Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	static_branch_enable(&force_irqthreads_key);
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
 
 
 
 
 
 
 
 
 
 
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
 
 
 
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111static void __synchronize_irq(struct irq_desc *desc)
 112{
 113	__synchronize_hardirq(desc, true);
 114	/*
 115	 * We made sure that no hardirq handler is running. Now verify that no
 116	 * threaded handlers are active.
 117	 */
 118	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
 119}
 120
 121/**
 122 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 123 *	@irq: interrupt number to wait for
 124 *
 125 *	This function waits for any pending IRQ handlers for this interrupt
 126 *	to complete before returning. If you use this function while
 127 *	holding a resource the IRQ handler may need you will deadlock.
 128 *
 129 *	Can only be called from preemptible code as it might sleep when
 130 *	an interrupt thread is associated to @irq.
 131 *
 132 *	It optionally makes sure (when the irq chip supports that method)
 133 *	that the interrupt is not pending in any CPU and waiting for
 134 *	service.
 135 */
 136void synchronize_irq(unsigned int irq)
 137{
 138	struct irq_desc *desc = irq_to_desc(irq);
 139
 140	if (desc)
 141		__synchronize_irq(desc);
 142}
 143EXPORT_SYMBOL(synchronize_irq);
 144
 145#ifdef CONFIG_SMP
 146cpumask_var_t irq_default_affinity;
 147
 148static bool __irq_can_set_affinity(struct irq_desc *desc)
 149{
 150	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 151	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 152		return false;
 153	return true;
 154}
 155
 156/**
 157 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 158 *	@irq:		Interrupt to check
 159 *
 160 */
 161int irq_can_set_affinity(unsigned int irq)
 162{
 163	return __irq_can_set_affinity(irq_to_desc(irq));
 164}
 165
 166/**
 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 168 * @irq:	Interrupt to check
 169 *
 170 * Like irq_can_set_affinity() above, but additionally checks for the
 171 * AFFINITY_MANAGED flag.
 172 */
 173bool irq_can_set_affinity_usr(unsigned int irq)
 174{
 175	struct irq_desc *desc = irq_to_desc(irq);
 176
 177	return __irq_can_set_affinity(desc) &&
 178		!irqd_affinity_is_managed(&desc->irq_data);
 
 
 
 179}
 180
 181/**
 182 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 183 *	@desc:		irq descriptor which has affinity changed
 184 *
 185 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 186 *	to the interrupt thread itself. We can not call
 187 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 188 *	code can be called from hard interrupt context.
 189 */
 190void irq_set_thread_affinity(struct irq_desc *desc)
 191{
 192	struct irqaction *action;
 193
 194	for_each_action_of_desc(desc, action) {
 195		if (action->thread) {
 196			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 197			wake_up_process(action->thread);
 198		}
 199		if (action->secondary && action->secondary->thread) {
 200			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
 201			wake_up_process(action->secondary->thread);
 202		}
 203	}
 204}
 205
 206#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 207static void irq_validate_effective_affinity(struct irq_data *data)
 208{
 209	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 210	struct irq_chip *chip = irq_data_get_irq_chip(data);
 211
 212	if (!cpumask_empty(m))
 213		return;
 214	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 215		     chip->name, data->irq);
 216}
 217#else
 218static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 219#endif
 220
 221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 222			bool force)
 223{
 224	struct irq_desc *desc = irq_data_to_desc(data);
 225	struct irq_chip *chip = irq_data_get_irq_chip(data);
 226	const struct cpumask  *prog_mask;
 227	int ret;
 228
 229	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 230	static struct cpumask tmp_mask;
 231
 232	if (!chip || !chip->irq_set_affinity)
 233		return -EINVAL;
 234
 235	raw_spin_lock(&tmp_mask_lock);
 236	/*
 237	 * If this is a managed interrupt and housekeeping is enabled on
 238	 * it check whether the requested affinity mask intersects with
 239	 * a housekeeping CPU. If so, then remove the isolated CPUs from
 240	 * the mask and just keep the housekeeping CPU(s). This prevents
 241	 * the affinity setter from routing the interrupt to an isolated
 242	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
 243	 * interrupts on an isolated one.
 244	 *
 245	 * If the masks do not intersect or include online CPU(s) then
 246	 * keep the requested mask. The isolated target CPUs are only
 247	 * receiving interrupts when the I/O operation was submitted
 248	 * directly from them.
 249	 *
 250	 * If all housekeeping CPUs in the affinity mask are offline, the
 251	 * interrupt will be migrated by the CPU hotplug code once a
 252	 * housekeeping CPU which belongs to the affinity mask comes
 253	 * online.
 254	 */
 255	if (irqd_affinity_is_managed(data) &&
 256	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
 257		const struct cpumask *hk_mask;
 258
 259		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
 260
 261		cpumask_and(&tmp_mask, mask, hk_mask);
 262		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 263			prog_mask = mask;
 264		else
 265			prog_mask = &tmp_mask;
 266	} else {
 267		prog_mask = mask;
 268	}
 269
 270	/*
 271	 * Make sure we only provide online CPUs to the irqchip,
 272	 * unless we are being asked to force the affinity (in which
 273	 * case we do as we are told).
 274	 */
 275	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
 276	if (!force && !cpumask_empty(&tmp_mask))
 277		ret = chip->irq_set_affinity(data, &tmp_mask, force);
 278	else if (force)
 279		ret = chip->irq_set_affinity(data, mask, force);
 280	else
 281		ret = -EINVAL;
 282
 283	raw_spin_unlock(&tmp_mask_lock);
 284
 285	switch (ret) {
 286	case IRQ_SET_MASK_OK:
 287	case IRQ_SET_MASK_OK_DONE:
 288		cpumask_copy(desc->irq_common_data.affinity, mask);
 289		fallthrough;
 290	case IRQ_SET_MASK_OK_NOCOPY:
 291		irq_validate_effective_affinity(data);
 292		irq_set_thread_affinity(desc);
 293		ret = 0;
 294	}
 295
 296	return ret;
 297}
 298
 299#ifdef CONFIG_GENERIC_PENDING_IRQ
 300static inline int irq_set_affinity_pending(struct irq_data *data,
 301					   const struct cpumask *dest)
 302{
 303	struct irq_desc *desc = irq_data_to_desc(data);
 304
 305	irqd_set_move_pending(data);
 306	irq_copy_pending(desc, dest);
 307	return 0;
 308}
 309#else
 310static inline int irq_set_affinity_pending(struct irq_data *data,
 311					   const struct cpumask *dest)
 312{
 313	return -EBUSY;
 314}
 315#endif
 316
 317static int irq_try_set_affinity(struct irq_data *data,
 318				const struct cpumask *dest, bool force)
 319{
 320	int ret = irq_do_set_affinity(data, dest, force);
 321
 322	/*
 323	 * In case that the underlying vector management is busy and the
 324	 * architecture supports the generic pending mechanism then utilize
 325	 * this to avoid returning an error to user space.
 326	 */
 327	if (ret == -EBUSY && !force)
 328		ret = irq_set_affinity_pending(data, dest);
 329	return ret;
 330}
 331
 332static bool irq_set_affinity_deactivated(struct irq_data *data,
 333					 const struct cpumask *mask)
 334{
 335	struct irq_desc *desc = irq_data_to_desc(data);
 336
 337	/*
 338	 * Handle irq chips which can handle affinity only in activated
 339	 * state correctly
 340	 *
 341	 * If the interrupt is not yet activated, just store the affinity
 342	 * mask and do not call the chip driver at all. On activation the
 343	 * driver has to make sure anyway that the interrupt is in a
 344	 * usable state so startup works.
 345	 */
 346	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 347	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 348		return false;
 349
 350	cpumask_copy(desc->irq_common_data.affinity, mask);
 351	irq_data_update_effective_affinity(data, mask);
 352	irqd_set(data, IRQD_AFFINITY_SET);
 353	return true;
 354}
 
 
 
 
 
 
 
 
 355
 356int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 357			    bool force)
 358{
 359	struct irq_chip *chip = irq_data_get_irq_chip(data);
 360	struct irq_desc *desc = irq_data_to_desc(data);
 361	int ret = 0;
 362
 363	if (!chip || !chip->irq_set_affinity)
 364		return -EINVAL;
 365
 366	if (irq_set_affinity_deactivated(data, mask))
 367		return 0;
 368
 369	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 370		ret = irq_try_set_affinity(data, mask, force);
 
 
 
 
 371	} else {
 372		irqd_set_move_pending(data);
 373		irq_copy_pending(desc, mask);
 374	}
 375
 376	if (desc->affinity_notify) {
 377		kref_get(&desc->affinity_notify->kref);
 378		if (!schedule_work(&desc->affinity_notify->work)) {
 379			/* Work was already scheduled, drop our extra ref */
 380			kref_put(&desc->affinity_notify->kref,
 381				 desc->affinity_notify->release);
 382		}
 383	}
 384	irqd_set(data, IRQD_AFFINITY_SET);
 385
 386	return ret;
 387}
 388
 389/**
 390 * irq_update_affinity_desc - Update affinity management for an interrupt
 391 * @irq:	The interrupt number to update
 392 * @affinity:	Pointer to the affinity descriptor
 393 *
 394 * This interface can be used to configure the affinity management of
 395 * interrupts which have been allocated already.
 396 *
 397 * There are certain limitations on when it may be used - attempts to use it
 398 * for when the kernel is configured for generic IRQ reservation mode (in
 399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 401 * an interrupt which is already started or which has already been configured
 402 * as managed will also fail, as these mean invalid init state or double init.
 403 */
 404int irq_update_affinity_desc(unsigned int irq,
 405			     struct irq_affinity_desc *affinity)
 406{
 407	struct irq_desc *desc;
 408	unsigned long flags;
 409	bool activated;
 410	int ret = 0;
 411
 412	/*
 413	 * Supporting this with the reservation scheme used by x86 needs
 414	 * some more thought. Fail it for now.
 415	 */
 416	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 417		return -EOPNOTSUPP;
 418
 419	desc = irq_get_desc_buslock(irq, &flags, 0);
 420	if (!desc)
 421		return -EINVAL;
 422
 423	/* Requires the interrupt to be shut down */
 424	if (irqd_is_started(&desc->irq_data)) {
 425		ret = -EBUSY;
 426		goto out_unlock;
 427	}
 428
 429	/* Interrupts which are already managed cannot be modified */
 430	if (irqd_affinity_is_managed(&desc->irq_data)) {
 431		ret = -EBUSY;
 432		goto out_unlock;
 433	}
 434
 435	/*
 436	 * Deactivate the interrupt. That's required to undo
 437	 * anything an earlier activation has established.
 438	 */
 439	activated = irqd_is_activated(&desc->irq_data);
 440	if (activated)
 441		irq_domain_deactivate_irq(&desc->irq_data);
 442
 443	if (affinity->is_managed) {
 444		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 445		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 446	}
 447
 448	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 449
 450	/* Restore the activation state */
 451	if (activated)
 452		irq_domain_activate_irq(&desc->irq_data, false);
 453
 454out_unlock:
 455	irq_put_desc_busunlock(desc, flags);
 456	return ret;
 457}
 458
 459static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
 460			      bool force)
 461{
 462	struct irq_desc *desc = irq_to_desc(irq);
 463	unsigned long flags;
 464	int ret;
 465
 466	if (!desc)
 467		return -EINVAL;
 468
 469	raw_spin_lock_irqsave(&desc->lock, flags);
 470	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 471	raw_spin_unlock_irqrestore(&desc->lock, flags);
 472	return ret;
 473}
 474
 475/**
 476 * irq_set_affinity - Set the irq affinity of a given irq
 477 * @irq:	Interrupt to set affinity
 478 * @cpumask:	cpumask
 479 *
 480 * Fails if cpumask does not contain an online CPU
 481 */
 482int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
 483{
 484	return __irq_set_affinity(irq, cpumask, false);
 485}
 486EXPORT_SYMBOL_GPL(irq_set_affinity);
 487
 488/**
 489 * irq_force_affinity - Force the irq affinity of a given irq
 490 * @irq:	Interrupt to set affinity
 491 * @cpumask:	cpumask
 492 *
 493 * Same as irq_set_affinity, but without checking the mask against
 494 * online cpus.
 495 *
 496 * Solely for low level cpu hotplug code, where we need to make per
 497 * cpu interrupts affine before the cpu becomes online.
 498 */
 499int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
 500{
 501	return __irq_set_affinity(irq, cpumask, true);
 502}
 503EXPORT_SYMBOL_GPL(irq_force_affinity);
 504
 505int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
 506			      bool setaffinity)
 507{
 508	unsigned long flags;
 509	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 510
 511	if (!desc)
 512		return -EINVAL;
 513	desc->affinity_hint = m;
 514	irq_put_desc_unlock(desc, flags);
 515	if (m && setaffinity)
 516		__irq_set_affinity(irq, m, false);
 517	return 0;
 518}
 519EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
 520
 521static void irq_affinity_notify(struct work_struct *work)
 522{
 523	struct irq_affinity_notify *notify =
 524		container_of(work, struct irq_affinity_notify, work);
 525	struct irq_desc *desc = irq_to_desc(notify->irq);
 526	cpumask_var_t cpumask;
 527	unsigned long flags;
 528
 529	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 530		goto out;
 531
 532	raw_spin_lock_irqsave(&desc->lock, flags);
 533	if (irq_move_pending(&desc->irq_data))
 534		irq_get_pending(cpumask, desc);
 535	else
 536		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 537	raw_spin_unlock_irqrestore(&desc->lock, flags);
 538
 539	notify->notify(notify, cpumask);
 540
 541	free_cpumask_var(cpumask);
 542out:
 543	kref_put(&notify->kref, notify->release);
 544}
 545
 546/**
 547 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 548 *	@irq:		Interrupt for which to enable/disable notification
 549 *	@notify:	Context for notification, or %NULL to disable
 550 *			notification.  Function pointers must be initialised;
 551 *			the other fields will be initialised by this function.
 552 *
 553 *	Must be called in process context.  Notification may only be enabled
 554 *	after the IRQ is allocated and must be disabled before the IRQ is
 555 *	freed using free_irq().
 556 */
 557int
 558irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 559{
 560	struct irq_desc *desc = irq_to_desc(irq);
 561	struct irq_affinity_notify *old_notify;
 562	unsigned long flags;
 563
 564	/* The release function is promised process context */
 565	might_sleep();
 566
 567	if (!desc || desc->istate & IRQS_NMI)
 568		return -EINVAL;
 569
 570	/* Complete initialisation of *notify */
 571	if (notify) {
 572		notify->irq = irq;
 573		kref_init(&notify->kref);
 574		INIT_WORK(&notify->work, irq_affinity_notify);
 575	}
 576
 577	raw_spin_lock_irqsave(&desc->lock, flags);
 578	old_notify = desc->affinity_notify;
 579	desc->affinity_notify = notify;
 580	raw_spin_unlock_irqrestore(&desc->lock, flags);
 581
 582	if (old_notify) {
 583		if (cancel_work_sync(&old_notify->work)) {
 584			/* Pending work had a ref, put that one too */
 585			kref_put(&old_notify->kref, old_notify->release);
 586		}
 587		kref_put(&old_notify->kref, old_notify->release);
 588	}
 589
 590	return 0;
 591}
 592EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 593
 594#ifndef CONFIG_AUTO_IRQ_AFFINITY
 595/*
 596 * Generic version of the affinity autoselector.
 597 */
 598int irq_setup_affinity(struct irq_desc *desc)
 
 599{
 
 600	struct cpumask *set = irq_default_affinity;
 601	int ret, node = irq_desc_get_node(desc);
 602	static DEFINE_RAW_SPINLOCK(mask_lock);
 603	static struct cpumask mask;
 604
 605	/* Excludes PER_CPU and NO_BALANCE interrupts */
 606	if (!__irq_can_set_affinity(desc))
 607		return 0;
 608
 609	raw_spin_lock(&mask_lock);
 610	/*
 611	 * Preserve the managed affinity setting and a userspace affinity
 612	 * setup, but make sure that one of the targets is online.
 613	 */
 614	if (irqd_affinity_is_managed(&desc->irq_data) ||
 615	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 616		if (cpumask_intersects(desc->irq_common_data.affinity,
 617				       cpu_online_mask))
 618			set = desc->irq_common_data.affinity;
 619		else
 620			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 621	}
 622
 623	cpumask_and(&mask, cpu_online_mask, set);
 624	if (cpumask_empty(&mask))
 625		cpumask_copy(&mask, cpu_online_mask);
 626
 627	if (node != NUMA_NO_NODE) {
 628		const struct cpumask *nodemask = cpumask_of_node(node);
 629
 630		/* make sure at least one of the cpus in nodemask is online */
 631		if (cpumask_intersects(&mask, nodemask))
 632			cpumask_and(&mask, &mask, nodemask);
 633	}
 634	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 635	raw_spin_unlock(&mask_lock);
 636	return ret;
 637}
 638#else
 639/* Wrapper for ALPHA specific affinity selector magic */
 640int irq_setup_affinity(struct irq_desc *desc)
 641{
 642	return irq_select_affinity(irq_desc_get_irq(desc));
 643}
 644#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 645#endif /* CONFIG_SMP */
 646
 647
 648/**
 649 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 650 *	@irq: interrupt number to set affinity
 651 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 652 *	            specific data for percpu_devid interrupts
 653 *
 654 *	This function uses the vCPU specific data to set the vCPU
 655 *	affinity for an irq. The vCPU specific data is passed from
 656 *	outside, such as KVM. One example code path is as below:
 657 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 658 */
 659int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 660{
 
 661	unsigned long flags;
 662	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 663	struct irq_data *data;
 664	struct irq_chip *chip;
 665	int ret = -ENOSYS;
 666
 667	if (!desc)
 668		return -EINVAL;
 
 
 
 669
 670	data = irq_desc_get_irq_data(desc);
 671	do {
 672		chip = irq_data_get_irq_chip(data);
 673		if (chip && chip->irq_set_vcpu_affinity)
 674			break;
 675#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 676		data = data->parent_data;
 677#else
 678		data = NULL;
 679#endif
 680	} while (data);
 681
 682	if (data)
 683		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 684	irq_put_desc_unlock(desc, flags);
 685
 686	return ret;
 687}
 688EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 689
 690void __disable_irq(struct irq_desc *desc)
 691{
 
 
 
 
 
 
 692	if (!desc->depth++)
 693		irq_disable(desc);
 694}
 695
 696static int __disable_irq_nosync(unsigned int irq)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 700
 701	if (!desc)
 702		return -EINVAL;
 703	__disable_irq(desc);
 704	irq_put_desc_busunlock(desc, flags);
 705	return 0;
 706}
 707
 708/**
 709 *	disable_irq_nosync - disable an irq without waiting
 710 *	@irq: Interrupt to disable
 711 *
 712 *	Disable the selected interrupt line.  Disables and Enables are
 713 *	nested.
 714 *	Unlike disable_irq(), this function does not ensure existing
 715 *	instances of the IRQ handler have completed before returning.
 716 *
 717 *	This function may be called from IRQ context.
 718 */
 719void disable_irq_nosync(unsigned int irq)
 720{
 721	__disable_irq_nosync(irq);
 722}
 723EXPORT_SYMBOL(disable_irq_nosync);
 724
 725/**
 726 *	disable_irq - disable an irq and wait for completion
 727 *	@irq: Interrupt to disable
 728 *
 729 *	Disable the selected interrupt line.  Enables and Disables are
 730 *	nested.
 731 *	This function waits for any pending IRQ handlers for this interrupt
 732 *	to complete before returning. If you use this function while
 733 *	holding a resource the IRQ handler may need you will deadlock.
 734 *
 735 *	Can only be called from preemptible code as it might sleep when
 736 *	an interrupt thread is associated to @irq.
 737 *
 738 */
 739void disable_irq(unsigned int irq)
 740{
 741	might_sleep();
 742	if (!__disable_irq_nosync(irq))
 743		synchronize_irq(irq);
 744}
 745EXPORT_SYMBOL(disable_irq);
 746
 747/**
 748 *	disable_hardirq - disables an irq and waits for hardirq completion
 749 *	@irq: Interrupt to disable
 750 *
 751 *	Disable the selected interrupt line.  Enables and Disables are
 752 *	nested.
 753 *	This function waits for any pending hard IRQ handlers for this
 754 *	interrupt to complete before returning. If you use this function while
 755 *	holding a resource the hard IRQ handler may need you will deadlock.
 756 *
 757 *	When used to optimistically disable an interrupt from atomic context
 758 *	the return value must be checked.
 759 *
 760 *	Returns: false if a threaded handler is active.
 761 *
 762 *	This function may be called - with care - from IRQ context.
 763 */
 764bool disable_hardirq(unsigned int irq)
 765{
 766	if (!__disable_irq_nosync(irq))
 767		return synchronize_hardirq(irq);
 768
 769	return false;
 770}
 771EXPORT_SYMBOL_GPL(disable_hardirq);
 772
 773/**
 774 *	disable_nmi_nosync - disable an nmi without waiting
 775 *	@irq: Interrupt to disable
 776 *
 777 *	Disable the selected interrupt line. Disables and enables are
 778 *	nested.
 779 *	The interrupt to disable must have been requested through request_nmi.
 780 *	Unlike disable_nmi(), this function does not ensure existing
 781 *	instances of the IRQ handler have completed before returning.
 782 */
 783void disable_nmi_nosync(unsigned int irq)
 784{
 785	disable_irq_nosync(irq);
 786}
 
 
 
 
 
 
 
 
 
 787
 788void __enable_irq(struct irq_desc *desc)
 789{
 790	switch (desc->depth) {
 791	case 0:
 792 err_out:
 793		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 794		     irq_desc_get_irq(desc));
 795		break;
 796	case 1: {
 797		if (desc->istate & IRQS_SUSPENDED)
 798			goto err_out;
 799		/* Prevent probing on this irq: */
 800		irq_settings_set_noprobe(desc);
 801		/*
 802		 * Call irq_startup() not irq_enable() here because the
 803		 * interrupt might be marked NOAUTOEN. So irq_startup()
 804		 * needs to be invoked when it gets enabled the first
 805		 * time. If it was already started up, then irq_startup()
 806		 * will invoke irq_enable() under the hood.
 807		 */
 808		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 809		break;
 810	}
 811	default:
 812		desc->depth--;
 813	}
 814}
 815
 816/**
 817 *	enable_irq - enable handling of an irq
 818 *	@irq: Interrupt to enable
 819 *
 820 *	Undoes the effect of one call to disable_irq().  If this
 821 *	matches the last disable, processing of interrupts on this
 822 *	IRQ line is re-enabled.
 823 *
 824 *	This function may be called from IRQ context only when
 825 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 826 */
 827void enable_irq(unsigned int irq)
 828{
 829	unsigned long flags;
 830	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 831
 832	if (!desc)
 833		return;
 834	if (WARN(!desc->irq_data.chip,
 835		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 836		goto out;
 837
 838	__enable_irq(desc);
 839out:
 840	irq_put_desc_busunlock(desc, flags);
 841}
 842EXPORT_SYMBOL(enable_irq);
 843
 844/**
 845 *	enable_nmi - enable handling of an nmi
 846 *	@irq: Interrupt to enable
 847 *
 848 *	The interrupt to enable must have been requested through request_nmi.
 849 *	Undoes the effect of one call to disable_nmi(). If this
 850 *	matches the last disable, processing of interrupts on this
 851 *	IRQ line is re-enabled.
 852 */
 853void enable_nmi(unsigned int irq)
 854{
 855	enable_irq(irq);
 856}
 857
 858static int set_irq_wake_real(unsigned int irq, unsigned int on)
 859{
 860	struct irq_desc *desc = irq_to_desc(irq);
 861	int ret = -ENXIO;
 862
 863	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 864		return 0;
 865
 866	if (desc->irq_data.chip->irq_set_wake)
 867		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 868
 869	return ret;
 870}
 871
 872/**
 873 *	irq_set_irq_wake - control irq power management wakeup
 874 *	@irq:	interrupt to control
 875 *	@on:	enable/disable power management wakeup
 876 *
 877 *	Enable/disable power management wakeup mode, which is
 878 *	disabled by default.  Enables and disables must match,
 879 *	just as they match for non-wakeup mode support.
 880 *
 881 *	Wakeup mode lets this IRQ wake the system from sleep
 882 *	states like "suspend to RAM".
 883 *
 884 *	Note: irq enable/disable state is completely orthogonal
 885 *	to the enable/disable state of irq wake. An irq can be
 886 *	disabled with disable_irq() and still wake the system as
 887 *	long as the irq has wake enabled. If this does not hold,
 888 *	then the underlying irq chip and the related driver need
 889 *	to be investigated.
 890 */
 891int irq_set_irq_wake(unsigned int irq, unsigned int on)
 892{
 893	unsigned long flags;
 894	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 895	int ret = 0;
 896
 897	if (!desc)
 898		return -EINVAL;
 899
 900	/* Don't use NMIs as wake up interrupts please */
 901	if (desc->istate & IRQS_NMI) {
 902		ret = -EINVAL;
 903		goto out_unlock;
 904	}
 905
 906	/* wakeup-capable irqs can be shared between drivers that
 907	 * don't need to have the same sleep mode behaviors.
 908	 */
 909	if (on) {
 910		if (desc->wake_depth++ == 0) {
 911			ret = set_irq_wake_real(irq, on);
 912			if (ret)
 913				desc->wake_depth = 0;
 914			else
 915				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 916		}
 917	} else {
 918		if (desc->wake_depth == 0) {
 919			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 920		} else if (--desc->wake_depth == 0) {
 921			ret = set_irq_wake_real(irq, on);
 922			if (ret)
 923				desc->wake_depth = 1;
 924			else
 925				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 926		}
 927	}
 928
 929out_unlock:
 930	irq_put_desc_busunlock(desc, flags);
 931	return ret;
 932}
 933EXPORT_SYMBOL(irq_set_irq_wake);
 934
 935/*
 936 * Internal function that tells the architecture code whether a
 937 * particular irq has been exclusively allocated or is available
 938 * for driver use.
 939 */
 940int can_request_irq(unsigned int irq, unsigned long irqflags)
 941{
 942	unsigned long flags;
 943	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 944	int canrequest = 0;
 945
 946	if (!desc)
 947		return 0;
 948
 949	if (irq_settings_can_request(desc)) {
 950		if (!desc->action ||
 951		    irqflags & desc->action->flags & IRQF_SHARED)
 952			canrequest = 1;
 953	}
 954	irq_put_desc_unlock(desc, flags);
 955	return canrequest;
 956}
 957
 958int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 
 959{
 960	struct irq_chip *chip = desc->irq_data.chip;
 961	int ret, unmask = 0;
 962
 963	if (!chip || !chip->irq_set_type) {
 964		/*
 965		 * IRQF_TRIGGER_* but the PIC does not support multiple
 966		 * flow-types?
 967		 */
 968		pr_debug("No set_type function for IRQ %d (%s)\n",
 969			 irq_desc_get_irq(desc),
 970			 chip ? (chip->name ? : "unknown") : "unknown");
 971		return 0;
 972	}
 973
 
 
 974	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 975		if (!irqd_irq_masked(&desc->irq_data))
 976			mask_irq(desc);
 977		if (!irqd_irq_disabled(&desc->irq_data))
 978			unmask = 1;
 979	}
 980
 981	/* Mask all flags except trigger mode */
 982	flags &= IRQ_TYPE_SENSE_MASK;
 983	ret = chip->irq_set_type(&desc->irq_data, flags);
 984
 985	switch (ret) {
 986	case IRQ_SET_MASK_OK:
 987	case IRQ_SET_MASK_OK_DONE:
 988		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 989		irqd_set(&desc->irq_data, flags);
 990		fallthrough;
 991
 992	case IRQ_SET_MASK_OK_NOCOPY:
 993		flags = irqd_get_trigger_type(&desc->irq_data);
 994		irq_settings_set_trigger_mask(desc, flags);
 995		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 996		irq_settings_clr_level(desc);
 997		if (flags & IRQ_TYPE_LEVEL_MASK) {
 998			irq_settings_set_level(desc);
 999			irqd_set(&desc->irq_data, IRQD_LEVEL);
1000		}
1001
1002		ret = 0;
1003		break;
1004	default:
1005		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007	}
1008	if (unmask)
1009		unmask_irq(desc);
1010	return ret;
1011}
1012
1013#ifdef CONFIG_HARDIRQS_SW_RESEND
1014int irq_set_parent(int irq, int parent_irq)
1015{
1016	unsigned long flags;
1017	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018
1019	if (!desc)
1020		return -EINVAL;
1021
1022	desc->parent_irq = parent_irq;
1023
1024	irq_put_desc_unlock(desc, flags);
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(irq_set_parent);
1028#endif
1029
1030/*
1031 * Default primary interrupt handler for threaded interrupts. Is
1032 * assigned as primary handler when request_threaded_irq is called
1033 * with handler == NULL. Useful for oneshot interrupts.
1034 */
1035static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036{
1037	return IRQ_WAKE_THREAD;
1038}
1039
1040/*
1041 * Primary handler for nested threaded interrupts. Should never be
1042 * called.
1043 */
1044static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045{
1046	WARN(1, "Primary handler called for nested irq %d\n", irq);
1047	return IRQ_NONE;
1048}
1049
1050static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051{
1052	WARN(1, "Secondary action handler called for irq %d\n", irq);
1053	return IRQ_NONE;
1054}
1055
1056#ifdef CONFIG_SMP
1057/*
1058 * Check whether we need to change the affinity of the interrupt thread.
1059 */
1060static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061{
1062	cpumask_var_t mask;
1063	bool valid = false;
1064
1065	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066		return;
1067
1068	__set_current_state(TASK_RUNNING);
1069
1070	/*
1071	 * In case we are out of memory we set IRQTF_AFFINITY again and
1072	 * try again next time
1073	 */
1074	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076		return;
1077	}
1078
1079	raw_spin_lock_irq(&desc->lock);
1080	/*
1081	 * This code is triggered unconditionally. Check the affinity
1082	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083	 */
1084	if (cpumask_available(desc->irq_common_data.affinity)) {
1085		const struct cpumask *m;
1086
1087		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088		cpumask_copy(mask, m);
1089		valid = true;
1090	}
1091	raw_spin_unlock_irq(&desc->lock);
1092
1093	if (valid)
1094		set_cpus_allowed_ptr(current, mask);
1095	free_cpumask_var(mask);
1096}
1097#else
1098static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099#endif
1100
1101static int irq_wait_for_interrupt(struct irq_desc *desc,
1102				  struct irqaction *action)
1103{
1104	for (;;) {
1105		set_current_state(TASK_INTERRUPTIBLE);
1106		irq_thread_check_affinity(desc, action);
1107
1108		if (kthread_should_stop()) {
1109			/* may need to run one last time */
1110			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111					       &action->thread_flags)) {
1112				__set_current_state(TASK_RUNNING);
1113				return 0;
1114			}
1115			__set_current_state(TASK_RUNNING);
1116			return -1;
1117		}
1118
1119		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120				       &action->thread_flags)) {
1121			__set_current_state(TASK_RUNNING);
1122			return 0;
1123		}
1124		schedule();
1125	}
 
1126}
1127
1128/*
1129 * Oneshot interrupts keep the irq line masked until the threaded
1130 * handler finished. unmask if the interrupt has not been disabled and
1131 * is marked MASKED.
1132 */
1133static void irq_finalize_oneshot(struct irq_desc *desc,
1134				 struct irqaction *action)
1135{
1136	if (!(desc->istate & IRQS_ONESHOT) ||
1137	    action->handler == irq_forced_secondary_handler)
1138		return;
1139again:
1140	chip_bus_lock(desc);
1141	raw_spin_lock_irq(&desc->lock);
1142
1143	/*
1144	 * Implausible though it may be we need to protect us against
1145	 * the following scenario:
1146	 *
1147	 * The thread is faster done than the hard interrupt handler
1148	 * on the other CPU. If we unmask the irq line then the
1149	 * interrupt can come in again and masks the line, leaves due
1150	 * to IRQS_INPROGRESS and the irq line is masked forever.
1151	 *
1152	 * This also serializes the state of shared oneshot handlers
1153	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1154	 * irq_wake_thread(). See the comment there which explains the
1155	 * serialization.
1156	 */
1157	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158		raw_spin_unlock_irq(&desc->lock);
1159		chip_bus_sync_unlock(desc);
1160		cpu_relax();
1161		goto again;
1162	}
1163
1164	/*
1165	 * Now check again, whether the thread should run. Otherwise
1166	 * we would clear the threads_oneshot bit of this thread which
1167	 * was just set.
1168	 */
1169	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170		goto out_unlock;
1171
1172	desc->threads_oneshot &= ~action->thread_mask;
1173
1174	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175	    irqd_irq_masked(&desc->irq_data))
1176		unmask_threaded_irq(desc);
1177
1178out_unlock:
1179	raw_spin_unlock_irq(&desc->lock);
1180	chip_bus_sync_unlock(desc);
1181}
1182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183/*
1184 * Interrupts which are not explicitly requested as threaded
1185 * interrupts rely on the implicit bh/preempt disable of the hard irq
1186 * context. So we need to disable bh here to avoid deadlocks and other
1187 * side effects.
1188 */
1189static irqreturn_t
1190irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191{
1192	irqreturn_t ret;
1193
1194	local_bh_disable();
1195	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196		local_irq_disable();
1197	ret = action->thread_fn(action->irq, action->dev_id);
1198	if (ret == IRQ_HANDLED)
1199		atomic_inc(&desc->threads_handled);
1200
1201	irq_finalize_oneshot(desc, action);
1202	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203		local_irq_enable();
1204	local_bh_enable();
1205	return ret;
1206}
1207
1208/*
1209 * Interrupts explicitly requested as threaded interrupts want to be
1210 * preemptible - many of them need to sleep and wait for slow busses to
1211 * complete.
1212 */
1213static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214		struct irqaction *action)
1215{
1216	irqreturn_t ret;
1217
1218	ret = action->thread_fn(action->irq, action->dev_id);
1219	if (ret == IRQ_HANDLED)
1220		atomic_inc(&desc->threads_handled);
1221
1222	irq_finalize_oneshot(desc, action);
1223	return ret;
1224}
1225
1226void wake_threads_waitq(struct irq_desc *desc)
1227{
1228	if (atomic_dec_and_test(&desc->threads_active))
1229		wake_up(&desc->wait_for_threads);
1230}
1231
1232static void irq_thread_dtor(struct callback_head *unused)
1233{
1234	struct task_struct *tsk = current;
1235	struct irq_desc *desc;
1236	struct irqaction *action;
1237
1238	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239		return;
1240
1241	action = kthread_data(tsk);
1242
1243	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244	       tsk->comm, tsk->pid, action->irq);
1245
1246
1247	desc = irq_to_desc(action->irq);
1248	/*
1249	 * If IRQTF_RUNTHREAD is set, we need to decrement
1250	 * desc->threads_active and wake possible waiters.
1251	 */
1252	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253		wake_threads_waitq(desc);
1254
1255	/* Prevent a stale desc->threads_oneshot */
1256	irq_finalize_oneshot(desc, action);
1257}
1258
1259static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260{
1261	struct irqaction *secondary = action->secondary;
1262
1263	if (WARN_ON_ONCE(!secondary))
1264		return;
1265
1266	raw_spin_lock_irq(&desc->lock);
1267	__irq_wake_thread(desc, secondary);
1268	raw_spin_unlock_irq(&desc->lock);
1269}
1270
1271/*
1272 * Internal function to notify that a interrupt thread is ready.
1273 */
1274static void irq_thread_set_ready(struct irq_desc *desc,
1275				 struct irqaction *action)
1276{
1277	set_bit(IRQTF_READY, &action->thread_flags);
1278	wake_up(&desc->wait_for_threads);
1279}
1280
1281/*
1282 * Internal function to wake up a interrupt thread and wait until it is
1283 * ready.
1284 */
1285static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286						  struct irqaction *action)
1287{
1288	if (!action || !action->thread)
1289		return;
1290
1291	wake_up_process(action->thread);
1292	wait_event(desc->wait_for_threads,
1293		   test_bit(IRQTF_READY, &action->thread_flags));
1294}
1295
1296/*
1297 * Interrupt handler thread
1298 */
1299static int irq_thread(void *data)
1300{
1301	struct callback_head on_exit_work;
 
 
1302	struct irqaction *action = data;
1303	struct irq_desc *desc = irq_to_desc(action->irq);
1304	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305			struct irqaction *action);
 
1306
1307	irq_thread_set_ready(desc, action);
1308
1309	sched_set_fifo(current);
1310
1311	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312					   &action->thread_flags))
1313		handler_fn = irq_forced_thread_fn;
1314	else
1315		handler_fn = irq_thread_fn;
1316
1317	init_task_work(&on_exit_work, irq_thread_dtor);
1318	task_work_add(current, &on_exit_work, TWA_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319
1320	while (!irq_wait_for_interrupt(desc, action)) {
1321		irqreturn_t action_ret;
 
 
 
1322
1323		action_ret = handler_fn(desc, action);
1324		if (action_ret == IRQ_WAKE_THREAD)
1325			irq_wake_secondary(desc, action);
1326
1327		wake_threads_waitq(desc);
 
1328	}
1329
 
 
 
1330	/*
1331	 * This is the regular exit path. __free_irq() is stopping the
1332	 * thread via kthread_stop() after calling
1333	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334	 * oneshot mask bit can be set.
1335	 */
1336	task_work_cancel(current, irq_thread_dtor);
1337	return 0;
1338}
1339
1340/**
1341 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1342 *	@irq:		Interrupt line
1343 *	@dev_id:	Device identity for which the thread should be woken
1344 *
1345 */
1346void irq_wake_thread(unsigned int irq, void *dev_id)
1347{
1348	struct irq_desc *desc = irq_to_desc(irq);
1349	struct irqaction *action;
1350	unsigned long flags;
1351
1352	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353		return;
1354
1355	raw_spin_lock_irqsave(&desc->lock, flags);
1356	for_each_action_of_desc(desc, action) {
1357		if (action->dev_id == dev_id) {
1358			if (action->thread)
1359				__irq_wake_thread(desc, action);
1360			break;
1361		}
1362	}
1363	raw_spin_unlock_irqrestore(&desc->lock, flags);
1364}
1365EXPORT_SYMBOL_GPL(irq_wake_thread);
1366
1367static int irq_setup_forced_threading(struct irqaction *new)
1368{
1369	if (!force_irqthreads())
1370		return 0;
1371	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372		return 0;
1373
1374	/*
1375	 * No further action required for interrupts which are requested as
1376	 * threaded interrupts already
1377	 */
1378	if (new->handler == irq_default_primary_handler)
1379		return 0;
1380
1381	new->flags |= IRQF_ONESHOT;
1382
1383	/*
1384	 * Handle the case where we have a real primary handler and a
1385	 * thread handler. We force thread them as well by creating a
1386	 * secondary action.
1387	 */
1388	if (new->handler && new->thread_fn) {
1389		/* Allocate the secondary action */
1390		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391		if (!new->secondary)
1392			return -ENOMEM;
1393		new->secondary->handler = irq_forced_secondary_handler;
1394		new->secondary->thread_fn = new->thread_fn;
1395		new->secondary->dev_id = new->dev_id;
1396		new->secondary->irq = new->irq;
1397		new->secondary->name = new->name;
1398	}
1399	/* Deal with the primary handler */
1400	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401	new->thread_fn = new->handler;
1402	new->handler = irq_default_primary_handler;
1403	return 0;
1404}
1405
1406static int irq_request_resources(struct irq_desc *desc)
1407{
1408	struct irq_data *d = &desc->irq_data;
1409	struct irq_chip *c = d->chip;
1410
1411	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412}
1413
1414static void irq_release_resources(struct irq_desc *desc)
1415{
1416	struct irq_data *d = &desc->irq_data;
1417	struct irq_chip *c = d->chip;
1418
1419	if (c->irq_release_resources)
1420		c->irq_release_resources(d);
1421}
1422
1423static bool irq_supports_nmi(struct irq_desc *desc)
1424{
1425	struct irq_data *d = irq_desc_get_irq_data(desc);
1426
1427#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1429	if (d->parent_data)
1430		return false;
1431#endif
1432	/* Don't support NMIs for chips behind a slow bus */
1433	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434		return false;
1435
1436	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437}
1438
1439static int irq_nmi_setup(struct irq_desc *desc)
1440{
1441	struct irq_data *d = irq_desc_get_irq_data(desc);
1442	struct irq_chip *c = d->chip;
1443
1444	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445}
1446
1447static void irq_nmi_teardown(struct irq_desc *desc)
1448{
1449	struct irq_data *d = irq_desc_get_irq_data(desc);
1450	struct irq_chip *c = d->chip;
1451
1452	if (c->irq_nmi_teardown)
1453		c->irq_nmi_teardown(d);
1454}
1455
1456static int
1457setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458{
1459	struct task_struct *t;
1460
1461	if (!secondary) {
1462		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463				   new->name);
1464	} else {
1465		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466				   new->name);
1467	}
1468
1469	if (IS_ERR(t))
1470		return PTR_ERR(t);
1471
1472	/*
1473	 * We keep the reference to the task struct even if
1474	 * the thread dies to avoid that the interrupt code
1475	 * references an already freed task_struct.
1476	 */
1477	new->thread = get_task_struct(t);
1478	/*
1479	 * Tell the thread to set its affinity. This is
1480	 * important for shared interrupt handlers as we do
1481	 * not invoke setup_affinity() for the secondary
1482	 * handlers as everything is already set up. Even for
1483	 * interrupts marked with IRQF_NO_BALANCE this is
1484	 * correct as we want the thread to move to the cpu(s)
1485	 * on which the requesting code placed the interrupt.
1486	 */
1487	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488	return 0;
1489}
1490
1491/*
1492 * Internal function to register an irqaction - typically used to
1493 * allocate special interrupts that are part of the architecture.
1494 *
1495 * Locking rules:
1496 *
1497 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1498 *   chip_bus_lock	Provides serialization for slow bus operations
1499 *     desc->lock	Provides serialization against hard interrupts
1500 *
1501 * chip_bus_lock and desc->lock are sufficient for all other management and
1502 * interrupt related functions. desc->request_mutex solely serializes
1503 * request/free_irq().
1504 */
1505static int
1506__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507{
1508	struct irqaction *old, **old_ptr;
 
1509	unsigned long flags, thread_mask = 0;
1510	int ret, nested, shared = 0;
 
1511
1512	if (!desc)
1513		return -EINVAL;
1514
1515	if (desc->irq_data.chip == &no_irq_chip)
1516		return -ENOSYS;
1517	if (!try_module_get(desc->owner))
1518		return -ENODEV;
1519
1520	new->irq = irq;
1521
1522	/*
1523	 * If the trigger type is not specified by the caller,
1524	 * then use the default for this interrupt.
 
1525	 */
1526	if (!(new->flags & IRQF_TRIGGER_MASK))
1527		new->flags |= irqd_get_trigger_type(&desc->irq_data);
 
 
 
 
 
 
 
 
 
1528
1529	/*
1530	 * Check whether the interrupt nests into another interrupt
1531	 * thread.
1532	 */
1533	nested = irq_settings_is_nested_thread(desc);
1534	if (nested) {
1535		if (!new->thread_fn) {
1536			ret = -EINVAL;
1537			goto out_mput;
1538		}
1539		/*
1540		 * Replace the primary handler which was provided from
1541		 * the driver for non nested interrupt handling by the
1542		 * dummy function which warns when called.
1543		 */
1544		new->handler = irq_nested_primary_handler;
1545	} else {
1546		if (irq_settings_can_thread(desc)) {
1547			ret = irq_setup_forced_threading(new);
1548			if (ret)
1549				goto out_mput;
1550		}
1551	}
1552
1553	/*
1554	 * Create a handler thread when a thread function is supplied
1555	 * and the interrupt does not nest into another interrupt
1556	 * thread.
1557	 */
1558	if (new->thread_fn && !nested) {
1559		ret = setup_irq_thread(new, irq, false);
1560		if (ret)
 
 
 
 
1561			goto out_mput;
1562		if (new->secondary) {
1563			ret = setup_irq_thread(new->secondary, irq, true);
1564			if (ret)
1565				goto out_thread;
1566		}
 
 
 
 
 
 
 
1567	}
1568
1569	/*
1570	 * Drivers are often written to work w/o knowledge about the
1571	 * underlying irq chip implementation, so a request for a
1572	 * threaded irq without a primary hard irq context handler
1573	 * requires the ONESHOT flag to be set. Some irq chips like
1574	 * MSI based interrupts are per se one shot safe. Check the
1575	 * chip flags, so we can avoid the unmask dance at the end of
1576	 * the threaded handler for those.
1577	 */
1578	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579		new->flags &= ~IRQF_ONESHOT;
1580
1581	/*
1582	 * Protects against a concurrent __free_irq() call which might wait
1583	 * for synchronize_hardirq() to complete without holding the optional
1584	 * chip bus lock and desc->lock. Also protects against handing out
1585	 * a recycled oneshot thread_mask bit while it's still in use by
1586	 * its previous owner.
1587	 */
1588	mutex_lock(&desc->request_mutex);
1589
1590	/*
1591	 * Acquire bus lock as the irq_request_resources() callback below
1592	 * might rely on the serialization or the magic power management
1593	 * functions which are abusing the irq_bus_lock() callback,
1594	 */
1595	chip_bus_lock(desc);
1596
1597	/* First installed action requests resources. */
1598	if (!desc->action) {
1599		ret = irq_request_resources(desc);
1600		if (ret) {
1601			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602			       new->name, irq, desc->irq_data.chip->name);
1603			goto out_bus_unlock;
1604		}
1605	}
1606
1607	/*
1608	 * The following block of code has to be executed atomically
1609	 * protected against a concurrent interrupt and any of the other
1610	 * management calls which are not serialized via
1611	 * desc->request_mutex or the optional bus lock.
1612	 */
1613	raw_spin_lock_irqsave(&desc->lock, flags);
1614	old_ptr = &desc->action;
1615	old = *old_ptr;
1616	if (old) {
1617		/*
1618		 * Can't share interrupts unless both agree to and are
1619		 * the same type (level, edge, polarity). So both flag
1620		 * fields must have IRQF_SHARED set and the bits which
1621		 * set the trigger type must match. Also all must
1622		 * agree on ONESHOT.
1623		 * Interrupt lines used for NMIs cannot be shared.
1624		 */
1625		unsigned int oldtype;
1626
1627		if (desc->istate & IRQS_NMI) {
1628			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629				new->name, irq, desc->irq_data.chip->name);
1630			ret = -EINVAL;
1631			goto out_unlock;
1632		}
1633
1634		/*
1635		 * If nobody did set the configuration before, inherit
1636		 * the one provided by the requester.
1637		 */
1638		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639			oldtype = irqd_get_trigger_type(&desc->irq_data);
1640		} else {
1641			oldtype = new->flags & IRQF_TRIGGER_MASK;
1642			irqd_set_trigger_type(&desc->irq_data, oldtype);
1643		}
1644
1645		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1647			goto mismatch;
1648
1649		if ((old->flags & IRQF_ONESHOT) &&
1650		    (new->flags & IRQF_COND_ONESHOT))
1651			new->flags |= IRQF_ONESHOT;
1652		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1653			goto mismatch;
 
1654
1655		/* All handlers must agree on per-cpuness */
1656		if ((old->flags & IRQF_PERCPU) !=
1657		    (new->flags & IRQF_PERCPU))
1658			goto mismatch;
1659
1660		/* add new interrupt at end of irq queue */
1661		do {
1662			/*
1663			 * Or all existing action->thread_mask bits,
1664			 * so we can find the next zero bit for this
1665			 * new action.
1666			 */
1667			thread_mask |= old->thread_mask;
1668			old_ptr = &old->next;
1669			old = *old_ptr;
1670		} while (old);
1671		shared = 1;
1672	}
1673
1674	/*
1675	 * Setup the thread mask for this irqaction for ONESHOT. For
1676	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1677	 * conditional in irq_wake_thread().
1678	 */
1679	if (new->flags & IRQF_ONESHOT) {
1680		/*
1681		 * Unlikely to have 32 resp 64 irqs sharing one line,
1682		 * but who knows.
1683		 */
1684		if (thread_mask == ~0UL) {
1685			ret = -EBUSY;
1686			goto out_unlock;
1687		}
1688		/*
1689		 * The thread_mask for the action is or'ed to
1690		 * desc->thread_active to indicate that the
1691		 * IRQF_ONESHOT thread handler has been woken, but not
1692		 * yet finished. The bit is cleared when a thread
1693		 * completes. When all threads of a shared interrupt
1694		 * line have completed desc->threads_active becomes
1695		 * zero and the interrupt line is unmasked. See
1696		 * handle.c:irq_wake_thread() for further information.
1697		 *
1698		 * If no thread is woken by primary (hard irq context)
1699		 * interrupt handlers, then desc->threads_active is
1700		 * also checked for zero to unmask the irq line in the
1701		 * affected hard irq flow handlers
1702		 * (handle_[fasteoi|level]_irq).
1703		 *
1704		 * The new action gets the first zero bit of
1705		 * thread_mask assigned. See the loop above which or's
1706		 * all existing action->thread_mask bits.
1707		 */
1708		new->thread_mask = 1UL << ffz(thread_mask);
1709
1710	} else if (new->handler == irq_default_primary_handler &&
1711		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1712		/*
1713		 * The interrupt was requested with handler = NULL, so
1714		 * we use the default primary handler for it. But it
1715		 * does not have the oneshot flag set. In combination
1716		 * with level interrupts this is deadly, because the
1717		 * default primary handler just wakes the thread, then
1718		 * the irq lines is reenabled, but the device still
1719		 * has the level irq asserted. Rinse and repeat....
1720		 *
1721		 * While this works for edge type interrupts, we play
1722		 * it safe and reject unconditionally because we can't
1723		 * say for sure which type this interrupt really
1724		 * has. The type flags are unreliable as the
1725		 * underlying chip implementation can override them.
1726		 */
1727		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1728		       new->name, irq);
1729		ret = -EINVAL;
1730		goto out_unlock;
1731	}
 
1732
1733	if (!shared) {
 
 
1734		/* Setup the type (level, edge polarity) if configured: */
1735		if (new->flags & IRQF_TRIGGER_MASK) {
1736			ret = __irq_set_trigger(desc,
1737						new->flags & IRQF_TRIGGER_MASK);
1738
1739			if (ret)
1740				goto out_unlock;
1741		}
1742
1743		/*
1744		 * Activate the interrupt. That activation must happen
1745		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1746		 * and the callers are supposed to handle
1747		 * that. enable_irq() of an interrupt requested with
1748		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1749		 * keeps it in shutdown mode, it merily associates
1750		 * resources if necessary and if that's not possible it
1751		 * fails. Interrupts which are in managed shutdown mode
1752		 * will simply ignore that activation request.
1753		 */
1754		ret = irq_activate(desc);
1755		if (ret)
1756			goto out_unlock;
1757
1758		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1759				  IRQS_ONESHOT | IRQS_WAITING);
1760		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1761
1762		if (new->flags & IRQF_PERCPU) {
1763			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1764			irq_settings_set_per_cpu(desc);
1765			if (new->flags & IRQF_NO_DEBUG)
1766				irq_settings_set_no_debug(desc);
1767		}
1768
1769		if (noirqdebug)
1770			irq_settings_set_no_debug(desc);
1771
1772		if (new->flags & IRQF_ONESHOT)
1773			desc->istate |= IRQS_ONESHOT;
1774
 
 
 
 
 
 
1775		/* Exclude IRQ from balancing if requested */
1776		if (new->flags & IRQF_NOBALANCING) {
1777			irq_settings_set_no_balancing(desc);
1778			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1779		}
1780
1781		if (!(new->flags & IRQF_NO_AUTOEN) &&
1782		    irq_settings_can_autoenable(desc)) {
1783			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1784		} else {
1785			/*
1786			 * Shared interrupts do not go well with disabling
1787			 * auto enable. The sharing interrupt might request
1788			 * it while it's still disabled and then wait for
1789			 * interrupts forever.
1790			 */
1791			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1792			/* Undo nested disables: */
1793			desc->depth = 1;
1794		}
1795
1796	} else if (new->flags & IRQF_TRIGGER_MASK) {
1797		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1798		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1799
1800		if (nmsk != omsk)
1801			/* hope the handler works with current  trigger mode */
1802			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1803				irq, omsk, nmsk);
1804	}
1805
 
1806	*old_ptr = new;
1807
1808	irq_pm_install_action(desc, new);
1809
1810	/* Reset broken irq detection when installing new handler */
1811	desc->irq_count = 0;
1812	desc->irqs_unhandled = 0;
1813
1814	/*
1815	 * Check whether we disabled the irq via the spurious handler
1816	 * before. Reenable it and give it another chance.
1817	 */
1818	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1819		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1820		__enable_irq(desc);
1821	}
1822
1823	raw_spin_unlock_irqrestore(&desc->lock, flags);
1824	chip_bus_sync_unlock(desc);
1825	mutex_unlock(&desc->request_mutex);
1826
1827	irq_setup_timings(desc, new);
1828
1829	wake_up_and_wait_for_irq_thread_ready(desc, new);
1830	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
 
 
 
 
1831
1832	register_irq_proc(irq, desc);
1833	new->dir = NULL;
1834	register_handler_proc(irq, new);
 
 
1835	return 0;
1836
1837mismatch:
1838	if (!(new->flags & IRQF_PROBE_SHARED)) {
1839		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1840		       irq, new->flags, new->name, old->flags, old->name);
1841#ifdef CONFIG_DEBUG_SHIRQ
 
 
 
 
1842		dump_stack();
1843#endif
1844	}
 
1845	ret = -EBUSY;
1846
1847out_unlock:
1848	raw_spin_unlock_irqrestore(&desc->lock, flags);
1849
1850	if (!desc->action)
1851		irq_release_resources(desc);
1852out_bus_unlock:
1853	chip_bus_sync_unlock(desc);
1854	mutex_unlock(&desc->request_mutex);
1855
1856out_thread:
1857	if (new->thread) {
1858		struct task_struct *t = new->thread;
1859
1860		new->thread = NULL;
1861		kthread_stop_put(t);
1862	}
1863	if (new->secondary && new->secondary->thread) {
1864		struct task_struct *t = new->secondary->thread;
1865
1866		new->secondary->thread = NULL;
1867		kthread_stop_put(t);
1868	}
1869out_mput:
1870	module_put(desc->owner);
1871	return ret;
1872}
1873
1874/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875 * Internal function to unregister an irqaction - used to free
1876 * regular and special interrupts that are part of the architecture.
1877 */
1878static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1879{
1880	unsigned irq = desc->irq_data.irq;
1881	struct irqaction *action, **action_ptr;
1882	unsigned long flags;
1883
1884	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1885
1886	mutex_lock(&desc->request_mutex);
1887	chip_bus_lock(desc);
 
1888	raw_spin_lock_irqsave(&desc->lock, flags);
1889
1890	/*
1891	 * There can be multiple actions per IRQ descriptor, find the right
1892	 * one based on the dev_id:
1893	 */
1894	action_ptr = &desc->action;
1895	for (;;) {
1896		action = *action_ptr;
1897
1898		if (!action) {
1899			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1900			raw_spin_unlock_irqrestore(&desc->lock, flags);
1901			chip_bus_sync_unlock(desc);
1902			mutex_unlock(&desc->request_mutex);
1903			return NULL;
1904		}
1905
1906		if (action->dev_id == dev_id)
1907			break;
1908		action_ptr = &action->next;
1909	}
1910
1911	/* Found it - now remove it from the list of entries: */
1912	*action_ptr = action->next;
1913
1914	irq_pm_remove_action(desc, action);
 
 
 
 
1915
1916	/* If this was the last handler, shut down the IRQ line: */
1917	if (!desc->action) {
1918		irq_settings_clr_disable_unlazy(desc);
1919		/* Only shutdown. Deactivate after synchronize_hardirq() */
1920		irq_shutdown(desc);
1921	}
1922
1923#ifdef CONFIG_SMP
1924	/* make sure affinity_hint is cleaned up */
1925	if (WARN_ON_ONCE(desc->affinity_hint))
1926		desc->affinity_hint = NULL;
1927#endif
1928
1929	raw_spin_unlock_irqrestore(&desc->lock, flags);
1930	/*
1931	 * Drop bus_lock here so the changes which were done in the chip
1932	 * callbacks above are synced out to the irq chips which hang
1933	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1934	 *
1935	 * Aside of that the bus_lock can also be taken from the threaded
1936	 * handler in irq_finalize_oneshot() which results in a deadlock
1937	 * because kthread_stop() would wait forever for the thread to
1938	 * complete, which is blocked on the bus lock.
1939	 *
1940	 * The still held desc->request_mutex() protects against a
1941	 * concurrent request_irq() of this irq so the release of resources
1942	 * and timing data is properly serialized.
1943	 */
1944	chip_bus_sync_unlock(desc);
1945
1946	unregister_handler_proc(irq, action);
1947
1948	/*
1949	 * Make sure it's not being used on another CPU and if the chip
1950	 * supports it also make sure that there is no (not yet serviced)
1951	 * interrupt in flight at the hardware level.
1952	 */
1953	__synchronize_irq(desc);
1954
1955#ifdef CONFIG_DEBUG_SHIRQ
1956	/*
1957	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1958	 * event to happen even now it's being freed, so let's make sure that
1959	 * is so by doing an extra call to the handler ....
1960	 *
1961	 * ( We do this after actually deregistering it, to make sure that a
1962	 *   'real' IRQ doesn't run in parallel with our fake. )
1963	 */
1964	if (action->flags & IRQF_SHARED) {
1965		local_irq_save(flags);
1966		action->handler(irq, dev_id);
1967		local_irq_restore(flags);
1968	}
1969#endif
1970
1971	/*
1972	 * The action has already been removed above, but the thread writes
1973	 * its oneshot mask bit when it completes. Though request_mutex is
1974	 * held across this which prevents __setup_irq() from handing out
1975	 * the same bit to a newly requested action.
1976	 */
1977	if (action->thread) {
1978		kthread_stop_put(action->thread);
1979		if (action->secondary && action->secondary->thread)
1980			kthread_stop_put(action->secondary->thread);
1981	}
1982
1983	/* Last action releases resources */
1984	if (!desc->action) {
1985		/*
1986		 * Reacquire bus lock as irq_release_resources() might
1987		 * require it to deallocate resources over the slow bus.
1988		 */
1989		chip_bus_lock(desc);
1990		/*
1991		 * There is no interrupt on the fly anymore. Deactivate it
1992		 * completely.
1993		 */
1994		raw_spin_lock_irqsave(&desc->lock, flags);
1995		irq_domain_deactivate_irq(&desc->irq_data);
1996		raw_spin_unlock_irqrestore(&desc->lock, flags);
1997
1998		irq_release_resources(desc);
1999		chip_bus_sync_unlock(desc);
2000		irq_remove_timings(desc);
2001	}
2002
2003	mutex_unlock(&desc->request_mutex);
2004
2005	irq_chip_pm_put(&desc->irq_data);
2006	module_put(desc->owner);
2007	kfree(action->secondary);
2008	return action;
2009}
2010
2011/**
 
 
 
 
 
 
 
 
 
 
 
 
 
2012 *	free_irq - free an interrupt allocated with request_irq
2013 *	@irq: Interrupt line to free
2014 *	@dev_id: Device identity to free
2015 *
2016 *	Remove an interrupt handler. The handler is removed and if the
2017 *	interrupt line is no longer in use by any driver it is disabled.
2018 *	On a shared IRQ the caller must ensure the interrupt is disabled
2019 *	on the card it drives before calling this function. The function
2020 *	does not return until any executing interrupts for this IRQ
2021 *	have completed.
2022 *
2023 *	This function must not be called from interrupt context.
2024 *
2025 *	Returns the devname argument passed to request_irq.
2026 */
2027const void *free_irq(unsigned int irq, void *dev_id)
2028{
2029	struct irq_desc *desc = irq_to_desc(irq);
2030	struct irqaction *action;
2031	const char *devname;
2032
2033	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2034		return NULL;
2035
2036#ifdef CONFIG_SMP
2037	if (WARN_ON(desc->affinity_notify))
2038		desc->affinity_notify = NULL;
2039#endif
2040
2041	action = __free_irq(desc, dev_id);
2042
2043	if (!action)
2044		return NULL;
2045
2046	devname = action->name;
2047	kfree(action);
2048	return devname;
2049}
2050EXPORT_SYMBOL(free_irq);
2051
2052/* This function must be called with desc->lock held */
2053static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2054{
2055	const char *devname = NULL;
2056
2057	desc->istate &= ~IRQS_NMI;
2058
2059	if (!WARN_ON(desc->action == NULL)) {
2060		irq_pm_remove_action(desc, desc->action);
2061		devname = desc->action->name;
2062		unregister_handler_proc(irq, desc->action);
2063
2064		kfree(desc->action);
2065		desc->action = NULL;
2066	}
2067
2068	irq_settings_clr_disable_unlazy(desc);
2069	irq_shutdown_and_deactivate(desc);
2070
2071	irq_release_resources(desc);
2072
2073	irq_chip_pm_put(&desc->irq_data);
2074	module_put(desc->owner);
2075
2076	return devname;
2077}
2078
2079const void *free_nmi(unsigned int irq, void *dev_id)
2080{
2081	struct irq_desc *desc = irq_to_desc(irq);
2082	unsigned long flags;
2083	const void *devname;
2084
2085	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2086		return NULL;
2087
2088	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2089		return NULL;
2090
2091	/* NMI still enabled */
2092	if (WARN_ON(desc->depth == 0))
2093		disable_nmi_nosync(irq);
2094
2095	raw_spin_lock_irqsave(&desc->lock, flags);
2096
2097	irq_nmi_teardown(desc);
2098	devname = __cleanup_nmi(irq, desc);
2099
2100	raw_spin_unlock_irqrestore(&desc->lock, flags);
2101
2102	return devname;
2103}
2104
2105/**
2106 *	request_threaded_irq - allocate an interrupt line
2107 *	@irq: Interrupt line to allocate
2108 *	@handler: Function to be called when the IRQ occurs.
2109 *		  Primary handler for threaded interrupts.
2110 *		  If handler is NULL and thread_fn != NULL
2111 *		  the default primary handler is installed.
2112 *	@thread_fn: Function called from the irq handler thread
2113 *		    If NULL, no irq thread is created
2114 *	@irqflags: Interrupt type flags
2115 *	@devname: An ascii name for the claiming device
2116 *	@dev_id: A cookie passed back to the handler function
2117 *
2118 *	This call allocates interrupt resources and enables the
2119 *	interrupt line and IRQ handling. From the point this
2120 *	call is made your handler function may be invoked. Since
2121 *	your handler function must clear any interrupt the board
2122 *	raises, you must take care both to initialise your hardware
2123 *	and to set up the interrupt handler in the right order.
2124 *
2125 *	If you want to set up a threaded irq handler for your device
2126 *	then you need to supply @handler and @thread_fn. @handler is
2127 *	still called in hard interrupt context and has to check
2128 *	whether the interrupt originates from the device. If yes it
2129 *	needs to disable the interrupt on the device and return
2130 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2131 *	@thread_fn. This split handler design is necessary to support
2132 *	shared interrupts.
2133 *
2134 *	Dev_id must be globally unique. Normally the address of the
2135 *	device data structure is used as the cookie. Since the handler
2136 *	receives this value it makes sense to use it.
2137 *
2138 *	If your interrupt is shared you must pass a non NULL dev_id
2139 *	as this is required when freeing the interrupt.
2140 *
2141 *	Flags:
2142 *
2143 *	IRQF_SHARED		Interrupt is shared
 
2144 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2145 *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2146 */
2147int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2148			 irq_handler_t thread_fn, unsigned long irqflags,
2149			 const char *devname, void *dev_id)
2150{
2151	struct irqaction *action;
2152	struct irq_desc *desc;
2153	int retval;
2154
2155	if (irq == IRQ_NOTCONNECTED)
2156		return -ENOTCONN;
2157
2158	/*
2159	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2160	 * otherwise we'll have trouble later trying to figure out
2161	 * which interrupt is which (messes up the interrupt freeing
2162	 * logic etc).
2163	 *
2164	 * Also shared interrupts do not go well with disabling auto enable.
2165	 * The sharing interrupt might request it while it's still disabled
2166	 * and then wait for interrupts forever.
2167	 *
2168	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2169	 * it cannot be set along with IRQF_NO_SUSPEND.
2170	 */
2171	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2172	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2173	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2174	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2175		return -EINVAL;
2176
2177	desc = irq_to_desc(irq);
2178	if (!desc)
2179		return -EINVAL;
2180
2181	if (!irq_settings_can_request(desc) ||
2182	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2183		return -EINVAL;
2184
2185	if (!handler) {
2186		if (!thread_fn)
2187			return -EINVAL;
2188		handler = irq_default_primary_handler;
2189	}
2190
2191	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2192	if (!action)
2193		return -ENOMEM;
2194
2195	action->handler = handler;
2196	action->thread_fn = thread_fn;
2197	action->flags = irqflags;
2198	action->name = devname;
2199	action->dev_id = dev_id;
2200
2201	retval = irq_chip_pm_get(&desc->irq_data);
2202	if (retval < 0) {
2203		kfree(action);
2204		return retval;
2205	}
2206
2207	retval = __setup_irq(irq, desc, action);
 
2208
2209	if (retval) {
2210		irq_chip_pm_put(&desc->irq_data);
2211		kfree(action->secondary);
2212		kfree(action);
2213	}
2214
2215#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2216	if (!retval && (irqflags & IRQF_SHARED)) {
2217		/*
2218		 * It's a shared IRQ -- the driver ought to be prepared for it
2219		 * to happen immediately, so let's make sure....
2220		 * We disable the irq to make sure that a 'real' IRQ doesn't
2221		 * run in parallel with our fake.
2222		 */
2223		unsigned long flags;
2224
2225		disable_irq(irq);
2226		local_irq_save(flags);
2227
2228		handler(irq, dev_id);
2229
2230		local_irq_restore(flags);
2231		enable_irq(irq);
2232	}
2233#endif
2234	return retval;
2235}
2236EXPORT_SYMBOL(request_threaded_irq);
2237
2238/**
2239 *	request_any_context_irq - allocate an interrupt line
2240 *	@irq: Interrupt line to allocate
2241 *	@handler: Function to be called when the IRQ occurs.
2242 *		  Threaded handler for threaded interrupts.
2243 *	@flags: Interrupt type flags
2244 *	@name: An ascii name for the claiming device
2245 *	@dev_id: A cookie passed back to the handler function
2246 *
2247 *	This call allocates interrupt resources and enables the
2248 *	interrupt line and IRQ handling. It selects either a
2249 *	hardirq or threaded handling method depending on the
2250 *	context.
2251 *
2252 *	On failure, it returns a negative value. On success,
2253 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2254 */
2255int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2256			    unsigned long flags, const char *name, void *dev_id)
2257{
2258	struct irq_desc *desc;
2259	int ret;
2260
2261	if (irq == IRQ_NOTCONNECTED)
2262		return -ENOTCONN;
2263
2264	desc = irq_to_desc(irq);
2265	if (!desc)
2266		return -EINVAL;
2267
2268	if (irq_settings_is_nested_thread(desc)) {
2269		ret = request_threaded_irq(irq, NULL, handler,
2270					   flags, name, dev_id);
2271		return !ret ? IRQC_IS_NESTED : ret;
2272	}
2273
2274	ret = request_irq(irq, handler, flags, name, dev_id);
2275	return !ret ? IRQC_IS_HARDIRQ : ret;
2276}
2277EXPORT_SYMBOL_GPL(request_any_context_irq);
2278
2279/**
2280 *	request_nmi - allocate an interrupt line for NMI delivery
2281 *	@irq: Interrupt line to allocate
2282 *	@handler: Function to be called when the IRQ occurs.
2283 *		  Threaded handler for threaded interrupts.
2284 *	@irqflags: Interrupt type flags
2285 *	@name: An ascii name for the claiming device
2286 *	@dev_id: A cookie passed back to the handler function
2287 *
2288 *	This call allocates interrupt resources and enables the
2289 *	interrupt line and IRQ handling. It sets up the IRQ line
2290 *	to be handled as an NMI.
2291 *
2292 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2293 *	cannot be threaded.
2294 *
2295 *	Interrupt lines requested for NMI delivering must produce per cpu
2296 *	interrupts and have auto enabling setting disabled.
2297 *
2298 *	Dev_id must be globally unique. Normally the address of the
2299 *	device data structure is used as the cookie. Since the handler
2300 *	receives this value it makes sense to use it.
2301 *
2302 *	If the interrupt line cannot be used to deliver NMIs, function
2303 *	will fail and return a negative value.
2304 */
2305int request_nmi(unsigned int irq, irq_handler_t handler,
2306		unsigned long irqflags, const char *name, void *dev_id)
2307{
2308	struct irqaction *action;
2309	struct irq_desc *desc;
2310	unsigned long flags;
2311	int retval;
2312
2313	if (irq == IRQ_NOTCONNECTED)
2314		return -ENOTCONN;
2315
2316	/* NMI cannot be shared, used for Polling */
2317	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2318		return -EINVAL;
2319
2320	if (!(irqflags & IRQF_PERCPU))
2321		return -EINVAL;
2322
2323	if (!handler)
2324		return -EINVAL;
2325
2326	desc = irq_to_desc(irq);
2327
2328	if (!desc || (irq_settings_can_autoenable(desc) &&
2329	    !(irqflags & IRQF_NO_AUTOEN)) ||
2330	    !irq_settings_can_request(desc) ||
2331	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2332	    !irq_supports_nmi(desc))
2333		return -EINVAL;
2334
2335	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2336	if (!action)
2337		return -ENOMEM;
2338
2339	action->handler = handler;
2340	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2341	action->name = name;
2342	action->dev_id = dev_id;
2343
2344	retval = irq_chip_pm_get(&desc->irq_data);
2345	if (retval < 0)
2346		goto err_out;
2347
2348	retval = __setup_irq(irq, desc, action);
2349	if (retval)
2350		goto err_irq_setup;
2351
2352	raw_spin_lock_irqsave(&desc->lock, flags);
2353
2354	/* Setup NMI state */
2355	desc->istate |= IRQS_NMI;
2356	retval = irq_nmi_setup(desc);
2357	if (retval) {
2358		__cleanup_nmi(irq, desc);
2359		raw_spin_unlock_irqrestore(&desc->lock, flags);
2360		return -EINVAL;
2361	}
2362
2363	raw_spin_unlock_irqrestore(&desc->lock, flags);
2364
2365	return 0;
2366
2367err_irq_setup:
2368	irq_chip_pm_put(&desc->irq_data);
2369err_out:
2370	kfree(action);
2371
2372	return retval;
2373}
2374
2375void enable_percpu_irq(unsigned int irq, unsigned int type)
2376{
2377	unsigned int cpu = smp_processor_id();
2378	unsigned long flags;
2379	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2380
2381	if (!desc)
2382		return;
2383
2384	/*
2385	 * If the trigger type is not specified by the caller, then
2386	 * use the default for this interrupt.
2387	 */
2388	type &= IRQ_TYPE_SENSE_MASK;
2389	if (type == IRQ_TYPE_NONE)
2390		type = irqd_get_trigger_type(&desc->irq_data);
2391
2392	if (type != IRQ_TYPE_NONE) {
2393		int ret;
2394
2395		ret = __irq_set_trigger(desc, type);
2396
2397		if (ret) {
2398			WARN(1, "failed to set type for IRQ%d\n", irq);
2399			goto out;
2400		}
2401	}
2402
2403	irq_percpu_enable(desc, cpu);
2404out:
2405	irq_put_desc_unlock(desc, flags);
2406}
2407EXPORT_SYMBOL_GPL(enable_percpu_irq);
2408
2409void enable_percpu_nmi(unsigned int irq, unsigned int type)
2410{
2411	enable_percpu_irq(irq, type);
2412}
2413
2414/**
2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2416 * @irq:	Linux irq number to check for
2417 *
2418 * Must be called from a non migratable context. Returns the enable
2419 * state of a per cpu interrupt on the current cpu.
2420 */
2421bool irq_percpu_is_enabled(unsigned int irq)
2422{
2423	unsigned int cpu = smp_processor_id();
2424	struct irq_desc *desc;
2425	unsigned long flags;
2426	bool is_enabled;
2427
2428	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2429	if (!desc)
2430		return false;
2431
2432	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2433	irq_put_desc_unlock(desc, flags);
2434
2435	return is_enabled;
2436}
2437EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2438
2439void disable_percpu_irq(unsigned int irq)
2440{
2441	unsigned int cpu = smp_processor_id();
2442	unsigned long flags;
2443	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2444
2445	if (!desc)
2446		return;
2447
2448	irq_percpu_disable(desc, cpu);
2449	irq_put_desc_unlock(desc, flags);
2450}
2451EXPORT_SYMBOL_GPL(disable_percpu_irq);
2452
2453void disable_percpu_nmi(unsigned int irq)
2454{
2455	disable_percpu_irq(irq);
2456}
2457
2458/*
2459 * Internal function to unregister a percpu irqaction.
2460 */
2461static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462{
2463	struct irq_desc *desc = irq_to_desc(irq);
2464	struct irqaction *action;
2465	unsigned long flags;
2466
2467	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2468
2469	if (!desc)
2470		return NULL;
2471
2472	raw_spin_lock_irqsave(&desc->lock, flags);
2473
2474	action = desc->action;
2475	if (!action || action->percpu_dev_id != dev_id) {
2476		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2477		goto bad;
2478	}
2479
2480	if (!cpumask_empty(desc->percpu_enabled)) {
2481		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2482		     irq, cpumask_first(desc->percpu_enabled));
2483		goto bad;
2484	}
2485
2486	/* Found it - now remove it from the list of entries: */
2487	desc->action = NULL;
2488
2489	desc->istate &= ~IRQS_NMI;
2490
2491	raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493	unregister_handler_proc(irq, action);
2494
2495	irq_chip_pm_put(&desc->irq_data);
2496	module_put(desc->owner);
2497	return action;
2498
2499bad:
2500	raw_spin_unlock_irqrestore(&desc->lock, flags);
2501	return NULL;
2502}
2503
2504/**
2505 *	remove_percpu_irq - free a per-cpu interrupt
2506 *	@irq: Interrupt line to free
2507 *	@act: irqaction for the interrupt
2508 *
2509 * Used to remove interrupts statically setup by the early boot process.
2510 */
2511void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2512{
2513	struct irq_desc *desc = irq_to_desc(irq);
2514
2515	if (desc && irq_settings_is_per_cpu_devid(desc))
2516	    __free_percpu_irq(irq, act->percpu_dev_id);
2517}
2518
2519/**
2520 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2521 *	@irq: Interrupt line to free
2522 *	@dev_id: Device identity to free
2523 *
2524 *	Remove a percpu interrupt handler. The handler is removed, but
2525 *	the interrupt line is not disabled. This must be done on each
2526 *	CPU before calling this function. The function does not return
2527 *	until any executing interrupts for this IRQ have completed.
2528 *
2529 *	This function must not be called from interrupt context.
2530 */
2531void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2532{
2533	struct irq_desc *desc = irq_to_desc(irq);
2534
2535	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536		return;
2537
2538	chip_bus_lock(desc);
2539	kfree(__free_percpu_irq(irq, dev_id));
2540	chip_bus_sync_unlock(desc);
2541}
2542EXPORT_SYMBOL_GPL(free_percpu_irq);
2543
2544void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2545{
2546	struct irq_desc *desc = irq_to_desc(irq);
2547
2548	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2549		return;
2550
2551	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2552		return;
2553
2554	kfree(__free_percpu_irq(irq, dev_id));
2555}
2556
2557/**
2558 *	setup_percpu_irq - setup a per-cpu interrupt
2559 *	@irq: Interrupt line to setup
2560 *	@act: irqaction for the interrupt
2561 *
2562 * Used to statically setup per-cpu interrupts in the early boot process.
2563 */
2564int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2565{
2566	struct irq_desc *desc = irq_to_desc(irq);
2567	int retval;
2568
2569	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2570		return -EINVAL;
2571
2572	retval = irq_chip_pm_get(&desc->irq_data);
2573	if (retval < 0)
2574		return retval;
2575
2576	retval = __setup_irq(irq, desc, act);
2577
2578	if (retval)
2579		irq_chip_pm_put(&desc->irq_data);
2580
2581	return retval;
2582}
2583
2584/**
2585 *	__request_percpu_irq - allocate a percpu interrupt line
2586 *	@irq: Interrupt line to allocate
2587 *	@handler: Function to be called when the IRQ occurs.
2588 *	@flags: Interrupt type flags (IRQF_TIMER only)
2589 *	@devname: An ascii name for the claiming device
2590 *	@dev_id: A percpu cookie passed back to the handler function
2591 *
2592 *	This call allocates interrupt resources and enables the
2593 *	interrupt on the local CPU. If the interrupt is supposed to be
2594 *	enabled on other CPUs, it has to be done on each CPU using
2595 *	enable_percpu_irq().
2596 *
2597 *	Dev_id must be globally unique. It is a per-cpu variable, and
2598 *	the handler gets called with the interrupted CPU's instance of
2599 *	that variable.
2600 */
2601int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2602			 unsigned long flags, const char *devname,
2603			 void __percpu *dev_id)
2604{
2605	struct irqaction *action;
2606	struct irq_desc *desc;
2607	int retval;
2608
2609	if (!dev_id)
2610		return -EINVAL;
2611
2612	desc = irq_to_desc(irq);
2613	if (!desc || !irq_settings_can_request(desc) ||
2614	    !irq_settings_is_per_cpu_devid(desc))
2615		return -EINVAL;
2616
2617	if (flags && flags != IRQF_TIMER)
2618		return -EINVAL;
2619
2620	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621	if (!action)
2622		return -ENOMEM;
2623
2624	action->handler = handler;
2625	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2626	action->name = devname;
2627	action->percpu_dev_id = dev_id;
2628
2629	retval = irq_chip_pm_get(&desc->irq_data);
2630	if (retval < 0) {
2631		kfree(action);
2632		return retval;
2633	}
2634
2635	retval = __setup_irq(irq, desc, action);
2636
2637	if (retval) {
2638		irq_chip_pm_put(&desc->irq_data);
2639		kfree(action);
2640	}
2641
2642	return retval;
2643}
2644EXPORT_SYMBOL_GPL(__request_percpu_irq);
2645
2646/**
2647 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2648 *	@irq: Interrupt line to allocate
2649 *	@handler: Function to be called when the IRQ occurs.
2650 *	@name: An ascii name for the claiming device
2651 *	@dev_id: A percpu cookie passed back to the handler function
2652 *
2653 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2654 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2655 *	being enabled on the same CPU by using enable_percpu_nmi().
2656 *
2657 *	Dev_id must be globally unique. It is a per-cpu variable, and
2658 *	the handler gets called with the interrupted CPU's instance of
2659 *	that variable.
2660 *
2661 *	Interrupt lines requested for NMI delivering should have auto enabling
2662 *	setting disabled.
2663 *
2664 *	If the interrupt line cannot be used to deliver NMIs, function
2665 *	will fail returning a negative value.
2666 */
2667int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2668		       const char *name, void __percpu *dev_id)
2669{
2670	struct irqaction *action;
2671	struct irq_desc *desc;
2672	unsigned long flags;
2673	int retval;
2674
2675	if (!handler)
2676		return -EINVAL;
2677
2678	desc = irq_to_desc(irq);
2679
2680	if (!desc || !irq_settings_can_request(desc) ||
2681	    !irq_settings_is_per_cpu_devid(desc) ||
2682	    irq_settings_can_autoenable(desc) ||
2683	    !irq_supports_nmi(desc))
2684		return -EINVAL;
2685
2686	/* The line cannot already be NMI */
2687	if (desc->istate & IRQS_NMI)
2688		return -EINVAL;
2689
2690	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2691	if (!action)
2692		return -ENOMEM;
2693
2694	action->handler = handler;
2695	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2696		| IRQF_NOBALANCING;
2697	action->name = name;
2698	action->percpu_dev_id = dev_id;
2699
2700	retval = irq_chip_pm_get(&desc->irq_data);
2701	if (retval < 0)
2702		goto err_out;
2703
2704	retval = __setup_irq(irq, desc, action);
2705	if (retval)
2706		goto err_irq_setup;
2707
2708	raw_spin_lock_irqsave(&desc->lock, flags);
2709	desc->istate |= IRQS_NMI;
2710	raw_spin_unlock_irqrestore(&desc->lock, flags);
2711
2712	return 0;
2713
2714err_irq_setup:
2715	irq_chip_pm_put(&desc->irq_data);
2716err_out:
2717	kfree(action);
2718
2719	return retval;
2720}
2721
2722/**
2723 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2724 *	@irq: Interrupt line to prepare for NMI delivery
2725 *
2726 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2727 *	before that interrupt line gets enabled with enable_percpu_nmi().
2728 *
2729 *	As a CPU local operation, this should be called from non-preemptible
2730 *	context.
2731 *
2732 *	If the interrupt line cannot be used to deliver NMIs, function
2733 *	will fail returning a negative value.
2734 */
2735int prepare_percpu_nmi(unsigned int irq)
2736{
2737	unsigned long flags;
2738	struct irq_desc *desc;
2739	int ret = 0;
2740
2741	WARN_ON(preemptible());
2742
2743	desc = irq_get_desc_lock(irq, &flags,
2744				 IRQ_GET_DESC_CHECK_PERCPU);
2745	if (!desc)
2746		return -EINVAL;
2747
2748	if (WARN(!(desc->istate & IRQS_NMI),
2749		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2750		 irq)) {
2751		ret = -EINVAL;
2752		goto out;
2753	}
2754
2755	ret = irq_nmi_setup(desc);
2756	if (ret) {
2757		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2758		goto out;
2759	}
2760
2761out:
2762	irq_put_desc_unlock(desc, flags);
2763	return ret;
2764}
2765
2766/**
2767 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2768 *	@irq: Interrupt line from which CPU local NMI configuration should be
2769 *	      removed
2770 *
2771 *	This call undoes the setup done by prepare_percpu_nmi().
2772 *
2773 *	IRQ line should not be enabled for the current CPU.
2774 *
2775 *	As a CPU local operation, this should be called from non-preemptible
2776 *	context.
2777 */
2778void teardown_percpu_nmi(unsigned int irq)
2779{
2780	unsigned long flags;
2781	struct irq_desc *desc;
2782
2783	WARN_ON(preemptible());
2784
2785	desc = irq_get_desc_lock(irq, &flags,
2786				 IRQ_GET_DESC_CHECK_PERCPU);
2787	if (!desc)
2788		return;
2789
2790	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2791		goto out;
2792
2793	irq_nmi_teardown(desc);
2794out:
2795	irq_put_desc_unlock(desc, flags);
2796}
2797
2798int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2799			    bool *state)
2800{
2801	struct irq_chip *chip;
2802	int err = -EINVAL;
2803
2804	do {
2805		chip = irq_data_get_irq_chip(data);
2806		if (WARN_ON_ONCE(!chip))
2807			return -ENODEV;
2808		if (chip->irq_get_irqchip_state)
2809			break;
2810#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811		data = data->parent_data;
2812#else
2813		data = NULL;
2814#endif
2815	} while (data);
2816
2817	if (data)
2818		err = chip->irq_get_irqchip_state(data, which, state);
2819	return err;
2820}
2821
2822/**
2823 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2824 *	@irq: Interrupt line that is forwarded to a VM
2825 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2826 *	@state: a pointer to a boolean where the state is to be stored
2827 *
2828 *	This call snapshots the internal irqchip state of an
2829 *	interrupt, returning into @state the bit corresponding to
2830 *	stage @which
2831 *
2832 *	This function should be called with preemption disabled if the
2833 *	interrupt controller has per-cpu registers.
2834 */
2835int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2836			  bool *state)
2837{
2838	struct irq_desc *desc;
2839	struct irq_data *data;
2840	unsigned long flags;
2841	int err = -EINVAL;
2842
2843	desc = irq_get_desc_buslock(irq, &flags, 0);
2844	if (!desc)
2845		return err;
2846
2847	data = irq_desc_get_irq_data(desc);
2848
2849	err = __irq_get_irqchip_state(data, which, state);
2850
2851	irq_put_desc_busunlock(desc, flags);
2852	return err;
2853}
2854EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2855
2856/**
2857 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2858 *	@irq: Interrupt line that is forwarded to a VM
2859 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2860 *	@val: Value corresponding to @which
2861 *
2862 *	This call sets the internal irqchip state of an interrupt,
2863 *	depending on the value of @which.
2864 *
2865 *	This function should be called with migration disabled if the
2866 *	interrupt controller has per-cpu registers.
2867 */
2868int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2869			  bool val)
2870{
2871	struct irq_desc *desc;
2872	struct irq_data *data;
2873	struct irq_chip *chip;
2874	unsigned long flags;
2875	int err = -EINVAL;
2876
2877	desc = irq_get_desc_buslock(irq, &flags, 0);
2878	if (!desc)
2879		return err;
2880
2881	data = irq_desc_get_irq_data(desc);
2882
2883	do {
2884		chip = irq_data_get_irq_chip(data);
2885		if (WARN_ON_ONCE(!chip)) {
2886			err = -ENODEV;
2887			goto out_unlock;
2888		}
2889		if (chip->irq_set_irqchip_state)
2890			break;
2891#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2892		data = data->parent_data;
2893#else
2894		data = NULL;
2895#endif
2896	} while (data);
2897
2898	if (data)
2899		err = chip->irq_set_irqchip_state(data, which, val);
2900
2901out_unlock:
2902	irq_put_desc_busunlock(desc, flags);
2903	return err;
2904}
2905EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2906
2907/**
2908 * irq_has_action - Check whether an interrupt is requested
2909 * @irq:	The linux irq number
2910 *
2911 * Returns: A snapshot of the current state
2912 */
2913bool irq_has_action(unsigned int irq)
2914{
2915	bool res;
2916
2917	rcu_read_lock();
2918	res = irq_desc_has_action(irq_to_desc(irq));
2919	rcu_read_unlock();
2920	return res;
2921}
2922EXPORT_SYMBOL_GPL(irq_has_action);
2923
2924/**
2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2926 * @irq:	The linux irq number
2927 * @bitmask:	The bitmask to evaluate
2928 *
2929 * Returns: True if one of the bits in @bitmask is set
2930 */
2931bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2932{
2933	struct irq_desc *desc;
2934	bool res = false;
2935
2936	rcu_read_lock();
2937	desc = irq_to_desc(irq);
2938	if (desc)
2939		res = !!(desc->status_use_accessors & bitmask);
2940	rcu_read_unlock();
2941	return res;
2942}
2943EXPORT_SYMBOL_GPL(irq_check_status_bit);
v3.1
 
   1/*
   2 * linux/kernel/irq/manage.c
   3 *
   4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   5 * Copyright (C) 2005-2006 Thomas Gleixner
   6 *
   7 * This file contains driver APIs to the irq subsystem.
   8 */
   9
 
 
  10#include <linux/irq.h>
  11#include <linux/kthread.h>
  12#include <linux/module.h>
  13#include <linux/random.h>
  14#include <linux/interrupt.h>
 
  15#include <linux/slab.h>
  16#include <linux/sched.h>
 
 
 
 
 
  17
  18#include "internals.h"
  19
  20#ifdef CONFIG_IRQ_FORCED_THREADING
  21__read_mostly bool force_irqthreads;
  22
  23static int __init setup_forced_irqthreads(char *arg)
  24{
  25	force_irqthreads = true;
  26	return 0;
  27}
  28early_param("threadirqs", setup_forced_irqthreads);
  29#endif
  30
  31/**
  32 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  33 *	@irq: interrupt number to wait for
  34 *
  35 *	This function waits for any pending IRQ handlers for this interrupt
  36 *	to complete before returning. If you use this function while
  37 *	holding a resource the IRQ handler may need you will deadlock.
  38 *
  39 *	This function may be called - with care - from IRQ context.
  40 */
  41void synchronize_irq(unsigned int irq)
  42{
  43	struct irq_desc *desc = irq_to_desc(irq);
  44	bool inprogress;
  45
  46	if (!desc)
  47		return;
  48
  49	do {
  50		unsigned long flags;
  51
  52		/*
  53		 * Wait until we're out of the critical section.  This might
  54		 * give the wrong answer due to the lack of memory barriers.
  55		 */
  56		while (irqd_irq_inprogress(&desc->irq_data))
  57			cpu_relax();
  58
  59		/* Ok, that indicated we're done: double-check carefully. */
  60		raw_spin_lock_irqsave(&desc->lock, flags);
  61		inprogress = irqd_irq_inprogress(&desc->irq_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62		raw_spin_unlock_irqrestore(&desc->lock, flags);
  63
  64		/* Oops, that failed? */
  65	} while (inprogress);
 
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67	/*
  68	 * We made sure that no hardirq handler is running. Now verify
  69	 * that no threaded handlers are active.
  70	 */
  71	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
  72}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73EXPORT_SYMBOL(synchronize_irq);
  74
  75#ifdef CONFIG_SMP
  76cpumask_var_t irq_default_affinity;
  77
 
 
 
 
 
 
 
 
  78/**
  79 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
  80 *	@irq:		Interrupt to check
  81 *
  82 */
  83int irq_can_set_affinity(unsigned int irq)
  84{
 
 
 
 
 
 
 
 
 
 
 
 
  85	struct irq_desc *desc = irq_to_desc(irq);
  86
  87	if (!desc || !irqd_can_balance(&desc->irq_data) ||
  88	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
  89		return 0;
  90
  91	return 1;
  92}
  93
  94/**
  95 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
  96 *	@desc:		irq descriptor which has affitnity changed
  97 *
  98 *	We just set IRQTF_AFFINITY and delegate the affinity setting
  99 *	to the interrupt thread itself. We can not call
 100 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 101 *	code can be called from hard interrupt context.
 102 */
 103void irq_set_thread_affinity(struct irq_desc *desc)
 104{
 105	struct irqaction *action = desc->action;
 106
 107	while (action) {
 108		if (action->thread)
 109			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 110		action = action->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111	}
 
 
 112}
 113
 114#ifdef CONFIG_GENERIC_PENDING_IRQ
 115static inline bool irq_can_move_pcntxt(struct irq_data *data)
 
 116{
 117	return irqd_can_move_in_process_context(data);
 
 
 
 
 118}
 119static inline bool irq_move_pending(struct irq_data *data)
 
 
 120{
 121	return irqd_is_setaffinity_pending(data);
 122}
 123static inline void
 124irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
 
 
 125{
 126	cpumask_copy(desc->pending_mask, mask);
 
 
 
 
 
 
 
 
 
 127}
 128static inline void
 129irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
 
 130{
 131	cpumask_copy(mask, desc->pending_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133#else
 134static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
 135static inline bool irq_move_pending(struct irq_data *data) { return false; }
 136static inline void
 137irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
 138static inline void
 139irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
 140#endif
 141
 142int __irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask)
 
 143{
 144	struct irq_chip *chip = irq_data_get_irq_chip(data);
 145	struct irq_desc *desc = irq_data_to_desc(data);
 146	int ret = 0;
 147
 148	if (!chip || !chip->irq_set_affinity)
 149		return -EINVAL;
 150
 151	if (irq_can_move_pcntxt(data)) {
 152		ret = chip->irq_set_affinity(data, mask, false);
 153		switch (ret) {
 154		case IRQ_SET_MASK_OK:
 155			cpumask_copy(data->affinity, mask);
 156		case IRQ_SET_MASK_OK_NOCOPY:
 157			irq_set_thread_affinity(desc);
 158			ret = 0;
 159		}
 160	} else {
 161		irqd_set_move_pending(data);
 162		irq_copy_pending(desc, mask);
 163	}
 164
 165	if (desc->affinity_notify) {
 166		kref_get(&desc->affinity_notify->kref);
 167		schedule_work(&desc->affinity_notify->work);
 
 
 
 
 168	}
 169	irqd_set(data, IRQD_AFFINITY_SET);
 170
 171	return ret;
 172}
 173
 174/**
 175 *	irq_set_affinity - Set the irq affinity of a given irq
 176 *	@irq:		Interrupt to set affinity
 177 *	@mask:		cpumask
 178 *
 
 
 
 
 
 
 
 
 
 179 */
 180int irq_set_affinity(unsigned int irq, const struct cpumask *mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181{
 182	struct irq_desc *desc = irq_to_desc(irq);
 183	unsigned long flags;
 184	int ret;
 185
 186	if (!desc)
 187		return -EINVAL;
 188
 189	raw_spin_lock_irqsave(&desc->lock, flags);
 190	ret =  __irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask);
 191	raw_spin_unlock_irqrestore(&desc->lock, flags);
 192	return ret;
 193}
 194
 195int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196{
 197	unsigned long flags;
 198	struct irq_desc *desc = irq_get_desc_lock(irq, &flags);
 199
 200	if (!desc)
 201		return -EINVAL;
 202	desc->affinity_hint = m;
 203	irq_put_desc_unlock(desc, flags);
 
 
 204	return 0;
 205}
 206EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 207
 208static void irq_affinity_notify(struct work_struct *work)
 209{
 210	struct irq_affinity_notify *notify =
 211		container_of(work, struct irq_affinity_notify, work);
 212	struct irq_desc *desc = irq_to_desc(notify->irq);
 213	cpumask_var_t cpumask;
 214	unsigned long flags;
 215
 216	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 217		goto out;
 218
 219	raw_spin_lock_irqsave(&desc->lock, flags);
 220	if (irq_move_pending(&desc->irq_data))
 221		irq_get_pending(cpumask, desc);
 222	else
 223		cpumask_copy(cpumask, desc->irq_data.affinity);
 224	raw_spin_unlock_irqrestore(&desc->lock, flags);
 225
 226	notify->notify(notify, cpumask);
 227
 228	free_cpumask_var(cpumask);
 229out:
 230	kref_put(&notify->kref, notify->release);
 231}
 232
 233/**
 234 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 235 *	@irq:		Interrupt for which to enable/disable notification
 236 *	@notify:	Context for notification, or %NULL to disable
 237 *			notification.  Function pointers must be initialised;
 238 *			the other fields will be initialised by this function.
 239 *
 240 *	Must be called in process context.  Notification may only be enabled
 241 *	after the IRQ is allocated and must be disabled before the IRQ is
 242 *	freed using free_irq().
 243 */
 244int
 245irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 246{
 247	struct irq_desc *desc = irq_to_desc(irq);
 248	struct irq_affinity_notify *old_notify;
 249	unsigned long flags;
 250
 251	/* The release function is promised process context */
 252	might_sleep();
 253
 254	if (!desc)
 255		return -EINVAL;
 256
 257	/* Complete initialisation of *notify */
 258	if (notify) {
 259		notify->irq = irq;
 260		kref_init(&notify->kref);
 261		INIT_WORK(&notify->work, irq_affinity_notify);
 262	}
 263
 264	raw_spin_lock_irqsave(&desc->lock, flags);
 265	old_notify = desc->affinity_notify;
 266	desc->affinity_notify = notify;
 267	raw_spin_unlock_irqrestore(&desc->lock, flags);
 268
 269	if (old_notify)
 
 
 
 
 270		kref_put(&old_notify->kref, old_notify->release);
 
 271
 272	return 0;
 273}
 274EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 275
 276#ifndef CONFIG_AUTO_IRQ_AFFINITY
 277/*
 278 * Generic version of the affinity autoselector.
 279 */
 280static int
 281setup_affinity(unsigned int irq, struct irq_desc *desc, struct cpumask *mask)
 282{
 283	struct irq_chip *chip = irq_desc_get_chip(desc);
 284	struct cpumask *set = irq_default_affinity;
 285	int ret;
 
 
 286
 287	/* Excludes PER_CPU and NO_BALANCE interrupts */
 288	if (!irq_can_set_affinity(irq))
 289		return 0;
 290
 
 291	/*
 292	 * Preserve an userspace affinity setup, but make sure that
 293	 * one of the targets is online.
 294	 */
 295	if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 296		if (cpumask_intersects(desc->irq_data.affinity,
 
 297				       cpu_online_mask))
 298			set = desc->irq_data.affinity;
 299		else
 300			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 301	}
 302
 303	cpumask_and(mask, cpu_online_mask, set);
 304	ret = chip->irq_set_affinity(&desc->irq_data, mask, false);
 305	switch (ret) {
 306	case IRQ_SET_MASK_OK:
 307		cpumask_copy(desc->irq_data.affinity, mask);
 308	case IRQ_SET_MASK_OK_NOCOPY:
 309		irq_set_thread_affinity(desc);
 
 
 
 310	}
 311	return 0;
 
 
 312}
 313#else
 314static inline int
 315setup_affinity(unsigned int irq, struct irq_desc *d, struct cpumask *mask)
 316{
 317	return irq_select_affinity(irq);
 318}
 319#endif
 
 
 320
 321/*
 322 * Called when affinity is set via /proc/irq
 
 
 
 
 
 
 
 
 323 */
 324int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
 325{
 326	struct irq_desc *desc = irq_to_desc(irq);
 327	unsigned long flags;
 328	int ret;
 
 
 
 329
 330	raw_spin_lock_irqsave(&desc->lock, flags);
 331	ret = setup_affinity(irq, desc, mask);
 332	raw_spin_unlock_irqrestore(&desc->lock, flags);
 333	return ret;
 334}
 335
 
 
 
 
 
 
 
 336#else
 337static inline int
 338setup_affinity(unsigned int irq, struct irq_desc *desc, struct cpumask *mask)
 339{
 340	return 0;
 
 
 
 
 
 341}
 342#endif
 343
 344void __disable_irq(struct irq_desc *desc, unsigned int irq, bool suspend)
 345{
 346	if (suspend) {
 347		if (!desc->action || (desc->action->flags & IRQF_NO_SUSPEND))
 348			return;
 349		desc->istate |= IRQS_SUSPENDED;
 350	}
 351
 352	if (!desc->depth++)
 353		irq_disable(desc);
 354}
 355
 356static int __disable_irq_nosync(unsigned int irq)
 357{
 358	unsigned long flags;
 359	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags);
 360
 361	if (!desc)
 362		return -EINVAL;
 363	__disable_irq(desc, irq, false);
 364	irq_put_desc_busunlock(desc, flags);
 365	return 0;
 366}
 367
 368/**
 369 *	disable_irq_nosync - disable an irq without waiting
 370 *	@irq: Interrupt to disable
 371 *
 372 *	Disable the selected interrupt line.  Disables and Enables are
 373 *	nested.
 374 *	Unlike disable_irq(), this function does not ensure existing
 375 *	instances of the IRQ handler have completed before returning.
 376 *
 377 *	This function may be called from IRQ context.
 378 */
 379void disable_irq_nosync(unsigned int irq)
 380{
 381	__disable_irq_nosync(irq);
 382}
 383EXPORT_SYMBOL(disable_irq_nosync);
 384
 385/**
 386 *	disable_irq - disable an irq and wait for completion
 387 *	@irq: Interrupt to disable
 388 *
 389 *	Disable the selected interrupt line.  Enables and Disables are
 390 *	nested.
 391 *	This function waits for any pending IRQ handlers for this interrupt
 392 *	to complete before returning. If you use this function while
 393 *	holding a resource the IRQ handler may need you will deadlock.
 394 *
 395 *	This function may be called - with care - from IRQ context.
 
 
 396 */
 397void disable_irq(unsigned int irq)
 398{
 
 399	if (!__disable_irq_nosync(irq))
 400		synchronize_irq(irq);
 401}
 402EXPORT_SYMBOL(disable_irq);
 403
 404void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405{
 406	if (resume) {
 407		if (!(desc->istate & IRQS_SUSPENDED)) {
 408			if (!desc->action)
 409				return;
 410			if (!(desc->action->flags & IRQF_FORCE_RESUME))
 411				return;
 412			/* Pretend that it got disabled ! */
 413			desc->depth++;
 414		}
 415		desc->istate &= ~IRQS_SUSPENDED;
 416	}
 417
 
 
 418	switch (desc->depth) {
 419	case 0:
 420 err_out:
 421		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq);
 
 422		break;
 423	case 1: {
 424		if (desc->istate & IRQS_SUSPENDED)
 425			goto err_out;
 426		/* Prevent probing on this irq: */
 427		irq_settings_set_noprobe(desc);
 428		irq_enable(desc);
 429		check_irq_resend(desc, irq);
 430		/* fall-through */
 
 
 
 
 
 
 431	}
 432	default:
 433		desc->depth--;
 434	}
 435}
 436
 437/**
 438 *	enable_irq - enable handling of an irq
 439 *	@irq: Interrupt to enable
 440 *
 441 *	Undoes the effect of one call to disable_irq().  If this
 442 *	matches the last disable, processing of interrupts on this
 443 *	IRQ line is re-enabled.
 444 *
 445 *	This function may be called from IRQ context only when
 446 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 447 */
 448void enable_irq(unsigned int irq)
 449{
 450	unsigned long flags;
 451	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags);
 452
 453	if (!desc)
 454		return;
 455	if (WARN(!desc->irq_data.chip,
 456		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 457		goto out;
 458
 459	__enable_irq(desc, irq, false);
 460out:
 461	irq_put_desc_busunlock(desc, flags);
 462}
 463EXPORT_SYMBOL(enable_irq);
 464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465static int set_irq_wake_real(unsigned int irq, unsigned int on)
 466{
 467	struct irq_desc *desc = irq_to_desc(irq);
 468	int ret = -ENXIO;
 469
 
 
 
 470	if (desc->irq_data.chip->irq_set_wake)
 471		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 472
 473	return ret;
 474}
 475
 476/**
 477 *	irq_set_irq_wake - control irq power management wakeup
 478 *	@irq:	interrupt to control
 479 *	@on:	enable/disable power management wakeup
 480 *
 481 *	Enable/disable power management wakeup mode, which is
 482 *	disabled by default.  Enables and disables must match,
 483 *	just as they match for non-wakeup mode support.
 484 *
 485 *	Wakeup mode lets this IRQ wake the system from sleep
 486 *	states like "suspend to RAM".
 
 
 
 
 
 
 
 487 */
 488int irq_set_irq_wake(unsigned int irq, unsigned int on)
 489{
 490	unsigned long flags;
 491	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags);
 492	int ret = 0;
 493
 494	if (!desc)
 495		return -EINVAL;
 496
 
 
 
 
 
 
 497	/* wakeup-capable irqs can be shared between drivers that
 498	 * don't need to have the same sleep mode behaviors.
 499	 */
 500	if (on) {
 501		if (desc->wake_depth++ == 0) {
 502			ret = set_irq_wake_real(irq, on);
 503			if (ret)
 504				desc->wake_depth = 0;
 505			else
 506				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 507		}
 508	} else {
 509		if (desc->wake_depth == 0) {
 510			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 511		} else if (--desc->wake_depth == 0) {
 512			ret = set_irq_wake_real(irq, on);
 513			if (ret)
 514				desc->wake_depth = 1;
 515			else
 516				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 517		}
 518	}
 
 
 519	irq_put_desc_busunlock(desc, flags);
 520	return ret;
 521}
 522EXPORT_SYMBOL(irq_set_irq_wake);
 523
 524/*
 525 * Internal function that tells the architecture code whether a
 526 * particular irq has been exclusively allocated or is available
 527 * for driver use.
 528 */
 529int can_request_irq(unsigned int irq, unsigned long irqflags)
 530{
 531	unsigned long flags;
 532	struct irq_desc *desc = irq_get_desc_lock(irq, &flags);
 533	int canrequest = 0;
 534
 535	if (!desc)
 536		return 0;
 537
 538	if (irq_settings_can_request(desc)) {
 539		if (desc->action)
 540			if (irqflags & desc->action->flags & IRQF_SHARED)
 541				canrequest =1;
 542	}
 543	irq_put_desc_unlock(desc, flags);
 544	return canrequest;
 545}
 546
 547int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
 548		      unsigned long flags)
 549{
 550	struct irq_chip *chip = desc->irq_data.chip;
 551	int ret, unmask = 0;
 552
 553	if (!chip || !chip->irq_set_type) {
 554		/*
 555		 * IRQF_TRIGGER_* but the PIC does not support multiple
 556		 * flow-types?
 557		 */
 558		pr_debug("No set_type function for IRQ %d (%s)\n", irq,
 559				chip ? (chip->name ? : "unknown") : "unknown");
 
 560		return 0;
 561	}
 562
 563	flags &= IRQ_TYPE_SENSE_MASK;
 564
 565	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 566		if (!irqd_irq_masked(&desc->irq_data))
 567			mask_irq(desc);
 568		if (!irqd_irq_disabled(&desc->irq_data))
 569			unmask = 1;
 570	}
 571
 572	/* caller masked out all except trigger mode flags */
 
 573	ret = chip->irq_set_type(&desc->irq_data, flags);
 574
 575	switch (ret) {
 576	case IRQ_SET_MASK_OK:
 
 577		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 578		irqd_set(&desc->irq_data, flags);
 
 579
 580	case IRQ_SET_MASK_OK_NOCOPY:
 581		flags = irqd_get_trigger_type(&desc->irq_data);
 582		irq_settings_set_trigger_mask(desc, flags);
 583		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 584		irq_settings_clr_level(desc);
 585		if (flags & IRQ_TYPE_LEVEL_MASK) {
 586			irq_settings_set_level(desc);
 587			irqd_set(&desc->irq_data, IRQD_LEVEL);
 588		}
 589
 590		ret = 0;
 591		break;
 592	default:
 593		pr_err("setting trigger mode %lu for irq %u failed (%pF)\n",
 594		       flags, irq, chip->irq_set_type);
 595	}
 596	if (unmask)
 597		unmask_irq(desc);
 598	return ret;
 599}
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601/*
 602 * Default primary interrupt handler for threaded interrupts. Is
 603 * assigned as primary handler when request_threaded_irq is called
 604 * with handler == NULL. Useful for oneshot interrupts.
 605 */
 606static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 607{
 608	return IRQ_WAKE_THREAD;
 609}
 610
 611/*
 612 * Primary handler for nested threaded interrupts. Should never be
 613 * called.
 614 */
 615static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 616{
 617	WARN(1, "Primary handler called for nested irq %d\n", irq);
 618	return IRQ_NONE;
 619}
 620
 621static int irq_wait_for_interrupt(struct irqaction *action)
 
 
 
 
 
 
 
 
 
 
 622{
 623	while (!kthread_should_stop()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624		set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 627				       &action->thread_flags)) {
 628			__set_current_state(TASK_RUNNING);
 629			return 0;
 630		}
 631		schedule();
 632	}
 633	return -1;
 634}
 635
 636/*
 637 * Oneshot interrupts keep the irq line masked until the threaded
 638 * handler finished. unmask if the interrupt has not been disabled and
 639 * is marked MASKED.
 640 */
 641static void irq_finalize_oneshot(struct irq_desc *desc,
 642				 struct irqaction *action, bool force)
 643{
 644	if (!(desc->istate & IRQS_ONESHOT))
 
 645		return;
 646again:
 647	chip_bus_lock(desc);
 648	raw_spin_lock_irq(&desc->lock);
 649
 650	/*
 651	 * Implausible though it may be we need to protect us against
 652	 * the following scenario:
 653	 *
 654	 * The thread is faster done than the hard interrupt handler
 655	 * on the other CPU. If we unmask the irq line then the
 656	 * interrupt can come in again and masks the line, leaves due
 657	 * to IRQS_INPROGRESS and the irq line is masked forever.
 658	 *
 659	 * This also serializes the state of shared oneshot handlers
 660	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 661	 * irq_wake_thread(). See the comment there which explains the
 662	 * serialization.
 663	 */
 664	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 665		raw_spin_unlock_irq(&desc->lock);
 666		chip_bus_sync_unlock(desc);
 667		cpu_relax();
 668		goto again;
 669	}
 670
 671	/*
 672	 * Now check again, whether the thread should run. Otherwise
 673	 * we would clear the threads_oneshot bit of this thread which
 674	 * was just set.
 675	 */
 676	if (!force && test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 677		goto out_unlock;
 678
 679	desc->threads_oneshot &= ~action->thread_mask;
 680
 681	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 682	    irqd_irq_masked(&desc->irq_data))
 683		unmask_irq(desc);
 684
 685out_unlock:
 686	raw_spin_unlock_irq(&desc->lock);
 687	chip_bus_sync_unlock(desc);
 688}
 689
 690#ifdef CONFIG_SMP
 691/*
 692 * Check whether we need to chasnge the affinity of the interrupt thread.
 693 */
 694static void
 695irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 696{
 697	cpumask_var_t mask;
 698
 699	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 700		return;
 701
 702	/*
 703	 * In case we are out of memory we set IRQTF_AFFINITY again and
 704	 * try again next time
 705	 */
 706	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 707		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 708		return;
 709	}
 710
 711	raw_spin_lock_irq(&desc->lock);
 712	cpumask_copy(mask, desc->irq_data.affinity);
 713	raw_spin_unlock_irq(&desc->lock);
 714
 715	set_cpus_allowed_ptr(current, mask);
 716	free_cpumask_var(mask);
 717}
 718#else
 719static inline void
 720irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 721#endif
 722
 723/*
 724 * Interrupts which are not explicitely requested as threaded
 725 * interrupts rely on the implicit bh/preempt disable of the hard irq
 726 * context. So we need to disable bh here to avoid deadlocks and other
 727 * side effects.
 728 */
 729static irqreturn_t
 730irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 731{
 732	irqreturn_t ret;
 733
 734	local_bh_disable();
 
 
 735	ret = action->thread_fn(action->irq, action->dev_id);
 736	irq_finalize_oneshot(desc, action, false);
 
 
 
 
 
 737	local_bh_enable();
 738	return ret;
 739}
 740
 741/*
 742 * Interrupts explicitely requested as threaded interupts want to be
 743 * preemtible - many of them need to sleep and wait for slow busses to
 744 * complete.
 745 */
 746static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 747		struct irqaction *action)
 748{
 749	irqreturn_t ret;
 750
 751	ret = action->thread_fn(action->irq, action->dev_id);
 752	irq_finalize_oneshot(desc, action, false);
 
 
 
 753	return ret;
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756/*
 757 * Interrupt handler thread
 758 */
 759static int irq_thread(void *data)
 760{
 761	static const struct sched_param param = {
 762		.sched_priority = MAX_USER_RT_PRIO/2,
 763	};
 764	struct irqaction *action = data;
 765	struct irq_desc *desc = irq_to_desc(action->irq);
 766	irqreturn_t (*handler_fn)(struct irq_desc *desc,
 767			struct irqaction *action);
 768	int wake;
 769
 770	if (force_irqthreads & test_bit(IRQTF_FORCED_THREAD,
 771					&action->thread_flags))
 
 
 
 
 772		handler_fn = irq_forced_thread_fn;
 773	else
 774		handler_fn = irq_thread_fn;
 775
 776	sched_setscheduler(current, SCHED_FIFO, &param);
 777	current->irqaction = action;
 778
 779	while (!irq_wait_for_interrupt(action)) {
 780
 781		irq_thread_check_affinity(desc, action);
 782
 783		atomic_inc(&desc->threads_active);
 784
 785		raw_spin_lock_irq(&desc->lock);
 786		if (unlikely(irqd_irq_disabled(&desc->irq_data))) {
 787			/*
 788			 * CHECKME: We might need a dedicated
 789			 * IRQ_THREAD_PENDING flag here, which
 790			 * retriggers the thread in check_irq_resend()
 791			 * but AFAICT IRQS_PENDING should be fine as it
 792			 * retriggers the interrupt itself --- tglx
 793			 */
 794			desc->istate |= IRQS_PENDING;
 795			raw_spin_unlock_irq(&desc->lock);
 796		} else {
 797			irqreturn_t action_ret;
 798
 799			raw_spin_unlock_irq(&desc->lock);
 800			action_ret = handler_fn(desc, action);
 801			if (!noirqdebug)
 802				note_interrupt(action->irq, desc, action_ret);
 803		}
 804
 805		wake = atomic_dec_and_test(&desc->threads_active);
 
 
 806
 807		if (wake && waitqueue_active(&desc->wait_for_threads))
 808			wake_up(&desc->wait_for_threads);
 809	}
 810
 811	/* Prevent a stale desc->threads_oneshot */
 812	irq_finalize_oneshot(desc, action, true);
 813
 814	/*
 815	 * Clear irqaction. Otherwise exit_irq_thread() would make
 816	 * fuzz about an active irq thread going into nirvana.
 
 
 817	 */
 818	current->irqaction = NULL;
 819	return 0;
 820}
 821
 822/*
 823 * Called from do_exit()
 
 
 
 824 */
 825void exit_irq_thread(void)
 826{
 827	struct task_struct *tsk = current;
 828	struct irq_desc *desc;
 
 829
 830	if (!tsk->irqaction)
 831		return;
 832
 833	printk(KERN_ERR
 834	       "exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 835	       tsk->comm ? tsk->comm : "", tsk->pid, tsk->irqaction->irq);
 
 
 
 
 
 
 
 
 836
 837	desc = irq_to_desc(tsk->irqaction->irq);
 
 
 
 
 
 838
 839	/*
 840	 * Prevent a stale desc->threads_oneshot. Must be called
 841	 * before setting the IRQTF_DIED flag.
 842	 */
 843	irq_finalize_oneshot(desc, tsk->irqaction, true);
 
 
 
 844
 845	/*
 846	 * Set the THREAD DIED flag to prevent further wakeups of the
 847	 * soon to be gone threaded handler.
 
 848	 */
 849	set_bit(IRQTF_DIED, &tsk->irqaction->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851
 852static void irq_setup_forced_threading(struct irqaction *new)
 853{
 854	if (!force_irqthreads)
 855		return;
 856	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
 857		return;
 
 
 858
 859	new->flags |= IRQF_ONESHOT;
 
 
 
 860
 861	if (!new->thread_fn) {
 862		set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
 863		new->thread_fn = new->handler;
 864		new->handler = irq_default_primary_handler;
 
 
 865	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868/*
 869 * Internal function to register an irqaction - typically used to
 870 * allocate special interrupts that are part of the architecture.
 
 
 
 
 
 
 
 
 
 
 871 */
 872static int
 873__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
 874{
 875	struct irqaction *old, **old_ptr;
 876	const char *old_name = NULL;
 877	unsigned long flags, thread_mask = 0;
 878	int ret, nested, shared = 0;
 879	cpumask_var_t mask;
 880
 881	if (!desc)
 882		return -EINVAL;
 883
 884	if (desc->irq_data.chip == &no_irq_chip)
 885		return -ENOSYS;
 886	if (!try_module_get(desc->owner))
 887		return -ENODEV;
 
 
 
 888	/*
 889	 * Some drivers like serial.c use request_irq() heavily,
 890	 * so we have to be careful not to interfere with a
 891	 * running system.
 892	 */
 893	if (new->flags & IRQF_SAMPLE_RANDOM) {
 894		/*
 895		 * This function might sleep, we want to call it first,
 896		 * outside of the atomic block.
 897		 * Yes, this might clear the entropy pool if the wrong
 898		 * driver is attempted to be loaded, without actually
 899		 * installing a new handler, but is this really a problem,
 900		 * only the sysadmin is able to do this.
 901		 */
 902		rand_initialize_irq(irq);
 903	}
 904
 905	/*
 906	 * Check whether the interrupt nests into another interrupt
 907	 * thread.
 908	 */
 909	nested = irq_settings_is_nested_thread(desc);
 910	if (nested) {
 911		if (!new->thread_fn) {
 912			ret = -EINVAL;
 913			goto out_mput;
 914		}
 915		/*
 916		 * Replace the primary handler which was provided from
 917		 * the driver for non nested interrupt handling by the
 918		 * dummy function which warns when called.
 919		 */
 920		new->handler = irq_nested_primary_handler;
 921	} else {
 922		if (irq_settings_can_thread(desc))
 923			irq_setup_forced_threading(new);
 
 
 
 924	}
 925
 926	/*
 927	 * Create a handler thread when a thread function is supplied
 928	 * and the interrupt does not nest into another interrupt
 929	 * thread.
 930	 */
 931	if (new->thread_fn && !nested) {
 932		struct task_struct *t;
 933
 934		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
 935				   new->name);
 936		if (IS_ERR(t)) {
 937			ret = PTR_ERR(t);
 938			goto out_mput;
 
 
 
 
 939		}
 940		/*
 941		 * We keep the reference to the task struct even if
 942		 * the thread dies to avoid that the interrupt code
 943		 * references an already freed task_struct.
 944		 */
 945		get_task_struct(t);
 946		new->thread = t;
 947	}
 948
 949	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 950		ret = -ENOMEM;
 951		goto out_thread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952	}
 953
 954	/*
 955	 * The following block of code has to be executed atomically
 
 
 
 956	 */
 957	raw_spin_lock_irqsave(&desc->lock, flags);
 958	old_ptr = &desc->action;
 959	old = *old_ptr;
 960	if (old) {
 961		/*
 962		 * Can't share interrupts unless both agree to and are
 963		 * the same type (level, edge, polarity). So both flag
 964		 * fields must have IRQF_SHARED set and the bits which
 965		 * set the trigger type must match. Also all must
 966		 * agree on ONESHOT.
 
 967		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968		if (!((old->flags & new->flags) & IRQF_SHARED) ||
 969		    ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
 970		    ((old->flags ^ new->flags) & IRQF_ONESHOT)) {
 971			old_name = old->name;
 
 
 
 
 972			goto mismatch;
 973		}
 974
 975		/* All handlers must agree on per-cpuness */
 976		if ((old->flags & IRQF_PERCPU) !=
 977		    (new->flags & IRQF_PERCPU))
 978			goto mismatch;
 979
 980		/* add new interrupt at end of irq queue */
 981		do {
 
 
 
 
 
 982			thread_mask |= old->thread_mask;
 983			old_ptr = &old->next;
 984			old = *old_ptr;
 985		} while (old);
 986		shared = 1;
 987	}
 988
 989	/*
 990	 * Setup the thread mask for this irqaction. Unlikely to have
 991	 * 32 resp 64 irqs sharing one line, but who knows.
 
 992	 */
 993	if (new->flags & IRQF_ONESHOT && thread_mask == ~0UL) {
 994		ret = -EBUSY;
 995		goto out_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	}
 997	new->thread_mask = 1 << ffz(thread_mask);
 998
 999	if (!shared) {
1000		init_waitqueue_head(&desc->wait_for_threads);
1001
1002		/* Setup the type (level, edge polarity) if configured: */
1003		if (new->flags & IRQF_TRIGGER_MASK) {
1004			ret = __irq_set_trigger(desc, irq,
1005					new->flags & IRQF_TRIGGER_MASK);
1006
1007			if (ret)
1008				goto out_mask;
1009		}
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1012				  IRQS_ONESHOT | IRQS_WAITING);
1013		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1014
1015		if (new->flags & IRQF_PERCPU) {
1016			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1017			irq_settings_set_per_cpu(desc);
 
 
1018		}
1019
 
 
 
1020		if (new->flags & IRQF_ONESHOT)
1021			desc->istate |= IRQS_ONESHOT;
1022
1023		if (irq_settings_can_autoenable(desc))
1024			irq_startup(desc);
1025		else
1026			/* Undo nested disables: */
1027			desc->depth = 1;
1028
1029		/* Exclude IRQ from balancing if requested */
1030		if (new->flags & IRQF_NOBALANCING) {
1031			irq_settings_set_no_balancing(desc);
1032			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1033		}
1034
1035		/* Set default affinity mask once everything is setup */
1036		setup_affinity(irq, desc, mask);
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	} else if (new->flags & IRQF_TRIGGER_MASK) {
1039		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1040		unsigned int omsk = irq_settings_get_trigger_mask(desc);
1041
1042		if (nmsk != omsk)
1043			/* hope the handler works with current  trigger mode */
1044			pr_warning("IRQ %d uses trigger mode %u; requested %u\n",
1045				   irq, nmsk, omsk);
1046	}
1047
1048	new->irq = irq;
1049	*old_ptr = new;
1050
 
 
1051	/* Reset broken irq detection when installing new handler */
1052	desc->irq_count = 0;
1053	desc->irqs_unhandled = 0;
1054
1055	/*
1056	 * Check whether we disabled the irq via the spurious handler
1057	 * before. Reenable it and give it another chance.
1058	 */
1059	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1060		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1061		__enable_irq(desc, irq, false);
1062	}
1063
1064	raw_spin_unlock_irqrestore(&desc->lock, flags);
 
 
 
 
1065
1066	/*
1067	 * Strictly no need to wake it up, but hung_task complains
1068	 * when no hard interrupt wakes the thread up.
1069	 */
1070	if (new->thread)
1071		wake_up_process(new->thread);
1072
1073	register_irq_proc(irq, desc);
1074	new->dir = NULL;
1075	register_handler_proc(irq, new);
1076	free_cpumask_var(mask);
1077
1078	return 0;
1079
1080mismatch:
 
 
 
1081#ifdef CONFIG_DEBUG_SHIRQ
1082	if (!(new->flags & IRQF_PROBE_SHARED)) {
1083		printk(KERN_ERR "IRQ handler type mismatch for IRQ %d\n", irq);
1084		if (old_name)
1085			printk(KERN_ERR "current handler: %s\n", old_name);
1086		dump_stack();
 
1087	}
1088#endif
1089	ret = -EBUSY;
1090
1091out_mask:
1092	raw_spin_unlock_irqrestore(&desc->lock, flags);
1093	free_cpumask_var(mask);
 
 
 
 
 
1094
1095out_thread:
1096	if (new->thread) {
1097		struct task_struct *t = new->thread;
1098
1099		new->thread = NULL;
1100		if (likely(!test_bit(IRQTF_DIED, &new->thread_flags)))
1101			kthread_stop(t);
1102		put_task_struct(t);
 
 
 
 
1103	}
1104out_mput:
1105	module_put(desc->owner);
1106	return ret;
1107}
1108
1109/**
1110 *	setup_irq - setup an interrupt
1111 *	@irq: Interrupt line to setup
1112 *	@act: irqaction for the interrupt
1113 *
1114 * Used to statically setup interrupts in the early boot process.
1115 */
1116int setup_irq(unsigned int irq, struct irqaction *act)
1117{
1118	int retval;
1119	struct irq_desc *desc = irq_to_desc(irq);
1120
1121	chip_bus_lock(desc);
1122	retval = __setup_irq(irq, desc, act);
1123	chip_bus_sync_unlock(desc);
1124
1125	return retval;
1126}
1127EXPORT_SYMBOL_GPL(setup_irq);
1128
1129 /*
1130 * Internal function to unregister an irqaction - used to free
1131 * regular and special interrupts that are part of the architecture.
1132 */
1133static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1134{
1135	struct irq_desc *desc = irq_to_desc(irq);
1136	struct irqaction *action, **action_ptr;
1137	unsigned long flags;
1138
1139	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1140
1141	if (!desc)
1142		return NULL;
1143
1144	raw_spin_lock_irqsave(&desc->lock, flags);
1145
1146	/*
1147	 * There can be multiple actions per IRQ descriptor, find the right
1148	 * one based on the dev_id:
1149	 */
1150	action_ptr = &desc->action;
1151	for (;;) {
1152		action = *action_ptr;
1153
1154		if (!action) {
1155			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1156			raw_spin_unlock_irqrestore(&desc->lock, flags);
1157
 
1158			return NULL;
1159		}
1160
1161		if (action->dev_id == dev_id)
1162			break;
1163		action_ptr = &action->next;
1164	}
1165
1166	/* Found it - now remove it from the list of entries: */
1167	*action_ptr = action->next;
1168
1169	/* Currently used only by UML, might disappear one day: */
1170#ifdef CONFIG_IRQ_RELEASE_METHOD
1171	if (desc->irq_data.chip->release)
1172		desc->irq_data.chip->release(irq, dev_id);
1173#endif
1174
1175	/* If this was the last handler, shut down the IRQ line: */
1176	if (!desc->action)
 
 
1177		irq_shutdown(desc);
 
1178
1179#ifdef CONFIG_SMP
1180	/* make sure affinity_hint is cleaned up */
1181	if (WARN_ON_ONCE(desc->affinity_hint))
1182		desc->affinity_hint = NULL;
1183#endif
1184
1185	raw_spin_unlock_irqrestore(&desc->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187	unregister_handler_proc(irq, action);
1188
1189	/* Make sure it's not being used on another CPU: */
1190	synchronize_irq(irq);
 
 
 
 
1191
1192#ifdef CONFIG_DEBUG_SHIRQ
1193	/*
1194	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1195	 * event to happen even now it's being freed, so let's make sure that
1196	 * is so by doing an extra call to the handler ....
1197	 *
1198	 * ( We do this after actually deregistering it, to make sure that a
1199	 *   'real' IRQ doesn't run in * parallel with our fake. )
1200	 */
1201	if (action->flags & IRQF_SHARED) {
1202		local_irq_save(flags);
1203		action->handler(irq, dev_id);
1204		local_irq_restore(flags);
1205	}
1206#endif
1207
 
 
 
 
 
 
1208	if (action->thread) {
1209		if (!test_bit(IRQTF_DIED, &action->thread_flags))
1210			kthread_stop(action->thread);
1211		put_task_struct(action->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212	}
1213
 
 
 
1214	module_put(desc->owner);
 
1215	return action;
1216}
1217
1218/**
1219 *	remove_irq - free an interrupt
1220 *	@irq: Interrupt line to free
1221 *	@act: irqaction for the interrupt
1222 *
1223 * Used to remove interrupts statically setup by the early boot process.
1224 */
1225void remove_irq(unsigned int irq, struct irqaction *act)
1226{
1227	__free_irq(irq, act->dev_id);
1228}
1229EXPORT_SYMBOL_GPL(remove_irq);
1230
1231/**
1232 *	free_irq - free an interrupt allocated with request_irq
1233 *	@irq: Interrupt line to free
1234 *	@dev_id: Device identity to free
1235 *
1236 *	Remove an interrupt handler. The handler is removed and if the
1237 *	interrupt line is no longer in use by any driver it is disabled.
1238 *	On a shared IRQ the caller must ensure the interrupt is disabled
1239 *	on the card it drives before calling this function. The function
1240 *	does not return until any executing interrupts for this IRQ
1241 *	have completed.
1242 *
1243 *	This function must not be called from interrupt context.
 
 
1244 */
1245void free_irq(unsigned int irq, void *dev_id)
1246{
1247	struct irq_desc *desc = irq_to_desc(irq);
 
 
1248
1249	if (!desc)
1250		return;
1251
1252#ifdef CONFIG_SMP
1253	if (WARN_ON(desc->affinity_notify))
1254		desc->affinity_notify = NULL;
1255#endif
1256
1257	chip_bus_lock(desc);
1258	kfree(__free_irq(irq, dev_id));
1259	chip_bus_sync_unlock(desc);
 
 
 
 
 
1260}
1261EXPORT_SYMBOL(free_irq);
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263/**
1264 *	request_threaded_irq - allocate an interrupt line
1265 *	@irq: Interrupt line to allocate
1266 *	@handler: Function to be called when the IRQ occurs.
1267 *		  Primary handler for threaded interrupts
1268 *		  If NULL and thread_fn != NULL the default
1269 *		  primary handler is installed
1270 *	@thread_fn: Function called from the irq handler thread
1271 *		    If NULL, no irq thread is created
1272 *	@irqflags: Interrupt type flags
1273 *	@devname: An ascii name for the claiming device
1274 *	@dev_id: A cookie passed back to the handler function
1275 *
1276 *	This call allocates interrupt resources and enables the
1277 *	interrupt line and IRQ handling. From the point this
1278 *	call is made your handler function may be invoked. Since
1279 *	your handler function must clear any interrupt the board
1280 *	raises, you must take care both to initialise your hardware
1281 *	and to set up the interrupt handler in the right order.
1282 *
1283 *	If you want to set up a threaded irq handler for your device
1284 *	then you need to supply @handler and @thread_fn. @handler ist
1285 *	still called in hard interrupt context and has to check
1286 *	whether the interrupt originates from the device. If yes it
1287 *	needs to disable the interrupt on the device and return
1288 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1289 *	@thread_fn. This split handler design is necessary to support
1290 *	shared interrupts.
1291 *
1292 *	Dev_id must be globally unique. Normally the address of the
1293 *	device data structure is used as the cookie. Since the handler
1294 *	receives this value it makes sense to use it.
1295 *
1296 *	If your interrupt is shared you must pass a non NULL dev_id
1297 *	as this is required when freeing the interrupt.
1298 *
1299 *	Flags:
1300 *
1301 *	IRQF_SHARED		Interrupt is shared
1302 *	IRQF_SAMPLE_RANDOM	The interrupt can be used for entropy
1303 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1304 *
1305 */
1306int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1307			 irq_handler_t thread_fn, unsigned long irqflags,
1308			 const char *devname, void *dev_id)
1309{
1310	struct irqaction *action;
1311	struct irq_desc *desc;
1312	int retval;
1313
 
 
 
1314	/*
1315	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1316	 * otherwise we'll have trouble later trying to figure out
1317	 * which interrupt is which (messes up the interrupt freeing
1318	 * logic etc).
 
 
 
 
 
 
 
1319	 */
1320	if ((irqflags & IRQF_SHARED) && !dev_id)
 
 
 
1321		return -EINVAL;
1322
1323	desc = irq_to_desc(irq);
1324	if (!desc)
1325		return -EINVAL;
1326
1327	if (!irq_settings_can_request(desc))
 
1328		return -EINVAL;
1329
1330	if (!handler) {
1331		if (!thread_fn)
1332			return -EINVAL;
1333		handler = irq_default_primary_handler;
1334	}
1335
1336	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1337	if (!action)
1338		return -ENOMEM;
1339
1340	action->handler = handler;
1341	action->thread_fn = thread_fn;
1342	action->flags = irqflags;
1343	action->name = devname;
1344	action->dev_id = dev_id;
1345
1346	chip_bus_lock(desc);
 
 
 
 
 
1347	retval = __setup_irq(irq, desc, action);
1348	chip_bus_sync_unlock(desc);
1349
1350	if (retval)
 
 
1351		kfree(action);
 
1352
1353#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1354	if (!retval && (irqflags & IRQF_SHARED)) {
1355		/*
1356		 * It's a shared IRQ -- the driver ought to be prepared for it
1357		 * to happen immediately, so let's make sure....
1358		 * We disable the irq to make sure that a 'real' IRQ doesn't
1359		 * run in parallel with our fake.
1360		 */
1361		unsigned long flags;
1362
1363		disable_irq(irq);
1364		local_irq_save(flags);
1365
1366		handler(irq, dev_id);
1367
1368		local_irq_restore(flags);
1369		enable_irq(irq);
1370	}
1371#endif
1372	return retval;
1373}
1374EXPORT_SYMBOL(request_threaded_irq);
1375
1376/**
1377 *	request_any_context_irq - allocate an interrupt line
1378 *	@irq: Interrupt line to allocate
1379 *	@handler: Function to be called when the IRQ occurs.
1380 *		  Threaded handler for threaded interrupts.
1381 *	@flags: Interrupt type flags
1382 *	@name: An ascii name for the claiming device
1383 *	@dev_id: A cookie passed back to the handler function
1384 *
1385 *	This call allocates interrupt resources and enables the
1386 *	interrupt line and IRQ handling. It selects either a
1387 *	hardirq or threaded handling method depending on the
1388 *	context.
1389 *
1390 *	On failure, it returns a negative value. On success,
1391 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1392 */
1393int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1394			    unsigned long flags, const char *name, void *dev_id)
1395{
1396	struct irq_desc *desc = irq_to_desc(irq);
1397	int ret;
1398
 
 
 
 
1399	if (!desc)
1400		return -EINVAL;
1401
1402	if (irq_settings_is_nested_thread(desc)) {
1403		ret = request_threaded_irq(irq, NULL, handler,
1404					   flags, name, dev_id);
1405		return !ret ? IRQC_IS_NESTED : ret;
1406	}
1407
1408	ret = request_irq(irq, handler, flags, name, dev_id);
1409	return !ret ? IRQC_IS_HARDIRQ : ret;
1410}
1411EXPORT_SYMBOL_GPL(request_any_context_irq);