Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
 
 
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
 
 
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
 
  39 */
  40
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 203	struct mutex            wr_lock;
 204	struct btrfs_device     *wr_tgtdev;
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 
 
 
 321}
 322
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 332
 333	kvfree(sctx);
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 
 
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 368	}
 369	sctx->first_free = 0;
 370	atomic_set(&sctx->cancel_req, 0);
 371
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 375	mutex_init(&sctx->wr_lock);
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 379	}
 380
 381	return sctx;
 
 
 
 
 
 
 
 
 
 
 
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 
 
 
 
 
 390{
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 487	u64 flags = 0;
 488	u32 item_size;
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 554	}
 
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 586
 587	return stripe->pages[page_index];
 588}
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 
 
 
 
 
 
 
 
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 646	}
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 747	}
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 761	}
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 765{
 766	int i;
 
 
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 927		}
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 947			}
 948			continue;
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 957		} else {
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	unsigned long repaired;
1016	int mirror;
1017	int i;
 
 
 
1018
1019	ASSERT(stripe->mirror_num > 0);
1020
1021	wait_scrub_stripe_io(stripe);
1022	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023	/* Save the initial failed bitmap for later repair and report usage. */
1024	stripe->init_error_bitmap = stripe->error_bitmap;
1025	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026						  stripe->nr_sectors);
1027	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028						    stripe->nr_sectors);
1029	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030						    stripe->nr_sectors);
1031
1032	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
 
 
 
 
 
1033		goto out;
1034
1035	/*
1036	 * Try all remaining mirrors.
1037	 *
1038	 * Here we still try to read as large block as possible, as this is
1039	 * faster and we have extra safety nets to rely on.
1040	 */
1041	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042	     mirror != stripe->mirror_num;
1043	     mirror = calc_next_mirror(mirror, num_copies)) {
1044		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046		scrub_stripe_submit_repair_read(stripe, mirror,
1047						BTRFS_STRIPE_LEN, false);
1048		wait_scrub_stripe_io(stripe);
1049		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051			goto out;
1052	}
1053
1054	/*
1055	 * Last safety net, try re-checking all mirrors, including the failed
1056	 * one, sector-by-sector.
1057	 *
1058	 * As if one sector failed the drive's internal csum, the whole read
1059	 * containing the offending sector would be marked as error.
1060	 * Thus here we do sector-by-sector read.
1061	 *
1062	 * This can be slow, thus we only try it as the last resort.
1063	 */
1064
1065	for (i = 0, mirror = stripe->mirror_num;
1066	     i < num_copies;
1067	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070		scrub_stripe_submit_repair_read(stripe, mirror,
1071						fs_info->sectorsize, true);
1072		wait_scrub_stripe_io(stripe);
1073		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075			goto out;
1076	}
1077out:
1078	/*
1079	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080	 * in-place, but queue the bg to be relocated.
1081	 */
1082	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083		      stripe->nr_sectors);
1084	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085		if (btrfs_is_zoned(fs_info)) {
1086			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
 
 
 
 
1087		} else {
1088			scrub_write_sectors(sctx, stripe, repaired, false);
1089			wait_scrub_stripe_io(stripe);
1090		}
 
 
 
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
 
 
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
 
 
 
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
 
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
 
 
 
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
1278	}
 
 
 
 
 
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393	if (ret == 0) {
 
 
 
1394		/*
1395		 * Key with offset -1 found, there would have to exist an extent
1396		 * item with such offset, but this is out of the valid range.
 
1397		 */
1398		btrfs_release_path(path);
1399		return -EUCLEAN;
1400	}
1401
1402	/*
1403	 * Here we intentionally pass 0 as @min_objectid, as there could be
1404	 * an extent item starting before @search_start.
1405	 */
1406	ret = btrfs_previous_extent_item(extent_root, path, 0);
1407	if (ret < 0)
1408		return ret;
1409	/*
1410	 * No matter whether we have found an extent item, the next loop will
1411	 * properly do every check on the key.
1412	 */
1413search_forward:
1414	while (true) {
1415		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416		if (key.objectid >= search_start + search_len)
1417			break;
1418		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419		    key.type != BTRFS_EXTENT_ITEM_KEY)
1420			goto next;
1421
1422		ret = compare_extent_item_range(path, search_start, search_len);
1423		if (ret == 0)
1424			return ret;
1425		if (ret > 0)
1426			break;
1427next:
1428		ret = btrfs_next_item(extent_root, path);
1429		if (ret) {
1430			/* Either no more items or a fatal error. */
1431			btrfs_release_path(path);
1432			return ret;
1433		}
1434	}
1435	btrfs_release_path(path);
1436	return 1;
1437}
1438
1439static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441{
1442	struct btrfs_key key;
1443	struct btrfs_extent_item *ei;
1444
1445	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447	       key.type == BTRFS_EXTENT_ITEM_KEY);
1448	*extent_start_ret = key.objectid;
1449	if (key.type == BTRFS_METADATA_ITEM_KEY)
1450		*size_ret = path->nodes[0]->fs_info->nodesize;
1451	else
1452		*size_ret = key.offset;
1453	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456}
1457
1458static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459					u64 physical, u64 physical_end)
1460{
1461	struct btrfs_fs_info *fs_info = sctx->fs_info;
1462	int ret = 0;
 
1463
1464	if (!btrfs_is_zoned(fs_info))
1465		return 0;
1466
1467	mutex_lock(&sctx->wr_lock);
1468	if (sctx->write_pointer < physical_end) {
1469		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470						    physical,
1471						    sctx->write_pointer);
1472		if (ret)
1473			btrfs_err(fs_info,
1474				  "zoned: failed to recover write pointer");
1475	}
1476	mutex_unlock(&sctx->wr_lock);
1477	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479	return ret;
1480}
1481
1482static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483				 struct scrub_stripe *stripe,
1484				 u64 extent_start, u64 extent_len,
1485				 u64 extent_flags, u64 extent_gen)
1486{
1487	for (u64 cur_logical = max(stripe->logical, extent_start);
1488	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489			       extent_start + extent_len);
1490	     cur_logical += fs_info->sectorsize) {
1491		const int nr_sector = (cur_logical - stripe->logical) >>
1492				      fs_info->sectorsize_bits;
1493		struct scrub_sector_verification *sector =
1494						&stripe->sectors[nr_sector];
1495
1496		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498			sector->is_metadata = true;
1499			sector->generation = extent_gen;
1500		}
1501	}
1502}
1503
1504static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505{
1506	stripe->extent_sector_bitmap = 0;
1507	stripe->init_error_bitmap = 0;
1508	stripe->init_nr_io_errors = 0;
1509	stripe->init_nr_csum_errors = 0;
1510	stripe->init_nr_meta_errors = 0;
1511	stripe->error_bitmap = 0;
1512	stripe->io_error_bitmap = 0;
1513	stripe->csum_error_bitmap = 0;
1514	stripe->meta_error_bitmap = 0;
1515}
1516
1517/*
1518 * Locate one stripe which has at least one extent in its range.
1519 *
1520 * Return 0 if found such stripe, and store its info into @stripe.
1521 * Return >0 if there is no such stripe in the specified range.
1522 * Return <0 for error.
1523 */
1524static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525					struct btrfs_path *extent_path,
1526					struct btrfs_path *csum_path,
1527					struct btrfs_device *dev, u64 physical,
1528					int mirror_num, u64 logical_start,
1529					u32 logical_len,
1530					struct scrub_stripe *stripe)
1531{
1532	struct btrfs_fs_info *fs_info = bg->fs_info;
1533	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535	const u64 logical_end = logical_start + logical_len;
1536	u64 cur_logical = logical_start;
1537	u64 stripe_end;
1538	u64 extent_start;
1539	u64 extent_len;
1540	u64 extent_flags;
1541	u64 extent_gen;
1542	int ret;
1543
1544	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545				   stripe->nr_sectors);
1546	scrub_stripe_reset_bitmaps(stripe);
1547
1548	/* The range must be inside the bg. */
1549	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550
1551	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552				     logical_len);
1553	/* Either error or not found. */
1554	if (ret)
1555		goto out;
1556	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557			&extent_gen);
1558	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559		stripe->nr_meta_extents++;
1560	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561		stripe->nr_data_extents++;
1562	cur_logical = max(extent_start, cur_logical);
1563
1564	/*
1565	 * Round down to stripe boundary.
1566	 *
1567	 * The extra calculation against bg->start is to handle block groups
1568	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569	 */
1570	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571			  bg->start;
1572	stripe->physical = physical + stripe->logical - logical_start;
1573	stripe->dev = dev;
1574	stripe->bg = bg;
1575	stripe->mirror_num = mirror_num;
1576	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577
1578	/* Fill the first extent info into stripe->sectors[] array. */
1579	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580			     extent_flags, extent_gen);
1581	cur_logical = extent_start + extent_len;
1582
1583	/* Fill the extent info for the remaining sectors. */
1584	while (cur_logical <= stripe_end) {
1585		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586					     stripe_end - cur_logical + 1);
1587		if (ret < 0)
1588			goto out;
1589		if (ret > 0) {
1590			ret = 0;
1591			break;
1592		}
1593		get_extent_info(extent_path, &extent_start, &extent_len,
1594				&extent_flags, &extent_gen);
1595		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596			stripe->nr_meta_extents++;
1597		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598			stripe->nr_data_extents++;
1599		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600				     extent_flags, extent_gen);
1601		cur_logical = extent_start + extent_len;
1602	}
1603
1604	/* Now fill the data csum. */
1605	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606		int sector_nr;
1607		unsigned long csum_bitmap = 0;
1608
1609		/* Csum space should have already been allocated. */
1610		ASSERT(stripe->csums);
 
 
1611
1612		/*
1613		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614		 * should contain at most 16 sectors.
1615		 */
1616		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617
1618		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619						stripe->logical, stripe_end,
1620						stripe->csums, &csum_bitmap);
1621		if (ret < 0)
1622			goto out;
1623		if (ret > 0)
1624			ret = 0;
1625
1626		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627			stripe->sectors[sector_nr].csum = stripe->csums +
1628				sector_nr * fs_info->csum_size;
 
1629		}
1630	}
1631	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632out:
1633	return ret;
1634}
1635
1636static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637{
1638	scrub_stripe_reset_bitmaps(stripe);
1639
1640	stripe->nr_meta_extents = 0;
1641	stripe->nr_data_extents = 0;
1642	stripe->state = 0;
1643
1644	for (int i = 0; i < stripe->nr_sectors; i++) {
1645		stripe->sectors[i].is_metadata = false;
1646		stripe->sectors[i].csum = NULL;
1647		stripe->sectors[i].generation = 0;
1648	}
1649}
1650
1651static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1652					    struct scrub_stripe *stripe)
1653{
1654	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1655	struct btrfs_bio *bbio = NULL;
1656	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1657				      stripe->bg->length - stripe->logical) >>
1658				  fs_info->sectorsize_bits;
1659	u64 stripe_len = BTRFS_STRIPE_LEN;
1660	int mirror = stripe->mirror_num;
1661	int i;
1662
1663	atomic_inc(&stripe->pending_io);
1664
1665	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1666		struct page *page = scrub_stripe_get_page(stripe, i);
1667		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1668
1669		/* We're beyond the chunk boundary, no need to read anymore. */
1670		if (i >= nr_sectors)
1671			break;
1672
1673		/* The current sector cannot be merged, submit the bio. */
1674		if (bbio &&
1675		    ((i > 0 &&
1676		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1677		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1678			ASSERT(bbio->bio.bi_iter.bi_size);
1679			atomic_inc(&stripe->pending_io);
1680			btrfs_submit_bio(bbio, mirror);
1681			bbio = NULL;
1682		}
1683
1684		if (!bbio) {
1685			struct btrfs_io_stripe io_stripe = {};
1686			struct btrfs_io_context *bioc = NULL;
1687			const u64 logical = stripe->logical +
1688					    (i << fs_info->sectorsize_bits);
1689			int err;
1690
1691			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1692					       fs_info, scrub_read_endio, stripe);
1693			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1694
1695			io_stripe.is_scrub = true;
1696			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1697					      &stripe_len, &bioc, &io_stripe,
1698					      &mirror);
1699			btrfs_put_bioc(bioc);
1700			if (err) {
1701				btrfs_bio_end_io(bbio,
1702						 errno_to_blk_status(err));
1703				return;
1704			}
1705		}
1706
1707		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1708	}
 
 
 
 
 
 
 
1709
1710	if (bbio) {
1711		ASSERT(bbio->bio.bi_iter.bi_size);
1712		atomic_inc(&stripe->pending_io);
1713		btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
 
 
1714	}
 
 
 
1715
1716	if (atomic_dec_and_test(&stripe->pending_io)) {
1717		wake_up(&stripe->io_wait);
1718		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1719		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1720	}
 
 
1721}
1722
1723static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1724				      struct scrub_stripe *stripe)
1725{
1726	struct btrfs_fs_info *fs_info = sctx->fs_info;
1727	struct btrfs_bio *bbio;
1728	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1729				      stripe->bg->length - stripe->logical) >>
1730				  fs_info->sectorsize_bits;
1731	int mirror = stripe->mirror_num;
1732
1733	ASSERT(stripe->bg);
1734	ASSERT(stripe->mirror_num > 0);
1735	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
 
 
 
1736
1737	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1738		scrub_submit_extent_sector_read(sctx, stripe);
1739		return;
 
1740	}
 
 
1741
1742	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1743			       scrub_read_endio, stripe);
1744
1745	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1746	/* Read the whole range inside the chunk boundary. */
1747	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1748		struct page *page = scrub_stripe_get_page(stripe, cur);
1749		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1750		int ret;
1751
1752		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1753		/* We should have allocated enough bio vectors. */
1754		ASSERT(ret == fs_info->sectorsize);
1755	}
1756	atomic_inc(&stripe->pending_io);
1757
1758	/*
1759	 * For dev-replace, either user asks to avoid the source dev, or
1760	 * the device is missing, we try the next mirror instead.
1761	 */
1762	if (sctx->is_dev_replace &&
1763	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1764	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1765	     !stripe->dev->bdev)) {
1766		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1767						  stripe->bg->length);
1768
1769		mirror = calc_next_mirror(mirror, num_copies);
1770	}
1771	btrfs_submit_bio(bbio, mirror);
1772}
1773
1774static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
 
 
1775{
1776	int i;
 
1777
1778	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1779		if (stripe->sectors[i].is_metadata) {
1780			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1781
1782			btrfs_err(fs_info,
1783			"stripe %llu has unrepaired metadata sector at %llu",
1784				  stripe->logical,
1785				  stripe->logical + (i << fs_info->sectorsize_bits));
1786			return true;
1787		}
 
 
 
 
 
 
 
1788	}
1789	return false;
1790}
1791
1792static void submit_initial_group_read(struct scrub_ctx *sctx,
1793				      unsigned int first_slot,
1794				      unsigned int nr_stripes)
1795{
 
 
 
 
 
1796	struct blk_plug plug;
 
 
 
 
 
 
 
 
 
 
 
 
1797
1798	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1799	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1800
1801	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1802			      btrfs_stripe_nr_to_offset(nr_stripes));
1803	blk_start_plug(&plug);
1804	for (int i = 0; i < nr_stripes; i++) {
1805		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1806
1807		/* Those stripes should be initialized. */
1808		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1809		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810	}
1811	blk_finish_plug(&plug);
1812}
1813
1814static int flush_scrub_stripes(struct scrub_ctx *sctx)
1815{
1816	struct btrfs_fs_info *fs_info = sctx->fs_info;
1817	struct scrub_stripe *stripe;
1818	const int nr_stripes = sctx->cur_stripe;
1819	int ret = 0;
1820
1821	if (!nr_stripes)
1822		return 0;
1823
1824	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1825
1826	/* Submit the stripes which are populated but not submitted. */
1827	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1828		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1829
1830		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1831	}
 
1832
1833	for (int i = 0; i < nr_stripes; i++) {
1834		stripe = &sctx->stripes[i];
 
 
 
 
 
 
 
 
 
 
1835
1836		wait_event(stripe->repair_wait,
1837			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1838	}
1839
1840	/* Submit for dev-replace. */
1841	if (sctx->is_dev_replace) {
1842		/*
1843		 * For dev-replace, if we know there is something wrong with
1844		 * metadata, we should immediately abort.
1845		 */
1846		for (int i = 0; i < nr_stripes; i++) {
1847			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1848				ret = -EIO;
1849				goto out;
1850			}
1851		}
1852		for (int i = 0; i < nr_stripes; i++) {
1853			unsigned long good;
 
1854
1855			stripe = &sctx->stripes[i];
 
 
1856
1857			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
1858
1859			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1860				      &stripe->error_bitmap, stripe->nr_sectors);
1861			scrub_write_sectors(sctx, stripe, good, true);
1862		}
 
 
 
 
1863	}
1864
1865	/* Wait for the above writebacks to finish. */
1866	for (int i = 0; i < nr_stripes; i++) {
1867		stripe = &sctx->stripes[i];
1868
1869		wait_scrub_stripe_io(stripe);
1870		scrub_reset_stripe(stripe);
1871	}
1872out:
1873	sctx->cur_stripe = 0;
1874	return ret;
1875}
1876
1877static void raid56_scrub_wait_endio(struct bio *bio)
1878{
1879	complete(bio->bi_private);
1880}
1881
1882static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1883			      struct btrfs_device *dev, int mirror_num,
1884			      u64 logical, u32 length, u64 physical,
1885			      u64 *found_logical_ret)
1886{
1887	struct scrub_stripe *stripe;
1888	int ret;
1889
1890	/*
1891	 * There should always be one slot left, as caller filling the last
1892	 * slot should flush them all.
1893	 */
1894	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1895
1896	/* @found_logical_ret must be specified. */
1897	ASSERT(found_logical_ret);
1898
1899	stripe = &sctx->stripes[sctx->cur_stripe];
1900	scrub_reset_stripe(stripe);
1901	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1902					   &sctx->csum_path, dev, physical,
1903					   mirror_num, logical, length, stripe);
1904	/* Either >0 as no more extents or <0 for error. */
1905	if (ret)
1906		return ret;
1907	*found_logical_ret = stripe->logical;
1908	sctx->cur_stripe++;
1909
1910	/* We filled one group, submit it. */
1911	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1912		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1913
1914		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1915	}
1916
1917	/* Last slot used, flush them all. */
1918	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1919		return flush_scrub_stripes(sctx);
1920	return 0;
1921}
1922
1923static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1924				      struct btrfs_device *scrub_dev,
1925				      struct btrfs_block_group *bg,
1926				      struct btrfs_chunk_map *map,
1927				      u64 full_stripe_start)
1928{
1929	DECLARE_COMPLETION_ONSTACK(io_done);
1930	struct btrfs_fs_info *fs_info = sctx->fs_info;
1931	struct btrfs_raid_bio *rbio;
1932	struct btrfs_io_context *bioc = NULL;
1933	struct btrfs_path extent_path = { 0 };
1934	struct btrfs_path csum_path = { 0 };
1935	struct bio *bio;
1936	struct scrub_stripe *stripe;
1937	bool all_empty = true;
1938	const int data_stripes = nr_data_stripes(map);
1939	unsigned long extent_bitmap = 0;
1940	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1941	int ret;
1942
1943	ASSERT(sctx->raid56_data_stripes);
1944
1945	/*
1946	 * For data stripe search, we cannot re-use the same extent/csum paths,
1947	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1948	 * we have to use our own extent/csum paths.
1949	 */
1950	extent_path.search_commit_root = 1;
1951	extent_path.skip_locking = 1;
1952	csum_path.search_commit_root = 1;
1953	csum_path.skip_locking = 1;
1954
1955	for (int i = 0; i < data_stripes; i++) {
1956		int stripe_index;
1957		int rot;
1958		u64 physical;
1959
1960		stripe = &sctx->raid56_data_stripes[i];
1961		rot = div_u64(full_stripe_start - bg->start,
1962			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1963		stripe_index = (i + rot) % map->num_stripes;
1964		physical = map->stripes[stripe_index].physical +
1965			   btrfs_stripe_nr_to_offset(rot);
1966
1967		scrub_reset_stripe(stripe);
1968		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1969		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1970				map->stripes[stripe_index].dev, physical, 1,
1971				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1972				BTRFS_STRIPE_LEN, stripe);
1973		if (ret < 0)
1974			goto out;
1975		/*
1976		 * No extent in this data stripe, need to manually mark them
1977		 * initialized to make later read submission happy.
1978		 */
1979		if (ret > 0) {
1980			stripe->logical = full_stripe_start +
1981					  btrfs_stripe_nr_to_offset(i);
1982			stripe->dev = map->stripes[stripe_index].dev;
1983			stripe->mirror_num = 1;
1984			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1985		}
1986	}
1987
1988	/* Check if all data stripes are empty. */
1989	for (int i = 0; i < data_stripes; i++) {
1990		stripe = &sctx->raid56_data_stripes[i];
1991		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1992			all_empty = false;
1993			break;
1994		}
1995	}
1996	if (all_empty) {
1997		ret = 0;
1998		goto out;
1999	}
2000
2001	for (int i = 0; i < data_stripes; i++) {
2002		stripe = &sctx->raid56_data_stripes[i];
2003		scrub_submit_initial_read(sctx, stripe);
2004	}
2005	for (int i = 0; i < data_stripes; i++) {
2006		stripe = &sctx->raid56_data_stripes[i];
2007
2008		wait_event(stripe->repair_wait,
2009			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2010	}
2011	/* For now, no zoned support for RAID56. */
2012	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2013
2014	/*
2015	 * Now all data stripes are properly verified. Check if we have any
2016	 * unrepaired, if so abort immediately or we could further corrupt the
2017	 * P/Q stripes.
2018	 *
2019	 * During the loop, also populate extent_bitmap.
2020	 */
2021	for (int i = 0; i < data_stripes; i++) {
2022		unsigned long error;
2023
2024		stripe = &sctx->raid56_data_stripes[i];
2025
2026		/*
2027		 * We should only check the errors where there is an extent.
2028		 * As we may hit an empty data stripe while it's missing.
2029		 */
2030		bitmap_and(&error, &stripe->error_bitmap,
2031			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2032		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2033			btrfs_err(fs_info,
2034"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2035				  full_stripe_start, i, stripe->nr_sectors,
2036				  &error);
2037			ret = -EIO;
2038			goto out;
2039		}
2040		bitmap_or(&extent_bitmap, &extent_bitmap,
2041			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2042	}
2043
2044	/* Now we can check and regenerate the P/Q stripe. */
2045	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2046	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2047	bio->bi_private = &io_done;
2048	bio->bi_end_io = raid56_scrub_wait_endio;
2049
2050	btrfs_bio_counter_inc_blocked(fs_info);
2051	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2052			      &length, &bioc, NULL, NULL);
2053	if (ret < 0) {
2054		btrfs_put_bioc(bioc);
2055		btrfs_bio_counter_dec(fs_info);
2056		goto out;
2057	}
2058	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2059				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2060	btrfs_put_bioc(bioc);
2061	if (!rbio) {
2062		ret = -ENOMEM;
2063		btrfs_bio_counter_dec(fs_info);
2064		goto out;
2065	}
2066	/* Use the recovered stripes as cache to avoid read them from disk again. */
2067	for (int i = 0; i < data_stripes; i++) {
2068		stripe = &sctx->raid56_data_stripes[i];
2069
2070		raid56_parity_cache_data_pages(rbio, stripe->pages,
2071				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2072	}
2073	raid56_parity_submit_scrub_rbio(rbio);
2074	wait_for_completion_io(&io_done);
2075	ret = blk_status_to_errno(bio->bi_status);
2076	bio_put(bio);
2077	btrfs_bio_counter_dec(fs_info);
2078
2079	btrfs_release_path(&extent_path);
2080	btrfs_release_path(&csum_path);
2081out:
2082	return ret;
2083}
2084
2085/*
2086 * Scrub one range which can only has simple mirror based profile.
2087 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2088 *  RAID0/RAID10).
2089 *
2090 * Since we may need to handle a subset of block group, we need @logical_start
2091 * and @logical_length parameter.
2092 */
2093static int scrub_simple_mirror(struct scrub_ctx *sctx,
2094			       struct btrfs_block_group *bg,
2095			       struct btrfs_chunk_map *map,
2096			       u64 logical_start, u64 logical_length,
2097			       struct btrfs_device *device,
2098			       u64 physical, int mirror_num)
2099{
2100	struct btrfs_fs_info *fs_info = sctx->fs_info;
2101	const u64 logical_end = logical_start + logical_length;
2102	u64 cur_logical = logical_start;
2103	int ret;
2104
2105	/* The range must be inside the bg */
2106	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2107
2108	/* Go through each extent items inside the logical range */
2109	while (cur_logical < logical_end) {
2110		u64 found_logical = U64_MAX;
2111		u64 cur_physical = physical + cur_logical - logical_start;
2112
2113		/* Canceled? */
2114		if (atomic_read(&fs_info->scrub_cancel_req) ||
2115		    atomic_read(&sctx->cancel_req)) {
2116			ret = -ECANCELED;
2117			break;
2118		}
2119		/* Paused? */
 
 
2120		if (atomic_read(&fs_info->scrub_pause_req)) {
2121			/* Push queued extents */
2122			scrub_blocked_if_needed(fs_info);
2123		}
2124		/* Block group removed? */
2125		spin_lock(&bg->lock);
2126		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2127			spin_unlock(&bg->lock);
2128			ret = 0;
2129			break;
 
 
 
 
 
 
 
 
 
 
2130		}
2131		spin_unlock(&bg->lock);
2132
2133		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2134					 cur_logical, logical_end - cur_logical,
2135					 cur_physical, &found_logical);
 
 
 
 
2136		if (ret > 0) {
2137			/* No more extent, just update the accounting */
2138			sctx->stat.last_physical = physical + logical_length;
2139			ret = 0;
2140			break;
 
 
 
 
 
 
 
 
 
2141		}
2142		if (ret < 0)
2143			break;
2144
2145		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2146		ASSERT(found_logical != U64_MAX);
2147		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2148
2149		/* Don't hold CPU for too long time */
2150		cond_resched();
2151	}
2152	return ret;
2153}
2154
2155/* Calculate the full stripe length for simple stripe based profiles */
2156static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2157{
2158	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2159			    BTRFS_BLOCK_GROUP_RAID10));
2160
2161	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2162}
2163
2164/* Get the logical bytenr for the stripe */
2165static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2166				     struct btrfs_block_group *bg,
2167				     int stripe_index)
2168{
2169	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2170			    BTRFS_BLOCK_GROUP_RAID10));
2171	ASSERT(stripe_index < map->num_stripes);
2172
2173	/*
2174	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2175	 * skip.
2176	 */
2177	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2178	       bg->start;
2179}
2180
2181/* Get the mirror number for the stripe */
2182static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2183{
2184	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2185			    BTRFS_BLOCK_GROUP_RAID10));
2186	ASSERT(stripe_index < map->num_stripes);
2187
2188	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2189	return stripe_index % map->sub_stripes + 1;
2190}
2191
2192static int scrub_simple_stripe(struct scrub_ctx *sctx,
2193			       struct btrfs_block_group *bg,
2194			       struct btrfs_chunk_map *map,
2195			       struct btrfs_device *device,
2196			       int stripe_index)
2197{
2198	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2199	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2200	const u64 orig_physical = map->stripes[stripe_index].physical;
2201	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2202	u64 cur_logical = orig_logical;
2203	u64 cur_physical = orig_physical;
2204	int ret = 0;
2205
2206	while (cur_logical < bg->start + bg->length) {
2207		/*
2208		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2209		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2210		 * this stripe.
2211		 */
2212		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2213					  BTRFS_STRIPE_LEN, device, cur_physical,
2214					  mirror_num);
2215		if (ret)
2216			return ret;
2217		/* Skip to next stripe which belongs to the target device */
2218		cur_logical += logical_increment;
2219		/* For physical offset, we just go to next stripe */
2220		cur_physical += BTRFS_STRIPE_LEN;
2221	}
2222	return ret;
2223}
2224
2225static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2226					   struct btrfs_block_group *bg,
2227					   struct btrfs_chunk_map *map,
2228					   struct btrfs_device *scrub_dev,
2229					   int stripe_index)
2230{
2231	struct btrfs_fs_info *fs_info = sctx->fs_info;
2232	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2233	const u64 chunk_logical = bg->start;
2234	int ret;
2235	int ret2;
2236	u64 physical = map->stripes[stripe_index].physical;
2237	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2238	const u64 physical_end = physical + dev_stripe_len;
2239	u64 logical;
2240	u64 logic_end;
2241	/* The logical increment after finishing one stripe */
2242	u64 increment;
2243	/* Offset inside the chunk */
2244	u64 offset;
2245	u64 stripe_logical;
2246	int stop_loop = 0;
2247
2248	/* Extent_path should be released by now. */
2249	ASSERT(sctx->extent_path.nodes[0] == NULL);
2250
2251	scrub_blocked_if_needed(fs_info);
 
2252
2253	if (sctx->is_dev_replace &&
2254	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2255		mutex_lock(&sctx->wr_lock);
2256		sctx->write_pointer = physical;
2257		mutex_unlock(&sctx->wr_lock);
2258	}
2259
2260	/* Prepare the extra data stripes used by RAID56. */
2261	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2262		ASSERT(sctx->raid56_data_stripes == NULL);
2263
2264		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2265						    sizeof(struct scrub_stripe),
2266						    GFP_KERNEL);
2267		if (!sctx->raid56_data_stripes) {
2268			ret = -ENOMEM;
2269			goto out;
2270		}
2271		for (int i = 0; i < nr_data_stripes(map); i++) {
2272			ret = init_scrub_stripe(fs_info,
2273						&sctx->raid56_data_stripes[i]);
2274			if (ret < 0)
2275				goto out;
2276			sctx->raid56_data_stripes[i].bg = bg;
2277			sctx->raid56_data_stripes[i].sctx = sctx;
2278		}
2279	}
2280	/*
2281	 * There used to be a big double loop to handle all profiles using the
2282	 * same routine, which grows larger and more gross over time.
2283	 *
2284	 * So here we handle each profile differently, so simpler profiles
2285	 * have simpler scrubbing function.
2286	 */
2287	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2288			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2289		/*
2290		 * Above check rules out all complex profile, the remaining
2291		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2292		 * mirrored duplication without stripe.
2293		 *
2294		 * Only @physical and @mirror_num needs to calculated using
2295		 * @stripe_index.
2296		 */
2297		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2298				scrub_dev, map->stripes[stripe_index].physical,
2299				stripe_index + 1);
2300		offset = 0;
2301		goto out;
2302	}
2303	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2304		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2305		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2306		goto out;
2307	}
2308
2309	/* Only RAID56 goes through the old code */
2310	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2311	ret = 0;
2312
2313	/* Calculate the logical end of the stripe */
2314	get_raid56_logic_offset(physical_end, stripe_index,
2315				map, &logic_end, NULL);
2316	logic_end += chunk_logical;
2317
2318	/* Initialize @offset in case we need to go to out: label */
2319	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2320	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
 
 
 
 
2321
2322	/*
2323	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2324	 * using their physical offset.
2325	 */
2326	while (physical < physical_end) {
2327		ret = get_raid56_logic_offset(physical, stripe_index, map,
2328					      &logical, &stripe_logical);
2329		logical += chunk_logical;
2330		if (ret) {
2331			/* it is parity strip */
2332			stripe_logical += chunk_logical;
2333			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2334							 map, stripe_logical);
2335			if (ret)
2336				goto out;
2337			goto next;
2338		}
2339
2340		/*
2341		 * Now we're at a data stripe, scrub each extents in the range.
2342		 *
2343		 * At this stage, if we ignore the repair part, inside each data
2344		 * stripe it is no different than SINGLE profile.
2345		 * We can reuse scrub_simple_mirror() here, as the repair part
2346		 * is still based on @mirror_num.
2347		 */
2348		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2349					  scrub_dev, physical, 1);
2350		if (ret < 0)
2351			goto out;
2352next:
 
 
 
2353		logical += increment;
2354		physical += BTRFS_STRIPE_LEN;
2355		spin_lock(&sctx->stat_lock);
2356		if (stop_loop)
2357			sctx->stat.last_physical =
2358				map->stripes[stripe_index].physical + dev_stripe_len;
2359		else
2360			sctx->stat.last_physical = physical;
2361		spin_unlock(&sctx->stat_lock);
2362		if (stop_loop)
2363			break;
2364	}
2365out:
2366	ret2 = flush_scrub_stripes(sctx);
2367	if (!ret)
2368		ret = ret2;
2369	btrfs_release_path(&sctx->extent_path);
2370	btrfs_release_path(&sctx->csum_path);
2371
2372	if (sctx->raid56_data_stripes) {
2373		for (int i = 0; i < nr_data_stripes(map); i++)
2374			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2375		kfree(sctx->raid56_data_stripes);
2376		sctx->raid56_data_stripes = NULL;
2377	}
2378
2379	if (sctx->is_dev_replace && ret >= 0) {
2380		int ret2;
2381
2382		ret2 = sync_write_pointer_for_zoned(sctx,
2383				chunk_logical + offset,
2384				map->stripes[stripe_index].physical,
2385				physical_end);
2386		if (ret2)
2387			ret = ret2;
2388	}
 
 
2389
 
 
 
 
2390	return ret < 0 ? ret : 0;
2391}
2392
2393static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2394					  struct btrfs_block_group *bg,
2395					  struct btrfs_device *scrub_dev,
2396					  u64 dev_offset,
2397					  u64 dev_extent_len)
2398{
2399	struct btrfs_fs_info *fs_info = sctx->fs_info;
2400	struct btrfs_chunk_map *map;
 
 
2401	int i;
2402	int ret = 0;
2403
2404	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2405	if (!map) {
2406		/*
2407		 * Might have been an unused block group deleted by the cleaner
2408		 * kthread or relocation.
2409		 */
2410		spin_lock(&bg->lock);
2411		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2412			ret = -EINVAL;
2413		spin_unlock(&bg->lock);
2414
2415		return ret;
2416	}
2417	if (map->start != bg->start)
 
 
2418		goto out;
2419	if (map->chunk_len < dev_extent_len)
 
2420		goto out;
2421
2422	for (i = 0; i < map->num_stripes; ++i) {
2423		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2424		    map->stripes[i].physical == dev_offset) {
2425			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2426			if (ret)
2427				goto out;
2428		}
2429	}
2430out:
2431	btrfs_free_chunk_map(map);
2432
2433	return ret;
2434}
2435
2436static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2437					  struct btrfs_block_group *cache)
2438{
2439	struct btrfs_fs_info *fs_info = cache->fs_info;
2440	struct btrfs_trans_handle *trans;
2441
2442	if (!btrfs_is_zoned(fs_info))
2443		return 0;
2444
2445	btrfs_wait_block_group_reservations(cache);
2446	btrfs_wait_nocow_writers(cache);
2447	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2448
2449	trans = btrfs_join_transaction(root);
2450	if (IS_ERR(trans))
2451		return PTR_ERR(trans);
2452	return btrfs_commit_transaction(trans);
2453}
2454
2455static noinline_for_stack
2456int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2457			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2458{
2459	struct btrfs_dev_extent *dev_extent = NULL;
2460	struct btrfs_path *path;
2461	struct btrfs_fs_info *fs_info = sctx->fs_info;
2462	struct btrfs_root *root = fs_info->dev_root;
 
 
 
2463	u64 chunk_offset;
2464	int ret = 0;
2465	int ro_set;
2466	int slot;
2467	struct extent_buffer *l;
2468	struct btrfs_key key;
2469	struct btrfs_key found_key;
2470	struct btrfs_block_group *cache;
2471	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2472
2473	path = btrfs_alloc_path();
2474	if (!path)
2475		return -ENOMEM;
2476
2477	path->reada = READA_FORWARD;
2478	path->search_commit_root = 1;
2479	path->skip_locking = 1;
2480
2481	key.objectid = scrub_dev->devid;
2482	key.offset = 0ull;
2483	key.type = BTRFS_DEV_EXTENT_KEY;
2484
2485	while (1) {
2486		u64 dev_extent_len;
2487
 
2488		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2489		if (ret < 0)
2490			break;
2491		if (ret > 0) {
2492			if (path->slots[0] >=
2493			    btrfs_header_nritems(path->nodes[0])) {
2494				ret = btrfs_next_leaf(root, path);
2495				if (ret < 0)
2496					break;
2497				if (ret > 0) {
2498					ret = 0;
2499					break;
2500				}
2501			} else {
2502				ret = 0;
2503			}
2504		}
2505
2506		l = path->nodes[0];
2507		slot = path->slots[0];
2508
2509		btrfs_item_key_to_cpu(l, &found_key, slot);
2510
2511		if (found_key.objectid != scrub_dev->devid)
2512			break;
2513
2514		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2515			break;
2516
2517		if (found_key.offset >= end)
2518			break;
2519
2520		if (found_key.offset < key.offset)
2521			break;
2522
2523		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2524		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2525
2526		if (found_key.offset + dev_extent_len <= start)
2527			goto skip;
 
 
 
2528
 
 
2529		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2530
2531		/*
2532		 * get a reference on the corresponding block group to prevent
2533		 * the chunk from going away while we scrub it
2534		 */
2535		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2536
2537		/* some chunks are removed but not committed to disk yet,
2538		 * continue scrubbing */
2539		if (!cache)
2540			goto skip;
2541
2542		ASSERT(cache->start <= chunk_offset);
2543		/*
2544		 * We are using the commit root to search for device extents, so
2545		 * that means we could have found a device extent item from a
2546		 * block group that was deleted in the current transaction. The
2547		 * logical start offset of the deleted block group, stored at
2548		 * @chunk_offset, might be part of the logical address range of
2549		 * a new block group (which uses different physical extents).
2550		 * In this case btrfs_lookup_block_group() has returned the new
2551		 * block group, and its start address is less than @chunk_offset.
2552		 *
2553		 * We skip such new block groups, because it's pointless to
2554		 * process them, as we won't find their extents because we search
2555		 * for them using the commit root of the extent tree. For a device
2556		 * replace it's also fine to skip it, we won't miss copying them
2557		 * to the target device because we have the write duplication
2558		 * setup through the regular write path (by btrfs_map_block()),
2559		 * and we have committed a transaction when we started the device
2560		 * replace, right after setting up the device replace state.
2561		 */
2562		if (cache->start < chunk_offset) {
2563			btrfs_put_block_group(cache);
2564			goto skip;
2565		}
2566
2567		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2568			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2569				btrfs_put_block_group(cache);
2570				goto skip;
2571			}
2572		}
2573
2574		/*
2575		 * Make sure that while we are scrubbing the corresponding block
2576		 * group doesn't get its logical address and its device extents
2577		 * reused for another block group, which can possibly be of a
2578		 * different type and different profile. We do this to prevent
2579		 * false error detections and crashes due to bogus attempts to
2580		 * repair extents.
2581		 */
2582		spin_lock(&cache->lock);
2583		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2584			spin_unlock(&cache->lock);
2585			btrfs_put_block_group(cache);
2586			goto skip;
2587		}
2588		btrfs_freeze_block_group(cache);
2589		spin_unlock(&cache->lock);
2590
2591		/*
2592		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2593		 * to avoid deadlock caused by:
2594		 * btrfs_inc_block_group_ro()
2595		 * -> btrfs_wait_for_commit()
2596		 * -> btrfs_commit_transaction()
2597		 * -> btrfs_scrub_pause()
2598		 */
2599		scrub_pause_on(fs_info);
2600
2601		/*
2602		 * Don't do chunk preallocation for scrub.
2603		 *
2604		 * This is especially important for SYSTEM bgs, or we can hit
2605		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2606		 * 1. The only SYSTEM bg is marked RO.
2607		 *    Since SYSTEM bg is small, that's pretty common.
2608		 * 2. New SYSTEM bg will be allocated
2609		 *    Due to regular version will allocate new chunk.
2610		 * 3. New SYSTEM bg is empty and will get cleaned up
2611		 *    Before cleanup really happens, it's marked RO again.
2612		 * 4. Empty SYSTEM bg get scrubbed
2613		 *    We go back to 2.
2614		 *
2615		 * This can easily boost the amount of SYSTEM chunks if cleaner
2616		 * thread can't be triggered fast enough, and use up all space
2617		 * of btrfs_super_block::sys_chunk_array
2618		 *
2619		 * While for dev replace, we need to try our best to mark block
2620		 * group RO, to prevent race between:
2621		 * - Write duplication
2622		 *   Contains latest data
2623		 * - Scrub copy
2624		 *   Contains data from commit tree
2625		 *
2626		 * If target block group is not marked RO, nocow writes can
2627		 * be overwritten by scrub copy, causing data corruption.
2628		 * So for dev-replace, it's not allowed to continue if a block
2629		 * group is not RO.
2630		 */
2631		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2632		if (!ret && sctx->is_dev_replace) {
2633			ret = finish_extent_writes_for_zoned(root, cache);
2634			if (ret) {
2635				btrfs_dec_block_group_ro(cache);
2636				scrub_pause_off(fs_info);
2637				btrfs_put_block_group(cache);
2638				break;
2639			}
2640		}
2641
2642		if (ret == 0) {
2643			ro_set = 1;
2644		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2645			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2646			/*
2647			 * btrfs_inc_block_group_ro return -ENOSPC when it
2648			 * failed in creating new chunk for metadata.
2649			 * It is not a problem for scrub, because
2650			 * metadata are always cowed, and our scrub paused
2651			 * commit_transactions.
2652			 *
2653			 * For RAID56 chunks, we have to mark them read-only
2654			 * for scrub, as later we would use our own cache
2655			 * out of RAID56 realm.
2656			 * Thus we want the RAID56 bg to be marked RO to
2657			 * prevent RMW from screwing up out cache.
2658			 */
2659			ro_set = 0;
2660		} else if (ret == -ETXTBSY) {
2661			btrfs_warn(fs_info,
2662		   "skipping scrub of block group %llu due to active swapfile",
2663				   cache->start);
2664			scrub_pause_off(fs_info);
2665			ret = 0;
2666			goto skip_unfreeze;
2667		} else {
2668			btrfs_warn(fs_info,
2669				   "failed setting block group ro: %d", ret);
2670			btrfs_unfreeze_block_group(cache);
2671			btrfs_put_block_group(cache);
2672			scrub_pause_off(fs_info);
2673			break;
2674		}
2675
2676		/*
2677		 * Now the target block is marked RO, wait for nocow writes to
2678		 * finish before dev-replace.
2679		 * COW is fine, as COW never overwrites extents in commit tree.
2680		 */
2681		if (sctx->is_dev_replace) {
2682			btrfs_wait_nocow_writers(cache);
2683			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2684					cache->length);
2685		}
2686
2687		scrub_pause_off(fs_info);
2688		down_write(&dev_replace->rwsem);
2689		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2690		dev_replace->cursor_left = found_key.offset;
2691		dev_replace->item_needs_writeback = 1;
2692		up_write(&dev_replace->rwsem);
2693
2694		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2695				  dev_extent_len);
2696		if (sctx->is_dev_replace &&
2697		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2698						      cache, found_key.offset))
2699			ro_set = 0;
2700
2701		down_write(&dev_replace->rwsem);
2702		dev_replace->cursor_left = dev_replace->cursor_right;
2703		dev_replace->item_needs_writeback = 1;
2704		up_write(&dev_replace->rwsem);
2705
2706		if (ro_set)
2707			btrfs_dec_block_group_ro(cache);
2708
2709		/*
2710		 * We might have prevented the cleaner kthread from deleting
2711		 * this block group if it was already unused because we raced
2712		 * and set it to RO mode first. So add it back to the unused
2713		 * list, otherwise it might not ever be deleted unless a manual
2714		 * balance is triggered or it becomes used and unused again.
2715		 */
2716		spin_lock(&cache->lock);
2717		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2718		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2719			spin_unlock(&cache->lock);
2720			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2721				btrfs_discard_queue_work(&fs_info->discard_ctl,
2722							 cache);
2723			else
2724				btrfs_mark_bg_unused(cache);
2725		} else {
2726			spin_unlock(&cache->lock);
2727		}
2728skip_unfreeze:
2729		btrfs_unfreeze_block_group(cache);
2730		btrfs_put_block_group(cache);
2731		if (ret)
2732			break;
2733		if (sctx->is_dev_replace &&
2734		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2735			ret = -EIO;
2736			break;
2737		}
2738		if (sctx->stat.malloc_errors > 0) {
2739			ret = -ENOMEM;
2740			break;
2741		}
2742skip:
2743		key.offset = found_key.offset + dev_extent_len;
2744		btrfs_release_path(path);
2745	}
2746
2747	btrfs_free_path(path);
2748
2749	return ret;
2750}
2751
2752static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2753			   struct page *page, u64 physical, u64 generation)
2754{
2755	struct btrfs_fs_info *fs_info = sctx->fs_info;
2756	struct bio_vec bvec;
2757	struct bio bio;
2758	struct btrfs_super_block *sb = page_address(page);
2759	int ret;
2760
2761	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2762	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2763	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2764	ret = submit_bio_wait(&bio);
2765	bio_uninit(&bio);
2766
2767	if (ret < 0)
2768		return ret;
2769	ret = btrfs_check_super_csum(fs_info, sb);
2770	if (ret != 0) {
2771		btrfs_err_rl(fs_info,
2772			"super block at physical %llu devid %llu has bad csum",
2773			physical, dev->devid);
2774		return -EIO;
2775	}
2776	if (btrfs_super_generation(sb) != generation) {
2777		btrfs_err_rl(fs_info,
2778"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2779			     physical, dev->devid,
2780			     btrfs_super_generation(sb), generation);
2781		return -EUCLEAN;
2782	}
2783
2784	return btrfs_validate_super(fs_info, sb, -1);
2785}
2786
2787static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2788					   struct btrfs_device *scrub_dev)
2789{
2790	int	i;
2791	u64	bytenr;
2792	u64	gen;
2793	int ret = 0;
2794	struct page *page;
2795	struct btrfs_fs_info *fs_info = sctx->fs_info;
2796
2797	if (BTRFS_FS_ERROR(fs_info))
2798		return -EROFS;
2799
2800	page = alloc_page(GFP_KERNEL);
2801	if (!page) {
2802		spin_lock(&sctx->stat_lock);
2803		sctx->stat.malloc_errors++;
2804		spin_unlock(&sctx->stat_lock);
2805		return -ENOMEM;
2806	}
2807
2808	/* Seed devices of a new filesystem has their own generation. */
2809	if (scrub_dev->fs_devices != fs_info->fs_devices)
2810		gen = scrub_dev->generation;
2811	else
2812		gen = btrfs_get_last_trans_committed(fs_info);
2813
2814	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2815		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2816		if (ret == -ENOENT)
2817			break;
2818
2819		if (ret) {
2820			spin_lock(&sctx->stat_lock);
2821			sctx->stat.super_errors++;
2822			spin_unlock(&sctx->stat_lock);
2823			continue;
2824		}
2825
2826		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2827		    scrub_dev->commit_total_bytes)
2828			break;
2829		if (!btrfs_check_super_location(scrub_dev, bytenr))
2830			continue;
2831
2832		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2833		if (ret) {
2834			spin_lock(&sctx->stat_lock);
2835			sctx->stat.super_errors++;
2836			spin_unlock(&sctx->stat_lock);
2837		}
2838	}
2839	__free_page(page);
2840	return 0;
2841}
2842
2843static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2844{
2845	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2846					&fs_info->scrub_lock)) {
2847		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2848
2849		fs_info->scrub_workers = NULL;
2850		mutex_unlock(&fs_info->scrub_lock);
2851
2852		if (scrub_workers)
2853			destroy_workqueue(scrub_workers);
2854	}
2855}
2856
2857/*
2858 * get a reference count on fs_info->scrub_workers. start worker if necessary
2859 */
2860static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2861{
2862	struct workqueue_struct *scrub_workers = NULL;
2863	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2864	int max_active = fs_info->thread_pool_size;
2865	int ret = -ENOMEM;
2866
2867	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2868		return 0;
2869
2870	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2871	if (!scrub_workers)
2872		return -ENOMEM;
2873
2874	mutex_lock(&fs_info->scrub_lock);
2875	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2876		ASSERT(fs_info->scrub_workers == NULL);
2877		fs_info->scrub_workers = scrub_workers;
2878		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2879		mutex_unlock(&fs_info->scrub_lock);
2880		return 0;
2881	}
2882	/* Other thread raced in and created the workers for us */
2883	refcount_inc(&fs_info->scrub_workers_refcnt);
2884	mutex_unlock(&fs_info->scrub_lock);
2885
2886	ret = 0;
 
2887
2888	destroy_workqueue(scrub_workers);
2889	return ret;
 
 
 
 
 
 
 
2890}
2891
2892int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2893		    u64 end, struct btrfs_scrub_progress *progress,
2894		    int readonly, int is_dev_replace)
2895{
2896	struct btrfs_dev_lookup_args args = { .devid = devid };
2897	struct scrub_ctx *sctx;
2898	int ret;
2899	struct btrfs_device *dev;
2900	unsigned int nofs_flag;
2901	bool need_commit = false;
2902
2903	if (btrfs_fs_closing(fs_info))
2904		return -EAGAIN;
2905
2906	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2907	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2908
2909	/*
2910	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2911	 * value (max nodesize / min sectorsize), thus nodesize should always
2912	 * be fine.
2913	 */
2914	ASSERT(fs_info->nodesize <=
2915	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2916
2917	/* Allocate outside of device_list_mutex */
2918	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2919	if (IS_ERR(sctx))
2920		return PTR_ERR(sctx);
2921
2922	ret = scrub_workers_get(fs_info);
2923	if (ret)
2924		goto out_free_ctx;
2925
2926	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2927	dev = btrfs_find_device(fs_info->fs_devices, &args);
2928	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2929		     !is_dev_replace)) {
2930		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2931		ret = -ENODEV;
2932		goto out;
2933	}
 
2934
2935	if (!is_dev_replace && !readonly &&
2936	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2937		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2938		btrfs_err_in_rcu(fs_info,
2939			"scrub on devid %llu: filesystem on %s is not writable",
2940				 devid, btrfs_dev_name(dev));
2941		ret = -EROFS;
2942		goto out;
2943	}
2944
2945	mutex_lock(&fs_info->scrub_lock);
2946	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2947	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2948		mutex_unlock(&fs_info->scrub_lock);
2949		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950		ret = -EIO;
2951		goto out;
2952	}
2953
2954	down_read(&fs_info->dev_replace.rwsem);
2955	if (dev->scrub_ctx ||
2956	    (!is_dev_replace &&
2957	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2958		up_read(&fs_info->dev_replace.rwsem);
2959		mutex_unlock(&fs_info->scrub_lock);
2960		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2961		ret = -EINPROGRESS;
2962		goto out;
2963	}
2964	up_read(&fs_info->dev_replace.rwsem);
 
2965
2966	sctx->readonly = readonly;
2967	dev->scrub_ctx = sctx;
2968	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2969
2970	/*
2971	 * checking @scrub_pause_req here, we can avoid
2972	 * race between committing transaction and scrubbing.
2973	 */
2974	__scrub_blocked_if_needed(fs_info);
2975	atomic_inc(&fs_info->scrubs_running);
2976	mutex_unlock(&fs_info->scrub_lock);
 
2977
2978	/*
2979	 * In order to avoid deadlock with reclaim when there is a transaction
2980	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2981	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2982	 * invoked by our callees. The pausing request is done when the
2983	 * transaction commit starts, and it blocks the transaction until scrub
2984	 * is paused (done at specific points at scrub_stripe() or right above
2985	 * before incrementing fs_info->scrubs_running).
2986	 */
2987	nofs_flag = memalloc_nofs_save();
2988	if (!is_dev_replace) {
2989		u64 old_super_errors;
2990
2991		spin_lock(&sctx->stat_lock);
2992		old_super_errors = sctx->stat.super_errors;
2993		spin_unlock(&sctx->stat_lock);
2994
2995		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2996		/*
2997		 * by holding device list mutex, we can
2998		 * kick off writing super in log tree sync.
2999		 */
3000		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3001		ret = scrub_supers(sctx, dev);
3002		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004		spin_lock(&sctx->stat_lock);
3005		/*
3006		 * Super block errors found, but we can not commit transaction
3007		 * at current context, since btrfs_commit_transaction() needs
3008		 * to pause the current running scrub (hold by ourselves).
3009		 */
3010		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3011			need_commit = true;
3012		spin_unlock(&sctx->stat_lock);
3013	}
3014
3015	if (!ret)
3016		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3017	memalloc_nofs_restore(nofs_flag);
 
3018
3019	atomic_dec(&fs_info->scrubs_running);
3020	wake_up(&fs_info->scrub_pause_wait);
3021
3022	if (progress)
3023		memcpy(progress, &sctx->stat, sizeof(*progress));
3024
3025	if (!is_dev_replace)
3026		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3027			ret ? "not finished" : "finished", devid, ret);
3028
3029	mutex_lock(&fs_info->scrub_lock);
3030	dev->scrub_ctx = NULL;
3031	mutex_unlock(&fs_info->scrub_lock);
3032
3033	scrub_workers_put(fs_info);
3034	scrub_put_ctx(sctx);
3035
3036	/*
3037	 * We found some super block errors before, now try to force a
3038	 * transaction commit, as scrub has finished.
3039	 */
3040	if (need_commit) {
3041		struct btrfs_trans_handle *trans;
3042
3043		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3044		if (IS_ERR(trans)) {
3045			ret = PTR_ERR(trans);
3046			btrfs_err(fs_info,
3047	"scrub: failed to start transaction to fix super block errors: %d", ret);
3048			return ret;
3049		}
3050		ret = btrfs_commit_transaction(trans);
3051		if (ret < 0)
3052			btrfs_err(fs_info,
3053	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3054	}
3055	return ret;
3056out:
3057	scrub_workers_put(fs_info);
3058out_free_ctx:
3059	scrub_free_ctx(sctx);
3060
3061	return ret;
3062}
3063
3064void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3065{
 
 
3066	mutex_lock(&fs_info->scrub_lock);
3067	atomic_inc(&fs_info->scrub_pause_req);
3068	while (atomic_read(&fs_info->scrubs_paused) !=
3069	       atomic_read(&fs_info->scrubs_running)) {
3070		mutex_unlock(&fs_info->scrub_lock);
3071		wait_event(fs_info->scrub_pause_wait,
3072			   atomic_read(&fs_info->scrubs_paused) ==
3073			   atomic_read(&fs_info->scrubs_running));
3074		mutex_lock(&fs_info->scrub_lock);
3075	}
3076	mutex_unlock(&fs_info->scrub_lock);
 
 
3077}
3078
3079void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3080{
 
 
3081	atomic_dec(&fs_info->scrub_pause_req);
3082	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
3083}
3084
3085int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3086{
 
 
 
 
 
 
 
 
3087	mutex_lock(&fs_info->scrub_lock);
3088	if (!atomic_read(&fs_info->scrubs_running)) {
3089		mutex_unlock(&fs_info->scrub_lock);
3090		return -ENOTCONN;
3091	}
3092
3093	atomic_inc(&fs_info->scrub_cancel_req);
3094	while (atomic_read(&fs_info->scrubs_running)) {
3095		mutex_unlock(&fs_info->scrub_lock);
3096		wait_event(fs_info->scrub_pause_wait,
3097			   atomic_read(&fs_info->scrubs_running) == 0);
3098		mutex_lock(&fs_info->scrub_lock);
3099	}
3100	atomic_dec(&fs_info->scrub_cancel_req);
3101	mutex_unlock(&fs_info->scrub_lock);
3102
3103	return 0;
3104}
3105
3106int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3107{
3108	struct btrfs_fs_info *fs_info = dev->fs_info;
3109	struct scrub_ctx *sctx;
3110
3111	mutex_lock(&fs_info->scrub_lock);
3112	sctx = dev->scrub_ctx;
3113	if (!sctx) {
3114		mutex_unlock(&fs_info->scrub_lock);
3115		return -ENOTCONN;
3116	}
3117	atomic_inc(&sctx->cancel_req);
3118	while (dev->scrub_ctx) {
3119		mutex_unlock(&fs_info->scrub_lock);
3120		wait_event(fs_info->scrub_pause_wait,
3121			   dev->scrub_ctx == NULL);
3122		mutex_lock(&fs_info->scrub_lock);
3123	}
3124	mutex_unlock(&fs_info->scrub_lock);
3125
3126	return 0;
3127}
 
 
 
 
 
3128
3129int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130			 struct btrfs_scrub_progress *progress)
3131{
3132	struct btrfs_dev_lookup_args args = { .devid = devid };
3133	struct btrfs_device *dev;
3134	struct scrub_ctx *sctx = NULL;
3135
3136	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3137	dev = btrfs_find_device(fs_info->fs_devices, &args);
3138	if (dev)
3139		sctx = dev->scrub_ctx;
3140	if (sctx)
3141		memcpy(progress, &sctx->stat, sizeof(*progress));
3142	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3143
3144	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3145}
v3.1
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
 
 
 
  20#include "ctree.h"
 
  21#include "volumes.h"
  22#include "disk-io.h"
  23#include "ordered-data.h"
 
 
 
 
 
 
 
 
 
 
 
 
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - To enhance the performance, better read-ahead strategies for the
  33 *    extent-tree can be employed.
  34 *  - In case an unrepairable extent is encountered, track which files are
  35 *    affected and report them
  36 *  - In case of a read error on files with nodatasum, map the file and read
  37 *    the extent to trigger a writeback of the good copy
  38 *  - track and record media errors, throw out bad devices
  39 *  - add a mode to also read unallocated space
  40 *  - make the prefetch cancellable
  41 */
  42
  43struct scrub_bio;
  44struct scrub_page;
  45struct scrub_dev;
  46static void scrub_bio_end_io(struct bio *bio, int err);
  47static void scrub_checksum(struct btrfs_work *work);
  48static int scrub_checksum_data(struct scrub_dev *sdev,
  49			       struct scrub_page *spag, void *buffer);
  50static int scrub_checksum_tree_block(struct scrub_dev *sdev,
  51				     struct scrub_page *spag, u64 logical,
  52				     void *buffer);
  53static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
  54static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
  55static void scrub_fixup_end_io(struct bio *bio, int err);
  56static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
  57			  struct page *page);
  58static void scrub_fixup(struct scrub_bio *sbio, int ix);
  59
  60#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  61#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
  62
  63struct scrub_page {
  64	u64			flags;  /* extent flags */
  65	u64			generation;
  66	u64			mirror_num;
  67	int			have_csum;
  68	u8			csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69};
  70
  71struct scrub_bio {
  72	int			index;
  73	struct scrub_dev	*sdev;
  74	struct bio		*bio;
  75	int			err;
  76	u64			logical;
  77	u64			physical;
  78	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
  79	u64			count;
  80	int			next_free;
  81	struct btrfs_work	work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82};
  83
  84struct scrub_dev {
  85	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  86	struct btrfs_device	*dev;
 
 
 
  87	int			first_free;
  88	int			curr;
  89	atomic_t		in_flight;
  90	spinlock_t		list_lock;
  91	wait_queue_head_t	list_wait;
  92	u16			csum_size;
  93	struct list_head	csum_list;
  94	atomic_t		cancel_req;
  95	int			readonly;
 
 
 
 
 
 
 
 
 
 
 
  96	/*
  97	 * statistics
  98	 */
  99	struct btrfs_scrub_progress stat;
 100	spinlock_t		stat_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103static void scrub_free_csums(struct scrub_dev *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104{
 105	while (!list_empty(&sdev->csum_list)) {
 106		struct btrfs_ordered_sum *sum;
 107		sum = list_first_entry(&sdev->csum_list,
 108				       struct btrfs_ordered_sum, list);
 109		list_del(&sum->list);
 110		kfree(sum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111	}
 112}
 113
 114static void scrub_free_bio(struct bio *bio)
 
 
 
 
 
 
 115{
 116	int i;
 117	struct page *last_page = NULL;
 
 
 118
 119	if (!bio)
 120		return;
 121
 122	for (i = 0; i < bio->bi_vcnt; ++i) {
 123		if (bio->bi_io_vec[i].bv_page == last_page)
 124			continue;
 125		last_page = bio->bi_io_vec[i].bv_page;
 126		__free_page(last_page);
 127	}
 128	bio_put(bio);
 129}
 130
 131static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 132{
 133	int i;
 134
 135	if (!sdev)
 136		return;
 137
 138	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 139		struct scrub_bio *sbio = sdev->bios[i];
 140
 141		if (!sbio)
 142			break;
 143
 144		scrub_free_bio(sbio->bio);
 145		kfree(sbio);
 146	}
 147
 148	scrub_free_csums(sdev);
 149	kfree(sdev);
 150}
 151
 152static noinline_for_stack
 153struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 154{
 155	struct scrub_dev *sdev;
 156	int		i;
 157	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 158
 159	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 160	if (!sdev)
 
 
 
 161		goto nomem;
 162	sdev->dev = dev;
 163	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 164		struct scrub_bio *sbio;
 
 
 
 
 
 
 165
 166		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 167		if (!sbio)
 168			goto nomem;
 169		sdev->bios[i] = sbio;
 
 
 
 170
 171		sbio->index = i;
 172		sbio->sdev = sdev;
 173		sbio->count = 0;
 174		sbio->work.func = scrub_checksum;
 175
 176		if (i != SCRUB_BIOS_PER_DEV-1)
 177			sdev->bios[i]->next_free = i + 1;
 178		 else
 179			sdev->bios[i]->next_free = -1;
 180	}
 181	sdev->first_free = 0;
 182	sdev->curr = -1;
 183	atomic_set(&sdev->in_flight, 0);
 184	atomic_set(&sdev->cancel_req, 0);
 185	sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
 186	INIT_LIST_HEAD(&sdev->csum_list);
 187
 188	spin_lock_init(&sdev->list_lock);
 189	spin_lock_init(&sdev->stat_lock);
 190	init_waitqueue_head(&sdev->list_wait);
 191	return sdev;
 192
 193nomem:
 194	scrub_free_dev(sdev);
 195	return ERR_PTR(-ENOMEM);
 196}
 197
 198/*
 199 * scrub_recheck_error gets called when either verification of the page
 200 * failed or the bio failed to read, e.g. with EIO. In the latter case,
 201 * recheck_error gets called for every page in the bio, even though only
 202 * one may be bad
 203 */
 204static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
 205{
 206	if (sbio->err) {
 207		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
 208				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 209				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
 210			if (scrub_fixup_check(sbio, ix) == 0)
 211				return;
 212		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 
 214
 215	scrub_fixup(sbio, ix);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216}
 217
 218static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
 
 219{
 220	int ret = 1;
 221	struct page *page;
 222	void *buffer;
 223	u64 flags = sbio->spag[ix].flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224
 225	page = sbio->bio->bi_io_vec[ix].bv_page;
 226	buffer = kmap_atomic(page, KM_USER0);
 227	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 228		ret = scrub_checksum_data(sbio->sdev,
 229					  sbio->spag + ix, buffer);
 230	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 231		ret = scrub_checksum_tree_block(sbio->sdev,
 232						sbio->spag + ix,
 233						sbio->logical + ix * PAGE_SIZE,
 234						buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235	} else {
 236		WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 237	}
 238	kunmap_atomic(buffer, KM_USER0);
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240	return ret;
 241}
 242
 243static void scrub_fixup_end_io(struct bio *bio, int err)
 244{
 245	complete((struct completion *)bio->bi_private);
 
 
 
 246}
 247
 248static void scrub_fixup(struct scrub_bio *sbio, int ix)
 
 249{
 250	struct scrub_dev *sdev = sbio->sdev;
 251	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 252	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 253	struct btrfs_multi_bio *multi = NULL;
 254	u64 logical = sbio->logical + ix * PAGE_SIZE;
 255	u64 length;
 256	int i;
 257	int ret;
 258	DECLARE_COMPLETION_ONSTACK(complete);
 259
 260	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
 261	    (sbio->spag[ix].have_csum == 0)) {
 262		/*
 263		 * nodatasum, don't try to fix anything
 264		 * FIXME: we can do better, open the inode and trigger a
 265		 * writeback
 266		 */
 267		goto uncorrectable;
 268	}
 269
 270	length = PAGE_SIZE;
 271	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
 272			      &multi, 0);
 273	if (ret || !multi || length < PAGE_SIZE) {
 274		printk(KERN_ERR
 275		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
 276		       (unsigned long long)logical);
 277		WARN_ON(1);
 278		return;
 279	}
 280
 281	if (multi->num_stripes == 1)
 282		/* there aren't any replicas */
 283		goto uncorrectable;
 
 
 
 
 
 
 
 
 284
 285	/*
 286	 * first find a good copy
 
 
 287	 */
 288	for (i = 0; i < multi->num_stripes; ++i) {
 289		if (i == sbio->spag[ix].mirror_num)
 290			continue;
 291
 292		if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
 293				   multi->stripes[i].physical >> 9,
 294				   sbio->bio->bi_io_vec[ix].bv_page)) {
 295			/* I/O-error, this is not a good copy */
 296			continue;
 297		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298
 299		if (scrub_fixup_check(sbio, ix) == 0)
 300			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	}
 302	if (i == multi->num_stripes)
 303		goto uncorrectable;
 
 
 304
 305	if (!sdev->readonly) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306		/*
 307		 * bi_io_vec[ix].bv_page now contains good data, write it back
 
 
 
 
 
 308		 */
 309		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
 310				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 311				   sbio->bio->bi_io_vec[ix].bv_page)) {
 312			/* I/O-error, writeback failed, give up */
 313			goto uncorrectable;
 
 
 314		}
 
 
 315	}
 316
 317	kfree(multi);
 318	spin_lock(&sdev->stat_lock);
 319	++sdev->stat.corrected_errors;
 320	spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322	if (printk_ratelimit())
 323		printk(KERN_ERR "btrfs: fixed up at %llu\n",
 324		       (unsigned long long)logical);
 325	return;
 
 
 326
 327uncorrectable:
 328	kfree(multi);
 329	spin_lock(&sdev->stat_lock);
 330	++sdev->stat.uncorrectable_errors;
 331	spin_unlock(&sdev->stat_lock);
 332
 333	if (printk_ratelimit())
 334		printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
 335			 (unsigned long long)logical);
 
 
 
 
 336}
 337
 338static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
 339			 struct page *page)
 
 
 
 
 
 340{
 341	struct bio *bio = NULL;
 342	int ret;
 343	DECLARE_COMPLETION_ONSTACK(complete);
 
 
 
 
 
 344
 345	bio = bio_alloc(GFP_NOFS, 1);
 346	bio->bi_bdev = bdev;
 347	bio->bi_sector = sector;
 348	bio_add_page(bio, page, PAGE_SIZE, 0);
 349	bio->bi_end_io = scrub_fixup_end_io;
 350	bio->bi_private = &complete;
 351	submit_bio(rw, bio);
 352
 353	/* this will also unplug the queue */
 354	wait_for_completion(&complete);
 
 
 
 
 
 
 
 
 
 
 
 355
 356	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
 357	bio_put(bio);
 358	return ret;
 
 359}
 360
 361static void scrub_bio_end_io(struct bio *bio, int err)
 
 362{
 363	struct scrub_bio *sbio = bio->bi_private;
 364	struct scrub_dev *sdev = sbio->sdev;
 365	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 
 
 
 
 366
 367	sbio->err = err;
 368	sbio->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
 
 
 
 
 
 
 
 
 
 371}
 372
 373static void scrub_checksum(struct btrfs_work *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374{
 375	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 376	struct scrub_dev *sdev = sbio->sdev;
 377	struct page *page;
 378	void *buffer;
 
 
 
 379	int i;
 380	u64 flags;
 381	u64 logical;
 382	int ret;
 383
 384	if (sbio->err) {
 385		for (i = 0; i < sbio->count; ++i)
 386			scrub_recheck_error(sbio, i);
 387
 388		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
 389		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
 390		sbio->bio->bi_phys_segments = 0;
 391		sbio->bio->bi_idx = 0;
 392
 393		for (i = 0; i < sbio->count; i++) {
 394			struct bio_vec *bi;
 395			bi = &sbio->bio->bi_io_vec[i];
 396			bi->bv_offset = 0;
 397			bi->bv_len = PAGE_SIZE;
 398		}
 399
 400		spin_lock(&sdev->stat_lock);
 401		++sdev->stat.read_errors;
 402		spin_unlock(&sdev->stat_lock);
 403		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	}
 405	for (i = 0; i < sbio->count; ++i) {
 406		page = sbio->bio->bi_io_vec[i].bv_page;
 407		buffer = kmap_atomic(page, KM_USER0);
 408		flags = sbio->spag[i].flags;
 409		logical = sbio->logical + i * PAGE_SIZE;
 410		ret = 0;
 411		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 412			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
 413		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 414			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
 415							logical, buffer);
 416		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
 417			BUG_ON(i);
 418			(void)scrub_checksum_super(sbio, buffer);
 419		} else {
 420			WARN_ON(1);
 
 421		}
 422		kunmap_atomic(buffer, KM_USER0);
 423		if (ret)
 424			scrub_recheck_error(sbio, i);
 425	}
 426
 427out:
 428	scrub_free_bio(sbio->bio);
 429	sbio->bio = NULL;
 430	spin_lock(&sdev->list_lock);
 431	sbio->next_free = sdev->first_free;
 432	sdev->first_free = sbio->index;
 433	spin_unlock(&sdev->list_lock);
 434	atomic_dec(&sdev->in_flight);
 435	wake_up(&sdev->list_wait);
 436}
 437
 438static int scrub_checksum_data(struct scrub_dev *sdev,
 439			       struct scrub_page *spag, void *buffer)
 440{
 441	u8 csum[BTRFS_CSUM_SIZE];
 442	u32 crc = ~(u32)0;
 443	int fail = 0;
 444	struct btrfs_root *root = sdev->dev->dev_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446	if (!spag->have_csum)
 447		return 0;
 448
 449	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
 450	btrfs_csum_final(crc, csum);
 451	if (memcmp(csum, spag->csum, sdev->csum_size))
 452		fail = 1;
 453
 454	spin_lock(&sdev->stat_lock);
 455	++sdev->stat.data_extents_scrubbed;
 456	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
 457	if (fail)
 458		++sdev->stat.csum_errors;
 459	spin_unlock(&sdev->stat_lock);
 460
 461	return fail;
 
 462}
 463
 464static int scrub_checksum_tree_block(struct scrub_dev *sdev,
 465				     struct scrub_page *spag, u64 logical,
 466				     void *buffer)
 467{
 468	struct btrfs_header *h;
 469	struct btrfs_root *root = sdev->dev->dev_root;
 470	struct btrfs_fs_info *fs_info = root->fs_info;
 471	u8 csum[BTRFS_CSUM_SIZE];
 472	u32 crc = ~(u32)0;
 473	int fail = 0;
 474	int crc_fail = 0;
 475
 
 
 
 
 
 476	/*
 477	 * we don't use the getter functions here, as we
 478	 * a) don't have an extent buffer and
 479	 * b) the page is already kmapped
 480	 */
 481	h = (struct btrfs_header *)buffer;
 482
 483	if (logical != le64_to_cpu(h->bytenr))
 484		++fail;
 
 
 
 
 
 
 485
 486	if (spag->generation != le64_to_cpu(h->generation))
 487		++fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488
 489	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 490		++fail;
 
 
 
 
 
 
 
 
 
 
 
 491
 492	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 493		   BTRFS_UUID_SIZE))
 494		++fail;
 
 
 
 495
 496	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 497			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 498	btrfs_csum_final(crc, csum);
 499	if (memcmp(csum, h->csum, sdev->csum_size))
 500		++crc_fail;
 501
 502	spin_lock(&sdev->stat_lock);
 503	++sdev->stat.tree_extents_scrubbed;
 504	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
 505	if (crc_fail)
 506		++sdev->stat.csum_errors;
 507	if (fail)
 508		++sdev->stat.verify_errors;
 509	spin_unlock(&sdev->stat_lock);
 510
 511	return fail || crc_fail;
 
 512}
 513
 514static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
 
 
 
 
 
 
 
 
 
 515{
 516	struct btrfs_super_block *s;
 517	u64 logical;
 518	struct scrub_dev *sdev = sbio->sdev;
 519	struct btrfs_root *root = sdev->dev->dev_root;
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	u8 csum[BTRFS_CSUM_SIZE];
 522	u32 crc = ~(u32)0;
 523	int fail = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 525	s = (struct btrfs_super_block *)buffer;
 526	logical = sbio->logical;
 
 
 
 
 
 
 
 
 
 527
 528	if (logical != le64_to_cpu(s->bytenr))
 529		++fail;
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
 532		++fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533
 534	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 535		++fail;
 
 
 
 
 
 
 
 
 536
 537	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 538			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 539	btrfs_csum_final(crc, csum);
 540	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
 541		++fail;
 542
 543	if (fail) {
 544		/*
 545		 * if we find an error in a super block, we just report it.
 546		 * They will get written with the next transaction commit
 547		 * anyway
 548		 */
 549		spin_lock(&sdev->stat_lock);
 550		++sdev->stat.super_errors;
 551		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	}
 
 
 
 
 
 
 
 
 
 553
 554	return fail;
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557static int scrub_submit(struct scrub_dev *sdev)
 
 558{
 559	struct scrub_bio *sbio;
 560	struct bio *bio;
 561	int i;
 562
 563	if (sdev->curr == -1)
 564		return 0;
 565
 566	sbio = sdev->bios[sdev->curr];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567
 568	bio = bio_alloc(GFP_NOFS, sbio->count);
 569	if (!bio)
 570		goto nomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	bio->bi_private = sbio;
 573	bio->bi_end_io = scrub_bio_end_io;
 574	bio->bi_bdev = sdev->dev->bdev;
 575	bio->bi_sector = sbio->physical >> 9;
 576
 577	for (i = 0; i < sbio->count; ++i) {
 578		struct page *page;
 579		int ret;
 
 
 580
 581		page = alloc_page(GFP_NOFS);
 582		if (!page)
 583			goto nomem;
 
 
 
 
 584
 585		ret = bio_add_page(bio, page, PAGE_SIZE, 0);
 586		if (!ret) {
 587			__free_page(page);
 588			goto nomem;
 589		}
 590	}
 
 
 
 
 
 
 
 
 591
 592	sbio->err = 0;
 593	sdev->curr = -1;
 594	atomic_inc(&sdev->in_flight);
 595
 596	submit_bio(READ, bio);
 
 
 
 
 
 597
 598	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600nomem:
 601	scrub_free_bio(bio);
 
 602
 603	return -ENOMEM;
 604}
 
 
 
 
 
 
 
 
 605
 606static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
 607		      u64 physical, u64 flags, u64 gen, u64 mirror_num,
 608		      u8 *csum, int force)
 609{
 610	struct scrub_bio *sbio;
 611
 612again:
 613	/*
 614	 * grab a fresh bio or wait for one to become available
 615	 */
 616	while (sdev->curr == -1) {
 617		spin_lock(&sdev->list_lock);
 618		sdev->curr = sdev->first_free;
 619		if (sdev->curr != -1) {
 620			sdev->first_free = sdev->bios[sdev->curr]->next_free;
 621			sdev->bios[sdev->curr]->next_free = -1;
 622			sdev->bios[sdev->curr]->count = 0;
 623			spin_unlock(&sdev->list_lock);
 624		} else {
 625			spin_unlock(&sdev->list_lock);
 626			wait_event(sdev->list_wait, sdev->first_free != -1);
 627		}
 
 
 628	}
 629	sbio = sdev->bios[sdev->curr];
 630	if (sbio->count == 0) {
 631		sbio->physical = physical;
 632		sbio->logical = logical;
 633	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
 634		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
 635		int ret;
 636
 637		ret = scrub_submit(sdev);
 638		if (ret)
 639			return ret;
 640		goto again;
 641	}
 642	sbio->spag[sbio->count].flags = flags;
 643	sbio->spag[sbio->count].generation = gen;
 644	sbio->spag[sbio->count].have_csum = 0;
 645	sbio->spag[sbio->count].mirror_num = mirror_num;
 646	if (csum) {
 647		sbio->spag[sbio->count].have_csum = 1;
 648		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
 649	}
 650	++sbio->count;
 651	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
 652		int ret;
 653
 654		ret = scrub_submit(sdev);
 655		if (ret)
 656			return ret;
 
 657	}
 658
 659	return 0;
 660}
 661
 662static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
 663			   u8 *csum)
 664{
 665	struct btrfs_ordered_sum *sum = NULL;
 666	int ret = 0;
 667	unsigned long i;
 668	unsigned long num_sectors;
 669	u32 sectorsize = sdev->dev->dev_root->sectorsize;
 670
 671	while (!list_empty(&sdev->csum_list)) {
 672		sum = list_first_entry(&sdev->csum_list,
 673				       struct btrfs_ordered_sum, list);
 674		if (sum->bytenr > logical)
 675			return 0;
 676		if (sum->bytenr + sum->len > logical)
 677			break;
 678
 679		++sdev->stat.csum_discards;
 680		list_del(&sum->list);
 681		kfree(sum);
 682		sum = NULL;
 683	}
 684	if (!sum)
 685		return 0;
 686
 687	num_sectors = sum->len / sectorsize;
 688	for (i = 0; i < num_sectors; ++i) {
 689		if (sum->sums[i].bytenr == logical) {
 690			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
 691			ret = 1;
 692			break;
 693		}
 
 
 
 
 
 
 694	}
 695	if (ret && i == num_sectors - 1) {
 696		list_del(&sum->list);
 697		kfree(sum);
 
 
 
 
 
 
 
 
 
 
 
 698	}
 699	return ret;
 700}
 701
 702/* scrub extent tries to collect up to 64 kB for each bio */
 703static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
 704			u64 physical, u64 flags, u64 gen, u64 mirror_num)
 705{
 706	int ret;
 707	u8 csum[BTRFS_CSUM_SIZE];
 708
 709	while (len) {
 710		u64 l = min_t(u64, len, PAGE_SIZE);
 711		int have_csum = 0;
 712
 713		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 714			/* push csums to sbio */
 715			have_csum = scrub_find_csum(sdev, logical, l, csum);
 716			if (have_csum == 0)
 717				++sdev->stat.no_csum;
 718		}
 719		ret = scrub_page(sdev, logical, l, physical, flags, gen,
 720				 mirror_num, have_csum ? csum : NULL, 0);
 721		if (ret)
 722			return ret;
 723		len -= l;
 724		logical += l;
 725		physical += l;
 726	}
 727	return 0;
 728}
 729
 730static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
 731	struct map_lookup *map, int num, u64 base, u64 length)
 
 732{
 733	struct btrfs_path *path;
 734	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 735	struct btrfs_root *root = fs_info->extent_root;
 736	struct btrfs_root *csum_root = fs_info->csum_root;
 737	struct btrfs_extent_item *extent;
 738	struct blk_plug plug;
 739	u64 flags;
 740	int ret;
 741	int slot;
 742	int i;
 743	u64 nstripes;
 744	int start_stripe;
 745	struct extent_buffer *l;
 746	struct btrfs_key key;
 747	u64 physical;
 748	u64 logical;
 749	u64 generation;
 750	u64 mirror_num;
 751
 752	u64 increment = map->stripe_len;
 753	u64 offset;
 
 
 
 
 
 
 754
 755	nstripes = length;
 756	offset = 0;
 757	do_div(nstripes, map->stripe_len);
 758	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 759		offset = map->stripe_len * num;
 760		increment = map->stripe_len * map->num_stripes;
 761		mirror_num = 0;
 762	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 763		int factor = map->num_stripes / map->sub_stripes;
 764		offset = map->stripe_len * (num / map->sub_stripes);
 765		increment = map->stripe_len * factor;
 766		mirror_num = num % map->sub_stripes;
 767	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 768		increment = map->stripe_len;
 769		mirror_num = num % map->num_stripes;
 770	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 771		increment = map->stripe_len;
 772		mirror_num = num % map->num_stripes;
 773	} else {
 774		increment = map->stripe_len;
 775		mirror_num = 0;
 776	}
 
 
 
 
 
 
 
 
 
 
 
 
 777
 778	path = btrfs_alloc_path();
 779	if (!path)
 780		return -ENOMEM;
 
 
 781
 782	path->reada = 2;
 783	path->search_commit_root = 1;
 784	path->skip_locking = 1;
 785
 786	/*
 787	 * find all extents for each stripe and just read them to get
 788	 * them into the page cache
 789	 * FIXME: we can do better. build a more intelligent prefetching
 790	 */
 791	logical = base + offset;
 792	physical = map->stripes[num].physical;
 793	ret = 0;
 794	for (i = 0; i < nstripes; ++i) {
 795		key.objectid = logical;
 796		key.type = BTRFS_EXTENT_ITEM_KEY;
 797		key.offset = (u64)0;
 798
 799		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 800		if (ret < 0)
 801			goto out_noplug;
 802
 
 
 803		/*
 804		 * we might miss half an extent here, but that doesn't matter,
 805		 * as it's only the prefetch
 806		 */
 807		while (1) {
 808			l = path->nodes[0];
 809			slot = path->slots[0];
 810			if (slot >= btrfs_header_nritems(l)) {
 811				ret = btrfs_next_leaf(root, path);
 812				if (ret == 0)
 813					continue;
 814				if (ret < 0)
 815					goto out_noplug;
 816
 817				break;
 818			}
 819			btrfs_item_key_to_cpu(l, &key, slot);
 820
 821			if (key.objectid >= logical + map->stripe_len)
 822				break;
 823
 824			path->slots[0]++;
 
 
 825		}
 826		btrfs_release_path(path);
 827		logical += increment;
 828		physical += map->stripe_len;
 829		cond_resched();
 830	}
 831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	/*
 833	 * collect all data csums for the stripe to avoid seeking during
 834	 * the scrub. This might currently (crc32) end up to be about 1MB
 835	 */
 836	start_stripe = 0;
 837	blk_start_plug(&plug);
 838again:
 839	logical = base + offset + start_stripe * increment;
 840	for (i = start_stripe; i < nstripes; ++i) {
 841		ret = btrfs_lookup_csums_range(csum_root, logical,
 842					       logical + map->stripe_len - 1,
 843					       &sdev->csum_list, 1);
 844		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847		logical += increment;
 848		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849	}
 
 
 
 850	/*
 851	 * now find all extents for each stripe and scrub them
 
 
 
 
 852	 */
 853	logical = base + offset + start_stripe * increment;
 854	physical = map->stripes[num].physical + start_stripe * map->stripe_len;
 855	ret = 0;
 856	for (i = start_stripe; i < nstripes; ++i) {
 
 857		/*
 858		 * canceled?
 
 859		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860		if (atomic_read(&fs_info->scrub_cancel_req) ||
 861		    atomic_read(&sdev->cancel_req)) {
 862			ret = -ECANCELED;
 863			goto out;
 864		}
 865		/*
 866		 * check to see if we have to pause
 867		 */
 868		if (atomic_read(&fs_info->scrub_pause_req)) {
 869			/* push queued extents */
 870			scrub_submit(sdev);
 871			wait_event(sdev->list_wait,
 872				   atomic_read(&sdev->in_flight) == 0);
 873			atomic_inc(&fs_info->scrubs_paused);
 874			wake_up(&fs_info->scrub_pause_wait);
 875			mutex_lock(&fs_info->scrub_lock);
 876			while (atomic_read(&fs_info->scrub_pause_req)) {
 877				mutex_unlock(&fs_info->scrub_lock);
 878				wait_event(fs_info->scrub_pause_wait,
 879				   atomic_read(&fs_info->scrub_pause_req) == 0);
 880				mutex_lock(&fs_info->scrub_lock);
 881			}
 882			atomic_dec(&fs_info->scrubs_paused);
 883			mutex_unlock(&fs_info->scrub_lock);
 884			wake_up(&fs_info->scrub_pause_wait);
 885			scrub_free_csums(sdev);
 886			start_stripe = i;
 887			goto again;
 888		}
 
 889
 890		key.objectid = logical;
 891		key.type = BTRFS_EXTENT_ITEM_KEY;
 892		key.offset = (u64)0;
 893
 894		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 895		if (ret < 0)
 896			goto out;
 897		if (ret > 0) {
 898			ret = btrfs_previous_item(root, path, 0,
 899						  BTRFS_EXTENT_ITEM_KEY);
 900			if (ret < 0)
 901				goto out;
 902			if (ret > 0) {
 903				/* there's no smaller item, so stick with the
 904				 * larger one */
 905				btrfs_release_path(path);
 906				ret = btrfs_search_slot(NULL, root, &key,
 907							path, 0, 0);
 908				if (ret < 0)
 909					goto out;
 910			}
 911		}
 
 
 912
 913		while (1) {
 914			l = path->nodes[0];
 915			slot = path->slots[0];
 916			if (slot >= btrfs_header_nritems(l)) {
 917				ret = btrfs_next_leaf(root, path);
 918				if (ret == 0)
 919					continue;
 920				if (ret < 0)
 921					goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923				break;
 924			}
 925			btrfs_item_key_to_cpu(l, &key, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926
 927			if (key.objectid + key.offset <= logical)
 928				goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930			if (key.objectid >= logical + map->stripe_len)
 931				break;
 932
 933			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
 934				goto next;
 935
 936			extent = btrfs_item_ptr(l, slot,
 937						struct btrfs_extent_item);
 938			flags = btrfs_extent_flags(l, extent);
 939			generation = btrfs_extent_generation(l, extent);
 940
 941			if (key.objectid < logical &&
 942			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 943				printk(KERN_ERR
 944				       "btrfs scrub: tree block %llu spanning "
 945				       "stripes, ignored. logical=%llu\n",
 946				       (unsigned long long)key.objectid,
 947				       (unsigned long long)logical);
 948				goto next;
 949			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951			/*
 952			 * trim extent to this stripe
 953			 */
 954			if (key.objectid < logical) {
 955				key.offset -= logical - key.objectid;
 956				key.objectid = logical;
 957			}
 958			if (key.objectid + key.offset >
 959			    logical + map->stripe_len) {
 960				key.offset = logical + map->stripe_len -
 961					     key.objectid;
 962			}
 963
 964			ret = scrub_extent(sdev, key.objectid, key.offset,
 965					   key.objectid - logical + physical,
 966					   flags, generation, mirror_num);
 
 
 
 
 
 
 
 
 
 
 967			if (ret)
 968				goto out;
 
 
 969
 
 
 
 
 
 
 
 
 
 
 
 
 970next:
 971			path->slots[0]++;
 972		}
 973		btrfs_release_path(path);
 974		logical += increment;
 975		physical += map->stripe_len;
 976		spin_lock(&sdev->stat_lock);
 977		sdev->stat.last_physical = physical;
 978		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979	}
 980	/* push queued extents */
 981	scrub_submit(sdev);
 982
 983out:
 984	blk_finish_plug(&plug);
 985out_noplug:
 986	btrfs_free_path(path);
 987	return ret < 0 ? ret : 0;
 988}
 989
 990static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
 991	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
 
 
 
 992{
 993	struct btrfs_mapping_tree *map_tree =
 994		&sdev->dev->dev_root->fs_info->mapping_tree;
 995	struct map_lookup *map;
 996	struct extent_map *em;
 997	int i;
 998	int ret = -EINVAL;
 999
1000	read_lock(&map_tree->map_tree.lock);
1001	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1002	read_unlock(&map_tree->map_tree.lock);
 
 
 
 
 
 
 
1003
1004	if (!em)
1005		return -EINVAL;
1006
1007	map = (struct map_lookup *)em->bdev;
1008	if (em->start != chunk_offset)
1009		goto out;
1010
1011	if (em->len < length)
1012		goto out;
1013
1014	for (i = 0; i < map->num_stripes; ++i) {
1015		if (map->stripes[i].dev == sdev->dev) {
1016			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
 
1017			if (ret)
1018				goto out;
1019		}
1020	}
1021out:
1022	free_extent_map(em);
1023
1024	return ret;
1025}
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027static noinline_for_stack
1028int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
 
1029{
1030	struct btrfs_dev_extent *dev_extent = NULL;
1031	struct btrfs_path *path;
1032	struct btrfs_root *root = sdev->dev->dev_root;
1033	struct btrfs_fs_info *fs_info = root->fs_info;
1034	u64 length;
1035	u64 chunk_tree;
1036	u64 chunk_objectid;
1037	u64 chunk_offset;
1038	int ret;
 
1039	int slot;
1040	struct extent_buffer *l;
1041	struct btrfs_key key;
1042	struct btrfs_key found_key;
1043	struct btrfs_block_group_cache *cache;
 
1044
1045	path = btrfs_alloc_path();
1046	if (!path)
1047		return -ENOMEM;
1048
1049	path->reada = 2;
1050	path->search_commit_root = 1;
1051	path->skip_locking = 1;
1052
1053	key.objectid = sdev->dev->devid;
1054	key.offset = 0ull;
1055	key.type = BTRFS_DEV_EXTENT_KEY;
1056
 
 
1057
1058	while (1) {
1059		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1060		if (ret < 0)
1061			break;
1062		if (ret > 0) {
1063			if (path->slots[0] >=
1064			    btrfs_header_nritems(path->nodes[0])) {
1065				ret = btrfs_next_leaf(root, path);
1066				if (ret)
1067					break;
 
 
 
 
 
 
1068			}
1069		}
1070
1071		l = path->nodes[0];
1072		slot = path->slots[0];
1073
1074		btrfs_item_key_to_cpu(l, &found_key, slot);
1075
1076		if (found_key.objectid != sdev->dev->devid)
1077			break;
1078
1079		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1080			break;
1081
1082		if (found_key.offset >= end)
1083			break;
1084
1085		if (found_key.offset < key.offset)
1086			break;
1087
1088		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1089		length = btrfs_dev_extent_length(l, dev_extent);
1090
1091		if (found_key.offset + length <= start) {
1092			key.offset = found_key.offset + length;
1093			btrfs_release_path(path);
1094			continue;
1095		}
1096
1097		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1098		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1099		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1100
1101		/*
1102		 * get a reference on the corresponding block group to prevent
1103		 * the chunk from going away while we scrub it
1104		 */
1105		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1106		if (!cache) {
1107			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108			break;
1109		}
1110		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1111				  chunk_offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		btrfs_put_block_group(cache);
1113		if (ret)
1114			break;
1115
1116		key.offset = found_key.offset + length;
 
 
 
 
 
 
 
 
 
1117		btrfs_release_path(path);
1118	}
1119
1120	btrfs_free_path(path);
1121
1122	/*
1123	 * ret can still be 1 from search_slot or next_leaf,
1124	 * that's not an error
1125	 */
1126	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127}
1128
1129static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
 
1130{
1131	int	i;
1132	u64	bytenr;
1133	u64	gen;
1134	int	ret;
1135	struct btrfs_device *device = sdev->dev;
1136	struct btrfs_root *root = device->dev_root;
1137
1138	gen = root->fs_info->last_trans_committed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139
1140	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1141		bytenr = btrfs_sb_offset(i);
1142		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
 
 
 
 
 
 
 
 
 
 
1143			break;
 
 
1144
1145		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1146				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1147		if (ret)
1148			return ret;
 
 
1149	}
1150	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
 
 
 
 
 
 
 
 
 
 
 
1151
1152	return 0;
 
 
1153}
1154
1155/*
1156 * get a reference count on fs_info->scrub_workers. start worker if necessary
1157 */
1158static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1159{
1160	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
 
 
 
 
 
 
 
1161
1162	mutex_lock(&fs_info->scrub_lock);
1163	if (fs_info->scrub_workers_refcnt == 0) {
1164		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1165			   fs_info->thread_pool_size, &fs_info->generic_worker);
1166		fs_info->scrub_workers.idle_thresh = 4;
1167		btrfs_start_workers(&fs_info->scrub_workers, 1);
 
1168	}
1169	++fs_info->scrub_workers_refcnt;
 
1170	mutex_unlock(&fs_info->scrub_lock);
1171
1172	return 0;
1173}
1174
1175static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1176{
1177	struct btrfs_fs_info *fs_info = root->fs_info;
1178
1179	mutex_lock(&fs_info->scrub_lock);
1180	if (--fs_info->scrub_workers_refcnt == 0)
1181		btrfs_stop_workers(&fs_info->scrub_workers);
1182	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1183	mutex_unlock(&fs_info->scrub_lock);
1184}
1185
1186
1187int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1188		    struct btrfs_scrub_progress *progress, int readonly)
1189{
1190	struct scrub_dev *sdev;
1191	struct btrfs_fs_info *fs_info = root->fs_info;
1192	int ret;
1193	struct btrfs_device *dev;
 
 
 
 
 
1194
1195	if (btrfs_fs_closing(root->fs_info))
1196		return -EINVAL;
1197
1198	/*
1199	 * check some assumptions
 
 
1200	 */
1201	if (root->sectorsize != PAGE_SIZE ||
1202	    root->sectorsize != root->leafsize ||
1203	    root->sectorsize != root->nodesize) {
1204		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1205		return -EINVAL;
1206	}
 
1207
1208	ret = scrub_workers_get(root);
1209	if (ret)
1210		return ret;
1211
1212	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1213	dev = btrfs_find_device(root, devid, NULL, NULL);
1214	if (!dev || dev->missing) {
1215		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1216		scrub_workers_put(root);
1217		return -ENODEV;
 
1218	}
1219	mutex_lock(&fs_info->scrub_lock);
1220
1221	if (!dev->in_fs_metadata) {
1222		mutex_unlock(&fs_info->scrub_lock);
1223		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1224		scrub_workers_put(root);
1225		return -ENODEV;
 
 
 
1226	}
1227
1228	if (dev->scrub_device) {
 
 
1229		mutex_unlock(&fs_info->scrub_lock);
1230		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1231		scrub_workers_put(root);
1232		return -EINPROGRESS;
1233	}
1234	sdev = scrub_setup_dev(dev);
1235	if (IS_ERR(sdev)) {
 
 
 
 
1236		mutex_unlock(&fs_info->scrub_lock);
1237		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1238		scrub_workers_put(root);
1239		return PTR_ERR(sdev);
1240	}
1241	sdev->readonly = readonly;
1242	dev->scrub_device = sdev;
1243
 
 
 
 
 
 
 
 
 
1244	atomic_inc(&fs_info->scrubs_running);
1245	mutex_unlock(&fs_info->scrub_lock);
1246	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1247
1248	down_read(&fs_info->scrub_super_lock);
1249	ret = scrub_supers(sdev);
1250	up_read(&fs_info->scrub_super_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	if (!ret)
1253		ret = scrub_enumerate_chunks(sdev, start, end);
1254
1255	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1256
1257	atomic_dec(&fs_info->scrubs_running);
1258	wake_up(&fs_info->scrub_pause_wait);
1259
1260	if (progress)
1261		memcpy(progress, &sdev->stat, sizeof(*progress));
 
 
 
 
1262
1263	mutex_lock(&fs_info->scrub_lock);
1264	dev->scrub_device = NULL;
1265	mutex_unlock(&fs_info->scrub_lock);
1266
1267	scrub_free_dev(sdev);
1268	scrub_workers_put(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269
1270	return ret;
1271}
1272
1273int btrfs_scrub_pause(struct btrfs_root *root)
1274{
1275	struct btrfs_fs_info *fs_info = root->fs_info;
1276
1277	mutex_lock(&fs_info->scrub_lock);
1278	atomic_inc(&fs_info->scrub_pause_req);
1279	while (atomic_read(&fs_info->scrubs_paused) !=
1280	       atomic_read(&fs_info->scrubs_running)) {
1281		mutex_unlock(&fs_info->scrub_lock);
1282		wait_event(fs_info->scrub_pause_wait,
1283			   atomic_read(&fs_info->scrubs_paused) ==
1284			   atomic_read(&fs_info->scrubs_running));
1285		mutex_lock(&fs_info->scrub_lock);
1286	}
1287	mutex_unlock(&fs_info->scrub_lock);
1288
1289	return 0;
1290}
1291
1292int btrfs_scrub_continue(struct btrfs_root *root)
1293{
1294	struct btrfs_fs_info *fs_info = root->fs_info;
1295
1296	atomic_dec(&fs_info->scrub_pause_req);
1297	wake_up(&fs_info->scrub_pause_wait);
1298	return 0;
1299}
1300
1301int btrfs_scrub_pause_super(struct btrfs_root *root)
1302{
1303	down_write(&root->fs_info->scrub_super_lock);
1304	return 0;
1305}
1306
1307int btrfs_scrub_continue_super(struct btrfs_root *root)
1308{
1309	up_write(&root->fs_info->scrub_super_lock);
1310	return 0;
1311}
1312
1313int btrfs_scrub_cancel(struct btrfs_root *root)
1314{
1315	struct btrfs_fs_info *fs_info = root->fs_info;
1316
1317	mutex_lock(&fs_info->scrub_lock);
1318	if (!atomic_read(&fs_info->scrubs_running)) {
1319		mutex_unlock(&fs_info->scrub_lock);
1320		return -ENOTCONN;
1321	}
1322
1323	atomic_inc(&fs_info->scrub_cancel_req);
1324	while (atomic_read(&fs_info->scrubs_running)) {
1325		mutex_unlock(&fs_info->scrub_lock);
1326		wait_event(fs_info->scrub_pause_wait,
1327			   atomic_read(&fs_info->scrubs_running) == 0);
1328		mutex_lock(&fs_info->scrub_lock);
1329	}
1330	atomic_dec(&fs_info->scrub_cancel_req);
1331	mutex_unlock(&fs_info->scrub_lock);
1332
1333	return 0;
1334}
1335
1336int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1337{
1338	struct btrfs_fs_info *fs_info = root->fs_info;
1339	struct scrub_dev *sdev;
1340
1341	mutex_lock(&fs_info->scrub_lock);
1342	sdev = dev->scrub_device;
1343	if (!sdev) {
1344		mutex_unlock(&fs_info->scrub_lock);
1345		return -ENOTCONN;
1346	}
1347	atomic_inc(&sdev->cancel_req);
1348	while (dev->scrub_device) {
1349		mutex_unlock(&fs_info->scrub_lock);
1350		wait_event(fs_info->scrub_pause_wait,
1351			   dev->scrub_device == NULL);
1352		mutex_lock(&fs_info->scrub_lock);
1353	}
1354	mutex_unlock(&fs_info->scrub_lock);
1355
1356	return 0;
1357}
1358int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1359{
1360	struct btrfs_fs_info *fs_info = root->fs_info;
1361	struct btrfs_device *dev;
1362	int ret;
1363
1364	/*
1365	 * we have to hold the device_list_mutex here so the device
1366	 * does not go away in cancel_dev. FIXME: find a better solution
1367	 */
1368	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1369	dev = btrfs_find_device(root, devid, NULL, NULL);
1370	if (!dev) {
1371		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1372		return -ENODEV;
1373	}
1374	ret = btrfs_scrub_cancel_dev(root, dev);
1375	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1376
1377	return ret;
1378}
1379
1380int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1381			 struct btrfs_scrub_progress *progress)
1382{
 
1383	struct btrfs_device *dev;
1384	struct scrub_dev *sdev = NULL;
1385
1386	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1387	dev = btrfs_find_device(root, devid, NULL, NULL);
1388	if (dev)
1389		sdev = dev->scrub_device;
1390	if (sdev)
1391		memcpy(progress, &sdev->stat, sizeof(*progress));
1392	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1393
1394	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1395}