Linux Audio

Check our new training course

Loading...
v6.9.4
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
   9 *
  10 * For licensing information, see the file 'LICENCE' in this directory.
  11 *
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/slab.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/crc32.h>
  20#include <linux/mtd/rawnand.h>
  21#include <linux/jiffies.h>
  22#include <linux/sched.h>
  23#include <linux/writeback.h>
  24
  25#include "nodelist.h"
  26
  27/* For testing write failures */
  28#undef BREAKME
  29#undef BREAKMEHEADER
  30
  31#ifdef BREAKME
  32static unsigned char *brokenbuf;
  33#endif
  34
  35#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
  36#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
  37
  38/* max. erase failures before we mark a block bad */
  39#define MAX_ERASE_FAILURES 	2
  40
  41struct jffs2_inodirty {
  42	uint32_t ino;
  43	struct jffs2_inodirty *next;
  44};
  45
  46static struct jffs2_inodirty inodirty_nomem;
  47
  48static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
  49{
  50	struct jffs2_inodirty *this = c->wbuf_inodes;
  51
  52	/* If a malloc failed, consider _everything_ dirty */
  53	if (this == &inodirty_nomem)
  54		return 1;
  55
  56	/* If ino == 0, _any_ non-GC writes mean 'yes' */
  57	if (this && !ino)
  58		return 1;
  59
  60	/* Look to see if the inode in question is pending in the wbuf */
  61	while (this) {
  62		if (this->ino == ino)
  63			return 1;
  64		this = this->next;
  65	}
  66	return 0;
  67}
  68
  69static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
  70{
  71	struct jffs2_inodirty *this;
  72
  73	this = c->wbuf_inodes;
  74
  75	if (this != &inodirty_nomem) {
  76		while (this) {
  77			struct jffs2_inodirty *next = this->next;
  78			kfree(this);
  79			this = next;
  80		}
  81	}
  82	c->wbuf_inodes = NULL;
  83}
  84
  85static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
  86{
  87	struct jffs2_inodirty *new;
  88
  89	/* Schedule delayed write-buffer write-out */
  90	jffs2_dirty_trigger(c);
  91
  92	if (jffs2_wbuf_pending_for_ino(c, ino))
  93		return;
  94
  95	new = kmalloc(sizeof(*new), GFP_KERNEL);
  96	if (!new) {
  97		jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
  98		jffs2_clear_wbuf_ino_list(c);
  99		c->wbuf_inodes = &inodirty_nomem;
 100		return;
 101	}
 102	new->ino = ino;
 103	new->next = c->wbuf_inodes;
 104	c->wbuf_inodes = new;
 105	return;
 106}
 107
 108static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
 109{
 110	struct list_head *this, *next;
 111	static int n;
 112
 113	if (list_empty(&c->erasable_pending_wbuf_list))
 114		return;
 115
 116	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
 117		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 118
 119		jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
 120			  jeb->offset);
 121		list_del(this);
 122		if ((jiffies + (n++)) & 127) {
 123			/* Most of the time, we just erase it immediately. Otherwise we
 124			   spend ages scanning it on mount, etc. */
 125			jffs2_dbg(1, "...and adding to erase_pending_list\n");
 126			list_add_tail(&jeb->list, &c->erase_pending_list);
 127			c->nr_erasing_blocks++;
 128			jffs2_garbage_collect_trigger(c);
 129		} else {
 130			/* Sometimes, however, we leave it elsewhere so it doesn't get
 131			   immediately reused, and we spread the load a bit. */
 132			jffs2_dbg(1, "...and adding to erasable_list\n");
 133			list_add_tail(&jeb->list, &c->erasable_list);
 134		}
 135	}
 136}
 137
 138#define REFILE_NOTEMPTY 0
 139#define REFILE_ANYWAY   1
 140
 141static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
 142{
 143	jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
 144
 145	/* File the existing block on the bad_used_list.... */
 146	if (c->nextblock == jeb)
 147		c->nextblock = NULL;
 148	else /* Not sure this should ever happen... need more coffee */
 149		list_del(&jeb->list);
 150	if (jeb->first_node) {
 151		jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
 152			  jeb->offset);
 153		list_add(&jeb->list, &c->bad_used_list);
 154	} else {
 155		BUG_ON(allow_empty == REFILE_NOTEMPTY);
 156		/* It has to have had some nodes or we couldn't be here */
 157		jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
 158			  jeb->offset);
 159		list_add(&jeb->list, &c->erase_pending_list);
 160		c->nr_erasing_blocks++;
 161		jffs2_garbage_collect_trigger(c);
 162	}
 163
 164	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
 165		uint32_t oldfree = jeb->free_size;
 166
 167		jffs2_link_node_ref(c, jeb, 
 168				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
 169				    oldfree, NULL);
 170		/* convert to wasted */
 171		c->wasted_size += oldfree;
 172		jeb->wasted_size += oldfree;
 173		c->dirty_size -= oldfree;
 174		jeb->dirty_size -= oldfree;
 175	}
 176
 177	jffs2_dbg_dump_block_lists_nolock(c);
 178	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 179	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 180}
 181
 182static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
 183							    struct jffs2_inode_info *f,
 184							    struct jffs2_raw_node_ref *raw,
 185							    union jffs2_node_union *node)
 186{
 187	struct jffs2_node_frag *frag;
 188	struct jffs2_full_dirent *fd;
 189
 190	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
 191		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
 192
 193	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
 194	       je16_to_cpu(node->u.magic) != 0);
 195
 196	switch (je16_to_cpu(node->u.nodetype)) {
 197	case JFFS2_NODETYPE_INODE:
 198		if (f->metadata && f->metadata->raw == raw) {
 199			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
 200			return &f->metadata->raw;
 201		}
 202		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
 203		BUG_ON(!frag);
 204		/* Find a frag which refers to the full_dnode we want to modify */
 205		while (!frag->node || frag->node->raw != raw) {
 206			frag = frag_next(frag);
 207			BUG_ON(!frag);
 208		}
 209		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
 210		return &frag->node->raw;
 211
 212	case JFFS2_NODETYPE_DIRENT:
 213		for (fd = f->dents; fd; fd = fd->next) {
 214			if (fd->raw == raw) {
 215				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
 216				return &fd->raw;
 217			}
 218		}
 219		BUG();
 220
 221	default:
 222		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
 223			    je16_to_cpu(node->u.nodetype));
 224		break;
 225	}
 226	return NULL;
 227}
 228
 229#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 230static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
 231			      uint32_t ofs)
 232{
 233	int ret;
 234	size_t retlen;
 235	char *eccstr;
 236
 237	ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
 238	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
 239		pr_warn("%s(): Read back of page at %08x failed: %d\n",
 240			__func__, c->wbuf_ofs, ret);
 241		return ret;
 242	} else if (retlen != c->wbuf_pagesize) {
 243		pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
 244			__func__, ofs, retlen, c->wbuf_pagesize);
 245		return -EIO;
 246	}
 247	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
 248		return 0;
 249
 250	if (ret == -EUCLEAN)
 251		eccstr = "corrected";
 252	else if (ret == -EBADMSG)
 253		eccstr = "correction failed";
 254	else
 255		eccstr = "OK or unused";
 256
 257	pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
 258		eccstr, c->wbuf_ofs);
 259	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 260		       c->wbuf, c->wbuf_pagesize, 0);
 261
 262	pr_warn("Read back:\n");
 263	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 264		       c->wbuf_verify, c->wbuf_pagesize, 0);
 265
 266	return -EIO;
 267}
 268#else
 269#define jffs2_verify_write(c,b,o) (0)
 270#endif
 271
 272/* Recover from failure to write wbuf. Recover the nodes up to the
 273 * wbuf, not the one which we were starting to try to write. */
 274
 275static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
 276{
 277	struct jffs2_eraseblock *jeb, *new_jeb;
 278	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
 279	size_t retlen;
 280	int ret;
 281	int nr_refile = 0;
 282	unsigned char *buf;
 283	uint32_t start, end, ofs, len;
 284
 285	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 286
 287	spin_lock(&c->erase_completion_lock);
 288	if (c->wbuf_ofs % c->mtd->erasesize)
 289		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
 290	else
 291		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 292	spin_unlock(&c->erase_completion_lock);
 293
 294	BUG_ON(!ref_obsolete(jeb->last_node));
 295
 296	/* Find the first node to be recovered, by skipping over every
 297	   node which ends before the wbuf starts, or which is obsolete. */
 298	for (next = raw = jeb->first_node; next; raw = next) {
 299		next = ref_next(raw);
 300
 301		if (ref_obsolete(raw) || 
 302		    (next && ref_offset(next) <= c->wbuf_ofs)) {
 303			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
 304				    ref_offset(raw), ref_flags(raw),
 305				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
 306				    c->wbuf_ofs);
 307			continue;
 308		}
 309		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
 310			    ref_offset(raw), ref_flags(raw),
 311			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
 312
 313		first_raw = raw;
 314		break;
 315	}
 316
 317	if (!first_raw) {
 318		/* All nodes were obsolete. Nothing to recover. */
 319		jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
 320		c->wbuf_len = 0;
 321		return;
 322	}
 323
 324	start = ref_offset(first_raw);
 325	end = ref_offset(jeb->last_node);
 326	nr_refile = 1;
 327
 328	/* Count the number of refs which need to be copied */
 329	while ((raw = ref_next(raw)) != jeb->last_node)
 330		nr_refile++;
 331
 332	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
 333		    start, end, end - start, nr_refile);
 334
 335	buf = NULL;
 336	if (start < c->wbuf_ofs) {
 337		/* First affected node was already partially written.
 338		 * Attempt to reread the old data into our buffer. */
 339
 340		buf = kmalloc(end - start, GFP_KERNEL);
 341		if (!buf) {
 342			pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
 343
 344			goto read_failed;
 345		}
 346
 347		/* Do the read... */
 348		ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
 349			       buf);
 350
 351		/* ECC recovered ? */
 352		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
 353		    (retlen == c->wbuf_ofs - start))
 354			ret = 0;
 355
 356		if (ret || retlen != c->wbuf_ofs - start) {
 357			pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
 358
 359			kfree(buf);
 360			buf = NULL;
 361		read_failed:
 362			first_raw = ref_next(first_raw);
 363			nr_refile--;
 364			while (first_raw && ref_obsolete(first_raw)) {
 365				first_raw = ref_next(first_raw);
 366				nr_refile--;
 367			}
 368
 369			/* If this was the only node to be recovered, give up */
 370			if (!first_raw) {
 371				c->wbuf_len = 0;
 372				return;
 373			}
 374
 375			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
 376			start = ref_offset(first_raw);
 377			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
 378				    start, end, end - start, nr_refile);
 379
 380		} else {
 381			/* Read succeeded. Copy the remaining data from the wbuf */
 382			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
 383		}
 384	}
 385	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
 386	   Either 'buf' contains the data, or we find it in the wbuf */
 387
 388	/* ... and get an allocation of space from a shiny new block instead */
 389	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
 390	if (ret) {
 391		pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
 392		kfree(buf);
 393		return;
 394	}
 395
 396	/* The summary is not recovered, so it must be disabled for this erase block */
 397	jffs2_sum_disable_collecting(c->summary);
 398
 399	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
 400	if (ret) {
 401		pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
 402		kfree(buf);
 403		return;
 404	}
 405
 406	ofs = write_ofs(c);
 407
 408	if (end-start >= c->wbuf_pagesize) {
 409		/* Need to do another write immediately, but it's possible
 410		   that this is just because the wbuf itself is completely
 411		   full, and there's nothing earlier read back from the
 412		   flash. Hence 'buf' isn't necessarily what we're writing
 413		   from. */
 414		unsigned char *rewrite_buf = buf?:c->wbuf;
 415		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
 416
 417		jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
 418			  towrite, ofs);
 419
 420#ifdef BREAKMEHEADER
 421		static int breakme;
 422		if (breakme++ == 20) {
 423			pr_notice("Faking write error at 0x%08x\n", ofs);
 424			breakme = 0;
 425			mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
 
 426			ret = -EIO;
 427		} else
 428#endif
 429			ret = mtd_write(c->mtd, ofs, towrite, &retlen,
 430					rewrite_buf);
 431
 432		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
 433			/* Argh. We tried. Really we did. */
 434			pr_crit("Recovery of wbuf failed due to a second write error\n");
 435			kfree(buf);
 436
 437			if (retlen)
 438				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
 439
 440			return;
 441		}
 442		pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
 443
 444		c->wbuf_len = (end - start) - towrite;
 445		c->wbuf_ofs = ofs + towrite;
 446		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
 447		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
 448	} else {
 449		/* OK, now we're left with the dregs in whichever buffer we're using */
 450		if (buf) {
 451			memcpy(c->wbuf, buf, end-start);
 452		} else {
 453			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
 454		}
 455		c->wbuf_ofs = ofs;
 456		c->wbuf_len = end - start;
 457	}
 458
 459	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
 460	new_jeb = &c->blocks[ofs / c->sector_size];
 461
 462	spin_lock(&c->erase_completion_lock);
 463	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
 464		uint32_t rawlen = ref_totlen(c, jeb, raw);
 465		struct jffs2_inode_cache *ic;
 466		struct jffs2_raw_node_ref *new_ref;
 467		struct jffs2_raw_node_ref **adjust_ref = NULL;
 468		struct jffs2_inode_info *f = NULL;
 469
 470		jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
 471			  rawlen, ref_offset(raw), ref_flags(raw), ofs);
 472
 473		ic = jffs2_raw_ref_to_ic(raw);
 474
 475		/* Ick. This XATTR mess should be fixed shortly... */
 476		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 477			struct jffs2_xattr_datum *xd = (void *)ic;
 478			BUG_ON(xd->node != raw);
 479			adjust_ref = &xd->node;
 480			raw->next_in_ino = NULL;
 481			ic = NULL;
 482		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
 483			struct jffs2_xattr_datum *xr = (void *)ic;
 484			BUG_ON(xr->node != raw);
 485			adjust_ref = &xr->node;
 486			raw->next_in_ino = NULL;
 487			ic = NULL;
 488		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
 489			struct jffs2_raw_node_ref **p = &ic->nodes;
 490
 491			/* Remove the old node from the per-inode list */
 492			while (*p && *p != (void *)ic) {
 493				if (*p == raw) {
 494					(*p) = (raw->next_in_ino);
 495					raw->next_in_ino = NULL;
 496					break;
 497				}
 498				p = &((*p)->next_in_ino);
 499			}
 500
 501			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
 502				/* If it's an in-core inode, then we have to adjust any
 503				   full_dirent or full_dnode structure to point to the
 504				   new version instead of the old */
 505				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
 506				if (IS_ERR(f)) {
 507					/* Should never happen; it _must_ be present */
 508					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
 509						    ic->ino, PTR_ERR(f));
 510					BUG();
 511				}
 512				/* We don't lock f->sem. There's a number of ways we could
 513				   end up in here with it already being locked, and nobody's
 514				   going to modify it on us anyway because we hold the
 515				   alloc_sem. We're only changing one ->raw pointer too,
 516				   which we can get away with without upsetting readers. */
 517				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
 518								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
 519			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
 520					    ic->state != INO_STATE_CHECKEDABSENT &&
 521					    ic->state != INO_STATE_GC)) {
 522				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
 523				BUG();
 524			}
 525		}
 526
 527		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
 528
 529		if (adjust_ref) {
 530			BUG_ON(*adjust_ref != raw);
 531			*adjust_ref = new_ref;
 532		}
 533		if (f)
 534			jffs2_gc_release_inode(c, f);
 535
 536		if (!ref_obsolete(raw)) {
 537			jeb->dirty_size += rawlen;
 538			jeb->used_size  -= rawlen;
 539			c->dirty_size += rawlen;
 540			c->used_size -= rawlen;
 541			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
 542			BUG_ON(raw->next_in_ino);
 543		}
 544		ofs += rawlen;
 545	}
 546
 547	kfree(buf);
 548
 549	/* Fix up the original jeb now it's on the bad_list */
 550	if (first_raw == jeb->first_node) {
 551		jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
 552			  jeb->offset);
 553		list_move(&jeb->list, &c->erase_pending_list);
 554		c->nr_erasing_blocks++;
 555		jffs2_garbage_collect_trigger(c);
 556	}
 557
 558	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 559	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 560
 561	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
 562	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
 563
 564	spin_unlock(&c->erase_completion_lock);
 565
 566	jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
 567		  c->wbuf_ofs, c->wbuf_len);
 568
 569}
 570
 571/* Meaning of pad argument:
 572   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
 573   1: Pad, do not adjust nextblock free_size
 574   2: Pad, adjust nextblock free_size
 575*/
 576#define NOPAD		0
 577#define PAD_NOACCOUNT	1
 578#define PAD_ACCOUNTING	2
 579
 580static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
 581{
 582	struct jffs2_eraseblock *wbuf_jeb;
 583	int ret;
 584	size_t retlen;
 585
 586	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
 587	   del_timer() the timer we never initialised. */
 588	if (!jffs2_is_writebuffered(c))
 589		return 0;
 590
 591	if (!mutex_is_locked(&c->alloc_sem)) {
 592		pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
 
 593		BUG();
 594	}
 595
 596	if (!c->wbuf_len)	/* already checked c->wbuf above */
 597		return 0;
 598
 599	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 600	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
 601		return -ENOMEM;
 602
 603	/* claim remaining space on the page
 604	   this happens, if we have a change to a new block,
 605	   or if fsync forces us to flush the writebuffer.
 606	   if we have a switch to next page, we will not have
 607	   enough remaining space for this.
 608	*/
 609	if (pad ) {
 610		c->wbuf_len = PAD(c->wbuf_len);
 611
 612		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
 613		   with 8 byte page size */
 614		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
 615
 616		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
 617			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
 618			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 619			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
 620			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
 621			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
 622		}
 623	}
 624	/* else jffs2_flash_writev has actually filled in the rest of the
 625	   buffer for us, and will deal with the node refs etc. later. */
 626
 627#ifdef BREAKME
 628	static int breakme;
 629	if (breakme++ == 20) {
 630		pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
 631		breakme = 0;
 632		mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
 633			  brokenbuf);
 634		ret = -EIO;
 635	} else
 636#endif
 637
 638		ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
 639				&retlen, c->wbuf);
 640
 641	if (ret) {
 642		pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
 643		goto wfail;
 644	} else if (retlen != c->wbuf_pagesize) {
 645		pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
 646			retlen, c->wbuf_pagesize);
 647		ret = -EIO;
 648		goto wfail;
 649	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
 650	wfail:
 651		jffs2_wbuf_recover(c);
 652
 653		return ret;
 654	}
 655
 656	/* Adjust free size of the block if we padded. */
 657	if (pad) {
 658		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
 659
 660		jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
 661			  (wbuf_jeb == c->nextblock) ? "next" : "",
 662			  wbuf_jeb->offset);
 663
 664		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
 665		   padded. If there is less free space in the block than that,
 666		   something screwed up */
 667		if (wbuf_jeb->free_size < waste) {
 668			pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
 669				c->wbuf_ofs, c->wbuf_len, waste);
 670			pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
 671				wbuf_jeb->offset, wbuf_jeb->free_size);
 672			BUG();
 673		}
 674
 675		spin_lock(&c->erase_completion_lock);
 676
 677		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
 678		/* FIXME: that made it count as dirty. Convert to wasted */
 679		wbuf_jeb->dirty_size -= waste;
 680		c->dirty_size -= waste;
 681		wbuf_jeb->wasted_size += waste;
 682		c->wasted_size += waste;
 683	} else
 684		spin_lock(&c->erase_completion_lock);
 685
 686	/* Stick any now-obsoleted blocks on the erase_pending_list */
 687	jffs2_refile_wbuf_blocks(c);
 688	jffs2_clear_wbuf_ino_list(c);
 689	spin_unlock(&c->erase_completion_lock);
 690
 691	memset(c->wbuf,0xff,c->wbuf_pagesize);
 692	/* adjust write buffer offset, else we get a non contiguous write bug */
 693	c->wbuf_ofs += c->wbuf_pagesize;
 694	c->wbuf_len = 0;
 695	return 0;
 696}
 697
 698/* Trigger garbage collection to flush the write-buffer.
 699   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
 700   outstanding. If ino arg non-zero, do it only if a write for the
 701   given inode is outstanding. */
 702int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
 703{
 704	uint32_t old_wbuf_ofs;
 705	uint32_t old_wbuf_len;
 706	int ret = 0;
 707
 708	jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
 709
 710	if (!c->wbuf)
 711		return 0;
 712
 713	mutex_lock(&c->alloc_sem);
 714	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
 715		jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
 716		mutex_unlock(&c->alloc_sem);
 717		return 0;
 718	}
 719
 720	old_wbuf_ofs = c->wbuf_ofs;
 721	old_wbuf_len = c->wbuf_len;
 722
 723	if (c->unchecked_size) {
 724		/* GC won't make any progress for a while */
 725		jffs2_dbg(1, "%s(): padding. Not finished checking\n",
 726			  __func__);
 727		down_write(&c->wbuf_sem);
 728		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 729		/* retry flushing wbuf in case jffs2_wbuf_recover
 730		   left some data in the wbuf */
 731		if (ret)
 732			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 733		up_write(&c->wbuf_sem);
 734	} else while (old_wbuf_len &&
 735		      old_wbuf_ofs == c->wbuf_ofs) {
 736
 737		mutex_unlock(&c->alloc_sem);
 738
 739		jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
 740
 741		ret = jffs2_garbage_collect_pass(c);
 742		if (ret) {
 743			/* GC failed. Flush it with padding instead */
 744			mutex_lock(&c->alloc_sem);
 745			down_write(&c->wbuf_sem);
 746			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 747			/* retry flushing wbuf in case jffs2_wbuf_recover
 748			   left some data in the wbuf */
 749			if (ret)
 750				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 751			up_write(&c->wbuf_sem);
 752			break;
 753		}
 754		mutex_lock(&c->alloc_sem);
 755	}
 756
 757	jffs2_dbg(1, "%s(): ends...\n", __func__);
 758
 759	mutex_unlock(&c->alloc_sem);
 760	return ret;
 761}
 762
 763/* Pad write-buffer to end and write it, wasting space. */
 764int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 765{
 766	int ret;
 767
 768	if (!c->wbuf)
 769		return 0;
 770
 771	down_write(&c->wbuf_sem);
 772	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 773	/* retry - maybe wbuf recover left some data in wbuf. */
 774	if (ret)
 775		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 776	up_write(&c->wbuf_sem);
 777
 778	return ret;
 779}
 780
 781static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
 782			      size_t len)
 783{
 784	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
 785		return 0;
 786
 787	if (len > (c->wbuf_pagesize - c->wbuf_len))
 788		len = c->wbuf_pagesize - c->wbuf_len;
 789	memcpy(c->wbuf + c->wbuf_len, buf, len);
 790	c->wbuf_len += (uint32_t) len;
 791	return len;
 792}
 793
 794int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
 795		       unsigned long count, loff_t to, size_t *retlen,
 796		       uint32_t ino)
 797{
 798	struct jffs2_eraseblock *jeb;
 799	size_t wbuf_retlen, donelen = 0;
 800	uint32_t outvec_to = to;
 801	int ret, invec;
 802
 803	/* If not writebuffered flash, don't bother */
 804	if (!jffs2_is_writebuffered(c))
 805		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 806
 807	down_write(&c->wbuf_sem);
 808
 809	/* If wbuf_ofs is not initialized, set it to target address */
 810	if (c->wbuf_ofs == 0xFFFFFFFF) {
 811		c->wbuf_ofs = PAGE_DIV(to);
 812		c->wbuf_len = PAGE_MOD(to);
 813		memset(c->wbuf,0xff,c->wbuf_pagesize);
 814	}
 815
 816	/*
 817	 * Sanity checks on target address.  It's permitted to write
 818	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
 819	 * write at the beginning of a new erase block. Anything else,
 820	 * and you die.  New block starts at xxx000c (0-b = block
 821	 * header)
 822	 */
 823	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
 824		/* It's a write to a new block */
 825		if (c->wbuf_len) {
 826			jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
 827				  __func__, (unsigned long)to, c->wbuf_ofs);
 
 828			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 829			if (ret)
 830				goto outerr;
 831		}
 832		/* set pointer to new block */
 833		c->wbuf_ofs = PAGE_DIV(to);
 834		c->wbuf_len = PAGE_MOD(to);
 835	}
 836
 837	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
 838		/* We're not writing immediately after the writebuffer. Bad. */
 839		pr_crit("%s(): Non-contiguous write to %08lx\n",
 840			__func__, (unsigned long)to);
 841		if (c->wbuf_len)
 842			pr_crit("wbuf was previously %08x-%08x\n",
 843				c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
 844		BUG();
 845	}
 846
 847	/* adjust alignment offset */
 848	if (c->wbuf_len != PAGE_MOD(to)) {
 849		c->wbuf_len = PAGE_MOD(to);
 850		/* take care of alignment to next page */
 851		if (!c->wbuf_len) {
 852			c->wbuf_len = c->wbuf_pagesize;
 853			ret = __jffs2_flush_wbuf(c, NOPAD);
 854			if (ret)
 855				goto outerr;
 856		}
 857	}
 858
 859	for (invec = 0; invec < count; invec++) {
 860		int vlen = invecs[invec].iov_len;
 861		uint8_t *v = invecs[invec].iov_base;
 862
 863		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 864
 865		if (c->wbuf_len == c->wbuf_pagesize) {
 866			ret = __jffs2_flush_wbuf(c, NOPAD);
 867			if (ret)
 868				goto outerr;
 869		}
 870		vlen -= wbuf_retlen;
 871		outvec_to += wbuf_retlen;
 872		donelen += wbuf_retlen;
 873		v += wbuf_retlen;
 874
 875		if (vlen >= c->wbuf_pagesize) {
 876			ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
 877					&wbuf_retlen, v);
 878			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
 879				goto outfile;
 880
 881			vlen -= wbuf_retlen;
 882			outvec_to += wbuf_retlen;
 883			c->wbuf_ofs = outvec_to;
 884			donelen += wbuf_retlen;
 885			v += wbuf_retlen;
 886		}
 887
 888		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 889		if (c->wbuf_len == c->wbuf_pagesize) {
 890			ret = __jffs2_flush_wbuf(c, NOPAD);
 891			if (ret)
 892				goto outerr;
 893		}
 894
 895		outvec_to += wbuf_retlen;
 896		donelen += wbuf_retlen;
 897	}
 898
 899	/*
 900	 * If there's a remainder in the wbuf and it's a non-GC write,
 901	 * remember that the wbuf affects this ino
 902	 */
 903	*retlen = donelen;
 904
 905	if (jffs2_sum_active()) {
 906		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
 907		if (res)
 908			return res;
 909	}
 910
 911	if (c->wbuf_len && ino)
 912		jffs2_wbuf_dirties_inode(c, ino);
 913
 914	ret = 0;
 915	up_write(&c->wbuf_sem);
 916	return ret;
 917
 918outfile:
 919	/*
 920	 * At this point we have no problem, c->wbuf is empty. However
 921	 * refile nextblock to avoid writing again to same address.
 922	 */
 923
 924	spin_lock(&c->erase_completion_lock);
 925
 926	jeb = &c->blocks[outvec_to / c->sector_size];
 927	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 928
 929	spin_unlock(&c->erase_completion_lock);
 930
 931outerr:
 932	*retlen = 0;
 933	up_write(&c->wbuf_sem);
 934	return ret;
 935}
 936
 937/*
 938 *	This is the entry for flash write.
 939 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
 940*/
 941int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
 942		      size_t *retlen, const u_char *buf)
 943{
 944	struct kvec vecs[1];
 945
 946	if (!jffs2_is_writebuffered(c))
 947		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
 948
 949	vecs[0].iov_base = (unsigned char *) buf;
 950	vecs[0].iov_len = len;
 951	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
 952}
 953
 954/*
 955	Handle readback from writebuffer and ECC failure return
 956*/
 957int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
 958{
 959	loff_t	orbf = 0, owbf = 0, lwbf = 0;
 960	int	ret;
 961
 962	if (!jffs2_is_writebuffered(c))
 963		return mtd_read(c->mtd, ofs, len, retlen, buf);
 964
 965	/* Read flash */
 966	down_read(&c->wbuf_sem);
 967	ret = mtd_read(c->mtd, ofs, len, retlen, buf);
 968
 969	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
 970		if (ret == -EBADMSG)
 971			pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
 972				len, ofs);
 973		/*
 974		 * We have the raw data without ECC correction in the buffer,
 975		 * maybe we are lucky and all data or parts are correct. We
 976		 * check the node.  If data are corrupted node check will sort
 977		 * it out.  We keep this block, it will fail on write or erase
 978		 * and the we mark it bad. Or should we do that now? But we
 979		 * should give him a chance.  Maybe we had a system crash or
 980		 * power loss before the ecc write or a erase was completed.
 981		 * So we return success. :)
 982		 */
 983		ret = 0;
 984	}
 985
 986	/* if no writebuffer available or write buffer empty, return */
 987	if (!c->wbuf_pagesize || !c->wbuf_len)
 988		goto exit;
 989
 990	/* if we read in a different block, return */
 991	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
 992		goto exit;
 993
 994	if (ofs >= c->wbuf_ofs) {
 995		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
 996		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
 997			goto exit;
 998		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
 999		if (lwbf > len)
1000			lwbf = len;
1001	} else {
1002		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
1003		if (orbf > len)			/* is write beyond write buffer ? */
1004			goto exit;
1005		lwbf = len - orbf;		/* number of bytes to copy */
1006		if (lwbf > c->wbuf_len)
1007			lwbf = c->wbuf_len;
1008	}
1009	if (lwbf > 0)
1010		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1011
1012exit:
1013	up_read(&c->wbuf_sem);
1014	return ret;
1015}
1016
1017#define NR_OOB_SCAN_PAGES 4
1018
1019/* For historical reasons we use only 8 bytes for OOB clean marker */
1020#define OOB_CM_SIZE 8
1021
1022static const struct jffs2_unknown_node oob_cleanmarker =
1023{
1024	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1025	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1026	.totlen = constant_cpu_to_je32(8)
1027};
1028
1029/*
1030 * Check, if the out of band area is empty. This function knows about the clean
1031 * marker and if it is present in OOB, treats the OOB as empty anyway.
1032 */
1033int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034			  struct jffs2_eraseblock *jeb, int mode)
1035{
1036	int i, ret;
1037	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1038	struct mtd_oob_ops ops = { };
1039
1040	ops.mode = MTD_OPS_AUTO_OOB;
1041	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1042	ops.oobbuf = c->oobbuf;
1043	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1044	ops.datbuf = NULL;
1045
1046	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1047	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1048		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1049		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1050		if (!ret || mtd_is_bitflip(ret))
 
1051			ret = -EIO;
1052		return ret;
1053	}
1054
1055	for(i = 0; i < ops.ooblen; i++) {
1056		if (mode && i < cmlen)
1057			/* Yeah, we know about the cleanmarker */
1058			continue;
1059
1060		if (ops.oobbuf[i] != 0xFF) {
1061			jffs2_dbg(2, "Found %02x at %x in OOB for "
1062				  "%08x\n", ops.oobbuf[i], i, jeb->offset);
1063			return 1;
1064		}
1065	}
1066
1067	return 0;
1068}
1069
1070/*
1071 * Check for a valid cleanmarker.
1072 * Returns: 0 if a valid cleanmarker was found
1073 *	    1 if no cleanmarker was found
1074 *	    negative error code if an error occurred
1075 */
1076int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077				 struct jffs2_eraseblock *jeb)
1078{
1079	struct mtd_oob_ops ops = { };
1080	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1081
1082	ops.mode = MTD_OPS_AUTO_OOB;
1083	ops.ooblen = cmlen;
1084	ops.oobbuf = c->oobbuf;
1085	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1086	ops.datbuf = NULL;
1087
1088	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1089	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1090		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1091		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1092		if (!ret || mtd_is_bitflip(ret))
 
1093			ret = -EIO;
1094		return ret;
1095	}
1096
1097	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1098}
1099
1100int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1101				 struct jffs2_eraseblock *jeb)
1102{
1103	int ret;
1104	struct mtd_oob_ops ops = { };
1105	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1106
1107	ops.mode = MTD_OPS_AUTO_OOB;
1108	ops.ooblen = cmlen;
1109	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1110	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1111	ops.datbuf = NULL;
1112
1113	ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1114	if (ret || ops.oobretlen != ops.ooblen) {
1115		pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1116		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
 
1117		if (!ret)
1118			ret = -EIO;
1119		return ret;
1120	}
1121
1122	return 0;
1123}
1124
1125/*
1126 * On NAND we try to mark this block bad. If the block was erased more
1127 * than MAX_ERASE_FAILURES we mark it finally bad.
1128 * Don't care about failures. This block remains on the erase-pending
1129 * or badblock list as long as nobody manipulates the flash with
1130 * a bootloader or something like that.
1131 */
1132
1133int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1134{
1135	int 	ret;
1136
1137	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1138	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1139		return 0;
1140
1141	pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1142	ret = mtd_block_markbad(c->mtd, bad_offset);
 
 
 
1143
1144	if (ret) {
1145		jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1146			  __func__, jeb->offset, ret);
1147		return ret;
1148	}
1149	return 1;
1150}
1151
1152static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
1153{
1154	struct delayed_work *dwork;
1155
1156	dwork = to_delayed_work(work);
1157	return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
1158}
1159
1160static void delayed_wbuf_sync(struct work_struct *work)
1161{
1162	struct jffs2_sb_info *c = work_to_sb(work);
1163	struct super_block *sb = OFNI_BS_2SFFJ(c);
1164
1165	if (!sb_rdonly(sb)) {
1166		jffs2_dbg(1, "%s()\n", __func__);
1167		jffs2_flush_wbuf_gc(c, 0);
1168	}
1169}
1170
1171void jffs2_dirty_trigger(struct jffs2_sb_info *c)
1172{
1173	struct super_block *sb = OFNI_BS_2SFFJ(c);
1174	unsigned long delay;
1175
1176	if (sb_rdonly(sb))
1177		return;
1178
1179	delay = msecs_to_jiffies(dirty_writeback_interval * 10);
1180	if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay))
1181		jffs2_dbg(1, "%s()\n", __func__);
1182}
1183
1184int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1185{
 
 
1186	if (!c->mtd->oobsize)
1187		return 0;
1188
1189	/* Cleanmarker is out-of-band, so inline size zero */
1190	c->cleanmarker_size = 0;
1191
1192	if (c->mtd->oobavail == 0) {
1193		pr_err("inconsistent device description\n");
1194		return -EINVAL;
1195	}
1196
1197	jffs2_dbg(1, "using OOB on NAND\n");
1198
1199	c->oobavail = c->mtd->oobavail;
1200
1201	/* Initialise write buffer */
1202	init_rwsem(&c->wbuf_sem);
1203	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1204	c->wbuf_pagesize = c->mtd->writesize;
1205	c->wbuf_ofs = 0xFFFFFFFF;
1206
1207	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1208	if (!c->wbuf)
1209		return -ENOMEM;
1210
1211	c->oobbuf = kmalloc_array(NR_OOB_SCAN_PAGES, c->oobavail, GFP_KERNEL);
1212	if (!c->oobbuf) {
1213		kfree(c->wbuf);
1214		return -ENOMEM;
1215	}
1216
1217#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1218	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1219	if (!c->wbuf_verify) {
1220		kfree(c->oobbuf);
1221		kfree(c->wbuf);
1222		return -ENOMEM;
1223	}
1224#endif
1225	return 0;
1226}
1227
1228void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1229{
1230#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1231	kfree(c->wbuf_verify);
1232#endif
1233	kfree(c->wbuf);
1234	kfree(c->oobbuf);
1235}
1236
1237int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1238	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1239
1240	/* Initialize write buffer */
1241	init_rwsem(&c->wbuf_sem);
1242	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
 
1243	c->wbuf_pagesize =  c->mtd->erasesize;
1244
1245	/* Find a suitable c->sector_size
1246	 * - Not too much sectors
1247	 * - Sectors have to be at least 4 K + some bytes
1248	 * - All known dataflashes have erase sizes of 528 or 1056
1249	 * - we take at least 8 eraseblocks and want to have at least 8K size
1250	 * - The concatenation should be a power of 2
1251	*/
1252
1253	c->sector_size = 8 * c->mtd->erasesize;
1254
1255	while (c->sector_size < 8192) {
1256		c->sector_size *= 2;
1257	}
1258
1259	/* It may be necessary to adjust the flash size */
1260	c->flash_size = c->mtd->size;
1261
1262	if ((c->flash_size % c->sector_size) != 0) {
1263		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1264		pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1265	}
1266
1267	c->wbuf_ofs = 0xFFFFFFFF;
1268	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1269	if (!c->wbuf)
1270		return -ENOMEM;
1271
1272#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1273	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1274	if (!c->wbuf_verify) {
 
1275		kfree(c->wbuf);
1276		return -ENOMEM;
1277	}
1278#endif
1279
1280	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1281		c->wbuf_pagesize, c->sector_size);
1282
1283	return 0;
1284}
1285
1286void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1287#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1288	kfree(c->wbuf_verify);
1289#endif
1290	kfree(c->wbuf);
1291}
1292
1293int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1294	/* Cleanmarker currently occupies whole programming regions,
1295	 * either one or 2 for 8Byte STMicro flashes. */
1296	c->cleanmarker_size = max(16u, c->mtd->writesize);
1297
1298	/* Initialize write buffer */
1299	init_rwsem(&c->wbuf_sem);
1300	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1301
1302	c->wbuf_pagesize = c->mtd->writesize;
1303	c->wbuf_ofs = 0xFFFFFFFF;
1304
1305	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1306	if (!c->wbuf)
1307		return -ENOMEM;
1308
1309#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1310	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1311	if (!c->wbuf_verify) {
1312		kfree(c->wbuf);
1313		return -ENOMEM;
1314	}
1315#endif
1316	return 0;
1317}
1318
1319void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1320#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1321	kfree(c->wbuf_verify);
1322#endif
1323	kfree(c->wbuf);
1324}
1325
1326int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1327	c->cleanmarker_size = 0;
1328
1329	if (c->mtd->writesize == 1)
1330		/* We do not need write-buffer */
1331		return 0;
1332
1333	init_rwsem(&c->wbuf_sem);
1334	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1335
1336	c->wbuf_pagesize =  c->mtd->writesize;
1337	c->wbuf_ofs = 0xFFFFFFFF;
1338	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1339	if (!c->wbuf)
1340		return -ENOMEM;
1341
1342	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1343		c->wbuf_pagesize, c->sector_size);
1344
1345	return 0;
1346}
1347
1348void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1349	kfree(c->wbuf);
1350}
v3.1
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
   9 *
  10 * For licensing information, see the file 'LICENCE' in this directory.
  11 *
  12 */
  13
 
 
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/crc32.h>
  18#include <linux/mtd/nand.h>
  19#include <linux/jiffies.h>
  20#include <linux/sched.h>
 
  21
  22#include "nodelist.h"
  23
  24/* For testing write failures */
  25#undef BREAKME
  26#undef BREAKMEHEADER
  27
  28#ifdef BREAKME
  29static unsigned char *brokenbuf;
  30#endif
  31
  32#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
  33#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
  34
  35/* max. erase failures before we mark a block bad */
  36#define MAX_ERASE_FAILURES 	2
  37
  38struct jffs2_inodirty {
  39	uint32_t ino;
  40	struct jffs2_inodirty *next;
  41};
  42
  43static struct jffs2_inodirty inodirty_nomem;
  44
  45static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
  46{
  47	struct jffs2_inodirty *this = c->wbuf_inodes;
  48
  49	/* If a malloc failed, consider _everything_ dirty */
  50	if (this == &inodirty_nomem)
  51		return 1;
  52
  53	/* If ino == 0, _any_ non-GC writes mean 'yes' */
  54	if (this && !ino)
  55		return 1;
  56
  57	/* Look to see if the inode in question is pending in the wbuf */
  58	while (this) {
  59		if (this->ino == ino)
  60			return 1;
  61		this = this->next;
  62	}
  63	return 0;
  64}
  65
  66static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
  67{
  68	struct jffs2_inodirty *this;
  69
  70	this = c->wbuf_inodes;
  71
  72	if (this != &inodirty_nomem) {
  73		while (this) {
  74			struct jffs2_inodirty *next = this->next;
  75			kfree(this);
  76			this = next;
  77		}
  78	}
  79	c->wbuf_inodes = NULL;
  80}
  81
  82static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
  83{
  84	struct jffs2_inodirty *new;
  85
  86	/* Mark the superblock dirty so that kupdated will flush... */
  87	jffs2_dirty_trigger(c);
  88
  89	if (jffs2_wbuf_pending_for_ino(c, ino))
  90		return;
  91
  92	new = kmalloc(sizeof(*new), GFP_KERNEL);
  93	if (!new) {
  94		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
  95		jffs2_clear_wbuf_ino_list(c);
  96		c->wbuf_inodes = &inodirty_nomem;
  97		return;
  98	}
  99	new->ino = ino;
 100	new->next = c->wbuf_inodes;
 101	c->wbuf_inodes = new;
 102	return;
 103}
 104
 105static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
 106{
 107	struct list_head *this, *next;
 108	static int n;
 109
 110	if (list_empty(&c->erasable_pending_wbuf_list))
 111		return;
 112
 113	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
 114		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 115
 116		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
 
 117		list_del(this);
 118		if ((jiffies + (n++)) & 127) {
 119			/* Most of the time, we just erase it immediately. Otherwise we
 120			   spend ages scanning it on mount, etc. */
 121			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
 122			list_add_tail(&jeb->list, &c->erase_pending_list);
 123			c->nr_erasing_blocks++;
 124			jffs2_garbage_collect_trigger(c);
 125		} else {
 126			/* Sometimes, however, we leave it elsewhere so it doesn't get
 127			   immediately reused, and we spread the load a bit. */
 128			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
 129			list_add_tail(&jeb->list, &c->erasable_list);
 130		}
 131	}
 132}
 133
 134#define REFILE_NOTEMPTY 0
 135#define REFILE_ANYWAY   1
 136
 137static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
 138{
 139	D1(printk("About to refile bad block at %08x\n", jeb->offset));
 140
 141	/* File the existing block on the bad_used_list.... */
 142	if (c->nextblock == jeb)
 143		c->nextblock = NULL;
 144	else /* Not sure this should ever happen... need more coffee */
 145		list_del(&jeb->list);
 146	if (jeb->first_node) {
 147		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
 
 148		list_add(&jeb->list, &c->bad_used_list);
 149	} else {
 150		BUG_ON(allow_empty == REFILE_NOTEMPTY);
 151		/* It has to have had some nodes or we couldn't be here */
 152		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
 
 153		list_add(&jeb->list, &c->erase_pending_list);
 154		c->nr_erasing_blocks++;
 155		jffs2_garbage_collect_trigger(c);
 156	}
 157
 158	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
 159		uint32_t oldfree = jeb->free_size;
 160
 161		jffs2_link_node_ref(c, jeb, 
 162				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
 163				    oldfree, NULL);
 164		/* convert to wasted */
 165		c->wasted_size += oldfree;
 166		jeb->wasted_size += oldfree;
 167		c->dirty_size -= oldfree;
 168		jeb->dirty_size -= oldfree;
 169	}
 170
 171	jffs2_dbg_dump_block_lists_nolock(c);
 172	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 173	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 174}
 175
 176static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
 177							    struct jffs2_inode_info *f,
 178							    struct jffs2_raw_node_ref *raw,
 179							    union jffs2_node_union *node)
 180{
 181	struct jffs2_node_frag *frag;
 182	struct jffs2_full_dirent *fd;
 183
 184	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
 185		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
 186
 187	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
 188	       je16_to_cpu(node->u.magic) != 0);
 189
 190	switch (je16_to_cpu(node->u.nodetype)) {
 191	case JFFS2_NODETYPE_INODE:
 192		if (f->metadata && f->metadata->raw == raw) {
 193			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
 194			return &f->metadata->raw;
 195		}
 196		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
 197		BUG_ON(!frag);
 198		/* Find a frag which refers to the full_dnode we want to modify */
 199		while (!frag->node || frag->node->raw != raw) {
 200			frag = frag_next(frag);
 201			BUG_ON(!frag);
 202		}
 203		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
 204		return &frag->node->raw;
 205
 206	case JFFS2_NODETYPE_DIRENT:
 207		for (fd = f->dents; fd; fd = fd->next) {
 208			if (fd->raw == raw) {
 209				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
 210				return &fd->raw;
 211			}
 212		}
 213		BUG();
 214
 215	default:
 216		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
 217			    je16_to_cpu(node->u.nodetype));
 218		break;
 219	}
 220	return NULL;
 221}
 222
 223#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 224static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
 225			      uint32_t ofs)
 226{
 227	int ret;
 228	size_t retlen;
 229	char *eccstr;
 230
 231	ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
 232	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
 233		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
 
 234		return ret;
 235	} else if (retlen != c->wbuf_pagesize) {
 236		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
 
 237		return -EIO;
 238	}
 239	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
 240		return 0;
 241
 242	if (ret == -EUCLEAN)
 243		eccstr = "corrected";
 244	else if (ret == -EBADMSG)
 245		eccstr = "correction failed";
 246	else
 247		eccstr = "OK or unused";
 248
 249	printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
 250	       eccstr, c->wbuf_ofs);
 251	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 252		       c->wbuf, c->wbuf_pagesize, 0);
 253
 254	printk(KERN_WARNING "Read back:\n");
 255	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 256		       c->wbuf_verify, c->wbuf_pagesize, 0);
 257
 258	return -EIO;
 259}
 260#else
 261#define jffs2_verify_write(c,b,o) (0)
 262#endif
 263
 264/* Recover from failure to write wbuf. Recover the nodes up to the
 265 * wbuf, not the one which we were starting to try to write. */
 266
 267static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
 268{
 269	struct jffs2_eraseblock *jeb, *new_jeb;
 270	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
 271	size_t retlen;
 272	int ret;
 273	int nr_refile = 0;
 274	unsigned char *buf;
 275	uint32_t start, end, ofs, len;
 276
 277	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 278
 279	spin_lock(&c->erase_completion_lock);
 280	if (c->wbuf_ofs % c->mtd->erasesize)
 281		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
 282	else
 283		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 284	spin_unlock(&c->erase_completion_lock);
 285
 286	BUG_ON(!ref_obsolete(jeb->last_node));
 287
 288	/* Find the first node to be recovered, by skipping over every
 289	   node which ends before the wbuf starts, or which is obsolete. */
 290	for (next = raw = jeb->first_node; next; raw = next) {
 291		next = ref_next(raw);
 292
 293		if (ref_obsolete(raw) || 
 294		    (next && ref_offset(next) <= c->wbuf_ofs)) {
 295			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
 296				    ref_offset(raw), ref_flags(raw),
 297				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
 298				    c->wbuf_ofs);
 299			continue;
 300		}
 301		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
 302			    ref_offset(raw), ref_flags(raw),
 303			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
 304
 305		first_raw = raw;
 306		break;
 307	}
 308
 309	if (!first_raw) {
 310		/* All nodes were obsolete. Nothing to recover. */
 311		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
 312		c->wbuf_len = 0;
 313		return;
 314	}
 315
 316	start = ref_offset(first_raw);
 317	end = ref_offset(jeb->last_node);
 318	nr_refile = 1;
 319
 320	/* Count the number of refs which need to be copied */
 321	while ((raw = ref_next(raw)) != jeb->last_node)
 322		nr_refile++;
 323
 324	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
 325		    start, end, end - start, nr_refile);
 326
 327	buf = NULL;
 328	if (start < c->wbuf_ofs) {
 329		/* First affected node was already partially written.
 330		 * Attempt to reread the old data into our buffer. */
 331
 332		buf = kmalloc(end - start, GFP_KERNEL);
 333		if (!buf) {
 334			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
 335
 336			goto read_failed;
 337		}
 338
 339		/* Do the read... */
 340		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
 
 341
 342		/* ECC recovered ? */
 343		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
 344		    (retlen == c->wbuf_ofs - start))
 345			ret = 0;
 346
 347		if (ret || retlen != c->wbuf_ofs - start) {
 348			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
 349
 350			kfree(buf);
 351			buf = NULL;
 352		read_failed:
 353			first_raw = ref_next(first_raw);
 354			nr_refile--;
 355			while (first_raw && ref_obsolete(first_raw)) {
 356				first_raw = ref_next(first_raw);
 357				nr_refile--;
 358			}
 359
 360			/* If this was the only node to be recovered, give up */
 361			if (!first_raw) {
 362				c->wbuf_len = 0;
 363				return;
 364			}
 365
 366			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
 367			start = ref_offset(first_raw);
 368			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
 369				    start, end, end - start, nr_refile);
 370
 371		} else {
 372			/* Read succeeded. Copy the remaining data from the wbuf */
 373			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
 374		}
 375	}
 376	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
 377	   Either 'buf' contains the data, or we find it in the wbuf */
 378
 379	/* ... and get an allocation of space from a shiny new block instead */
 380	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
 381	if (ret) {
 382		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
 383		kfree(buf);
 384		return;
 385	}
 386
 387	/* The summary is not recovered, so it must be disabled for this erase block */
 388	jffs2_sum_disable_collecting(c->summary);
 389
 390	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
 391	if (ret) {
 392		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
 393		kfree(buf);
 394		return;
 395	}
 396
 397	ofs = write_ofs(c);
 398
 399	if (end-start >= c->wbuf_pagesize) {
 400		/* Need to do another write immediately, but it's possible
 401		   that this is just because the wbuf itself is completely
 402		   full, and there's nothing earlier read back from the
 403		   flash. Hence 'buf' isn't necessarily what we're writing
 404		   from. */
 405		unsigned char *rewrite_buf = buf?:c->wbuf;
 406		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
 407
 408		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
 409			  towrite, ofs));
 410
 411#ifdef BREAKMEHEADER
 412		static int breakme;
 413		if (breakme++ == 20) {
 414			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
 415			breakme = 0;
 416			c->mtd->write(c->mtd, ofs, towrite, &retlen,
 417				      brokenbuf);
 418			ret = -EIO;
 419		} else
 420#endif
 421			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
 422					    rewrite_buf);
 423
 424		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
 425			/* Argh. We tried. Really we did. */
 426			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
 427			kfree(buf);
 428
 429			if (retlen)
 430				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
 431
 432			return;
 433		}
 434		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
 435
 436		c->wbuf_len = (end - start) - towrite;
 437		c->wbuf_ofs = ofs + towrite;
 438		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
 439		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
 440	} else {
 441		/* OK, now we're left with the dregs in whichever buffer we're using */
 442		if (buf) {
 443			memcpy(c->wbuf, buf, end-start);
 444		} else {
 445			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
 446		}
 447		c->wbuf_ofs = ofs;
 448		c->wbuf_len = end - start;
 449	}
 450
 451	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
 452	new_jeb = &c->blocks[ofs / c->sector_size];
 453
 454	spin_lock(&c->erase_completion_lock);
 455	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
 456		uint32_t rawlen = ref_totlen(c, jeb, raw);
 457		struct jffs2_inode_cache *ic;
 458		struct jffs2_raw_node_ref *new_ref;
 459		struct jffs2_raw_node_ref **adjust_ref = NULL;
 460		struct jffs2_inode_info *f = NULL;
 461
 462		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
 463			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
 464
 465		ic = jffs2_raw_ref_to_ic(raw);
 466
 467		/* Ick. This XATTR mess should be fixed shortly... */
 468		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 469			struct jffs2_xattr_datum *xd = (void *)ic;
 470			BUG_ON(xd->node != raw);
 471			adjust_ref = &xd->node;
 472			raw->next_in_ino = NULL;
 473			ic = NULL;
 474		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
 475			struct jffs2_xattr_datum *xr = (void *)ic;
 476			BUG_ON(xr->node != raw);
 477			adjust_ref = &xr->node;
 478			raw->next_in_ino = NULL;
 479			ic = NULL;
 480		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
 481			struct jffs2_raw_node_ref **p = &ic->nodes;
 482
 483			/* Remove the old node from the per-inode list */
 484			while (*p && *p != (void *)ic) {
 485				if (*p == raw) {
 486					(*p) = (raw->next_in_ino);
 487					raw->next_in_ino = NULL;
 488					break;
 489				}
 490				p = &((*p)->next_in_ino);
 491			}
 492
 493			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
 494				/* If it's an in-core inode, then we have to adjust any
 495				   full_dirent or full_dnode structure to point to the
 496				   new version instead of the old */
 497				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
 498				if (IS_ERR(f)) {
 499					/* Should never happen; it _must_ be present */
 500					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
 501						    ic->ino, PTR_ERR(f));
 502					BUG();
 503				}
 504				/* We don't lock f->sem. There's a number of ways we could
 505				   end up in here with it already being locked, and nobody's
 506				   going to modify it on us anyway because we hold the
 507				   alloc_sem. We're only changing one ->raw pointer too,
 508				   which we can get away with without upsetting readers. */
 509				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
 510								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
 511			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
 512					    ic->state != INO_STATE_CHECKEDABSENT &&
 513					    ic->state != INO_STATE_GC)) {
 514				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
 515				BUG();
 516			}
 517		}
 518
 519		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
 520
 521		if (adjust_ref) {
 522			BUG_ON(*adjust_ref != raw);
 523			*adjust_ref = new_ref;
 524		}
 525		if (f)
 526			jffs2_gc_release_inode(c, f);
 527
 528		if (!ref_obsolete(raw)) {
 529			jeb->dirty_size += rawlen;
 530			jeb->used_size  -= rawlen;
 531			c->dirty_size += rawlen;
 532			c->used_size -= rawlen;
 533			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
 534			BUG_ON(raw->next_in_ino);
 535		}
 536		ofs += rawlen;
 537	}
 538
 539	kfree(buf);
 540
 541	/* Fix up the original jeb now it's on the bad_list */
 542	if (first_raw == jeb->first_node) {
 543		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
 
 544		list_move(&jeb->list, &c->erase_pending_list);
 545		c->nr_erasing_blocks++;
 546		jffs2_garbage_collect_trigger(c);
 547	}
 548
 549	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 550	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 551
 552	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
 553	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
 554
 555	spin_unlock(&c->erase_completion_lock);
 556
 557	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
 
 558
 559}
 560
 561/* Meaning of pad argument:
 562   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
 563   1: Pad, do not adjust nextblock free_size
 564   2: Pad, adjust nextblock free_size
 565*/
 566#define NOPAD		0
 567#define PAD_NOACCOUNT	1
 568#define PAD_ACCOUNTING	2
 569
 570static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
 571{
 572	struct jffs2_eraseblock *wbuf_jeb;
 573	int ret;
 574	size_t retlen;
 575
 576	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
 577	   del_timer() the timer we never initialised. */
 578	if (!jffs2_is_writebuffered(c))
 579		return 0;
 580
 581	if (mutex_trylock(&c->alloc_sem)) {
 582		mutex_unlock(&c->alloc_sem);
 583		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
 584		BUG();
 585	}
 586
 587	if (!c->wbuf_len)	/* already checked c->wbuf above */
 588		return 0;
 589
 590	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 591	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
 592		return -ENOMEM;
 593
 594	/* claim remaining space on the page
 595	   this happens, if we have a change to a new block,
 596	   or if fsync forces us to flush the writebuffer.
 597	   if we have a switch to next page, we will not have
 598	   enough remaining space for this.
 599	*/
 600	if (pad ) {
 601		c->wbuf_len = PAD(c->wbuf_len);
 602
 603		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
 604		   with 8 byte page size */
 605		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
 606
 607		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
 608			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
 609			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 610			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
 611			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
 612			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
 613		}
 614	}
 615	/* else jffs2_flash_writev has actually filled in the rest of the
 616	   buffer for us, and will deal with the node refs etc. later. */
 617
 618#ifdef BREAKME
 619	static int breakme;
 620	if (breakme++ == 20) {
 621		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
 622		breakme = 0;
 623		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
 624			      brokenbuf);
 625		ret = -EIO;
 626	} else
 627#endif
 628
 629		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
 
 630
 631	if (ret) {
 632		printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
 633		goto wfail;
 634	} else if (retlen != c->wbuf_pagesize) {
 635		printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
 636		       retlen, c->wbuf_pagesize);
 637		ret = -EIO;
 638		goto wfail;
 639	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
 640	wfail:
 641		jffs2_wbuf_recover(c);
 642
 643		return ret;
 644	}
 645
 646	/* Adjust free size of the block if we padded. */
 647	if (pad) {
 648		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
 649
 650		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
 651			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
 
 652
 653		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
 654		   padded. If there is less free space in the block than that,
 655		   something screwed up */
 656		if (wbuf_jeb->free_size < waste) {
 657			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
 658			       c->wbuf_ofs, c->wbuf_len, waste);
 659			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
 660			       wbuf_jeb->offset, wbuf_jeb->free_size);
 661			BUG();
 662		}
 663
 664		spin_lock(&c->erase_completion_lock);
 665
 666		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
 667		/* FIXME: that made it count as dirty. Convert to wasted */
 668		wbuf_jeb->dirty_size -= waste;
 669		c->dirty_size -= waste;
 670		wbuf_jeb->wasted_size += waste;
 671		c->wasted_size += waste;
 672	} else
 673		spin_lock(&c->erase_completion_lock);
 674
 675	/* Stick any now-obsoleted blocks on the erase_pending_list */
 676	jffs2_refile_wbuf_blocks(c);
 677	jffs2_clear_wbuf_ino_list(c);
 678	spin_unlock(&c->erase_completion_lock);
 679
 680	memset(c->wbuf,0xff,c->wbuf_pagesize);
 681	/* adjust write buffer offset, else we get a non contiguous write bug */
 682	c->wbuf_ofs += c->wbuf_pagesize;
 683	c->wbuf_len = 0;
 684	return 0;
 685}
 686
 687/* Trigger garbage collection to flush the write-buffer.
 688   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
 689   outstanding. If ino arg non-zero, do it only if a write for the
 690   given inode is outstanding. */
 691int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
 692{
 693	uint32_t old_wbuf_ofs;
 694	uint32_t old_wbuf_len;
 695	int ret = 0;
 696
 697	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
 698
 699	if (!c->wbuf)
 700		return 0;
 701
 702	mutex_lock(&c->alloc_sem);
 703	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
 704		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
 705		mutex_unlock(&c->alloc_sem);
 706		return 0;
 707	}
 708
 709	old_wbuf_ofs = c->wbuf_ofs;
 710	old_wbuf_len = c->wbuf_len;
 711
 712	if (c->unchecked_size) {
 713		/* GC won't make any progress for a while */
 714		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
 
 715		down_write(&c->wbuf_sem);
 716		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 717		/* retry flushing wbuf in case jffs2_wbuf_recover
 718		   left some data in the wbuf */
 719		if (ret)
 720			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 721		up_write(&c->wbuf_sem);
 722	} else while (old_wbuf_len &&
 723		      old_wbuf_ofs == c->wbuf_ofs) {
 724
 725		mutex_unlock(&c->alloc_sem);
 726
 727		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
 728
 729		ret = jffs2_garbage_collect_pass(c);
 730		if (ret) {
 731			/* GC failed. Flush it with padding instead */
 732			mutex_lock(&c->alloc_sem);
 733			down_write(&c->wbuf_sem);
 734			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 735			/* retry flushing wbuf in case jffs2_wbuf_recover
 736			   left some data in the wbuf */
 737			if (ret)
 738				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 739			up_write(&c->wbuf_sem);
 740			break;
 741		}
 742		mutex_lock(&c->alloc_sem);
 743	}
 744
 745	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
 746
 747	mutex_unlock(&c->alloc_sem);
 748	return ret;
 749}
 750
 751/* Pad write-buffer to end and write it, wasting space. */
 752int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 753{
 754	int ret;
 755
 756	if (!c->wbuf)
 757		return 0;
 758
 759	down_write(&c->wbuf_sem);
 760	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 761	/* retry - maybe wbuf recover left some data in wbuf. */
 762	if (ret)
 763		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 764	up_write(&c->wbuf_sem);
 765
 766	return ret;
 767}
 768
 769static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
 770			      size_t len)
 771{
 772	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
 773		return 0;
 774
 775	if (len > (c->wbuf_pagesize - c->wbuf_len))
 776		len = c->wbuf_pagesize - c->wbuf_len;
 777	memcpy(c->wbuf + c->wbuf_len, buf, len);
 778	c->wbuf_len += (uint32_t) len;
 779	return len;
 780}
 781
 782int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
 783		       unsigned long count, loff_t to, size_t *retlen,
 784		       uint32_t ino)
 785{
 786	struct jffs2_eraseblock *jeb;
 787	size_t wbuf_retlen, donelen = 0;
 788	uint32_t outvec_to = to;
 789	int ret, invec;
 790
 791	/* If not writebuffered flash, don't bother */
 792	if (!jffs2_is_writebuffered(c))
 793		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 794
 795	down_write(&c->wbuf_sem);
 796
 797	/* If wbuf_ofs is not initialized, set it to target address */
 798	if (c->wbuf_ofs == 0xFFFFFFFF) {
 799		c->wbuf_ofs = PAGE_DIV(to);
 800		c->wbuf_len = PAGE_MOD(to);
 801		memset(c->wbuf,0xff,c->wbuf_pagesize);
 802	}
 803
 804	/*
 805	 * Sanity checks on target address.  It's permitted to write
 806	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
 807	 * write at the beginning of a new erase block. Anything else,
 808	 * and you die.  New block starts at xxx000c (0-b = block
 809	 * header)
 810	 */
 811	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
 812		/* It's a write to a new block */
 813		if (c->wbuf_len) {
 814			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
 815				  "causes flush of wbuf at 0x%08x\n",
 816				  (unsigned long)to, c->wbuf_ofs));
 817			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 818			if (ret)
 819				goto outerr;
 820		}
 821		/* set pointer to new block */
 822		c->wbuf_ofs = PAGE_DIV(to);
 823		c->wbuf_len = PAGE_MOD(to);
 824	}
 825
 826	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
 827		/* We're not writing immediately after the writebuffer. Bad. */
 828		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
 829		       "to %08lx\n", (unsigned long)to);
 830		if (c->wbuf_len)
 831			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
 832			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
 833		BUG();
 834	}
 835
 836	/* adjust alignment offset */
 837	if (c->wbuf_len != PAGE_MOD(to)) {
 838		c->wbuf_len = PAGE_MOD(to);
 839		/* take care of alignment to next page */
 840		if (!c->wbuf_len) {
 841			c->wbuf_len = c->wbuf_pagesize;
 842			ret = __jffs2_flush_wbuf(c, NOPAD);
 843			if (ret)
 844				goto outerr;
 845		}
 846	}
 847
 848	for (invec = 0; invec < count; invec++) {
 849		int vlen = invecs[invec].iov_len;
 850		uint8_t *v = invecs[invec].iov_base;
 851
 852		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 853
 854		if (c->wbuf_len == c->wbuf_pagesize) {
 855			ret = __jffs2_flush_wbuf(c, NOPAD);
 856			if (ret)
 857				goto outerr;
 858		}
 859		vlen -= wbuf_retlen;
 860		outvec_to += wbuf_retlen;
 861		donelen += wbuf_retlen;
 862		v += wbuf_retlen;
 863
 864		if (vlen >= c->wbuf_pagesize) {
 865			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
 866					    &wbuf_retlen, v);
 867			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
 868				goto outfile;
 869
 870			vlen -= wbuf_retlen;
 871			outvec_to += wbuf_retlen;
 872			c->wbuf_ofs = outvec_to;
 873			donelen += wbuf_retlen;
 874			v += wbuf_retlen;
 875		}
 876
 877		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 878		if (c->wbuf_len == c->wbuf_pagesize) {
 879			ret = __jffs2_flush_wbuf(c, NOPAD);
 880			if (ret)
 881				goto outerr;
 882		}
 883
 884		outvec_to += wbuf_retlen;
 885		donelen += wbuf_retlen;
 886	}
 887
 888	/*
 889	 * If there's a remainder in the wbuf and it's a non-GC write,
 890	 * remember that the wbuf affects this ino
 891	 */
 892	*retlen = donelen;
 893
 894	if (jffs2_sum_active()) {
 895		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
 896		if (res)
 897			return res;
 898	}
 899
 900	if (c->wbuf_len && ino)
 901		jffs2_wbuf_dirties_inode(c, ino);
 902
 903	ret = 0;
 904	up_write(&c->wbuf_sem);
 905	return ret;
 906
 907outfile:
 908	/*
 909	 * At this point we have no problem, c->wbuf is empty. However
 910	 * refile nextblock to avoid writing again to same address.
 911	 */
 912
 913	spin_lock(&c->erase_completion_lock);
 914
 915	jeb = &c->blocks[outvec_to / c->sector_size];
 916	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 917
 918	spin_unlock(&c->erase_completion_lock);
 919
 920outerr:
 921	*retlen = 0;
 922	up_write(&c->wbuf_sem);
 923	return ret;
 924}
 925
 926/*
 927 *	This is the entry for flash write.
 928 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
 929*/
 930int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
 931		      size_t *retlen, const u_char *buf)
 932{
 933	struct kvec vecs[1];
 934
 935	if (!jffs2_is_writebuffered(c))
 936		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
 937
 938	vecs[0].iov_base = (unsigned char *) buf;
 939	vecs[0].iov_len = len;
 940	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
 941}
 942
 943/*
 944	Handle readback from writebuffer and ECC failure return
 945*/
 946int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
 947{
 948	loff_t	orbf = 0, owbf = 0, lwbf = 0;
 949	int	ret;
 950
 951	if (!jffs2_is_writebuffered(c))
 952		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
 953
 954	/* Read flash */
 955	down_read(&c->wbuf_sem);
 956	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
 957
 958	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
 959		if (ret == -EBADMSG)
 960			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
 961			       " returned ECC error\n", len, ofs);
 962		/*
 963		 * We have the raw data without ECC correction in the buffer,
 964		 * maybe we are lucky and all data or parts are correct. We
 965		 * check the node.  If data are corrupted node check will sort
 966		 * it out.  We keep this block, it will fail on write or erase
 967		 * and the we mark it bad. Or should we do that now? But we
 968		 * should give him a chance.  Maybe we had a system crash or
 969		 * power loss before the ecc write or a erase was completed.
 970		 * So we return success. :)
 971		 */
 972		ret = 0;
 973	}
 974
 975	/* if no writebuffer available or write buffer empty, return */
 976	if (!c->wbuf_pagesize || !c->wbuf_len)
 977		goto exit;
 978
 979	/* if we read in a different block, return */
 980	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
 981		goto exit;
 982
 983	if (ofs >= c->wbuf_ofs) {
 984		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
 985		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
 986			goto exit;
 987		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
 988		if (lwbf > len)
 989			lwbf = len;
 990	} else {
 991		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
 992		if (orbf > len)			/* is write beyond write buffer ? */
 993			goto exit;
 994		lwbf = len - orbf;		/* number of bytes to copy */
 995		if (lwbf > c->wbuf_len)
 996			lwbf = c->wbuf_len;
 997	}
 998	if (lwbf > 0)
 999		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1000
1001exit:
1002	up_read(&c->wbuf_sem);
1003	return ret;
1004}
1005
1006#define NR_OOB_SCAN_PAGES 4
1007
1008/* For historical reasons we use only 8 bytes for OOB clean marker */
1009#define OOB_CM_SIZE 8
1010
1011static const struct jffs2_unknown_node oob_cleanmarker =
1012{
1013	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1014	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1015	.totlen = constant_cpu_to_je32(8)
1016};
1017
1018/*
1019 * Check, if the out of band area is empty. This function knows about the clean
1020 * marker and if it is present in OOB, treats the OOB as empty anyway.
1021 */
1022int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1023			  struct jffs2_eraseblock *jeb, int mode)
1024{
1025	int i, ret;
1026	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1027	struct mtd_oob_ops ops;
1028
1029	ops.mode = MTD_OOB_AUTO;
1030	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1031	ops.oobbuf = c->oobbuf;
1032	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1033	ops.datbuf = NULL;
1034
1035	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1036	if (ret || ops.oobretlen != ops.ooblen) {
1037		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1038				" bytes, read %zd bytes, error %d\n",
1039				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1040		if (!ret)
1041			ret = -EIO;
1042		return ret;
1043	}
1044
1045	for(i = 0; i < ops.ooblen; i++) {
1046		if (mode && i < cmlen)
1047			/* Yeah, we know about the cleanmarker */
1048			continue;
1049
1050		if (ops.oobbuf[i] != 0xFF) {
1051			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1052				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
1053			return 1;
1054		}
1055	}
1056
1057	return 0;
1058}
1059
1060/*
1061 * Check for a valid cleanmarker.
1062 * Returns: 0 if a valid cleanmarker was found
1063 *	    1 if no cleanmarker was found
1064 *	    negative error code if an error occurred
1065 */
1066int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1067				 struct jffs2_eraseblock *jeb)
1068{
1069	struct mtd_oob_ops ops;
1070	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1071
1072	ops.mode = MTD_OOB_AUTO;
1073	ops.ooblen = cmlen;
1074	ops.oobbuf = c->oobbuf;
1075	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1076	ops.datbuf = NULL;
1077
1078	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1079	if (ret || ops.oobretlen != ops.ooblen) {
1080		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1081				" bytes, read %zd bytes, error %d\n",
1082				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1083		if (!ret)
1084			ret = -EIO;
1085		return ret;
1086	}
1087
1088	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1089}
1090
1091int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1092				 struct jffs2_eraseblock *jeb)
1093{
1094	int ret;
1095	struct mtd_oob_ops ops;
1096	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1097
1098	ops.mode = MTD_OOB_AUTO;
1099	ops.ooblen = cmlen;
1100	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1101	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1102	ops.datbuf = NULL;
1103
1104	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1105	if (ret || ops.oobretlen != ops.ooblen) {
1106		printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1107				" bytes, read %zd bytes, error %d\n",
1108				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1109		if (!ret)
1110			ret = -EIO;
1111		return ret;
1112	}
1113
1114	return 0;
1115}
1116
1117/*
1118 * On NAND we try to mark this block bad. If the block was erased more
1119 * than MAX_ERASE_FAILURES we mark it finally bad.
1120 * Don't care about failures. This block remains on the erase-pending
1121 * or badblock list as long as nobody manipulates the flash with
1122 * a bootloader or something like that.
1123 */
1124
1125int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1126{
1127	int 	ret;
1128
1129	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1130	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1131		return 0;
1132
1133	if (!c->mtd->block_markbad)
1134		return 1; // What else can we do?
1135
1136	printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1137	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1138
1139	if (ret) {
1140		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
 
1141		return ret;
1142	}
1143	return 1;
1144}
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1147{
1148	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1149
1150	if (!c->mtd->oobsize)
1151		return 0;
1152
1153	/* Cleanmarker is out-of-band, so inline size zero */
1154	c->cleanmarker_size = 0;
1155
1156	if (!oinfo || oinfo->oobavail == 0) {
1157		printk(KERN_ERR "inconsistent device description\n");
1158		return -EINVAL;
1159	}
1160
1161	D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1162
1163	c->oobavail = oinfo->oobavail;
1164
1165	/* Initialise write buffer */
1166	init_rwsem(&c->wbuf_sem);
 
1167	c->wbuf_pagesize = c->mtd->writesize;
1168	c->wbuf_ofs = 0xFFFFFFFF;
1169
1170	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1171	if (!c->wbuf)
1172		return -ENOMEM;
1173
1174	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1175	if (!c->oobbuf) {
1176		kfree(c->wbuf);
1177		return -ENOMEM;
1178	}
1179
1180#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1181	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1182	if (!c->wbuf_verify) {
1183		kfree(c->oobbuf);
1184		kfree(c->wbuf);
1185		return -ENOMEM;
1186	}
1187#endif
1188	return 0;
1189}
1190
1191void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1192{
1193#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1194	kfree(c->wbuf_verify);
1195#endif
1196	kfree(c->wbuf);
1197	kfree(c->oobbuf);
1198}
1199
1200int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1201	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1202
1203	/* Initialize write buffer */
1204	init_rwsem(&c->wbuf_sem);
1205
1206
1207	c->wbuf_pagesize =  c->mtd->erasesize;
1208
1209	/* Find a suitable c->sector_size
1210	 * - Not too much sectors
1211	 * - Sectors have to be at least 4 K + some bytes
1212	 * - All known dataflashes have erase sizes of 528 or 1056
1213	 * - we take at least 8 eraseblocks and want to have at least 8K size
1214	 * - The concatenation should be a power of 2
1215	*/
1216
1217	c->sector_size = 8 * c->mtd->erasesize;
1218
1219	while (c->sector_size < 8192) {
1220		c->sector_size *= 2;
1221	}
1222
1223	/* It may be necessary to adjust the flash size */
1224	c->flash_size = c->mtd->size;
1225
1226	if ((c->flash_size % c->sector_size) != 0) {
1227		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1228		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1229	};
1230
1231	c->wbuf_ofs = 0xFFFFFFFF;
1232	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1233	if (!c->wbuf)
1234		return -ENOMEM;
1235
1236#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1237	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1238	if (!c->wbuf_verify) {
1239		kfree(c->oobbuf);
1240		kfree(c->wbuf);
1241		return -ENOMEM;
1242	}
1243#endif
1244
1245	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
 
1246
1247	return 0;
1248}
1249
1250void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1251#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1252	kfree(c->wbuf_verify);
1253#endif
1254	kfree(c->wbuf);
1255}
1256
1257int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1258	/* Cleanmarker currently occupies whole programming regions,
1259	 * either one or 2 for 8Byte STMicro flashes. */
1260	c->cleanmarker_size = max(16u, c->mtd->writesize);
1261
1262	/* Initialize write buffer */
1263	init_rwsem(&c->wbuf_sem);
 
 
1264	c->wbuf_pagesize = c->mtd->writesize;
1265	c->wbuf_ofs = 0xFFFFFFFF;
1266
1267	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1268	if (!c->wbuf)
1269		return -ENOMEM;
1270
1271#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1272	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1273	if (!c->wbuf_verify) {
1274		kfree(c->wbuf);
1275		return -ENOMEM;
1276	}
1277#endif
1278	return 0;
1279}
1280
1281void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1282#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1283	kfree(c->wbuf_verify);
1284#endif
1285	kfree(c->wbuf);
1286}
1287
1288int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1289	c->cleanmarker_size = 0;
1290
1291	if (c->mtd->writesize == 1)
1292		/* We do not need write-buffer */
1293		return 0;
1294
1295	init_rwsem(&c->wbuf_sem);
 
1296
1297	c->wbuf_pagesize =  c->mtd->writesize;
1298	c->wbuf_ofs = 0xFFFFFFFF;
1299	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1300	if (!c->wbuf)
1301		return -ENOMEM;
1302
1303	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
 
1304
1305	return 0;
1306}
1307
1308void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1309	kfree(c->wbuf);
1310}