_for_each_entry(dev, head, unreg_list) {
 
 
 
1219		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221		clear_bit(__LINK_STATE_START, &dev->state);
1222
1223		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224		 * can be even on different cpu. So just clear netif_running().
1225		 *
1226		 * dev->stop() will invoke napi_disable() on all of it's
1227		 * napi_struct instances on this device.
1228		 */
1229		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230	}
1231
1232	dev_deactivate_many(head);
1233
1234	list_for_each_entry(dev, head, unreg_list) {
1235		const struct net_device_ops *ops = dev->netdev_ops;
1236
1237		/*
1238		 *	Call the device specific close. This cannot fail.
1239		 *	Only if device is UP
1240		 *
1241		 *	We allow it to be called even after a DETACH hot-plug
1242		 *	event.
1243		 */
1244		if (ops->ndo_stop)
1245			ops->ndo_stop(dev);
1246
1247		dev->flags &= ~IFF_UP;
1248		net_dmaengine_put();
1249	}
1250
1251	return 0;
1252}
1253
1254static int __dev_close(struct net_device *dev)
1255{
1256	int retval;
1257	LIST_HEAD(single);
1258
1259	list_add(&dev->unreg_list, &single);
1260	retval = __dev_close_many(&single);
1261	list_del(&single);
1262	return retval;
1263}
1264
1265static int dev_close_many(struct list_head *head)
1266{
1267	struct net_device *dev, *tmp;
1268	LIST_HEAD(tmp_list);
1269
1270	list_for_each_entry_safe(dev, tmp, head, unreg_list)
 
1271		if (!(dev->flags & IFF_UP))
1272			list_move(&dev->unreg_list, &tmp_list);
1273
1274	__dev_close_many(head);
1275
1276	list_for_each_entry(dev, head, unreg_list) {
1277		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278		call_netdevice_notifiers(NETDEV_DOWN, dev);
 
 
1279	}
1280
1281	/* rollback_registered_many needs the complete original list */
1282	list_splice(&tmp_list, head);
1283	return 0;
1284}
 
1285
1286/**
1287 *	dev_close - shutdown an interface.
1288 *	@dev: device to shutdown
1289 *
1290 *	This function moves an active device into down state. A
1291 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 *	chain.
1294 */
1295int dev_close(struct net_device *dev)
1296{
1297	if (dev->flags & IFF_UP) {
1298		LIST_HEAD(single);
1299
1300		list_add(&dev->unreg_list, &single);
1301		dev_close_many(&single);
1302		list_del(&single);
1303	}
1304	return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 *	dev_disable_lro - disable Large Receive Offload on a device
1311 *	@dev: device
1312 *
1313 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314 *	called under RTNL.  This is needed if received packets may be
1315 *	forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319	u32 flags;
 
1320
1321	/*
1322	 * If we're trying to disable lro on a vlan device
1323	 * use the underlying physical device instead
1324	 */
1325	if (is_vlan_dev(dev))
1326		dev = vlan_dev_real_dev(dev);
1327
1328	if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1329		flags = dev->ethtool_ops->get_flags(dev);
1330	else
1331		flags = ethtool_op_get_flags(dev);
1332
1333	if (!(flags & ETH_FLAG_LRO))
1334		return;
1335
1336	__ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1337	if (unlikely(dev->features & NETIF_F_LRO))
1338		netdev_WARN(dev, "failed to disable LRO!\n");
 
 
 
1339}
1340EXPORT_SYMBOL(dev_disable_lro);
1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343static int dev_boot_phase = 1;
1344
1345/**
1346 *	register_netdevice_notifier - register a network notifier block
1347 *	@nb: notifier
1348 *
1349 *	Register a notifier to be called when network device events occur.
1350 *	The notifier passed is linked into the kernel structures and must
1351 *	not be reused until it has been unregistered. A negative errno code
1352 *	is returned on a failure.
1353 *
1354 * 	When registered all registration and up events are replayed
1355 *	to the new notifier to allow device to have a race free
1356 *	view of the network device list.
1357 */
1358
1359int register_netdevice_notifier(struct notifier_block *nb)
1360{
1361	struct net_device *dev;
1362	struct net_device *last;
1363	struct net *net;
1364	int err;
1365
 
 
1366	rtnl_lock();
1367	err = raw_notifier_chain_register(&netdev_chain, nb);
1368	if (err)
1369		goto unlock;
1370	if (dev_boot_phase)
1371		goto unlock;
1372	for_each_net(net) {
1373		for_each_netdev(net, dev) {
1374			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1375			err = notifier_to_errno(err);
1376			if (err)
1377				goto rollback;
1378
1379			if (!(dev->flags & IFF_UP))
1380				continue;
1381
1382			nb->notifier_call(nb, NETDEV_UP, dev);
1383		}
1384	}
1385
1386unlock:
1387	rtnl_unlock();
 
1388	return err;
1389
1390rollback:
1391	last = dev;
1392	for_each_net(net) {
1393		for_each_netdev(net, dev) {
1394			if (dev == last)
1395				break;
1396
1397			if (dev->flags & IFF_UP) {
1398				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1399				nb->notifier_call(nb, NETDEV_DOWN, dev);
1400			}
1401			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1402			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1403		}
1404	}
1405
1406	raw_notifier_chain_unregister(&netdev_chain, nb);
1407	goto unlock;
1408}
1409EXPORT_SYMBOL(register_netdevice_notifier);
1410
1411/**
1412 *	unregister_netdevice_notifier - unregister a network notifier block
1413 *	@nb: notifier
1414 *
1415 *	Unregister a notifier previously registered by
1416 *	register_netdevice_notifier(). The notifier is unlinked into the
1417 *	kernel structures and may then be reused. A negative errno code
1418 *	is returned on a failure.
 
 
 
 
1419 */
1420
1421int unregister_netdevice_notifier(struct notifier_block *nb)
1422{
 
1423	int err;
1424
 
 
1425	rtnl_lock();
1426	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 
 
 
 
 
 
 
1427	rtnl_unlock();
 
1428	return err;
1429}
1430EXPORT_SYMBOL(unregister_netdevice_notifier);
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432/**
1433 *	call_netdevice_notifiers - call all network notifier blocks
1434 *      @val: value passed unmodified to notifier function
1435 *      @dev: net_device pointer passed unmodified to notifier function
1436 *
1437 *	Call all network notifier blocks.  Parameters and return value
1438 *	are as for raw_notifier_call_chain().
1439 */
1440
1441int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1442{
1443	ASSERT_RTNL();
1444	return raw_notifier_call_chain(&netdev_chain, val, dev);
1445}
1446EXPORT_SYMBOL(call_netdevice_notifiers);
1447
1448/* When > 0 there are consumers of rx skb time stamps */
1449static atomic_t netstamp_needed = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450
1451void net_enable_timestamp(void)
1452{
1453	atomic_inc(&netstamp_needed);
 
 
 
 
 
 
 
 
 
 
 
1454}
1455EXPORT_SYMBOL(net_enable_timestamp);
1456
1457void net_disable_timestamp(void)
1458{
1459	atomic_dec(&netstamp_needed);
 
 
 
 
 
 
 
 
 
 
 
1460}
1461EXPORT_SYMBOL(net_disable_timestamp);
1462
1463static inline void net_timestamp_set(struct sk_buff *skb)
1464{
1465	if (atomic_read(&netstamp_needed))
1466		__net_timestamp(skb);
1467	else
1468		skb->tstamp.tv64 = 0;
1469}
1470
1471static inline void net_timestamp_check(struct sk_buff *skb)
 
 
 
 
 
 
1472{
1473	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1474		__net_timestamp(skb);
1475}
 
1476
1477static inline bool is_skb_forwardable(struct net_device *dev,
1478				      struct sk_buff *skb)
1479{
1480	unsigned int len;
1481
1482	if (!(dev->flags & IFF_UP))
1483		return false;
 
 
1484
1485	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1486	if (skb->len <= len)
1487		return true;
1488
1489	/* if TSO is enabled, we don't care about the length as the packet
1490	 * could be forwarded without being segmented before
1491	 */
1492	if (skb_is_gso(skb))
1493		return true;
1494
1495	return false;
1496}
 
1497
1498/**
1499 * dev_forward_skb - loopback an skb to another netif
1500 *
1501 * @dev: destination network device
1502 * @skb: buffer to forward
1503 *
1504 * return values:
1505 *	NET_RX_SUCCESS	(no congestion)
1506 *	NET_RX_DROP     (packet was dropped, but freed)
1507 *
1508 * dev_forward_skb can be used for injecting an skb from the
1509 * start_xmit function of one device into the receive queue
1510 * of another device.
1511 *
1512 * The receiving device may be in another namespace, so
1513 * we have to clear all information in the skb that could
1514 * impact namespace isolation.
1515 */
1516int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1517{
1518	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1519		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1520			atomic_long_inc(&dev->rx_dropped);
1521			kfree_skb(skb);
1522			return NET_RX_DROP;
1523		}
1524	}
1525
1526	skb_orphan(skb);
1527	nf_reset(skb);
1528
1529	if (unlikely(!is_skb_forwardable(dev, skb))) {
1530		atomic_long_inc(&dev->rx_dropped);
1531		kfree_skb(skb);
1532		return NET_RX_DROP;
1533	}
1534	skb_set_dev(skb, dev);
1535	skb->tstamp.tv64 = 0;
1536	skb->pkt_type = PACKET_HOST;
1537	skb->protocol = eth_type_trans(skb, dev);
1538	return netif_rx(skb);
1539}
1540EXPORT_SYMBOL_GPL(dev_forward_skb);
1541
1542static inline int deliver_skb(struct sk_buff *skb,
1543			      struct packet_type *pt_prev,
1544			      struct net_device *orig_dev)
1545{
1546	atomic_inc(&skb->users);
 
 
1547	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1548}
1549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550/*
1551 *	Support routine. Sends outgoing frames to any network
1552 *	taps currently in use.
1553 */
1554
1555static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1556{
1557	struct packet_type *ptype;
 
1558	struct sk_buff *skb2 = NULL;
1559	struct packet_type *pt_prev = NULL;
1560
1561	rcu_read_lock();
1562	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 
 
 
 
1563		/* Never send packets back to the socket
1564		 * they originated from - MvS (miquels@drinkel.ow.org)
1565		 */
1566		if ((ptype->dev == dev || !ptype->dev) &&
1567		    (ptype->af_packet_priv == NULL ||
1568		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1569			if (pt_prev) {
1570				deliver_skb(skb2, pt_prev, skb->dev);
1571				pt_prev = ptype;
1572				continue;
1573			}
1574
1575			skb2 = skb_clone(skb, GFP_ATOMIC);
1576			if (!skb2)
1577				break;
 
 
1578
1579			net_timestamp_set(skb2);
 
 
 
 
 
 
 
 
 
 
 
1580
1581			/* skb->nh should be correctly
1582			   set by sender, so that the second statement is
1583			   just protection against buggy protocols.
1584			 */
1585			skb_reset_mac_header(skb2);
 
 
1586
1587			if (skb_network_header(skb2) < skb2->data ||
1588			    skb2->network_header > skb2->tail) {
1589				if (net_ratelimit())
1590					printk(KERN_CRIT "protocol %04x is "
1591					       "buggy, dev %s\n",
1592					       ntohs(skb2->protocol),
1593					       dev->name);
1594				skb_reset_network_header(skb2);
1595			}
1596
1597			skb2->transport_header = skb2->network_header;
1598			skb2->pkt_type = PACKET_OUTGOING;
1599			pt_prev = ptype;
1600		}
 
 
 
 
 
 
1601	}
1602	if (pt_prev)
1603		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1604	rcu_read_unlock();
1605}
 
1606
1607/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 
1608 * @dev: Network device
1609 * @txq: number of queues available
1610 *
1611 * If real_num_tx_queues is changed the tc mappings may no longer be
1612 * valid. To resolve this verify the tc mapping remains valid and if
1613 * not NULL the mapping. With no priorities mapping to this
1614 * offset/count pair it will no longer be used. In the worst case TC0
1615 * is invalid nothing can be done so disable priority mappings. If is
1616 * expected that drivers will fix this mapping if they can before
1617 * calling netif_set_real_num_tx_queues.
1618 */
1619static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1620{
1621	int i;
1622	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1623
1624	/* If TC0 is invalidated disable TC mapping */
1625	if (tc->offset + tc->count > txq) {
1626		pr_warning("Number of in use tx queues changed "
1627			   "invalidating tc mappings. Priority "
1628			   "traffic classification disabled!\n");
1629		dev->num_tc = 0;
1630		return;
1631	}
1632
1633	/* Invalidated prio to tc mappings set to TC0 */
1634	for (i = 1; i < TC_BITMASK + 1; i++) {
1635		int q = netdev_get_prio_tc_map(dev, i);
1636
1637		tc = &dev->tc_to_txq[q];
1638		if (tc->offset + tc->count > txq) {
1639			pr_warning("Number of in use tx queues "
1640				   "changed. Priority %i to tc "
1641				   "mapping %i is no longer valid "
1642				   "setting map to 0\n",
1643				   i, q);
1644			netdev_set_prio_tc_map(dev, i, 0);
1645		}
1646	}
1647}
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649/*
1650 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1651 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1652 */
1653int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1654{
 
1655	int rc;
1656
 
 
1657	if (txq < 1 || txq > dev->num_tx_queues)
1658		return -EINVAL;
1659
1660	if (dev->reg_state == NETREG_REGISTERED ||
1661	    dev->reg_state == NETREG_UNREGISTERING) {
1662		ASSERT_RTNL();
1663
1664		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1665						  txq);
1666		if (rc)
1667			return rc;
1668
1669		if (dev->num_tc)
1670			netif_setup_tc(dev, txq);
1671
1672		if (txq < dev->real_num_tx_queues)
 
 
 
 
 
1673			qdisc_reset_all_tx_gt(dev, txq);
 
 
 
 
 
 
1674	}
1675
1676	dev->real_num_tx_queues = txq;
1677	return 0;
1678}
1679EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1680
1681#ifdef CONFIG_RPS
1682/**
1683 *	netif_set_real_num_rx_queues - set actual number of RX queues used
1684 *	@dev: Network device
1685 *	@rxq: Actual number of RX queues
1686 *
1687 *	This must be called either with the rtnl_lock held or before
1688 *	registration of the net device.  Returns 0 on success, or a
1689 *	negative error code.  If called before registration, it always
1690 *	succeeds.
1691 */
1692int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1693{
1694	int rc;
1695
1696	if (rxq < 1 || rxq > dev->num_rx_queues)
1697		return -EINVAL;
1698
1699	if (dev->reg_state == NETREG_REGISTERED) {
1700		ASSERT_RTNL();
1701
1702		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1703						  rxq);
1704		if (rc)
1705			return rc;
1706	}
1707
1708	dev->real_num_rx_queues = rxq;
1709	return 0;
1710}
1711EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1712#endif
1713
1714static inline void __netif_reschedule(struct Qdisc *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715{
1716	struct softnet_data *sd;
1717	unsigned long flags;
1718
1719	local_irq_save(flags);
1720	sd = &__get_cpu_var(softnet_data);
1721	q->next_sched = NULL;
1722	*sd->output_queue_tailp = q;
1723	sd->output_queue_tailp = &q->next_sched;
1724	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1725	local_irq_restore(flags);
1726}
1727
1728void __netif_schedule(struct Qdisc *q)
1729{
1730	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1731		__netif_reschedule(q);
1732}
1733EXPORT_SYMBOL(__netif_schedule);
1734
1735void dev_kfree_skb_irq(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736{
1737	if (atomic_dec_and_test(&skb->users)) {
1738		struct softnet_data *sd;
1739		unsigned long flags;
1740
1741		local_irq_save(flags);
1742		sd = &__get_cpu_var(softnet_data);
1743		skb->next = sd->completion_queue;
1744		sd->completion_queue = skb;
1745		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1746		local_irq_restore(flags);
1747	}
1748}
1749EXPORT_SYMBOL(dev_kfree_skb_irq);
1750
1751void dev_kfree_skb_any(struct sk_buff *skb)
1752{
1753	if (in_irq() || irqs_disabled())
1754		dev_kfree_skb_irq(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755	else
1756		dev_kfree_skb(skb);
1757}
1758EXPORT_SYMBOL(dev_kfree_skb_any);
1759
1760
1761/**
1762 * netif_device_detach - mark device as removed
1763 * @dev: network device
1764 *
1765 * Mark device as removed from system and therefore no longer available.
1766 */
1767void netif_device_detach(struct net_device *dev)
1768{
1769	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1770	    netif_running(dev)) {
1771		netif_tx_stop_all_queues(dev);
1772	}
1773}
1774EXPORT_SYMBOL(netif_device_detach);
1775
1776/**
1777 * netif_device_attach - mark device as attached
1778 * @dev: network device
1779 *
1780 * Mark device as attached from system and restart if needed.
1781 */
1782void netif_device_attach(struct net_device *dev)
1783{
1784	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1785	    netif_running(dev)) {
1786		netif_tx_wake_all_queues(dev);
1787		__netdev_watchdog_up(dev);
1788	}
1789}
1790EXPORT_SYMBOL(netif_device_attach);
1791
1792/**
1793 * skb_dev_set -- assign a new device to a buffer
1794 * @skb: buffer for the new device
1795 * @dev: network device
1796 *
1797 * If an skb is owned by a device already, we have to reset
1798 * all data private to the namespace a device belongs to
1799 * before assigning it a new device.
1800 */
1801#ifdef CONFIG_NET_NS
1802void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1803{
1804	skb_dst_drop(skb);
1805	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1806		secpath_reset(skb);
1807		nf_reset(skb);
1808		skb_init_secmark(skb);
1809		skb->mark = 0;
1810		skb->priority = 0;
1811		skb->nf_trace = 0;
1812		skb->ipvs_property = 0;
1813#ifdef CONFIG_NET_SCHED
1814		skb->tc_index = 0;
1815#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816	}
1817	skb->dev = dev;
 
 
 
1818}
1819EXPORT_SYMBOL(skb_set_dev);
1820#endif /* CONFIG_NET_NS */
1821
1822/*
1823 * Invalidate hardware checksum when packet is to be mangled, and
1824 * complete checksum manually on outgoing path.
1825 */
1826int skb_checksum_help(struct sk_buff *skb)
1827{
1828	__wsum csum;
1829	int ret = 0, offset;
1830
1831	if (skb->ip_summed == CHECKSUM_COMPLETE)
1832		goto out_set_summed;
1833
1834	if (unlikely(skb_shinfo(skb)->gso_size)) {
1835		/* Let GSO fix up the checksum. */
1836		goto out_set_summed;
 
 
 
 
 
 
 
 
 
1837	}
1838
1839	offset = skb_checksum_start_offset(skb);
1840	BUG_ON(offset >= skb_headlen(skb));
 
 
 
 
 
 
1841	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1842
1843	offset += skb->csum_offset;
1844	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1845
1846	if (skb_cloned(skb) &&
1847	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1848		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1849		if (ret)
1850			goto out;
1851	}
 
 
 
1852
1853	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1854out_set_summed:
1855	skb->ip_summed = CHECKSUM_NONE;
1856out:
1857	return ret;
1858}
1859EXPORT_SYMBOL(skb_checksum_help);
1860
1861/**
1862 *	skb_gso_segment - Perform segmentation on skb.
1863 *	@skb: buffer to segment
1864 *	@features: features for the output path (see dev->features)
1865 *
1866 *	This function segments the given skb and returns a list of segments.
1867 *
1868 *	It may return NULL if the skb requires no segmentation.  This is
1869 *	only possible when GSO is used for verifying header integrity.
1870 */
1871struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1872{
1873	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1874	struct packet_type *ptype;
1875	__be16 type = skb->protocol;
1876	int vlan_depth = ETH_HLEN;
1877	int err;
1878
1879	while (type == htons(ETH_P_8021Q)) {
1880		struct vlan_hdr *vh;
1881
1882		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1883			return ERR_PTR(-EINVAL);
1884
1885		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1886		type = vh->h_vlan_encapsulated_proto;
1887		vlan_depth += VLAN_HLEN;
 
 
 
 
1888	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889
1890	skb_reset_mac_header(skb);
1891	skb->mac_len = skb->network_header - skb->mac_header;
1892	__skb_pull(skb, skb->mac_len);
1893
1894	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1895		struct net_device *dev = skb->dev;
1896		struct ethtool_drvinfo info = {};
1897
1898		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1899			dev->ethtool_ops->get_drvinfo(dev, &info);
1900
1901		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1902		     info.driver, dev ? dev->features : 0L,
1903		     skb->sk ? skb->sk->sk_route_caps : 0L,
1904		     skb->len, skb->data_len, skb->ip_summed);
1905
1906		if (skb_header_cloned(skb) &&
1907		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1908			return ERR_PTR(err);
1909	}
1910
1911	rcu_read_lock();
1912	list_for_each_entry_rcu(ptype,
1913			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1914		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1915			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1916				err = ptype->gso_send_check(skb);
1917				segs = ERR_PTR(err);
1918				if (err || skb_gso_ok(skb, features))
1919					break;
1920				__skb_push(skb, (skb->data -
1921						 skb_network_header(skb)));
1922			}
1923			segs = ptype->gso_segment(skb, features);
1924			break;
1925		}
1926	}
1927	rcu_read_unlock();
1928
1929	__skb_push(skb, skb->data - skb_mac_header(skb));
 
1930
1931	return segs;
1932}
1933EXPORT_SYMBOL(skb_gso_segment);
1934
1935/* Take action when hardware reception checksum errors are detected. */
1936#ifdef CONFIG_BUG
1937void netdev_rx_csum_fault(struct net_device *dev)
1938{
1939	if (net_ratelimit()) {
1940		printk(KERN_ERR "%s: hw csum failure.\n",
1941			dev ? dev->name : "<unknown>");
1942		dump_stack();
1943	}
 
 
 
1944}
1945EXPORT_SYMBOL(netdev_rx_csum_fault);
1946#endif
1947
1948/* Actually, we should eliminate this check as soon as we know, that:
1949 * 1. IOMMU is present and allows to map all the memory.
1950 * 2. No high memory really exists on this machine.
1951 */
1952
1953static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1954{
1955#ifdef CONFIG_HIGHMEM
1956	int i;
 
1957	if (!(dev->features & NETIF_F_HIGHDMA)) {
1958		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1959			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1960				return 1;
1961	}
1962
1963	if (PCI_DMA_BUS_IS_PHYS) {
1964		struct device *pdev = dev->dev.parent;
1965
1966		if (!pdev)
1967			return 0;
1968		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1969			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1970			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1971				return 1;
1972		}
1973	}
1974#endif
1975	return 0;
1976}
1977
1978struct dev_gso_cb {
1979	void (*destructor)(struct sk_buff *skb);
1980};
 
 
 
 
 
 
 
1981
1982#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
 
 
 
 
 
 
 
 
 
1983
1984static void dev_gso_skb_destructor(struct sk_buff *skb)
 
1985{
1986	struct dev_gso_cb *cb;
1987
1988	do {
1989		struct sk_buff *nskb = skb->next;
1990
1991		skb->next = nskb->next;
1992		nskb->next = NULL;
1993		kfree_skb(nskb);
1994	} while (skb->next);
 
 
1995
1996	cb = DEV_GSO_CB(skb);
1997	if (cb->destructor)
1998		cb->destructor(skb);
1999}
2000
2001/**
2002 *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2003 *	@skb: buffer to segment
2004 *	@features: device features as applicable to this skb
2005 *
2006 *	This function segments the given skb and stores the list of segments
2007 *	in skb->next.
2008 */
2009static int dev_gso_segment(struct sk_buff *skb, int features)
 
 
2010{
2011	struct sk_buff *segs;
 
2012
2013	segs = skb_gso_segment(skb, features);
 
 
 
 
2014
2015	/* Verifying header integrity only. */
2016	if (!segs)
2017		return 0;
2018
2019	if (IS_ERR(segs))
2020		return PTR_ERR(segs);
2021
2022	skb->next = segs;
2023	DEV_GSO_CB(skb)->destructor = skb->destructor;
2024	skb->destructor = dev_gso_skb_destructor;
 
2025
2026	return 0;
2027}
 
 
 
 
 
 
2028
2029/*
2030 * Try to orphan skb early, right before transmission by the device.
2031 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2032 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2033 */
2034static inline void skb_orphan_try(struct sk_buff *skb)
2035{
2036	struct sock *sk = skb->sk;
2037
2038	if (sk && !skb_shinfo(skb)->tx_flags) {
2039		/* skb_tx_hash() wont be able to get sk.
2040		 * We copy sk_hash into skb->rxhash
2041		 */
2042		if (!skb->rxhash)
2043			skb->rxhash = sk->sk_hash;
2044		skb_orphan(skb);
2045	}
 
 
2046}
2047
2048static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2049{
2050	return ((features & NETIF_F_GEN_CSUM) ||
2051		((features & NETIF_F_V4_CSUM) &&
2052		 protocol == htons(ETH_P_IP)) ||
2053		((features & NETIF_F_V6_CSUM) &&
2054		 protocol == htons(ETH_P_IPV6)) ||
2055		((features & NETIF_F_FCOE_CRC) &&
2056		 protocol == htons(ETH_P_FCOE)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057}
 
2058
2059static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
 
2060{
2061	if (!can_checksum_protocol(features, protocol)) {
2062		features &= ~NETIF_F_ALL_CSUM;
2063		features &= ~NETIF_F_SG;
2064	} else if (illegal_highdma(skb->dev, skb)) {
2065		features &= ~NETIF_F_SG;
2066	}
 
 
 
 
2067
2068	return features;
2069}
2070
2071u32 netif_skb_features(struct sk_buff *skb)
 
2072{
2073	__be16 protocol = skb->protocol;
2074	u32 features = skb->dev->features;
2075
2076	if (protocol == htons(ETH_P_8021Q)) {
2077		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2078		protocol = veh->h_vlan_encapsulated_proto;
2079	} else if (!vlan_tx_tag_present(skb)) {
2080		return harmonize_features(skb, protocol, features);
2081	}
2082
2083	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
 
 
 
 
 
2084
2085	if (protocol != htons(ETH_P_8021Q)) {
2086		return harmonize_features(skb, protocol, features);
2087	} else {
2088		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2089				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2090		return harmonize_features(skb, protocol, features);
2091	}
 
 
 
 
2092}
2093EXPORT_SYMBOL(netif_skb_features);
2094
2095/*
2096 * Returns true if either:
2097 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2098 *	2. skb is fragmented and the device does not support SG, or if
2099 *	   at least one of fragments is in highmem and device does not
2100 *	   support DMA from it.
2101 */
2102static inline int skb_needs_linearize(struct sk_buff *skb,
2103				      int features)
2104{
2105	return skb_is_nonlinear(skb) &&
2106			((skb_has_frag_list(skb) &&
2107				!(features & NETIF_F_FRAGLIST)) ||
2108			(skb_shinfo(skb)->nr_frags &&
2109				!(features & NETIF_F_SG)));
2110}
2111
2112int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2113			struct netdev_queue *txq)
2114{
2115	const struct net_device_ops *ops = dev->netdev_ops;
2116	int rc = NETDEV_TX_OK;
2117	unsigned int skb_len;
 
 
 
2118
2119	if (likely(!skb->next)) {
2120		u32 features;
 
 
 
 
 
2121
2122		/*
2123		 * If device doesn't need skb->dst, release it right now while
2124		 * its hot in this cpu cache
2125		 */
2126		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2127			skb_dst_drop(skb);
2128
2129		if (!list_empty(&ptype_all))
2130			dev_queue_xmit_nit(skb, dev);
 
2131
2132		skb_orphan_try(skb);
 
 
 
2133
2134		features = netif_skb_features(skb);
 
 
2135
2136		if (vlan_tx_tag_present(skb) &&
2137		    !(features & NETIF_F_HW_VLAN_TX)) {
2138			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2139			if (unlikely(!skb))
2140				goto out;
2141
2142			skb->vlan_tci = 0;
 
 
 
 
 
2143		}
2144
2145		if (netif_needs_gso(skb, features)) {
2146			if (unlikely(dev_gso_segment(skb, features)))
2147				goto out_kfree_skb;
2148			if (skb->next)
2149				goto gso;
2150		} else {
2151			if (skb_needs_linearize(skb, features) &&
2152			    __skb_linearize(skb))
 
 
 
 
 
 
 
 
2153				goto out_kfree_skb;
2154
2155			/* If packet is not checksummed and device does not
2156			 * support checksumming for this protocol, complete
2157			 * checksumming here.
2158			 */
2159			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2160				skb_set_transport_header(skb,
2161					skb_checksum_start_offset(skb));
2162				if (!(features & NETIF_F_ALL_CSUM) &&
2163				     skb_checksum_help(skb))
2164					goto out_kfree_skb;
2165			}
2166		}
2167
2168		skb_len = skb->len;
2169		rc = ops->ndo_start_xmit(skb, dev);
2170		trace_net_dev_xmit(skb, rc, dev, skb_len);
2171		if (rc == NETDEV_TX_OK)
2172			txq_trans_update(txq);
2173		return rc;
2174	}
2175
2176gso:
2177	do {
2178		struct sk_buff *nskb = skb->next;
2179
2180		skb->next = nskb->next;
2181		nskb->next = NULL;
2182
2183		/*
2184		 * If device doesn't need nskb->dst, release it right now while
2185		 * its hot in this cpu cache
2186		 */
2187		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188			skb_dst_drop(nskb);
2189
2190		skb_len = nskb->len;
2191		rc = ops->ndo_start_xmit(nskb, dev);
2192		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2193		if (unlikely(rc != NETDEV_TX_OK)) {
2194			if (rc & ~NETDEV_TX_MASK)
2195				goto out_kfree_gso_skb;
2196			nskb->next = skb->next;
2197			skb->next = nskb;
2198			return rc;
2199		}
2200		txq_trans_update(txq);
2201		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2202			return NETDEV_TX_BUSY;
2203	} while (skb->next);
2204
2205out_kfree_gso_skb:
2206	if (likely(skb->next == NULL))
2207		skb->destructor = DEV_GSO_CB(skb)->destructor;
2208out_kfree_skb:
2209	kfree_skb(skb);
2210out:
2211	return rc;
 
2212}
2213
2214static u32 hashrnd __read_mostly;
2215
2216/*
2217 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2218 * to be used as a distribution range.
2219 */
2220u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2221		  unsigned int num_tx_queues)
2222{
2223	u32 hash;
2224	u16 qoffset = 0;
2225	u16 qcount = num_tx_queues;
2226
2227	if (skb_rx_queue_recorded(skb)) {
2228		hash = skb_get_rx_queue(skb);
2229		while (unlikely(hash >= num_tx_queues))
2230			hash -= num_tx_queues;
2231		return hash;
2232	}
2233
2234	if (dev->num_tc) {
2235		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2236		qoffset = dev->tc_to_txq[tc].offset;
2237		qcount = dev->tc_to_txq[tc].count;
2238	}
2239
2240	if (skb->sk && skb->sk->sk_hash)
2241		hash = skb->sk->sk_hash;
2242	else
2243		hash = (__force u16) skb->protocol ^ skb->rxhash;
2244	hash = jhash_1word(hash, hashrnd);
2245
2246	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
 
 
 
 
 
 
 
 
 
2247}
2248EXPORT_SYMBOL(__skb_tx_hash);
2249
2250static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2251{
2252	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2253		if (net_ratelimit()) {
2254			pr_warning("%s selects TX queue %d, but "
2255				"real number of TX queues is %d\n",
2256				dev->name, queue_index, dev->real_num_tx_queues);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257		}
2258		return 0;
2259	}
2260	return queue_index;
2261}
2262
2263static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2264{
2265#ifdef CONFIG_XPS
2266	struct xps_dev_maps *dev_maps;
2267	struct xps_map *map;
2268	int queue_index = -1;
2269
2270	rcu_read_lock();
2271	dev_maps = rcu_dereference(dev->xps_maps);
2272	if (dev_maps) {
2273		map = rcu_dereference(
2274		    dev_maps->cpu_map[raw_smp_processor_id()]);
2275		if (map) {
2276			if (map->len == 1)
2277				queue_index = map->queues[0];
2278			else {
2279				u32 hash;
2280				if (skb->sk && skb->sk->sk_hash)
2281					hash = skb->sk->sk_hash;
2282				else
2283					hash = (__force u16) skb->protocol ^
2284					    skb->rxhash;
2285				hash = jhash_1word(hash, hashrnd);
2286				queue_index = map->queues[
2287				    ((u64)hash * map->len) >> 32];
2288			}
2289			if (unlikely(queue_index >= dev->real_num_tx_queues))
2290				queue_index = -1;
2291		}
2292	}
2293	rcu_read_unlock();
2294
2295	return queue_index;
2296#else
2297	return -1;
2298#endif
2299}
2300
2301static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2302					struct sk_buff *skb)
 
2303{
2304	int queue_index;
2305	const struct net_device_ops *ops = dev->netdev_ops;
2306
2307	if (dev->real_num_tx_queues == 1)
2308		queue_index = 0;
2309	else if (ops->ndo_select_queue) {
2310		queue_index = ops->ndo_select_queue(dev, skb);
2311		queue_index = dev_cap_txqueue(dev, queue_index);
2312	} else {
2313		struct sock *sk = skb->sk;
2314		queue_index = sk_tx_queue_get(sk);
2315
2316		if (queue_index < 0 || skb->ooo_okay ||
2317		    queue_index >= dev->real_num_tx_queues) {
2318			int old_index = queue_index;
2319
2320			queue_index = get_xps_queue(dev, skb);
2321			if (queue_index < 0)
2322				queue_index = skb_tx_hash(dev, skb);
2323
2324			if (queue_index != old_index && sk) {
2325				struct dst_entry *dst =
2326				    rcu_dereference_check(sk->sk_dst_cache, 1);
2327
2328				if (dst && skb_dst(skb) == dst)
2329					sk_tx_queue_set(sk, queue_index);
2330			}
2331		}
2332	}
2333
2334	skb_set_queue_mapping(skb, queue_index);
2335	return netdev_get_tx_queue(dev, queue_index);
2336}
2337
2338static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2339				 struct net_device *dev,
2340				 struct netdev_queue *txq)
2341{
2342	spinlock_t *root_lock = qdisc_lock(q);
 
2343	bool contended;
2344	int rc;
2345
2346	qdisc_skb_cb(skb)->pkt_len = skb->len;
2347	qdisc_calculate_pkt_len(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348	/*
2349	 * Heuristic to force contended enqueues to serialize on a
2350	 * separate lock before trying to get qdisc main lock.
2351	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2352	 * and dequeue packets faster.
 
 
 
 
2353	 */
2354	contended = qdisc_is_running(q);
2355	if (unlikely(contended))
2356		spin_lock(&q->busylock);
2357
2358	spin_lock(root_lock);
2359	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2360		kfree_skb(skb);
2361		rc = NET_XMIT_DROP;
2362	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2363		   qdisc_run_begin(q)) {
2364		/*
2365		 * This is a work-conserving queue; there are no old skbs
2366		 * waiting to be sent out; and the qdisc is not running -
2367		 * xmit the skb directly.
2368		 */
2369		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2370			skb_dst_force(skb);
2371
2372		qdisc_bstats_update(q, skb);
2373
2374		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2375			if (unlikely(contended)) {
2376				spin_unlock(&q->busylock);
2377				contended = false;
2378			}
2379			__qdisc_run(q);
2380		} else
2381			qdisc_run_end(q);
2382
 
2383		rc = NET_XMIT_SUCCESS;
2384	} else {
2385		skb_dst_force(skb);
2386		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
 
2387		if (qdisc_run_begin(q)) {
2388			if (unlikely(contended)) {
2389				spin_unlock(&q->busylock);
2390				contended = false;
2391			}
2392			__qdisc_run(q);
 
2393		}
2394	}
2395	spin_unlock(root_lock);
 
 
 
2396	if (unlikely(contended))
2397		spin_unlock(&q->busylock);
2398	return rc;
2399}
2400
2401static DEFINE_PER_CPU(int, xmit_recursion);
2402#define RECURSION_LIMIT 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404/**
2405 *	dev_queue_xmit - transmit a buffer
 
 
2406 *	@skb: buffer to transmit
2407 *
2408 *	Queue a buffer for transmission to a network device. The caller must
2409 *	have set the device and priority and built the buffer before calling
2410 *	this function. The function can be called from an interrupt.
2411 *
2412 *	A negative errno code is returned on a failure. A success does not
2413 *	guarantee the frame will be transmitted as it may be dropped due
2414 *	to congestion or traffic shaping.
2415 *
2416 * -----------------------------------------------------------------------------------
2417 *      I notice this method can also return errors from the queue disciplines,
2418 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2419 *      be positive.
2420 *
2421 *      Regardless of the return value, the skb is consumed, so it is currently
2422 *      difficult to retry a send to this method.  (You can bump the ref count
2423 *      before sending to hold a reference for retry if you are careful.)
2424 *
2425 *      When calling this method, interrupts MUST be enabled.  This is because
2426 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2427 *          --BLG
2428 */
2429int dev_queue_xmit(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430{
2431	struct net_device *dev = skb->dev;
2432	struct netdev_queue *txq;
2433	struct Qdisc *q;
2434	int rc = -ENOMEM;
 
 
 
 
 
 
 
2435
2436	/* Disable soft irqs for various locks below. Also
2437	 * stops preemption for RCU.
2438	 */
2439	rcu_read_lock_bh();
2440
2441	txq = dev_pick_tx(dev, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442	q = rcu_dereference_bh(txq->qdisc);
2443
2444#ifdef CONFIG_NET_CLS_ACT
2445	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2446#endif
2447	trace_net_dev_queue(skb);
2448	if (q->enqueue) {
2449		rc = __dev_xmit_skb(skb, q, dev, txq);
2450		goto out;
2451	}
2452
2453	/* The device has no queue. Common case for software devices:
2454	   loopback, all the sorts of tunnels...
2455
2456	   Really, it is unlikely that netif_tx_lock protection is necessary
2457	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2458	   counters.)
2459	   However, it is possible, that they rely on protection
2460	   made by us here.
2461
2462	   Check this and shot the lock. It is not prone from deadlocks.
2463	   Either shot noqueue qdisc, it is even simpler 8)
2464	 */
2465	if (dev->flags & IFF_UP) {
2466		int cpu = smp_processor_id(); /* ok because BHs are off */
2467
2468		if (txq->xmit_lock_owner != cpu) {
 
 
 
 
 
2469
2470			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2471				goto recursion_alert;
 
2472
2473			HARD_TX_LOCK(dev, txq, cpu);
2474
2475			if (!netif_tx_queue_stopped(txq)) {
2476				__this_cpu_inc(xmit_recursion);
2477				rc = dev_hard_start_xmit(skb, dev, txq);
2478				__this_cpu_dec(xmit_recursion);
2479				if (dev_xmit_complete(rc)) {
2480					HARD_TX_UNLOCK(dev, txq);
2481					goto out;
2482				}
2483			}
2484			HARD_TX_UNLOCK(dev, txq);
2485			if (net_ratelimit())
2486				printk(KERN_CRIT "Virtual device %s asks to "
2487				       "queue packet!\n", dev->name);
2488		} else {
2489			/* Recursion is detected! It is possible,
2490			 * unfortunately
2491			 */
2492recursion_alert:
2493			if (net_ratelimit())
2494				printk(KERN_CRIT "Dead loop on virtual device "
2495				       "%s, fix it urgently!\n", dev->name);
2496		}
2497	}
2498
2499	rc = -ENETDOWN;
2500	rcu_read_unlock_bh();
2501
2502	kfree_skb(skb);
 
2503	return rc;
2504out:
2505	rcu_read_unlock_bh();
2506	return rc;
2507}
2508EXPORT_SYMBOL(dev_queue_xmit);
2509
 
 
 
 
 
 
 
2510
2511/*=======================================================================
2512			Receiver routines
2513  =======================================================================*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514
2515int netdev_max_backlog __read_mostly = 1000;
2516int netdev_tstamp_prequeue __read_mostly = 1;
2517int netdev_budget __read_mostly = 300;
2518int weight_p __read_mostly = 64;            /* old backlog weight */
 
 
 
 
 
 
 
 
 
 
 
 
 
2519
2520/* Called with irq disabled */
2521static inline void ____napi_schedule(struct softnet_data *sd,
2522				     struct napi_struct *napi)
2523{
2524	list_add_tail(&napi->poll_list, &sd->poll_list);
2525	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2526}
2527
2528/*
2529 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2530 * and src/dst port numbers. Returns a non-zero hash number on success
2531 * and 0 on failure.
2532 */
2533__u32 __skb_get_rxhash(struct sk_buff *skb)
2534{
2535	int nhoff, hash = 0, poff;
2536	const struct ipv6hdr *ip6;
2537	const struct iphdr *ip;
2538	u8 ip_proto;
2539	u32 addr1, addr2, ihl;
2540	union {
2541		u32 v32;
2542		u16 v16[2];
2543	} ports;
2544
2545	nhoff = skb_network_offset(skb);
2546
2547	switch (skb->protocol) {
2548	case __constant_htons(ETH_P_IP):
2549		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2550			goto done;
2551
2552		ip = (const struct iphdr *) (skb->data + nhoff);
2553		if (ip_is_fragment(ip))
2554			ip_proto = 0;
2555		else
2556			ip_proto = ip->protocol;
2557		addr1 = (__force u32) ip->saddr;
2558		addr2 = (__force u32) ip->daddr;
2559		ihl = ip->ihl;
2560		break;
2561	case __constant_htons(ETH_P_IPV6):
2562		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2563			goto done;
2564
2565		ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2566		ip_proto = ip6->nexthdr;
2567		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2568		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2569		ihl = (40 >> 2);
2570		break;
2571	default:
2572		goto done;
2573	}
2574
2575	ports.v32 = 0;
2576	poff = proto_ports_offset(ip_proto);
2577	if (poff >= 0) {
2578		nhoff += ihl * 4 + poff;
2579		if (pskb_may_pull(skb, nhoff + 4)) {
2580			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2581			if (ports.v16[1] < ports.v16[0])
2582				swap(ports.v16[0], ports.v16[1]);
2583		}
2584	}
2585
2586	/* get a consistent hash (same value on both flow directions) */
2587	if (addr2 < addr1)
2588		swap(addr1, addr2);
2589
2590	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2591	if (!hash)
2592		hash = 1;
2593
2594done:
2595	return hash;
2596}
2597EXPORT_SYMBOL(__skb_get_rxhash);
2598
2599#ifdef CONFIG_RPS
2600
2601/* One global table that all flow-based protocols share. */
2602struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2603EXPORT_SYMBOL(rps_sock_flow_table);
 
2604
2605static struct rps_dev_flow *
2606set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2607	    struct rps_dev_flow *rflow, u16 next_cpu)
2608{
2609	u16 tcpu;
2610
2611	tcpu = rflow->cpu = next_cpu;
2612	if (tcpu != RPS_NO_CPU) {
2613#ifdef CONFIG_RFS_ACCEL
2614		struct netdev_rx_queue *rxqueue;
2615		struct rps_dev_flow_table *flow_table;
2616		struct rps_dev_flow *old_rflow;
2617		u32 flow_id;
2618		u16 rxq_index;
2619		int rc;
2620
2621		/* Should we steer this flow to a different hardware queue? */
2622		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2623		    !(dev->features & NETIF_F_NTUPLE))
2624			goto out;
2625		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2626		if (rxq_index == skb_get_rx_queue(skb))
2627			goto out;
2628
2629		rxqueue = dev->_rx + rxq_index;
2630		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2631		if (!flow_table)
2632			goto out;
2633		flow_id = skb->rxhash & flow_table->mask;
2634		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2635							rxq_index, flow_id);
2636		if (rc < 0)
2637			goto out;
2638		old_rflow = rflow;
2639		rflow = &flow_table->flows[flow_id];
2640		rflow->cpu = next_cpu;
2641		rflow->filter = rc;
2642		if (old_rflow->filter == rflow->filter)
2643			old_rflow->filter = RPS_NO_FILTER;
2644	out:
2645#endif
2646		rflow->last_qtail =
2647			per_cpu(softnet_data, tcpu).input_queue_head;
2648	}
2649
 
2650	return rflow;
2651}
2652
2653/*
2654 * get_rps_cpu is called from netif_receive_skb and returns the target
2655 * CPU from the RPS map of the receiving queue for a given skb.
2656 * rcu_read_lock must be held on entry.
2657 */
2658static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2659		       struct rps_dev_flow **rflowp)
2660{
2661	struct netdev_rx_queue *rxqueue;
 
 
2662	struct rps_map *map;
2663	struct rps_dev_flow_table *flow_table;
2664	struct rps_sock_flow_table *sock_flow_table;
2665	int cpu = -1;
2666	u16 tcpu;
 
2667
2668	if (skb_rx_queue_recorded(skb)) {
2669		u16 index = skb_get_rx_queue(skb);
 
2670		if (unlikely(index >= dev->real_num_rx_queues)) {
2671			WARN_ONCE(dev->real_num_rx_queues > 1,
2672				  "%s received packet on queue %u, but number "
2673				  "of RX queues is %u\n",
2674				  dev->name, index, dev->real_num_rx_queues);
2675			goto done;
2676		}
2677		rxqueue = dev->_rx + index;
2678	} else
2679		rxqueue = dev->_rx;
 
2680
 
2681	map = rcu_dereference(rxqueue->rps_map);
2682	if (map) {
2683		if (map->len == 1 &&
2684		    !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2685			tcpu = map->cpus[0];
2686			if (cpu_online(tcpu))
2687				cpu = tcpu;
2688			goto done;
2689		}
2690	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2691		goto done;
2692	}
2693
2694	skb_reset_network_header(skb);
2695	if (!skb_get_rxhash(skb))
 
2696		goto done;
2697
2698	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2699	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2700	if (flow_table && sock_flow_table) {
2701		u16 next_cpu;
2702		struct rps_dev_flow *rflow;
 
 
2703
2704		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
 
 
 
 
 
 
 
 
 
 
 
 
2705		tcpu = rflow->cpu;
2706
2707		next_cpu = sock_flow_table->ents[skb->rxhash &
2708		    sock_flow_table->mask];
2709
2710		/*
2711		 * If the desired CPU (where last recvmsg was done) is
2712		 * different from current CPU (one in the rx-queue flow
2713		 * table entry), switch if one of the following holds:
2714		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2715		 *   - Current CPU is offline.
2716		 *   - The current CPU's queue tail has advanced beyond the
2717		 *     last packet that was enqueued using this table entry.
2718		 *     This guarantees that all previous packets for the flow
2719		 *     have been dequeued, thus preserving in order delivery.
2720		 */
2721		if (unlikely(tcpu != next_cpu) &&
2722		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2723		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2724		      rflow->last_qtail)) >= 0))
 
2725			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 
2726
2727		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2728			*rflowp = rflow;
2729			cpu = tcpu;
2730			goto done;
2731		}
2732	}
2733
 
 
2734	if (map) {
2735		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2736
2737		if (cpu_online(tcpu)) {
2738			cpu = tcpu;
2739			goto done;
2740		}
2741	}
2742
2743done:
2744	return cpu;
2745}
2746
2747#ifdef CONFIG_RFS_ACCEL
2748
2749/**
2750 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2751 * @dev: Device on which the filter was set
2752 * @rxq_index: RX queue index
2753 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2754 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2755 *
2756 * Drivers that implement ndo_rx_flow_steer() should periodically call
2757 * this function for each installed filter and remove the filters for
2758 * which it returns %true.
2759 */
2760bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2761			 u32 flow_id, u16 filter_id)
2762{
2763	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2764	struct rps_dev_flow_table *flow_table;
2765	struct rps_dev_flow *rflow;
2766	bool expire = true;
2767	int cpu;
2768
2769	rcu_read_lock();
2770	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2771	if (flow_table && flow_id <= flow_table->mask) {
2772		rflow = &flow_table->flows[flow_id];
2773		cpu = ACCESS_ONCE(rflow->cpu);
2774		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2775		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2776			   rflow->last_qtail) <
2777		     (int)(10 * flow_table->mask)))
2778			expire = false;
2779	}
2780	rcu_read_unlock();
2781	return expire;
2782}
2783EXPORT_SYMBOL(rps_may_expire_flow);
2784
2785#endif /* CONFIG_RFS_ACCEL */
2786
2787/* Called from hardirq (IPI) context */
2788static void rps_trigger_softirq(void *data)
2789{
2790	struct softnet_data *sd = data;
2791
2792	____napi_schedule(sd, &sd->backlog);
2793	sd->received_rps++;
2794}
2795
2796#endif /* CONFIG_RPS */
2797
 
 
 
 
 
 
 
 
 
2798/*
2799 * Check if this softnet_data structure is another cpu one
2800 * If yes, queue it to our IPI list and return 1
2801 * If no, return 0
 
 
 
 
 
2802 */
2803static int rps_ipi_queued(struct softnet_data *sd)
2804{
 
 
2805#ifdef CONFIG_RPS
2806	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2807
2808	if (sd != mysd) {
2809		sd->rps_ipi_next = mysd->rps_ipi_list;
2810		mysd->rps_ipi_list = sd;
2811
2812		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2813		return 1;
 
 
 
 
2814	}
2815#endif /* CONFIG_RPS */
2816	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2817}
2818
2819/*
2820 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2821 * queue (may be a remote CPU queue).
2822 */
2823static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2824			      unsigned int *qtail)
2825{
 
2826	struct softnet_data *sd;
2827	unsigned long flags;
 
2828
 
2829	sd = &per_cpu(softnet_data, cpu);
2830
2831	local_irq_save(flags);
2832
2833	rps_lock(sd);
2834	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2835		if (skb_queue_len(&sd->input_pkt_queue)) {
 
 
2836enqueue:
2837			__skb_queue_tail(&sd->input_pkt_queue, skb);
2838			input_queue_tail_incr_save(sd, qtail);
2839			rps_unlock(sd);
2840			local_irq_restore(flags);
2841			return NET_RX_SUCCESS;
2842		}
2843
2844		/* Schedule NAPI for backlog device
2845		 * We can use non atomic operation since we own the queue lock
2846		 */
2847		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2848			if (!rps_ipi_queued(sd))
2849				____napi_schedule(sd, &sd->backlog);
2850		}
2851		goto enqueue;
2852	}
 
2853
 
2854	sd->dropped++;
2855	rps_unlock(sd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856
2857	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859	atomic_long_inc(&skb->dev->rx_dropped);
2860	kfree_skb(skb);
2861	return NET_RX_DROP;
2862}
2863
2864/**
2865 *	netif_rx	-	post buffer to the network code
2866 *	@skb: buffer to post
2867 *
2868 *	This function receives a packet from a device driver and queues it for
2869 *	the upper (protocol) levels to process.  It always succeeds. The buffer
2870 *	may be dropped during processing for congestion control or by the
2871 *	protocol layers.
2872 *
2873 *	return values:
2874 *	NET_RX_SUCCESS	(no congestion)
2875 *	NET_RX_DROP     (packet was dropped)
2876 *
2877 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878
2879int netif_rx(struct sk_buff *skb)
2880{
2881	int ret;
2882
2883	/* if netpoll wants it, pretend we never saw it */
2884	if (netpoll_rx(skb))
2885		return NET_RX_DROP;
2886
2887	if (netdev_tstamp_prequeue)
2888		net_timestamp_check(skb);
2889
2890	trace_netif_rx(skb);
2891#ifdef CONFIG_RPS
2892	{
2893		struct rps_dev_flow voidflow, *rflow = &voidflow;
2894		int cpu;
2895
2896		preempt_disable();
2897		rcu_read_lock();
2898
2899		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2900		if (cpu < 0)
2901			cpu = smp_processor_id();
2902
2903		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2904
2905		rcu_read_unlock();
2906		preempt_enable();
2907	}
2908#else
2909	{
2910		unsigned int qtail;
2911		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2912		put_cpu();
2913	}
2914#endif
2915	return ret;
2916}
2917EXPORT_SYMBOL(netif_rx);
2918
2919int netif_rx_ni(struct sk_buff *skb)
 
 
 
 
 
 
 
 
2920{
2921	int err;
 
 
2922
2923	preempt_disable();
2924	err = netif_rx(skb);
2925	if (local_softirq_pending())
2926		do_softirq();
2927	preempt_enable();
 
2928
2929	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930}
2931EXPORT_SYMBOL(netif_rx_ni);
2932
2933static void net_tx_action(struct softirq_action *h)
2934{
2935	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2936
2937	if (sd->completion_queue) {
2938		struct sk_buff *clist;
2939
2940		local_irq_disable();
2941		clist = sd->completion_queue;
2942		sd->completion_queue = NULL;
2943		local_irq_enable();
2944
2945		while (clist) {
2946			struct sk_buff *skb = clist;
 
2947			clist = clist->next;
2948
2949			WARN_ON(atomic_read(&skb->users));
2950			trace_kfree_skb(skb, net_tx_action);
2951			__kfree_skb(skb);
 
 
 
 
 
 
 
 
 
2952		}
2953	}
2954
2955	if (sd->output_queue) {
2956		struct Qdisc *head;
2957
2958		local_irq_disable();
2959		head = sd->output_queue;
2960		sd->output_queue = NULL;
2961		sd->output_queue_tailp = &sd->output_queue;
2962		local_irq_enable();
2963
 
 
2964		while (head) {
2965			struct Qdisc *q = head;
2966			spinlock_t *root_lock;
2967
2968			head = head->next_sched;
2969
2970			root_lock = qdisc_lock(q);
2971			if (spin_trylock(root_lock)) {
2972				smp_mb__before_clear_bit();
2973				clear_bit(__QDISC_STATE_SCHED,
2974					  &q->state);
2975				qdisc_run(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2976				spin_unlock(root_lock);
2977			} else {
2978				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2979					      &q->state)) {
2980					__netif_reschedule(q);
2981				} else {
2982					smp_mb__before_clear_bit();
2983					clear_bit(__QDISC_STATE_SCHED,
2984						  &q->state);
2985				}
2986			}
2987		}
 
 
2988	}
 
 
2989}
2990
2991#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2992    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2993/* This hook is defined here for ATM LANE */
2994int (*br_fdb_test_addr_hook)(struct net_device *dev,
2995			     unsigned char *addr) __read_mostly;
2996EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2997#endif
2998
2999#ifdef CONFIG_NET_CLS_ACT
3000/* TODO: Maybe we should just force sch_ingress to be compiled in
3001 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3002 * a compare and 2 stores extra right now if we dont have it on
3003 * but have CONFIG_NET_CLS_ACT
3004 * NOTE: This doesn't stop any functionality; if you dont have
3005 * the ingress scheduler, you just can't add policies on ingress.
3006 *
 
3007 */
3008static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3009{
3010	struct net_device *dev = skb->dev;
3011	u32 ttl = G_TC_RTTL(skb->tc_verd);
3012	int result = TC_ACT_OK;
3013	struct Qdisc *q;
3014
3015	if (unlikely(MAX_RED_LOOP < ttl++)) {
3016		if (net_ratelimit())
3017			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3018			       skb->skb_iif, dev->ifindex);
3019		return TC_ACT_SHOT;
3020	}
3021
3022	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3023	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3024
3025	q = rxq->qdisc;
3026	if (q != &noop_qdisc) {
3027		spin_lock(qdisc_lock(q));
3028		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3029			result = qdisc_enqueue_root(skb, q);
3030		spin_unlock(qdisc_lock(q));
3031	}
3032
3033	return result;
3034}
3035
3036static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3037					 struct packet_type **pt_prev,
3038					 int *ret, struct net_device *orig_dev)
3039{
3040	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3041
3042	if (!rxq || rxq->qdisc == &noop_qdisc)
3043		goto out;
3044
3045	if (*pt_prev) {
3046		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3047		*pt_prev = NULL;
3048	}
3049
3050	switch (ing_filter(skb, rxq)) {
3051	case TC_ACT_SHOT:
3052	case TC_ACT_STOLEN:
3053		kfree_skb(skb);
3054		return NULL;
3055	}
3056
3057out:
3058	skb->tc_verd = 0;
3059	return skb;
3060}
3061#endif
3062
3063/**
3064 *	netdev_rx_handler_register - register receive handler
3065 *	@dev: device to register a handler for
3066 *	@rx_handler: receive handler to register
3067 *	@rx_handler_data: data pointer that is used by rx handler
3068 *
3069 *	Register a receive hander for a device. This handler will then be
3070 *	called from __netif_receive_skb. A negative errno code is returned
3071 *	on a failure.
3072 *
3073 *	The caller must hold the rtnl_mutex.
3074 *
3075 *	For a general description of rx_handler, see enum rx_handler_result.
3076 */
3077int netdev_rx_handler_register(struct net_device *dev,
3078			       rx_handler_func_t *rx_handler,
3079			       void *rx_handler_data)
3080{
3081	ASSERT_RTNL();
 
3082
3083	if (dev->rx_handler)
3084		return -EBUSY;
3085
 
3086	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3087	rcu_assign_pointer(dev->rx_handler, rx_handler);
3088
3089	return 0;
3090}
3091EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3092
3093/**
3094 *	netdev_rx_handler_unregister - unregister receive handler
3095 *	@dev: device to unregister a handler from
3096 *
3097 *	Unregister a receive hander from a device.
3098 *
3099 *	The caller must hold the rtnl_mutex.
3100 */
3101void netdev_rx_handler_unregister(struct net_device *dev)
3102{
3103
3104	ASSERT_RTNL();
3105	rcu_assign_pointer(dev->rx_handler, NULL);
3106	rcu_assign_pointer(dev->rx_handler_data, NULL);
 
 
 
 
 
3107}
3108EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3109
3110static int __netif_receive_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111{
3112	struct packet_type *ptype, *pt_prev;
3113	rx_handler_func_t *rx_handler;
 
3114	struct net_device *orig_dev;
3115	struct net_device *null_or_dev;
3116	bool deliver_exact = false;
3117	int ret = NET_RX_DROP;
3118	__be16 type;
3119
3120	if (!netdev_tstamp_prequeue)
3121		net_timestamp_check(skb);
3122
3123	trace_netif_receive_skb(skb);
3124
3125	/* if we've gotten here through NAPI, check netpoll */
3126	if (netpoll_receive_skb(skb))
3127		return NET_RX_DROP;
3128
3129	if (!skb->skb_iif)
3130		skb->skb_iif = skb->dev->ifindex;
3131	orig_dev = skb->dev;
3132
3133	skb_reset_network_header(skb);
3134	skb_reset_transport_header(skb);
 
3135	skb_reset_mac_len(skb);
3136
3137	pt_prev = NULL;
3138
3139	rcu_read_lock();
3140
3141another_round:
 
3142
3143	__this_cpu_inc(softnet_data.processed);
3144
3145	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3146		skb = vlan_untag(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3147		if (unlikely(!skb))
3148			goto out;
3149	}
3150
3151#ifdef CONFIG_NET_CLS_ACT
3152	if (skb->tc_verd & TC_NCLS) {
3153		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3154		goto ncls;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155	}
3156#endif
 
 
 
 
3157
3158	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3159		if (!ptype->dev || ptype->dev == skb->dev) {
3160			if (pt_prev)
3161				ret = deliver_skb(skb, pt_prev, orig_dev);
3162			pt_prev = ptype;
3163		}
 
 
 
 
3164	}
3165
3166#ifdef CONFIG_NET_CLS_ACT
3167	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3168	if (!skb)
3169		goto out;
3170ncls:
3171#endif
3172
3173	rx_handler = rcu_dereference(skb->dev->rx_handler);
3174	if (rx_handler) {
3175		if (pt_prev) {
3176			ret = deliver_skb(skb, pt_prev, orig_dev);
3177			pt_prev = NULL;
3178		}
3179		switch (rx_handler(&skb)) {
3180		case RX_HANDLER_CONSUMED:
 
3181			goto out;
3182		case RX_HANDLER_ANOTHER:
3183			goto another_round;
3184		case RX_HANDLER_EXACT:
3185			deliver_exact = true;
 
3186		case RX_HANDLER_PASS:
3187			break;
3188		default:
3189			BUG();
3190		}
3191	}
3192
3193	if (vlan_tx_tag_present(skb)) {
3194		if (pt_prev) {
3195			ret = deliver_skb(skb, pt_prev, orig_dev);
3196			pt_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197		}
3198		if (vlan_do_receive(&skb)) {
3199			ret = __netif_receive_skb(skb);
3200			goto out;
3201		} else if (unlikely(!skb))
3202			goto out;
3203	}
3204
 
 
3205	/* deliver only exact match when indicated */
3206	null_or_dev = deliver_exact ? skb->dev : NULL;
 
 
 
 
3207
3208	type = skb->protocol;
3209	list_for_each_entry_rcu(ptype,
3210			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3211		if (ptype->type == type &&
3212		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3213		     ptype->dev == orig_dev)) {
3214			if (pt_prev)
3215				ret = deliver_skb(skb, pt_prev, orig_dev);
3216			pt_prev = ptype;
3217		}
3218	}
3219
3220	if (pt_prev) {
3221		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 
 
3222	} else {
3223		atomic_long_inc(&skb->dev->rx_dropped);
3224		kfree_skb(skb);
 
 
 
 
3225		/* Jamal, now you will not able to escape explaining
3226		 * me how you were going to use this. :-)
3227		 */
3228		ret = NET_RX_DROP;
3229	}
3230
3231out:
3232	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233	return ret;
3234}
3235
3236/**
3237 *	netif_receive_skb - process receive buffer from network
3238 *	@skb: buffer to process
3239 *
3240 *	netif_receive_skb() is the main receive data processing function.
3241 *	It always succeeds. The buffer may be dropped during processing
3242 *	for congestion control or by the protocol layers.
3243 *
3244 *	This function may only be called from softirq context and interrupts
3245 *	should be enabled.
3246 *
3247 *	Return values (usually ignored):
3248 *	NET_RX_SUCCESS: no congestion
3249 *	NET_RX_DROP: packet was dropped
3250 */
3251int netif_receive_skb(struct sk_buff *skb)
3252{
3253	if (netdev_tstamp_prequeue)
3254		net_timestamp_check(skb);
3255
3256	if (skb_defer_rx_timestamp(skb))
3257		return NET_RX_SUCCESS;
 
3258
3259#ifdef CONFIG_RPS
3260	{
3261		struct rps_dev_flow voidflow, *rflow = &voidflow;
3262		int cpu, ret;
3263
3264		rcu_read_lock();
 
 
 
 
3265
3266		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3267
3268		if (cpu >= 0) {
3269			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3270			rcu_read_unlock();
3271		} else {
3272			rcu_read_unlock();
3273			ret = __netif_receive_skb(skb);
 
 
 
3274		}
3275
3276		return ret;
3277	}
3278#else
3279	return __netif_receive_skb(skb);
3280#endif
3281}
3282EXPORT_SYMBOL(netif_receive_skb);
3283
3284/* Network device is going away, flush any packets still pending
3285 * Called with irqs disabled.
3286 */
3287static void flush_backlog(void *arg)
3288{
3289	struct net_device *dev = arg;
3290	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3291	struct sk_buff *skb, *tmp;
 
 
 
 
 
 
 
 
 
3292
3293	rps_lock(sd);
3294	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3295		if (skb->dev == dev) {
3296			__skb_unlink(skb, &sd->input_pkt_queue);
3297			kfree_skb(skb);
3298			input_queue_head_incr(sd);
 
 
 
 
 
 
 
 
 
 
3299		}
 
3300	}
3301	rps_unlock(sd);
3302
3303	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3304		if (skb->dev == dev) {
3305			__skb_unlink(skb, &sd->process_queue);
3306			kfree_skb(skb);
3307			input_queue_head_incr(sd);
3308		}
3309	}
3310}
3311
3312static int napi_gro_complete(struct sk_buff *skb)
3313{
3314	struct packet_type *ptype;
3315	__be16 type = skb->protocol;
3316	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3317	int err = -ENOENT;
3318
3319	if (NAPI_GRO_CB(skb)->count == 1) {
3320		skb_shinfo(skb)->gso_size = 0;
3321		goto out;
3322	}
3323
3324	rcu_read_lock();
3325	list_for_each_entry_rcu(ptype, head, list) {
3326		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3327			continue;
 
 
 
 
 
 
 
 
 
 
3328
3329		err = ptype->gro_complete(skb);
3330		break;
3331	}
3332	rcu_read_unlock();
3333
3334	if (err) {
3335		WARN_ON(&ptype->list == head);
3336		kfree_skb(skb);
3337		return NET_RX_SUCCESS;
3338	}
3339
3340out:
3341	return netif_receive_skb(skb);
3342}
3343
3344inline void napi_gro_flush(struct napi_struct *napi)
3345{
 
3346	struct sk_buff *skb, *next;
 
3347
3348	for (skb = napi->gro_list; skb; skb = next) {
3349		next = skb->next;
3350		skb->next = NULL;
3351		napi_gro_complete(skb);
 
 
 
 
 
 
 
 
 
 
 
3352	}
3353
3354	napi->gro_count = 0;
3355	napi->gro_list = NULL;
 
 
 
3356}
3357EXPORT_SYMBOL(napi_gro_flush);
3358
3359enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3360{
3361	struct sk_buff **pp = NULL;
3362	struct packet_type *ptype;
3363	__be16 type = skb->protocol;
3364	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365	int same_flow;
3366	int mac_len;
3367	enum gro_result ret;
3368
3369	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3370		goto normal;
 
 
 
3371
3372	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3373		goto normal;
 
 
 
 
 
 
3374
3375	rcu_read_lock();
3376	list_for_each_entry_rcu(ptype, head, list) {
3377		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3378			continue;
3379
3380		skb_set_network_header(skb, skb_gro_offset(skb));
3381		mac_len = skb->network_header - skb->mac_header;
3382		skb->mac_len = mac_len;
3383		NAPI_GRO_CB(skb)->same_flow = 0;
3384		NAPI_GRO_CB(skb)->flush = 0;
3385		NAPI_GRO_CB(skb)->free = 0;
3386
3387		pp = ptype->gro_receive(&napi->gro_list, skb);
3388		break;
3389	}
3390	rcu_read_unlock();
3391
3392	if (&ptype->list == head)
3393		goto normal;
3394
3395	same_flow = NAPI_GRO_CB(skb)->same_flow;
3396	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
 
3397
3398	if (pp) {
3399		struct sk_buff *nskb = *pp;
3400
3401		*pp = nskb->next;
3402		nskb->next = NULL;
3403		napi_gro_complete(nskb);
3404		napi->gro_count--;
3405	}
3406
3407	if (same_flow)
3408		goto ok;
 
 
 
3409
3410	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3411		goto normal;
3412
3413	napi->gro_count++;
3414	NAPI_GRO_CB(skb)->count = 1;
3415	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3416	skb->next = napi->gro_list;
3417	napi->gro_list = skb;
3418	ret = GRO_HELD;
3419
3420pull:
3421	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3422		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3423
3424		BUG_ON(skb->end - skb->tail < grow);
3425
3426		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3427
3428		skb->tail += grow;
3429		skb->data_len -= grow;
3430
3431		skb_shinfo(skb)->frags[0].page_offset += grow;
3432		skb_shinfo(skb)->frags[0].size -= grow;
3433
3434		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3435			put_page(skb_shinfo(skb)->frags[0].page);
3436			memmove(skb_shinfo(skb)->frags,
3437				skb_shinfo(skb)->frags + 1,
3438				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3439		}
3440	}
3441
3442ok:
 
3443	return ret;
3444
3445normal:
3446	ret = GRO_NORMAL;
3447	goto pull;
3448}
3449EXPORT_SYMBOL(dev_gro_receive);
3450
3451static inline gro_result_t
3452__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3453{
3454	struct sk_buff *p;
 
3455
3456	for (p = napi->gro_list; p; p = p->next) {
3457		unsigned long diffs;
 
 
 
 
 
 
 
3458
3459		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3460		diffs |= p->vlan_tci ^ skb->vlan_tci;
3461		diffs |= compare_ether_header(skb_mac_header(p),
3462					      skb_gro_mac_header(skb));
3463		NAPI_GRO_CB(p)->same_flow = !diffs;
3464		NAPI_GRO_CB(p)->flush = 0;
 
 
 
 
 
 
 
3465	}
3466
3467	return dev_gro_receive(napi, skb);
 
3468}
3469
3470gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471{
3472	switch (ret) {
3473	case GRO_NORMAL:
3474		if (netif_receive_skb(skb))
3475			ret = GRO_DROP;
3476		break;
3477
3478	case GRO_DROP:
3479	case GRO_MERGED_FREE:
3480		kfree_skb(skb);
3481		break;
3482
3483	case GRO_HELD:
3484	case GRO_MERGED:
3485		break;
3486	}
3487
3488	return ret;
3489}
3490EXPORT_SYMBOL(napi_skb_finish);
3491
3492void skb_gro_reset_offset(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
3493{
3494	NAPI_GRO_CB(skb)->data_offset = 0;
3495	NAPI_GRO_CB(skb)->frag0 = NULL;
3496	NAPI_GRO_CB(skb)->frag0_len = 0;
3497
3498	if (skb->mac_header == skb->tail &&
3499	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3500		NAPI_GRO_CB(skb)->frag0 =
3501			page_address(skb_shinfo(skb)->frags[0].page) +
3502			skb_shinfo(skb)->frags[0].page_offset;
3503		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3504	}
 
 
3505}
3506EXPORT_SYMBOL(skb_gro_reset_offset);
3507
3508gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3509{
3510	skb_gro_reset_offset(skb);
3511
3512	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3513}
3514EXPORT_SYMBOL(napi_gro_receive);
3515
3516static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
 
3517{
3518	__skb_pull(skb, skb_headlen(skb));
3519	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3520	skb->vlan_tci = 0;
3521	skb->dev = napi->dev;
3522	skb->skb_iif = 0;
3523
3524	napi->skb = skb;
3525}
3526
3527struct sk_buff *napi_get_frags(struct napi_struct *napi)
3528{
3529	struct sk_buff *skb = napi->skb;
 
 
 
 
 
 
3530
3531	if (!skb) {
3532		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3533		if (skb)
3534			napi->skb = skb;
 
 
3535	}
3536	return skb;
3537}
3538EXPORT_SYMBOL(napi_get_frags);
3539
3540gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3541			       gro_result_t ret)
3542{
3543	switch (ret) {
3544	case GRO_NORMAL:
3545	case GRO_HELD:
3546		skb->protocol = eth_type_trans(skb, skb->dev);
3547
3548		if (ret == GRO_HELD)
3549			skb_gro_pull(skb, -ETH_HLEN);
3550		else if (netif_receive_skb(skb))
3551			ret = GRO_DROP;
3552		break;
3553
3554	case GRO_DROP:
3555	case GRO_MERGED_FREE:
3556		napi_reuse_skb(napi, skb);
3557		break;
 
 
3558
3559	case GRO_MERGED:
3560		break;
3561	}
3562
3563	return ret;
 
 
 
3564}
3565EXPORT_SYMBOL(napi_frags_finish);
3566
3567struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3568{
3569	struct sk_buff *skb = napi->skb;
3570	struct ethhdr *eth;
3571	unsigned int hlen;
3572	unsigned int off;
3573
3574	napi->skb = NULL;
 
 
 
 
3575
3576	skb_reset_mac_header(skb);
3577	skb_gro_reset_offset(skb);
3578
3579	off = skb_gro_offset(skb);
3580	hlen = off + sizeof(*eth);
3581	eth = skb_gro_header_fast(skb, off);
3582	if (skb_gro_header_hard(skb, hlen)) {
3583		eth = skb_gro_header_slow(skb, hlen, off);
3584		if (unlikely(!eth)) {
3585			napi_reuse_skb(napi, skb);
3586			skb = NULL;
3587			goto out;
3588		}
3589	}
3590
3591	skb_gro_pull(skb, sizeof(*eth));
3592
3593	/*
3594	 * This works because the only protocols we care about don't require
3595	 * special handling.  We'll fix it up properly at the end.
3596	 */
3597	skb->protocol = eth->h_proto;
 
3598
3599out:
3600	return skb;
3601}
3602EXPORT_SYMBOL(napi_frags_skb);
3603
3604gro_result_t napi_gro_frags(struct napi_struct *napi)
3605{
3606	struct sk_buff *skb = napi_frags_skb(napi);
 
 
3607
3608	if (!skb)
3609		return GRO_DROP;
3610
3611	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
 
3612}
3613EXPORT_SYMBOL(napi_gro_frags);
3614
3615/*
3616 * net_rps_action sends any pending IPI's for rps.
3617 * Note: called with local irq disabled, but exits with local irq enabled.
3618 */
3619static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3620{
3621#ifdef CONFIG_RPS
3622	struct softnet_data *remsd = sd->rps_ipi_list;
3623
3624	if (remsd) {
3625		sd->rps_ipi_list = NULL;
3626
3627		local_irq_enable();
3628
3629		/* Send pending IPI's to kick RPS processing on remote cpus. */
3630		while (remsd) {
3631			struct softnet_data *next = remsd->rps_ipi_next;
3632
3633			if (cpu_online(remsd->cpu))
3634				__smp_call_function_single(remsd->cpu,
3635							   &remsd->csd, 0);
3636			remsd = next;
3637		}
3638	} else
3639#endif
3640		local_irq_enable();
3641}
3642
 
 
 
 
 
 
 
 
 
3643static int process_backlog(struct napi_struct *napi, int quota)
3644{
 
 
3645	int work = 0;
3646	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3647
3648#ifdef CONFIG_RPS
3649	/* Check if we have pending ipi, its better to send them now,
3650	 * not waiting net_rx_action() end.
3651	 */
3652	if (sd->rps_ipi_list) {
3653		local_irq_disable();
3654		net_rps_action_and_irq_enable(sd);
3655	}
3656#endif
3657	napi->weight = weight_p;
3658	local_irq_disable();
3659	while (work < quota) {
3660		struct sk_buff *skb;
3661		unsigned int qlen;
3662
3663		while ((skb = __skb_dequeue(&sd->process_queue))) {
3664			local_irq_enable();
3665			__netif_receive_skb(skb);
3666			local_irq_disable();
3667			input_queue_head_incr(sd);
3668			if (++work >= quota) {
3669				local_irq_enable();
3670				return work;
3671			}
3672		}
3673
3674		rps_lock(sd);
3675		qlen = skb_queue_len(&sd->input_pkt_queue);
3676		if (qlen)
3677			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3678						   &sd->process_queue);
3679
3680		if (qlen < quota - work) {
3681			/*
3682			 * Inline a custom version of __napi_complete().
3683			 * only current cpu owns and manipulates this napi,
3684			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3685			 * we can use a plain write instead of clear_bit(),
 
3686			 * and we dont need an smp_mb() memory barrier.
3687			 */
3688			list_del(&napi->poll_list);
3689			napi->state = 0;
3690
3691			quota = work + qlen;
 
 
3692		}
3693		rps_unlock(sd);
3694	}
3695	local_irq_enable();
3696
3697	return work;
3698}
3699
3700/**
3701 * __napi_schedule - schedule for receive
3702 * @n: entry to schedule
3703 *
3704 * The entry's receive function will be scheduled to run
 
3705 */
3706void __napi_schedule(struct napi_struct *n)
3707{
3708	unsigned long flags;
3709
3710	local_irq_save(flags);
3711	____napi_schedule(&__get_cpu_var(softnet_data), n);
3712	local_irq_restore(flags);
3713}
3714EXPORT_SYMBOL(__napi_schedule);
3715
3716void __napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
3717{
3718	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3719	BUG_ON(n->gro_list);
3720
3721	list_del(&n->poll_list);
3722	smp_mb__before_clear_bit();
3723	clear_bit(NAPI_STATE_SCHED, &n->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
3724}
3725EXPORT_SYMBOL(__napi_complete);
3726
3727void napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
 
3728{
3729	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
3730
3731	/*
3732	 * don't let napi dequeue from the cpu poll list
3733	 * just in case its running on a different cpu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3734	 */
3735	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736		return;
3737
3738	napi_gro_flush(n);
3739	local_irq_save(flags);
3740	__napi_complete(n);
3741	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742}
3743EXPORT_SYMBOL(napi_complete);
3744
3745void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3746		    int (*poll)(struct napi_struct *, int), int weight)
3747{
 
 
 
3748	INIT_LIST_HEAD(&napi->poll_list);
3749	napi->gro_count = 0;
3750	napi->gro_list = NULL;
 
 
3751	napi->skb = NULL;
 
 
3752	napi->poll = poll;
 
 
 
3753	napi->weight = weight;
3754	list_add(&napi->dev_list, &dev->napi_list);
3755	napi->dev = dev;
3756#ifdef CONFIG_NETPOLL
3757	spin_lock_init(&napi->poll_lock);
3758	napi->poll_owner = -1;
3759#endif
 
3760	set_bit(NAPI_STATE_SCHED, &napi->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3761}
3762EXPORT_SYMBOL(netif_napi_add);
3763
3764void netif_napi_del(struct napi_struct *napi)
3765{
3766	struct sk_buff *skb, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3767
3768	list_del_init(&napi->dev_list);
 
3769	napi_free_frags(napi);
3770
3771	for (skb = napi->gro_list; skb; skb = next) {
3772		next = skb->next;
3773		skb->next = NULL;
3774		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775	}
 
3776
3777	napi->gro_list = NULL;
3778	napi->gro_count = 0;
3779}
3780EXPORT_SYMBOL(netif_napi_del);
3781
3782static void net_rx_action(struct softirq_action *h)
3783{
3784	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3785	unsigned long time_limit = jiffies + 2;
3786	int budget = netdev_budget;
3787	void *have;
3788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789	local_irq_disable();
 
 
3790
3791	while (!list_empty(&sd->poll_list)) {
3792		struct napi_struct *n;
3793		int work, weight;
3794
3795		/* If softirq window is exhuasted then punt.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3796		 * Allow this to run for 2 jiffies since which will allow
3797		 * an average latency of 1.5/HZ.
3798		 */
3799		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3800			goto softnet_break;
 
 
 
 
3801
3802		local_irq_enable();
 
 
 
 
 
 
 
 
3803
3804		/* Even though interrupts have been re-enabled, this
3805		 * access is safe because interrupts can only add new
3806		 * entries to the tail of this list, and only ->poll()
3807		 * calls can remove this head entry from the list.
3808		 */
3809		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3810
3811		have = netpoll_poll_lock(n);
 
 
3812
3813		weight = n->weight;
 
3814
3815		/* This NAPI_STATE_SCHED test is for avoiding a race
3816		 * with netpoll's poll_napi().  Only the entity which
3817		 * obtains the lock and sees NAPI_STATE_SCHED set will
3818		 * actually make the ->poll() call.  Therefore we avoid
3819		 * accidentally calling ->poll() when NAPI is not scheduled.
3820		 */
3821		work = 0;
3822		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3823			work = n->poll(n, weight);
3824			trace_napi_poll(n);
3825		}
3826
3827		WARN_ON_ONCE(work > weight);
 
3828
3829		budget -= work;
 
3830
3831		local_irq_disable();
 
 
3832
3833		/* Drivers must not modify the NAPI state if they
3834		 * consume the entire weight.  In such cases this code
3835		 * still "owns" the NAPI instance and therefore can
3836		 * move the instance around on the list at-will.
3837		 */
3838		if (unlikely(work == weight)) {
3839			if (unlikely(napi_disable_pending(n))) {
3840				local_irq_enable();
3841				napi_complete(n);
3842				local_irq_disable();
3843			} else
3844				list_move_tail(&n->poll_list, &sd->poll_list);
3845		}
3846
3847		netpoll_poll_unlock(have);
 
 
3848	}
3849out:
3850	net_rps_action_and_irq_enable(sd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3851
3852#ifdef CONFIG_NET_DMA
3853	/*
3854	 * There may not be any more sk_buffs coming right now, so push
3855	 * any pending DMA copies to hardware
3856	 */
3857	dma_issue_pending_all();
3858#endif
 
 
3859
3860	return;
 
 
 
 
 
3861
3862softnet_break:
3863	sd->time_squeeze++;
3864	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3865	goto out;
3866}
 
3867
3868static gifconf_func_t *gifconf_list[NPROTO];
 
 
 
 
 
 
 
 
 
 
 
 
 
3869
3870/**
3871 *	register_gifconf	-	register a SIOCGIF handler
3872 *	@family: Address family
3873 *	@gifconf: Function handler
3874 *
3875 *	Register protocol dependent address dumping routines. The handler
3876 *	that is passed must not be freed or reused until it has been replaced
3877 *	by another handler.
3878 */
3879int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3880{
3881	if (family >= NPROTO)
3882		return -EINVAL;
3883	gifconf_list[family] = gifconf;
3884	return 0;
 
 
 
 
 
 
 
 
3885}
3886EXPORT_SYMBOL(register_gifconf);
 
 
 
 
3887
 
 
 
 
3888
3889/*
3890 *	Map an interface index to its name (SIOCGIFNAME)
 
 
 
 
 
 
 
 
 
 
 
3891 */
 
 
 
 
 
 
 
 
 
 
3892
3893/*
3894 *	We need this ioctl for efficient implementation of the
3895 *	if_indextoname() function required by the IPv6 API.  Without
3896 *	it, we would have to search all the interfaces to find a
3897 *	match.  --pb
 
 
 
 
 
 
 
 
3898 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3899
3900static int dev_ifname(struct net *net, struct ifreq __user *arg)
 
3901{
3902	struct net_device *dev;
3903	struct ifreq ifr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905	/*
3906	 *	Fetch the caller's info block.
3907	 */
 
 
 
3908
3909	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3910		return -EFAULT;
 
 
 
 
3911
3912	rcu_read_lock();
3913	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3914	if (!dev) {
3915		rcu_read_unlock();
3916		return -ENODEV;
3917	}
3918
3919	strcpy(ifr.ifr_name, dev->name);
3920	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921
3922	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3923		return -EFAULT;
3924	return 0;
3925}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926
3927/*
3928 *	Perform a SIOCGIFCONF call. This structure will change
3929 *	size eventually, and there is nothing I can do about it.
3930 *	Thus we will need a 'compatibility mode'.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3931 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932
3933static int dev_ifconf(struct net *net, char __user *arg)
 
 
 
3934{
3935	struct ifconf ifc;
3936	struct net_device *dev;
3937	char __user *pos;
3938	int len;
3939	int total;
3940	int i;
3941
3942	/*
3943	 *	Fetch the caller's info block.
3944	 */
3945
3946	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3947		return -EFAULT;
 
 
 
 
3948
3949	pos = ifc.ifc_buf;
3950	len = ifc.ifc_len;
 
 
 
3951
3952	/*
3953	 *	Loop over the interfaces, and write an info block for each.
3954	 */
 
 
 
3955
3956	total = 0;
3957	for_each_netdev(net, dev) {
3958		for (i = 0; i < NPROTO; i++) {
3959			if (gifconf_list[i]) {
3960				int done;
3961				if (!pos)
3962					done = gifconf_list[i](dev, NULL, 0);
3963				else
3964					done = gifconf_list[i](dev, pos + total,
3965							       len - total);
3966				if (done < 0)
3967					return -EFAULT;
3968				total += done;
3969			}
3970		}
 
 
 
3971	}
3972
3973	/*
3974	 *	All done.  Write the updated control block back to the caller.
3975	 */
3976	ifc.ifc_len = total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977
3978	/*
3979	 * 	Both BSD and Solaris return 0 here, so we do too.
3980	 */
3981	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3982}
3983
3984#ifdef CONFIG_PROC_FS
3985/*
3986 *	This is invoked by the /proc filesystem handler to display a device
3987 *	in detail.
3988 */
3989void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3990	__acquires(RCU)
3991{
3992	struct net *net = seq_file_net(seq);
3993	loff_t off;
3994	struct net_device *dev;
3995
3996	rcu_read_lock();
3997	if (!*pos)
3998		return SEQ_START_TOKEN;
3999
4000	off = 1;
4001	for_each_netdev_rcu(net, dev)
4002		if (off++ == *pos)
4003			return dev;
4004
4005	return NULL;
4006}
 
4007
4008void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4009{
4010	struct net_device *dev = v;
 
 
 
4011
4012	if (v == SEQ_START_TOKEN)
4013		dev = first_net_device_rcu(seq_file_net(seq));
4014	else
4015		dev = next_net_device_rcu(dev);
 
 
 
 
 
4016
4017	++*pos;
4018	return dev;
4019}
4020
4021void dev_seq_stop(struct seq_file *seq, void *v)
4022	__releases(RCU)
4023{
4024	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4025}
4026
4027static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
 
4028{
4029	struct rtnl_link_stats64 temp;
4030	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
 
 
 
 
4031
4032	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4033		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4034		   dev->name, stats->rx_bytes, stats->rx_packets,
4035		   stats->rx_errors,
4036		   stats->rx_dropped + stats->rx_missed_errors,
4037		   stats->rx_fifo_errors,
4038		   stats->rx_length_errors + stats->rx_over_errors +
4039		    stats->rx_crc_errors + stats->rx_frame_errors,
4040		   stats->rx_compressed, stats->multicast,
4041		   stats->tx_bytes, stats->tx_packets,
4042		   stats->tx_errors, stats->tx_dropped,
4043		   stats->tx_fifo_errors, stats->collisions,
4044		   stats->tx_carrier_errors +
4045		    stats->tx_aborted_errors +
4046		    stats->tx_window_errors +
4047		    stats->tx_heartbeat_errors,
4048		   stats->tx_compressed);
4049}
 
4050
4051/*
4052 *	Called from the PROCfs module. This now uses the new arbitrary sized
4053 *	/proc/net interface to create /proc/net/dev
4054 */
4055static int dev_seq_show(struct seq_file *seq, void *v)
4056{
4057	if (v == SEQ_START_TOKEN)
4058		seq_puts(seq, "Inter-|   Receive                            "
4059			      "                    |  Transmit\n"
4060			      " face |bytes    packets errs drop fifo frame "
4061			      "compressed multicast|bytes    packets errs "
4062			      "drop fifo colls carrier compressed\n");
4063	else
4064		dev_seq_printf_stats(seq, v);
 
 
 
4065	return 0;
4066}
4067
4068static struct softnet_data *softnet_get_online(loff_t *pos)
4069{
4070	struct softnet_data *sd = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4071
4072	while (*pos < nr_cpu_ids)
4073		if (cpu_online(*pos)) {
4074			sd = &per_cpu(softnet_data, *pos);
 
4075			break;
4076		} else
4077			++*pos;
4078	return sd;
 
 
 
 
 
 
 
 
 
 
 
4079}
 
4080
4081static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
 
 
 
 
 
 
 
 
 
4082{
4083	return softnet_get_online(pos);
 
 
 
 
 
 
4084}
 
4085
4086static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
 
 
 
 
 
4087{
4088	++*pos;
4089	return softnet_get_online(pos);
 
 
 
 
 
4090}
 
4091
4092static void softnet_seq_stop(struct seq_file *seq, void *v)
 
 
4093{
 
 
 
 
 
 
4094}
 
 
 
 
 
4095
4096static int softnet_seq_show(struct seq_file *seq, void *v)
 
 
 
 
 
 
 
4097{
4098	struct softnet_data *sd = v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4099
4100	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4101		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4102		   0, 0, 0, 0, /* was fastroute */
4103		   sd->cpu_collision, sd->received_rps);
4104	return 0;
 
 
 
 
 
 
 
 
 
4105}
4106
4107static const struct seq_operations dev_seq_ops = {
4108	.start = dev_seq_start,
4109	.next  = dev_seq_next,
4110	.stop  = dev_seq_stop,
4111	.show  = dev_seq_show,
4112};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4113
4114static int dev_seq_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
4115{
4116	return seq_open_net(inode, file, &dev_seq_ops,
4117			    sizeof(struct seq_net_private));
 
 
 
 
4118}
 
4119
4120static const struct file_operations dev_seq_fops = {
4121	.owner	 = THIS_MODULE,
4122	.open    = dev_seq_open,
4123	.read    = seq_read,
4124	.llseek  = seq_lseek,
4125	.release = seq_release_net,
4126};
 
 
4127
4128static const struct seq_operations softnet_seq_ops = {
4129	.start = softnet_seq_start,
4130	.next  = softnet_seq_next,
4131	.stop  = softnet_seq_stop,
4132	.show  = softnet_seq_show,
4133};
4134
4135static int softnet_seq_open(struct inode *inode, struct file *file)
 
4136{
4137	return seq_open(file, &softnet_seq_ops);
4138}
4139
4140static const struct file_operations softnet_seq_fops = {
4141	.owner	 = THIS_MODULE,
4142	.open    = softnet_seq_open,
4143	.read    = seq_read,
4144	.llseek  = seq_lseek,
4145	.release = seq_release,
4146};
4147
4148static void *ptype_get_idx(loff_t pos)
 
 
 
4149{
4150	struct packet_type *pt = NULL;
4151	loff_t i = 0;
4152	int t;
4153
4154	list_for_each_entry_rcu(pt, &ptype_all, list) {
4155		if (i == pos)
4156			return pt;
4157		++i;
4158	}
4159
4160	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4161		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4162			if (i == pos)
4163				return pt;
4164			++i;
4165		}
 
4166	}
4167	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4168}
 
4169
4170static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4171	__acquires(RCU)
4172{
4173	rcu_read_lock();
4174	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175}
4176
4177static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
4178{
4179	struct packet_type *pt;
4180	struct list_head *nxt;
4181	int hash;
4182
4183	++*pos;
4184	if (v == SEQ_START_TOKEN)
4185		return ptype_get_idx(0);
4186
4187	pt = v;
4188	nxt = pt->list.next;
4189	if (pt->type == htons(ETH_P_ALL)) {
4190		if (nxt != &ptype_all)
4191			goto found;
4192		hash = 0;
4193		nxt = ptype_base[0].next;
4194	} else
4195		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4196
4197	while (nxt == &ptype_base[hash]) {
4198		if (++hash >= PTYPE_HASH_SIZE)
4199			return NULL;
4200		nxt = ptype_base[hash].next;
4201	}
4202found:
4203	return list_entry(nxt, struct packet_type, list);
 
4204}
 
4205
4206static void ptype_seq_stop(struct seq_file *seq, void *v)
4207	__releases(RCU)
4208{
4209	rcu_read_unlock();
 
 
 
 
 
 
 
 
4210}
4211
4212static int ptype_seq_show(struct seq_file *seq, void *v)
 
4213{
4214	struct packet_type *pt = v;
4215
4216	if (v == SEQ_START_TOKEN)
4217		seq_puts(seq, "Type Device      Function\n");
4218	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4219		if (pt->type == htons(ETH_P_ALL))
4220			seq_puts(seq, "ALL ");
4221		else
4222			seq_printf(seq, "%04x", ntohs(pt->type));
4223
4224		seq_printf(seq, " %-8s %pF\n",
4225			   pt->dev ? pt->dev->name : "", pt->func);
 
 
4226	}
4227
4228	return 0;
 
 
 
 
 
 
 
4229}
4230
4231static const struct seq_operations ptype_seq_ops = {
4232	.start = ptype_seq_start,
4233	.next  = ptype_seq_next,
4234	.stop  = ptype_seq_stop,
4235	.show  = ptype_seq_show,
4236};
 
 
 
 
 
 
4237
4238static int ptype_seq_open(struct inode *inode, struct file *file)
 
4239{
4240	return seq_open_net(inode, file, &ptype_seq_ops,
4241			sizeof(struct seq_net_private));
 
4242}
 
4243
4244static const struct file_operations ptype_seq_fops = {
4245	.owner	 = THIS_MODULE,
4246	.open    = ptype_seq_open,
4247	.read    = seq_read,
4248	.llseek  = seq_lseek,
4249	.release = seq_release_net,
4250};
4251
 
 
 
 
4252
4253static int __net_init dev_proc_net_init(struct net *net)
 
4254{
4255	int rc = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256
4257	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4258		goto out;
4259	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4260		goto out_dev;
4261	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4262		goto out_softnet;
 
 
4263
4264	if (wext_proc_init(net))
4265		goto out_ptype;
4266	rc = 0;
4267out:
4268	return rc;
4269out_ptype:
4270	proc_net_remove(net, "ptype");
4271out_softnet:
4272	proc_net_remove(net, "softnet_stat");
4273out_dev:
4274	proc_net_remove(net, "dev");
4275	goto out;
4276}
 
4277
4278static void __net_exit dev_proc_net_exit(struct net *net)
 
 
4279{
4280	wext_proc_exit(net);
 
 
4281
4282	proc_net_remove(net, "ptype");
4283	proc_net_remove(net, "softnet_stat");
4284	proc_net_remove(net, "dev");
 
 
4285}
 
4286
4287static struct pernet_operations __net_initdata dev_proc_ops = {
4288	.init = dev_proc_net_init,
4289	.exit = dev_proc_net_exit,
4290};
 
 
 
 
 
 
4291
4292static int __init dev_proc_init(void)
 
 
4293{
4294	return register_pernet_subsys(&dev_proc_ops);
 
 
 
 
4295}
4296#else
4297#define dev_proc_init() 0
4298#endif	/* CONFIG_PROC_FS */
 
 
 
4299
 
 
 
 
4300
4301/**
4302 *	netdev_set_master	-	set up master pointer
4303 *	@slave: slave device
4304 *	@master: new master device
4305 *
4306 *	Changes the master device of the slave. Pass %NULL to break the
4307 *	bonding. The caller must hold the RTNL semaphore. On a failure
4308 *	a negative errno code is returned. On success the reference counts
4309 *	are adjusted and the function returns zero.
4310 */
4311int netdev_set_master(struct net_device *slave, struct net_device *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312{
4313	struct net_device *old = slave->master;
4314
4315	ASSERT_RTNL();
4316
4317	if (master) {
4318		if (old)
4319			return -EBUSY;
4320		dev_hold(master);
 
 
 
4321	}
4322
4323	slave->master = master;
 
 
 
 
 
 
 
 
4324
4325	if (old)
4326		dev_put(old);
4327	return 0;
 
 
 
 
 
 
 
 
 
4328}
4329EXPORT_SYMBOL(netdev_set_master);
 
4330
4331/**
4332 *	netdev_set_bond_master	-	set up bonding master/slave pair
4333 *	@slave: slave device
4334 *	@master: new master device
4335 *
4336 *	Changes the master device of the slave. Pass %NULL to break the
4337 *	bonding. The caller must hold the RTNL semaphore. On a failure
4338 *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4339 *	to the routing socket and the function returns zero.
4340 */
4341int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
 
4342{
4343	int err;
 
 
4344
4345	ASSERT_RTNL();
4346
4347	err = netdev_set_master(slave, master);
4348	if (err)
4349		return err;
4350	if (master)
4351		slave->flags |= IFF_SLAVE;
4352	else
4353		slave->flags &= ~IFF_SLAVE;
4354
4355	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4356	return 0;
4357}
4358EXPORT_SYMBOL(netdev_set_bond_master);
4359
4360static void dev_change_rx_flags(struct net_device *dev, int flags)
4361{
4362	const struct net_device_ops *ops = dev->netdev_ops;
4363
4364	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4365		ops->ndo_change_rx_flags(dev, flags);
4366}
4367
4368static int __dev_set_promiscuity(struct net_device *dev, int inc)
4369{
4370	unsigned short old_flags = dev->flags;
4371	uid_t uid;
4372	gid_t gid;
4373
4374	ASSERT_RTNL();
4375
4376	dev->flags |= IFF_PROMISC;
4377	dev->promiscuity += inc;
4378	if (dev->promiscuity == 0) {
4379		/*
4380		 * Avoid overflow.
4381		 * If inc causes overflow, untouch promisc and return error.
4382		 */
4383		if (inc < 0)
4384			dev->flags &= ~IFF_PROMISC;
4385		else {
4386			dev->promiscuity -= inc;
4387			printk(KERN_WARNING "%s: promiscuity touches roof, "
4388				"set promiscuity failed, promiscuity feature "
4389				"of device might be broken.\n", dev->name);
4390			return -EOVERFLOW;
4391		}
4392	}
4393	if (dev->flags != old_flags) {
4394		printk(KERN_INFO "device %s %s promiscuous mode\n",
4395		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4396							       "left");
4397		if (audit_enabled) {
4398			current_uid_gid(&uid, &gid);
4399			audit_log(current->audit_context, GFP_ATOMIC,
4400				AUDIT_ANOM_PROMISCUOUS,
4401				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4402				dev->name, (dev->flags & IFF_PROMISC),
4403				(old_flags & IFF_PROMISC),
4404				audit_get_loginuid(current),
4405				uid, gid,
4406				audit_get_sessionid(current));
 
4407		}
4408
4409		dev_change_rx_flags(dev, IFF_PROMISC);
4410	}
 
 
4411	return 0;
4412}
4413
4414/**
4415 *	dev_set_promiscuity	- update promiscuity count on a device
4416 *	@dev: device
4417 *	@inc: modifier
4418 *
4419 *	Add or remove promiscuity from a device. While the count in the device
4420 *	remains above zero the interface remains promiscuous. Once it hits zero
4421 *	the device reverts back to normal filtering operation. A negative inc
4422 *	value is used to drop promiscuity on the device.
4423 *	Return 0 if successful or a negative errno code on error.
4424 */
4425int dev_set_promiscuity(struct net_device *dev, int inc)
4426{
4427	unsigned short old_flags = dev->flags;
4428	int err;
4429
4430	err = __dev_set_promiscuity(dev, inc);
4431	if (err < 0)
4432		return err;
4433	if (dev->flags != old_flags)
4434		dev_set_rx_mode(dev);
4435	return err;
4436}
4437EXPORT_SYMBOL(dev_set_promiscuity);
4438
4439/**
4440 *	dev_set_allmulti	- update allmulti count on a device
4441 *	@dev: device
4442 *	@inc: modifier
4443 *
4444 *	Add or remove reception of all multicast frames to a device. While the
4445 *	count in the device remains above zero the interface remains listening
4446 *	to all interfaces. Once it hits zero the device reverts back to normal
4447 *	filtering operation. A negative @inc value is used to drop the counter
4448 *	when releasing a resource needing all multicasts.
4449 *	Return 0 if successful or a negative errno code on error.
4450 */
4451
4452int dev_set_allmulti(struct net_device *dev, int inc)
4453{
4454	unsigned short old_flags = dev->flags;
4455
4456	ASSERT_RTNL();
4457
4458	dev->flags |= IFF_ALLMULTI;
4459	dev->allmulti += inc;
4460	if (dev->allmulti == 0) {
4461		/*
4462		 * Avoid overflow.
4463		 * If inc causes overflow, untouch allmulti and return error.
4464		 */
4465		if (inc < 0)
4466			dev->flags &= ~IFF_ALLMULTI;
4467		else {
4468			dev->allmulti -= inc;
4469			printk(KERN_WARNING "%s: allmulti touches roof, "
4470				"set allmulti failed, allmulti feature of "
4471				"device might be broken.\n", dev->name);
4472			return -EOVERFLOW;
4473		}
4474	}
4475	if (dev->flags ^ old_flags) {
 
 
4476		dev_change_rx_flags(dev, IFF_ALLMULTI);
4477		dev_set_rx_mode(dev);
 
 
 
4478	}
4479	return 0;
4480}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4481EXPORT_SYMBOL(dev_set_allmulti);
4482
4483/*
4484 *	Upload unicast and multicast address lists to device and
4485 *	configure RX filtering. When the device doesn't support unicast
4486 *	filtering it is put in promiscuous mode while unicast addresses
4487 *	are present.
4488 */
4489void __dev_set_rx_mode(struct net_device *dev)
4490{
4491	const struct net_device_ops *ops = dev->netdev_ops;
4492
4493	/* dev_open will call this function so the list will stay sane. */
4494	if (!(dev->flags&IFF_UP))
4495		return;
4496
4497	if (!netif_device_present(dev))
4498		return;
4499
4500	if (ops->ndo_set_rx_mode)
4501		ops->ndo_set_rx_mode(dev);
4502	else {
4503		/* Unicast addresses changes may only happen under the rtnl,
4504		 * therefore calling __dev_set_promiscuity here is safe.
4505		 */
4506		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4507			__dev_set_promiscuity(dev, 1);
4508			dev->uc_promisc = true;
4509		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4510			__dev_set_promiscuity(dev, -1);
4511			dev->uc_promisc = false;
4512		}
 
4513
4514		if (ops->ndo_set_multicast_list)
4515			ops->ndo_set_multicast_list(dev);
4516	}
4517}
4518
4519void dev_set_rx_mode(struct net_device *dev)
4520{
4521	netif_addr_lock_bh(dev);
4522	__dev_set_rx_mode(dev);
4523	netif_addr_unlock_bh(dev);
4524}
4525
4526/**
4527 *	dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4528 *	@dev: device
4529 *	@cmd: memory area for ethtool_ops::get_settings() result
4530 *
4531 *      The cmd arg is initialized properly (cleared and
4532 *      ethtool_cmd::cmd field set to ETHTOOL_GSET).
4533 *
4534 *	Return device's ethtool_ops::get_settings() result value or
4535 *	-EOPNOTSUPP when device doesn't expose
4536 *	ethtool_ops::get_settings() operation.
4537 */
4538int dev_ethtool_get_settings(struct net_device *dev,
4539			     struct ethtool_cmd *cmd)
4540{
4541	if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4542		return -EOPNOTSUPP;
4543
4544	memset(cmd, 0, sizeof(struct ethtool_cmd));
4545	cmd->cmd = ETHTOOL_GSET;
4546	return dev->ethtool_ops->get_settings(dev, cmd);
4547}
4548EXPORT_SYMBOL(dev_ethtool_get_settings);
4549
4550/**
4551 *	dev_get_flags - get flags reported to userspace
4552 *	@dev: device
4553 *
4554 *	Get the combination of flag bits exported through APIs to userspace.
4555 */
4556unsigned dev_get_flags(const struct net_device *dev)
4557{
4558	unsigned flags;
4559
4560	flags = (dev->flags & ~(IFF_PROMISC |
4561				IFF_ALLMULTI |
4562				IFF_RUNNING |
4563				IFF_LOWER_UP |
4564				IFF_DORMANT)) |
4565		(dev->gflags & (IFF_PROMISC |
4566				IFF_ALLMULTI));
4567
4568	if (netif_running(dev)) {
4569		if (netif_oper_up(dev))
4570			flags |= IFF_RUNNING;
4571		if (netif_carrier_ok(dev))
4572			flags |= IFF_LOWER_UP;
4573		if (netif_dormant(dev))
4574			flags |= IFF_DORMANT;
4575	}
4576
4577	return flags;
4578}
4579EXPORT_SYMBOL(dev_get_flags);
4580
4581int __dev_change_flags(struct net_device *dev, unsigned int flags)
 
4582{
4583	int old_flags = dev->flags;
4584	int ret;
4585
4586	ASSERT_RTNL();
4587
4588	/*
4589	 *	Set the flags on our device.
4590	 */
4591
4592	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4593			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4594			       IFF_AUTOMEDIA)) |
4595		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4596				    IFF_ALLMULTI));
4597
4598	/*
4599	 *	Load in the correct multicast list now the flags have changed.
4600	 */
4601
4602	if ((old_flags ^ flags) & IFF_MULTICAST)
4603		dev_change_rx_flags(dev, IFF_MULTICAST);
4604
4605	dev_set_rx_mode(dev);
4606
4607	/*
4608	 *	Have we downed the interface. We handle IFF_UP ourselves
4609	 *	according to user attempts to set it, rather than blindly
4610	 *	setting it.
4611	 */
4612
4613	ret = 0;
4614	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4615		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4616
4617		if (!ret)
4618			dev_set_rx_mode(dev);
4619	}
4620
4621	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4622		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 
4623
4624		dev->gflags ^= IFF_PROMISC;
4625		dev_set_promiscuity(dev, inc);
 
 
 
4626	}
4627
4628	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4629	   is important. Some (broken) drivers set IFF_PROMISC, when
4630	   IFF_ALLMULTI is requested not asking us and not reporting.
4631	 */
4632	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4633		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4634
4635		dev->gflags ^= IFF_ALLMULTI;
4636		dev_set_allmulti(dev, inc);
4637	}
4638
4639	return ret;
4640}
4641
4642void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
 
 
4643{
4644	unsigned int changes = dev->flags ^ old_flags;
4645
 
 
 
4646	if (changes & IFF_UP) {
4647		if (dev->flags & IFF_UP)
4648			call_netdevice_notifiers(NETDEV_UP, dev);
4649		else
4650			call_netdevice_notifiers(NETDEV_DOWN, dev);
4651	}
4652
4653	if (dev->flags & IFF_UP &&
4654	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4655		call_netdevice_notifiers(NETDEV_CHANGE, dev);
 
 
 
 
 
 
 
 
4656}
4657
4658/**
4659 *	dev_change_flags - change device settings
4660 *	@dev: device
4661 *	@flags: device state flags
 
4662 *
4663 *	Change settings on device based state flags. The flags are
4664 *	in the userspace exported format.
4665 */
4666int dev_change_flags(struct net_device *dev, unsigned flags)
 
4667{
4668	int ret, changes;
4669	int old_flags = dev->flags;
4670
4671	ret = __dev_change_flags(dev, flags);
4672	if (ret < 0)
4673		return ret;
4674
4675	changes = old_flags ^ dev->flags;
4676	if (changes)
4677		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4678
4679	__dev_notify_flags(dev, old_flags);
4680	return ret;
4681}
4682EXPORT_SYMBOL(dev_change_flags);
4683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4684/**
4685 *	dev_set_mtu - Change maximum transfer unit
4686 *	@dev: device
4687 *	@new_mtu: new transfer unit
 
4688 *
4689 *	Change the maximum transfer size of the network device.
4690 */
4691int dev_set_mtu(struct net_device *dev, int new_mtu)
 
4692{
4693	const struct net_device_ops *ops = dev->netdev_ops;
4694	int err;
4695
4696	if (new_mtu == dev->mtu)
4697		return 0;
4698
4699	/*	MTU must be positive.	 */
4700	if (new_mtu < 0)
4701		return -EINVAL;
4702
4703	if (!netif_device_present(dev))
4704		return -ENODEV;
4705
4706	err = 0;
4707	if (ops->ndo_change_mtu)
4708		err = ops->ndo_change_mtu(dev, new_mtu);
4709	else
4710		dev->mtu = new_mtu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4711
4712	if (!err && dev->flags & IFF_UP)
4713		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
 
 
4714	return err;
4715}
4716EXPORT_SYMBOL(dev_set_mtu);
4717
4718/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4719 *	dev_set_group - Change group this device belongs to
4720 *	@dev: device
4721 *	@new_group: group this device should belong to
4722 */
4723void dev_set_group(struct net_device *dev, int new_group)
4724{
4725	dev->group = new_group;
4726}
4727EXPORT_SYMBOL(dev_set_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4728
4729/**
4730 *	dev_set_mac_address - Change Media Access Control Address
4731 *	@dev: device
4732 *	@sa: new address
 
4733 *
4734 *	Change the hardware (MAC) address of the device
4735 */
4736int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
 
4737{
4738	const struct net_device_ops *ops = dev->netdev_ops;
4739	int err;
4740
4741	if (!ops->ndo_set_mac_address)
4742		return -EOPNOTSUPP;
4743	if (sa->sa_family != dev->type)
4744		return -EINVAL;
4745	if (!netif_device_present(dev))
4746		return -ENODEV;
4747	err = ops->ndo_set_mac_address(dev, sa);
4748	if (!err)
4749		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4750	return err;
 
 
 
 
 
 
 
 
4751}
4752EXPORT_SYMBOL(dev_set_mac_address);
4753
4754/*
4755 *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4756 */
4757static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4758{
4759	int err;
4760	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4761
4762	if (!dev)
 
 
4763		return -ENODEV;
 
 
4764
4765	switch (cmd) {
4766	case SIOCGIFFLAGS:	/* Get interface flags */
4767		ifr->ifr_flags = (short) dev_get_flags(dev);
4768		return 0;
 
 
 
 
 
 
 
4769
4770	case SIOCGIFMETRIC:	/* Get the metric on the interface
4771				   (currently unused) */
4772		ifr->ifr_metric = 0;
4773		return 0;
4774
4775	case SIOCGIFMTU:	/* Get the MTU of a device */
4776		ifr->ifr_mtu = dev->mtu;
4777		return 0;
 
 
 
 
 
 
 
 
 
 
4778
4779	case SIOCGIFHWADDR:
4780		if (!dev->addr_len)
4781			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4782		else
4783			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4784			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4785		ifr->ifr_hwaddr.sa_family = dev->type;
4786		return 0;
4787
4788	case SIOCGIFSLAVE:
4789		err = -EINVAL;
4790		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4791
4792	case SIOCGIFMAP:
4793		ifr->ifr_map.mem_start = dev->mem_start;
4794		ifr->ifr_map.mem_end   = dev->mem_end;
4795		ifr->ifr_map.base_addr = dev->base_addr;
4796		ifr->ifr_map.irq       = dev->irq;
4797		ifr->ifr_map.dma       = dev->dma;
4798		ifr->ifr_map.port      = dev->if_port;
4799		return 0;
4800
4801	case SIOCGIFINDEX:
4802		ifr->ifr_ifindex = dev->ifindex;
4803		return 0;
4804
4805	case SIOCGIFTXQLEN:
4806		ifr->ifr_qlen = dev->tx_queue_len;
4807		return 0;
4808
4809	default:
4810		/* dev_ioctl() should ensure this case
4811		 * is never reached
4812		 */
4813		WARN_ON(1);
4814		err = -ENOTTY;
4815		break;
4816
4817	}
4818	return err;
4819}
 
4820
4821/*
4822 *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
 
 
 
4823 */
4824static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4825{
4826	int err;
4827	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4828	const struct net_device_ops *ops;
 
 
 
 
 
 
 
4829
4830	if (!dev)
 
 
 
 
 
 
 
 
 
 
4831		return -ENODEV;
 
 
 
 
 
 
 
4832
4833	ops = dev->netdev_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4834
4835	switch (cmd) {
4836	case SIOCSIFFLAGS:	/* Set interface flags */
4837		return dev_change_flags(dev, ifr->ifr_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4838
4839	case SIOCSIFMETRIC:	/* Set the metric on the interface
4840				   (currently unused) */
4841		return -EOPNOTSUPP;
 
 
4842
4843	case SIOCSIFMTU:	/* Set the MTU of a device */
4844		return dev_set_mtu(dev, ifr->ifr_mtu);
 
 
4845
4846	case SIOCSIFHWADDR:
4847		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
 
 
4848
4849	case SIOCSIFHWBROADCAST:
4850		if (ifr->ifr_hwaddr.sa_family != dev->type)
4851			return -EINVAL;
4852		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4853		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4854		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4855		return 0;
4856
4857	case SIOCSIFMAP:
4858		if (ops->ndo_set_config) {
4859			if (!netif_device_present(dev))
4860				return -ENODEV;
4861			return ops->ndo_set_config(dev, &ifr->ifr_map);
4862		}
4863		return -EOPNOTSUPP;
4864
4865	case SIOCADDMULTI:
4866		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4867		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4868			return -EINVAL;
4869		if (!netif_device_present(dev))
4870			return -ENODEV;
4871		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4872
4873	case SIOCDELMULTI:
4874		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4875		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4876			return -EINVAL;
4877		if (!netif_device_present(dev))
4878			return -ENODEV;
4879		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4880
4881	case SIOCSIFTXQLEN:
4882		if (ifr->ifr_qlen < 0)
4883			return -EINVAL;
4884		dev->tx_queue_len = ifr->ifr_qlen;
4885		return 0;
 
4886
4887	case SIOCSIFNAME:
4888		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4889		return dev_change_name(dev, ifr->ifr_newname);
 
 
 
4890
4891	/*
4892	 *	Unknown or private ioctl
4893	 */
4894	default:
4895		if ((cmd >= SIOCDEVPRIVATE &&
4896		    cmd <= SIOCDEVPRIVATE + 15) ||
4897		    cmd == SIOCBONDENSLAVE ||
4898		    cmd == SIOCBONDRELEASE ||
4899		    cmd == SIOCBONDSETHWADDR ||
4900		    cmd == SIOCBONDSLAVEINFOQUERY ||
4901		    cmd == SIOCBONDINFOQUERY ||
4902		    cmd == SIOCBONDCHANGEACTIVE ||
4903		    cmd == SIOCGMIIPHY ||
4904		    cmd == SIOCGMIIREG ||
4905		    cmd == SIOCSMIIREG ||
4906		    cmd == SIOCBRADDIF ||
4907		    cmd == SIOCBRDELIF ||
4908		    cmd == SIOCSHWTSTAMP ||
4909		    cmd == SIOCWANDEV) {
4910			err = -EOPNOTSUPP;
4911			if (ops->ndo_do_ioctl) {
4912				if (netif_device_present(dev))
4913					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4914				else
4915					err = -ENODEV;
4916			}
4917		} else
4918			err = -EINVAL;
4919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4920	}
4921	return err;
 
 
 
 
4922}
4923
4924/*
4925 *	This function handles all "interface"-type I/O control requests. The actual
4926 *	'doing' part of this is dev_ifsioc above.
4927 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4928
4929/**
4930 *	dev_ioctl	-	network device ioctl
4931 *	@net: the applicable net namespace
4932 *	@cmd: command to issue
4933 *	@arg: pointer to a struct ifreq in user space
4934 *
4935 *	Issue ioctl functions to devices. This is normally called by the
4936 *	user space syscall interfaces but can sometimes be useful for
4937 *	other purposes. The return value is the return from the syscall if
4938 *	positive or a negative errno code on error.
4939 */
4940
4941int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
 
 
4942{
4943	struct ifreq ifr;
4944	int ret;
4945	char *colon;
 
 
 
 
4946
4947	/* One special case: SIOCGIFCONF takes ifconf argument
4948	   and requires shared lock, because it sleeps writing
4949	   to user space.
4950	 */
4951
4952	if (cmd == SIOCGIFCONF) {
4953		rtnl_lock();
4954		ret = dev_ifconf(net, (char __user *) arg);
4955		rtnl_unlock();
4956		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957	}
4958	if (cmd == SIOCGIFNAME)
4959		return dev_ifname(net, (struct ifreq __user *)arg);
4960
4961	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4962		return -EFAULT;
 
 
 
 
4963
4964	ifr.ifr_name[IFNAMSIZ-1] = 0;
 
 
 
 
 
 
4965
4966	colon = strchr(ifr.ifr_name, ':');
4967	if (colon)
4968		*colon = 0;
 
 
 
 
 
 
 
4969
4970	/*
4971	 *	See which interface the caller is talking about.
4972	 */
 
 
 
 
 
4973
4974	switch (cmd) {
4975	/*
4976	 *	These ioctl calls:
4977	 *	- can be done by all.
4978	 *	- atomic and do not require locking.
4979	 *	- return a value
4980	 */
4981	case SIOCGIFFLAGS:
4982	case SIOCGIFMETRIC:
4983	case SIOCGIFMTU:
4984	case SIOCGIFHWADDR:
4985	case SIOCGIFSLAVE:
4986	case SIOCGIFMAP:
4987	case SIOCGIFINDEX:
4988	case SIOCGIFTXQLEN:
4989		dev_load(net, ifr.ifr_name);
4990		rcu_read_lock();
4991		ret = dev_ifsioc_locked(net, &ifr, cmd);
4992		rcu_read_unlock();
4993		if (!ret) {
4994			if (colon)
4995				*colon = ':';
4996			if (copy_to_user(arg, &ifr,
4997					 sizeof(struct ifreq)))
4998				ret = -EFAULT;
4999		}
5000		return ret;
5001
5002	case SIOCETHTOOL:
5003		dev_load(net, ifr.ifr_name);
5004		rtnl_lock();
5005		ret = dev_ethtool(net, &ifr);
5006		rtnl_unlock();
5007		if (!ret) {
5008			if (colon)
5009				*colon = ':';
5010			if (copy_to_user(arg, &ifr,
5011					 sizeof(struct ifreq)))
5012				ret = -EFAULT;
5013		}
5014		return ret;
5015
5016	/*
5017	 *	These ioctl calls:
5018	 *	- require superuser power.
5019	 *	- require strict serialization.
5020	 *	- return a value
5021	 */
5022	case SIOCGMIIPHY:
5023	case SIOCGMIIREG:
5024	case SIOCSIFNAME:
5025		if (!capable(CAP_NET_ADMIN))
5026			return -EPERM;
5027		dev_load(net, ifr.ifr_name);
5028		rtnl_lock();
5029		ret = dev_ifsioc(net, &ifr, cmd);
5030		rtnl_unlock();
5031		if (!ret) {
5032			if (colon)
5033				*colon = ':';
5034			if (copy_to_user(arg, &ifr,
5035					 sizeof(struct ifreq)))
5036				ret = -EFAULT;
5037		}
5038		return ret;
 
 
 
 
 
 
 
 
 
 
 
5039
5040	/*
5041	 *	These ioctl calls:
5042	 *	- require superuser power.
5043	 *	- require strict serialization.
5044	 *	- do not return a value
5045	 */
5046	case SIOCSIFFLAGS:
5047	case SIOCSIFMETRIC:
5048	case SIOCSIFMTU:
5049	case SIOCSIFMAP:
5050	case SIOCSIFHWADDR:
5051	case SIOCSIFSLAVE:
5052	case SIOCADDMULTI:
5053	case SIOCDELMULTI:
5054	case SIOCSIFHWBROADCAST:
5055	case SIOCSIFTXQLEN:
5056	case SIOCSMIIREG:
5057	case SIOCBONDENSLAVE:
5058	case SIOCBONDRELEASE:
5059	case SIOCBONDSETHWADDR:
5060	case SIOCBONDCHANGEACTIVE:
5061	case SIOCBRADDIF:
5062	case SIOCBRDELIF:
5063	case SIOCSHWTSTAMP:
5064		if (!capable(CAP_NET_ADMIN))
5065			return -EPERM;
5066		/* fall through */
5067	case SIOCBONDSLAVEINFOQUERY:
5068	case SIOCBONDINFOQUERY:
5069		dev_load(net, ifr.ifr_name);
5070		rtnl_lock();
5071		ret = dev_ifsioc(net, &ifr, cmd);
5072		rtnl_unlock();
5073		return ret;
5074
5075	case SIOCGIFMEM:
5076		/* Get the per device memory space. We can add this but
5077		 * currently do not support it */
5078	case SIOCSIFMEM:
5079		/* Set the per device memory buffer space.
5080		 * Not applicable in our case */
5081	case SIOCSIFLINK:
5082		return -ENOTTY;
5083
5084	/*
5085	 *	Unknown or private ioctl.
 
 
5086	 */
5087	default:
5088		if (cmd == SIOCWANDEV ||
5089		    (cmd >= SIOCDEVPRIVATE &&
5090		     cmd <= SIOCDEVPRIVATE + 15)) {
5091			dev_load(net, ifr.ifr_name);
5092			rtnl_lock();
5093			ret = dev_ifsioc(net, &ifr, cmd);
5094			rtnl_unlock();
5095			if (!ret && copy_to_user(arg, &ifr,
5096						 sizeof(struct ifreq)))
5097				ret = -EFAULT;
5098			return ret;
5099		}
5100		/* Take care of Wireless Extensions */
5101		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5102			return wext_handle_ioctl(net, &ifr, cmd, arg);
5103		return -ENOTTY;
5104	}
 
 
5105}
5106
 
 
 
 
 
5107
5108/**
5109 *	dev_new_index	-	allocate an ifindex
5110 *	@net: the applicable net namespace
5111 *
5112 *	Returns a suitable unique value for a new device interface
5113 *	number.  The caller must hold the rtnl semaphore or the
5114 *	dev_base_lock to be sure it remains unique.
5115 */
5116static int dev_new_index(struct net *net)
5117{
5118	static int ifindex;
5119	for (;;) {
5120		if (++ifindex <= 0)
5121			ifindex = 1;
5122		if (!__dev_get_by_index(net, ifindex))
5123			return ifindex;
5124	}
5125}
5126
5127/* Delayed registration/unregisteration */
5128static LIST_HEAD(net_todo_list);
 
 
 
 
 
 
 
 
 
 
 
5129
5130static void net_set_todo(struct net_device *dev)
 
5131{
5132	list_add_tail(&dev->todo_list, &net_todo_list);
 
 
 
 
 
 
 
 
 
5133}
5134
5135static void rollback_registered_many(struct list_head *head)
 
5136{
5137	struct net_device *dev, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5138
5139	BUG_ON(dev_boot_phase);
5140	ASSERT_RTNL();
 
 
 
 
 
 
5141
5142	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5143		/* Some devices call without registering
5144		 * for initialization unwind. Remove those
5145		 * devices and proceed with the remaining.
5146		 */
5147		if (dev->reg_state == NETREG_UNINITIALIZED) {
5148			pr_debug("unregister_netdevice: device %s/%p never "
5149				 "was registered\n", dev->name, dev);
5150
5151			WARN_ON(1);
5152			list_del(&dev->unreg_list);
5153			continue;
5154		}
5155		dev->dismantle = true;
5156		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5157	}
5158
5159	/* If device is running, close it first. */
5160	dev_close_many(head);
 
 
 
5161
5162	list_for_each_entry(dev, head, unreg_list) {
5163		/* And unlink it from device chain. */
5164		unlist_netdevice(dev);
5165
5166		dev->reg_state = NETREG_UNREGISTERING;
 
 
 
5167	}
5168
5169	synchronize_net();
 
 
 
 
 
 
 
 
5170
5171	list_for_each_entry(dev, head, unreg_list) {
5172		/* Shutdown queueing discipline. */
5173		dev_shutdown(dev);
 
5174
 
 
5175
5176		/* Notify protocols, that we are about to destroy
5177		   this device. They should clean all the things.
5178		*/
5179		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5180
5181		if (!dev->rtnl_link_ops ||
5182		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5183			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
 
 
 
 
 
 
 
 
 
 
 
 
 
5184
5185		/*
5186		 *	Flush the unicast and multicast chains
5187		 */
5188		dev_uc_flush(dev);
5189		dev_mc_flush(dev);
5190
5191		if (dev->netdev_ops->ndo_uninit)
5192			dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193
5194		/* Notifier chain MUST detach us from master device. */
5195		WARN_ON(dev->master);
 
 
 
 
 
 
 
5196
5197		/* Remove entries from kobject tree */
5198		netdev_unregister_kobject(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5199	}
5200
5201	/* Process any work delayed until the end of the batch */
5202	dev = list_first_entry(head, struct net_device, unreg_list);
5203	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
 
 
 
 
 
 
 
5204
5205	rcu_barrier();
 
 
 
 
 
 
 
 
 
5206
5207	list_for_each_entry(dev, head, unreg_list)
5208		dev_put(dev);
 
5209}
5210
5211static void rollback_registered(struct net_device *dev)
 
5212{
5213	LIST_HEAD(single);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214
5215	list_add(&dev->unreg_list, &single);
5216	rollback_registered_many(&single);
5217	list_del(&single);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218}
5219
5220static u32 netdev_fix_features(struct net_device *dev, u32 features)
 
5221{
5222	/* Fix illegal checksum combinations */
5223	if ((features & NETIF_F_HW_CSUM) &&
5224	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5225		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5226		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5227	}
5228
5229	if ((features & NETIF_F_NO_CSUM) &&
5230	    (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5231		netdev_warn(dev, "mixed no checksumming and other settings.\n");
5232		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5233	}
5234
5235	/* Fix illegal SG+CSUM combinations. */
5236	if ((features & NETIF_F_SG) &&
5237	    !(features & NETIF_F_ALL_CSUM)) {
5238		netdev_dbg(dev,
5239			"Dropping NETIF_F_SG since no checksum feature.\n");
5240		features &= ~NETIF_F_SG;
5241	}
5242
5243	/* TSO requires that SG is present as well. */
5244	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5245		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5246		features &= ~NETIF_F_ALL_TSO;
5247	}
5248
 
 
 
 
5249	/* TSO ECN requires that TSO is present as well. */
5250	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5251		features &= ~NETIF_F_TSO_ECN;
5252
5253	/* Software GSO depends on SG. */
5254	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5255		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5256		features &= ~NETIF_F_GSO;
5257	}
5258
5259	/* UFO needs SG and checksumming */
5260	if (features & NETIF_F_UFO) {
5261		/* maybe split UFO into V4 and V6? */
5262		if (!((features & NETIF_F_GEN_CSUM) ||
5263		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5264			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5265			netdev_dbg(dev,
5266				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5267			features &= ~NETIF_F_UFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5268		}
 
 
 
 
 
 
 
 
 
 
 
5269
5270		if (!(features & NETIF_F_SG)) {
5271			netdev_dbg(dev,
5272				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5273			features &= ~NETIF_F_UFO;
5274		}
5275	}
5276
 
 
 
 
 
5277	return features;
5278}
5279
5280int __netdev_update_features(struct net_device *dev)
5281{
5282	u32 features;
5283	int err = 0;
 
 
5284
5285	ASSERT_RTNL();
5286
5287	features = netdev_get_wanted_features(dev);
5288
5289	if (dev->netdev_ops->ndo_fix_features)
5290		features = dev->netdev_ops->ndo_fix_features(dev, features);
5291
5292	/* driver might be less strict about feature dependencies */
5293	features = netdev_fix_features(dev, features);
5294
 
 
 
 
5295	if (dev->features == features)
5296		return 0;
5297
5298	netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5299		dev->features, features);
5300
5301	if (dev->netdev_ops->ndo_set_features)
5302		err = dev->netdev_ops->ndo_set_features(dev, features);
 
 
5303
5304	if (unlikely(err < 0)) {
5305		netdev_err(dev,
5306			"set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5307			err, features, dev->features);
 
 
 
5308		return -1;
5309	}
5310
5311	if (!err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5312		dev->features = features;
 
5313
5314	return 1;
5315}
5316
5317/**
5318 *	netdev_update_features - recalculate device features
5319 *	@dev: the device to check
5320 *
5321 *	Recalculate dev->features set and send notifications if it
5322 *	has changed. Should be called after driver or hardware dependent
5323 *	conditions might have changed that influence the features.
5324 */
5325void netdev_update_features(struct net_device *dev)
5326{
5327	if (__netdev_update_features(dev))
5328		netdev_features_change(dev);
5329}
5330EXPORT_SYMBOL(netdev_update_features);
5331
5332/**
5333 *	netdev_change_features - recalculate device features
5334 *	@dev: the device to check
5335 *
5336 *	Recalculate dev->features set and send notifications even
5337 *	if they have not changed. Should be called instead of
5338 *	netdev_update_features() if also dev->vlan_features might
5339 *	have changed to allow the changes to be propagated to stacked
5340 *	VLAN devices.
5341 */
5342void netdev_change_features(struct net_device *dev)
5343{
5344	__netdev_update_features(dev);
5345	netdev_features_change(dev);
5346}
5347EXPORT_SYMBOL(netdev_change_features);
5348
5349/**
5350 *	netif_stacked_transfer_operstate -	transfer operstate
5351 *	@rootdev: the root or lower level device to transfer state from
5352 *	@dev: the device to transfer operstate to
5353 *
5354 *	Transfer operational state from root to device. This is normally
5355 *	called when a stacking relationship exists between the root
5356 *	device and the device(a leaf device).
5357 */
5358void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5359					struct net_device *dev)
5360{
5361	if (rootdev->operstate == IF_OPER_DORMANT)
5362		netif_dormant_on(dev);
5363	else
5364		netif_dormant_off(dev);
5365
5366	if (netif_carrier_ok(rootdev)) {
5367		if (!netif_carrier_ok(dev))
5368			netif_carrier_on(dev);
5369	} else {
5370		if (netif_carrier_ok(dev))
5371			netif_carrier_off(dev);
5372	}
 
 
5373}
5374EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5375
5376#ifdef CONFIG_RPS
5377static int netif_alloc_rx_queues(struct net_device *dev)
5378{
5379	unsigned int i, count = dev->num_rx_queues;
5380	struct netdev_rx_queue *rx;
 
 
5381
5382	BUG_ON(count < 1);
5383
5384	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5385	if (!rx) {
5386		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5387		return -ENOMEM;
5388	}
5389	dev->_rx = rx;
5390
5391	for (i = 0; i < count; i++)
5392		rx[i].dev = dev;
 
 
 
 
 
 
5393	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5394}
5395#endif
5396
5397static void netdev_init_one_queue(struct net_device *dev,
5398				  struct netdev_queue *queue, void *_unused)
5399{
5400	/* Initialize queue lock */
5401	spin_lock_init(&queue->_xmit_lock);
5402	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5403	queue->xmit_lock_owner = -1;
5404	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5405	queue->dev = dev;
 
 
 
 
 
 
 
 
5406}
5407
5408static int netif_alloc_netdev_queues(struct net_device *dev)
5409{
5410	unsigned int count = dev->num_tx_queues;
5411	struct netdev_queue *tx;
 
5412
5413	BUG_ON(count < 1);
 
5414
5415	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5416	if (!tx) {
5417		pr_err("netdev: Unable to allocate %u tx queues.\n",
5418		       count);
5419		return -ENOMEM;
5420	}
5421	dev->_tx = tx;
5422
5423	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5424	spin_lock_init(&dev->tx_global_lock);
5425
5426	return 0;
5427}
5428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5429/**
5430 *	register_netdevice	- register a network device
5431 *	@dev: device to register
5432 *
5433 *	Take a completed network device structure and add it to the kernel
5434 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5435 *	chain. 0 is returned on success. A negative errno code is returned
5436 *	on a failure to set up the device, or if the name is a duplicate.
5437 *
5438 *	Callers must hold the rtnl semaphore. You may want
5439 *	register_netdev() instead of this.
5440 *
5441 *	BUGS:
5442 *	The locking appears insufficient to guarantee two parallel registers
5443 *	will not get the same name.
5444 */
5445
5446int register_netdevice(struct net_device *dev)
5447{
5448	int ret;
5449	struct net *net = dev_net(dev);
5450
 
 
5451	BUG_ON(dev_boot_phase);
5452	ASSERT_RTNL();
5453
5454	might_sleep();
5455
5456	/* When net_device's are persistent, this will be fatal. */
5457	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5458	BUG_ON(!net);
5459
 
 
 
 
5460	spin_lock_init(&dev->addr_list_lock);
5461	netdev_set_addr_lockdep_class(dev);
5462
5463	dev->iflink = -1;
 
 
5464
5465	ret = dev_get_valid_name(dev, dev->name);
5466	if (ret < 0)
 
5467		goto out;
5468
5469	/* Init, if this function is available */
5470	if (dev->netdev_ops->ndo_init) {
5471		ret = dev->netdev_ops->ndo_init(dev);
5472		if (ret) {
5473			if (ret > 0)
5474				ret = -EIO;
5475			goto out;
5476		}
5477	}
5478
5479	dev->ifindex = dev_new_index(net);
5480	if (dev->iflink == -1)
5481		dev->iflink = dev->ifindex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5482
5483	/* Transfer changeable features to wanted_features and enable
5484	 * software offloads (GSO and GRO).
5485	 */
5486	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5487	dev->features |= NETIF_F_SOFT_FEATURES;
 
 
 
 
 
 
5488	dev->wanted_features = dev->features & dev->hw_features;
5489
5490	/* Turn on no cache copy if HW is doing checksum */
5491	dev->hw_features |= NETIF_F_NOCACHE_COPY;
5492	if ((dev->features & NETIF_F_ALL_CSUM) &&
5493	    !(dev->features & NETIF_F_NO_CSUM)) {
5494		dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5495		dev->features |= NETIF_F_NOCACHE_COPY;
5496	}
 
 
 
 
 
 
 
 
 
5497
5498	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5499	 */
5500	dev->vlan_features |= NETIF_F_HIGHDMA;
5501
 
 
 
 
 
 
 
 
5502	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5503	ret = notifier_to_errno(ret);
5504	if (ret)
5505		goto err_uninit;
5506
5507	ret = netdev_register_kobject(dev);
 
 
 
5508	if (ret)
5509		goto err_uninit;
5510	dev->reg_state = NETREG_REGISTERED;
5511
5512	__netdev_update_features(dev);
5513
5514	/*
5515	 *	Default initial state at registry is that the
5516	 *	device is present.
5517	 */
5518
5519	set_bit(__LINK_STATE_PRESENT, &dev->state);
5520
 
 
5521	dev_init_scheduler(dev);
5522	dev_hold(dev);
 
5523	list_netdevice(dev);
5524
 
 
 
 
 
 
 
 
 
5525	/* Notify protocols, that a new device appeared. */
5526	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5527	ret = notifier_to_errno(ret);
5528	if (ret) {
5529		rollback_registered(dev);
5530		dev->reg_state = NETREG_UNREGISTERED;
 
 
5531	}
5532	/*
5533	 *	Prevent userspace races by waiting until the network
5534	 *	device is fully setup before sending notifications.
5535	 */
5536	if (!dev->rtnl_link_ops ||
5537	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5538		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5539
5540out:
5541	return ret;
5542
 
 
 
 
 
 
5543err_uninit:
5544	if (dev->netdev_ops->ndo_uninit)
5545		dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
5546	goto out;
5547}
5548EXPORT_SYMBOL(register_netdevice);
5549
5550/**
5551 *	init_dummy_netdev	- init a dummy network device for NAPI
5552 *	@dev: device to init
5553 *
5554 *	This takes a network device structure and initialize the minimum
5555 *	amount of fields so it can be used to schedule NAPI polls without
5556 *	registering a full blown interface. This is to be used by drivers
5557 *	that need to tie several hardware interfaces to a single NAPI
5558 *	poll scheduler due to HW limitations.
5559 */
5560int init_dummy_netdev(struct net_device *dev)
5561{
5562	/* Clear everything. Note we don't initialize spinlocks
5563	 * are they aren't supposed to be taken by any of the
5564	 * NAPI code and this dummy netdev is supposed to be
5565	 * only ever used for NAPI polls
5566	 */
5567	memset(dev, 0, sizeof(struct net_device));
5568
5569	/* make sure we BUG if trying to hit standard
5570	 * register/unregister code path
5571	 */
5572	dev->reg_state = NETREG_DUMMY;
5573
5574	/* NAPI wants this */
5575	INIT_LIST_HEAD(&dev->napi_list);
5576
5577	/* a dummy interface is started by default */
5578	set_bit(__LINK_STATE_PRESENT, &dev->state);
5579	set_bit(__LINK_STATE_START, &dev->state);
5580
 
 
 
5581	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5582	 * because users of this 'device' dont need to change
5583	 * its refcount.
5584	 */
5585
5586	return 0;
5587}
5588EXPORT_SYMBOL_GPL(init_dummy_netdev);
5589
5590
5591/**
5592 *	register_netdev	- register a network device
5593 *	@dev: device to register
5594 *
5595 *	Take a completed network device structure and add it to the kernel
5596 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5597 *	chain. 0 is returned on success. A negative errno code is returned
5598 *	on a failure to set up the device, or if the name is a duplicate.
5599 *
5600 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5601 *	and expands the device name if you passed a format string to
5602 *	alloc_netdev.
5603 */
5604int register_netdev(struct net_device *dev)
5605{
5606	int err;
5607
5608	rtnl_lock();
 
5609	err = register_netdevice(dev);
5610	rtnl_unlock();
5611	return err;
5612}
5613EXPORT_SYMBOL(register_netdev);
5614
5615int netdev_refcnt_read(const struct net_device *dev)
5616{
 
5617	int i, refcnt = 0;
5618
5619	for_each_possible_cpu(i)
5620		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5621	return refcnt;
 
 
 
5622}
5623EXPORT_SYMBOL(netdev_refcnt_read);
5624
5625/*
5626 * netdev_wait_allrefs - wait until all references are gone.
 
 
 
 
 
5627 *
5628 * This is called when unregistering network devices.
5629 *
5630 * Any protocol or device that holds a reference should register
5631 * for netdevice notification, and cleanup and put back the
5632 * reference if they receive an UNREGISTER event.
5633 * We can get stuck here if buggy protocols don't correctly
5634 * call dev_put.
5635 */
5636static void netdev_wait_allrefs(struct net_device *dev)
5637{
5638	unsigned long rebroadcast_time, warning_time;
5639	int refcnt;
 
5640
5641	linkwatch_forget_dev(dev);
5642
5643	rebroadcast_time = warning_time = jiffies;
5644	refcnt = netdev_refcnt_read(dev);
 
5645
5646	while (refcnt != 0) {
5647		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5648			rtnl_lock();
5649
5650			/* Rebroadcast unregister notification */
5651			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5652			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5653			 * should have already handle it the first time */
5654
5655			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5656				     &dev->state)) {
5657				/* We must not have linkwatch events
5658				 * pending on unregister. If this
5659				 * happens, we simply run the queue
5660				 * unscheduled, resulting in a noop
5661				 * for this device.
5662				 */
5663				linkwatch_run_queue();
5664			}
 
 
 
 
 
5665
5666			__rtnl_unlock();
5667
5668			rebroadcast_time = jiffies;
5669		}
5670
5671		msleep(250);
 
 
 
 
 
 
 
5672
5673		refcnt = netdev_refcnt_read(dev);
 
 
 
 
 
 
 
 
 
 
5674
5675		if (time_after(jiffies, warning_time + 10 * HZ)) {
5676			printk(KERN_EMERG "unregister_netdevice: "
5677			       "waiting for %s to become free. Usage "
5678			       "count = %d\n",
5679			       dev->name, refcnt);
5680			warning_time = jiffies;
5681		}
5682	}
5683}
5684
5685/* The sequence is:
5686 *
5687 *	rtnl_lock();
5688 *	...
5689 *	register_netdevice(x1);
5690 *	register_netdevice(x2);
5691 *	...
5692 *	unregister_netdevice(y1);
5693 *	unregister_netdevice(y2);
5694 *      ...
5695 *	rtnl_unlock();
5696 *	free_netdev(y1);
5697 *	free_netdev(y2);
5698 *
5699 * We are invoked by rtnl_unlock().
5700 * This allows us to deal with problems:
5701 * 1) We can delete sysfs objects which invoke hotplug
5702 *    without deadlocking with linkwatch via keventd.
5703 * 2) Since we run with the RTNL semaphore not held, we can sleep
5704 *    safely in order to wait for the netdev refcnt to drop to zero.
5705 *
5706 * We must not return until all unregister events added during
5707 * the interval the lock was held have been completed.
5708 */
5709void netdev_run_todo(void)
5710{
 
5711	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5712
5713	/* Snapshot list, allow later requests */
5714	list_replace_init(&net_todo_list, &list);
5715
5716	__rtnl_unlock();
5717
5718	while (!list_empty(&list)) {
5719		struct net_device *dev
5720			= list_first_entry(&list, struct net_device, todo_list);
5721		list_del(&dev->todo_list);
5722
 
5723		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5724			printk(KERN_ERR "network todo '%s' but state %d\n",
5725			       dev->name, dev->reg_state);
5726			dump_stack();
5727			continue;
5728		}
5729
5730		dev->reg_state = NETREG_UNREGISTERED;
 
 
5731
5732		on_each_cpu(flush_backlog, dev, 1);
5733
5734		netdev_wait_allrefs(dev);
 
5735
5736		/* paranoia */
5737		BUG_ON(netdev_refcnt_read(dev));
5738		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5739		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5740		WARN_ON(dev->dn_ptr);
 
 
 
 
 
 
 
5741
5742		if (dev->destructor)
5743			dev->destructor(dev);
5744
5745		/* Free network device */
5746		kobject_put(&dev->dev.kobj);
5747	}
 
 
5748}
5749
5750/* Convert net_device_stats to rtnl_link_stats64.  They have the same
5751 * fields in the same order, with only the type differing.
 
 
5752 */
5753static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5754				    const struct net_device_stats *netdev_stats)
5755{
5756#if BITS_PER_LONG == 64
5757        BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5758        memcpy(stats64, netdev_stats, sizeof(*stats64));
5759#else
5760	size_t i, n = sizeof(*stats64) / sizeof(u64);
5761	const unsigned long *src = (const unsigned long *)netdev_stats;
5762	u64 *dst = (u64 *)stats64;
5763
5764	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5765		     sizeof(*stats64) / sizeof(u64));
5766	for (i = 0; i < n; i++)
5767		dst[i] = src[i];
5768#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5769}
 
5770
5771/**
5772 *	dev_get_stats	- get network device statistics
5773 *	@dev: device to get statistics from
5774 *	@storage: place to store stats
5775 *
5776 *	Get network statistics from device. Return @storage.
5777 *	The device driver may provide its own method by setting
5778 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5779 *	otherwise the internal statistics structure is used.
5780 */
5781struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5782					struct rtnl_link_stats64 *storage)
5783{
5784	const struct net_device_ops *ops = dev->netdev_ops;
 
5785
5786	if (ops->ndo_get_stats64) {
5787		memset(storage, 0, sizeof(*storage));
5788		ops->ndo_get_stats64(dev, storage);
5789	} else if (ops->ndo_get_stats) {
5790		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
 
 
5791	} else {
5792		netdev_stats_to_stats64(storage, &dev->stats);
5793	}
5794	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5795	return storage;
5796}
5797EXPORT_SYMBOL(dev_get_stats);
5798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5799struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5800{
5801	struct netdev_queue *queue = dev_ingress_queue(dev);
5802
5803#ifdef CONFIG_NET_CLS_ACT
5804	if (queue)
5805		return queue;
5806	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5807	if (!queue)
5808		return NULL;
5809	netdev_init_one_queue(dev, queue, NULL);
5810	queue->qdisc = &noop_qdisc;
5811	queue->qdisc_sleeping = &noop_qdisc;
5812	rcu_assign_pointer(dev->ingress_queue, queue);
5813#endif
5814	return queue;
5815}
5816
 
 
 
 
 
 
 
 
 
 
5817/**
5818 *	alloc_netdev_mqs - allocate network device
5819 *	@sizeof_priv:	size of private data to allocate space for
5820 *	@name:		device name format string
5821 *	@setup:		callback to initialize device
5822 *	@txqs:		the number of TX subqueues to allocate
5823 *	@rxqs:		the number of RX subqueues to allocate
5824 *
5825 *	Allocates a struct net_device with private data area for driver use
5826 *	and performs basic initialization.  Also allocates subquue structs
5827 *	for each queue on the device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5828 */
5829struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
 
5830		void (*setup)(struct net_device *),
5831		unsigned int txqs, unsigned int rxqs)
5832{
5833	struct net_device *dev;
5834	size_t alloc_size;
5835	struct net_device *p;
5836
5837	BUG_ON(strlen(name) >= sizeof(dev->name));
5838
5839	if (txqs < 1) {
5840		pr_err("alloc_netdev: Unable to allocate device "
5841		       "with zero queues.\n");
5842		return NULL;
5843	}
5844
5845#ifdef CONFIG_RPS
5846	if (rxqs < 1) {
5847		pr_err("alloc_netdev: Unable to allocate device "
5848		       "with zero RX queues.\n");
5849		return NULL;
5850	}
5851#endif
5852
5853	alloc_size = sizeof(struct net_device);
5854	if (sizeof_priv) {
5855		/* ensure 32-byte alignment of private area */
5856		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5857		alloc_size += sizeof_priv;
5858	}
5859	/* ensure 32-byte alignment of whole construct */
5860	alloc_size += NETDEV_ALIGN - 1;
5861
5862	p = kzalloc(alloc_size, GFP_KERNEL);
5863	if (!p) {
5864		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5865		return NULL;
5866	}
5867
5868	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5869	dev->padded = (char *)dev - (char *)p;
5870
 
 
5871	dev->pcpu_refcnt = alloc_percpu(int);
5872	if (!dev->pcpu_refcnt)
5873		goto free_p;
 
 
 
 
5874
5875	if (dev_addr_init(dev))
5876		goto free_pcpu;
5877
5878	dev_mc_init(dev);
5879	dev_uc_init(dev);
5880
5881	dev_net_set(dev, &init_net);
5882
5883	dev->gso_max_size = GSO_MAX_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
5884
5885	INIT_LIST_HEAD(&dev->napi_list);
5886	INIT_LIST_HEAD(&dev->unreg_list);
 
5887	INIT_LIST_HEAD(&dev->link_watch_list);
5888	dev->priv_flags = IFF_XMIT_DST_RELEASE;
 
 
 
 
 
 
 
 
5889	setup(dev);
5890
 
 
 
 
 
5891	dev->num_tx_queues = txqs;
5892	dev->real_num_tx_queues = txqs;
5893	if (netif_alloc_netdev_queues(dev))
5894		goto free_all;
5895
5896#ifdef CONFIG_RPS
5897	dev->num_rx_queues = rxqs;
5898	dev->real_num_rx_queues = rxqs;
5899	if (netif_alloc_rx_queues(dev))
5900		goto free_all;
5901#endif
5902
5903	strcpy(dev->name, name);
 
5904	dev->group = INIT_NETDEV_GROUP;
 
 
 
 
 
5905	return dev;
5906
5907free_all:
5908	free_netdev(dev);
5909	return NULL;
5910
5911free_pcpu:
 
5912	free_percpu(dev->pcpu_refcnt);
5913	kfree(dev->_tx);
5914#ifdef CONFIG_RPS
5915	kfree(dev->_rx);
5916#endif
5917
5918free_p:
5919	kfree(p);
5920	return NULL;
5921}
5922EXPORT_SYMBOL(alloc_netdev_mqs);
5923
5924/**
5925 *	free_netdev - free network device
5926 *	@dev: device
5927 *
5928 *	This function does the last stage of destroying an allocated device
5929 * 	interface. The reference to the device object is released.
5930 *	If this is the last reference then it will be freed.
 
5931 */
5932void free_netdev(struct net_device *dev)
5933{
5934	struct napi_struct *p, *n;
5935
5936	release_net(dev_net(dev));
 
 
 
 
 
 
 
 
 
 
5937
5938	kfree(dev->_tx);
5939#ifdef CONFIG_RPS
5940	kfree(dev->_rx);
5941#endif
5942
5943	kfree(rcu_dereference_raw(dev->ingress_queue));
5944
5945	/* Flush device addresses */
5946	dev_addr_flush(dev);
5947
5948	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5949		netif_napi_del(p);
5950
 
 
5951	free_percpu(dev->pcpu_refcnt);
5952	dev->pcpu_refcnt = NULL;
 
 
 
 
 
5953
5954	/*  Compatibility with error handling in drivers */
5955	if (dev->reg_state == NETREG_UNINITIALIZED) {
5956		kfree((char *)dev - dev->padded);
5957		return;
5958	}
5959
5960	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5961	dev->reg_state = NETREG_RELEASED;
5962
5963	/* will free via device release */
5964	put_device(&dev->dev);
5965}
5966EXPORT_SYMBOL(free_netdev);
5967
5968/**
5969 *	synchronize_net -  Synchronize with packet receive processing
5970 *
5971 *	Wait for packets currently being received to be done.
5972 *	Does not block later packets from starting.
5973 */
5974void synchronize_net(void)
5975{
5976	might_sleep();
5977	if (rtnl_is_locked())
5978		synchronize_rcu_expedited();
5979	else
5980		synchronize_rcu();
5981}
5982EXPORT_SYMBOL(synchronize_net);
5983
5984/**
5985 *	unregister_netdevice_queue - remove device from the kernel
5986 *	@dev: device
5987 *	@head: list
5988 *
5989 *	This function shuts down a device interface and removes it
5990 *	from the kernel tables.
5991 *	If head not NULL, device is queued to be unregistered later.
5992 *
5993 *	Callers must hold the rtnl semaphore.  You may want
5994 *	unregister_netdev() instead of this.
5995 */
5996
5997void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5998{
5999	ASSERT_RTNL();
6000
6001	if (head) {
6002		list_move_tail(&dev->unreg_list, head);
6003	} else {
6004		rollback_registered(dev);
6005		/* Finish processing unregister after unlock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6006		net_set_todo(dev);
 
6007	}
 
 
 
6008}
6009EXPORT_SYMBOL(unregister_netdevice_queue);
6010
6011/**
6012 *	unregister_netdevice_many - unregister many devices
6013 *	@head: list of devices
 
 
 
6014 */
6015void unregister_netdevice_many(struct list_head *head)
6016{
6017	struct net_device *dev;
6018
6019	if (!list_empty(head)) {
6020		rollback_registered_many(head);
6021		list_for_each_entry(dev, head, unreg_list)
6022			net_set_todo(dev);
6023	}
6024}
6025EXPORT_SYMBOL(unregister_netdevice_many);
6026
6027/**
6028 *	unregister_netdev - remove device from the kernel
6029 *	@dev: device
6030 *
6031 *	This function shuts down a device interface and removes it
6032 *	from the kernel tables.
6033 *
6034 *	This is just a wrapper for unregister_netdevice that takes
6035 *	the rtnl semaphore.  In general you want to use this and not
6036 *	unregister_netdevice.
6037 */
6038void unregister_netdev(struct net_device *dev)
6039{
6040	rtnl_lock();
6041	unregister_netdevice(dev);
6042	rtnl_unlock();
6043}
6044EXPORT_SYMBOL(unregister_netdev);
6045
6046/**
6047 *	dev_change_net_namespace - move device to different nethost namespace
6048 *	@dev: device
6049 *	@net: network namespace
6050 *	@pat: If not NULL name pattern to try if the current device name
6051 *	      is already taken in the destination network namespace.
 
 
6052 *
6053 *	This function shuts down a device interface and moves it
6054 *	to a new network namespace. On success 0 is returned, on
6055 *	a failure a netagive errno code is returned.
6056 *
6057 *	Callers must hold the rtnl semaphore.
6058 */
6059
6060int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
 
6061{
6062	int err;
 
 
 
6063
6064	ASSERT_RTNL();
6065
6066	/* Don't allow namespace local devices to be moved. */
6067	err = -EINVAL;
6068	if (dev->features & NETIF_F_NETNS_LOCAL)
6069		goto out;
6070
6071	/* Ensure the device has been registrered */
6072	err = -EINVAL;
6073	if (dev->reg_state != NETREG_REGISTERED)
6074		goto out;
6075
6076	/* Get out if there is nothing todo */
6077	err = 0;
6078	if (net_eq(dev_net(dev), net))
6079		goto out;
6080
6081	/* Pick the destination device name, and ensure
6082	 * we can use it in the destination network namespace.
6083	 */
6084	err = -EEXIST;
6085	if (__dev_get_by_name(net, dev->name)) {
6086		/* We get here if we can't use the current device name */
6087		if (!pat)
6088			goto out;
6089		if (dev_get_valid_name(dev, pat) < 0)
 
6090			goto out;
6091	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6092
6093	/*
6094	 * And now a mini version of register_netdevice unregister_netdevice.
6095	 */
6096
6097	/* If device is running close it first. */
6098	dev_close(dev);
6099
6100	/* And unlink it from device chain */
6101	err = -ENODEV;
6102	unlist_netdevice(dev);
6103
6104	synchronize_net();
6105
6106	/* Shutdown queueing discipline. */
6107	dev_shutdown(dev);
6108
6109	/* Notify protocols, that we are about to destroy
6110	   this device. They should clean all the things.
 
 
 
 
 
 
 
 
 
6111
6112	   Note that dev->reg_state stays at NETREG_REGISTERED.
6113	   This is wanted because this way 8021q and macvlan know
6114	   the device is just moving and can keep their slaves up.
6115	*/
6116	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6117	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6118
6119	/*
6120	 *	Flush the unicast and multicast chains
6121	 */
6122	dev_uc_flush(dev);
6123	dev_mc_flush(dev);
6124
 
 
 
 
 
 
 
6125	/* Actually switch the network namespace */
6126	dev_net_set(dev, net);
 
6127
6128	/* If there is an ifindex conflict assign a new one */
6129	if (__dev_get_by_index(net, dev->ifindex)) {
6130		int iflink = (dev->iflink == dev->ifindex);
6131		dev->ifindex = dev_new_index(net);
6132		if (iflink)
6133			dev->iflink = dev->ifindex;
6134	}
6135
6136	/* Fixup kobjects */
 
6137	err = device_rename(&dev->dev, dev->name);
 
 
 
 
 
 
 
 
 
 
 
6138	WARN_ON(err);
6139
6140	/* Add the device back in the hashes */
6141	list_netdevice(dev);
6142
6143	/* Notify protocols, that a new device appeared. */
6144	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6145
6146	/*
6147	 *	Prevent userspace races by waiting until the network
6148	 *	device is fully setup before sending notifications.
6149	 */
6150	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6151
6152	synchronize_net();
6153	err = 0;
6154out:
6155	return err;
6156}
6157EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6158
6159static int dev_cpu_callback(struct notifier_block *nfb,
6160			    unsigned long action,
6161			    void *ocpu)
6162{
6163	struct sk_buff **list_skb;
6164	struct sk_buff *skb;
6165	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6166	struct softnet_data *sd, *oldsd;
6167
6168	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6169		return NOTIFY_OK;
6170
6171	local_irq_disable();
6172	cpu = smp_processor_id();
6173	sd = &per_cpu(softnet_data, cpu);
6174	oldsd = &per_cpu(softnet_data, oldcpu);
6175
6176	/* Find end of our completion_queue. */
6177	list_skb = &sd->completion_queue;
6178	while (*list_skb)
6179		list_skb = &(*list_skb)->next;
6180	/* Append completion queue from offline CPU. */
6181	*list_skb = oldsd->completion_queue;
6182	oldsd->completion_queue = NULL;
6183
6184	/* Append output queue from offline CPU. */
6185	if (oldsd->output_queue) {
6186		*sd->output_queue_tailp = oldsd->output_queue;
6187		sd->output_queue_tailp = oldsd->output_queue_tailp;
6188		oldsd->output_queue = NULL;
6189		oldsd->output_queue_tailp = &oldsd->output_queue;
6190	}
6191	/* Append NAPI poll list from offline CPU. */
6192	if (!list_empty(&oldsd->poll_list)) {
6193		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6194		raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 
 
 
 
 
 
6195	}
6196
6197	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6198	local_irq_enable();
6199
 
 
 
 
 
 
 
6200	/* Process offline CPU's input_pkt_queue */
6201	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6202		netif_rx(skb);
6203		input_queue_head_incr(oldsd);
6204	}
6205	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6206		netif_rx(skb);
6207		input_queue_head_incr(oldsd);
6208	}
6209
6210	return NOTIFY_OK;
6211}
6212
6213
6214/**
6215 *	netdev_increment_features - increment feature set by one
6216 *	@all: current feature set
6217 *	@one: new feature set
6218 *	@mask: mask feature set
6219 *
6220 *	Computes a new feature set after adding a device with feature set
6221 *	@one to the master device with current feature set @all.  Will not
6222 *	enable anything that is off in @mask. Returns the new feature set.
6223 */
6224u32 netdev_increment_features(u32 all, u32 one, u32 mask)
 
6225{
6226	if (mask & NETIF_F_GEN_CSUM)
6227		mask |= NETIF_F_ALL_CSUM;
6228	mask |= NETIF_F_VLAN_CHALLENGED;
6229
6230	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6231	all &= one | ~NETIF_F_ALL_FOR_ALL;
6232
6233	/* If device needs checksumming, downgrade to it. */
6234	if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6235		all &= ~NETIF_F_NO_CSUM;
6236
6237	/* If one device supports hw checksumming, set for all. */
6238	if (all & NETIF_F_GEN_CSUM)
6239		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6240
6241	return all;
6242}
6243EXPORT_SYMBOL(netdev_increment_features);
6244
6245static struct hlist_head *netdev_create_hash(void)
6246{
6247	int i;
6248	struct hlist_head *hash;
6249
6250	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6251	if (hash != NULL)
6252		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6253			INIT_HLIST_HEAD(&hash[i]);
6254
6255	return hash;
6256}
6257
6258/* Initialize per network namespace state */
6259static int __net_init netdev_init(struct net *net)
6260{
 
 
 
6261	INIT_LIST_HEAD(&net->dev_base_head);
6262
6263	net->dev_name_head = netdev_create_hash();
6264	if (net->dev_name_head == NULL)
6265		goto err_name;
6266
6267	net->dev_index_head = netdev_create_hash();
6268	if (net->dev_index_head == NULL)
6269		goto err_idx;
6270
 
 
 
 
6271	return 0;
6272
6273err_idx:
6274	kfree(net->dev_name_head);
6275err_name:
6276	return -ENOMEM;
6277}
6278
6279/**
6280 *	netdev_drivername - network driver for the device
6281 *	@dev: network device
6282 *
6283 *	Determine network driver for device.
6284 */
6285const char *netdev_drivername(const struct net_device *dev)
6286{
6287	const struct device_driver *driver;
6288	const struct device *parent;
6289	const char *empty = "";
6290
6291	parent = dev->dev.parent;
6292	if (!parent)
6293		return empty;
6294
6295	driver = parent->driver;
6296	if (driver && driver->name)
6297		return driver->name;
6298	return empty;
6299}
6300
6301static int __netdev_printk(const char *level, const struct net_device *dev,
6302			   struct va_format *vaf)
6303{
6304	int r;
6305
6306	if (dev && dev->dev.parent)
6307		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6308			       netdev_name(dev), vaf);
6309	else if (dev)
6310		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6311	else
6312		r = printk("%s(NULL net_device): %pV", level, vaf);
6313
6314	return r;
 
 
 
6315}
6316
6317int netdev_printk(const char *level, const struct net_device *dev,
6318		  const char *format, ...)
6319{
6320	struct va_format vaf;
6321	va_list args;
6322	int r;
6323
6324	va_start(args, format);
6325
6326	vaf.fmt = format;
6327	vaf.va = &args;
6328
6329	r = __netdev_printk(level, dev, &vaf);
 
6330	va_end(args);
6331
6332	return r;
6333}
6334EXPORT_SYMBOL(netdev_printk);
6335
6336#define define_netdev_printk_level(func, level)			\
6337int func(const struct net_device *dev, const char *fmt, ...)	\
6338{								\
6339	int r;							\
6340	struct va_format vaf;					\
6341	va_list args;						\
6342								\
6343	va_start(args, fmt);					\
6344								\
6345	vaf.fmt = fmt;						\
6346	vaf.va = &args;						\
6347								\
6348	r = __netdev_printk(level, dev, &vaf);			\
 
6349	va_end(args);						\
6350								\
6351	return r;						\
6352}								\
6353EXPORT_SYMBOL(func);
6354
6355define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6356define_netdev_printk_level(netdev_alert, KERN_ALERT);
6357define_netdev_printk_level(netdev_crit, KERN_CRIT);
6358define_netdev_printk_level(netdev_err, KERN_ERR);
6359define_netdev_printk_level(netdev_warn, KERN_WARNING);
6360define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6361define_netdev_printk_level(netdev_info, KERN_INFO);
6362
6363static void __net_exit netdev_exit(struct net *net)
6364{
6365	kfree(net->dev_name_head);
6366	kfree(net->dev_index_head);
 
 
 
6367}
6368
6369static struct pernet_operations __net_initdata netdev_net_ops = {
6370	.init = netdev_init,
6371	.exit = netdev_exit,
6372};
6373
6374static void __net_exit default_device_exit(struct net *net)
6375{
 
6376	struct net_device *dev, *aux;
6377	/*
6378	 * Push all migratable network devices back to the
6379	 * initial network namespace
6380	 */
6381	rtnl_lock();
6382	for_each_netdev_safe(net, dev, aux) {
6383		int err;
6384		char fb_name[IFNAMSIZ];
6385
6386		/* Ignore unmoveable devices (i.e. loopback) */
6387		if (dev->features & NETIF_F_NETNS_LOCAL)
6388			continue;
6389
6390		/* Leave virtual devices for the generic cleanup */
6391		if (dev->rtnl_link_ops)
6392			continue;
6393
6394		/* Push remaining network devices to init_net */
6395		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
 
 
 
 
 
 
 
6396		err = dev_change_net_namespace(dev, &init_net, fb_name);
6397		if (err) {
6398			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6399				__func__, dev->name, err);
6400			BUG();
6401		}
6402	}
6403	rtnl_unlock();
6404}
6405
6406static void __net_exit default_device_exit_batch(struct list_head *net_list)
6407{
6408	/* At exit all network devices most be removed from a network
6409	 * namespace.  Do this in the reverse order of registration.
6410	 * Do this across as many network namespaces as possible to
6411	 * improve batching efficiency.
6412	 */
6413	struct net_device *dev;
6414	struct net *net;
6415	LIST_HEAD(dev_kill_list);
6416
6417	rtnl_lock();
6418	list_for_each_entry(net, net_list, exit_list) {
 
 
 
 
 
6419		for_each_netdev_reverse(net, dev) {
6420			if (dev->rtnl_link_ops)
6421				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6422			else
6423				unregister_netdevice_queue(dev, &dev_kill_list);
6424		}
6425	}
6426	unregister_netdevice_many(&dev_kill_list);
6427	list_del(&dev_kill_list);
6428	rtnl_unlock();
6429}
6430
6431static struct pernet_operations __net_initdata default_device_ops = {
6432	.exit = default_device_exit,
6433	.exit_batch = default_device_exit_batch,
6434};
6435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6436/*
6437 *	Initialize the DEV module. At boot time this walks the device list and
6438 *	unhooks any devices that fail to initialise (normally hardware not
6439 *	present) and leaves us with a valid list of present and active devices.
6440 *
6441 */
6442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6443/*
6444 *       This is called single threaded during boot, so no need
6445 *       to take the rtnl semaphore.
6446 */
6447static int __init net_dev_init(void)
6448{
6449	int i, rc = -ENOMEM;
6450
6451	BUG_ON(!dev_boot_phase);
6452
 
 
6453	if (dev_proc_init())
6454		goto out;
6455
6456	if (netdev_kobject_init())
6457		goto out;
6458
6459	INIT_LIST_HEAD(&ptype_all);
6460	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6461		INIT_LIST_HEAD(&ptype_base[i]);
6462
6463	if (register_pernet_subsys(&netdev_net_ops))
6464		goto out;
6465
6466	/*
6467	 *	Initialise the packet receive queues.
6468	 */
6469
6470	for_each_possible_cpu(i) {
 
6471		struct softnet_data *sd = &per_cpu(softnet_data, i);
6472
6473		memset(sd, 0, sizeof(*sd));
 
6474		skb_queue_head_init(&sd->input_pkt_queue);
6475		skb_queue_head_init(&sd->process_queue);
6476		sd->completion_queue = NULL;
 
 
6477		INIT_LIST_HEAD(&sd->poll_list);
6478		sd->output_queue = NULL;
6479		sd->output_queue_tailp = &sd->output_queue;
6480#ifdef CONFIG_RPS
6481		sd->csd.func = rps_trigger_softirq;
6482		sd->csd.info = sd;
6483		sd->csd.flags = 0;
6484		sd->cpu = i;
6485#endif
 
 
6486
 
6487		sd->backlog.poll = process_backlog;
6488		sd->backlog.weight = weight_p;
6489		sd->backlog.gro_list = NULL;
6490		sd->backlog.gro_count = 0;
 
6491	}
6492
6493	dev_boot_phase = 0;
6494
6495	/* The loopback device is special if any other network devices
6496	 * is present in a network namespace the loopback device must
6497	 * be present. Since we now dynamically allocate and free the
6498	 * loopback device ensure this invariant is maintained by
6499	 * keeping the loopback device as the first device on the
6500	 * list of network devices.  Ensuring the loopback devices
6501	 * is the first device that appears and the last network device
6502	 * that disappears.
6503	 */
6504	if (register_pernet_device(&loopback_net_ops))
6505		goto out;
6506
6507	if (register_pernet_device(&default_device_ops))
6508		goto out;
6509
6510	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6511	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6512
6513	hotcpu_notifier(dev_cpu_callback, 0);
6514	dst_init();
6515	dev_mcast_init();
6516	rc = 0;
6517out:
 
 
 
 
 
 
 
 
 
 
 
 
 
6518	return rc;
6519}
6520
6521subsys_initcall(net_dev_init);
6522
6523static int __init initialize_hashrnd(void)
6524{
6525	get_random_bytes(&hashrnd, sizeof(hashrnd));
6526	return 0;
6527}
6528
6529late_initcall_sync(initialize_hashrnd);
6530