Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30#include "space-info.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "extent-tree.h"
  34#include "root-tree.h"
  35#include "file-item.h"
  36#include "relocation.h"
  37#include "super.h"
  38#include "tree-checker.h"
  39
  40/*
  41 * Relocation overview
  42 *
  43 * [What does relocation do]
  44 *
  45 * The objective of relocation is to relocate all extents of the target block
  46 * group to other block groups.
  47 * This is utilized by resize (shrink only), profile converting, compacting
  48 * space, or balance routine to spread chunks over devices.
  49 *
  50 * 		Before		|		After
  51 * ------------------------------------------------------------------
  52 *  BG A: 10 data extents	| BG A: deleted
  53 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  54 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  55 *
  56 * [How does relocation work]
  57 *
  58 * 1.   Mark the target block group read-only
  59 *      New extents won't be allocated from the target block group.
  60 *
  61 * 2.1  Record each extent in the target block group
  62 *      To build a proper map of extents to be relocated.
  63 *
  64 * 2.2  Build data reloc tree and reloc trees
  65 *      Data reloc tree will contain an inode, recording all newly relocated
  66 *      data extents.
  67 *      There will be only one data reloc tree for one data block group.
  68 *
  69 *      Reloc tree will be a special snapshot of its source tree, containing
  70 *      relocated tree blocks.
  71 *      Each tree referring to a tree block in target block group will get its
  72 *      reloc tree built.
  73 *
  74 * 2.3  Swap source tree with its corresponding reloc tree
  75 *      Each involved tree only refers to new extents after swap.
  76 *
  77 * 3.   Cleanup reloc trees and data reloc tree.
  78 *      As old extents in the target block group are still referenced by reloc
  79 *      trees, we need to clean them up before really freeing the target block
  80 *      group.
  81 *
  82 * The main complexity is in steps 2.2 and 2.3.
  83 *
  84 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  85 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87#define RELOCATION_RESERVED_NODES	256
  88/*
  89 * map address of tree root to tree
  90 */
  91struct mapping_node {
  92	struct {
  93		struct rb_node rb_node;
  94		u64 bytenr;
  95	}; /* Use rb_simle_node for search/insert */
  96	void *data;
  97};
  98
  99struct mapping_tree {
 100	struct rb_root rb_root;
 101	spinlock_t lock;
 102};
 103
 104/*
 105 * present a tree block to process
 106 */
 107struct tree_block {
 108	struct {
 109		struct rb_node rb_node;
 110		u64 bytenr;
 111	}; /* Use rb_simple_node for search/insert */
 112	u64 owner;
 113	struct btrfs_key key;
 114	u8 level;
 115	bool key_ready;
 116};
 117
 118#define MAX_EXTENTS 128
 119
 120struct file_extent_cluster {
 121	u64 start;
 122	u64 end;
 123	u64 boundary[MAX_EXTENTS];
 124	unsigned int nr;
 125	u64 owning_root;
 126};
 127
 128/* Stages of data relocation. */
 129enum reloc_stage {
 130	MOVE_DATA_EXTENTS,
 131	UPDATE_DATA_PTRS
 132};
 133
 134struct reloc_control {
 135	/* block group to relocate */
 136	struct btrfs_block_group *block_group;
 137	/* extent tree */
 138	struct btrfs_root *extent_root;
 139	/* inode for moving data */
 140	struct inode *data_inode;
 141
 142	struct btrfs_block_rsv *block_rsv;
 143
 144	struct btrfs_backref_cache backref_cache;
 145
 146	struct file_extent_cluster cluster;
 147	/* tree blocks have been processed */
 148	struct extent_io_tree processed_blocks;
 149	/* map start of tree root to corresponding reloc tree */
 150	struct mapping_tree reloc_root_tree;
 151	/* list of reloc trees */
 152	struct list_head reloc_roots;
 153	/* list of subvolume trees that get relocated */
 154	struct list_head dirty_subvol_roots;
 155	/* size of metadata reservation for merging reloc trees */
 156	u64 merging_rsv_size;
 157	/* size of relocated tree nodes */
 158	u64 nodes_relocated;
 159	/* reserved size for block group relocation*/
 160	u64 reserved_bytes;
 161
 162	u64 search_start;
 163	u64 extents_found;
 164
 165	enum reloc_stage stage;
 166	bool create_reloc_tree;
 167	bool merge_reloc_tree;
 168	bool found_file_extent;
 
 169};
 170
 171static void mark_block_processed(struct reloc_control *rc,
 172				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 173{
 174	u32 blocksize;
 
 
 175
 176	if (node->level == 0 ||
 177	    in_range(node->bytenr, rc->block_group->start,
 178		     rc->block_group->length)) {
 179		blocksize = rc->extent_root->fs_info->nodesize;
 180		set_extent_bit(&rc->processed_blocks, node->bytenr,
 181			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182	}
 183	node->processed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184}
 185
 186/*
 187 * walk up backref nodes until reach node presents tree root
 188 */
 189static struct btrfs_backref_node *walk_up_backref(
 190		struct btrfs_backref_node *node,
 191		struct btrfs_backref_edge *edges[], int *index)
 192{
 193	struct btrfs_backref_edge *edge;
 194	int idx = *index;
 195
 196	while (!list_empty(&node->upper)) {
 197		edge = list_entry(node->upper.next,
 198				  struct btrfs_backref_edge, list[LOWER]);
 199		edges[idx++] = edge;
 200		node = edge->node[UPPER];
 201	}
 202	BUG_ON(node->detached);
 203	*index = idx;
 204	return node;
 205}
 206
 207/*
 208 * walk down backref nodes to find start of next reference path
 209 */
 210static struct btrfs_backref_node *walk_down_backref(
 211		struct btrfs_backref_edge *edges[], int *index)
 212{
 213	struct btrfs_backref_edge *edge;
 214	struct btrfs_backref_node *lower;
 215	int idx = *index;
 216
 217	while (idx > 0) {
 218		edge = edges[idx - 1];
 219		lower = edge->node[LOWER];
 220		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 221			idx--;
 222			continue;
 223		}
 224		edge = list_entry(edge->list[LOWER].next,
 225				  struct btrfs_backref_edge, list[LOWER]);
 226		edges[idx - 1] = edge;
 227		*index = idx;
 228		return edge->node[UPPER];
 229	}
 230	*index = 0;
 231	return NULL;
 232}
 233
 234static void update_backref_node(struct btrfs_backref_cache *cache,
 235				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236{
 237	struct rb_node *rb_node;
 238	rb_erase(&node->rb_node, &cache->rb_root);
 239	node->bytenr = bytenr;
 240	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 241	if (rb_node)
 242		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 243}
 244
 245/*
 246 * update backref cache after a transaction commit
 247 */
 248static int update_backref_cache(struct btrfs_trans_handle *trans,
 249				struct btrfs_backref_cache *cache)
 250{
 251	struct btrfs_backref_node *node;
 252	int level = 0;
 253
 254	if (cache->last_trans == 0) {
 255		cache->last_trans = trans->transid;
 256		return 0;
 257	}
 258
 259	if (cache->last_trans == trans->transid)
 260		return 0;
 261
 262	/*
 263	 * detached nodes are used to avoid unnecessary backref
 264	 * lookup. transaction commit changes the extent tree.
 265	 * so the detached nodes are no longer useful.
 266	 */
 267	while (!list_empty(&cache->detached)) {
 268		node = list_entry(cache->detached.next,
 269				  struct btrfs_backref_node, list);
 270		btrfs_backref_cleanup_node(cache, node);
 271	}
 272
 273	while (!list_empty(&cache->changed)) {
 274		node = list_entry(cache->changed.next,
 275				  struct btrfs_backref_node, list);
 276		list_del_init(&node->list);
 277		BUG_ON(node->pending);
 278		update_backref_node(cache, node, node->new_bytenr);
 279	}
 280
 281	/*
 282	 * some nodes can be left in the pending list if there were
 283	 * errors during processing the pending nodes.
 284	 */
 285	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 286		list_for_each_entry(node, &cache->pending[level], list) {
 287			BUG_ON(!node->pending);
 288			if (node->bytenr == node->new_bytenr)
 289				continue;
 290			update_backref_node(cache, node, node->new_bytenr);
 291		}
 292	}
 293
 294	cache->last_trans = 0;
 295	return 1;
 296}
 297
 298static bool reloc_root_is_dead(const struct btrfs_root *root)
 299{
 300	/*
 301	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 302	 * btrfs_update_reloc_root. We need to see the updated bit before
 303	 * trying to access reloc_root
 304	 */
 305	smp_rmb();
 306	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 307		return true;
 308	return false;
 309}
 310
 311/*
 312 * Check if this subvolume tree has valid reloc tree.
 313 *
 314 * Reloc tree after swap is considered dead, thus not considered as valid.
 315 * This is enough for most callers, as they don't distinguish dead reloc root
 316 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 317 * special case.
 318 */
 319static bool have_reloc_root(const struct btrfs_root *root)
 320{
 321	if (reloc_root_is_dead(root))
 322		return false;
 323	if (!root->reloc_root)
 324		return false;
 325	return true;
 326}
 327
 328bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
 329{
 330	struct btrfs_root *reloc_root;
 331
 332	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 333		return false;
 334
 335	/* This root has been merged with its reloc tree, we can ignore it */
 336	if (reloc_root_is_dead(root))
 337		return true;
 338
 339	reloc_root = root->reloc_root;
 340	if (!reloc_root)
 341		return false;
 342
 343	if (btrfs_header_generation(reloc_root->commit_root) ==
 344	    root->fs_info->running_transaction->transid)
 345		return false;
 346	/*
 347	 * If there is reloc tree and it was created in previous transaction
 348	 * backref lookup can find the reloc tree, so backref node for the fs
 349	 * tree root is useless for relocation.
 
 350	 */
 351	return true;
 352}
 353
 354/*
 355 * find reloc tree by address of tree root
 356 */
 357struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 358{
 359	struct reloc_control *rc = fs_info->reloc_ctl;
 360	struct rb_node *rb_node;
 361	struct mapping_node *node;
 362	struct btrfs_root *root = NULL;
 363
 364	ASSERT(rc);
 365	spin_lock(&rc->reloc_root_tree.lock);
 366	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 367	if (rb_node) {
 368		node = rb_entry(rb_node, struct mapping_node, rb_node);
 369		root = node->data;
 370	}
 371	spin_unlock(&rc->reloc_root_tree.lock);
 372	return btrfs_grab_root(root);
 373}
 374
 375/*
 376 * For useless nodes, do two major clean ups:
 377 *
 378 * - Cleanup the children edges and nodes
 379 *   If child node is also orphan (no parent) during cleanup, then the child
 380 *   node will also be cleaned up.
 381 *
 382 * - Freeing up leaves (level 0), keeps nodes detached
 383 *   For nodes, the node is still cached as "detached"
 384 *
 385 * Return false if @node is not in the @useless_nodes list.
 386 * Return true if @node is in the @useless_nodes list.
 387 */
 388static bool handle_useless_nodes(struct reloc_control *rc,
 389				 struct btrfs_backref_node *node)
 390{
 391	struct btrfs_backref_cache *cache = &rc->backref_cache;
 392	struct list_head *useless_node = &cache->useless_node;
 393	bool ret = false;
 
 
 
 
 
 
 394
 395	while (!list_empty(useless_node)) {
 396		struct btrfs_backref_node *cur;
 
 
 397
 398		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 399				 list);
 400		list_del_init(&cur->list);
 
 
 
 401
 402		/* Only tree root nodes can be added to @useless_nodes */
 403		ASSERT(list_empty(&cur->upper));
 404
 405		if (cur == node)
 406			ret = true;
 
 
 
 
 
 
 
 407
 408		/* The node is the lowest node */
 409		if (cur->lowest) {
 410			list_del_init(&cur->lower);
 411			cur->lowest = 0;
 412		}
 413
 414		/* Cleanup the lower edges */
 415		while (!list_empty(&cur->lower)) {
 416			struct btrfs_backref_edge *edge;
 417			struct btrfs_backref_node *lower;
 418
 419			edge = list_entry(cur->lower.next,
 420					struct btrfs_backref_edge, list[UPPER]);
 421			list_del(&edge->list[UPPER]);
 422			list_del(&edge->list[LOWER]);
 423			lower = edge->node[LOWER];
 424			btrfs_backref_free_edge(cache, edge);
 425
 426			/* Child node is also orphan, queue for cleanup */
 427			if (list_empty(&lower->upper))
 428				list_add(&lower->list, useless_node);
 429		}
 430		/* Mark this block processed for relocation */
 431		mark_block_processed(rc, cur);
 432
 433		/*
 434		 * Backref nodes for tree leaves are deleted from the cache.
 435		 * Backref nodes for upper level tree blocks are left in the
 436		 * cache to avoid unnecessary backref lookup.
 437		 */
 438		if (cur->level > 0) {
 439			list_add(&cur->list, &cache->detached);
 440			cur->detached = 1;
 441		} else {
 442			rb_erase(&cur->rb_node, &cache->rb_root);
 443			btrfs_backref_free_node(cache, cur);
 444		}
 
 445	}
 446	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 447}
 448
 449/*
 450 * Build backref tree for a given tree block. Root of the backref tree
 451 * corresponds the tree block, leaves of the backref tree correspond roots of
 452 * b-trees that reference the tree block.
 453 *
 454 * The basic idea of this function is check backrefs of a given block to find
 455 * upper level blocks that reference the block, and then check backrefs of
 456 * these upper level blocks recursively. The recursion stops when tree root is
 457 * reached or backrefs for the block is cached.
 458 *
 459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 460 * all upper level blocks that directly/indirectly reference the block are also
 461 * cached.
 462 */
 463static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 464			struct btrfs_trans_handle *trans,
 465			struct reloc_control *rc, struct btrfs_key *node_key,
 466			int level, u64 bytenr)
 467{
 468	struct btrfs_backref_iter *iter;
 469	struct btrfs_backref_cache *cache = &rc->backref_cache;
 470	/* For searching parent of TREE_BLOCK_REF */
 471	struct btrfs_path *path;
 472	struct btrfs_backref_node *cur;
 473	struct btrfs_backref_node *node = NULL;
 474	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 475	int ret;
 476	int err = 0;
 477
 478	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
 479	if (!iter)
 480		return ERR_PTR(-ENOMEM);
 481	path = btrfs_alloc_path();
 482	if (!path) {
 483		err = -ENOMEM;
 484		goto out;
 485	}
 
 
 486
 487	node = btrfs_backref_alloc_node(cache, bytenr, level);
 488	if (!node) {
 489		err = -ENOMEM;
 490		goto out;
 491	}
 492
 
 
 493	node->lowest = 1;
 494	cur = node;
 
 
 
 
 
 
 495
 496	/* Breadth-first search to build backref cache */
 497	do {
 498		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
 499						  node_key, cur);
 500		if (ret < 0) {
 501			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502			goto out;
 503		}
 504		edge = list_first_entry_or_null(&cache->pending_edge,
 505				struct btrfs_backref_edge, list[UPPER]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506		/*
 507		 * The pending list isn't empty, take the first block to
 508		 * process
 509		 */
 510		if (edge) {
 511			list_del_init(&edge->list[UPPER]);
 512			cur = edge->node[UPPER];
 
 
 
 
 
 513		}
 514	} while (edge);
 
 515
 516	/* Finish the upper linkage of newly added edges/nodes */
 517	ret = btrfs_backref_finish_upper_links(cache, node);
 518	if (ret < 0) {
 519		err = ret;
 520		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522
 523	if (handle_useless_nodes(rc, node))
 524		node = NULL;
 
 
 
 
 
 
 
 
 
 
 525out:
 526	btrfs_free_path(iter->path);
 527	kfree(iter);
 528	btrfs_free_path(path);
 529	if (err) {
 530		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531		return ERR_PTR(err);
 532	}
 533	ASSERT(!node || !node->detached);
 534	ASSERT(list_empty(&cache->useless_node) &&
 535	       list_empty(&cache->pending_edge));
 536	return node;
 537}
 538
 539/*
 540 * helper to add backref node for the newly created snapshot.
 541 * the backref node is created by cloning backref node that
 542 * corresponds to root of source tree
 543 */
 544static int clone_backref_node(struct btrfs_trans_handle *trans,
 545			      struct reloc_control *rc,
 546			      const struct btrfs_root *src,
 547			      struct btrfs_root *dest)
 548{
 549	struct btrfs_root *reloc_root = src->reloc_root;
 550	struct btrfs_backref_cache *cache = &rc->backref_cache;
 551	struct btrfs_backref_node *node = NULL;
 552	struct btrfs_backref_node *new_node;
 553	struct btrfs_backref_edge *edge;
 554	struct btrfs_backref_edge *new_edge;
 555	struct rb_node *rb_node;
 556
 557	if (cache->last_trans > 0)
 558		update_backref_cache(trans, cache);
 559
 560	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 563		if (node->detached)
 564			node = NULL;
 565		else
 566			BUG_ON(node->new_bytenr != reloc_root->node->start);
 567	}
 568
 569	if (!node) {
 570		rb_node = rb_simple_search(&cache->rb_root,
 571					   reloc_root->commit_root->start);
 572		if (rb_node) {
 573			node = rb_entry(rb_node, struct btrfs_backref_node,
 574					rb_node);
 575			BUG_ON(node->detached);
 576		}
 577	}
 578
 579	if (!node)
 580		return 0;
 581
 582	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 583					    node->level);
 584	if (!new_node)
 585		return -ENOMEM;
 586
 
 
 587	new_node->lowest = node->lowest;
 588	new_node->checked = 1;
 589	new_node->root = btrfs_grab_root(dest);
 590	ASSERT(new_node->root);
 591
 592	if (!node->lowest) {
 593		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 594			new_edge = btrfs_backref_alloc_edge(cache);
 595			if (!new_edge)
 596				goto fail;
 597
 598			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 599						new_node, LINK_UPPER);
 
 
 600		}
 601	} else {
 602		list_add_tail(&new_node->lower, &cache->leaves);
 603	}
 604
 605	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 606				   &new_node->rb_node);
 607	if (rb_node)
 608		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 609
 610	if (!new_node->lowest) {
 611		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 612			list_add_tail(&new_edge->list[LOWER],
 613				      &new_edge->node[LOWER]->upper);
 614		}
 615	}
 616	return 0;
 617fail:
 618	while (!list_empty(&new_node->lower)) {
 619		new_edge = list_entry(new_node->lower.next,
 620				      struct btrfs_backref_edge, list[UPPER]);
 621		list_del(&new_edge->list[UPPER]);
 622		btrfs_backref_free_edge(cache, new_edge);
 623	}
 624	btrfs_backref_free_node(cache, new_node);
 625	return -ENOMEM;
 626}
 627
 628/*
 629 * helper to add 'address of tree root -> reloc tree' mapping
 630 */
 631static int __add_reloc_root(struct btrfs_root *root)
 632{
 633	struct btrfs_fs_info *fs_info = root->fs_info;
 634	struct rb_node *rb_node;
 635	struct mapping_node *node;
 636	struct reloc_control *rc = fs_info->reloc_ctl;
 637
 638	node = kmalloc(sizeof(*node), GFP_NOFS);
 639	if (!node)
 640		return -ENOMEM;
 641
 642	node->bytenr = root->commit_root->start;
 643	node->data = root;
 644
 645	spin_lock(&rc->reloc_root_tree.lock);
 646	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 647				   node->bytenr, &node->rb_node);
 648	spin_unlock(&rc->reloc_root_tree.lock);
 649	if (rb_node) {
 650		btrfs_err(fs_info,
 651			    "Duplicate root found for start=%llu while inserting into relocation tree",
 652			    node->bytenr);
 653		return -EEXIST;
 654	}
 655
 656	list_add_tail(&root->root_list, &rc->reloc_roots);
 657	return 0;
 658}
 659
 660/*
 661 * helper to delete the 'address of tree root -> reloc tree'
 662 * mapping
 663 */
 664static void __del_reloc_root(struct btrfs_root *root)
 665{
 666	struct btrfs_fs_info *fs_info = root->fs_info;
 667	struct rb_node *rb_node;
 668	struct mapping_node *node = NULL;
 669	struct reloc_control *rc = fs_info->reloc_ctl;
 670	bool put_ref = false;
 671
 672	if (rc && root->node) {
 673		spin_lock(&rc->reloc_root_tree.lock);
 674		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 675					   root->commit_root->start);
 676		if (rb_node) {
 677			node = rb_entry(rb_node, struct mapping_node, rb_node);
 678			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 679			RB_CLEAR_NODE(&node->rb_node);
 680		}
 681		spin_unlock(&rc->reloc_root_tree.lock);
 682		ASSERT(!node || (struct btrfs_root *)node->data == root);
 683	}
 684
 685	/*
 686	 * We only put the reloc root here if it's on the list.  There's a lot
 687	 * of places where the pattern is to splice the rc->reloc_roots, process
 688	 * the reloc roots, and then add the reloc root back onto
 689	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 690	 * list we don't want the reference being dropped, because the guy
 691	 * messing with the list is in charge of the reference.
 692	 */
 693	spin_lock(&fs_info->trans_lock);
 694	if (!list_empty(&root->root_list)) {
 695		put_ref = true;
 696		list_del_init(&root->root_list);
 697	}
 698	spin_unlock(&fs_info->trans_lock);
 699	if (put_ref)
 700		btrfs_put_root(root);
 701	kfree(node);
 702}
 703
 704/*
 705 * helper to update the 'address of tree root -> reloc tree'
 706 * mapping
 707 */
 708static int __update_reloc_root(struct btrfs_root *root)
 709{
 710	struct btrfs_fs_info *fs_info = root->fs_info;
 711	struct rb_node *rb_node;
 712	struct mapping_node *node = NULL;
 713	struct reloc_control *rc = fs_info->reloc_ctl;
 714
 715	spin_lock(&rc->reloc_root_tree.lock);
 716	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 717				   root->commit_root->start);
 718	if (rb_node) {
 719		node = rb_entry(rb_node, struct mapping_node, rb_node);
 720		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 721	}
 722	spin_unlock(&rc->reloc_root_tree.lock);
 723
 724	if (!node)
 725		return 0;
 726	BUG_ON((struct btrfs_root *)node->data != root);
 727
 728	spin_lock(&rc->reloc_root_tree.lock);
 729	node->bytenr = root->node->start;
 730	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 731				   node->bytenr, &node->rb_node);
 732	spin_unlock(&rc->reloc_root_tree.lock);
 733	if (rb_node)
 734		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 
 
 
 
 735	return 0;
 736}
 737
 738static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 739					struct btrfs_root *root, u64 objectid)
 740{
 741	struct btrfs_fs_info *fs_info = root->fs_info;
 742	struct btrfs_root *reloc_root;
 743	struct extent_buffer *eb;
 744	struct btrfs_root_item *root_item;
 745	struct btrfs_key root_key;
 746	int ret = 0;
 747	bool must_abort = false;
 748
 749	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 750	if (!root_item)
 751		return ERR_PTR(-ENOMEM);
 752
 753	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 754	root_key.type = BTRFS_ROOT_ITEM_KEY;
 755	root_key.offset = objectid;
 756
 757	if (root->root_key.objectid == objectid) {
 758		u64 commit_root_gen;
 759
 760		/* called by btrfs_init_reloc_root */
 761		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 762				      BTRFS_TREE_RELOC_OBJECTID);
 763		if (ret)
 764			goto fail;
 765
 766		/*
 767		 * Set the last_snapshot field to the generation of the commit
 768		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 769		 * correctly (returns true) when the relocation root is created
 770		 * either inside the critical section of a transaction commit
 771		 * (through transaction.c:qgroup_account_snapshot()) and when
 772		 * it's created before the transaction commit is started.
 773		 */
 774		commit_root_gen = btrfs_header_generation(root->commit_root);
 775		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 776	} else {
 777		/*
 778		 * called by btrfs_reloc_post_snapshot_hook.
 779		 * the source tree is a reloc tree, all tree blocks
 780		 * modified after it was created have RELOC flag
 781		 * set in their headers. so it's OK to not update
 782		 * the 'last_snapshot'.
 783		 */
 784		ret = btrfs_copy_root(trans, root, root->node, &eb,
 785				      BTRFS_TREE_RELOC_OBJECTID);
 786		if (ret)
 787			goto fail;
 788	}
 789
 790	/*
 791	 * We have changed references at this point, we must abort the
 792	 * transaction if anything fails.
 793	 */
 794	must_abort = true;
 795
 796	memcpy(root_item, &root->root_item, sizeof(*root_item));
 797	btrfs_set_root_bytenr(root_item, eb->start);
 798	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 799	btrfs_set_root_generation(root_item, trans->transid);
 800
 801	if (root->root_key.objectid == objectid) {
 802		btrfs_set_root_refs(root_item, 0);
 803		memset(&root_item->drop_progress, 0,
 804		       sizeof(struct btrfs_disk_key));
 805		btrfs_set_root_drop_level(root_item, 0);
 806	}
 807
 808	btrfs_tree_unlock(eb);
 809	free_extent_buffer(eb);
 810
 811	ret = btrfs_insert_root(trans, fs_info->tree_root,
 812				&root_key, root_item);
 813	if (ret)
 814		goto fail;
 815
 816	kfree(root_item);
 817
 818	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 819	if (IS_ERR(reloc_root)) {
 820		ret = PTR_ERR(reloc_root);
 821		goto abort;
 822	}
 823	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 824	reloc_root->last_trans = trans->transid;
 825	return reloc_root;
 826fail:
 827	kfree(root_item);
 828abort:
 829	if (must_abort)
 830		btrfs_abort_transaction(trans, ret);
 831	return ERR_PTR(ret);
 832}
 833
 834/*
 835 * create reloc tree for a given fs tree. reloc tree is just a
 836 * snapshot of the fs tree with special root objectid.
 837 *
 838 * The reloc_root comes out of here with two references, one for
 839 * root->reloc_root, and another for being on the rc->reloc_roots list.
 840 */
 841int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 842			  struct btrfs_root *root)
 843{
 844	struct btrfs_fs_info *fs_info = root->fs_info;
 845	struct btrfs_root *reloc_root;
 846	struct reloc_control *rc = fs_info->reloc_ctl;
 847	struct btrfs_block_rsv *rsv;
 848	int clear_rsv = 0;
 849	int ret;
 850
 851	if (!rc)
 852		return 0;
 853
 854	/*
 855	 * The subvolume has reloc tree but the swap is finished, no need to
 856	 * create/update the dead reloc tree
 857	 */
 858	if (reloc_root_is_dead(root))
 859		return 0;
 860
 861	/*
 862	 * This is subtle but important.  We do not do
 863	 * record_root_in_transaction for reloc roots, instead we record their
 864	 * corresponding fs root, and then here we update the last trans for the
 865	 * reloc root.  This means that we have to do this for the entire life
 866	 * of the reloc root, regardless of which stage of the relocation we are
 867	 * in.
 868	 */
 869	if (root->reloc_root) {
 870		reloc_root = root->reloc_root;
 871		reloc_root->last_trans = trans->transid;
 872		return 0;
 873	}
 874
 875	/*
 876	 * We are merging reloc roots, we do not need new reloc trees.  Also
 877	 * reloc trees never need their own reloc tree.
 878	 */
 879	if (!rc->create_reloc_tree ||
 880	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 881		return 0;
 882
 883	if (!trans->reloc_reserved) {
 884		rsv = trans->block_rsv;
 885		trans->block_rsv = rc->block_rsv;
 886		clear_rsv = 1;
 887	}
 888	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 889	if (clear_rsv)
 890		trans->block_rsv = rsv;
 891	if (IS_ERR(reloc_root))
 892		return PTR_ERR(reloc_root);
 893
 894	ret = __add_reloc_root(reloc_root);
 895	ASSERT(ret != -EEXIST);
 896	if (ret) {
 897		/* Pairs with create_reloc_root */
 898		btrfs_put_root(reloc_root);
 899		return ret;
 900	}
 901	root->reloc_root = btrfs_grab_root(reloc_root);
 902	return 0;
 903}
 904
 905/*
 906 * update root item of reloc tree
 907 */
 908int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 909			    struct btrfs_root *root)
 910{
 911	struct btrfs_fs_info *fs_info = root->fs_info;
 912	struct btrfs_root *reloc_root;
 913	struct btrfs_root_item *root_item;
 
 914	int ret;
 915
 916	if (!have_reloc_root(root))
 917		return 0;
 918
 919	reloc_root = root->reloc_root;
 920	root_item = &reloc_root->root_item;
 921
 922	/*
 923	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 924	 * the root.  We have the ref for root->reloc_root, but just in case
 925	 * hold it while we update the reloc root.
 926	 */
 927	btrfs_grab_root(reloc_root);
 928
 929	/* root->reloc_root will stay until current relocation finished */
 930	if (fs_info->reloc_ctl->merge_reloc_tree &&
 931	    btrfs_root_refs(root_item) == 0) {
 932		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 933		/*
 934		 * Mark the tree as dead before we change reloc_root so
 935		 * have_reloc_root will not touch it from now on.
 936		 */
 937		smp_wmb();
 938		__del_reloc_root(reloc_root);
 939	}
 940
 
 
 941	if (reloc_root->commit_root != reloc_root->node) {
 942		__update_reloc_root(reloc_root);
 943		btrfs_set_root_node(root_item, reloc_root->node);
 944		free_extent_buffer(reloc_root->commit_root);
 945		reloc_root->commit_root = btrfs_root_node(reloc_root);
 946	}
 947
 948	ret = btrfs_update_root(trans, fs_info->tree_root,
 949				&reloc_root->root_key, root_item);
 950	btrfs_put_root(reloc_root);
 951	return ret;
 
 
 952}
 953
 954/*
 955 * helper to find first cached inode with inode number >= objectid
 956 * in a subvolume
 957 */
 958static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 959{
 960	struct rb_node *node;
 961	struct rb_node *prev;
 962	struct btrfs_inode *entry;
 963	struct inode *inode;
 964
 965	spin_lock(&root->inode_lock);
 966again:
 967	node = root->inode_tree.rb_node;
 968	prev = NULL;
 969	while (node) {
 970		prev = node;
 971		entry = rb_entry(node, struct btrfs_inode, rb_node);
 972
 973		if (objectid < btrfs_ino(entry))
 974			node = node->rb_left;
 975		else if (objectid > btrfs_ino(entry))
 976			node = node->rb_right;
 977		else
 978			break;
 979	}
 980	if (!node) {
 981		while (prev) {
 982			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 983			if (objectid <= btrfs_ino(entry)) {
 984				node = prev;
 985				break;
 986			}
 987			prev = rb_next(prev);
 988		}
 989	}
 990	while (node) {
 991		entry = rb_entry(node, struct btrfs_inode, rb_node);
 992		inode = igrab(&entry->vfs_inode);
 993		if (inode) {
 994			spin_unlock(&root->inode_lock);
 995			return inode;
 996		}
 997
 998		objectid = btrfs_ino(entry) + 1;
 999		if (cond_resched_lock(&root->inode_lock))
1000			goto again;
1001
1002		node = rb_next(node);
1003	}
1004	spin_unlock(&root->inode_lock);
1005	return NULL;
1006}
1007
 
 
 
 
 
 
 
 
 
1008/*
1009 * get new location of data
1010 */
1011static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1012			    u64 bytenr, u64 num_bytes)
1013{
1014	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1015	struct btrfs_path *path;
1016	struct btrfs_file_extent_item *fi;
1017	struct extent_buffer *leaf;
1018	int ret;
1019
1020	path = btrfs_alloc_path();
1021	if (!path)
1022		return -ENOMEM;
1023
1024	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1025	ret = btrfs_lookup_file_extent(NULL, root, path,
1026			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1027	if (ret < 0)
1028		goto out;
1029	if (ret > 0) {
1030		ret = -ENOENT;
1031		goto out;
1032	}
1033
1034	leaf = path->nodes[0];
1035	fi = btrfs_item_ptr(leaf, path->slots[0],
1036			    struct btrfs_file_extent_item);
1037
1038	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1039	       btrfs_file_extent_compression(leaf, fi) ||
1040	       btrfs_file_extent_encryption(leaf, fi) ||
1041	       btrfs_file_extent_other_encoding(leaf, fi));
1042
1043	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1044		ret = -EINVAL;
1045		goto out;
1046	}
1047
1048	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1049	ret = 0;
1050out:
1051	btrfs_free_path(path);
1052	return ret;
1053}
1054
1055/*
1056 * update file extent items in the tree leaf to point to
1057 * the new locations.
1058 */
1059static noinline_for_stack
1060int replace_file_extents(struct btrfs_trans_handle *trans,
1061			 struct reloc_control *rc,
1062			 struct btrfs_root *root,
1063			 struct extent_buffer *leaf)
1064{
1065	struct btrfs_fs_info *fs_info = root->fs_info;
1066	struct btrfs_key key;
1067	struct btrfs_file_extent_item *fi;
1068	struct inode *inode = NULL;
1069	u64 parent;
1070	u64 bytenr;
1071	u64 new_bytenr = 0;
1072	u64 num_bytes;
1073	u64 end;
1074	u32 nritems;
1075	u32 i;
1076	int ret = 0;
1077	int first = 1;
1078	int dirty = 0;
1079
1080	if (rc->stage != UPDATE_DATA_PTRS)
1081		return 0;
1082
1083	/* reloc trees always use full backref */
1084	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1085		parent = leaf->start;
1086	else
1087		parent = 0;
1088
1089	nritems = btrfs_header_nritems(leaf);
1090	for (i = 0; i < nritems; i++) {
1091		struct btrfs_ref ref = { 0 };
1092
1093		cond_resched();
1094		btrfs_item_key_to_cpu(leaf, &key, i);
1095		if (key.type != BTRFS_EXTENT_DATA_KEY)
1096			continue;
1097		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1098		if (btrfs_file_extent_type(leaf, fi) ==
1099		    BTRFS_FILE_EXTENT_INLINE)
1100			continue;
1101		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1102		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1103		if (bytenr == 0)
1104			continue;
1105		if (!in_range(bytenr, rc->block_group->start,
1106			      rc->block_group->length))
1107			continue;
1108
1109		/*
1110		 * if we are modifying block in fs tree, wait for read_folio
1111		 * to complete and drop the extent cache
1112		 */
1113		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1114			if (first) {
1115				inode = find_next_inode(root, key.objectid);
1116				first = 0;
1117			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1118				btrfs_add_delayed_iput(BTRFS_I(inode));
1119				inode = find_next_inode(root, key.objectid);
1120			}
1121			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1122				struct extent_state *cached_state = NULL;
1123
1124				end = key.offset +
1125				      btrfs_file_extent_num_bytes(leaf, fi);
1126				WARN_ON(!IS_ALIGNED(key.offset,
1127						    fs_info->sectorsize));
1128				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1129				end--;
1130				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1131						      key.offset, end,
1132						      &cached_state);
1133				if (!ret)
1134					continue;
1135
1136				btrfs_drop_extent_map_range(BTRFS_I(inode),
1137							    key.offset, end, true);
1138				unlock_extent(&BTRFS_I(inode)->io_tree,
1139					      key.offset, end, &cached_state);
1140			}
1141		}
1142
1143		ret = get_new_location(rc->data_inode, &new_bytenr,
1144				       bytenr, num_bytes);
1145		if (ret) {
1146			/*
1147			 * Don't have to abort since we've not changed anything
1148			 * in the file extent yet.
1149			 */
1150			break;
1151		}
 
1152
1153		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1154		dirty = 1;
1155
1156		key.offset -= btrfs_file_extent_offset(leaf, fi);
1157		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1158				       num_bytes, parent, root->root_key.objectid);
1159		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160				    key.objectid, key.offset,
1161				    root->root_key.objectid, false);
1162		ret = btrfs_inc_extent_ref(trans, &ref);
1163		if (ret) {
1164			btrfs_abort_transaction(trans, ret);
1165			break;
1166		}
1167
1168		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1169				       num_bytes, parent, root->root_key.objectid);
1170		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1171				    key.objectid, key.offset,
1172				    root->root_key.objectid, false);
1173		ret = btrfs_free_extent(trans, &ref);
1174		if (ret) {
1175			btrfs_abort_transaction(trans, ret);
1176			break;
1177		}
1178	}
1179	if (dirty)
1180		btrfs_mark_buffer_dirty(trans, leaf);
1181	if (inode)
1182		btrfs_add_delayed_iput(BTRFS_I(inode));
1183	return ret;
1184}
1185
1186static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1187					       int slot, const struct btrfs_path *path,
1188					       int level)
1189{
1190	struct btrfs_disk_key key1;
1191	struct btrfs_disk_key key2;
1192	btrfs_node_key(eb, &key1, slot);
1193	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1194	return memcmp(&key1, &key2, sizeof(key1));
1195}
1196
1197/*
1198 * try to replace tree blocks in fs tree with the new blocks
1199 * in reloc tree. tree blocks haven't been modified since the
1200 * reloc tree was create can be replaced.
1201 *
1202 * if a block was replaced, level of the block + 1 is returned.
1203 * if no block got replaced, 0 is returned. if there are other
1204 * errors, a negative error number is returned.
1205 */
1206static noinline_for_stack
1207int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1208		 struct btrfs_root *dest, struct btrfs_root *src,
1209		 struct btrfs_path *path, struct btrfs_key *next_key,
1210		 int lowest_level, int max_level)
1211{
1212	struct btrfs_fs_info *fs_info = dest->fs_info;
1213	struct extent_buffer *eb;
1214	struct extent_buffer *parent;
1215	struct btrfs_ref ref = { 0 };
1216	struct btrfs_key key;
1217	u64 old_bytenr;
1218	u64 new_bytenr;
1219	u64 old_ptr_gen;
1220	u64 new_ptr_gen;
1221	u64 last_snapshot;
1222	u32 blocksize;
1223	int cow = 0;
1224	int level;
1225	int ret;
1226	int slot;
1227
1228	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1229	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1230
1231	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1232again:
1233	slot = path->slots[lowest_level];
1234	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1235
1236	eb = btrfs_lock_root_node(dest);
 
1237	level = btrfs_header_level(eb);
1238
1239	if (level < lowest_level) {
1240		btrfs_tree_unlock(eb);
1241		free_extent_buffer(eb);
1242		return 0;
1243	}
1244
1245	if (cow) {
1246		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1247				      BTRFS_NESTING_COW);
1248		if (ret) {
1249			btrfs_tree_unlock(eb);
1250			free_extent_buffer(eb);
1251			return ret;
1252		}
1253	}
 
1254
1255	if (next_key) {
1256		next_key->objectid = (u64)-1;
1257		next_key->type = (u8)-1;
1258		next_key->offset = (u64)-1;
1259	}
1260
1261	parent = eb;
1262	while (1) {
1263		level = btrfs_header_level(parent);
1264		ASSERT(level >= lowest_level);
1265
1266		ret = btrfs_bin_search(parent, 0, &key, &slot);
1267		if (ret < 0)
1268			break;
1269		if (ret && slot > 0)
1270			slot--;
1271
1272		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1273			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1274
1275		old_bytenr = btrfs_node_blockptr(parent, slot);
1276		blocksize = fs_info->nodesize;
1277		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1278
1279		if (level <= max_level) {
1280			eb = path->nodes[level];
1281			new_bytenr = btrfs_node_blockptr(eb,
1282							path->slots[level]);
1283			new_ptr_gen = btrfs_node_ptr_generation(eb,
1284							path->slots[level]);
1285		} else {
1286			new_bytenr = 0;
1287			new_ptr_gen = 0;
1288		}
1289
1290		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1291			ret = level;
1292			break;
1293		}
1294
1295		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1296		    memcmp_node_keys(parent, slot, path, level)) {
1297			if (level <= lowest_level) {
1298				ret = 0;
1299				break;
1300			}
1301
1302			eb = btrfs_read_node_slot(parent, slot);
1303			if (IS_ERR(eb)) {
1304				ret = PTR_ERR(eb);
1305				break;
1306			}
1307			btrfs_tree_lock(eb);
1308			if (cow) {
1309				ret = btrfs_cow_block(trans, dest, eb, parent,
1310						      slot, &eb,
1311						      BTRFS_NESTING_COW);
1312				if (ret) {
1313					btrfs_tree_unlock(eb);
1314					free_extent_buffer(eb);
1315					break;
1316				}
1317			}
 
1318
1319			btrfs_tree_unlock(parent);
1320			free_extent_buffer(parent);
1321
1322			parent = eb;
1323			continue;
1324		}
1325
1326		if (!cow) {
1327			btrfs_tree_unlock(parent);
1328			free_extent_buffer(parent);
1329			cow = 1;
1330			goto again;
1331		}
1332
1333		btrfs_node_key_to_cpu(path->nodes[level], &key,
1334				      path->slots[level]);
1335		btrfs_release_path(path);
1336
1337		path->lowest_level = level;
1338		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1339		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1340		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1341		path->lowest_level = 0;
1342		if (ret) {
1343			if (ret > 0)
1344				ret = -ENOENT;
1345			break;
1346		}
1347
1348		/*
1349		 * Info qgroup to trace both subtrees.
1350		 *
1351		 * We must trace both trees.
1352		 * 1) Tree reloc subtree
1353		 *    If not traced, we will leak data numbers
1354		 * 2) Fs subtree
1355		 *    If not traced, we will double count old data
1356		 *
1357		 * We don't scan the subtree right now, but only record
1358		 * the swapped tree blocks.
1359		 * The real subtree rescan is delayed until we have new
1360		 * CoW on the subtree root node before transaction commit.
1361		 */
1362		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1363				rc->block_group, parent, slot,
1364				path->nodes[level], path->slots[level],
1365				last_snapshot);
1366		if (ret < 0)
1367			break;
1368		/*
1369		 * swap blocks in fs tree and reloc tree.
1370		 */
1371		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1372		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1373		btrfs_mark_buffer_dirty(trans, parent);
1374
1375		btrfs_set_node_blockptr(path->nodes[level],
1376					path->slots[level], old_bytenr);
1377		btrfs_set_node_ptr_generation(path->nodes[level],
1378					      path->slots[level], old_ptr_gen);
1379		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1380
1381		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1382				       blocksize, path->nodes[level]->start,
1383				       src->root_key.objectid);
1384		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1385				    0, true);
1386		ret = btrfs_inc_extent_ref(trans, &ref);
1387		if (ret) {
1388			btrfs_abort_transaction(trans, ret);
1389			break;
1390		}
1391		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1392				       blocksize, 0, dest->root_key.objectid);
1393		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1394				    true);
1395		ret = btrfs_inc_extent_ref(trans, &ref);
1396		if (ret) {
1397			btrfs_abort_transaction(trans, ret);
1398			break;
1399		}
1400
1401		/* We don't know the real owning_root, use 0. */
1402		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1403				       blocksize, path->nodes[level]->start, 0);
1404		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1405				    0, true);
1406		ret = btrfs_free_extent(trans, &ref);
1407		if (ret) {
1408			btrfs_abort_transaction(trans, ret);
1409			break;
1410		}
1411
1412		/* We don't know the real owning_root, use 0. */
1413		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414				       blocksize, 0, 0);
1415		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416				    0, true);
1417		ret = btrfs_free_extent(trans, &ref);
1418		if (ret) {
1419			btrfs_abort_transaction(trans, ret);
1420			break;
1421		}
 
 
 
 
 
 
 
 
1422
1423		btrfs_unlock_up_safe(path, 0);
1424
1425		ret = level;
1426		break;
1427	}
1428	btrfs_tree_unlock(parent);
1429	free_extent_buffer(parent);
1430	return ret;
1431}
1432
1433/*
1434 * helper to find next relocated block in reloc tree
1435 */
1436static noinline_for_stack
1437int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438		       int *level)
1439{
1440	struct extent_buffer *eb;
1441	int i;
1442	u64 last_snapshot;
1443	u32 nritems;
1444
1445	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447	for (i = 0; i < *level; i++) {
1448		free_extent_buffer(path->nodes[i]);
1449		path->nodes[i] = NULL;
1450	}
1451
1452	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453		eb = path->nodes[i];
1454		nritems = btrfs_header_nritems(eb);
1455		while (path->slots[i] + 1 < nritems) {
1456			path->slots[i]++;
1457			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458			    last_snapshot)
1459				continue;
1460
1461			*level = i;
1462			return 0;
1463		}
1464		free_extent_buffer(path->nodes[i]);
1465		path->nodes[i] = NULL;
1466	}
1467	return 1;
1468}
1469
1470/*
1471 * walk down reloc tree to find relocated block of lowest level
1472 */
1473static noinline_for_stack
1474int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475			 int *level)
1476{
1477	struct extent_buffer *eb = NULL;
1478	int i;
 
1479	u64 ptr_gen = 0;
1480	u64 last_snapshot;
 
1481	u32 nritems;
1482
1483	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485	for (i = *level; i > 0; i--) {
1486		eb = path->nodes[i];
1487		nritems = btrfs_header_nritems(eb);
1488		while (path->slots[i] < nritems) {
1489			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490			if (ptr_gen > last_snapshot)
1491				break;
1492			path->slots[i]++;
1493		}
1494		if (path->slots[i] >= nritems) {
1495			if (i == *level)
1496				break;
1497			*level = i + 1;
1498			return 0;
1499		}
1500		if (i == 1) {
1501			*level = i;
1502			return 0;
1503		}
1504
1505		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506		if (IS_ERR(eb))
1507			return PTR_ERR(eb);
1508		BUG_ON(btrfs_header_level(eb) != i - 1);
1509		path->nodes[i - 1] = eb;
1510		path->slots[i - 1] = 0;
1511	}
1512	return 1;
1513}
1514
1515/*
1516 * invalidate extent cache for file extents whose key in range of
1517 * [min_key, max_key)
1518 */
1519static int invalidate_extent_cache(struct btrfs_root *root,
1520				   const struct btrfs_key *min_key,
1521				   const struct btrfs_key *max_key)
1522{
1523	struct btrfs_fs_info *fs_info = root->fs_info;
1524	struct inode *inode = NULL;
1525	u64 objectid;
1526	u64 start, end;
1527	u64 ino;
1528
1529	objectid = min_key->objectid;
1530	while (1) {
1531		struct extent_state *cached_state = NULL;
1532
1533		cond_resched();
1534		iput(inode);
1535
1536		if (objectid > max_key->objectid)
1537			break;
1538
1539		inode = find_next_inode(root, objectid);
1540		if (!inode)
1541			break;
1542		ino = btrfs_ino(BTRFS_I(inode));
1543
1544		if (ino > max_key->objectid) {
1545			iput(inode);
1546			break;
1547		}
1548
1549		objectid = ino + 1;
1550		if (!S_ISREG(inode->i_mode))
1551			continue;
1552
1553		if (unlikely(min_key->objectid == ino)) {
1554			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555				continue;
1556			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557				start = 0;
1558			else {
1559				start = min_key->offset;
1560				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561			}
1562		} else {
1563			start = 0;
1564		}
1565
1566		if (unlikely(max_key->objectid == ino)) {
1567			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568				continue;
1569			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570				end = (u64)-1;
1571			} else {
1572				if (max_key->offset == 0)
1573					continue;
1574				end = max_key->offset;
1575				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576				end--;
1577			}
1578		} else {
1579			end = (u64)-1;
1580		}
1581
1582		/* the lock_extent waits for read_folio to complete */
1583		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586	}
1587	return 0;
1588}
1589
1590static int find_next_key(struct btrfs_path *path, int level,
1591			 struct btrfs_key *key)
1592
1593{
1594	while (level < BTRFS_MAX_LEVEL) {
1595		if (!path->nodes[level])
1596			break;
1597		if (path->slots[level] + 1 <
1598		    btrfs_header_nritems(path->nodes[level])) {
1599			btrfs_node_key_to_cpu(path->nodes[level], key,
1600					      path->slots[level] + 1);
1601			return 0;
1602		}
1603		level++;
1604	}
1605	return 1;
1606}
1607
1608/*
1609 * Insert current subvolume into reloc_control::dirty_subvol_roots
1610 */
1611static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612			       struct reloc_control *rc,
1613			       struct btrfs_root *root)
1614{
1615	struct btrfs_root *reloc_root = root->reloc_root;
1616	struct btrfs_root_item *reloc_root_item;
1617	int ret;
1618
1619	/* @root must be a subvolume tree root with a valid reloc tree */
1620	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621	ASSERT(reloc_root);
1622
1623	reloc_root_item = &reloc_root->root_item;
1624	memset(&reloc_root_item->drop_progress, 0,
1625		sizeof(reloc_root_item->drop_progress));
1626	btrfs_set_root_drop_level(reloc_root_item, 0);
1627	btrfs_set_root_refs(reloc_root_item, 0);
1628	ret = btrfs_update_reloc_root(trans, root);
1629	if (ret)
1630		return ret;
1631
1632	if (list_empty(&root->reloc_dirty_list)) {
1633		btrfs_grab_root(root);
1634		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635	}
1636
1637	return 0;
1638}
1639
1640static int clean_dirty_subvols(struct reloc_control *rc)
1641{
1642	struct btrfs_root *root;
1643	struct btrfs_root *next;
1644	int ret = 0;
1645	int ret2;
1646
1647	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648				 reloc_dirty_list) {
1649		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650			/* Merged subvolume, cleanup its reloc root */
1651			struct btrfs_root *reloc_root = root->reloc_root;
1652
1653			list_del_init(&root->reloc_dirty_list);
1654			root->reloc_root = NULL;
1655			/*
1656			 * Need barrier to ensure clear_bit() only happens after
1657			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658			 */
1659			smp_wmb();
1660			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661			if (reloc_root) {
1662				/*
1663				 * btrfs_drop_snapshot drops our ref we hold for
1664				 * ->reloc_root.  If it fails however we must
1665				 * drop the ref ourselves.
1666				 */
1667				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668				if (ret2 < 0) {
1669					btrfs_put_root(reloc_root);
1670					if (!ret)
1671						ret = ret2;
1672				}
1673			}
1674			btrfs_put_root(root);
1675		} else {
1676			/* Orphan reloc tree, just clean it up */
1677			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678			if (ret2 < 0) {
1679				btrfs_put_root(root);
1680				if (!ret)
1681					ret = ret2;
1682			}
1683		}
1684	}
1685	return ret;
1686}
1687
1688/*
1689 * merge the relocated tree blocks in reloc tree with corresponding
1690 * fs tree.
1691 */
1692static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693					       struct btrfs_root *root)
1694{
1695	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696	struct btrfs_key key;
1697	struct btrfs_key next_key;
1698	struct btrfs_trans_handle *trans = NULL;
1699	struct btrfs_root *reloc_root;
1700	struct btrfs_root_item *root_item;
1701	struct btrfs_path *path;
1702	struct extent_buffer *leaf;
1703	int reserve_level;
1704	int level;
1705	int max_level;
1706	int replaced = 0;
1707	int ret = 0;
 
1708	u32 min_reserved;
1709
1710	path = btrfs_alloc_path();
1711	if (!path)
1712		return -ENOMEM;
1713	path->reada = READA_FORWARD;
1714
1715	reloc_root = root->reloc_root;
1716	root_item = &reloc_root->root_item;
1717
1718	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719		level = btrfs_root_level(root_item);
1720		atomic_inc(&reloc_root->node->refs);
1721		path->nodes[level] = reloc_root->node;
1722		path->slots[level] = 0;
1723	} else {
1724		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726		level = btrfs_root_drop_level(root_item);
1727		BUG_ON(level == 0);
1728		path->lowest_level = level;
1729		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730		path->lowest_level = 0;
1731		if (ret < 0) {
1732			btrfs_free_path(path);
1733			return ret;
1734		}
1735
1736		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737				      path->slots[level]);
1738		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740		btrfs_unlock_up_safe(path, 0);
1741	}
1742
1743	/*
1744	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746	 * block COW, we COW at most from level 1 to root level for each tree.
1747	 *
1748	 * Thus the needed metadata size is at most root_level * nodesize,
1749	 * and * 2 since we have two trees to COW.
1750	 */
1751	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752	min_reserved = fs_info->nodesize * reserve_level * 2;
1753	memset(&next_key, 0, sizeof(next_key));
1754
1755	while (1) {
1756		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757					     min_reserved,
1758					     BTRFS_RESERVE_FLUSH_LIMIT);
1759		if (ret)
1760			goto out;
1761		trans = btrfs_start_transaction(root, 0);
1762		if (IS_ERR(trans)) {
1763			ret = PTR_ERR(trans);
1764			trans = NULL;
1765			goto out;
1766		}
1767
1768		/*
1769		 * At this point we no longer have a reloc_control, so we can't
1770		 * depend on btrfs_init_reloc_root to update our last_trans.
1771		 *
1772		 * But that's ok, we started the trans handle on our
1773		 * corresponding fs_root, which means it's been added to the
1774		 * dirty list.  At commit time we'll still call
1775		 * btrfs_update_reloc_root() and update our root item
1776		 * appropriately.
1777		 */
1778		reloc_root->last_trans = trans->transid;
1779		trans->block_rsv = rc->block_rsv;
1780
 
 
 
 
 
 
 
 
 
1781		replaced = 0;
1782		max_level = level;
1783
1784		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785		if (ret < 0)
 
1786			goto out;
 
1787		if (ret > 0)
1788			break;
1789
1790		if (!find_next_key(path, level, &key) &&
1791		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792			ret = 0;
1793		} else {
1794			ret = replace_path(trans, rc, root, reloc_root, path,
1795					   &next_key, level, max_level);
1796		}
1797		if (ret < 0)
 
1798			goto out;
 
 
1799		if (ret > 0) {
1800			level = ret;
1801			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802					      path->slots[level]);
1803			replaced = 1;
1804		}
1805
1806		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807		if (ret > 0)
1808			break;
1809
1810		BUG_ON(level == 0);
1811		/*
1812		 * save the merging progress in the drop_progress.
1813		 * this is OK since root refs == 1 in this case.
1814		 */
1815		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816			       path->slots[level]);
1817		btrfs_set_root_drop_level(root_item, level);
1818
1819		btrfs_end_transaction_throttle(trans);
1820		trans = NULL;
1821
1822		btrfs_btree_balance_dirty(fs_info);
1823
1824		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825			invalidate_extent_cache(root, &key, &next_key);
1826	}
1827
1828	/*
1829	 * handle the case only one block in the fs tree need to be
1830	 * relocated and the block is tree root.
1831	 */
1832	leaf = btrfs_lock_root_node(root);
1833	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834			      BTRFS_NESTING_COW);
1835	btrfs_tree_unlock(leaf);
1836	free_extent_buffer(leaf);
 
 
1837out:
1838	btrfs_free_path(path);
1839
1840	if (ret == 0) {
1841		ret = insert_dirty_subvol(trans, rc, root);
1842		if (ret)
1843			btrfs_abort_transaction(trans, ret);
 
 
1844	}
1845
1846	if (trans)
1847		btrfs_end_transaction_throttle(trans);
1848
1849	btrfs_btree_balance_dirty(fs_info);
1850
1851	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852		invalidate_extent_cache(root, &key, &next_key);
1853
1854	return ret;
1855}
1856
1857static noinline_for_stack
1858int prepare_to_merge(struct reloc_control *rc, int err)
1859{
1860	struct btrfs_root *root = rc->extent_root;
1861	struct btrfs_fs_info *fs_info = root->fs_info;
1862	struct btrfs_root *reloc_root;
1863	struct btrfs_trans_handle *trans;
1864	LIST_HEAD(reloc_roots);
1865	u64 num_bytes = 0;
1866	int ret;
1867
1868	mutex_lock(&fs_info->reloc_mutex);
1869	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871	mutex_unlock(&fs_info->reloc_mutex);
1872
1873again:
1874	if (!err) {
1875		num_bytes = rc->merging_rsv_size;
1876		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877					  BTRFS_RESERVE_FLUSH_ALL);
1878		if (ret)
1879			err = ret;
1880	}
1881
1882	trans = btrfs_join_transaction(rc->extent_root);
1883	if (IS_ERR(trans)) {
1884		if (!err)
1885			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886						num_bytes, NULL);
1887		return PTR_ERR(trans);
1888	}
1889
1890	if (!err) {
1891		if (num_bytes != rc->merging_rsv_size) {
1892			btrfs_end_transaction(trans);
1893			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894						num_bytes, NULL);
1895			goto again;
1896		}
1897	}
1898
1899	rc->merge_reloc_tree = true;
1900
1901	while (!list_empty(&rc->reloc_roots)) {
1902		reloc_root = list_entry(rc->reloc_roots.next,
1903					struct btrfs_root, root_list);
1904		list_del_init(&reloc_root->root_list);
1905
1906		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907				false);
1908		if (IS_ERR(root)) {
1909			/*
1910			 * Even if we have an error we need this reloc root
1911			 * back on our list so we can clean up properly.
1912			 */
1913			list_add(&reloc_root->root_list, &reloc_roots);
1914			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915			if (!err)
1916				err = PTR_ERR(root);
1917			break;
1918		}
1919
1920		if (unlikely(root->reloc_root != reloc_root)) {
1921			if (root->reloc_root) {
1922				btrfs_err(fs_info,
1923"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924					  root->root_key.objectid,
1925					  root->reloc_root->root_key.objectid,
1926					  root->reloc_root->root_key.type,
1927					  root->reloc_root->root_key.offset,
1928					  btrfs_root_generation(
1929						  &root->reloc_root->root_item),
1930					  reloc_root->root_key.objectid,
1931					  reloc_root->root_key.type,
1932					  reloc_root->root_key.offset,
1933					  btrfs_root_generation(
1934						  &reloc_root->root_item));
1935			} else {
1936				btrfs_err(fs_info,
1937"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938					  root->root_key.objectid,
1939					  reloc_root->root_key.objectid,
1940					  reloc_root->root_key.type,
1941					  reloc_root->root_key.offset,
1942					  btrfs_root_generation(
1943						  &reloc_root->root_item));
1944			}
1945			list_add(&reloc_root->root_list, &reloc_roots);
1946			btrfs_put_root(root);
1947			btrfs_abort_transaction(trans, -EUCLEAN);
1948			if (!err)
1949				err = -EUCLEAN;
1950			break;
1951		}
1952
1953		/*
1954		 * set reference count to 1, so btrfs_recover_relocation
1955		 * knows it should resumes merging
1956		 */
1957		if (!err)
1958			btrfs_set_root_refs(&reloc_root->root_item, 1);
1959		ret = btrfs_update_reloc_root(trans, root);
1960
1961		/*
1962		 * Even if we have an error we need this reloc root back on our
1963		 * list so we can clean up properly.
1964		 */
1965		list_add(&reloc_root->root_list, &reloc_roots);
1966		btrfs_put_root(root);
1967
1968		if (ret) {
1969			btrfs_abort_transaction(trans, ret);
1970			if (!err)
1971				err = ret;
1972			break;
1973		}
1974	}
1975
1976	list_splice(&reloc_roots, &rc->reloc_roots);
1977
1978	if (!err)
1979		err = btrfs_commit_transaction(trans);
1980	else
1981		btrfs_end_transaction(trans);
1982	return err;
1983}
1984
1985static noinline_for_stack
1986void free_reloc_roots(struct list_head *list)
1987{
1988	struct btrfs_root *reloc_root, *tmp;
1989
1990	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1991		__del_reloc_root(reloc_root);
1992}
1993
1994static noinline_for_stack
1995void merge_reloc_roots(struct reloc_control *rc)
1996{
1997	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998	struct btrfs_root *root;
1999	struct btrfs_root *reloc_root;
2000	LIST_HEAD(reloc_roots);
2001	int found = 0;
2002	int ret = 0;
2003again:
2004	root = rc->extent_root;
2005
2006	/*
2007	 * this serializes us with btrfs_record_root_in_transaction,
2008	 * we have to make sure nobody is in the middle of
2009	 * adding their roots to the list while we are
2010	 * doing this splice
2011	 */
2012	mutex_lock(&fs_info->reloc_mutex);
2013	list_splice_init(&rc->reloc_roots, &reloc_roots);
2014	mutex_unlock(&fs_info->reloc_mutex);
2015
2016	while (!list_empty(&reloc_roots)) {
2017		found = 1;
2018		reloc_root = list_entry(reloc_roots.next,
2019					struct btrfs_root, root_list);
2020
2021		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022					 false);
2023		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024			if (WARN_ON(IS_ERR(root))) {
2025				/*
2026				 * For recovery we read the fs roots on mount,
2027				 * and if we didn't find the root then we marked
2028				 * the reloc root as a garbage root.  For normal
2029				 * relocation obviously the root should exist in
2030				 * memory.  However there's no reason we can't
2031				 * handle the error properly here just in case.
2032				 */
2033				ret = PTR_ERR(root);
2034				goto out;
2035			}
2036			if (WARN_ON(root->reloc_root != reloc_root)) {
2037				/*
2038				 * This can happen if on-disk metadata has some
2039				 * corruption, e.g. bad reloc tree key offset.
2040				 */
2041				ret = -EINVAL;
2042				goto out;
2043			}
2044			ret = merge_reloc_root(rc, root);
2045			btrfs_put_root(root);
2046			if (ret) {
2047				if (list_empty(&reloc_root->root_list))
2048					list_add_tail(&reloc_root->root_list,
2049						      &reloc_roots);
2050				goto out;
2051			}
2052		} else {
2053			if (!IS_ERR(root)) {
2054				if (root->reloc_root == reloc_root) {
2055					root->reloc_root = NULL;
2056					btrfs_put_root(reloc_root);
2057				}
2058				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059					  &root->state);
2060				btrfs_put_root(root);
2061			}
2062
2063			list_del_init(&reloc_root->root_list);
2064			/* Don't forget to queue this reloc root for cleanup */
2065			list_add_tail(&reloc_root->reloc_dirty_list,
2066				      &rc->dirty_subvol_roots);
2067		}
 
2068	}
2069
2070	if (found) {
2071		found = 0;
2072		goto again;
2073	}
2074out:
2075	if (ret) {
2076		btrfs_handle_fs_error(fs_info, ret, NULL);
2077		free_reloc_roots(&reloc_roots);
2078
2079		/* new reloc root may be added */
2080		mutex_lock(&fs_info->reloc_mutex);
2081		list_splice_init(&rc->reloc_roots, &reloc_roots);
2082		mutex_unlock(&fs_info->reloc_mutex);
2083		free_reloc_roots(&reloc_roots);
2084	}
2085
2086	/*
2087	 * We used to have
2088	 *
2089	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090	 *
2091	 * here, but it's wrong.  If we fail to start the transaction in
2092	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093	 * have actually been removed from the reloc_root_tree rb tree.  This is
2094	 * fine because we're bailing here, and we hold a reference on the root
2095	 * for the list that holds it, so these roots will be cleaned up when we
2096	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2097	 * will be cleaned up on unmount.
2098	 *
2099	 * The remaining nodes will be cleaned up by free_reloc_control.
2100	 */
2101}
2102
2103static void free_block_list(struct rb_root *blocks)
2104{
2105	struct tree_block *block;
2106	struct rb_node *rb_node;
2107	while ((rb_node = rb_first(blocks))) {
2108		block = rb_entry(rb_node, struct tree_block, rb_node);
2109		rb_erase(rb_node, blocks);
2110		kfree(block);
2111	}
2112}
2113
2114static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115				      struct btrfs_root *reloc_root)
2116{
2117	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118	struct btrfs_root *root;
2119	int ret;
2120
2121	if (reloc_root->last_trans == trans->transid)
2122		return 0;
2123
2124	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
 
 
2125
2126	/*
2127	 * This should succeed, since we can't have a reloc root without having
2128	 * already looked up the actual root and created the reloc root for this
2129	 * root.
2130	 *
2131	 * However if there's some sort of corruption where we have a ref to a
2132	 * reloc root without a corresponding root this could return ENOENT.
2133	 */
2134	if (IS_ERR(root)) {
2135		ASSERT(0);
2136		return PTR_ERR(root);
2137	}
2138	if (root->reloc_root != reloc_root) {
2139		ASSERT(0);
2140		btrfs_err(fs_info,
2141			  "root %llu has two reloc roots associated with it",
2142			  reloc_root->root_key.offset);
2143		btrfs_put_root(root);
2144		return -EUCLEAN;
2145	}
2146	ret = btrfs_record_root_in_trans(trans, root);
2147	btrfs_put_root(root);
2148
2149	return ret;
2150}
2151
2152static noinline_for_stack
2153struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154				     struct reloc_control *rc,
2155				     struct btrfs_backref_node *node,
2156				     struct btrfs_backref_edge *edges[])
2157{
2158	struct btrfs_backref_node *next;
2159	struct btrfs_root *root;
2160	int index = 0;
2161	int ret;
2162
2163	next = node;
2164	while (1) {
2165		cond_resched();
2166		next = walk_up_backref(next, edges, &index);
2167		root = next->root;
2168
2169		/*
2170		 * If there is no root, then our references for this block are
2171		 * incomplete, as we should be able to walk all the way up to a
2172		 * block that is owned by a root.
2173		 *
2174		 * This path is only for SHAREABLE roots, so if we come upon a
2175		 * non-SHAREABLE root then we have backrefs that resolve
2176		 * improperly.
2177		 *
2178		 * Both of these cases indicate file system corruption, or a bug
2179		 * in the backref walking code.
2180		 */
2181		if (!root) {
2182			ASSERT(0);
2183			btrfs_err(trans->fs_info,
2184		"bytenr %llu doesn't have a backref path ending in a root",
2185				  node->bytenr);
2186			return ERR_PTR(-EUCLEAN);
2187		}
2188		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189			ASSERT(0);
2190			btrfs_err(trans->fs_info,
2191	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2192				  node->bytenr);
2193			return ERR_PTR(-EUCLEAN);
2194		}
2195
2196		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197			ret = record_reloc_root_in_trans(trans, root);
2198			if (ret)
2199				return ERR_PTR(ret);
2200			break;
2201		}
2202
2203		ret = btrfs_record_root_in_trans(trans, root);
2204		if (ret)
2205			return ERR_PTR(ret);
2206		root = root->reloc_root;
2207
2208		/*
2209		 * We could have raced with another thread which failed, so
2210		 * root->reloc_root may not be set, return ENOENT in this case.
2211		 */
2212		if (!root)
2213			return ERR_PTR(-ENOENT);
2214
2215		if (next->new_bytenr != root->node->start) {
2216			/*
2217			 * We just created the reloc root, so we shouldn't have
2218			 * ->new_bytenr set and this shouldn't be in the changed
2219			 *  list.  If it is then we have multiple roots pointing
2220			 *  at the same bytenr which indicates corruption, or
2221			 *  we've made a mistake in the backref walking code.
2222			 */
2223			ASSERT(next->new_bytenr == 0);
2224			ASSERT(list_empty(&next->list));
2225			if (next->new_bytenr || !list_empty(&next->list)) {
2226				btrfs_err(trans->fs_info,
2227	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228					  node->bytenr, next->bytenr);
2229				return ERR_PTR(-EUCLEAN);
2230			}
2231
2232			next->new_bytenr = root->node->start;
2233			btrfs_put_root(next->root);
2234			next->root = btrfs_grab_root(root);
2235			ASSERT(next->root);
2236			list_add_tail(&next->list,
2237				      &rc->backref_cache.changed);
2238			mark_block_processed(rc, next);
2239			break;
2240		}
2241
2242		WARN_ON(1);
2243		root = NULL;
2244		next = walk_down_backref(edges, &index);
2245		if (!next || next->level <= node->level)
2246			break;
2247	}
2248	if (!root) {
2249		/*
2250		 * This can happen if there's fs corruption or if there's a bug
2251		 * in the backref lookup code.
2252		 */
2253		ASSERT(0);
2254		return ERR_PTR(-ENOENT);
2255	}
2256
 
2257	next = node;
2258	/* setup backref node path for btrfs_reloc_cow_block */
2259	while (1) {
2260		rc->backref_cache.path[next->level] = next;
2261		if (--index < 0)
2262			break;
2263		next = edges[index]->node[UPPER];
2264	}
2265	return root;
2266}
2267
2268/*
2269 * Select a tree root for relocation.
2270 *
2271 * Return NULL if the block is not shareable. We should use do_relocation() in
2272 * this case.
2273 *
2274 * Return a tree root pointer if the block is shareable.
2275 * Return -ENOENT if the block is root of reloc tree.
2276 */
2277static noinline_for_stack
2278struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2279{
2280	struct btrfs_backref_node *next;
2281	struct btrfs_root *root;
2282	struct btrfs_root *fs_root = NULL;
2283	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284	int index = 0;
2285
2286	next = node;
2287	while (1) {
2288		cond_resched();
2289		next = walk_up_backref(next, edges, &index);
2290		root = next->root;
 
2291
2292		/*
2293		 * This can occur if we have incomplete extent refs leading all
2294		 * the way up a particular path, in this case return -EUCLEAN.
2295		 */
2296		if (!root)
2297			return ERR_PTR(-EUCLEAN);
2298
2299		/* No other choice for non-shareable tree */
2300		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301			return root;
2302
2303		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304			fs_root = root;
2305
2306		if (next != node)
2307			return NULL;
2308
2309		next = walk_down_backref(edges, &index);
2310		if (!next || next->level <= node->level)
2311			break;
2312	}
2313
2314	if (!fs_root)
2315		return ERR_PTR(-ENOENT);
2316	return fs_root;
2317}
2318
2319static noinline_for_stack
2320u64 calcu_metadata_size(struct reloc_control *rc,
2321			struct btrfs_backref_node *node, int reserve)
2322{
2323	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324	struct btrfs_backref_node *next = node;
2325	struct btrfs_backref_edge *edge;
2326	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327	u64 num_bytes = 0;
2328	int index = 0;
2329
2330	BUG_ON(reserve && node->processed);
2331
2332	while (next) {
2333		cond_resched();
2334		while (1) {
2335			if (next->processed && (reserve || next != node))
2336				break;
2337
2338			num_bytes += fs_info->nodesize;
 
2339
2340			if (list_empty(&next->upper))
2341				break;
2342
2343			edge = list_entry(next->upper.next,
2344					struct btrfs_backref_edge, list[LOWER]);
2345			edges[index++] = edge;
2346			next = edge->node[UPPER];
2347		}
2348		next = walk_down_backref(edges, &index);
2349	}
2350	return num_bytes;
2351}
2352
2353static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354				  struct reloc_control *rc,
2355				  struct btrfs_backref_node *node)
2356{
2357	struct btrfs_root *root = rc->extent_root;
2358	struct btrfs_fs_info *fs_info = root->fs_info;
2359	u64 num_bytes;
2360	int ret;
2361	u64 tmp;
2362
2363	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364
2365	trans->block_rsv = rc->block_rsv;
2366	rc->reserved_bytes += num_bytes;
2367
2368	/*
2369	 * We are under a transaction here so we can only do limited flushing.
2370	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2371	 * transaction and try to refill when we can flush all the things.
2372	 */
2373	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374				     BTRFS_RESERVE_FLUSH_LIMIT);
2375	if (ret) {
2376		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377		while (tmp <= rc->reserved_bytes)
2378			tmp <<= 1;
2379		/*
2380		 * only one thread can access block_rsv at this point,
2381		 * so we don't need hold lock to protect block_rsv.
2382		 * we expand more reservation size here to allow enough
2383		 * space for relocation and we will return earlier in
2384		 * enospc case.
2385		 */
2386		rc->block_rsv->size = tmp + fs_info->nodesize *
2387				      RELOCATION_RESERVED_NODES;
2388		return -EAGAIN;
2389	}
2390
2391	return 0;
2392}
2393
 
 
 
 
 
 
 
2394/*
2395 * relocate a block tree, and then update pointers in upper level
2396 * blocks that reference the block to point to the new location.
2397 *
2398 * if called by link_to_upper, the block has already been relocated.
2399 * in that case this function just updates pointers.
2400 */
2401static int do_relocation(struct btrfs_trans_handle *trans,
2402			 struct reloc_control *rc,
2403			 struct btrfs_backref_node *node,
2404			 struct btrfs_key *key,
2405			 struct btrfs_path *path, int lowest)
2406{
2407	struct btrfs_backref_node *upper;
2408	struct btrfs_backref_edge *edge;
2409	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410	struct btrfs_root *root;
2411	struct extent_buffer *eb;
2412	u32 blocksize;
2413	u64 bytenr;
 
 
2414	int slot;
2415	int ret = 0;
 
2416
2417	/*
2418	 * If we are lowest then this is the first time we're processing this
2419	 * block, and thus shouldn't have an eb associated with it yet.
2420	 */
2421	ASSERT(!lowest || !node->eb);
2422
2423	path->lowest_level = node->level + 1;
2424	rc->backref_cache.path[node->level] = node;
2425	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426		struct btrfs_ref ref = { 0 };
2427
2428		cond_resched();
2429
2430		upper = edge->node[UPPER];
2431		root = select_reloc_root(trans, rc, upper, edges);
2432		if (IS_ERR(root)) {
2433			ret = PTR_ERR(root);
2434			goto next;
2435		}
2436
2437		if (upper->eb && !upper->locked) {
2438			if (!lowest) {
2439				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440				if (ret < 0)
2441					goto next;
2442				BUG_ON(ret);
2443				bytenr = btrfs_node_blockptr(upper->eb, slot);
2444				if (node->eb->start == bytenr)
2445					goto next;
2446			}
2447			btrfs_backref_drop_node_buffer(upper);
2448		}
2449
2450		if (!upper->eb) {
2451			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452			if (ret) {
2453				if (ret > 0)
2454					ret = -ENOENT;
2455
2456				btrfs_release_path(path);
2457				break;
2458			}
 
2459
2460			if (!upper->eb) {
2461				upper->eb = path->nodes[upper->level];
2462				path->nodes[upper->level] = NULL;
2463			} else {
2464				BUG_ON(upper->eb != path->nodes[upper->level]);
2465			}
2466
2467			upper->locked = 1;
2468			path->locks[upper->level] = 0;
2469
2470			slot = path->slots[upper->level];
2471			btrfs_release_path(path);
2472		} else {
2473			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474			if (ret < 0)
2475				goto next;
2476			BUG_ON(ret);
2477		}
2478
2479		bytenr = btrfs_node_blockptr(upper->eb, slot);
2480		if (lowest) {
2481			if (bytenr != node->bytenr) {
2482				btrfs_err(root->fs_info,
2483		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484					  bytenr, node->bytenr, slot,
2485					  upper->eb->start);
2486				ret = -EIO;
2487				goto next;
2488			}
2489		} else {
2490			if (node->eb->start == bytenr)
2491				goto next;
2492		}
2493
2494		blocksize = root->fs_info->nodesize;
2495		eb = btrfs_read_node_slot(upper->eb, slot);
2496		if (IS_ERR(eb)) {
2497			ret = PTR_ERR(eb);
 
2498			goto next;
2499		}
2500		btrfs_tree_lock(eb);
 
2501
2502		if (!node->eb) {
2503			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504					      slot, &eb, BTRFS_NESTING_COW);
2505			btrfs_tree_unlock(eb);
2506			free_extent_buffer(eb);
2507			if (ret < 0)
 
2508				goto next;
2509			/*
2510			 * We've just COWed this block, it should have updated
2511			 * the correct backref node entry.
2512			 */
2513			ASSERT(node->eb == eb);
2514		} else {
2515			btrfs_set_node_blockptr(upper->eb, slot,
2516						node->eb->start);
2517			btrfs_set_node_ptr_generation(upper->eb, slot,
2518						      trans->transid);
2519			btrfs_mark_buffer_dirty(trans, upper->eb);
 
 
 
 
 
 
 
2520
2521			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522					       node->eb->start, blocksize,
2523					       upper->eb->start,
2524					       btrfs_header_owner(upper->eb));
2525			btrfs_init_tree_ref(&ref, node->level,
2526					    btrfs_header_owner(upper->eb),
2527					    root->root_key.objectid, false);
2528			ret = btrfs_inc_extent_ref(trans, &ref);
2529			if (!ret)
2530				ret = btrfs_drop_subtree(trans, root, eb,
2531							 upper->eb);
2532			if (ret)
2533				btrfs_abort_transaction(trans, ret);
2534		}
2535next:
2536		if (!upper->pending)
2537			btrfs_backref_drop_node_buffer(upper);
2538		else
2539			btrfs_backref_unlock_node_buffer(upper);
2540		if (ret)
2541			break;
2542	}
2543
2544	if (!ret && node->pending) {
2545		btrfs_backref_drop_node_buffer(node);
2546		list_move_tail(&node->list, &rc->backref_cache.changed);
2547		node->pending = 0;
2548	}
2549
2550	path->lowest_level = 0;
2551
2552	/*
2553	 * We should have allocated all of our space in the block rsv and thus
2554	 * shouldn't ENOSPC.
2555	 */
2556	ASSERT(ret != -ENOSPC);
2557	return ret;
2558}
2559
2560static int link_to_upper(struct btrfs_trans_handle *trans,
2561			 struct reloc_control *rc,
2562			 struct btrfs_backref_node *node,
2563			 struct btrfs_path *path)
2564{
2565	struct btrfs_key key;
2566
2567	btrfs_node_key_to_cpu(node->eb, &key, 0);
2568	return do_relocation(trans, rc, node, &key, path, 0);
2569}
2570
2571static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572				struct reloc_control *rc,
2573				struct btrfs_path *path, int err)
2574{
2575	LIST_HEAD(list);
2576	struct btrfs_backref_cache *cache = &rc->backref_cache;
2577	struct btrfs_backref_node *node;
2578	int level;
2579	int ret;
2580
2581	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582		while (!list_empty(&cache->pending[level])) {
2583			node = list_entry(cache->pending[level].next,
2584					  struct btrfs_backref_node, list);
2585			list_move_tail(&node->list, &list);
2586			BUG_ON(!node->pending);
2587
2588			if (!err) {
2589				ret = link_to_upper(trans, rc, node, path);
2590				if (ret < 0)
2591					err = ret;
2592			}
2593		}
2594		list_splice_init(&list, &cache->pending[level]);
2595	}
2596	return err;
2597}
2598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599/*
2600 * mark a block and all blocks directly/indirectly reference the block
2601 * as processed.
2602 */
2603static void update_processed_blocks(struct reloc_control *rc,
2604				    struct btrfs_backref_node *node)
2605{
2606	struct btrfs_backref_node *next = node;
2607	struct btrfs_backref_edge *edge;
2608	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609	int index = 0;
2610
2611	while (next) {
2612		cond_resched();
2613		while (1) {
2614			if (next->processed)
2615				break;
2616
2617			mark_block_processed(rc, next);
2618
2619			if (list_empty(&next->upper))
2620				break;
2621
2622			edge = list_entry(next->upper.next,
2623					struct btrfs_backref_edge, list[LOWER]);
2624			edges[index++] = edge;
2625			next = edge->node[UPPER];
2626		}
2627		next = walk_down_backref(edges, &index);
2628	}
2629}
2630
2631static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2632{
2633	u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635	if (test_range_bit(&rc->processed_blocks, bytenr,
2636			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2637		return 1;
2638	return 0;
2639}
2640
2641static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642			      struct tree_block *block)
2643{
2644	struct btrfs_tree_parent_check check = {
2645		.level = block->level,
2646		.owner_root = block->owner,
2647		.transid = block->key.offset
2648	};
2649	struct extent_buffer *eb;
2650
2651	eb = read_tree_block(fs_info, block->bytenr, &check);
2652	if (IS_ERR(eb))
2653		return PTR_ERR(eb);
2654	if (!extent_buffer_uptodate(eb)) {
2655		free_extent_buffer(eb);
2656		return -EIO;
2657	}
2658	if (block->level == 0)
2659		btrfs_item_key_to_cpu(eb, &block->key, 0);
2660	else
2661		btrfs_node_key_to_cpu(eb, &block->key, 0);
2662	free_extent_buffer(eb);
2663	block->key_ready = true;
 
 
 
 
 
 
 
 
 
2664	return 0;
2665}
2666
2667/*
2668 * helper function to relocate a tree block
2669 */
2670static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671				struct reloc_control *rc,
2672				struct btrfs_backref_node *node,
2673				struct btrfs_key *key,
2674				struct btrfs_path *path)
2675{
2676	struct btrfs_root *root;
 
2677	int ret = 0;
2678
2679	if (!node)
2680		return 0;
2681
2682	/*
2683	 * If we fail here we want to drop our backref_node because we are going
2684	 * to start over and regenerate the tree for it.
2685	 */
2686	ret = reserve_metadata_space(trans, rc, node);
2687	if (ret)
2688		goto out;
2689
2690	BUG_ON(node->processed);
2691	root = select_one_root(node);
2692	if (IS_ERR(root)) {
2693		ret = PTR_ERR(root);
2694
2695		/* See explanation in select_one_root for the -EUCLEAN case. */
2696		ASSERT(ret == -ENOENT);
2697		if (ret == -ENOENT) {
2698			ret = 0;
2699			update_processed_blocks(rc, node);
2700		}
2701		goto out;
2702	}
2703
 
 
 
 
 
 
 
2704	if (root) {
2705		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706			/*
2707			 * This block was the root block of a root, and this is
2708			 * the first time we're processing the block and thus it
2709			 * should not have had the ->new_bytenr modified and
2710			 * should have not been included on the changed list.
2711			 *
2712			 * However in the case of corruption we could have
2713			 * multiple refs pointing to the same block improperly,
2714			 * and thus we would trip over these checks.  ASSERT()
2715			 * for the developer case, because it could indicate a
2716			 * bug in the backref code, however error out for a
2717			 * normal user in the case of corruption.
2718			 */
2719			ASSERT(node->new_bytenr == 0);
2720			ASSERT(list_empty(&node->list));
2721			if (node->new_bytenr || !list_empty(&node->list)) {
2722				btrfs_err(root->fs_info,
2723				  "bytenr %llu has improper references to it",
2724					  node->bytenr);
2725				ret = -EUCLEAN;
2726				goto out;
2727			}
2728			ret = btrfs_record_root_in_trans(trans, root);
2729			if (ret)
2730				goto out;
2731			/*
2732			 * Another thread could have failed, need to check if we
2733			 * have reloc_root actually set.
2734			 */
2735			if (!root->reloc_root) {
2736				ret = -ENOENT;
2737				goto out;
2738			}
2739			root = root->reloc_root;
2740			node->new_bytenr = root->node->start;
2741			btrfs_put_root(node->root);
2742			node->root = btrfs_grab_root(root);
2743			ASSERT(node->root);
2744			list_add_tail(&node->list, &rc->backref_cache.changed);
2745		} else {
2746			path->lowest_level = node->level;
2747			if (root == root->fs_info->chunk_root)
2748				btrfs_reserve_chunk_metadata(trans, false);
2749			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750			btrfs_release_path(path);
2751			if (root == root->fs_info->chunk_root)
2752				btrfs_trans_release_chunk_metadata(trans);
2753			if (ret > 0)
2754				ret = 0;
2755		}
2756		if (!ret)
2757			update_processed_blocks(rc, node);
2758	} else {
2759		ret = do_relocation(trans, rc, node, key, path, 1);
2760	}
2761out:
2762	if (ret || node->level == 0 || node->cowonly)
2763		btrfs_backref_cleanup_node(&rc->backref_cache, node);
 
 
 
2764	return ret;
2765}
2766
2767/*
2768 * relocate a list of blocks
2769 */
2770static noinline_for_stack
2771int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772			 struct reloc_control *rc, struct rb_root *blocks)
2773{
2774	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775	struct btrfs_backref_node *node;
2776	struct btrfs_path *path;
2777	struct tree_block *block;
2778	struct tree_block *next;
2779	int ret;
2780	int err = 0;
2781
2782	path = btrfs_alloc_path();
2783	if (!path) {
2784		err = -ENOMEM;
2785		goto out_free_blocks;
2786	}
2787
2788	/* Kick in readahead for tree blocks with missing keys */
2789	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2790		if (!block->key_ready)
2791			btrfs_readahead_tree_block(fs_info, block->bytenr,
2792						   block->owner, 0,
2793						   block->level);
2794	}
2795
2796	/* Get first keys */
2797	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798		if (!block->key_ready) {
2799			err = get_tree_block_key(fs_info, block);
2800			if (err)
2801				goto out_free_path;
2802		}
2803	}
2804
2805	/* Do tree relocation */
2806	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807		node = build_backref_tree(trans, rc, &block->key,
 
 
2808					  block->level, block->bytenr);
2809		if (IS_ERR(node)) {
2810			err = PTR_ERR(node);
2811			goto out;
2812		}
2813
2814		ret = relocate_tree_block(trans, rc, node, &block->key,
2815					  path);
2816		if (ret < 0) {
2817			err = ret;
2818			break;
 
2819		}
 
2820	}
2821out:
 
2822	err = finish_pending_nodes(trans, rc, path, err);
2823
2824out_free_path:
2825	btrfs_free_path(path);
2826out_free_blocks:
2827	free_block_list(blocks);
2828	return err;
2829}
2830
2831static noinline_for_stack int prealloc_file_extent_cluster(
2832				struct btrfs_inode *inode,
2833				const struct file_extent_cluster *cluster)
2834{
2835	u64 alloc_hint = 0;
2836	u64 start;
2837	u64 end;
2838	u64 offset = inode->index_cnt;
2839	u64 num_bytes;
2840	int nr;
2841	int ret = 0;
2842	u64 i_size = i_size_read(&inode->vfs_inode);
2843	u64 prealloc_start = cluster->start - offset;
2844	u64 prealloc_end = cluster->end - offset;
2845	u64 cur_offset = prealloc_start;
2846
2847	/*
2848	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850	 * btrfs_do_readpage() call of previously relocated file cluster.
2851	 *
2852	 * If the current cluster starts in the above range, btrfs_do_readpage()
2853	 * will skip the read, and relocate_one_page() will later writeback
2854	 * the padding zeros as new data, causing data corruption.
2855	 *
2856	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857	 */
2858	if (!PAGE_ALIGNED(i_size)) {
2859		struct address_space *mapping = inode->vfs_inode.i_mapping;
2860		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861		const u32 sectorsize = fs_info->sectorsize;
2862		struct page *page;
2863
2864		ASSERT(sectorsize < PAGE_SIZE);
2865		ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867		/*
2868		 * Subpage can't handle page with DIRTY but without UPTODATE
2869		 * bit as it can lead to the following deadlock:
2870		 *
2871		 * btrfs_read_folio()
2872		 * | Page already *locked*
2873		 * |- btrfs_lock_and_flush_ordered_range()
2874		 *    |- btrfs_start_ordered_extent()
2875		 *       |- extent_write_cache_pages()
2876		 *          |- lock_page()
2877		 *             We try to lock the page we already hold.
2878		 *
2879		 * Here we just writeback the whole data reloc inode, so that
2880		 * we will be ensured to have no dirty range in the page, and
2881		 * are safe to clear the uptodate bits.
2882		 *
2883		 * This shouldn't cause too much overhead, as we need to write
2884		 * the data back anyway.
2885		 */
2886		ret = filemap_write_and_wait(mapping);
2887		if (ret < 0)
2888			return ret;
2889
2890		clear_extent_bits(&inode->io_tree, i_size,
2891				  round_up(i_size, PAGE_SIZE) - 1,
2892				  EXTENT_UPTODATE);
2893		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894		/*
2895		 * If page is freed we don't need to do anything then, as we
2896		 * will re-read the whole page anyway.
2897		 */
2898		if (page) {
2899			btrfs_subpage_clear_uptodate(fs_info, page_folio(page), i_size,
2900					round_up(i_size, PAGE_SIZE) - i_size);
2901			unlock_page(page);
2902			put_page(page);
2903		}
2904	}
2905
2906	BUG_ON(cluster->start != cluster->boundary[0]);
2907	ret = btrfs_alloc_data_chunk_ondemand(inode,
2908					      prealloc_end + 1 - prealloc_start);
2909	if (ret)
2910		return ret;
2911
2912	btrfs_inode_lock(inode, 0);
2913	for (nr = 0; nr < cluster->nr; nr++) {
2914		struct extent_state *cached_state = NULL;
 
2915
 
2916		start = cluster->boundary[nr] - offset;
2917		if (nr + 1 < cluster->nr)
2918			end = cluster->boundary[nr + 1] - 1 - offset;
2919		else
2920			end = cluster->end - offset;
2921
2922		lock_extent(&inode->io_tree, start, end, &cached_state);
2923		num_bytes = end + 1 - start;
2924		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925						num_bytes, num_bytes,
2926						end + 1, &alloc_hint);
2927		cur_offset = end + 1;
2928		unlock_extent(&inode->io_tree, start, end, &cached_state);
2929		if (ret)
2930			break;
 
2931	}
2932	btrfs_inode_unlock(inode, 0);
2933
2934	if (cur_offset < prealloc_end)
2935		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936					       prealloc_end + 1 - cur_offset);
2937	return ret;
2938}
2939
2940static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941				u64 start, u64 end, u64 block_start)
 
2942{
 
 
2943	struct extent_map *em;
2944	struct extent_state *cached_state = NULL;
2945	int ret = 0;
2946
2947	em = alloc_extent_map();
2948	if (!em)
2949		return -ENOMEM;
2950
2951	em->start = start;
2952	em->len = end + 1 - start;
2953	em->block_len = em->len;
2954	em->block_start = block_start;
2955	em->flags |= EXTENT_FLAG_PINNED;
2956
2957	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960	free_extent_map(em);
2961
2962	return ret;
2963}
2964
2965/*
2966 * Allow error injection to test balance/relocation cancellation
2967 */
2968noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2969{
2970	return atomic_read(&fs_info->balance_cancel_req) ||
2971		atomic_read(&fs_info->reloc_cancel_req) ||
2972		fatal_signal_pending(current);
2973}
2974ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2977				    int cluster_nr)
2978{
2979	/* Last extent, use cluster end directly */
2980	if (cluster_nr >= cluster->nr - 1)
2981		return cluster->end;
2982
2983	/* Use next boundary start*/
2984	return cluster->boundary[cluster_nr + 1] - 1;
2985}
2986
2987static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988			     const struct file_extent_cluster *cluster,
2989			     int *cluster_nr, unsigned long page_index)
2990{
2991	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2992	u64 offset = BTRFS_I(inode)->index_cnt;
2993	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995	struct page *page;
2996	u64 page_start;
2997	u64 page_end;
2998	u64 cur;
2999	int ret;
3000
3001	ASSERT(page_index <= last_index);
3002	page = find_lock_page(inode->i_mapping, page_index);
3003	if (!page) {
3004		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005				page_index, last_index + 1 - page_index);
3006		page = find_or_create_page(inode->i_mapping, page_index, mask);
3007		if (!page)
3008			return -ENOMEM;
3009	}
3010
3011	if (PageReadahead(page))
3012		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013				page_folio(page), page_index,
3014				last_index + 1 - page_index);
3015
3016	if (!PageUptodate(page)) {
3017		btrfs_read_folio(NULL, page_folio(page));
3018		lock_page(page);
3019		if (!PageUptodate(page)) {
3020			ret = -EIO;
3021			goto release_page;
3022		}
3023	}
3024
3025	/*
3026	 * We could have lost page private when we dropped the lock to read the
3027	 * page above, make sure we set_page_extent_mapped here so we have any
3028	 * of the subpage blocksize stuff we need in place.
3029	 */
3030	ret = set_page_extent_mapped(page);
3031	if (ret < 0)
3032		goto release_page;
3033
3034	page_start = page_offset(page);
3035	page_end = page_start + PAGE_SIZE - 1;
3036
3037	/*
3038	 * Start from the cluster, as for subpage case, the cluster can start
3039	 * inside the page.
3040	 */
3041	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042	while (cur <= page_end) {
3043		struct extent_state *cached_state = NULL;
3044		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045		u64 extent_end = get_cluster_boundary_end(cluster,
3046						*cluster_nr) - offset;
3047		u64 clamped_start = max(page_start, extent_start);
3048		u64 clamped_end = min(page_end, extent_end);
3049		u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051		/* Reserve metadata for this range */
3052		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053						      clamped_len, clamped_len,
3054						      false);
3055		if (ret)
3056			goto release_page;
3057
3058		/* Mark the range delalloc and dirty for later writeback */
3059		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060			    &cached_state);
3061		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062						clamped_end, 0, &cached_state);
3063		if (ret) {
3064			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065					 clamped_start, clamped_end,
3066					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3067					 &cached_state);
3068			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069							clamped_len, true);
3070			btrfs_delalloc_release_extents(BTRFS_I(inode),
3071						       clamped_len);
3072			goto release_page;
3073		}
3074		btrfs_folio_set_dirty(fs_info, page_folio(page),
3075				      clamped_start, clamped_len);
3076
3077		/*
3078		 * Set the boundary if it's inside the page.
3079		 * Data relocation requires the destination extents to have the
3080		 * same size as the source.
3081		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3082		 * with previous extent.
3083		 */
3084		if (in_range(cluster->boundary[*cluster_nr] - offset,
3085			     page_start, PAGE_SIZE)) {
3086			u64 boundary_start = cluster->boundary[*cluster_nr] -
3087						offset;
3088			u64 boundary_end = boundary_start +
3089					   fs_info->sectorsize - 1;
3090
3091			set_extent_bit(&BTRFS_I(inode)->io_tree,
3092				       boundary_start, boundary_end,
3093				       EXTENT_BOUNDARY, NULL);
3094		}
3095		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3096			      &cached_state);
3097		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3098		cur += clamped_len;
3099
3100		/* Crossed extent end, go to next extent */
3101		if (cur >= extent_end) {
3102			(*cluster_nr)++;
3103			/* Just finished the last extent of the cluster, exit. */
3104			if (*cluster_nr >= cluster->nr)
3105				break;
3106		}
 
3107	}
3108	unlock_page(page);
3109	put_page(page);
3110
3111	balance_dirty_pages_ratelimited(inode->i_mapping);
3112	btrfs_throttle(fs_info);
3113	if (btrfs_should_cancel_balance(fs_info))
3114		ret = -ECANCELED;
3115	return ret;
3116
3117release_page:
3118	unlock_page(page);
3119	put_page(page);
3120	return ret;
3121}
3122
3123static int relocate_file_extent_cluster(struct inode *inode,
3124					const struct file_extent_cluster *cluster)
3125{
 
 
3126	u64 offset = BTRFS_I(inode)->index_cnt;
3127	unsigned long index;
3128	unsigned long last_index;
 
3129	struct file_ra_state *ra;
3130	int cluster_nr = 0;
3131	int ret = 0;
3132
3133	if (!cluster->nr)
3134		return 0;
3135
3136	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3137	if (!ra)
3138		return -ENOMEM;
3139
3140	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3141	if (ret)
3142		goto out;
3143
3144	file_ra_state_init(ra, inode->i_mapping);
3145
3146	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3147				   cluster->end - offset, cluster->start);
3148	if (ret)
3149		goto out;
3150
3151	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3152	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3153	     index <= last_index && !ret; index++)
3154		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3155	if (ret == 0)
3156		WARN_ON(cluster_nr != cluster->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157out:
3158	kfree(ra);
3159	return ret;
3160}
3161
3162static noinline_for_stack int relocate_data_extent(struct inode *inode,
3163				const struct btrfs_key *extent_key,
3164				struct file_extent_cluster *cluster)
3165{
3166	int ret;
3167	struct btrfs_root *root = BTRFS_I(inode)->root;
3168
3169	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3170		ret = relocate_file_extent_cluster(inode, cluster);
3171		if (ret)
3172			return ret;
3173		cluster->nr = 0;
3174	}
3175
3176	/*
3177	 * Under simple quotas, we set root->relocation_src_root when we find
3178	 * the extent. If adjacent extents have different owners, we can't merge
3179	 * them while relocating. Handle this by storing the owning root that
3180	 * started a cluster and if we see an extent from a different root break
3181	 * cluster formation (just like the above case of non-adjacent extents).
3182	 *
3183	 * Without simple quotas, relocation_src_root is always 0, so we should
3184	 * never see a mismatch, and it should have no effect on relocation
3185	 * clusters.
3186	 */
3187	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3188		u64 tmp = root->relocation_src_root;
3189
3190		/*
3191		 * root->relocation_src_root is the state that actually affects
3192		 * the preallocation we do here, so set it to the root owning
3193		 * the cluster we need to relocate.
3194		 */
3195		root->relocation_src_root = cluster->owning_root;
3196		ret = relocate_file_extent_cluster(inode, cluster);
3197		if (ret)
3198			return ret;
3199		cluster->nr = 0;
3200		/* And reset it back for the current extent's owning root. */
3201		root->relocation_src_root = tmp;
3202	}
3203
3204	if (!cluster->nr) {
3205		cluster->start = extent_key->objectid;
3206		cluster->owning_root = root->relocation_src_root;
3207	}
3208	else
3209		BUG_ON(cluster->nr >= MAX_EXTENTS);
3210	cluster->end = extent_key->objectid + extent_key->offset - 1;
3211	cluster->boundary[cluster->nr] = extent_key->objectid;
3212	cluster->nr++;
3213
3214	if (cluster->nr >= MAX_EXTENTS) {
3215		ret = relocate_file_extent_cluster(inode, cluster);
3216		if (ret)
3217			return ret;
3218		cluster->nr = 0;
3219	}
3220	return 0;
3221}
3222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3223/*
3224 * helper to add a tree block to the list.
3225 * the major work is getting the generation and level of the block
3226 */
3227static int add_tree_block(struct reloc_control *rc,
3228			  const struct btrfs_key *extent_key,
3229			  struct btrfs_path *path,
3230			  struct rb_root *blocks)
3231{
3232	struct extent_buffer *eb;
3233	struct btrfs_extent_item *ei;
3234	struct btrfs_tree_block_info *bi;
3235	struct tree_block *block;
3236	struct rb_node *rb_node;
3237	u32 item_size;
3238	int level = -1;
3239	u64 generation;
3240	u64 owner = 0;
3241
3242	eb =  path->nodes[0];
3243	item_size = btrfs_item_size(eb, path->slots[0]);
3244
3245	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3246	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3247		unsigned long ptr = 0, end;
3248
 
3249		ei = btrfs_item_ptr(eb, path->slots[0],
3250				struct btrfs_extent_item);
3251		end = (unsigned long)ei + item_size;
3252		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3253			bi = (struct btrfs_tree_block_info *)(ei + 1);
3254			level = btrfs_tree_block_level(eb, bi);
3255			ptr = (unsigned long)(bi + 1);
3256		} else {
3257			level = (int)extent_key->offset;
3258			ptr = (unsigned long)(ei + 1);
3259		}
3260		generation = btrfs_extent_generation(eb, ei);
3261
3262		/*
3263		 * We're reading random blocks without knowing their owner ahead
3264		 * of time.  This is ok most of the time, as all reloc roots and
3265		 * fs roots have the same lock type.  However normal trees do
3266		 * not, and the only way to know ahead of time is to read the
3267		 * inline ref offset.  We know it's an fs root if
3268		 *
3269		 * 1. There's more than one ref.
3270		 * 2. There's a SHARED_DATA_REF_KEY set.
3271		 * 3. FULL_BACKREF is set on the flags.
3272		 *
3273		 * Otherwise it's safe to assume that the ref offset == the
3274		 * owner of this block, so we can use that when calling
3275		 * read_tree_block.
3276		 */
3277		if (btrfs_extent_refs(eb, ei) == 1 &&
3278		    !(btrfs_extent_flags(eb, ei) &
3279		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3280		    ptr < end) {
3281			struct btrfs_extent_inline_ref *iref;
3282			int type;
3283
3284			iref = (struct btrfs_extent_inline_ref *)ptr;
3285			type = btrfs_get_extent_inline_ref_type(eb, iref,
3286							BTRFS_REF_TYPE_BLOCK);
3287			if (type == BTRFS_REF_TYPE_INVALID)
3288				return -EINVAL;
3289			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3290				owner = btrfs_extent_inline_ref_offset(eb, iref);
3291		}
3292	} else {
3293		btrfs_print_leaf(eb);
3294		btrfs_err(rc->block_group->fs_info,
3295			  "unrecognized tree backref at tree block %llu slot %u",
3296			  eb->start, path->slots[0]);
3297		btrfs_release_path(path);
3298		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
3299	}
3300
3301	btrfs_release_path(path);
3302
3303	BUG_ON(level == -1);
3304
3305	block = kmalloc(sizeof(*block), GFP_NOFS);
3306	if (!block)
3307		return -ENOMEM;
3308
3309	block->bytenr = extent_key->objectid;
3310	block->key.objectid = rc->extent_root->fs_info->nodesize;
3311	block->key.offset = generation;
3312	block->level = level;
3313	block->key_ready = false;
3314	block->owner = owner;
3315
3316	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3317	if (rb_node)
3318		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3319				    -EEXIST);
3320
3321	return 0;
3322}
3323
3324/*
3325 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3326 */
3327static int __add_tree_block(struct reloc_control *rc,
3328			    u64 bytenr, u32 blocksize,
3329			    struct rb_root *blocks)
3330{
3331	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3332	struct btrfs_path *path;
3333	struct btrfs_key key;
3334	int ret;
3335	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3336
3337	if (tree_block_processed(bytenr, rc))
3338		return 0;
3339
3340	if (rb_simple_search(blocks, bytenr))
3341		return 0;
3342
3343	path = btrfs_alloc_path();
3344	if (!path)
3345		return -ENOMEM;
3346again:
3347	key.objectid = bytenr;
3348	if (skinny) {
3349		key.type = BTRFS_METADATA_ITEM_KEY;
3350		key.offset = (u64)-1;
3351	} else {
3352		key.type = BTRFS_EXTENT_ITEM_KEY;
3353		key.offset = blocksize;
3354	}
3355
3356	path->search_commit_root = 1;
3357	path->skip_locking = 1;
3358	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3359	if (ret < 0)
3360		goto out;
 
3361
3362	if (ret > 0 && skinny) {
3363		if (path->slots[0]) {
3364			path->slots[0]--;
3365			btrfs_item_key_to_cpu(path->nodes[0], &key,
3366					      path->slots[0]);
3367			if (key.objectid == bytenr &&
3368			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3369			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3370			      key.offset == blocksize)))
3371				ret = 0;
3372		}
3373
3374		if (ret) {
3375			skinny = false;
3376			btrfs_release_path(path);
3377			goto again;
3378		}
3379	}
3380	if (ret) {
3381		ASSERT(ret == 1);
3382		btrfs_print_leaf(path->nodes[0]);
3383		btrfs_err(fs_info,
3384	     "tree block extent item (%llu) is not found in extent tree",
3385		     bytenr);
3386		WARN_ON(1);
3387		ret = -EINVAL;
3388		goto out;
3389	}
3390
3391	ret = add_tree_block(rc, &key, path, blocks);
3392out:
3393	btrfs_free_path(path);
3394	return ret;
3395}
3396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3398				    struct btrfs_block_group *block_group,
3399				    struct inode *inode,
3400				    u64 ino)
3401{
 
 
3402	struct btrfs_root *root = fs_info->tree_root;
3403	struct btrfs_trans_handle *trans;
 
3404	int ret = 0;
3405
3406	if (inode)
3407		goto truncate;
3408
3409	inode = btrfs_iget(fs_info->sb, ino, root);
3410	if (IS_ERR(inode))
 
 
 
 
 
 
3411		return -ENOENT;
 
3412
3413truncate:
3414	ret = btrfs_check_trunc_cache_free_space(fs_info,
3415						 &fs_info->global_block_rsv);
3416	if (ret)
3417		goto out;
 
3418
3419	trans = btrfs_join_transaction(root);
3420	if (IS_ERR(trans)) {
 
3421		ret = PTR_ERR(trans);
3422		goto out;
3423	}
3424
3425	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3426
3427	btrfs_end_transaction(trans);
3428	btrfs_btree_balance_dirty(fs_info);
 
 
3429out:
3430	iput(inode);
3431	return ret;
3432}
3433
3434/*
3435 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3436 * cache inode, to avoid free space cache data extent blocking data relocation.
3437 */
3438static int delete_v1_space_cache(struct extent_buffer *leaf,
3439				 struct btrfs_block_group *block_group,
3440				 u64 data_bytenr)
 
 
3441{
3442	u64 space_cache_ino;
3443	struct btrfs_file_extent_item *ei;
 
 
 
3444	struct btrfs_key key;
3445	bool found = false;
3446	int i;
 
 
 
 
 
 
3447	int ret;
3448
3449	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3450		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451
3452	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3453		u8 type;
 
 
3454
3455		btrfs_item_key_to_cpu(leaf, &key, i);
3456		if (key.type != BTRFS_EXTENT_DATA_KEY)
3457			continue;
3458		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3459		type = btrfs_file_extent_type(leaf, ei);
 
 
 
 
 
 
 
 
 
 
 
 
3460
3461		if ((type == BTRFS_FILE_EXTENT_REG ||
3462		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3463		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3464			found = true;
3465			space_cache_ino = key.objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3466			break;
3467		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468	}
3469	if (!found)
3470		return -ENOENT;
3471	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3472					space_cache_ino);
3473	return ret;
3474}
3475
3476/*
3477 * helper to find all tree blocks that reference a given data extent
3478 */
3479static noinline_for_stack int add_data_references(struct reloc_control *rc,
3480						  const struct btrfs_key *extent_key,
3481						  struct btrfs_path *path,
3482						  struct rb_root *blocks)
3483{
3484	struct btrfs_backref_walk_ctx ctx = { 0 };
3485	struct ulist_iterator leaf_uiter;
3486	struct ulist_node *ref_node = NULL;
3487	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3488	int ret = 0;
 
 
 
 
 
3489
3490	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3491
3492	ctx.bytenr = extent_key->objectid;
3493	ctx.skip_inode_ref_list = true;
3494	ctx.fs_info = rc->extent_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3495
3496	ret = btrfs_find_all_leafs(&ctx);
3497	if (ret < 0)
3498		return ret;
 
 
 
 
 
 
 
 
 
 
3499
3500	ULIST_ITER_INIT(&leaf_uiter);
3501	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3502		struct btrfs_tree_parent_check check = { 0 };
3503		struct extent_buffer *eb;
3504
3505		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3506		if (IS_ERR(eb)) {
3507			ret = PTR_ERR(eb);
3508			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3509		}
3510		ret = delete_v1_space_cache(eb, rc->block_group,
3511					    extent_key->objectid);
3512		free_extent_buffer(eb);
3513		if (ret < 0)
3514			break;
3515		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3516		if (ret < 0)
3517			break;
 
 
3518	}
3519	if (ret < 0)
 
3520		free_block_list(blocks);
3521	ulist_free(ctx.refs);
3522	return ret;
3523}
3524
3525/*
3526 * helper to find next unprocessed extent
3527 */
3528static noinline_for_stack
3529int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3530		     struct btrfs_key *extent_key)
3531{
3532	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3533	struct btrfs_key key;
3534	struct extent_buffer *leaf;
3535	u64 start, end, last;
3536	int ret;
3537
3538	last = rc->block_group->start + rc->block_group->length;
3539	while (1) {
3540		bool block_found;
3541
3542		cond_resched();
3543		if (rc->search_start >= last) {
3544			ret = 1;
3545			break;
3546		}
3547
3548		key.objectid = rc->search_start;
3549		key.type = BTRFS_EXTENT_ITEM_KEY;
3550		key.offset = 0;
3551
3552		path->search_commit_root = 1;
3553		path->skip_locking = 1;
3554		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3555					0, 0);
3556		if (ret < 0)
3557			break;
3558next:
3559		leaf = path->nodes[0];
3560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3561			ret = btrfs_next_leaf(rc->extent_root, path);
3562			if (ret != 0)
3563				break;
3564			leaf = path->nodes[0];
3565		}
3566
3567		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3568		if (key.objectid >= last) {
3569			ret = 1;
3570			break;
3571		}
3572
3573		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3574		    key.type != BTRFS_METADATA_ITEM_KEY) {
3575			path->slots[0]++;
3576			goto next;
3577		}
3578
3579		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3580		    key.objectid + key.offset <= rc->search_start) {
3581			path->slots[0]++;
3582			goto next;
3583		}
3584
3585		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3586		    key.objectid + fs_info->nodesize <=
3587		    rc->search_start) {
3588			path->slots[0]++;
3589			goto next;
3590		}
3591
3592		block_found = find_first_extent_bit(&rc->processed_blocks,
3593						    key.objectid, &start, &end,
3594						    EXTENT_DIRTY, NULL);
3595
3596		if (block_found && start <= key.objectid) {
3597			btrfs_release_path(path);
3598			rc->search_start = end + 1;
3599		} else {
3600			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3601				rc->search_start = key.objectid + key.offset;
3602			else
3603				rc->search_start = key.objectid +
3604					fs_info->nodesize;
3605			memcpy(extent_key, &key, sizeof(key));
3606			return 0;
3607		}
3608	}
3609	btrfs_release_path(path);
3610	return ret;
3611}
3612
3613static void set_reloc_control(struct reloc_control *rc)
3614{
3615	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3616
3617	mutex_lock(&fs_info->reloc_mutex);
3618	fs_info->reloc_ctl = rc;
3619	mutex_unlock(&fs_info->reloc_mutex);
3620}
3621
3622static void unset_reloc_control(struct reloc_control *rc)
3623{
3624	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3625
3626	mutex_lock(&fs_info->reloc_mutex);
3627	fs_info->reloc_ctl = NULL;
3628	mutex_unlock(&fs_info->reloc_mutex);
3629}
3630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631static noinline_for_stack
3632int prepare_to_relocate(struct reloc_control *rc)
3633{
3634	struct btrfs_trans_handle *trans;
3635	int ret;
3636
3637	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3638					      BTRFS_BLOCK_RSV_TEMP);
3639	if (!rc->block_rsv)
3640		return -ENOMEM;
3641
 
 
 
 
 
 
 
 
 
 
 
 
 
3642	memset(&rc->cluster, 0, sizeof(rc->cluster));
3643	rc->search_start = rc->block_group->start;
3644	rc->extents_found = 0;
3645	rc->nodes_relocated = 0;
3646	rc->merging_rsv_size = 0;
3647	rc->reserved_bytes = 0;
3648	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3649			      RELOCATION_RESERVED_NODES;
3650	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3651				     rc->block_rsv, rc->block_rsv->size,
3652				     BTRFS_RESERVE_FLUSH_ALL);
3653	if (ret)
3654		return ret;
3655
3656	rc->create_reloc_tree = true;
3657	set_reloc_control(rc);
3658
3659	trans = btrfs_join_transaction(rc->extent_root);
3660	if (IS_ERR(trans)) {
3661		unset_reloc_control(rc);
3662		/*
3663		 * extent tree is not a ref_cow tree and has no reloc_root to
3664		 * cleanup.  And callers are responsible to free the above
3665		 * block rsv.
3666		 */
3667		return PTR_ERR(trans);
3668	}
3669
3670	ret = btrfs_commit_transaction(trans);
3671	if (ret)
3672		unset_reloc_control(rc);
3673
3674	return ret;
3675}
3676
3677static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3678{
3679	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3680	struct rb_root blocks = RB_ROOT;
3681	struct btrfs_key key;
3682	struct btrfs_trans_handle *trans = NULL;
3683	struct btrfs_path *path;
3684	struct btrfs_extent_item *ei;
 
3685	u64 flags;
 
3686	int ret;
3687	int err = 0;
3688	int progress = 0;
3689
3690	path = btrfs_alloc_path();
3691	if (!path)
3692		return -ENOMEM;
3693	path->reada = READA_FORWARD;
3694
3695	ret = prepare_to_relocate(rc);
3696	if (ret) {
3697		err = ret;
3698		goto out_free;
3699	}
3700
3701	while (1) {
3702		rc->reserved_bytes = 0;
3703		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3704					     rc->block_rsv->size,
3705					     BTRFS_RESERVE_FLUSH_ALL);
3706		if (ret) {
3707			err = ret;
3708			break;
3709		}
3710		progress++;
3711		trans = btrfs_start_transaction(rc->extent_root, 0);
3712		if (IS_ERR(trans)) {
3713			err = PTR_ERR(trans);
3714			trans = NULL;
3715			break;
3716		}
3717restart:
3718		if (update_backref_cache(trans, &rc->backref_cache)) {
3719			btrfs_end_transaction(trans);
3720			trans = NULL;
3721			continue;
3722		}
3723
3724		ret = find_next_extent(rc, path, &key);
3725		if (ret < 0)
3726			err = ret;
3727		if (ret != 0)
3728			break;
3729
3730		rc->extents_found++;
3731
3732		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3733				    struct btrfs_extent_item);
3734		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
3735
3736		/*
3737		 * If we are relocating a simple quota owned extent item, we
3738		 * need to note the owner on the reloc data root so that when
3739		 * we allocate the replacement item, we can attribute it to the
3740		 * correct eventual owner (rather than the reloc data root).
3741		 */
3742		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3743			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3744			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3745								 path->nodes[0],
3746								 path->slots[0]);
 
 
 
 
 
3747
3748			root->relocation_src_root = owning_root_id;
 
 
 
 
 
 
 
 
 
 
 
 
3749		}
3750
3751		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3752			ret = add_tree_block(rc, &key, path, &blocks);
3753		} else if (rc->stage == UPDATE_DATA_PTRS &&
3754			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3755			ret = add_data_references(rc, &key, path, &blocks);
3756		} else {
3757			btrfs_release_path(path);
3758			ret = 0;
3759		}
3760		if (ret < 0) {
3761			err = ret;
3762			break;
3763		}
3764
3765		if (!RB_EMPTY_ROOT(&blocks)) {
3766			ret = relocate_tree_blocks(trans, rc, &blocks);
3767			if (ret < 0) {
3768				if (ret != -EAGAIN) {
3769					err = ret;
3770					break;
3771				}
3772				rc->extents_found--;
3773				rc->search_start = key.objectid;
3774			}
3775		}
3776
3777		btrfs_end_transaction_throttle(trans);
3778		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779		trans = NULL;
3780
3781		if (rc->stage == MOVE_DATA_EXTENTS &&
3782		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3783			rc->found_file_extent = true;
3784			ret = relocate_data_extent(rc->data_inode,
3785						   &key, &rc->cluster);
3786			if (ret < 0) {
3787				err = ret;
3788				break;
3789			}
3790		}
3791		if (btrfs_should_cancel_balance(fs_info)) {
3792			err = -ECANCELED;
3793			break;
3794		}
3795	}
3796	if (trans && progress && err == -ENOSPC) {
3797		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3798		if (ret == 1) {
 
3799			err = 0;
3800			progress = 0;
3801			goto restart;
3802		}
3803	}
3804
3805	btrfs_release_path(path);
3806	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3807
3808	if (trans) {
3809		btrfs_end_transaction_throttle(trans);
3810		btrfs_btree_balance_dirty(fs_info);
 
3811	}
3812
3813	if (!err) {
3814		ret = relocate_file_extent_cluster(rc->data_inode,
3815						   &rc->cluster);
3816		if (ret < 0)
3817			err = ret;
3818	}
3819
3820	rc->create_reloc_tree = false;
3821	set_reloc_control(rc);
3822
3823	btrfs_backref_release_cache(&rc->backref_cache);
3824	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3825
3826	/*
3827	 * Even in the case when the relocation is cancelled, we should all go
3828	 * through prepare_to_merge() and merge_reloc_roots().
3829	 *
3830	 * For error (including cancelled balance), prepare_to_merge() will
3831	 * mark all reloc trees orphan, then queue them for cleanup in
3832	 * merge_reloc_roots()
3833	 */
3834	err = prepare_to_merge(rc, err);
3835
3836	merge_reloc_roots(rc);
3837
3838	rc->merge_reloc_tree = false;
3839	unset_reloc_control(rc);
3840	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3841
3842	/* get rid of pinned extents */
3843	trans = btrfs_join_transaction(rc->extent_root);
3844	if (IS_ERR(trans)) {
3845		err = PTR_ERR(trans);
3846		goto out_free;
3847	}
3848	ret = btrfs_commit_transaction(trans);
3849	if (ret && !err)
3850		err = ret;
3851out_free:
3852	ret = clean_dirty_subvols(rc);
3853	if (ret < 0 && !err)
3854		err = ret;
3855	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3856	btrfs_free_path(path);
3857	return err;
3858}
3859
3860static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3861				 struct btrfs_root *root, u64 objectid)
3862{
3863	struct btrfs_path *path;
3864	struct btrfs_inode_item *item;
3865	struct extent_buffer *leaf;
3866	int ret;
3867
3868	path = btrfs_alloc_path();
3869	if (!path)
3870		return -ENOMEM;
3871
3872	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3873	if (ret)
3874		goto out;
3875
3876	leaf = path->nodes[0];
3877	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3878	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3879	btrfs_set_inode_generation(leaf, item, 1);
3880	btrfs_set_inode_size(leaf, item, 0);
3881	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3882	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3883					  BTRFS_INODE_PREALLOC);
3884	btrfs_mark_buffer_dirty(trans, leaf);
 
3885out:
3886	btrfs_free_path(path);
3887	return ret;
3888}
3889
3890static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3891				struct btrfs_root *root, u64 objectid)
3892{
3893	struct btrfs_path *path;
3894	struct btrfs_key key;
3895	int ret = 0;
3896
3897	path = btrfs_alloc_path();
3898	if (!path) {
3899		ret = -ENOMEM;
3900		goto out;
3901	}
3902
3903	key.objectid = objectid;
3904	key.type = BTRFS_INODE_ITEM_KEY;
3905	key.offset = 0;
3906	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3907	if (ret) {
3908		if (ret > 0)
3909			ret = -ENOENT;
3910		goto out;
3911	}
3912	ret = btrfs_del_item(trans, root, path);
3913out:
3914	if (ret)
3915		btrfs_abort_transaction(trans, ret);
3916	btrfs_free_path(path);
3917}
3918
3919/*
3920 * helper to create inode for data relocation.
3921 * the inode is in data relocation tree and its link count is 0
3922 */
3923static noinline_for_stack struct inode *create_reloc_inode(
3924					struct btrfs_fs_info *fs_info,
3925					const struct btrfs_block_group *group)
3926{
3927	struct inode *inode = NULL;
3928	struct btrfs_trans_handle *trans;
3929	struct btrfs_root *root;
3930	u64 objectid;
 
 
3931	int err = 0;
3932
3933	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3934	trans = btrfs_start_transaction(root, 6);
3935	if (IS_ERR(trans)) {
3936		btrfs_put_root(root);
3937		return ERR_CAST(trans);
3938	}
3939
3940	err = btrfs_get_free_objectid(root, &objectid);
3941	if (err)
3942		goto out;
3943
3944	err = __insert_orphan_inode(trans, root, objectid);
3945	if (err)
3946		goto out;
3947
3948	inode = btrfs_iget(fs_info->sb, objectid, root);
3949	if (IS_ERR(inode)) {
3950		delete_orphan_inode(trans, root, objectid);
3951		err = PTR_ERR(inode);
3952		inode = NULL;
3953		goto out;
3954	}
3955	BTRFS_I(inode)->index_cnt = group->start;
3956
3957	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3958out:
3959	btrfs_put_root(root);
3960	btrfs_end_transaction(trans);
3961	btrfs_btree_balance_dirty(fs_info);
3962	if (err) {
3963		iput(inode);
 
3964		inode = ERR_PTR(err);
3965	}
3966	return inode;
3967}
3968
3969/*
3970 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3971 * has been requested meanwhile and don't start in that case.
3972 *
3973 * Return:
3974 *   0             success
3975 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3976 *   -ECANCELED    cancellation request was set before the operation started
3977 */
3978static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3979{
3980	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3981		/* This should not happen */
3982		btrfs_err(fs_info, "reloc already running, cannot start");
3983		return -EINPROGRESS;
3984	}
3985
3986	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3987		btrfs_info(fs_info, "chunk relocation canceled on start");
3988		/*
3989		 * On cancel, clear all requests but let the caller mark
3990		 * the end after cleanup operations.
3991		 */
3992		atomic_set(&fs_info->reloc_cancel_req, 0);
3993		return -ECANCELED;
3994	}
3995	return 0;
3996}
3997
3998/*
3999 * Mark end of chunk relocation that is cancellable and wake any waiters.
4000 */
4001static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
4002{
4003	/* Requested after start, clear bit first so any waiters can continue */
4004	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
4005		btrfs_info(fs_info, "chunk relocation canceled during operation");
4006	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
4007	atomic_set(&fs_info->reloc_cancel_req, 0);
4008}
4009
4010static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4011{
4012	struct reloc_control *rc;
4013
4014	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4015	if (!rc)
4016		return NULL;
4017
4018	INIT_LIST_HEAD(&rc->reloc_roots);
4019	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4020	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
4021	rc->reloc_root_tree.rb_root = RB_ROOT;
4022	spin_lock_init(&rc->reloc_root_tree.lock);
4023	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
4024	return rc;
4025}
4026
4027static void free_reloc_control(struct reloc_control *rc)
4028{
4029	struct mapping_node *node, *tmp;
4030
4031	free_reloc_roots(&rc->reloc_roots);
4032	rbtree_postorder_for_each_entry_safe(node, tmp,
4033			&rc->reloc_root_tree.rb_root, rb_node)
4034		kfree(node);
4035
4036	kfree(rc);
4037}
4038
4039/*
4040 * Print the block group being relocated
4041 */
4042static void describe_relocation(struct btrfs_fs_info *fs_info,
4043				struct btrfs_block_group *block_group)
4044{
4045	char buf[128] = {'\0'};
4046
4047	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4048
4049	btrfs_info(fs_info,
4050		   "relocating block group %llu flags %s",
4051		   block_group->start, buf);
4052}
4053
4054static const char *stage_to_string(enum reloc_stage stage)
4055{
4056	if (stage == MOVE_DATA_EXTENTS)
4057		return "move data extents";
4058	if (stage == UPDATE_DATA_PTRS)
4059		return "update data pointers";
4060	return "unknown";
4061}
4062
4063/*
4064 * function to relocate all extents in a block group.
4065 */
4066int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4067{
4068	struct btrfs_block_group *bg;
4069	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4070	struct reloc_control *rc;
4071	struct inode *inode;
4072	struct btrfs_path *path;
4073	int ret;
4074	int rw = 0;
4075	int err = 0;
4076
4077	/*
4078	 * This only gets set if we had a half-deleted snapshot on mount.  We
4079	 * cannot allow relocation to start while we're still trying to clean up
4080	 * these pending deletions.
4081	 */
4082	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4083	if (ret)
4084		return ret;
4085
4086	/* We may have been woken up by close_ctree, so bail if we're closing. */
4087	if (btrfs_fs_closing(fs_info))
4088		return -EINTR;
4089
4090	bg = btrfs_lookup_block_group(fs_info, group_start);
4091	if (!bg)
4092		return -ENOENT;
4093
4094	/*
4095	 * Relocation of a data block group creates ordered extents.  Without
4096	 * sb_start_write(), we can freeze the filesystem while unfinished
4097	 * ordered extents are left. Such ordered extents can cause a deadlock
4098	 * e.g. when syncfs() is waiting for their completion but they can't
4099	 * finish because they block when joining a transaction, due to the
4100	 * fact that the freeze locks are being held in write mode.
4101	 */
4102	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4103		ASSERT(sb_write_started(fs_info->sb));
4104
4105	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4106		btrfs_put_block_group(bg);
4107		return -ETXTBSY;
4108	}
4109
4110	rc = alloc_reloc_control(fs_info);
4111	if (!rc) {
4112		btrfs_put_block_group(bg);
4113		return -ENOMEM;
4114	}
4115
4116	ret = reloc_chunk_start(fs_info);
4117	if (ret < 0) {
4118		err = ret;
4119		goto out_put_bg;
4120	}
4121
4122	rc->extent_root = extent_root;
4123	rc->block_group = bg;
4124
4125	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4126	if (ret) {
4127		err = ret;
4128		goto out;
 
 
 
 
 
 
4129	}
4130	rw = 1;
4131
4132	path = btrfs_alloc_path();
4133	if (!path) {
4134		err = -ENOMEM;
4135		goto out;
4136	}
4137
4138	inode = lookup_free_space_inode(rc->block_group, path);
 
4139	btrfs_free_path(path);
4140
4141	if (!IS_ERR(inode))
4142		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4143	else
4144		ret = PTR_ERR(inode);
4145
4146	if (ret && ret != -ENOENT) {
4147		err = ret;
4148		goto out;
4149	}
4150
4151	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4152	if (IS_ERR(rc->data_inode)) {
4153		err = PTR_ERR(rc->data_inode);
4154		rc->data_inode = NULL;
4155		goto out;
4156	}
4157
4158	describe_relocation(fs_info, rc->block_group);
4159
4160	btrfs_wait_block_group_reservations(rc->block_group);
4161	btrfs_wait_nocow_writers(rc->block_group);
4162	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4163				 rc->block_group->start,
4164				 rc->block_group->length);
4165
4166	ret = btrfs_zone_finish(rc->block_group);
4167	WARN_ON(ret && ret != -EAGAIN);
4168
4169	while (1) {
4170		enum reloc_stage finishes_stage;
4171
4172		mutex_lock(&fs_info->cleaner_mutex);
 
 
4173		ret = relocate_block_group(rc);
 
4174		mutex_unlock(&fs_info->cleaner_mutex);
4175		if (ret < 0)
4176			err = ret;
 
 
 
 
 
 
 
 
4177
4178		finishes_stage = rc->stage;
4179		/*
4180		 * We may have gotten ENOSPC after we already dirtied some
4181		 * extents.  If writeout happens while we're relocating a
4182		 * different block group we could end up hitting the
4183		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4184		 * btrfs_reloc_cow_block.  Make sure we write everything out
4185		 * properly so we don't trip over this problem, and then break
4186		 * out of the loop if we hit an error.
4187		 */
4188		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4189			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4190						       (u64)-1);
4191			if (ret)
4192				err = ret;
4193			invalidate_mapping_pages(rc->data_inode->i_mapping,
4194						 0, -1);
4195			rc->stage = UPDATE_DATA_PTRS;
4196		}
4197
4198		if (err < 0)
4199			goto out;
4200
4201		if (rc->extents_found == 0)
4202			break;
4203
4204		btrfs_info(fs_info, "found %llu extents, stage: %s",
4205			   rc->extents_found, stage_to_string(finishes_stage));
4206	}
4207
 
 
 
 
 
4208	WARN_ON(rc->block_group->pinned > 0);
4209	WARN_ON(rc->block_group->reserved > 0);
4210	WARN_ON(rc->block_group->used > 0);
4211out:
4212	if (err && rw)
4213		btrfs_dec_block_group_ro(rc->block_group);
4214	iput(rc->data_inode);
4215out_put_bg:
4216	btrfs_put_block_group(bg);
4217	reloc_chunk_end(fs_info);
4218	free_reloc_control(rc);
4219	return err;
4220}
4221
4222static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4223{
4224	struct btrfs_fs_info *fs_info = root->fs_info;
4225	struct btrfs_trans_handle *trans;
4226	int ret, err;
4227
4228	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4229	if (IS_ERR(trans))
4230		return PTR_ERR(trans);
4231
4232	memset(&root->root_item.drop_progress, 0,
4233		sizeof(root->root_item.drop_progress));
4234	btrfs_set_root_drop_level(&root->root_item, 0);
4235	btrfs_set_root_refs(&root->root_item, 0);
4236	ret = btrfs_update_root(trans, fs_info->tree_root,
4237				&root->root_key, &root->root_item);
 
4238
4239	err = btrfs_end_transaction(trans);
4240	if (err)
4241		return err;
4242	return ret;
4243}
4244
4245/*
4246 * recover relocation interrupted by system crash.
4247 *
4248 * this function resumes merging reloc trees with corresponding fs trees.
4249 * this is important for keeping the sharing of tree blocks
4250 */
4251int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4252{
4253	LIST_HEAD(reloc_roots);
4254	struct btrfs_key key;
4255	struct btrfs_root *fs_root;
4256	struct btrfs_root *reloc_root;
4257	struct btrfs_path *path;
4258	struct extent_buffer *leaf;
4259	struct reloc_control *rc = NULL;
4260	struct btrfs_trans_handle *trans;
4261	int ret;
4262	int err = 0;
4263
4264	path = btrfs_alloc_path();
4265	if (!path)
4266		return -ENOMEM;
4267	path->reada = READA_BACK;
4268
4269	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4270	key.type = BTRFS_ROOT_ITEM_KEY;
4271	key.offset = (u64)-1;
4272
4273	while (1) {
4274		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4275					path, 0, 0);
4276		if (ret < 0) {
4277			err = ret;
4278			goto out;
4279		}
4280		if (ret > 0) {
4281			if (path->slots[0] == 0)
4282				break;
4283			path->slots[0]--;
4284		}
4285		leaf = path->nodes[0];
4286		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4287		btrfs_release_path(path);
4288
4289		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4290		    key.type != BTRFS_ROOT_ITEM_KEY)
4291			break;
4292
4293		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4294		if (IS_ERR(reloc_root)) {
4295			err = PTR_ERR(reloc_root);
4296			goto out;
4297		}
4298
4299		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4300		list_add(&reloc_root->root_list, &reloc_roots);
4301
4302		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4303			fs_root = btrfs_get_fs_root(fs_info,
4304					reloc_root->root_key.offset, false);
4305			if (IS_ERR(fs_root)) {
4306				ret = PTR_ERR(fs_root);
4307				if (ret != -ENOENT) {
4308					err = ret;
4309					goto out;
4310				}
4311				ret = mark_garbage_root(reloc_root);
4312				if (ret < 0) {
4313					err = ret;
4314					goto out;
4315				}
4316			} else {
4317				btrfs_put_root(fs_root);
4318			}
4319		}
4320
4321		if (key.offset == 0)
4322			break;
4323
4324		key.offset--;
4325	}
4326	btrfs_release_path(path);
4327
4328	if (list_empty(&reloc_roots))
4329		goto out;
4330
4331	rc = alloc_reloc_control(fs_info);
4332	if (!rc) {
4333		err = -ENOMEM;
4334		goto out;
4335	}
4336
4337	ret = reloc_chunk_start(fs_info);
4338	if (ret < 0) {
4339		err = ret;
4340		goto out_end;
4341	}
4342
4343	rc->extent_root = btrfs_extent_root(fs_info, 0);
4344
4345	set_reloc_control(rc);
4346
4347	trans = btrfs_join_transaction(rc->extent_root);
4348	if (IS_ERR(trans)) {
 
4349		err = PTR_ERR(trans);
4350		goto out_unset;
4351	}
4352
4353	rc->merge_reloc_tree = true;
4354
4355	while (!list_empty(&reloc_roots)) {
4356		reloc_root = list_entry(reloc_roots.next,
4357					struct btrfs_root, root_list);
4358		list_del(&reloc_root->root_list);
4359
4360		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4361			list_add_tail(&reloc_root->root_list,
4362				      &rc->reloc_roots);
4363			continue;
4364		}
4365
4366		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4367					    false);
4368		if (IS_ERR(fs_root)) {
4369			err = PTR_ERR(fs_root);
4370			list_add_tail(&reloc_root->root_list, &reloc_roots);
4371			btrfs_end_transaction(trans);
4372			goto out_unset;
4373		}
4374
4375		err = __add_reloc_root(reloc_root);
4376		ASSERT(err != -EEXIST);
4377		if (err) {
4378			list_add_tail(&reloc_root->root_list, &reloc_roots);
4379			btrfs_put_root(fs_root);
4380			btrfs_end_transaction(trans);
4381			goto out_unset;
4382		}
4383		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4384		btrfs_put_root(fs_root);
4385	}
4386
4387	err = btrfs_commit_transaction(trans);
4388	if (err)
4389		goto out_unset;
4390
4391	merge_reloc_roots(rc);
4392
4393	unset_reloc_control(rc);
4394
4395	trans = btrfs_join_transaction(rc->extent_root);
4396	if (IS_ERR(trans)) {
4397		err = PTR_ERR(trans);
4398		goto out_clean;
4399	}
4400	err = btrfs_commit_transaction(trans);
4401out_clean:
4402	ret = clean_dirty_subvols(rc);
4403	if (ret < 0 && !err)
4404		err = ret;
4405out_unset:
4406	unset_reloc_control(rc);
4407out_end:
4408	reloc_chunk_end(fs_info);
4409	free_reloc_control(rc);
4410out:
4411	free_reloc_roots(&reloc_roots);
4412
 
 
 
 
 
 
4413	btrfs_free_path(path);
4414
4415	if (err == 0) {
4416		/* cleanup orphan inode in data relocation tree */
4417		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4418		ASSERT(fs_root);
4419		err = btrfs_orphan_cleanup(fs_root);
4420		btrfs_put_root(fs_root);
 
 
4421	}
4422	return err;
4423}
4424
4425/*
4426 * helper to add ordered checksum for data relocation.
4427 *
4428 * cloning checksum properly handles the nodatasum extents.
4429 * it also saves CPU time to re-calculate the checksum.
4430 */
4431int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4432{
4433	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4434	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4435	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4436	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4437	LIST_HEAD(list);
4438	int ret;
 
 
4439
4440	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4441				      disk_bytenr + ordered->num_bytes - 1,
4442				      &list, 0, false);
4443	if (ret)
4444		return ret;
4445
4446	while (!list_empty(&list)) {
4447		struct btrfs_ordered_sum *sums =
4448			list_entry(list.next, struct btrfs_ordered_sum, list);
4449
 
 
4450		list_del_init(&sums->list);
4451
4452		/*
4453		 * We need to offset the new_bytenr based on where the csum is.
4454		 * We need to do this because we will read in entire prealloc
4455		 * extents but we may have written to say the middle of the
4456		 * prealloc extent, so we need to make sure the csum goes with
4457		 * the right disk offset.
4458		 *
4459		 * We can do this because the data reloc inode refers strictly
4460		 * to the on disk bytes, so we don't have to worry about
4461		 * disk_len vs real len like with real inodes since it's all
4462		 * disk length.
4463		 */
4464		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4465		btrfs_add_ordered_sum(ordered, sums);
4466	}
4467
4468	return 0;
 
 
 
 
 
 
 
 
 
 
4469}
4470
4471int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4472			  struct btrfs_root *root,
4473			  const struct extent_buffer *buf,
4474			  struct extent_buffer *cow)
4475{
4476	struct btrfs_fs_info *fs_info = root->fs_info;
4477	struct reloc_control *rc;
4478	struct btrfs_backref_node *node;
4479	int first_cow = 0;
4480	int level;
4481	int ret = 0;
4482
4483	rc = fs_info->reloc_ctl;
4484	if (!rc)
4485		return 0;
4486
4487	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
 
4488
4489	level = btrfs_header_level(buf);
4490	if (btrfs_header_generation(buf) <=
4491	    btrfs_root_last_snapshot(&root->root_item))
4492		first_cow = 1;
4493
4494	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4495	    rc->create_reloc_tree) {
4496		WARN_ON(!first_cow && level == 0);
4497
4498		node = rc->backref_cache.path[level];
4499		BUG_ON(node->bytenr != buf->start &&
4500		       node->new_bytenr != buf->start);
4501
4502		btrfs_backref_drop_node_buffer(node);
4503		atomic_inc(&cow->refs);
4504		node->eb = cow;
4505		node->new_bytenr = cow->start;
4506
4507		if (!node->pending) {
4508			list_move_tail(&node->list,
4509				       &rc->backref_cache.pending[level]);
4510			node->pending = 1;
4511		}
4512
4513		if (first_cow)
4514			mark_block_processed(rc, node);
4515
4516		if (first_cow && level > 0)
4517			rc->nodes_relocated += buf->len;
4518	}
4519
4520	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4521		ret = replace_file_extents(trans, rc, root, cow);
4522	return ret;
 
4523}
4524
4525/*
4526 * called before creating snapshot. it calculates metadata reservation
4527 * required for relocating tree blocks in the snapshot
4528 */
4529void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4530			      u64 *bytes_to_reserve)
4531{
4532	struct btrfs_root *root = pending->root;
4533	struct reloc_control *rc = root->fs_info->reloc_ctl;
4534
4535	if (!rc || !have_reloc_root(root))
 
4536		return;
4537
 
4538	if (!rc->merge_reloc_tree)
4539		return;
4540
4541	root = root->reloc_root;
4542	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4543	/*
4544	 * relocation is in the stage of merging trees. the space
4545	 * used by merging a reloc tree is twice the size of
4546	 * relocated tree nodes in the worst case. half for cowing
4547	 * the reloc tree, half for cowing the fs tree. the space
4548	 * used by cowing the reloc tree will be freed after the
4549	 * tree is dropped. if we create snapshot, cowing the fs
4550	 * tree may use more space than it frees. so we need
4551	 * reserve extra space.
4552	 */
4553	*bytes_to_reserve += rc->nodes_relocated;
4554}
4555
4556/*
4557 * called after snapshot is created. migrate block reservation
4558 * and create reloc root for the newly created snapshot
4559 *
4560 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4561 * references held on the reloc_root, one for root->reloc_root and one for
4562 * rc->reloc_roots.
4563 */
4564int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4565			       struct btrfs_pending_snapshot *pending)
4566{
4567	struct btrfs_root *root = pending->root;
4568	struct btrfs_root *reloc_root;
4569	struct btrfs_root *new_root;
4570	struct reloc_control *rc = root->fs_info->reloc_ctl;
4571	int ret;
4572
4573	if (!rc || !have_reloc_root(root))
4574		return 0;
4575
4576	rc = root->fs_info->reloc_ctl;
4577	rc->merging_rsv_size += rc->nodes_relocated;
4578
4579	if (rc->merge_reloc_tree) {
4580		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4581					      rc->block_rsv,
4582					      rc->nodes_relocated, true);
4583		if (ret)
4584			return ret;
4585	}
4586
4587	new_root = pending->snap;
4588	reloc_root = create_reloc_root(trans, root->reloc_root,
4589				       new_root->root_key.objectid);
4590	if (IS_ERR(reloc_root))
4591		return PTR_ERR(reloc_root);
4592
4593	ret = __add_reloc_root(reloc_root);
4594	ASSERT(ret != -EEXIST);
4595	if (ret) {
4596		/* Pairs with create_reloc_root */
4597		btrfs_put_root(reloc_root);
4598		return ret;
4599	}
4600	new_root->reloc_root = btrfs_grab_root(reloc_root);
4601
4602	if (rc->create_reloc_tree)
4603		ret = clone_backref_node(trans, rc, root, reloc_root);
4604	return ret;
4605}
4606
4607/*
4608 * Get the current bytenr for the block group which is being relocated.
4609 *
4610 * Return U64_MAX if no running relocation.
4611 */
4612u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4613{
4614	u64 logical = U64_MAX;
4615
4616	lockdep_assert_held(&fs_info->reloc_mutex);
4617
4618	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4619		logical = fs_info->reloc_ctl->block_group->start;
4620	return logical;
4621}
v3.1
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 
 
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 
 
 
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 
 
 
 
 
 
 
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 
 
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329/*
 330 * walk up backref nodes until reach node presents tree root
 331 */
 332static struct backref_node *walk_up_backref(struct backref_node *node,
 333					    struct backref_edge *edges[],
 334					    int *index)
 335{
 336	struct backref_edge *edge;
 337	int idx = *index;
 338
 339	while (!list_empty(&node->upper)) {
 340		edge = list_entry(node->upper.next,
 341				  struct backref_edge, list[LOWER]);
 342		edges[idx++] = edge;
 343		node = edge->node[UPPER];
 344	}
 345	BUG_ON(node->detached);
 346	*index = idx;
 347	return node;
 348}
 349
 350/*
 351 * walk down backref nodes to find start of next reference path
 352 */
 353static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 354					      int *index)
 355{
 356	struct backref_edge *edge;
 357	struct backref_node *lower;
 358	int idx = *index;
 359
 360	while (idx > 0) {
 361		edge = edges[idx - 1];
 362		lower = edge->node[LOWER];
 363		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 364			idx--;
 365			continue;
 366		}
 367		edge = list_entry(edge->list[LOWER].next,
 368				  struct backref_edge, list[LOWER]);
 369		edges[idx - 1] = edge;
 370		*index = idx;
 371		return edge->node[UPPER];
 372	}
 373	*index = 0;
 374	return NULL;
 375}
 376
 377static void unlock_node_buffer(struct backref_node *node)
 378{
 379	if (node->locked) {
 380		btrfs_tree_unlock(node->eb);
 381		node->locked = 0;
 382	}
 383}
 384
 385static void drop_node_buffer(struct backref_node *node)
 386{
 387	if (node->eb) {
 388		unlock_node_buffer(node);
 389		free_extent_buffer(node->eb);
 390		node->eb = NULL;
 391	}
 392}
 393
 394static void drop_backref_node(struct backref_cache *tree,
 395			      struct backref_node *node)
 396{
 397	BUG_ON(!list_empty(&node->upper));
 398
 399	drop_node_buffer(node);
 400	list_del(&node->list);
 401	list_del(&node->lower);
 402	if (!RB_EMPTY_NODE(&node->rb_node))
 403		rb_erase(&node->rb_node, &tree->rb_root);
 404	free_backref_node(tree, node);
 405}
 406
 407/*
 408 * remove a backref node from the backref cache
 409 */
 410static void remove_backref_node(struct backref_cache *cache,
 411				struct backref_node *node)
 412{
 413	struct backref_node *upper;
 414	struct backref_edge *edge;
 415
 416	if (!node)
 417		return;
 418
 419	BUG_ON(!node->lowest && !node->detached);
 420	while (!list_empty(&node->upper)) {
 421		edge = list_entry(node->upper.next, struct backref_edge,
 422				  list[LOWER]);
 423		upper = edge->node[UPPER];
 424		list_del(&edge->list[LOWER]);
 425		list_del(&edge->list[UPPER]);
 426		free_backref_edge(cache, edge);
 427
 428		if (RB_EMPTY_NODE(&upper->rb_node)) {
 429			BUG_ON(!list_empty(&node->upper));
 430			drop_backref_node(cache, node);
 431			node = upper;
 432			node->lowest = 1;
 433			continue;
 434		}
 435		/*
 436		 * add the node to leaf node list if no other
 437		 * child block cached.
 438		 */
 439		if (list_empty(&upper->lower)) {
 440			list_add_tail(&upper->lower, &cache->leaves);
 441			upper->lowest = 1;
 442		}
 443	}
 444
 445	drop_backref_node(cache, node);
 446}
 447
 448static void update_backref_node(struct backref_cache *cache,
 449				struct backref_node *node, u64 bytenr)
 450{
 451	struct rb_node *rb_node;
 452	rb_erase(&node->rb_node, &cache->rb_root);
 453	node->bytenr = bytenr;
 454	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 455	BUG_ON(rb_node);
 
 456}
 457
 458/*
 459 * update backref cache after a transaction commit
 460 */
 461static int update_backref_cache(struct btrfs_trans_handle *trans,
 462				struct backref_cache *cache)
 463{
 464	struct backref_node *node;
 465	int level = 0;
 466
 467	if (cache->last_trans == 0) {
 468		cache->last_trans = trans->transid;
 469		return 0;
 470	}
 471
 472	if (cache->last_trans == trans->transid)
 473		return 0;
 474
 475	/*
 476	 * detached nodes are used to avoid unnecessary backref
 477	 * lookup. transaction commit changes the extent tree.
 478	 * so the detached nodes are no longer useful.
 479	 */
 480	while (!list_empty(&cache->detached)) {
 481		node = list_entry(cache->detached.next,
 482				  struct backref_node, list);
 483		remove_backref_node(cache, node);
 484	}
 485
 486	while (!list_empty(&cache->changed)) {
 487		node = list_entry(cache->changed.next,
 488				  struct backref_node, list);
 489		list_del_init(&node->list);
 490		BUG_ON(node->pending);
 491		update_backref_node(cache, node, node->new_bytenr);
 492	}
 493
 494	/*
 495	 * some nodes can be left in the pending list if there were
 496	 * errors during processing the pending nodes.
 497	 */
 498	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 499		list_for_each_entry(node, &cache->pending[level], list) {
 500			BUG_ON(!node->pending);
 501			if (node->bytenr == node->new_bytenr)
 502				continue;
 503			update_backref_node(cache, node, node->new_bytenr);
 504		}
 505	}
 506
 507	cache->last_trans = 0;
 508	return 1;
 509}
 510
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512static int should_ignore_root(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513{
 514	struct btrfs_root *reloc_root;
 515
 516	if (!root->ref_cows)
 517		return 0;
 
 
 
 
 518
 519	reloc_root = root->reloc_root;
 520	if (!reloc_root)
 521		return 0;
 522
 523	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 524	    root->fs_info->running_transaction->transid - 1)
 525		return 0;
 526	/*
 527	 * if there is reloc tree and it was created in previous
 528	 * transaction backref lookup can find the reloc tree,
 529	 * so backref node for the fs tree root is useless for
 530	 * relocation.
 531	 */
 532	return 1;
 533}
 
 534/*
 535 * find reloc tree by address of tree root
 536 */
 537static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 538					  u64 bytenr)
 539{
 
 540	struct rb_node *rb_node;
 541	struct mapping_node *node;
 542	struct btrfs_root *root = NULL;
 543
 
 544	spin_lock(&rc->reloc_root_tree.lock);
 545	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 546	if (rb_node) {
 547		node = rb_entry(rb_node, struct mapping_node, rb_node);
 548		root = (struct btrfs_root *)node->data;
 549	}
 550	spin_unlock(&rc->reloc_root_tree.lock);
 551	return root;
 552}
 553
 554static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 557	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 558	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 559	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 560	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 561	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 562		return 1;
 563	return 0;
 564}
 565
 566static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 567					u64 root_objectid)
 568{
 569	struct btrfs_key key;
 570
 571	key.objectid = root_objectid;
 572	key.type = BTRFS_ROOT_ITEM_KEY;
 573	if (is_cowonly_root(root_objectid))
 574		key.offset = 0;
 575	else
 576		key.offset = (u64)-1;
 577
 578	return btrfs_read_fs_root_no_name(fs_info, &key);
 579}
 580
 581#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 582static noinline_for_stack
 583struct btrfs_root *find_tree_root(struct reloc_control *rc,
 584				  struct extent_buffer *leaf,
 585				  struct btrfs_extent_ref_v0 *ref0)
 586{
 587	struct btrfs_root *root;
 588	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 589	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 590
 591	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 
 
 592
 593	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 594	BUG_ON(IS_ERR(root));
 
 
 595
 596	if (root->ref_cows &&
 597	    generation != btrfs_root_generation(&root->root_item))
 598		return NULL;
 
 
 
 599
 600	return root;
 601}
 602#endif
 
 
 
 603
 604static noinline_for_stack
 605int find_inline_backref(struct extent_buffer *leaf, int slot,
 606			unsigned long *ptr, unsigned long *end)
 607{
 608	struct btrfs_extent_item *ei;
 609	struct btrfs_tree_block_info *bi;
 610	u32 item_size;
 611
 612	item_size = btrfs_item_size_nr(leaf, slot);
 613#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 614	if (item_size < sizeof(*ei)) {
 615		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 616		return 1;
 617	}
 618#endif
 619	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 620	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 621		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 622
 623	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 624		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 625		return 1;
 626	}
 627
 628	bi = (struct btrfs_tree_block_info *)(ei + 1);
 629	*ptr = (unsigned long)(bi + 1);
 630	*end = (unsigned long)ei + item_size;
 631	return 0;
 632}
 633
 634/*
 635 * build backref tree for a given tree block. root of the backref tree
 636 * corresponds the tree block, leaves of the backref tree correspond
 637 * roots of b-trees that reference the tree block.
 638 *
 639 * the basic idea of this function is check backrefs of a given block
 640 * to find upper level blocks that refernece the block, and then check
 641 * bakcrefs of these upper level blocks recursively. the recursion stop
 642 * when tree root is reached or backrefs for the block is cached.
 643 *
 644 * NOTE: if we find backrefs for a block are cached, we know backrefs
 645 * for all upper level blocks that directly/indirectly reference the
 646 * block are also cached.
 647 */
 648static noinline_for_stack
 649struct backref_node *build_backref_tree(struct reloc_control *rc,
 650					struct btrfs_key *node_key,
 651					int level, u64 bytenr)
 652{
 653	struct backref_cache *cache = &rc->backref_cache;
 654	struct btrfs_path *path1;
 655	struct btrfs_path *path2;
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root;
 658	struct backref_node *cur;
 659	struct backref_node *upper;
 660	struct backref_node *lower;
 661	struct backref_node *node = NULL;
 662	struct backref_node *exist = NULL;
 663	struct backref_edge *edge;
 664	struct rb_node *rb_node;
 665	struct btrfs_key key;
 666	unsigned long end;
 667	unsigned long ptr;
 668	LIST_HEAD(list);
 669	LIST_HEAD(useless);
 670	int cowonly;
 671	int ret;
 672	int err = 0;
 673
 674	path1 = btrfs_alloc_path();
 675	path2 = btrfs_alloc_path();
 676	if (!path1 || !path2) {
 
 
 677		err = -ENOMEM;
 678		goto out;
 679	}
 680	path1->reada = 1;
 681	path2->reada = 2;
 682
 683	node = alloc_backref_node(cache);
 684	if (!node) {
 685		err = -ENOMEM;
 686		goto out;
 687	}
 688
 689	node->bytenr = bytenr;
 690	node->level = level;
 691	node->lowest = 1;
 692	cur = node;
 693again:
 694	end = 0;
 695	ptr = 0;
 696	key.objectid = cur->bytenr;
 697	key.type = BTRFS_EXTENT_ITEM_KEY;
 698	key.offset = (u64)-1;
 699
 700	path1->search_commit_root = 1;
 701	path1->skip_locking = 1;
 702	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 703				0, 0);
 704	if (ret < 0) {
 705		err = ret;
 706		goto out;
 707	}
 708	BUG_ON(!ret || !path1->slots[0]);
 709
 710	path1->slots[0]--;
 711
 712	WARN_ON(cur->checked);
 713	if (!list_empty(&cur->upper)) {
 714		/*
 715		 * the backref was added previously when processing
 716		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 717		 */
 718		BUG_ON(!list_is_singular(&cur->upper));
 719		edge = list_entry(cur->upper.next, struct backref_edge,
 720				  list[LOWER]);
 721		BUG_ON(!list_empty(&edge->list[UPPER]));
 722		exist = edge->node[UPPER];
 723		/*
 724		 * add the upper level block to pending list if we need
 725		 * check its backrefs
 726		 */
 727		if (!exist->checked)
 728			list_add_tail(&edge->list[UPPER], &list);
 729	} else {
 730		exist = NULL;
 731	}
 732
 733	while (1) {
 734		cond_resched();
 735		eb = path1->nodes[0];
 736
 737		if (ptr >= end) {
 738			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 739				ret = btrfs_next_leaf(rc->extent_root, path1);
 740				if (ret < 0) {
 741					err = ret;
 742					goto out;
 743				}
 744				if (ret > 0)
 745					break;
 746				eb = path1->nodes[0];
 747			}
 748
 749			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 750			if (key.objectid != cur->bytenr) {
 751				WARN_ON(exist);
 752				break;
 753			}
 754
 755			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 756				ret = find_inline_backref(eb, path1->slots[0],
 757							  &ptr, &end);
 758				if (ret)
 759					goto next;
 760			}
 761		}
 762
 763		if (ptr < end) {
 764			/* update key for inline back ref */
 765			struct btrfs_extent_inline_ref *iref;
 766			iref = (struct btrfs_extent_inline_ref *)ptr;
 767			key.type = btrfs_extent_inline_ref_type(eb, iref);
 768			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 769			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 770				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 771		}
 772
 773		if (exist &&
 774		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 775		      exist->owner == key.offset) ||
 776		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 777		      exist->bytenr == key.offset))) {
 778			exist = NULL;
 779			goto next;
 780		}
 781
 782#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 783		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 784		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 785			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 786				struct btrfs_extent_ref_v0 *ref0;
 787				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 788						struct btrfs_extent_ref_v0);
 789				if (key.objectid == key.offset) {
 790					root = find_tree_root(rc, eb, ref0);
 791					if (root && !should_ignore_root(root))
 792						cur->root = root;
 793					else
 794						list_add(&cur->list, &useless);
 795					break;
 796				}
 797				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 798								      ref0)))
 799					cur->cowonly = 1;
 800			}
 801#else
 802		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 803		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 804#endif
 805			if (key.objectid == key.offset) {
 806				/*
 807				 * only root blocks of reloc trees use
 808				 * backref of this type.
 809				 */
 810				root = find_reloc_root(rc, cur->bytenr);
 811				BUG_ON(!root);
 812				cur->root = root;
 813				break;
 814			}
 815
 816			edge = alloc_backref_edge(cache);
 817			if (!edge) {
 818				err = -ENOMEM;
 819				goto out;
 820			}
 821			rb_node = tree_search(&cache->rb_root, key.offset);
 822			if (!rb_node) {
 823				upper = alloc_backref_node(cache);
 824				if (!upper) {
 825					free_backref_edge(cache, edge);
 826					err = -ENOMEM;
 827					goto out;
 828				}
 829				upper->bytenr = key.offset;
 830				upper->level = cur->level + 1;
 831				/*
 832				 *  backrefs for the upper level block isn't
 833				 *  cached, add the block to pending list
 834				 */
 835				list_add_tail(&edge->list[UPPER], &list);
 836			} else {
 837				upper = rb_entry(rb_node, struct backref_node,
 838						 rb_node);
 839				BUG_ON(!upper->checked);
 840				INIT_LIST_HEAD(&edge->list[UPPER]);
 841			}
 842			list_add_tail(&edge->list[LOWER], &cur->upper);
 843			edge->node[LOWER] = cur;
 844			edge->node[UPPER] = upper;
 845
 846			goto next;
 847		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 848			goto next;
 849		}
 850
 851		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 852		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 853		if (IS_ERR(root)) {
 854			err = PTR_ERR(root);
 855			goto out;
 856		}
 857
 858		if (!root->ref_cows)
 859			cur->cowonly = 1;
 860
 861		if (btrfs_root_level(&root->root_item) == cur->level) {
 862			/* tree root */
 863			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 864			       cur->bytenr);
 865			if (should_ignore_root(root))
 866				list_add(&cur->list, &useless);
 867			else
 868				cur->root = root;
 869			break;
 870		}
 871
 872		level = cur->level + 1;
 873
 874		/*
 875		 * searching the tree to find upper level blocks
 876		 * reference the block.
 877		 */
 878		path2->search_commit_root = 1;
 879		path2->skip_locking = 1;
 880		path2->lowest_level = level;
 881		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 882		path2->lowest_level = 0;
 883		if (ret < 0) {
 884			err = ret;
 885			goto out;
 886		}
 887		if (ret > 0 && path2->slots[level] > 0)
 888			path2->slots[level]--;
 889
 890		eb = path2->nodes[level];
 891		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 892			cur->bytenr);
 893
 894		lower = cur;
 895		for (; level < BTRFS_MAX_LEVEL; level++) {
 896			if (!path2->nodes[level]) {
 897				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 898				       lower->bytenr);
 899				if (should_ignore_root(root))
 900					list_add(&lower->list, &useless);
 901				else
 902					lower->root = root;
 903				break;
 904			}
 905
 906			edge = alloc_backref_edge(cache);
 907			if (!edge) {
 908				err = -ENOMEM;
 909				goto out;
 910			}
 911
 912			eb = path2->nodes[level];
 913			rb_node = tree_search(&cache->rb_root, eb->start);
 914			if (!rb_node) {
 915				upper = alloc_backref_node(cache);
 916				if (!upper) {
 917					free_backref_edge(cache, edge);
 918					err = -ENOMEM;
 919					goto out;
 920				}
 921				upper->bytenr = eb->start;
 922				upper->owner = btrfs_header_owner(eb);
 923				upper->level = lower->level + 1;
 924				if (!root->ref_cows)
 925					upper->cowonly = 1;
 926
 927				/*
 928				 * if we know the block isn't shared
 929				 * we can void checking its backrefs.
 930				 */
 931				if (btrfs_block_can_be_shared(root, eb))
 932					upper->checked = 0;
 933				else
 934					upper->checked = 1;
 935
 936				/*
 937				 * add the block to pending list if we
 938				 * need check its backrefs. only block
 939				 * at 'cur->level + 1' is added to the
 940				 * tail of pending list. this guarantees
 941				 * we check backrefs from lower level
 942				 * blocks to upper level blocks.
 943				 */
 944				if (!upper->checked &&
 945				    level == cur->level + 1) {
 946					list_add_tail(&edge->list[UPPER],
 947						      &list);
 948				} else
 949					INIT_LIST_HEAD(&edge->list[UPPER]);
 950			} else {
 951				upper = rb_entry(rb_node, struct backref_node,
 952						 rb_node);
 953				BUG_ON(!upper->checked);
 954				INIT_LIST_HEAD(&edge->list[UPPER]);
 955				if (!upper->owner)
 956					upper->owner = btrfs_header_owner(eb);
 957			}
 958			list_add_tail(&edge->list[LOWER], &lower->upper);
 959			edge->node[LOWER] = lower;
 960			edge->node[UPPER] = upper;
 961
 962			if (rb_node)
 963				break;
 964			lower = upper;
 965			upper = NULL;
 966		}
 967		btrfs_release_path(path2);
 968next:
 969		if (ptr < end) {
 970			ptr += btrfs_extent_inline_ref_size(key.type);
 971			if (ptr >= end) {
 972				WARN_ON(ptr > end);
 973				ptr = 0;
 974				end = 0;
 975			}
 976		}
 977		if (ptr >= end)
 978			path1->slots[0]++;
 979	}
 980	btrfs_release_path(path1);
 981
 982	cur->checked = 1;
 983	WARN_ON(exist);
 984
 985	/* the pending list isn't empty, take the first block to process */
 986	if (!list_empty(&list)) {
 987		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
 988		list_del_init(&edge->list[UPPER]);
 989		cur = edge->node[UPPER];
 990		goto again;
 991	}
 992
 993	/*
 994	 * everything goes well, connect backref nodes and insert backref nodes
 995	 * into the cache.
 996	 */
 997	BUG_ON(!node->checked);
 998	cowonly = node->cowonly;
 999	if (!cowonly) {
1000		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001				      &node->rb_node);
1002		BUG_ON(rb_node);
1003		list_add_tail(&node->lower, &cache->leaves);
1004	}
1005
1006	list_for_each_entry(edge, &node->upper, list[LOWER])
1007		list_add_tail(&edge->list[UPPER], &list);
1008
1009	while (!list_empty(&list)) {
1010		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011		list_del_init(&edge->list[UPPER]);
1012		upper = edge->node[UPPER];
1013		if (upper->detached) {
1014			list_del(&edge->list[LOWER]);
1015			lower = edge->node[LOWER];
1016			free_backref_edge(cache, edge);
1017			if (list_empty(&lower->upper))
1018				list_add(&lower->list, &useless);
1019			continue;
1020		}
1021
1022		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023			if (upper->lowest) {
1024				list_del_init(&upper->lower);
1025				upper->lowest = 0;
1026			}
1027
1028			list_add_tail(&edge->list[UPPER], &upper->lower);
1029			continue;
1030		}
1031
1032		BUG_ON(!upper->checked);
1033		BUG_ON(cowonly != upper->cowonly);
1034		if (!cowonly) {
1035			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036					      &upper->rb_node);
1037			BUG_ON(rb_node);
1038		}
1039
1040		list_add_tail(&edge->list[UPPER], &upper->lower);
1041
1042		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043			list_add_tail(&edge->list[UPPER], &list);
1044	}
1045	/*
1046	 * process useless backref nodes. backref nodes for tree leaves
1047	 * are deleted from the cache. backref nodes for upper level
1048	 * tree blocks are left in the cache to avoid unnecessary backref
1049	 * lookup.
1050	 */
1051	while (!list_empty(&useless)) {
1052		upper = list_entry(useless.next, struct backref_node, list);
1053		list_del_init(&upper->list);
1054		BUG_ON(!list_empty(&upper->upper));
1055		if (upper == node)
1056			node = NULL;
1057		if (upper->lowest) {
1058			list_del_init(&upper->lower);
1059			upper->lowest = 0;
1060		}
1061		while (!list_empty(&upper->lower)) {
1062			edge = list_entry(upper->lower.next,
1063					  struct backref_edge, list[UPPER]);
1064			list_del(&edge->list[UPPER]);
1065			list_del(&edge->list[LOWER]);
1066			lower = edge->node[LOWER];
1067			free_backref_edge(cache, edge);
1068
1069			if (list_empty(&lower->upper))
1070				list_add(&lower->list, &useless);
1071		}
1072		__mark_block_processed(rc, upper);
1073		if (upper->level > 0) {
1074			list_add(&upper->list, &cache->detached);
1075			upper->detached = 1;
1076		} else {
1077			rb_erase(&upper->rb_node, &cache->rb_root);
1078			free_backref_node(cache, upper);
1079		}
1080	}
1081out:
1082	btrfs_free_path(path1);
1083	btrfs_free_path(path2);
 
1084	if (err) {
1085		while (!list_empty(&useless)) {
1086			lower = list_entry(useless.next,
1087					   struct backref_node, upper);
1088			list_del_init(&lower->upper);
1089		}
1090		upper = node;
1091		INIT_LIST_HEAD(&list);
1092		while (upper) {
1093			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094				list_splice_tail(&upper->upper, &list);
1095				free_backref_node(cache, upper);
1096			}
1097
1098			if (list_empty(&list))
1099				break;
1100
1101			edge = list_entry(list.next, struct backref_edge,
1102					  list[LOWER]);
1103			list_del(&edge->list[LOWER]);
1104			upper = edge->node[UPPER];
1105			free_backref_edge(cache, edge);
1106		}
1107		return ERR_PTR(err);
1108	}
1109	BUG_ON(node && node->detached);
 
 
1110	return node;
1111}
1112
1113/*
1114 * helper to add backref node for the newly created snapshot.
1115 * the backref node is created by cloning backref node that
1116 * corresponds to root of source tree
1117 */
1118static int clone_backref_node(struct btrfs_trans_handle *trans,
1119			      struct reloc_control *rc,
1120			      struct btrfs_root *src,
1121			      struct btrfs_root *dest)
1122{
1123	struct btrfs_root *reloc_root = src->reloc_root;
1124	struct backref_cache *cache = &rc->backref_cache;
1125	struct backref_node *node = NULL;
1126	struct backref_node *new_node;
1127	struct backref_edge *edge;
1128	struct backref_edge *new_edge;
1129	struct rb_node *rb_node;
1130
1131	if (cache->last_trans > 0)
1132		update_backref_cache(trans, cache);
1133
1134	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135	if (rb_node) {
1136		node = rb_entry(rb_node, struct backref_node, rb_node);
1137		if (node->detached)
1138			node = NULL;
1139		else
1140			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141	}
1142
1143	if (!node) {
1144		rb_node = tree_search(&cache->rb_root,
1145				      reloc_root->commit_root->start);
1146		if (rb_node) {
1147			node = rb_entry(rb_node, struct backref_node,
1148					rb_node);
1149			BUG_ON(node->detached);
1150		}
1151	}
1152
1153	if (!node)
1154		return 0;
1155
1156	new_node = alloc_backref_node(cache);
 
1157	if (!new_node)
1158		return -ENOMEM;
1159
1160	new_node->bytenr = dest->node->start;
1161	new_node->level = node->level;
1162	new_node->lowest = node->lowest;
1163	new_node->checked = 1;
1164	new_node->root = dest;
 
1165
1166	if (!node->lowest) {
1167		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168			new_edge = alloc_backref_edge(cache);
1169			if (!new_edge)
1170				goto fail;
1171
1172			new_edge->node[UPPER] = new_node;
1173			new_edge->node[LOWER] = edge->node[LOWER];
1174			list_add_tail(&new_edge->list[UPPER],
1175				      &new_node->lower);
1176		}
 
 
1177	}
1178
1179	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180			      &new_node->rb_node);
1181	BUG_ON(rb_node);
 
1182
1183	if (!new_node->lowest) {
1184		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185			list_add_tail(&new_edge->list[LOWER],
1186				      &new_edge->node[LOWER]->upper);
1187		}
1188	}
1189	return 0;
1190fail:
1191	while (!list_empty(&new_node->lower)) {
1192		new_edge = list_entry(new_node->lower.next,
1193				      struct backref_edge, list[UPPER]);
1194		list_del(&new_edge->list[UPPER]);
1195		free_backref_edge(cache, new_edge);
1196	}
1197	free_backref_node(cache, new_node);
1198	return -ENOMEM;
1199}
1200
1201/*
1202 * helper to add 'address of tree root -> reloc tree' mapping
1203 */
1204static int __add_reloc_root(struct btrfs_root *root)
1205{
 
1206	struct rb_node *rb_node;
1207	struct mapping_node *node;
1208	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209
1210	node = kmalloc(sizeof(*node), GFP_NOFS);
1211	BUG_ON(!node);
 
1212
1213	node->bytenr = root->node->start;
1214	node->data = root;
1215
1216	spin_lock(&rc->reloc_root_tree.lock);
1217	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218			      node->bytenr, &node->rb_node);
1219	spin_unlock(&rc->reloc_root_tree.lock);
1220	BUG_ON(rb_node);
 
 
 
 
 
1221
1222	list_add_tail(&root->root_list, &rc->reloc_roots);
1223	return 0;
1224}
1225
1226/*
1227 * helper to update/delete the 'address of tree root -> reloc tree'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228 * mapping
1229 */
1230static int __update_reloc_root(struct btrfs_root *root, int del)
1231{
 
1232	struct rb_node *rb_node;
1233	struct mapping_node *node = NULL;
1234	struct reloc_control *rc = root->fs_info->reloc_ctl;
1235
1236	spin_lock(&rc->reloc_root_tree.lock);
1237	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238			      root->commit_root->start);
1239	if (rb_node) {
1240		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242	}
1243	spin_unlock(&rc->reloc_root_tree.lock);
1244
 
 
1245	BUG_ON((struct btrfs_root *)node->data != root);
1246
1247	if (!del) {
1248		spin_lock(&rc->reloc_root_tree.lock);
1249		node->bytenr = root->node->start;
1250		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251				      node->bytenr, &node->rb_node);
1252		spin_unlock(&rc->reloc_root_tree.lock);
1253		BUG_ON(rb_node);
1254	} else {
1255		list_del_init(&root->root_list);
1256		kfree(node);
1257	}
1258	return 0;
1259}
1260
1261static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262					struct btrfs_root *root, u64 objectid)
1263{
 
1264	struct btrfs_root *reloc_root;
1265	struct extent_buffer *eb;
1266	struct btrfs_root_item *root_item;
1267	struct btrfs_key root_key;
1268	int ret;
 
1269
1270	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271	BUG_ON(!root_item);
 
1272
1273	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275	root_key.offset = objectid;
1276
1277	if (root->root_key.objectid == objectid) {
 
 
1278		/* called by btrfs_init_reloc_root */
1279		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280				      BTRFS_TREE_RELOC_OBJECTID);
1281		BUG_ON(ret);
 
1282
1283		btrfs_set_root_last_snapshot(&root->root_item,
1284					     trans->transid - 1);
 
 
 
 
 
 
 
 
1285	} else {
1286		/*
1287		 * called by btrfs_reloc_post_snapshot_hook.
1288		 * the source tree is a reloc tree, all tree blocks
1289		 * modified after it was created have RELOC flag
1290		 * set in their headers. so it's OK to not update
1291		 * the 'last_snapshot'.
1292		 */
1293		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294				      BTRFS_TREE_RELOC_OBJECTID);
1295		BUG_ON(ret);
 
1296	}
1297
 
 
 
 
 
 
1298	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299	btrfs_set_root_bytenr(root_item, eb->start);
1300	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301	btrfs_set_root_generation(root_item, trans->transid);
1302
1303	if (root->root_key.objectid == objectid) {
1304		btrfs_set_root_refs(root_item, 0);
1305		memset(&root_item->drop_progress, 0,
1306		       sizeof(struct btrfs_disk_key));
1307		root_item->drop_level = 0;
1308	}
1309
1310	btrfs_tree_unlock(eb);
1311	free_extent_buffer(eb);
1312
1313	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314				&root_key, root_item);
1315	BUG_ON(ret);
 
 
1316	kfree(root_item);
1317
1318	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319						 &root_key);
1320	BUG_ON(IS_ERR(reloc_root));
 
 
 
1321	reloc_root->last_trans = trans->transid;
1322	return reloc_root;
 
 
 
 
 
 
1323}
1324
1325/*
1326 * create reloc tree for a given fs tree. reloc tree is just a
1327 * snapshot of the fs tree with special root objectid.
 
 
 
1328 */
1329int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330			  struct btrfs_root *root)
1331{
 
1332	struct btrfs_root *reloc_root;
1333	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1334	int clear_rsv = 0;
 
1335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336	if (root->reloc_root) {
1337		reloc_root = root->reloc_root;
1338		reloc_root->last_trans = trans->transid;
1339		return 0;
1340	}
1341
1342	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1343	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344		return 0;
1345
1346	if (!trans->block_rsv) {
 
1347		trans->block_rsv = rc->block_rsv;
1348		clear_rsv = 1;
1349	}
1350	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351	if (clear_rsv)
1352		trans->block_rsv = NULL;
 
 
1353
1354	__add_reloc_root(reloc_root);
1355	root->reloc_root = reloc_root;
 
 
 
 
 
 
1356	return 0;
1357}
1358
1359/*
1360 * update root item of reloc tree
1361 */
1362int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363			    struct btrfs_root *root)
1364{
 
1365	struct btrfs_root *reloc_root;
1366	struct btrfs_root_item *root_item;
1367	int del = 0;
1368	int ret;
1369
1370	if (!root->reloc_root)
1371		goto out;
1372
1373	reloc_root = root->reloc_root;
1374	root_item = &reloc_root->root_item;
1375
1376	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1377	    btrfs_root_refs(root_item) == 0) {
1378		root->reloc_root = NULL;
1379		del = 1;
 
 
 
 
 
1380	}
1381
1382	__update_reloc_root(reloc_root, del);
1383
1384	if (reloc_root->commit_root != reloc_root->node) {
 
1385		btrfs_set_root_node(root_item, reloc_root->node);
1386		free_extent_buffer(reloc_root->commit_root);
1387		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388	}
1389
1390	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391				&reloc_root->root_key, root_item);
1392	BUG_ON(ret);
1393
1394out:
1395	return 0;
1396}
1397
1398/*
1399 * helper to find first cached inode with inode number >= objectid
1400 * in a subvolume
1401 */
1402static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1403{
1404	struct rb_node *node;
1405	struct rb_node *prev;
1406	struct btrfs_inode *entry;
1407	struct inode *inode;
1408
1409	spin_lock(&root->inode_lock);
1410again:
1411	node = root->inode_tree.rb_node;
1412	prev = NULL;
1413	while (node) {
1414		prev = node;
1415		entry = rb_entry(node, struct btrfs_inode, rb_node);
1416
1417		if (objectid < btrfs_ino(&entry->vfs_inode))
1418			node = node->rb_left;
1419		else if (objectid > btrfs_ino(&entry->vfs_inode))
1420			node = node->rb_right;
1421		else
1422			break;
1423	}
1424	if (!node) {
1425		while (prev) {
1426			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1427			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1428				node = prev;
1429				break;
1430			}
1431			prev = rb_next(prev);
1432		}
1433	}
1434	while (node) {
1435		entry = rb_entry(node, struct btrfs_inode, rb_node);
1436		inode = igrab(&entry->vfs_inode);
1437		if (inode) {
1438			spin_unlock(&root->inode_lock);
1439			return inode;
1440		}
1441
1442		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1443		if (cond_resched_lock(&root->inode_lock))
1444			goto again;
1445
1446		node = rb_next(node);
1447	}
1448	spin_unlock(&root->inode_lock);
1449	return NULL;
1450}
1451
1452static int in_block_group(u64 bytenr,
1453			  struct btrfs_block_group_cache *block_group)
1454{
1455	if (bytenr >= block_group->key.objectid &&
1456	    bytenr < block_group->key.objectid + block_group->key.offset)
1457		return 1;
1458	return 0;
1459}
1460
1461/*
1462 * get new location of data
1463 */
1464static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1465			    u64 bytenr, u64 num_bytes)
1466{
1467	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1468	struct btrfs_path *path;
1469	struct btrfs_file_extent_item *fi;
1470	struct extent_buffer *leaf;
1471	int ret;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return -ENOMEM;
1476
1477	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1478	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1479				       bytenr, 0);
1480	if (ret < 0)
1481		goto out;
1482	if (ret > 0) {
1483		ret = -ENOENT;
1484		goto out;
1485	}
1486
1487	leaf = path->nodes[0];
1488	fi = btrfs_item_ptr(leaf, path->slots[0],
1489			    struct btrfs_file_extent_item);
1490
1491	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1492	       btrfs_file_extent_compression(leaf, fi) ||
1493	       btrfs_file_extent_encryption(leaf, fi) ||
1494	       btrfs_file_extent_other_encoding(leaf, fi));
1495
1496	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1497		ret = 1;
1498		goto out;
1499	}
1500
1501	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1502	ret = 0;
1503out:
1504	btrfs_free_path(path);
1505	return ret;
1506}
1507
1508/*
1509 * update file extent items in the tree leaf to point to
1510 * the new locations.
1511 */
1512static noinline_for_stack
1513int replace_file_extents(struct btrfs_trans_handle *trans,
1514			 struct reloc_control *rc,
1515			 struct btrfs_root *root,
1516			 struct extent_buffer *leaf)
1517{
 
1518	struct btrfs_key key;
1519	struct btrfs_file_extent_item *fi;
1520	struct inode *inode = NULL;
1521	u64 parent;
1522	u64 bytenr;
1523	u64 new_bytenr = 0;
1524	u64 num_bytes;
1525	u64 end;
1526	u32 nritems;
1527	u32 i;
1528	int ret;
1529	int first = 1;
1530	int dirty = 0;
1531
1532	if (rc->stage != UPDATE_DATA_PTRS)
1533		return 0;
1534
1535	/* reloc trees always use full backref */
1536	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1537		parent = leaf->start;
1538	else
1539		parent = 0;
1540
1541	nritems = btrfs_header_nritems(leaf);
1542	for (i = 0; i < nritems; i++) {
 
 
1543		cond_resched();
1544		btrfs_item_key_to_cpu(leaf, &key, i);
1545		if (key.type != BTRFS_EXTENT_DATA_KEY)
1546			continue;
1547		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1548		if (btrfs_file_extent_type(leaf, fi) ==
1549		    BTRFS_FILE_EXTENT_INLINE)
1550			continue;
1551		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1552		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1553		if (bytenr == 0)
1554			continue;
1555		if (!in_block_group(bytenr, rc->block_group))
 
1556			continue;
1557
1558		/*
1559		 * if we are modifying block in fs tree, wait for readpage
1560		 * to complete and drop the extent cache
1561		 */
1562		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1563			if (first) {
1564				inode = find_next_inode(root, key.objectid);
1565				first = 0;
1566			} else if (inode && btrfs_ino(inode) < key.objectid) {
1567				btrfs_add_delayed_iput(inode);
1568				inode = find_next_inode(root, key.objectid);
1569			}
1570			if (inode && btrfs_ino(inode) == key.objectid) {
 
 
1571				end = key.offset +
1572				      btrfs_file_extent_num_bytes(leaf, fi);
1573				WARN_ON(!IS_ALIGNED(key.offset,
1574						    root->sectorsize));
1575				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1576				end--;
1577				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1578						      key.offset, end,
1579						      GFP_NOFS);
1580				if (!ret)
1581					continue;
1582
1583				btrfs_drop_extent_cache(inode, key.offset, end,
1584							1);
1585				unlock_extent(&BTRFS_I(inode)->io_tree,
1586					      key.offset, end, GFP_NOFS);
1587			}
1588		}
1589
1590		ret = get_new_location(rc->data_inode, &new_bytenr,
1591				       bytenr, num_bytes);
1592		if (ret > 0) {
1593			WARN_ON(1);
1594			continue;
 
 
 
1595		}
1596		BUG_ON(ret < 0);
1597
1598		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1599		dirty = 1;
1600
1601		key.offset -= btrfs_file_extent_offset(leaf, fi);
1602		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1603					   num_bytes, parent,
1604					   btrfs_header_owner(leaf),
1605					   key.objectid, key.offset);
1606		BUG_ON(ret);
1607
1608		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1609					parent, btrfs_header_owner(leaf),
1610					key.objectid, key.offset);
1611		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1612	}
1613	if (dirty)
1614		btrfs_mark_buffer_dirty(leaf);
1615	if (inode)
1616		btrfs_add_delayed_iput(inode);
1617	return 0;
1618}
1619
1620static noinline_for_stack
1621int memcmp_node_keys(struct extent_buffer *eb, int slot,
1622		     struct btrfs_path *path, int level)
1623{
1624	struct btrfs_disk_key key1;
1625	struct btrfs_disk_key key2;
1626	btrfs_node_key(eb, &key1, slot);
1627	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1628	return memcmp(&key1, &key2, sizeof(key1));
1629}
1630
1631/*
1632 * try to replace tree blocks in fs tree with the new blocks
1633 * in reloc tree. tree blocks haven't been modified since the
1634 * reloc tree was create can be replaced.
1635 *
1636 * if a block was replaced, level of the block + 1 is returned.
1637 * if no block got replaced, 0 is returned. if there are other
1638 * errors, a negative error number is returned.
1639 */
1640static noinline_for_stack
1641int replace_path(struct btrfs_trans_handle *trans,
1642		 struct btrfs_root *dest, struct btrfs_root *src,
1643		 struct btrfs_path *path, struct btrfs_key *next_key,
1644		 int lowest_level, int max_level)
1645{
 
1646	struct extent_buffer *eb;
1647	struct extent_buffer *parent;
 
1648	struct btrfs_key key;
1649	u64 old_bytenr;
1650	u64 new_bytenr;
1651	u64 old_ptr_gen;
1652	u64 new_ptr_gen;
1653	u64 last_snapshot;
1654	u32 blocksize;
1655	int cow = 0;
1656	int level;
1657	int ret;
1658	int slot;
1659
1660	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1661	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1662
1663	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1664again:
1665	slot = path->slots[lowest_level];
1666	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1667
1668	eb = btrfs_lock_root_node(dest);
1669	btrfs_set_lock_blocking(eb);
1670	level = btrfs_header_level(eb);
1671
1672	if (level < lowest_level) {
1673		btrfs_tree_unlock(eb);
1674		free_extent_buffer(eb);
1675		return 0;
1676	}
1677
1678	if (cow) {
1679		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1680		BUG_ON(ret);
 
 
 
 
 
1681	}
1682	btrfs_set_lock_blocking(eb);
1683
1684	if (next_key) {
1685		next_key->objectid = (u64)-1;
1686		next_key->type = (u8)-1;
1687		next_key->offset = (u64)-1;
1688	}
1689
1690	parent = eb;
1691	while (1) {
1692		level = btrfs_header_level(parent);
1693		BUG_ON(level < lowest_level);
1694
1695		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1696		if (ret && slot > 0)
1697			slot--;
1698
1699		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1700			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1701
1702		old_bytenr = btrfs_node_blockptr(parent, slot);
1703		blocksize = btrfs_level_size(dest, level - 1);
1704		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1705
1706		if (level <= max_level) {
1707			eb = path->nodes[level];
1708			new_bytenr = btrfs_node_blockptr(eb,
1709							path->slots[level]);
1710			new_ptr_gen = btrfs_node_ptr_generation(eb,
1711							path->slots[level]);
1712		} else {
1713			new_bytenr = 0;
1714			new_ptr_gen = 0;
1715		}
1716
1717		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1718			WARN_ON(1);
1719			ret = level;
1720			break;
1721		}
1722
1723		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1724		    memcmp_node_keys(parent, slot, path, level)) {
1725			if (level <= lowest_level) {
1726				ret = 0;
1727				break;
1728			}
1729
1730			eb = read_tree_block(dest, old_bytenr, blocksize,
1731					     old_ptr_gen);
1732			BUG_ON(!eb);
 
 
1733			btrfs_tree_lock(eb);
1734			if (cow) {
1735				ret = btrfs_cow_block(trans, dest, eb, parent,
1736						      slot, &eb);
1737				BUG_ON(ret);
 
 
 
 
 
1738			}
1739			btrfs_set_lock_blocking(eb);
1740
1741			btrfs_tree_unlock(parent);
1742			free_extent_buffer(parent);
1743
1744			parent = eb;
1745			continue;
1746		}
1747
1748		if (!cow) {
1749			btrfs_tree_unlock(parent);
1750			free_extent_buffer(parent);
1751			cow = 1;
1752			goto again;
1753		}
1754
1755		btrfs_node_key_to_cpu(path->nodes[level], &key,
1756				      path->slots[level]);
1757		btrfs_release_path(path);
1758
1759		path->lowest_level = level;
 
1760		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
 
1761		path->lowest_level = 0;
1762		BUG_ON(ret);
 
 
 
 
1763
1764		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765		 * swap blocks in fs tree and reloc tree.
1766		 */
1767		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1768		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1769		btrfs_mark_buffer_dirty(parent);
1770
1771		btrfs_set_node_blockptr(path->nodes[level],
1772					path->slots[level], old_bytenr);
1773		btrfs_set_node_ptr_generation(path->nodes[level],
1774					      path->slots[level], old_ptr_gen);
1775		btrfs_mark_buffer_dirty(path->nodes[level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776
1777		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1778					path->nodes[level]->start,
1779					src->root_key.objectid, level - 1, 0);
1780		BUG_ON(ret);
1781		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1782					0, dest->root_key.objectid, level - 1,
1783					0);
1784		BUG_ON(ret);
1785
1786		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1787					path->nodes[level]->start,
1788					src->root_key.objectid, level - 1, 0);
1789		BUG_ON(ret);
1790
1791		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1792					0, dest->root_key.objectid, level - 1,
1793					0);
1794		BUG_ON(ret);
1795
1796		btrfs_unlock_up_safe(path, 0);
1797
1798		ret = level;
1799		break;
1800	}
1801	btrfs_tree_unlock(parent);
1802	free_extent_buffer(parent);
1803	return ret;
1804}
1805
1806/*
1807 * helper to find next relocated block in reloc tree
1808 */
1809static noinline_for_stack
1810int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1811		       int *level)
1812{
1813	struct extent_buffer *eb;
1814	int i;
1815	u64 last_snapshot;
1816	u32 nritems;
1817
1818	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1819
1820	for (i = 0; i < *level; i++) {
1821		free_extent_buffer(path->nodes[i]);
1822		path->nodes[i] = NULL;
1823	}
1824
1825	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1826		eb = path->nodes[i];
1827		nritems = btrfs_header_nritems(eb);
1828		while (path->slots[i] + 1 < nritems) {
1829			path->slots[i]++;
1830			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1831			    last_snapshot)
1832				continue;
1833
1834			*level = i;
1835			return 0;
1836		}
1837		free_extent_buffer(path->nodes[i]);
1838		path->nodes[i] = NULL;
1839	}
1840	return 1;
1841}
1842
1843/*
1844 * walk down reloc tree to find relocated block of lowest level
1845 */
1846static noinline_for_stack
1847int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1848			 int *level)
1849{
1850	struct extent_buffer *eb = NULL;
1851	int i;
1852	u64 bytenr;
1853	u64 ptr_gen = 0;
1854	u64 last_snapshot;
1855	u32 blocksize;
1856	u32 nritems;
1857
1858	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1859
1860	for (i = *level; i > 0; i--) {
1861		eb = path->nodes[i];
1862		nritems = btrfs_header_nritems(eb);
1863		while (path->slots[i] < nritems) {
1864			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1865			if (ptr_gen > last_snapshot)
1866				break;
1867			path->slots[i]++;
1868		}
1869		if (path->slots[i] >= nritems) {
1870			if (i == *level)
1871				break;
1872			*level = i + 1;
1873			return 0;
1874		}
1875		if (i == 1) {
1876			*level = i;
1877			return 0;
1878		}
1879
1880		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1881		blocksize = btrfs_level_size(root, i - 1);
1882		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1883		BUG_ON(btrfs_header_level(eb) != i - 1);
1884		path->nodes[i - 1] = eb;
1885		path->slots[i - 1] = 0;
1886	}
1887	return 1;
1888}
1889
1890/*
1891 * invalidate extent cache for file extents whose key in range of
1892 * [min_key, max_key)
1893 */
1894static int invalidate_extent_cache(struct btrfs_root *root,
1895				   struct btrfs_key *min_key,
1896				   struct btrfs_key *max_key)
1897{
 
1898	struct inode *inode = NULL;
1899	u64 objectid;
1900	u64 start, end;
1901	u64 ino;
1902
1903	objectid = min_key->objectid;
1904	while (1) {
 
 
1905		cond_resched();
1906		iput(inode);
1907
1908		if (objectid > max_key->objectid)
1909			break;
1910
1911		inode = find_next_inode(root, objectid);
1912		if (!inode)
1913			break;
1914		ino = btrfs_ino(inode);
1915
1916		if (ino > max_key->objectid) {
1917			iput(inode);
1918			break;
1919		}
1920
1921		objectid = ino + 1;
1922		if (!S_ISREG(inode->i_mode))
1923			continue;
1924
1925		if (unlikely(min_key->objectid == ino)) {
1926			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1927				continue;
1928			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1929				start = 0;
1930			else {
1931				start = min_key->offset;
1932				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1933			}
1934		} else {
1935			start = 0;
1936		}
1937
1938		if (unlikely(max_key->objectid == ino)) {
1939			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1940				continue;
1941			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1942				end = (u64)-1;
1943			} else {
1944				if (max_key->offset == 0)
1945					continue;
1946				end = max_key->offset;
1947				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1948				end--;
1949			}
1950		} else {
1951			end = (u64)-1;
1952		}
1953
1954		/* the lock_extent waits for readpage to complete */
1955		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956		btrfs_drop_extent_cache(inode, start, end, 1);
1957		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1958	}
1959	return 0;
1960}
1961
1962static int find_next_key(struct btrfs_path *path, int level,
1963			 struct btrfs_key *key)
1964
1965{
1966	while (level < BTRFS_MAX_LEVEL) {
1967		if (!path->nodes[level])
1968			break;
1969		if (path->slots[level] + 1 <
1970		    btrfs_header_nritems(path->nodes[level])) {
1971			btrfs_node_key_to_cpu(path->nodes[level], key,
1972					      path->slots[level] + 1);
1973			return 0;
1974		}
1975		level++;
1976	}
1977	return 1;
1978}
1979
1980/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981 * merge the relocated tree blocks in reloc tree with corresponding
1982 * fs tree.
1983 */
1984static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1985					       struct btrfs_root *root)
1986{
1987	LIST_HEAD(inode_list);
1988	struct btrfs_key key;
1989	struct btrfs_key next_key;
1990	struct btrfs_trans_handle *trans;
1991	struct btrfs_root *reloc_root;
1992	struct btrfs_root_item *root_item;
1993	struct btrfs_path *path;
1994	struct extent_buffer *leaf;
1995	unsigned long nr;
1996	int level;
1997	int max_level;
1998	int replaced = 0;
1999	int ret;
2000	int err = 0;
2001	u32 min_reserved;
2002
2003	path = btrfs_alloc_path();
2004	if (!path)
2005		return -ENOMEM;
2006	path->reada = 1;
2007
2008	reloc_root = root->reloc_root;
2009	root_item = &reloc_root->root_item;
2010
2011	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2012		level = btrfs_root_level(root_item);
2013		extent_buffer_get(reloc_root->node);
2014		path->nodes[level] = reloc_root->node;
2015		path->slots[level] = 0;
2016	} else {
2017		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2018
2019		level = root_item->drop_level;
2020		BUG_ON(level == 0);
2021		path->lowest_level = level;
2022		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2023		path->lowest_level = 0;
2024		if (ret < 0) {
2025			btrfs_free_path(path);
2026			return ret;
2027		}
2028
2029		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2030				      path->slots[level]);
2031		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2032
2033		btrfs_unlock_up_safe(path, 0);
2034	}
2035
2036	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2037	memset(&next_key, 0, sizeof(next_key));
2038
2039	while (1) {
 
 
 
 
 
2040		trans = btrfs_start_transaction(root, 0);
2041		BUG_ON(IS_ERR(trans));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042		trans->block_rsv = rc->block_rsv;
2043
2044		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2045					    min_reserved, 0);
2046		if (ret) {
2047			BUG_ON(ret != -EAGAIN);
2048			ret = btrfs_commit_transaction(trans, root);
2049			BUG_ON(ret);
2050			continue;
2051		}
2052
2053		replaced = 0;
2054		max_level = level;
2055
2056		ret = walk_down_reloc_tree(reloc_root, path, &level);
2057		if (ret < 0) {
2058			err = ret;
2059			goto out;
2060		}
2061		if (ret > 0)
2062			break;
2063
2064		if (!find_next_key(path, level, &key) &&
2065		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2066			ret = 0;
2067		} else {
2068			ret = replace_path(trans, root, reloc_root, path,
2069					   &next_key, level, max_level);
2070		}
2071		if (ret < 0) {
2072			err = ret;
2073			goto out;
2074		}
2075
2076		if (ret > 0) {
2077			level = ret;
2078			btrfs_node_key_to_cpu(path->nodes[level], &key,
2079					      path->slots[level]);
2080			replaced = 1;
2081		}
2082
2083		ret = walk_up_reloc_tree(reloc_root, path, &level);
2084		if (ret > 0)
2085			break;
2086
2087		BUG_ON(level == 0);
2088		/*
2089		 * save the merging progress in the drop_progress.
2090		 * this is OK since root refs == 1 in this case.
2091		 */
2092		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2093			       path->slots[level]);
2094		root_item->drop_level = level;
2095
2096		nr = trans->blocks_used;
2097		btrfs_end_transaction_throttle(trans, root);
2098
2099		btrfs_btree_balance_dirty(root, nr);
2100
2101		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2102			invalidate_extent_cache(root, &key, &next_key);
2103	}
2104
2105	/*
2106	 * handle the case only one block in the fs tree need to be
2107	 * relocated and the block is tree root.
2108	 */
2109	leaf = btrfs_lock_root_node(root);
2110	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2111	btrfs_tree_unlock(leaf);
2112	free_extent_buffer(leaf);
2113	if (ret < 0)
2114		err = ret;
2115out:
2116	btrfs_free_path(path);
2117
2118	if (err == 0) {
2119		memset(&root_item->drop_progress, 0,
2120		       sizeof(root_item->drop_progress));
2121		root_item->drop_level = 0;
2122		btrfs_set_root_refs(root_item, 0);
2123		btrfs_update_reloc_root(trans, root);
2124	}
2125
2126	nr = trans->blocks_used;
2127	btrfs_end_transaction_throttle(trans, root);
2128
2129	btrfs_btree_balance_dirty(root, nr);
2130
2131	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2132		invalidate_extent_cache(root, &key, &next_key);
2133
2134	return err;
2135}
2136
2137static noinline_for_stack
2138int prepare_to_merge(struct reloc_control *rc, int err)
2139{
2140	struct btrfs_root *root = rc->extent_root;
 
2141	struct btrfs_root *reloc_root;
2142	struct btrfs_trans_handle *trans;
2143	LIST_HEAD(reloc_roots);
2144	u64 num_bytes = 0;
2145	int ret;
2146
2147	mutex_lock(&root->fs_info->reloc_mutex);
2148	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2149	rc->merging_rsv_size += rc->nodes_relocated * 2;
2150	mutex_unlock(&root->fs_info->reloc_mutex);
2151
2152again:
2153	if (!err) {
2154		num_bytes = rc->merging_rsv_size;
2155		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2156					  num_bytes);
2157		if (ret)
2158			err = ret;
2159	}
2160
2161	trans = btrfs_join_transaction(rc->extent_root);
2162	if (IS_ERR(trans)) {
2163		if (!err)
2164			btrfs_block_rsv_release(rc->extent_root,
2165						rc->block_rsv, num_bytes);
2166		return PTR_ERR(trans);
2167	}
2168
2169	if (!err) {
2170		if (num_bytes != rc->merging_rsv_size) {
2171			btrfs_end_transaction(trans, rc->extent_root);
2172			btrfs_block_rsv_release(rc->extent_root,
2173						rc->block_rsv, num_bytes);
2174			goto again;
2175		}
2176	}
2177
2178	rc->merge_reloc_tree = 1;
2179
2180	while (!list_empty(&rc->reloc_roots)) {
2181		reloc_root = list_entry(rc->reloc_roots.next,
2182					struct btrfs_root, root_list);
2183		list_del_init(&reloc_root->root_list);
2184
2185		root = read_fs_root(reloc_root->fs_info,
2186				    reloc_root->root_key.offset);
2187		BUG_ON(IS_ERR(root));
2188		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189
2190		/*
2191		 * set reference count to 1, so btrfs_recover_relocation
2192		 * knows it should resumes merging
2193		 */
2194		if (!err)
2195			btrfs_set_root_refs(&reloc_root->root_item, 1);
2196		btrfs_update_reloc_root(trans, root);
2197
 
 
 
 
2198		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2199	}
2200
2201	list_splice(&reloc_roots, &rc->reloc_roots);
2202
2203	if (!err)
2204		btrfs_commit_transaction(trans, rc->extent_root);
2205	else
2206		btrfs_end_transaction(trans, rc->extent_root);
2207	return err;
2208}
2209
2210static noinline_for_stack
2211int merge_reloc_roots(struct reloc_control *rc)
 
 
 
 
 
 
 
 
 
2212{
 
2213	struct btrfs_root *root;
2214	struct btrfs_root *reloc_root;
2215	LIST_HEAD(reloc_roots);
2216	int found = 0;
2217	int ret;
2218again:
2219	root = rc->extent_root;
2220
2221	/*
2222	 * this serializes us with btrfs_record_root_in_transaction,
2223	 * we have to make sure nobody is in the middle of
2224	 * adding their roots to the list while we are
2225	 * doing this splice
2226	 */
2227	mutex_lock(&root->fs_info->reloc_mutex);
2228	list_splice_init(&rc->reloc_roots, &reloc_roots);
2229	mutex_unlock(&root->fs_info->reloc_mutex);
2230
2231	while (!list_empty(&reloc_roots)) {
2232		found = 1;
2233		reloc_root = list_entry(reloc_roots.next,
2234					struct btrfs_root, root_list);
2235
 
 
2236		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2237			root = read_fs_root(reloc_root->fs_info,
2238					    reloc_root->root_key.offset);
2239			BUG_ON(IS_ERR(root));
2240			BUG_ON(root->reloc_root != reloc_root);
2241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242			ret = merge_reloc_root(rc, root);
2243			BUG_ON(ret);
 
 
 
 
 
 
2244		} else {
 
 
 
 
 
 
 
 
 
 
2245			list_del_init(&reloc_root->root_list);
 
 
 
2246		}
2247		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2248	}
2249
2250	if (found) {
2251		found = 0;
2252		goto again;
2253	}
2254	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2255	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256}
2257
2258static void free_block_list(struct rb_root *blocks)
2259{
2260	struct tree_block *block;
2261	struct rb_node *rb_node;
2262	while ((rb_node = rb_first(blocks))) {
2263		block = rb_entry(rb_node, struct tree_block, rb_node);
2264		rb_erase(rb_node, blocks);
2265		kfree(block);
2266	}
2267}
2268
2269static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2270				      struct btrfs_root *reloc_root)
2271{
 
2272	struct btrfs_root *root;
 
2273
2274	if (reloc_root->last_trans == trans->transid)
2275		return 0;
2276
2277	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2278	BUG_ON(IS_ERR(root));
2279	BUG_ON(root->reloc_root != reloc_root);
2280
2281	return btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282}
2283
2284static noinline_for_stack
2285struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2286				     struct reloc_control *rc,
2287				     struct backref_node *node,
2288				     struct backref_edge *edges[], int *nr)
2289{
2290	struct backref_node *next;
2291	struct btrfs_root *root;
2292	int index = 0;
 
2293
2294	next = node;
2295	while (1) {
2296		cond_resched();
2297		next = walk_up_backref(next, edges, &index);
2298		root = next->root;
2299		BUG_ON(!root);
2300		BUG_ON(!root->ref_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2303			record_reloc_root_in_trans(trans, root);
 
 
2304			break;
2305		}
2306
2307		btrfs_record_root_in_trans(trans, root);
 
 
2308		root = root->reloc_root;
2309
 
 
 
 
 
 
 
2310		if (next->new_bytenr != root->node->start) {
2311			BUG_ON(next->new_bytenr);
2312			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313			next->new_bytenr = root->node->start;
2314			next->root = root;
 
 
2315			list_add_tail(&next->list,
2316				      &rc->backref_cache.changed);
2317			__mark_block_processed(rc, next);
2318			break;
2319		}
2320
2321		WARN_ON(1);
2322		root = NULL;
2323		next = walk_down_backref(edges, &index);
2324		if (!next || next->level <= node->level)
2325			break;
2326	}
2327	if (!root)
2328		return NULL;
 
 
 
 
 
 
2329
2330	*nr = index;
2331	next = node;
2332	/* setup backref node path for btrfs_reloc_cow_block */
2333	while (1) {
2334		rc->backref_cache.path[next->level] = next;
2335		if (--index < 0)
2336			break;
2337		next = edges[index]->node[UPPER];
2338	}
2339	return root;
2340}
2341
2342/*
2343 * select a tree root for relocation. return NULL if the block
2344 * is reference counted. we should use do_relocation() in this
2345 * case. return a tree root pointer if the block isn't reference
2346 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2347 */
2348static noinline_for_stack
2349struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2350				   struct backref_node *node)
2351{
2352	struct backref_node *next;
2353	struct btrfs_root *root;
2354	struct btrfs_root *fs_root = NULL;
2355	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2356	int index = 0;
2357
2358	next = node;
2359	while (1) {
2360		cond_resched();
2361		next = walk_up_backref(next, edges, &index);
2362		root = next->root;
2363		BUG_ON(!root);
2364
2365		/* no other choice for non-references counted tree */
2366		if (!root->ref_cows)
 
 
 
 
 
 
 
2367			return root;
2368
2369		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2370			fs_root = root;
2371
2372		if (next != node)
2373			return NULL;
2374
2375		next = walk_down_backref(edges, &index);
2376		if (!next || next->level <= node->level)
2377			break;
2378	}
2379
2380	if (!fs_root)
2381		return ERR_PTR(-ENOENT);
2382	return fs_root;
2383}
2384
2385static noinline_for_stack
2386u64 calcu_metadata_size(struct reloc_control *rc,
2387			struct backref_node *node, int reserve)
2388{
2389	struct backref_node *next = node;
2390	struct backref_edge *edge;
2391	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2392	u64 num_bytes = 0;
2393	int index = 0;
2394
2395	BUG_ON(reserve && node->processed);
2396
2397	while (next) {
2398		cond_resched();
2399		while (1) {
2400			if (next->processed && (reserve || next != node))
2401				break;
2402
2403			num_bytes += btrfs_level_size(rc->extent_root,
2404						      next->level);
2405
2406			if (list_empty(&next->upper))
2407				break;
2408
2409			edge = list_entry(next->upper.next,
2410					  struct backref_edge, list[LOWER]);
2411			edges[index++] = edge;
2412			next = edge->node[UPPER];
2413		}
2414		next = walk_down_backref(edges, &index);
2415	}
2416	return num_bytes;
2417}
2418
2419static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2420				  struct reloc_control *rc,
2421				  struct backref_node *node)
2422{
2423	struct btrfs_root *root = rc->extent_root;
 
2424	u64 num_bytes;
2425	int ret;
 
2426
2427	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2428
2429	trans->block_rsv = rc->block_rsv;
2430	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2431	if (ret) {
2432		if (ret == -EAGAIN)
2433			rc->commit_transaction = 1;
2434		return ret;
 
 
 
 
 
 
 
 
 
 
2435	}
2436
2437	return 0;
2438}
2439
2440static void release_metadata_space(struct reloc_control *rc,
2441				   struct backref_node *node)
2442{
2443	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2444	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2445}
2446
2447/*
2448 * relocate a block tree, and then update pointers in upper level
2449 * blocks that reference the block to point to the new location.
2450 *
2451 * if called by link_to_upper, the block has already been relocated.
2452 * in that case this function just updates pointers.
2453 */
2454static int do_relocation(struct btrfs_trans_handle *trans,
2455			 struct reloc_control *rc,
2456			 struct backref_node *node,
2457			 struct btrfs_key *key,
2458			 struct btrfs_path *path, int lowest)
2459{
2460	struct backref_node *upper;
2461	struct backref_edge *edge;
2462	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2463	struct btrfs_root *root;
2464	struct extent_buffer *eb;
2465	u32 blocksize;
2466	u64 bytenr;
2467	u64 generation;
2468	int nr;
2469	int slot;
2470	int ret;
2471	int err = 0;
2472
2473	BUG_ON(lowest && node->eb);
 
 
 
 
2474
2475	path->lowest_level = node->level + 1;
2476	rc->backref_cache.path[node->level] = node;
2477	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2478		cond_resched();
2479
2480		upper = edge->node[UPPER];
2481		root = select_reloc_root(trans, rc, upper, edges, &nr);
2482		BUG_ON(!root);
 
 
 
2483
2484		if (upper->eb && !upper->locked) {
2485			if (!lowest) {
2486				ret = btrfs_bin_search(upper->eb, key,
2487						       upper->level, &slot);
 
2488				BUG_ON(ret);
2489				bytenr = btrfs_node_blockptr(upper->eb, slot);
2490				if (node->eb->start == bytenr)
2491					goto next;
2492			}
2493			drop_node_buffer(upper);
2494		}
2495
2496		if (!upper->eb) {
2497			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2498			if (ret < 0) {
2499				err = ret;
 
 
 
2500				break;
2501			}
2502			BUG_ON(ret > 0);
2503
2504			if (!upper->eb) {
2505				upper->eb = path->nodes[upper->level];
2506				path->nodes[upper->level] = NULL;
2507			} else {
2508				BUG_ON(upper->eb != path->nodes[upper->level]);
2509			}
2510
2511			upper->locked = 1;
2512			path->locks[upper->level] = 0;
2513
2514			slot = path->slots[upper->level];
2515			btrfs_release_path(path);
2516		} else {
2517			ret = btrfs_bin_search(upper->eb, key, upper->level,
2518					       &slot);
 
2519			BUG_ON(ret);
2520		}
2521
2522		bytenr = btrfs_node_blockptr(upper->eb, slot);
2523		if (lowest) {
2524			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2525		} else {
2526			if (node->eb->start == bytenr)
2527				goto next;
2528		}
2529
2530		blocksize = btrfs_level_size(root, node->level);
2531		generation = btrfs_node_ptr_generation(upper->eb, slot);
2532		eb = read_tree_block(root, bytenr, blocksize, generation);
2533		if (!eb) {
2534			err = -EIO;
2535			goto next;
2536		}
2537		btrfs_tree_lock(eb);
2538		btrfs_set_lock_blocking(eb);
2539
2540		if (!node->eb) {
2541			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2542					      slot, &eb);
2543			btrfs_tree_unlock(eb);
2544			free_extent_buffer(eb);
2545			if (ret < 0) {
2546				err = ret;
2547				goto next;
2548			}
2549			BUG_ON(node->eb != eb);
 
 
 
2550		} else {
2551			btrfs_set_node_blockptr(upper->eb, slot,
2552						node->eb->start);
2553			btrfs_set_node_ptr_generation(upper->eb, slot,
2554						      trans->transid);
2555			btrfs_mark_buffer_dirty(upper->eb);
2556
2557			ret = btrfs_inc_extent_ref(trans, root,
2558						node->eb->start, blocksize,
2559						upper->eb->start,
2560						btrfs_header_owner(upper->eb),
2561						node->level, 0);
2562			BUG_ON(ret);
2563
2564			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2565			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
2566		}
2567next:
2568		if (!upper->pending)
2569			drop_node_buffer(upper);
2570		else
2571			unlock_node_buffer(upper);
2572		if (err)
2573			break;
2574	}
2575
2576	if (!err && node->pending) {
2577		drop_node_buffer(node);
2578		list_move_tail(&node->list, &rc->backref_cache.changed);
2579		node->pending = 0;
2580	}
2581
2582	path->lowest_level = 0;
2583	BUG_ON(err == -ENOSPC);
2584	return err;
 
 
 
 
 
2585}
2586
2587static int link_to_upper(struct btrfs_trans_handle *trans,
2588			 struct reloc_control *rc,
2589			 struct backref_node *node,
2590			 struct btrfs_path *path)
2591{
2592	struct btrfs_key key;
2593
2594	btrfs_node_key_to_cpu(node->eb, &key, 0);
2595	return do_relocation(trans, rc, node, &key, path, 0);
2596}
2597
2598static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2599				struct reloc_control *rc,
2600				struct btrfs_path *path, int err)
2601{
2602	LIST_HEAD(list);
2603	struct backref_cache *cache = &rc->backref_cache;
2604	struct backref_node *node;
2605	int level;
2606	int ret;
2607
2608	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2609		while (!list_empty(&cache->pending[level])) {
2610			node = list_entry(cache->pending[level].next,
2611					  struct backref_node, list);
2612			list_move_tail(&node->list, &list);
2613			BUG_ON(!node->pending);
2614
2615			if (!err) {
2616				ret = link_to_upper(trans, rc, node, path);
2617				if (ret < 0)
2618					err = ret;
2619			}
2620		}
2621		list_splice_init(&list, &cache->pending[level]);
2622	}
2623	return err;
2624}
2625
2626static void mark_block_processed(struct reloc_control *rc,
2627				 u64 bytenr, u32 blocksize)
2628{
2629	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2630			EXTENT_DIRTY, GFP_NOFS);
2631}
2632
2633static void __mark_block_processed(struct reloc_control *rc,
2634				   struct backref_node *node)
2635{
2636	u32 blocksize;
2637	if (node->level == 0 ||
2638	    in_block_group(node->bytenr, rc->block_group)) {
2639		blocksize = btrfs_level_size(rc->extent_root, node->level);
2640		mark_block_processed(rc, node->bytenr, blocksize);
2641	}
2642	node->processed = 1;
2643}
2644
2645/*
2646 * mark a block and all blocks directly/indirectly reference the block
2647 * as processed.
2648 */
2649static void update_processed_blocks(struct reloc_control *rc,
2650				    struct backref_node *node)
2651{
2652	struct backref_node *next = node;
2653	struct backref_edge *edge;
2654	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2655	int index = 0;
2656
2657	while (next) {
2658		cond_resched();
2659		while (1) {
2660			if (next->processed)
2661				break;
2662
2663			__mark_block_processed(rc, next);
2664
2665			if (list_empty(&next->upper))
2666				break;
2667
2668			edge = list_entry(next->upper.next,
2669					  struct backref_edge, list[LOWER]);
2670			edges[index++] = edge;
2671			next = edge->node[UPPER];
2672		}
2673		next = walk_down_backref(edges, &index);
2674	}
2675}
2676
2677static int tree_block_processed(u64 bytenr, u32 blocksize,
2678				struct reloc_control *rc)
2679{
 
 
2680	if (test_range_bit(&rc->processed_blocks, bytenr,
2681			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2682		return 1;
2683	return 0;
2684}
2685
2686static int get_tree_block_key(struct reloc_control *rc,
2687			      struct tree_block *block)
2688{
 
 
 
 
 
2689	struct extent_buffer *eb;
2690
2691	BUG_ON(block->key_ready);
2692	eb = read_tree_block(rc->extent_root, block->bytenr,
2693			     block->key.objectid, block->key.offset);
2694	BUG_ON(!eb);
2695	WARN_ON(btrfs_header_level(eb) != block->level);
 
 
2696	if (block->level == 0)
2697		btrfs_item_key_to_cpu(eb, &block->key, 0);
2698	else
2699		btrfs_node_key_to_cpu(eb, &block->key, 0);
2700	free_extent_buffer(eb);
2701	block->key_ready = 1;
2702	return 0;
2703}
2704
2705static int reada_tree_block(struct reloc_control *rc,
2706			    struct tree_block *block)
2707{
2708	BUG_ON(block->key_ready);
2709	readahead_tree_block(rc->extent_root, block->bytenr,
2710			     block->key.objectid, block->key.offset);
2711	return 0;
2712}
2713
2714/*
2715 * helper function to relocate a tree block
2716 */
2717static int relocate_tree_block(struct btrfs_trans_handle *trans,
2718				struct reloc_control *rc,
2719				struct backref_node *node,
2720				struct btrfs_key *key,
2721				struct btrfs_path *path)
2722{
2723	struct btrfs_root *root;
2724	int release = 0;
2725	int ret = 0;
2726
2727	if (!node)
2728		return 0;
2729
 
 
 
 
 
 
 
 
2730	BUG_ON(node->processed);
2731	root = select_one_root(trans, node);
2732	if (root == ERR_PTR(-ENOENT)) {
2733		update_processed_blocks(rc, node);
 
 
 
 
 
 
 
2734		goto out;
2735	}
2736
2737	if (!root || root->ref_cows) {
2738		ret = reserve_metadata_space(trans, rc, node);
2739		if (ret)
2740			goto out;
2741		release = 1;
2742	}
2743
2744	if (root) {
2745		if (root->ref_cows) {
2746			BUG_ON(node->new_bytenr);
2747			BUG_ON(!list_empty(&node->list));
2748			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749			root = root->reloc_root;
2750			node->new_bytenr = root->node->start;
2751			node->root = root;
 
 
2752			list_add_tail(&node->list, &rc->backref_cache.changed);
2753		} else {
2754			path->lowest_level = node->level;
 
 
2755			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2756			btrfs_release_path(path);
 
 
2757			if (ret > 0)
2758				ret = 0;
2759		}
2760		if (!ret)
2761			update_processed_blocks(rc, node);
2762	} else {
2763		ret = do_relocation(trans, rc, node, key, path, 1);
2764	}
2765out:
2766	if (ret || node->level == 0 || node->cowonly) {
2767		if (release)
2768			release_metadata_space(rc, node);
2769		remove_backref_node(&rc->backref_cache, node);
2770	}
2771	return ret;
2772}
2773
2774/*
2775 * relocate a list of blocks
2776 */
2777static noinline_for_stack
2778int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2779			 struct reloc_control *rc, struct rb_root *blocks)
2780{
2781	struct backref_node *node;
 
2782	struct btrfs_path *path;
2783	struct tree_block *block;
2784	struct rb_node *rb_node;
2785	int ret;
2786	int err = 0;
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
 
 
2791
2792	rb_node = rb_first(blocks);
2793	while (rb_node) {
2794		block = rb_entry(rb_node, struct tree_block, rb_node);
2795		if (!block->key_ready)
2796			reada_tree_block(rc, block);
2797		rb_node = rb_next(rb_node);
 
2798	}
2799
2800	rb_node = rb_first(blocks);
2801	while (rb_node) {
2802		block = rb_entry(rb_node, struct tree_block, rb_node);
2803		if (!block->key_ready)
2804			get_tree_block_key(rc, block);
2805		rb_node = rb_next(rb_node);
 
2806	}
2807
2808	rb_node = rb_first(blocks);
2809	while (rb_node) {
2810		block = rb_entry(rb_node, struct tree_block, rb_node);
2811
2812		node = build_backref_tree(rc, &block->key,
2813					  block->level, block->bytenr);
2814		if (IS_ERR(node)) {
2815			err = PTR_ERR(node);
2816			goto out;
2817		}
2818
2819		ret = relocate_tree_block(trans, rc, node, &block->key,
2820					  path);
2821		if (ret < 0) {
2822			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2823				err = ret;
2824			goto out;
2825		}
2826		rb_node = rb_next(rb_node);
2827	}
2828out:
2829	free_block_list(blocks);
2830	err = finish_pending_nodes(trans, rc, path, err);
2831
 
2832	btrfs_free_path(path);
 
 
2833	return err;
2834}
2835
2836static noinline_for_stack
2837int prealloc_file_extent_cluster(struct inode *inode,
2838				 struct file_extent_cluster *cluster)
2839{
2840	u64 alloc_hint = 0;
2841	u64 start;
2842	u64 end;
2843	u64 offset = BTRFS_I(inode)->index_cnt;
2844	u64 num_bytes;
2845	int nr = 0;
2846	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847
2848	BUG_ON(cluster->start != cluster->boundary[0]);
2849	mutex_lock(&inode->i_mutex);
 
 
 
2850
2851	ret = btrfs_check_data_free_space(inode, cluster->end +
2852					  1 - cluster->start);
2853	if (ret)
2854		goto out;
2855
2856	while (nr < cluster->nr) {
2857		start = cluster->boundary[nr] - offset;
2858		if (nr + 1 < cluster->nr)
2859			end = cluster->boundary[nr + 1] - 1 - offset;
2860		else
2861			end = cluster->end - offset;
2862
2863		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2864		num_bytes = end + 1 - start;
2865		ret = btrfs_prealloc_file_range(inode, 0, start,
2866						num_bytes, num_bytes,
2867						end + 1, &alloc_hint);
2868		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
2869		if (ret)
2870			break;
2871		nr++;
2872	}
2873	btrfs_free_reserved_data_space(inode, cluster->end +
2874				       1 - cluster->start);
2875out:
2876	mutex_unlock(&inode->i_mutex);
 
2877	return ret;
2878}
2879
2880static noinline_for_stack
2881int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2882			 u64 block_start)
2883{
2884	struct btrfs_root *root = BTRFS_I(inode)->root;
2885	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2886	struct extent_map *em;
 
2887	int ret = 0;
2888
2889	em = alloc_extent_map();
2890	if (!em)
2891		return -ENOMEM;
2892
2893	em->start = start;
2894	em->len = end + 1 - start;
2895	em->block_len = em->len;
2896	em->block_start = block_start;
2897	em->bdev = root->fs_info->fs_devices->latest_bdev;
2898	set_bit(EXTENT_FLAG_PINNED, &em->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899
2900	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2901	while (1) {
2902		write_lock(&em_tree->lock);
2903		ret = add_extent_mapping(em_tree, em);
2904		write_unlock(&em_tree->lock);
2905		if (ret != -EEXIST) {
2906			free_extent_map(em);
2907			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908		}
2909		btrfs_drop_extent_cache(inode, start, end, 0);
2910	}
2911	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
2912	return ret;
2913}
2914
2915static int relocate_file_extent_cluster(struct inode *inode,
2916					struct file_extent_cluster *cluster)
2917{
2918	u64 page_start;
2919	u64 page_end;
2920	u64 offset = BTRFS_I(inode)->index_cnt;
2921	unsigned long index;
2922	unsigned long last_index;
2923	struct page *page;
2924	struct file_ra_state *ra;
2925	int nr = 0;
2926	int ret = 0;
2927
2928	if (!cluster->nr)
2929		return 0;
2930
2931	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2932	if (!ra)
2933		return -ENOMEM;
2934
2935	ret = prealloc_file_extent_cluster(inode, cluster);
2936	if (ret)
2937		goto out;
2938
2939	file_ra_state_init(ra, inode->i_mapping);
2940
2941	ret = setup_extent_mapping(inode, cluster->start - offset,
2942				   cluster->end - offset, cluster->start);
2943	if (ret)
2944		goto out;
2945
2946	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2947	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2948	while (index <= last_index) {
2949		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2950		if (ret)
2951			goto out;
2952
2953		page = find_lock_page(inode->i_mapping, index);
2954		if (!page) {
2955			page_cache_sync_readahead(inode->i_mapping,
2956						  ra, NULL, index,
2957						  last_index + 1 - index);
2958			page = find_or_create_page(inode->i_mapping, index,
2959						   GFP_NOFS);
2960			if (!page) {
2961				btrfs_delalloc_release_metadata(inode,
2962							PAGE_CACHE_SIZE);
2963				ret = -ENOMEM;
2964				goto out;
2965			}
2966		}
2967
2968		if (PageReadahead(page)) {
2969			page_cache_async_readahead(inode->i_mapping,
2970						   ra, NULL, page, index,
2971						   last_index + 1 - index);
2972		}
2973
2974		if (!PageUptodate(page)) {
2975			btrfs_readpage(NULL, page);
2976			lock_page(page);
2977			if (!PageUptodate(page)) {
2978				unlock_page(page);
2979				page_cache_release(page);
2980				btrfs_delalloc_release_metadata(inode,
2981							PAGE_CACHE_SIZE);
2982				ret = -EIO;
2983				goto out;
2984			}
2985		}
2986
2987		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2988		page_end = page_start + PAGE_CACHE_SIZE - 1;
2989
2990		lock_extent(&BTRFS_I(inode)->io_tree,
2991			    page_start, page_end, GFP_NOFS);
2992
2993		set_page_extent_mapped(page);
2994
2995		if (nr < cluster->nr &&
2996		    page_start + offset == cluster->boundary[nr]) {
2997			set_extent_bits(&BTRFS_I(inode)->io_tree,
2998					page_start, page_end,
2999					EXTENT_BOUNDARY, GFP_NOFS);
3000			nr++;
3001		}
3002
3003		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3004		set_page_dirty(page);
3005
3006		unlock_extent(&BTRFS_I(inode)->io_tree,
3007			      page_start, page_end, GFP_NOFS);
3008		unlock_page(page);
3009		page_cache_release(page);
3010
3011		index++;
3012		balance_dirty_pages_ratelimited(inode->i_mapping);
3013		btrfs_throttle(BTRFS_I(inode)->root);
3014	}
3015	WARN_ON(nr != cluster->nr);
3016out:
3017	kfree(ra);
3018	return ret;
3019}
3020
3021static noinline_for_stack
3022int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3023			 struct file_extent_cluster *cluster)
3024{
3025	int ret;
 
3026
3027	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3028		ret = relocate_file_extent_cluster(inode, cluster);
3029		if (ret)
3030			return ret;
3031		cluster->nr = 0;
3032	}
3033
3034	if (!cluster->nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035		cluster->start = extent_key->objectid;
 
 
3036	else
3037		BUG_ON(cluster->nr >= MAX_EXTENTS);
3038	cluster->end = extent_key->objectid + extent_key->offset - 1;
3039	cluster->boundary[cluster->nr] = extent_key->objectid;
3040	cluster->nr++;
3041
3042	if (cluster->nr >= MAX_EXTENTS) {
3043		ret = relocate_file_extent_cluster(inode, cluster);
3044		if (ret)
3045			return ret;
3046		cluster->nr = 0;
3047	}
3048	return 0;
3049}
3050
3051#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3052static int get_ref_objectid_v0(struct reloc_control *rc,
3053			       struct btrfs_path *path,
3054			       struct btrfs_key *extent_key,
3055			       u64 *ref_objectid, int *path_change)
3056{
3057	struct btrfs_key key;
3058	struct extent_buffer *leaf;
3059	struct btrfs_extent_ref_v0 *ref0;
3060	int ret;
3061	int slot;
3062
3063	leaf = path->nodes[0];
3064	slot = path->slots[0];
3065	while (1) {
3066		if (slot >= btrfs_header_nritems(leaf)) {
3067			ret = btrfs_next_leaf(rc->extent_root, path);
3068			if (ret < 0)
3069				return ret;
3070			BUG_ON(ret > 0);
3071			leaf = path->nodes[0];
3072			slot = path->slots[0];
3073			if (path_change)
3074				*path_change = 1;
3075		}
3076		btrfs_item_key_to_cpu(leaf, &key, slot);
3077		if (key.objectid != extent_key->objectid)
3078			return -ENOENT;
3079
3080		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3081			slot++;
3082			continue;
3083		}
3084		ref0 = btrfs_item_ptr(leaf, slot,
3085				struct btrfs_extent_ref_v0);
3086		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3087		break;
3088	}
3089	return 0;
3090}
3091#endif
3092
3093/*
3094 * helper to add a tree block to the list.
3095 * the major work is getting the generation and level of the block
3096 */
3097static int add_tree_block(struct reloc_control *rc,
3098			  struct btrfs_key *extent_key,
3099			  struct btrfs_path *path,
3100			  struct rb_root *blocks)
3101{
3102	struct extent_buffer *eb;
3103	struct btrfs_extent_item *ei;
3104	struct btrfs_tree_block_info *bi;
3105	struct tree_block *block;
3106	struct rb_node *rb_node;
3107	u32 item_size;
3108	int level = -1;
3109	int generation;
 
3110
3111	eb =  path->nodes[0];
3112	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 
 
 
 
3113
3114	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3115		ei = btrfs_item_ptr(eb, path->slots[0],
3116				struct btrfs_extent_item);
3117		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
 
 
 
3118		generation = btrfs_extent_generation(eb, ei);
3119		level = btrfs_tree_block_level(eb, bi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120	} else {
3121#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3122		u64 ref_owner;
3123		int ret;
3124
3125		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3126		ret = get_ref_objectid_v0(rc, path, extent_key,
3127					  &ref_owner, NULL);
3128		if (ret < 0)
3129			return ret;
3130		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3131		level = (int)ref_owner;
3132		/* FIXME: get real generation */
3133		generation = 0;
3134#else
3135		BUG();
3136#endif
3137	}
3138
3139	btrfs_release_path(path);
3140
3141	BUG_ON(level == -1);
3142
3143	block = kmalloc(sizeof(*block), GFP_NOFS);
3144	if (!block)
3145		return -ENOMEM;
3146
3147	block->bytenr = extent_key->objectid;
3148	block->key.objectid = extent_key->offset;
3149	block->key.offset = generation;
3150	block->level = level;
3151	block->key_ready = 0;
 
3152
3153	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3154	BUG_ON(rb_node);
 
 
3155
3156	return 0;
3157}
3158
3159/*
3160 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3161 */
3162static int __add_tree_block(struct reloc_control *rc,
3163			    u64 bytenr, u32 blocksize,
3164			    struct rb_root *blocks)
3165{
 
3166	struct btrfs_path *path;
3167	struct btrfs_key key;
3168	int ret;
 
3169
3170	if (tree_block_processed(bytenr, blocksize, rc))
3171		return 0;
3172
3173	if (tree_search(blocks, bytenr))
3174		return 0;
3175
3176	path = btrfs_alloc_path();
3177	if (!path)
3178		return -ENOMEM;
3179
3180	key.objectid = bytenr;
3181	key.type = BTRFS_EXTENT_ITEM_KEY;
3182	key.offset = blocksize;
 
 
 
 
 
3183
3184	path->search_commit_root = 1;
3185	path->skip_locking = 1;
3186	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3187	if (ret < 0)
3188		goto out;
3189	BUG_ON(ret);
3190
3191	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	ret = add_tree_block(rc, &key, path, blocks);
3193out:
3194	btrfs_free_path(path);
3195	return ret;
3196}
3197
3198/*
3199 * helper to check if the block use full backrefs for pointers in it
3200 */
3201static int block_use_full_backref(struct reloc_control *rc,
3202				  struct extent_buffer *eb)
3203{
3204	u64 flags;
3205	int ret;
3206
3207	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3208	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3209		return 1;
3210
3211	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3212				       eb->start, eb->len, NULL, &flags);
3213	BUG_ON(ret);
3214
3215	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3216		ret = 1;
3217	else
3218		ret = 0;
3219	return ret;
3220}
3221
3222static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3223				    struct inode *inode, u64 ino)
 
 
3224{
3225	struct btrfs_key key;
3226	struct btrfs_path *path;
3227	struct btrfs_root *root = fs_info->tree_root;
3228	struct btrfs_trans_handle *trans;
3229	unsigned long nr;
3230	int ret = 0;
3231
3232	if (inode)
3233		goto truncate;
3234
3235	key.objectid = ino;
3236	key.type = BTRFS_INODE_ITEM_KEY;
3237	key.offset = 0;
3238
3239	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3240	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3241		if (inode && !IS_ERR(inode))
3242			iput(inode);
3243		return -ENOENT;
3244	}
3245
3246truncate:
3247	path = btrfs_alloc_path();
3248	if (!path) {
3249		ret = -ENOMEM;
3250		goto out;
3251	}
3252
3253	trans = btrfs_join_transaction(root);
3254	if (IS_ERR(trans)) {
3255		btrfs_free_path(path);
3256		ret = PTR_ERR(trans);
3257		goto out;
3258	}
3259
3260	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3261
3262	btrfs_free_path(path);
3263	nr = trans->blocks_used;
3264	btrfs_end_transaction(trans, root);
3265	btrfs_btree_balance_dirty(root, nr);
3266out:
3267	iput(inode);
3268	return ret;
3269}
3270
3271/*
3272 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3273 * this function scans fs tree to find blocks reference the data extent
3274 */
3275static int find_data_references(struct reloc_control *rc,
3276				struct btrfs_key *extent_key,
3277				struct extent_buffer *leaf,
3278				struct btrfs_extent_data_ref *ref,
3279				struct rb_root *blocks)
3280{
3281	struct btrfs_path *path;
3282	struct tree_block *block;
3283	struct btrfs_root *root;
3284	struct btrfs_file_extent_item *fi;
3285	struct rb_node *rb_node;
3286	struct btrfs_key key;
3287	u64 ref_root;
3288	u64 ref_objectid;
3289	u64 ref_offset;
3290	u32 ref_count;
3291	u32 nritems;
3292	int err = 0;
3293	int added = 0;
3294	int counted;
3295	int ret;
3296
3297	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3298	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3299	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3300	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3301
3302	/*
3303	 * This is an extent belonging to the free space cache, lets just delete
3304	 * it and redo the search.
3305	 */
3306	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3307		ret = delete_block_group_cache(rc->extent_root->fs_info,
3308					       NULL, ref_objectid);
3309		if (ret != -ENOENT)
3310			return ret;
3311		ret = 0;
3312	}
3313
3314	path = btrfs_alloc_path();
3315	if (!path)
3316		return -ENOMEM;
3317	path->reada = 1;
3318
3319	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3320	if (IS_ERR(root)) {
3321		err = PTR_ERR(root);
3322		goto out;
3323	}
3324
3325	key.objectid = ref_objectid;
3326	key.offset = ref_offset;
3327	key.type = BTRFS_EXTENT_DATA_KEY;
3328
3329	path->search_commit_root = 1;
3330	path->skip_locking = 1;
3331	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332	if (ret < 0) {
3333		err = ret;
3334		goto out;
3335	}
3336
3337	leaf = path->nodes[0];
3338	nritems = btrfs_header_nritems(leaf);
3339	/*
3340	 * the references in tree blocks that use full backrefs
3341	 * are not counted in
3342	 */
3343	if (block_use_full_backref(rc, leaf))
3344		counted = 0;
3345	else
3346		counted = 1;
3347	rb_node = tree_search(blocks, leaf->start);
3348	if (rb_node) {
3349		if (counted)
3350			added = 1;
3351		else
3352			path->slots[0] = nritems;
3353	}
3354
3355	while (ref_count > 0) {
3356		while (path->slots[0] >= nritems) {
3357			ret = btrfs_next_leaf(root, path);
3358			if (ret < 0) {
3359				err = ret;
3360				goto out;
3361			}
3362			if (ret > 0) {
3363				WARN_ON(1);
3364				goto out;
3365			}
3366
3367			leaf = path->nodes[0];
3368			nritems = btrfs_header_nritems(leaf);
3369			added = 0;
3370
3371			if (block_use_full_backref(rc, leaf))
3372				counted = 0;
3373			else
3374				counted = 1;
3375			rb_node = tree_search(blocks, leaf->start);
3376			if (rb_node) {
3377				if (counted)
3378					added = 1;
3379				else
3380					path->slots[0] = nritems;
3381			}
3382		}
3383
3384		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3385		if (key.objectid != ref_objectid ||
3386		    key.type != BTRFS_EXTENT_DATA_KEY) {
3387			WARN_ON(1);
3388			break;
3389		}
3390
3391		fi = btrfs_item_ptr(leaf, path->slots[0],
3392				    struct btrfs_file_extent_item);
3393
3394		if (btrfs_file_extent_type(leaf, fi) ==
3395		    BTRFS_FILE_EXTENT_INLINE)
3396			goto next;
3397
3398		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3399		    extent_key->objectid)
3400			goto next;
3401
3402		key.offset -= btrfs_file_extent_offset(leaf, fi);
3403		if (key.offset != ref_offset)
3404			goto next;
3405
3406		if (counted)
3407			ref_count--;
3408		if (added)
3409			goto next;
3410
3411		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3412			block = kmalloc(sizeof(*block), GFP_NOFS);
3413			if (!block) {
3414				err = -ENOMEM;
3415				break;
3416			}
3417			block->bytenr = leaf->start;
3418			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3419			block->level = 0;
3420			block->key_ready = 1;
3421			rb_node = tree_insert(blocks, block->bytenr,
3422					      &block->rb_node);
3423			BUG_ON(rb_node);
3424		}
3425		if (counted)
3426			added = 1;
3427		else
3428			path->slots[0] = nritems;
3429next:
3430		path->slots[0]++;
3431
3432	}
3433out:
3434	btrfs_free_path(path);
3435	return err;
 
 
3436}
3437
3438/*
3439 * hepler to find all tree blocks that reference a given data extent
3440 */
3441static noinline_for_stack
3442int add_data_references(struct reloc_control *rc,
3443			struct btrfs_key *extent_key,
3444			struct btrfs_path *path,
3445			struct rb_root *blocks)
3446{
3447	struct btrfs_key key;
3448	struct extent_buffer *eb;
3449	struct btrfs_extent_data_ref *dref;
3450	struct btrfs_extent_inline_ref *iref;
3451	unsigned long ptr;
3452	unsigned long end;
3453	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3454	int ret;
3455	int err = 0;
3456
3457	eb = path->nodes[0];
3458	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3459	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3461	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3462		ptr = end;
3463	else
3464#endif
3465		ptr += sizeof(struct btrfs_extent_item);
3466
3467	while (ptr < end) {
3468		iref = (struct btrfs_extent_inline_ref *)ptr;
3469		key.type = btrfs_extent_inline_ref_type(eb, iref);
3470		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3471			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3472			ret = __add_tree_block(rc, key.offset, blocksize,
3473					       blocks);
3474		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3476			ret = find_data_references(rc, extent_key,
3477						   eb, dref, blocks);
3478		} else {
3479			BUG();
3480		}
3481		ptr += btrfs_extent_inline_ref_size(key.type);
3482	}
3483	WARN_ON(ptr > end);
3484
3485	while (1) {
3486		cond_resched();
3487		eb = path->nodes[0];
3488		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3489			ret = btrfs_next_leaf(rc->extent_root, path);
3490			if (ret < 0) {
3491				err = ret;
3492				break;
3493			}
3494			if (ret > 0)
3495				break;
3496			eb = path->nodes[0];
3497		}
3498
3499		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3500		if (key.objectid != extent_key->objectid)
 
 
 
 
 
 
3501			break;
3502
3503#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3504		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3505		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3506#else
3507		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3508		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3509#endif
3510			ret = __add_tree_block(rc, key.offset, blocksize,
3511					       blocks);
3512		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3513			dref = btrfs_item_ptr(eb, path->slots[0],
3514					      struct btrfs_extent_data_ref);
3515			ret = find_data_references(rc, extent_key,
3516						   eb, dref, blocks);
3517		} else {
3518			ret = 0;
3519		}
3520		if (ret) {
3521			err = ret;
 
 
 
 
 
3522			break;
3523		}
3524		path->slots[0]++;
3525	}
3526	btrfs_release_path(path);
3527	if (err)
3528		free_block_list(blocks);
3529	return err;
 
3530}
3531
3532/*
3533 * hepler to find next unprocessed extent
3534 */
3535static noinline_for_stack
3536int find_next_extent(struct btrfs_trans_handle *trans,
3537		     struct reloc_control *rc, struct btrfs_path *path,
3538		     struct btrfs_key *extent_key)
3539{
 
3540	struct btrfs_key key;
3541	struct extent_buffer *leaf;
3542	u64 start, end, last;
3543	int ret;
3544
3545	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3546	while (1) {
 
 
3547		cond_resched();
3548		if (rc->search_start >= last) {
3549			ret = 1;
3550			break;
3551		}
3552
3553		key.objectid = rc->search_start;
3554		key.type = BTRFS_EXTENT_ITEM_KEY;
3555		key.offset = 0;
3556
3557		path->search_commit_root = 1;
3558		path->skip_locking = 1;
3559		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3560					0, 0);
3561		if (ret < 0)
3562			break;
3563next:
3564		leaf = path->nodes[0];
3565		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3566			ret = btrfs_next_leaf(rc->extent_root, path);
3567			if (ret != 0)
3568				break;
3569			leaf = path->nodes[0];
3570		}
3571
3572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3573		if (key.objectid >= last) {
3574			ret = 1;
3575			break;
3576		}
3577
3578		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3579		    key.objectid + key.offset <= rc->search_start) {
3580			path->slots[0]++;
3581			goto next;
3582		}
3583
3584		ret = find_first_extent_bit(&rc->processed_blocks,
3585					    key.objectid, &start, &end,
3586					    EXTENT_DIRTY);
 
 
 
 
 
 
 
3587
3588		if (ret == 0 && start <= key.objectid) {
3589			btrfs_release_path(path);
3590			rc->search_start = end + 1;
3591		} else {
3592			rc->search_start = key.objectid + key.offset;
 
 
 
 
3593			memcpy(extent_key, &key, sizeof(key));
3594			return 0;
3595		}
3596	}
3597	btrfs_release_path(path);
3598	return ret;
3599}
3600
3601static void set_reloc_control(struct reloc_control *rc)
3602{
3603	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604
3605	mutex_lock(&fs_info->reloc_mutex);
3606	fs_info->reloc_ctl = rc;
3607	mutex_unlock(&fs_info->reloc_mutex);
3608}
3609
3610static void unset_reloc_control(struct reloc_control *rc)
3611{
3612	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3613
3614	mutex_lock(&fs_info->reloc_mutex);
3615	fs_info->reloc_ctl = NULL;
3616	mutex_unlock(&fs_info->reloc_mutex);
3617}
3618
3619static int check_extent_flags(u64 flags)
3620{
3621	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3622	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3623		return 1;
3624	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3625	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3626		return 1;
3627	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3628	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3629		return 1;
3630	return 0;
3631}
3632
3633static noinline_for_stack
3634int prepare_to_relocate(struct reloc_control *rc)
3635{
3636	struct btrfs_trans_handle *trans;
3637	int ret;
3638
3639	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3640	if (!rc->block_rsv)
3641		return -ENOMEM;
3642
3643	/*
3644	 * reserve some space for creating reloc trees.
3645	 * btrfs_init_reloc_root will use them when there
3646	 * is no reservation in transaction handle.
3647	 */
3648	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3649				  rc->extent_root->nodesize * 256);
3650	if (ret)
3651		return ret;
3652
3653	rc->block_rsv->refill_used = 1;
3654	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3655
3656	memset(&rc->cluster, 0, sizeof(rc->cluster));
3657	rc->search_start = rc->block_group->key.objectid;
3658	rc->extents_found = 0;
3659	rc->nodes_relocated = 0;
3660	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3661
3662	rc->create_reloc_tree = 1;
3663	set_reloc_control(rc);
3664
3665	trans = btrfs_join_transaction(rc->extent_root);
3666	BUG_ON(IS_ERR(trans));
3667	btrfs_commit_transaction(trans, rc->extent_root);
3668	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3672{
 
3673	struct rb_root blocks = RB_ROOT;
3674	struct btrfs_key key;
3675	struct btrfs_trans_handle *trans = NULL;
3676	struct btrfs_path *path;
3677	struct btrfs_extent_item *ei;
3678	unsigned long nr;
3679	u64 flags;
3680	u32 item_size;
3681	int ret;
3682	int err = 0;
3683	int progress = 0;
3684
3685	path = btrfs_alloc_path();
3686	if (!path)
3687		return -ENOMEM;
3688	path->reada = 1;
3689
3690	ret = prepare_to_relocate(rc);
3691	if (ret) {
3692		err = ret;
3693		goto out_free;
3694	}
3695
3696	while (1) {
 
 
 
 
 
 
 
 
3697		progress++;
3698		trans = btrfs_start_transaction(rc->extent_root, 0);
3699		BUG_ON(IS_ERR(trans));
 
 
 
 
3700restart:
3701		if (update_backref_cache(trans, &rc->backref_cache)) {
3702			btrfs_end_transaction(trans, rc->extent_root);
 
3703			continue;
3704		}
3705
3706		ret = find_next_extent(trans, rc, path, &key);
3707		if (ret < 0)
3708			err = ret;
3709		if (ret != 0)
3710			break;
3711
3712		rc->extents_found++;
3713
3714		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3715				    struct btrfs_extent_item);
3716		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3717		if (item_size >= sizeof(*ei)) {
3718			flags = btrfs_extent_flags(path->nodes[0], ei);
3719			ret = check_extent_flags(flags);
3720			BUG_ON(ret);
3721
3722		} else {
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724			u64 ref_owner;
3725			int path_change = 0;
3726
3727			BUG_ON(item_size !=
3728			       sizeof(struct btrfs_extent_item_v0));
3729			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3730						  &path_change);
3731			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3732				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3733			else
3734				flags = BTRFS_EXTENT_FLAG_DATA;
3735
3736			if (path_change) {
3737				btrfs_release_path(path);
3738
3739				path->search_commit_root = 1;
3740				path->skip_locking = 1;
3741				ret = btrfs_search_slot(NULL, rc->extent_root,
3742							&key, path, 0, 0);
3743				if (ret < 0) {
3744					err = ret;
3745					break;
3746				}
3747				BUG_ON(ret > 0);
3748			}
3749#else
3750			BUG();
3751#endif
3752		}
3753
3754		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3755			ret = add_tree_block(rc, &key, path, &blocks);
3756		} else if (rc->stage == UPDATE_DATA_PTRS &&
3757			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3758			ret = add_data_references(rc, &key, path, &blocks);
3759		} else {
3760			btrfs_release_path(path);
3761			ret = 0;
3762		}
3763		if (ret < 0) {
3764			err = ret;
3765			break;
3766		}
3767
3768		if (!RB_EMPTY_ROOT(&blocks)) {
3769			ret = relocate_tree_blocks(trans, rc, &blocks);
3770			if (ret < 0) {
3771				if (ret != -EAGAIN) {
3772					err = ret;
3773					break;
3774				}
3775				rc->extents_found--;
3776				rc->search_start = key.objectid;
3777			}
3778		}
3779
3780		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3781					    rc->block_rsv, 0, 5);
3782		if (ret < 0) {
3783			if (ret != -EAGAIN) {
3784				err = ret;
3785				WARN_ON(1);
3786				break;
3787			}
3788			rc->commit_transaction = 1;
3789		}
3790
3791		if (rc->commit_transaction) {
3792			rc->commit_transaction = 0;
3793			ret = btrfs_commit_transaction(trans, rc->extent_root);
3794			BUG_ON(ret);
3795		} else {
3796			nr = trans->blocks_used;
3797			btrfs_end_transaction_throttle(trans, rc->extent_root);
3798			btrfs_btree_balance_dirty(rc->extent_root, nr);
3799		}
3800		trans = NULL;
3801
3802		if (rc->stage == MOVE_DATA_EXTENTS &&
3803		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3804			rc->found_file_extent = 1;
3805			ret = relocate_data_extent(rc->data_inode,
3806						   &key, &rc->cluster);
3807			if (ret < 0) {
3808				err = ret;
3809				break;
3810			}
3811		}
 
 
 
 
3812	}
3813	if (trans && progress && err == -ENOSPC) {
3814		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3815					      rc->block_group->flags);
3816		if (ret == 0) {
3817			err = 0;
3818			progress = 0;
3819			goto restart;
3820		}
3821	}
3822
3823	btrfs_release_path(path);
3824	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3825			  GFP_NOFS);
3826
3827	if (trans) {
3828		nr = trans->blocks_used;
3829		btrfs_end_transaction_throttle(trans, rc->extent_root);
3830		btrfs_btree_balance_dirty(rc->extent_root, nr);
3831	}
3832
3833	if (!err) {
3834		ret = relocate_file_extent_cluster(rc->data_inode,
3835						   &rc->cluster);
3836		if (ret < 0)
3837			err = ret;
3838	}
3839
3840	rc->create_reloc_tree = 0;
3841	set_reloc_control(rc);
3842
3843	backref_cache_cleanup(&rc->backref_cache);
3844	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3845
 
 
 
 
 
 
 
 
3846	err = prepare_to_merge(rc, err);
3847
3848	merge_reloc_roots(rc);
3849
3850	rc->merge_reloc_tree = 0;
3851	unset_reloc_control(rc);
3852	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3853
3854	/* get rid of pinned extents */
3855	trans = btrfs_join_transaction(rc->extent_root);
3856	if (IS_ERR(trans))
3857		err = PTR_ERR(trans);
3858	else
3859		btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
3860out_free:
3861	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
3862	btrfs_free_path(path);
3863	return err;
3864}
3865
3866static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3867				 struct btrfs_root *root, u64 objectid)
3868{
3869	struct btrfs_path *path;
3870	struct btrfs_inode_item *item;
3871	struct extent_buffer *leaf;
3872	int ret;
3873
3874	path = btrfs_alloc_path();
3875	if (!path)
3876		return -ENOMEM;
3877
3878	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3879	if (ret)
3880		goto out;
3881
3882	leaf = path->nodes[0];
3883	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3884	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3885	btrfs_set_inode_generation(leaf, item, 1);
3886	btrfs_set_inode_size(leaf, item, 0);
3887	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3888	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3889					  BTRFS_INODE_PREALLOC);
3890	btrfs_mark_buffer_dirty(leaf);
3891	btrfs_release_path(path);
3892out:
3893	btrfs_free_path(path);
3894	return ret;
3895}
3896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3897/*
3898 * helper to create inode for data relocation.
3899 * the inode is in data relocation tree and its link count is 0
3900 */
3901static noinline_for_stack
3902struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3903				 struct btrfs_block_group_cache *group)
3904{
3905	struct inode *inode = NULL;
3906	struct btrfs_trans_handle *trans;
3907	struct btrfs_root *root;
3908	struct btrfs_key key;
3909	unsigned long nr;
3910	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3911	int err = 0;
3912
3913	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3914	if (IS_ERR(root))
3915		return ERR_CAST(root);
3916
3917	trans = btrfs_start_transaction(root, 6);
3918	if (IS_ERR(trans))
 
3919		return ERR_CAST(trans);
 
3920
3921	err = btrfs_find_free_objectid(root, &objectid);
3922	if (err)
3923		goto out;
3924
3925	err = __insert_orphan_inode(trans, root, objectid);
3926	BUG_ON(err);
 
3927
3928	key.objectid = objectid;
3929	key.type = BTRFS_INODE_ITEM_KEY;
3930	key.offset = 0;
3931	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3932	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3933	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
3934
3935	err = btrfs_orphan_add(trans, inode);
3936out:
3937	nr = trans->blocks_used;
3938	btrfs_end_transaction(trans, root);
3939	btrfs_btree_balance_dirty(root, nr);
3940	if (err) {
3941		if (inode)
3942			iput(inode);
3943		inode = ERR_PTR(err);
3944	}
3945	return inode;
3946}
3947
3948static struct reloc_control *alloc_reloc_control(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3949{
3950	struct reloc_control *rc;
3951
3952	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3953	if (!rc)
3954		return NULL;
3955
3956	INIT_LIST_HEAD(&rc->reloc_roots);
3957	backref_cache_init(&rc->backref_cache);
3958	mapping_tree_init(&rc->reloc_root_tree);
3959	extent_io_tree_init(&rc->processed_blocks, NULL);
 
 
3960	return rc;
3961}
3962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963/*
3964 * function to relocate all extents in a block group.
3965 */
3966int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3967{
3968	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
3969	struct reloc_control *rc;
3970	struct inode *inode;
3971	struct btrfs_path *path;
3972	int ret;
3973	int rw = 0;
3974	int err = 0;
3975
3976	rc = alloc_reloc_control();
3977	if (!rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978		return -ENOMEM;
 
 
 
 
 
 
 
3979
3980	rc->extent_root = extent_root;
 
3981
3982	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3983	BUG_ON(!rc->block_group);
3984
3985	if (!rc->block_group->ro) {
3986		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3987		if (ret) {
3988			err = ret;
3989			goto out;
3990		}
3991		rw = 1;
3992	}
 
3993
3994	path = btrfs_alloc_path();
3995	if (!path) {
3996		err = -ENOMEM;
3997		goto out;
3998	}
3999
4000	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4001					path);
4002	btrfs_free_path(path);
4003
4004	if (!IS_ERR(inode))
4005		ret = delete_block_group_cache(fs_info, inode, 0);
4006	else
4007		ret = PTR_ERR(inode);
4008
4009	if (ret && ret != -ENOENT) {
4010		err = ret;
4011		goto out;
4012	}
4013
4014	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4015	if (IS_ERR(rc->data_inode)) {
4016		err = PTR_ERR(rc->data_inode);
4017		rc->data_inode = NULL;
4018		goto out;
4019	}
4020
4021	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4022	       (unsigned long long)rc->block_group->key.objectid,
4023	       (unsigned long long)rc->block_group->flags);
 
 
 
 
4024
4025	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4026	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4027
4028	while (1) {
 
 
4029		mutex_lock(&fs_info->cleaner_mutex);
4030
4031		btrfs_clean_old_snapshots(fs_info->tree_root);
4032		ret = relocate_block_group(rc);
4033
4034		mutex_unlock(&fs_info->cleaner_mutex);
4035		if (ret < 0) {
4036			err = ret;
4037			goto out;
4038		}
4039
4040		if (rc->extents_found == 0)
4041			break;
4042
4043		printk(KERN_INFO "btrfs: found %llu extents\n",
4044			(unsigned long long)rc->extents_found);
4045
 
 
 
 
 
 
 
 
 
 
4046		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4047			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
4048			invalidate_mapping_pages(rc->data_inode->i_mapping,
4049						 0, -1);
4050			rc->stage = UPDATE_DATA_PTRS;
4051		}
 
 
 
 
 
 
 
 
 
4052	}
4053
4054	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4055				     rc->block_group->key.objectid,
4056				     rc->block_group->key.objectid +
4057				     rc->block_group->key.offset - 1);
4058
4059	WARN_ON(rc->block_group->pinned > 0);
4060	WARN_ON(rc->block_group->reserved > 0);
4061	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4062out:
4063	if (err && rw)
4064		btrfs_set_block_group_rw(extent_root, rc->block_group);
4065	iput(rc->data_inode);
4066	btrfs_put_block_group(rc->block_group);
4067	kfree(rc);
 
 
4068	return err;
4069}
4070
4071static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4072{
 
4073	struct btrfs_trans_handle *trans;
4074	int ret;
4075
4076	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4077	BUG_ON(IS_ERR(trans));
 
4078
4079	memset(&root->root_item.drop_progress, 0,
4080		sizeof(root->root_item.drop_progress));
4081	root->root_item.drop_level = 0;
4082	btrfs_set_root_refs(&root->root_item, 0);
4083	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4084				&root->root_key, &root->root_item);
4085	BUG_ON(ret);
4086
4087	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4088	BUG_ON(ret);
4089	return 0;
 
4090}
4091
4092/*
4093 * recover relocation interrupted by system crash.
4094 *
4095 * this function resumes merging reloc trees with corresponding fs trees.
4096 * this is important for keeping the sharing of tree blocks
4097 */
4098int btrfs_recover_relocation(struct btrfs_root *root)
4099{
4100	LIST_HEAD(reloc_roots);
4101	struct btrfs_key key;
4102	struct btrfs_root *fs_root;
4103	struct btrfs_root *reloc_root;
4104	struct btrfs_path *path;
4105	struct extent_buffer *leaf;
4106	struct reloc_control *rc = NULL;
4107	struct btrfs_trans_handle *trans;
4108	int ret;
4109	int err = 0;
4110
4111	path = btrfs_alloc_path();
4112	if (!path)
4113		return -ENOMEM;
4114	path->reada = -1;
4115
4116	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4117	key.type = BTRFS_ROOT_ITEM_KEY;
4118	key.offset = (u64)-1;
4119
4120	while (1) {
4121		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4122					path, 0, 0);
4123		if (ret < 0) {
4124			err = ret;
4125			goto out;
4126		}
4127		if (ret > 0) {
4128			if (path->slots[0] == 0)
4129				break;
4130			path->slots[0]--;
4131		}
4132		leaf = path->nodes[0];
4133		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4134		btrfs_release_path(path);
4135
4136		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4137		    key.type != BTRFS_ROOT_ITEM_KEY)
4138			break;
4139
4140		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4141		if (IS_ERR(reloc_root)) {
4142			err = PTR_ERR(reloc_root);
4143			goto out;
4144		}
4145
 
4146		list_add(&reloc_root->root_list, &reloc_roots);
4147
4148		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4149			fs_root = read_fs_root(root->fs_info,
4150					       reloc_root->root_key.offset);
4151			if (IS_ERR(fs_root)) {
4152				ret = PTR_ERR(fs_root);
4153				if (ret != -ENOENT) {
4154					err = ret;
4155					goto out;
4156				}
4157				mark_garbage_root(reloc_root);
 
 
 
 
 
 
4158			}
4159		}
4160
4161		if (key.offset == 0)
4162			break;
4163
4164		key.offset--;
4165	}
4166	btrfs_release_path(path);
4167
4168	if (list_empty(&reloc_roots))
4169		goto out;
4170
4171	rc = alloc_reloc_control();
4172	if (!rc) {
4173		err = -ENOMEM;
4174		goto out;
4175	}
4176
4177	rc->extent_root = root->fs_info->extent_root;
 
 
 
 
 
 
4178
4179	set_reloc_control(rc);
4180
4181	trans = btrfs_join_transaction(rc->extent_root);
4182	if (IS_ERR(trans)) {
4183		unset_reloc_control(rc);
4184		err = PTR_ERR(trans);
4185		goto out_free;
4186	}
4187
4188	rc->merge_reloc_tree = 1;
4189
4190	while (!list_empty(&reloc_roots)) {
4191		reloc_root = list_entry(reloc_roots.next,
4192					struct btrfs_root, root_list);
4193		list_del(&reloc_root->root_list);
4194
4195		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4196			list_add_tail(&reloc_root->root_list,
4197				      &rc->reloc_roots);
4198			continue;
4199		}
4200
4201		fs_root = read_fs_root(root->fs_info,
4202				       reloc_root->root_key.offset);
4203		BUG_ON(IS_ERR(fs_root));
 
 
 
 
 
4204
4205		__add_reloc_root(reloc_root);
4206		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
 
4207	}
4208
4209	btrfs_commit_transaction(trans, rc->extent_root);
 
 
4210
4211	merge_reloc_roots(rc);
4212
4213	unset_reloc_control(rc);
4214
4215	trans = btrfs_join_transaction(rc->extent_root);
4216	if (IS_ERR(trans))
4217		err = PTR_ERR(trans);
4218	else
4219		btrfs_commit_transaction(trans, rc->extent_root);
4220out_free:
4221	kfree(rc);
 
 
 
 
 
 
 
 
4222out:
4223	while (!list_empty(&reloc_roots)) {
4224		reloc_root = list_entry(reloc_roots.next,
4225					struct btrfs_root, root_list);
4226		list_del(&reloc_root->root_list);
4227		free_extent_buffer(reloc_root->node);
4228		free_extent_buffer(reloc_root->commit_root);
4229		kfree(reloc_root);
4230	}
4231	btrfs_free_path(path);
4232
4233	if (err == 0) {
4234		/* cleanup orphan inode in data relocation tree */
4235		fs_root = read_fs_root(root->fs_info,
4236				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4237		if (IS_ERR(fs_root))
4238			err = PTR_ERR(fs_root);
4239		else
4240			err = btrfs_orphan_cleanup(fs_root);
4241	}
4242	return err;
4243}
4244
4245/*
4246 * helper to add ordered checksum for data relocation.
4247 *
4248 * cloning checksum properly handles the nodatasum extents.
4249 * it also saves CPU time to re-calculate the checksum.
4250 */
4251int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4252{
4253	struct btrfs_ordered_sum *sums;
4254	struct btrfs_sector_sum *sector_sum;
4255	struct btrfs_ordered_extent *ordered;
4256	struct btrfs_root *root = BTRFS_I(inode)->root;
4257	size_t offset;
4258	int ret;
4259	u64 disk_bytenr;
4260	LIST_HEAD(list);
4261
4262	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4263	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
 
 
 
4264
4265	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4266	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4267				       disk_bytenr + len - 1, &list, 0);
4268
4269	while (!list_empty(&list)) {
4270		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4271		list_del_init(&sums->list);
4272
4273		sector_sum = sums->sums;
4274		sums->bytenr = ordered->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
4275
4276		offset = 0;
4277		while (offset < sums->len) {
4278			sector_sum->bytenr += ordered->start - disk_bytenr;
4279			sector_sum++;
4280			offset += root->sectorsize;
4281		}
4282
4283		btrfs_add_ordered_sum(inode, ordered, sums);
4284	}
4285	btrfs_put_ordered_extent(ordered);
4286	return ret;
4287}
4288
4289void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4290			   struct btrfs_root *root, struct extent_buffer *buf,
4291			   struct extent_buffer *cow)
 
4292{
 
4293	struct reloc_control *rc;
4294	struct backref_node *node;
4295	int first_cow = 0;
4296	int level;
4297	int ret;
4298
4299	rc = root->fs_info->reloc_ctl;
4300	if (!rc)
4301		return;
4302
4303	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4304	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4305
4306	level = btrfs_header_level(buf);
4307	if (btrfs_header_generation(buf) <=
4308	    btrfs_root_last_snapshot(&root->root_item))
4309		first_cow = 1;
4310
4311	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4312	    rc->create_reloc_tree) {
4313		WARN_ON(!first_cow && level == 0);
4314
4315		node = rc->backref_cache.path[level];
4316		BUG_ON(node->bytenr != buf->start &&
4317		       node->new_bytenr != buf->start);
4318
4319		drop_node_buffer(node);
4320		extent_buffer_get(cow);
4321		node->eb = cow;
4322		node->new_bytenr = cow->start;
4323
4324		if (!node->pending) {
4325			list_move_tail(&node->list,
4326				       &rc->backref_cache.pending[level]);
4327			node->pending = 1;
4328		}
4329
4330		if (first_cow)
4331			__mark_block_processed(rc, node);
4332
4333		if (first_cow && level > 0)
4334			rc->nodes_relocated += buf->len;
4335	}
4336
4337	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4338		ret = replace_file_extents(trans, rc, root, cow);
4339		BUG_ON(ret);
4340	}
4341}
4342
4343/*
4344 * called before creating snapshot. it calculates metadata reservation
4345 * requried for relocating tree blocks in the snapshot
4346 */
4347void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4348			      struct btrfs_pending_snapshot *pending,
4349			      u64 *bytes_to_reserve)
4350{
4351	struct btrfs_root *root;
4352	struct reloc_control *rc;
4353
4354	root = pending->root;
4355	if (!root->reloc_root)
4356		return;
4357
4358	rc = root->fs_info->reloc_ctl;
4359	if (!rc->merge_reloc_tree)
4360		return;
4361
4362	root = root->reloc_root;
4363	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4364	/*
4365	 * relocation is in the stage of merging trees. the space
4366	 * used by merging a reloc tree is twice the size of
4367	 * relocated tree nodes in the worst case. half for cowing
4368	 * the reloc tree, half for cowing the fs tree. the space
4369	 * used by cowing the reloc tree will be freed after the
4370	 * tree is dropped. if we create snapshot, cowing the fs
4371	 * tree may use more space than it frees. so we need
4372	 * reserve extra space.
4373	 */
4374	*bytes_to_reserve += rc->nodes_relocated;
4375}
4376
4377/*
4378 * called after snapshot is created. migrate block reservation
4379 * and create reloc root for the newly created snapshot
 
 
 
 
4380 */
4381void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4382			       struct btrfs_pending_snapshot *pending)
4383{
4384	struct btrfs_root *root = pending->root;
4385	struct btrfs_root *reloc_root;
4386	struct btrfs_root *new_root;
4387	struct reloc_control *rc;
4388	int ret;
4389
4390	if (!root->reloc_root)
4391		return;
4392
4393	rc = root->fs_info->reloc_ctl;
4394	rc->merging_rsv_size += rc->nodes_relocated;
4395
4396	if (rc->merge_reloc_tree) {
4397		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4398					      rc->block_rsv,
4399					      rc->nodes_relocated);
4400		BUG_ON(ret);
 
4401	}
4402
4403	new_root = pending->snap;
4404	reloc_root = create_reloc_root(trans, root->reloc_root,
4405				       new_root->root_key.objectid);
 
 
4406
4407	__add_reloc_root(reloc_root);
4408	new_root->reloc_root = reloc_root;
 
 
 
 
 
 
4409
4410	if (rc->create_reloc_tree) {
4411		ret = clone_backref_node(trans, rc, root, reloc_root);
4412		BUG_ON(ret);
4413	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4414}