Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "sdma0/sdma0_4_1_default.h"
  50
  51#include "soc15_common.h"
  52#include "soc15.h"
  53#include "vega10_sdma_pkt_open.h"
  54
  55#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  56#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  57
  58#include "amdgpu_ras.h"
  59#include "sdma_v4_4.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
  73MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
  74
  75#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  76#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  77
  78#define WREG32_SDMA(instance, offset, value) \
  79	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  80#define RREG32_SDMA(instance, offset) \
  81	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  82
  83static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  85static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  86static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  87static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
  88
  89static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 100	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 101	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 102	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 112	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 113	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 114	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 115};
 116
 117static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 118	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 119	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 120	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 121	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 122	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 123	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 124	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 125};
 126
 127static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 128	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 129	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 130	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 131	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 132	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 133	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 134	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 135};
 136
 137static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 142	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 143	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 144	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 146	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 147	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 148	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 149};
 150
 151static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 152	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 153};
 154
 155static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 156{
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 176	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 177	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 178	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 179	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 180	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 181	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 182	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 183	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 184};
 185
 186static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 205	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 206	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 207	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 208	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 209	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 210	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 211	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 212	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 213	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 214};
 215
 216static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 217{
 218	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 219	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 220};
 221
 222static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 223{
 224	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 225	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 226};
 227
 228static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 229{
 230	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 231	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 232	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 233	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 234	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 235	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 236	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 237	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 238	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 239	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 240	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 241	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 242	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 243	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 244	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 245	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 246	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 247	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 248	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 249	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 250	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 251	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 252	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 253	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 254	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 255	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 256	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 257	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 258	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 259	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 260	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 261	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
 262};
 263
 264static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
 265	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 266	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 267	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 268	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 269	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 270	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 271	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 272	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 273	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 274	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 275	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 276	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 277	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 278	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 279	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 280};
 281
 282static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 283	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 284	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 285	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 286	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 287	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 288	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 289	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 290	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 291	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 292	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
 293};
 294
 295static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
 296	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 297	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
 298	0, 0,
 299	},
 300	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 301	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
 302	0, 0,
 303	},
 304	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 305	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
 306	0, 0,
 307	},
 308	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 309	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
 310	0, 0,
 311	},
 312	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 313	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
 314	0, 0,
 315	},
 316	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 317	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
 318	0, 0,
 319	},
 320	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 321	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
 322	0, 0,
 323	},
 324	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 325	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
 326	0, 0,
 327	},
 328	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 329	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
 330	0, 0,
 331	},
 332	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 333	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
 334	0, 0,
 335	},
 336	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 337	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
 338	0, 0,
 339	},
 340	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 341	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
 342	0, 0,
 343	},
 344	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 345	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
 346	0, 0,
 347	},
 348	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 349	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
 350	0, 0,
 351	},
 352	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 353	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
 354	0, 0,
 355	},
 356	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 357	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
 358	0, 0,
 359	},
 360	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 361	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
 362	0, 0,
 363	},
 364	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 365	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
 366	0, 0,
 367	},
 368	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 369	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
 370	0, 0,
 371	},
 372	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 373	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
 374	0, 0,
 375	},
 376	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 377	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
 378	0, 0,
 379	},
 380	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 381	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
 382	0, 0,
 383	},
 384	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 385	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
 386	0, 0,
 387	},
 388	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 389	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
 390	0, 0,
 391	},
 392};
 393
 394static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 395		u32 instance, u32 offset)
 396{
 397	switch (instance) {
 398	case 0:
 399		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 400	case 1:
 401		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 402	case 2:
 403		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 404	case 3:
 405		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 406	case 4:
 407		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 408	case 5:
 409		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 410	case 6:
 411		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 412	case 7:
 413		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 414	default:
 415		break;
 416	}
 417	return 0;
 418}
 419
 420static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 421{
 422	switch (seq_num) {
 423	case 0:
 424		return SOC15_IH_CLIENTID_SDMA0;
 425	case 1:
 426		return SOC15_IH_CLIENTID_SDMA1;
 427	case 2:
 428		return SOC15_IH_CLIENTID_SDMA2;
 429	case 3:
 430		return SOC15_IH_CLIENTID_SDMA3;
 431	case 4:
 432		return SOC15_IH_CLIENTID_SDMA4;
 433	case 5:
 434		return SOC15_IH_CLIENTID_SDMA5;
 435	case 6:
 436		return SOC15_IH_CLIENTID_SDMA6;
 437	case 7:
 438		return SOC15_IH_CLIENTID_SDMA7;
 439	default:
 440		break;
 441	}
 442	return -EINVAL;
 443}
 444
 445static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 446{
 447	switch (client_id) {
 448	case SOC15_IH_CLIENTID_SDMA0:
 449		return 0;
 450	case SOC15_IH_CLIENTID_SDMA1:
 451		return 1;
 452	case SOC15_IH_CLIENTID_SDMA2:
 453		return 2;
 454	case SOC15_IH_CLIENTID_SDMA3:
 455		return 3;
 456	case SOC15_IH_CLIENTID_SDMA4:
 457		return 4;
 458	case SOC15_IH_CLIENTID_SDMA5:
 459		return 5;
 460	case SOC15_IH_CLIENTID_SDMA6:
 461		return 6;
 462	case SOC15_IH_CLIENTID_SDMA7:
 463		return 7;
 464	default:
 465		break;
 466	}
 467	return -EINVAL;
 468}
 469
 470static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 471{
 472	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 473	case IP_VERSION(4, 0, 0):
 474		soc15_program_register_sequence(adev,
 475						golden_settings_sdma_4,
 476						ARRAY_SIZE(golden_settings_sdma_4));
 477		soc15_program_register_sequence(adev,
 478						golden_settings_sdma_vg10,
 479						ARRAY_SIZE(golden_settings_sdma_vg10));
 480		break;
 481	case IP_VERSION(4, 0, 1):
 482		soc15_program_register_sequence(adev,
 483						golden_settings_sdma_4,
 484						ARRAY_SIZE(golden_settings_sdma_4));
 485		soc15_program_register_sequence(adev,
 486						golden_settings_sdma_vg12,
 487						ARRAY_SIZE(golden_settings_sdma_vg12));
 488		break;
 489	case IP_VERSION(4, 2, 0):
 490		soc15_program_register_sequence(adev,
 491						golden_settings_sdma0_4_2_init,
 492						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 493		soc15_program_register_sequence(adev,
 494						golden_settings_sdma0_4_2,
 495						ARRAY_SIZE(golden_settings_sdma0_4_2));
 496		soc15_program_register_sequence(adev,
 497						golden_settings_sdma1_4_2,
 498						ARRAY_SIZE(golden_settings_sdma1_4_2));
 499		break;
 500	case IP_VERSION(4, 2, 2):
 501		soc15_program_register_sequence(adev,
 502						golden_settings_sdma_arct,
 503						ARRAY_SIZE(golden_settings_sdma_arct));
 504		break;
 505	case IP_VERSION(4, 4, 0):
 506		soc15_program_register_sequence(adev,
 507						golden_settings_sdma_aldebaran,
 508						ARRAY_SIZE(golden_settings_sdma_aldebaran));
 509		break;
 510	case IP_VERSION(4, 1, 0):
 511	case IP_VERSION(4, 1, 1):
 512		soc15_program_register_sequence(adev,
 513						golden_settings_sdma_4_1,
 514						ARRAY_SIZE(golden_settings_sdma_4_1));
 515		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 516			soc15_program_register_sequence(adev,
 517							golden_settings_sdma_rv2,
 518							ARRAY_SIZE(golden_settings_sdma_rv2));
 519		else
 520			soc15_program_register_sequence(adev,
 521							golden_settings_sdma_rv1,
 522							ARRAY_SIZE(golden_settings_sdma_rv1));
 523		break;
 524	case IP_VERSION(4, 1, 2):
 525		soc15_program_register_sequence(adev,
 526						golden_settings_sdma_4_3,
 527						ARRAY_SIZE(golden_settings_sdma_4_3));
 528		break;
 529	default:
 530		break;
 531	}
 532}
 533
 534static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
 535{
 536	int i;
 537
 538	/*
 539	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
 540	 * Server SKUs take a different hysteresis setting from other SKUs.
 541	 */
 542	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 543	case IP_VERSION(4, 0, 0):
 544		if (adev->pdev->device == 0x6860)
 545			break;
 546		return;
 547	case IP_VERSION(4, 2, 0):
 548		if (adev->pdev->device == 0x66a1)
 549			break;
 550		return;
 551	default:
 552		return;
 553	}
 554
 555	for (i = 0; i < adev->sdma.num_instances; i++) {
 556		uint32_t temp;
 557
 558		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
 559		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
 560		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
 561	}
 562}
 563
 564/**
 565 * sdma_v4_0_init_microcode - load ucode images from disk
 566 *
 567 * @adev: amdgpu_device pointer
 568 *
 569 * Use the firmware interface to load the ucode images into
 570 * the driver (not loaded into hw).
 571 * Returns 0 on success, error on failure.
 572 */
 573
 574// emulation only, won't work on real chip
 575// vega10 real chip need to use PSP to load firmware
 576static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 577{
 578	int ret, i;
 579
 580	for (i = 0; i < adev->sdma.num_instances; i++) {
 581		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 582			    IP_VERSION(4, 2, 2) ||
 583		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 584			    IP_VERSION(4, 4, 0)) {
 585			/* Acturus & Aldebaran will leverage the same FW memory
 586			   for every SDMA instance */
 587			ret = amdgpu_sdma_init_microcode(adev, 0, true);
 588			break;
 589		} else {
 590			ret = amdgpu_sdma_init_microcode(adev, i, false);
 591			if (ret)
 592				return ret;
 593		}
 594	}
 595
 596	return ret;
 597}
 598
 599/**
 600 * sdma_v4_0_ring_get_rptr - get the current read pointer
 601 *
 602 * @ring: amdgpu ring pointer
 603 *
 604 * Get the current rptr from the hardware (VEGA10+).
 605 */
 606static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 607{
 608	u64 *rptr;
 609
 610	/* XXX check if swapping is necessary on BE */
 611	rptr = ((u64 *)ring->rptr_cpu_addr);
 612
 613	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 614	return ((*rptr) >> 2);
 615}
 616
 617/**
 618 * sdma_v4_0_ring_get_wptr - get the current write pointer
 619 *
 620 * @ring: amdgpu ring pointer
 621 *
 622 * Get the current wptr from the hardware (VEGA10+).
 623 */
 624static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 625{
 626	struct amdgpu_device *adev = ring->adev;
 627	u64 wptr;
 628
 629	if (ring->use_doorbell) {
 630		/* XXX check if swapping is necessary on BE */
 631		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 632		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 633	} else {
 634		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 635		wptr = wptr << 32;
 636		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 637		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 638				ring->me, wptr);
 639	}
 640
 641	return wptr >> 2;
 642}
 643
 644/**
 645 * sdma_v4_0_ring_set_wptr - commit the write pointer
 646 *
 647 * @ring: amdgpu ring pointer
 648 *
 649 * Write the wptr back to the hardware (VEGA10+).
 650 */
 651static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 652{
 653	struct amdgpu_device *adev = ring->adev;
 654
 655	DRM_DEBUG("Setting write pointer\n");
 656	if (ring->use_doorbell) {
 657		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 658
 659		DRM_DEBUG("Using doorbell -- "
 660				"wptr_offs == 0x%08x "
 661				"lower_32_bits(ring->wptr << 2) == 0x%08x "
 662				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
 663				ring->wptr_offs,
 664				lower_32_bits(ring->wptr << 2),
 665				upper_32_bits(ring->wptr << 2));
 666		/* XXX check if swapping is necessary on BE */
 667		WRITE_ONCE(*wb, (ring->wptr << 2));
 668		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 669				ring->doorbell_index, ring->wptr << 2);
 670		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 671	} else {
 672		DRM_DEBUG("Not using doorbell -- "
 673				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 674				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 675				ring->me,
 676				lower_32_bits(ring->wptr << 2),
 677				ring->me,
 678				upper_32_bits(ring->wptr << 2));
 679		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 680			    lower_32_bits(ring->wptr << 2));
 681		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 682			    upper_32_bits(ring->wptr << 2));
 683	}
 684}
 685
 686/**
 687 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 688 *
 689 * @ring: amdgpu ring pointer
 690 *
 691 * Get the current wptr from the hardware (VEGA10+).
 692 */
 693static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 694{
 695	struct amdgpu_device *adev = ring->adev;
 696	u64 wptr;
 697
 698	if (ring->use_doorbell) {
 699		/* XXX check if swapping is necessary on BE */
 700		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 701	} else {
 702		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 703		wptr = wptr << 32;
 704		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 705	}
 706
 707	return wptr >> 2;
 708}
 709
 710/**
 711 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
 712 *
 713 * @ring: amdgpu ring pointer
 714 *
 715 * Write the wptr back to the hardware (VEGA10+).
 716 */
 717static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 718{
 719	struct amdgpu_device *adev = ring->adev;
 720
 721	if (ring->use_doorbell) {
 722		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 723
 724		/* XXX check if swapping is necessary on BE */
 725		WRITE_ONCE(*wb, (ring->wptr << 2));
 726		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 727	} else {
 728		uint64_t wptr = ring->wptr << 2;
 729
 730		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 731			    lower_32_bits(wptr));
 732		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 733			    upper_32_bits(wptr));
 734	}
 735}
 736
 737static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 738{
 739	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 740	int i;
 741
 742	for (i = 0; i < count; i++)
 743		if (sdma && sdma->burst_nop && (i == 0))
 744			amdgpu_ring_write(ring, ring->funcs->nop |
 745				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 746		else
 747			amdgpu_ring_write(ring, ring->funcs->nop);
 748}
 749
 750/**
 751 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 752 *
 753 * @ring: amdgpu ring pointer
 754 * @job: job to retrieve vmid from
 755 * @ib: IB object to schedule
 756 * @flags: unused
 757 *
 758 * Schedule an IB in the DMA ring (VEGA10).
 759 */
 760static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 761				   struct amdgpu_job *job,
 762				   struct amdgpu_ib *ib,
 763				   uint32_t flags)
 764{
 765	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 766
 767	/* IB packet must end on a 8 DW boundary */
 768	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
 769
 770	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 771			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 772	/* base must be 32 byte aligned */
 773	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 774	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 775	amdgpu_ring_write(ring, ib->length_dw);
 776	amdgpu_ring_write(ring, 0);
 777	amdgpu_ring_write(ring, 0);
 778
 779}
 780
 781static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 782				   int mem_space, int hdp,
 783				   uint32_t addr0, uint32_t addr1,
 784				   uint32_t ref, uint32_t mask,
 785				   uint32_t inv)
 786{
 787	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 788			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 789			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 790			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 791	if (mem_space) {
 792		/* memory */
 793		amdgpu_ring_write(ring, addr0);
 794		amdgpu_ring_write(ring, addr1);
 795	} else {
 796		/* registers */
 797		amdgpu_ring_write(ring, addr0 << 2);
 798		amdgpu_ring_write(ring, addr1 << 2);
 799	}
 800	amdgpu_ring_write(ring, ref); /* reference */
 801	amdgpu_ring_write(ring, mask); /* mask */
 802	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 803			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 804}
 805
 806/**
 807 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 808 *
 809 * @ring: amdgpu ring pointer
 810 *
 811 * Emit an hdp flush packet on the requested DMA ring.
 812 */
 813static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 814{
 815	struct amdgpu_device *adev = ring->adev;
 816	u32 ref_and_mask = 0;
 817	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
 818
 819	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 820
 821	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 822			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
 823			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
 824			       ref_and_mask, ref_and_mask, 10);
 825}
 826
 827/**
 828 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 829 *
 830 * @ring: amdgpu ring pointer
 831 * @addr: address
 832 * @seq: sequence number
 833 * @flags: fence related flags
 834 *
 835 * Add a DMA fence packet to the ring to write
 836 * the fence seq number and DMA trap packet to generate
 837 * an interrupt if needed (VEGA10).
 838 */
 839static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 840				      unsigned flags)
 841{
 842	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 843	/* write the fence */
 844	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 845	/* zero in first two bits */
 846	BUG_ON(addr & 0x3);
 847	amdgpu_ring_write(ring, lower_32_bits(addr));
 848	amdgpu_ring_write(ring, upper_32_bits(addr));
 849	amdgpu_ring_write(ring, lower_32_bits(seq));
 850
 851	/* optionally write high bits as well */
 852	if (write64bit) {
 853		addr += 4;
 854		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 855		/* zero in first two bits */
 856		BUG_ON(addr & 0x3);
 857		amdgpu_ring_write(ring, lower_32_bits(addr));
 858		amdgpu_ring_write(ring, upper_32_bits(addr));
 859		amdgpu_ring_write(ring, upper_32_bits(seq));
 860	}
 861
 862	/* generate an interrupt */
 863	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 864	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 865}
 866
 867
 868/**
 869 * sdma_v4_0_gfx_enable - enable the gfx async dma engines
 870 *
 871 * @adev: amdgpu_device pointer
 872 * @enable: enable SDMA RB/IB
 873 * control the gfx async dma ring buffers (VEGA10).
 874 */
 875static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
 876{
 877	u32 rb_cntl, ib_cntl;
 878	int i;
 879
 880	for (i = 0; i < adev->sdma.num_instances; i++) {
 881		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 882		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
 883		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 884		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 885		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
 886		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 887	}
 888}
 889
 890/**
 891 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 892 *
 893 * @adev: amdgpu_device pointer
 894 *
 895 * Stop the compute async dma queues (VEGA10).
 896 */
 897static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 898{
 899	/* XXX todo */
 900}
 901
 902/**
 903 * sdma_v4_0_page_stop - stop the page async dma engines
 904 *
 905 * @adev: amdgpu_device pointer
 906 *
 907 * Stop the page async dma ring buffers (VEGA10).
 908 */
 909static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 910{
 911	u32 rb_cntl, ib_cntl;
 912	int i;
 913
 914	for (i = 0; i < adev->sdma.num_instances; i++) {
 915		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
 916		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
 917					RB_ENABLE, 0);
 918		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
 919		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
 920		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
 921					IB_ENABLE, 0);
 922		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 923	}
 924}
 925
 926/**
 927 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
 928 *
 929 * @adev: amdgpu_device pointer
 930 * @enable: enable/disable the DMA MEs context switch.
 931 *
 932 * Halt or unhalt the async dma engines context switch (VEGA10).
 933 */
 934static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 935{
 936	u32 f32_cntl, phase_quantum = 0;
 937	int i;
 938
 939	if (amdgpu_sdma_phase_quantum) {
 940		unsigned value = amdgpu_sdma_phase_quantum;
 941		unsigned unit = 0;
 942
 943		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 944				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 945			value = (value + 1) >> 1;
 946			unit++;
 947		}
 948		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 949			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 950			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 951				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 952			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 953				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
 954			WARN_ONCE(1,
 955			"clamping sdma_phase_quantum to %uK clock cycles\n",
 956				  value << unit);
 957		}
 958		phase_quantum =
 959			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
 960			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
 961	}
 962
 963	for (i = 0; i < adev->sdma.num_instances; i++) {
 964		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
 965		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 966				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
 967		if (enable && amdgpu_sdma_phase_quantum) {
 968			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
 969			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
 970			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
 971		}
 972		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
 973
 974		/*
 975		 * Enable SDMA utilization. Its only supported on
 976		 * Arcturus for the moment and firmware version 14
 977		 * and above.
 978		 */
 979		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 980			    IP_VERSION(4, 2, 2) &&
 981		    adev->sdma.instance[i].fw_version >= 14)
 982			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
 983		/* Extend page fault timeout to avoid interrupt storm */
 984		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
 985	}
 986
 987}
 988
 989/**
 990 * sdma_v4_0_enable - stop the async dma engines
 991 *
 992 * @adev: amdgpu_device pointer
 993 * @enable: enable/disable the DMA MEs.
 994 *
 995 * Halt or unhalt the async dma engines (VEGA10).
 996 */
 997static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
 998{
 999	u32 f32_cntl;
1000	int i;
1001
1002	if (!enable) {
1003		sdma_v4_0_gfx_enable(adev, enable);
1004		sdma_v4_0_rlc_stop(adev);
1005		if (adev->sdma.has_page_queue)
1006			sdma_v4_0_page_stop(adev);
1007	}
1008
1009	for (i = 0; i < adev->sdma.num_instances; i++) {
1010		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1011		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1012		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1013	}
1014}
1015
1016/*
1017 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1018 */
1019static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1020{
1021	/* Set ring buffer size in dwords */
1022	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1023
1024	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1025#ifdef __BIG_ENDIAN
1026	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1027	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1028				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1029#endif
1030	return rb_cntl;
1031}
1032
1033/**
1034 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1035 *
1036 * @adev: amdgpu_device pointer
1037 * @i: instance to resume
1038 *
1039 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1040 * Returns 0 for success, error for failure.
1041 */
1042static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1043{
1044	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1045	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1046	u32 doorbell;
1047	u32 doorbell_offset;
1048	u64 wptr_gpu_addr;
1049
1050	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1051	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1052	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1053
1054	/* Initialize the ring buffer's read and write pointers */
1055	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1056	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1057	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1058	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1059
1060	/* set the wb address whether it's enabled or not */
1061	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1062	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1063	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1064	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1065
1066	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1067				RPTR_WRITEBACK_ENABLE, 1);
1068
1069	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1070	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1071
1072	ring->wptr = 0;
1073
1074	/* before programing wptr to a less value, need set minor_ptr_update first */
1075	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1076
1077	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1078	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1079
1080	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1081				 ring->use_doorbell);
1082	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1083					SDMA0_GFX_DOORBELL_OFFSET,
1084					OFFSET, ring->doorbell_index);
1085	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1086	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1087
1088	sdma_v4_0_ring_set_wptr(ring);
1089
1090	/* set minor_ptr_update to 0 after wptr programed */
1091	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1092
1093	/* setup the wptr shadow polling */
1094	wptr_gpu_addr = ring->wptr_gpu_addr;
1095	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1096		    lower_32_bits(wptr_gpu_addr));
1097	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1098		    upper_32_bits(wptr_gpu_addr));
1099	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1100	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1101				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1102				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1103	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1104
1105	/* enable DMA RB */
1106	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1107	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1108
1109	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1110	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1111#ifdef __BIG_ENDIAN
1112	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1113#endif
1114	/* enable DMA IBs */
1115	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1116}
1117
1118/**
1119 * sdma_v4_0_page_resume - setup and start the async dma engines
1120 *
1121 * @adev: amdgpu_device pointer
1122 * @i: instance to resume
1123 *
1124 * Set up the page DMA ring buffers and enable them (VEGA10).
1125 * Returns 0 for success, error for failure.
1126 */
1127static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1128{
1129	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1130	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1131	u32 doorbell;
1132	u32 doorbell_offset;
1133	u64 wptr_gpu_addr;
1134
1135	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1136	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1137	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1138
1139	/* Initialize the ring buffer's read and write pointers */
1140	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1141	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1142	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1143	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1144
1145	/* set the wb address whether it's enabled or not */
1146	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1147	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1148	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1149	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1150
1151	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1152				RPTR_WRITEBACK_ENABLE, 1);
1153
1154	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1155	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1156
1157	ring->wptr = 0;
1158
1159	/* before programing wptr to a less value, need set minor_ptr_update first */
1160	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1161
1162	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1163	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1164
1165	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1166				 ring->use_doorbell);
1167	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1168					SDMA0_PAGE_DOORBELL_OFFSET,
1169					OFFSET, ring->doorbell_index);
1170	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1171	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1172
1173	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1174	sdma_v4_0_page_ring_set_wptr(ring);
1175
1176	/* set minor_ptr_update to 0 after wptr programed */
1177	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1178
1179	/* setup the wptr shadow polling */
1180	wptr_gpu_addr = ring->wptr_gpu_addr;
1181	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1182		    lower_32_bits(wptr_gpu_addr));
1183	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1184		    upper_32_bits(wptr_gpu_addr));
1185	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1186	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1187				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1188				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1189	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1190
1191	/* enable DMA RB */
1192	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1193	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1194
1195	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1196	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1197#ifdef __BIG_ENDIAN
1198	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1199#endif
1200	/* enable DMA IBs */
1201	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1202}
1203
1204static void
1205sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1206{
1207	uint32_t def, data;
1208
1209	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1210		/* enable idle interrupt */
1211		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1212		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1213
1214		if (data != def)
1215			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1216	} else {
1217		/* disable idle interrupt */
1218		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1219		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1220		if (data != def)
1221			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1222	}
1223}
1224
1225static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1226{
1227	uint32_t def, data;
1228
1229	/* Enable HW based PG. */
1230	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1231	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1232	if (data != def)
1233		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1234
1235	/* enable interrupt */
1236	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1237	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1238	if (data != def)
1239		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1240
1241	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1242	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1243	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1244	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1245	/* Configure switch time for hysteresis purpose. Use default right now */
1246	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1247	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1248	if(data != def)
1249		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1250}
1251
1252static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1253{
1254	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1255		return;
1256
1257	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1258	case IP_VERSION(4, 1, 0):
1259        case IP_VERSION(4, 1, 1):
1260	case IP_VERSION(4, 1, 2):
1261		sdma_v4_1_init_power_gating(adev);
1262		sdma_v4_1_update_power_gating(adev, true);
1263		break;
1264	default:
1265		break;
1266	}
1267}
1268
1269/**
1270 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1271 *
1272 * @adev: amdgpu_device pointer
1273 *
1274 * Set up the compute DMA queues and enable them (VEGA10).
1275 * Returns 0 for success, error for failure.
1276 */
1277static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1278{
1279	sdma_v4_0_init_pg(adev);
1280
1281	return 0;
1282}
1283
1284/**
1285 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1286 *
1287 * @adev: amdgpu_device pointer
1288 *
1289 * Loads the sDMA0/1 ucode.
1290 * Returns 0 for success, -EINVAL if the ucode is not available.
1291 */
1292static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1293{
1294	const struct sdma_firmware_header_v1_0 *hdr;
1295	const __le32 *fw_data;
1296	u32 fw_size;
1297	int i, j;
1298
1299	/* halt the MEs */
1300	sdma_v4_0_enable(adev, false);
1301
1302	for (i = 0; i < adev->sdma.num_instances; i++) {
1303		if (!adev->sdma.instance[i].fw)
1304			return -EINVAL;
1305
1306		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1307		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1308		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1309
1310		fw_data = (const __le32 *)
1311			(adev->sdma.instance[i].fw->data +
1312				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1313
1314		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1315
1316		for (j = 0; j < fw_size; j++)
1317			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1318				    le32_to_cpup(fw_data++));
1319
1320		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1321			    adev->sdma.instance[i].fw_version);
1322	}
1323
1324	return 0;
1325}
1326
1327/**
1328 * sdma_v4_0_start - setup and start the async dma engines
1329 *
1330 * @adev: amdgpu_device pointer
1331 *
1332 * Set up the DMA engines and enable them (VEGA10).
1333 * Returns 0 for success, error for failure.
1334 */
1335static int sdma_v4_0_start(struct amdgpu_device *adev)
1336{
1337	struct amdgpu_ring *ring;
1338	int i, r = 0;
1339
1340	if (amdgpu_sriov_vf(adev)) {
1341		sdma_v4_0_ctx_switch_enable(adev, false);
1342		sdma_v4_0_enable(adev, false);
1343	} else {
1344
1345		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1346			r = sdma_v4_0_load_microcode(adev);
1347			if (r)
1348				return r;
1349		}
1350
1351		/* unhalt the MEs */
1352		sdma_v4_0_enable(adev, true);
1353		/* enable sdma ring preemption */
1354		sdma_v4_0_ctx_switch_enable(adev, true);
1355	}
1356
1357	/* start the gfx rings and rlc compute queues */
1358	for (i = 0; i < adev->sdma.num_instances; i++) {
1359		uint32_t temp;
1360
1361		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1362		sdma_v4_0_gfx_resume(adev, i);
1363		if (adev->sdma.has_page_queue)
1364			sdma_v4_0_page_resume(adev, i);
1365
1366		/* set utc l1 enable flag always to 1 */
1367		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1368		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1369		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1370
1371		if (!amdgpu_sriov_vf(adev)) {
1372			/* unhalt engine */
1373			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1374			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1375			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1376		}
1377	}
1378
1379	if (amdgpu_sriov_vf(adev)) {
1380		sdma_v4_0_ctx_switch_enable(adev, true);
1381		sdma_v4_0_enable(adev, true);
1382	} else {
1383		r = sdma_v4_0_rlc_resume(adev);
1384		if (r)
1385			return r;
1386	}
1387
1388	for (i = 0; i < adev->sdma.num_instances; i++) {
1389		ring = &adev->sdma.instance[i].ring;
1390
1391		r = amdgpu_ring_test_helper(ring);
1392		if (r)
1393			return r;
1394
1395		if (adev->sdma.has_page_queue) {
1396			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1397
1398			r = amdgpu_ring_test_helper(page);
1399			if (r)
1400				return r;
1401		}
1402	}
1403
1404	return r;
1405}
1406
1407/**
1408 * sdma_v4_0_ring_test_ring - simple async dma engine test
1409 *
1410 * @ring: amdgpu_ring structure holding ring information
1411 *
1412 * Test the DMA engine by writing using it to write an
1413 * value to memory. (VEGA10).
1414 * Returns 0 for success, error for failure.
1415 */
1416static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1417{
1418	struct amdgpu_device *adev = ring->adev;
1419	unsigned i;
1420	unsigned index;
1421	int r;
1422	u32 tmp;
1423	u64 gpu_addr;
1424
1425	r = amdgpu_device_wb_get(adev, &index);
1426	if (r)
1427		return r;
1428
1429	gpu_addr = adev->wb.gpu_addr + (index * 4);
1430	tmp = 0xCAFEDEAD;
1431	adev->wb.wb[index] = cpu_to_le32(tmp);
1432
1433	r = amdgpu_ring_alloc(ring, 5);
1434	if (r)
1435		goto error_free_wb;
1436
1437	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1438			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1439	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1440	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1441	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1442	amdgpu_ring_write(ring, 0xDEADBEEF);
1443	amdgpu_ring_commit(ring);
1444
1445	for (i = 0; i < adev->usec_timeout; i++) {
1446		tmp = le32_to_cpu(adev->wb.wb[index]);
1447		if (tmp == 0xDEADBEEF)
1448			break;
1449		udelay(1);
1450	}
1451
1452	if (i >= adev->usec_timeout)
1453		r = -ETIMEDOUT;
1454
1455error_free_wb:
1456	amdgpu_device_wb_free(adev, index);
1457	return r;
1458}
1459
1460/**
1461 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1462 *
1463 * @ring: amdgpu_ring structure holding ring information
1464 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1465 *
1466 * Test a simple IB in the DMA ring (VEGA10).
1467 * Returns 0 on success, error on failure.
1468 */
1469static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1470{
1471	struct amdgpu_device *adev = ring->adev;
1472	struct amdgpu_ib ib;
1473	struct dma_fence *f = NULL;
1474	unsigned index;
1475	long r;
1476	u32 tmp = 0;
1477	u64 gpu_addr;
1478
1479	r = amdgpu_device_wb_get(adev, &index);
1480	if (r)
1481		return r;
1482
1483	gpu_addr = adev->wb.gpu_addr + (index * 4);
1484	tmp = 0xCAFEDEAD;
1485	adev->wb.wb[index] = cpu_to_le32(tmp);
1486	memset(&ib, 0, sizeof(ib));
1487	r = amdgpu_ib_get(adev, NULL, 256,
1488					AMDGPU_IB_POOL_DIRECT, &ib);
1489	if (r)
1490		goto err0;
1491
1492	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1493		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1494	ib.ptr[1] = lower_32_bits(gpu_addr);
1495	ib.ptr[2] = upper_32_bits(gpu_addr);
1496	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1497	ib.ptr[4] = 0xDEADBEEF;
1498	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1499	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1500	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1501	ib.length_dw = 8;
1502
1503	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1504	if (r)
1505		goto err1;
1506
1507	r = dma_fence_wait_timeout(f, false, timeout);
1508	if (r == 0) {
1509		r = -ETIMEDOUT;
1510		goto err1;
1511	} else if (r < 0) {
1512		goto err1;
1513	}
1514	tmp = le32_to_cpu(adev->wb.wb[index]);
1515	if (tmp == 0xDEADBEEF)
1516		r = 0;
1517	else
1518		r = -EINVAL;
1519
1520err1:
1521	amdgpu_ib_free(adev, &ib, NULL);
1522	dma_fence_put(f);
1523err0:
1524	amdgpu_device_wb_free(adev, index);
1525	return r;
1526}
1527
1528
1529/**
1530 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1531 *
1532 * @ib: indirect buffer to fill with commands
1533 * @pe: addr of the page entry
1534 * @src: src addr to copy from
1535 * @count: number of page entries to update
1536 *
1537 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1538 */
1539static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1540				  uint64_t pe, uint64_t src,
1541				  unsigned count)
1542{
1543	unsigned bytes = count * 8;
1544
1545	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1546		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1547	ib->ptr[ib->length_dw++] = bytes - 1;
1548	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1549	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1550	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1551	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1552	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1553
1554}
1555
1556/**
1557 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1558 *
1559 * @ib: indirect buffer to fill with commands
1560 * @pe: addr of the page entry
1561 * @value: dst addr to write into pe
1562 * @count: number of page entries to update
1563 * @incr: increase next addr by incr bytes
1564 *
1565 * Update PTEs by writing them manually using sDMA (VEGA10).
1566 */
1567static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1568				   uint64_t value, unsigned count,
1569				   uint32_t incr)
1570{
1571	unsigned ndw = count * 2;
1572
1573	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1574		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1575	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1576	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1577	ib->ptr[ib->length_dw++] = ndw - 1;
1578	for (; ndw > 0; ndw -= 2) {
1579		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1580		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1581		value += incr;
1582	}
1583}
1584
1585/**
1586 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1587 *
1588 * @ib: indirect buffer to fill with commands
1589 * @pe: addr of the page entry
1590 * @addr: dst addr to write into pe
1591 * @count: number of page entries to update
1592 * @incr: increase next addr by incr bytes
1593 * @flags: access flags
1594 *
1595 * Update the page tables using sDMA (VEGA10).
1596 */
1597static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1598				     uint64_t pe,
1599				     uint64_t addr, unsigned count,
1600				     uint32_t incr, uint64_t flags)
1601{
1602	/* for physically contiguous pages (vram) */
1603	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1604	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1605	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1606	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1607	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1608	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1609	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1610	ib->ptr[ib->length_dw++] = incr; /* increment size */
1611	ib->ptr[ib->length_dw++] = 0;
1612	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1613}
1614
1615/**
1616 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1617 *
1618 * @ring: amdgpu_ring structure holding ring information
1619 * @ib: indirect buffer to fill with padding
1620 */
1621static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1622{
1623	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1624	u32 pad_count;
1625	int i;
1626
1627	pad_count = (-ib->length_dw) & 7;
1628	for (i = 0; i < pad_count; i++)
1629		if (sdma && sdma->burst_nop && (i == 0))
1630			ib->ptr[ib->length_dw++] =
1631				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1632				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1633		else
1634			ib->ptr[ib->length_dw++] =
1635				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1636}
1637
1638
1639/**
1640 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1641 *
1642 * @ring: amdgpu_ring pointer
1643 *
1644 * Make sure all previous operations are completed (CIK).
1645 */
1646static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1647{
1648	uint32_t seq = ring->fence_drv.sync_seq;
1649	uint64_t addr = ring->fence_drv.gpu_addr;
1650
1651	/* wait for idle */
1652	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1653			       addr & 0xfffffffc,
1654			       upper_32_bits(addr) & 0xffffffff,
1655			       seq, 0xffffffff, 4);
1656}
1657
1658
1659/**
1660 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1661 *
1662 * @ring: amdgpu_ring pointer
1663 * @vmid: vmid number to use
1664 * @pd_addr: address
1665 *
1666 * Update the page table base and flush the VM TLB
1667 * using sDMA (VEGA10).
1668 */
1669static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1670					 unsigned vmid, uint64_t pd_addr)
1671{
1672	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1673}
1674
1675static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1676				     uint32_t reg, uint32_t val)
1677{
1678	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1679			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1680	amdgpu_ring_write(ring, reg);
1681	amdgpu_ring_write(ring, val);
1682}
1683
1684static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1685					 uint32_t val, uint32_t mask)
1686{
1687	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1688}
1689
1690static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1691{
1692	uint fw_version = adev->sdma.instance[0].fw_version;
1693
1694	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1695	case IP_VERSION(4, 0, 0):
1696		return fw_version >= 430;
1697	case IP_VERSION(4, 0, 1):
1698		/*return fw_version >= 31;*/
1699		return false;
1700	case IP_VERSION(4, 2, 0):
1701		return fw_version >= 123;
1702	default:
1703		return false;
1704	}
1705}
1706
1707static int sdma_v4_0_early_init(void *handle)
1708{
1709	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1710	int r;
1711
1712	r = sdma_v4_0_init_microcode(adev);
1713	if (r)
1714		return r;
1715
1716	/* TODO: Page queue breaks driver reload under SRIOV */
1717	if ((amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 0, 0)) &&
1718	    amdgpu_sriov_vf((adev)))
1719		adev->sdma.has_page_queue = false;
1720	else if (sdma_v4_0_fw_support_paging_queue(adev))
1721		adev->sdma.has_page_queue = true;
1722
1723	sdma_v4_0_set_ring_funcs(adev);
1724	sdma_v4_0_set_buffer_funcs(adev);
1725	sdma_v4_0_set_vm_pte_funcs(adev);
1726	sdma_v4_0_set_irq_funcs(adev);
1727	sdma_v4_0_set_ras_funcs(adev);
1728
1729	return 0;
1730}
1731
1732static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1733		void *err_data,
1734		struct amdgpu_iv_entry *entry);
1735
1736static int sdma_v4_0_late_init(void *handle)
1737{
1738	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1739
1740	sdma_v4_0_setup_ulv(adev);
1741
1742	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1743		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1744
1745	return 0;
1746}
1747
1748static int sdma_v4_0_sw_init(void *handle)
1749{
1750	struct amdgpu_ring *ring;
1751	int r, i;
1752	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1753
1754	/* SDMA trap event */
1755	for (i = 0; i < adev->sdma.num_instances; i++) {
1756		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1757				      SDMA0_4_0__SRCID__SDMA_TRAP,
1758				      &adev->sdma.trap_irq);
1759		if (r)
1760			return r;
1761	}
1762
1763	/* SDMA SRAM ECC event */
1764	for (i = 0; i < adev->sdma.num_instances; i++) {
1765		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1766				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1767				      &adev->sdma.ecc_irq);
1768		if (r)
1769			return r;
1770	}
1771
1772	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1773	for (i = 0; i < adev->sdma.num_instances; i++) {
1774		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1775				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1776				      &adev->sdma.vm_hole_irq);
1777		if (r)
1778			return r;
1779
1780		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1781				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1782				      &adev->sdma.doorbell_invalid_irq);
1783		if (r)
1784			return r;
1785
1786		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1787				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1788				      &adev->sdma.pool_timeout_irq);
1789		if (r)
1790			return r;
1791
1792		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1793				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1794				      &adev->sdma.srbm_write_irq);
1795		if (r)
1796			return r;
1797	}
1798
1799	for (i = 0; i < adev->sdma.num_instances; i++) {
1800		ring = &adev->sdma.instance[i].ring;
1801		ring->ring_obj = NULL;
1802		ring->use_doorbell = true;
1803
1804		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1805				ring->use_doorbell?"true":"false");
1806
1807		/* doorbell size is 2 dwords, get DWORD offset */
1808		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1809
1810		/*
1811		 * On Arcturus, SDMA instance 5~7 has a different vmhub
1812		 * type(AMDGPU_MMHUB1).
1813		 */
1814		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1815			    IP_VERSION(4, 2, 2) &&
1816		    i >= 5)
1817			ring->vm_hub = AMDGPU_MMHUB1(0);
1818		else
1819			ring->vm_hub = AMDGPU_MMHUB0(0);
1820
1821		sprintf(ring->name, "sdma%d", i);
1822		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1823				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1824				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1825		if (r)
1826			return r;
1827
1828		if (adev->sdma.has_page_queue) {
1829			ring = &adev->sdma.instance[i].page;
1830			ring->ring_obj = NULL;
1831			ring->use_doorbell = true;
1832
1833			/* paging queue use same doorbell index/routing as gfx queue
1834			 * with 0x400 (4096 dwords) offset on second doorbell page
1835			 */
1836			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) >=
1837				    IP_VERSION(4, 0, 0) &&
1838			    amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
1839				    IP_VERSION(4, 2, 0)) {
1840				ring->doorbell_index =
1841					adev->doorbell_index.sdma_engine[i] << 1;
1842				ring->doorbell_index += 0x400;
1843			} else {
1844				/* From vega20, the sdma_doorbell_range in 1st
1845				 * doorbell page is reserved for page queue.
1846				 */
1847				ring->doorbell_index =
1848					(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1849			}
1850
1851			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1852				    IP_VERSION(4, 2, 2) &&
1853			    i >= 5)
1854				ring->vm_hub = AMDGPU_MMHUB1(0);
1855			else
1856				ring->vm_hub = AMDGPU_MMHUB0(0);
1857
1858			sprintf(ring->name, "page%d", i);
1859			r = amdgpu_ring_init(adev, ring, 1024,
1860					     &adev->sdma.trap_irq,
1861					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1862					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1863			if (r)
1864				return r;
1865		}
1866	}
1867
1868	if (amdgpu_sdma_ras_sw_init(adev)) {
1869		dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1870		return -EINVAL;
1871	}
1872
1873	return r;
1874}
1875
1876static int sdma_v4_0_sw_fini(void *handle)
1877{
1878	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879	int i;
1880
1881	for (i = 0; i < adev->sdma.num_instances; i++) {
1882		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1883		if (adev->sdma.has_page_queue)
1884			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1885	}
1886
1887	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 2, 2) ||
1888	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 0))
1889		amdgpu_sdma_destroy_inst_ctx(adev, true);
1890	else
1891		amdgpu_sdma_destroy_inst_ctx(adev, false);
1892
1893	return 0;
1894}
1895
1896static int sdma_v4_0_hw_init(void *handle)
1897{
1898	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899
1900	if (adev->flags & AMD_IS_APU)
1901		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1902
1903	if (!amdgpu_sriov_vf(adev))
1904		sdma_v4_0_init_golden_registers(adev);
1905
1906	return sdma_v4_0_start(adev);
1907}
1908
1909static int sdma_v4_0_hw_fini(void *handle)
1910{
1911	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1912	int i;
1913
1914	if (amdgpu_sriov_vf(adev))
1915		return 0;
1916
1917	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1918		for (i = 0; i < adev->sdma.num_instances; i++) {
1919			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1920				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1921		}
1922	}
1923
1924	sdma_v4_0_ctx_switch_enable(adev, false);
1925	sdma_v4_0_enable(adev, false);
1926
1927	if (adev->flags & AMD_IS_APU)
1928		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1929
1930	return 0;
1931}
1932
1933static int sdma_v4_0_suspend(void *handle)
1934{
1935	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1936
1937	/* SMU saves SDMA state for us */
1938	if (adev->in_s0ix) {
1939		sdma_v4_0_gfx_enable(adev, false);
1940		return 0;
1941	}
1942
1943	return sdma_v4_0_hw_fini(adev);
1944}
1945
1946static int sdma_v4_0_resume(void *handle)
1947{
1948	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1949
1950	/* SMU restores SDMA state for us */
1951	if (adev->in_s0ix) {
1952		sdma_v4_0_enable(adev, true);
1953		sdma_v4_0_gfx_enable(adev, true);
1954		return 0;
1955	}
1956
1957	return sdma_v4_0_hw_init(adev);
1958}
1959
1960static bool sdma_v4_0_is_idle(void *handle)
1961{
1962	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1963	u32 i;
1964
1965	for (i = 0; i < adev->sdma.num_instances; i++) {
1966		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1967
1968		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1969			return false;
1970	}
1971
1972	return true;
1973}
1974
1975static int sdma_v4_0_wait_for_idle(void *handle)
1976{
1977	unsigned i, j;
1978	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1979	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1980
1981	for (i = 0; i < adev->usec_timeout; i++) {
1982		for (j = 0; j < adev->sdma.num_instances; j++) {
1983			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1984			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1985				break;
1986		}
1987		if (j == adev->sdma.num_instances)
1988			return 0;
1989		udelay(1);
1990	}
1991	return -ETIMEDOUT;
1992}
1993
1994static int sdma_v4_0_soft_reset(void *handle)
1995{
1996	/* todo */
1997
1998	return 0;
1999}
2000
2001static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2002					struct amdgpu_irq_src *source,
2003					unsigned type,
2004					enum amdgpu_interrupt_state state)
2005{
2006	u32 sdma_cntl;
2007
2008	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2009	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2010		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2011	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2012
2013	return 0;
2014}
2015
2016static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2017				      struct amdgpu_irq_src *source,
2018				      struct amdgpu_iv_entry *entry)
2019{
2020	uint32_t instance;
2021
2022	DRM_DEBUG("IH: SDMA trap\n");
2023	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2024	switch (entry->ring_id) {
2025	case 0:
2026		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2027		break;
2028	case 1:
2029		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
2030		    IP_VERSION(4, 2, 0))
2031			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2032		break;
2033	case 2:
2034		/* XXX compute */
2035		break;
2036	case 3:
2037		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) !=
2038		    IP_VERSION(4, 2, 0))
2039			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2040		break;
2041	}
2042	return 0;
2043}
2044
2045static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2046		void *err_data,
2047		struct amdgpu_iv_entry *entry)
2048{
2049	int instance;
2050
2051	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2052	 * be disabled and the driver should only look for the aggregated
2053	 * interrupt via sync flood
2054	 */
2055	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2056		goto out;
2057
2058	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2059	if (instance < 0)
2060		goto out;
2061
2062	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2063
2064out:
2065	return AMDGPU_RAS_SUCCESS;
2066}
2067
2068static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2069					      struct amdgpu_irq_src *source,
2070					      struct amdgpu_iv_entry *entry)
2071{
2072	int instance;
2073
2074	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2075
2076	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2077	if (instance < 0)
2078		return 0;
2079
2080	switch (entry->ring_id) {
2081	case 0:
2082		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2083		break;
2084	}
2085	return 0;
2086}
2087
2088static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2089					struct amdgpu_irq_src *source,
2090					unsigned type,
2091					enum amdgpu_interrupt_state state)
2092{
2093	u32 sdma_edc_config;
2094
2095	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2096	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2097		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2098	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2099
2100	return 0;
2101}
2102
2103static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2104					      struct amdgpu_iv_entry *entry)
2105{
2106	int instance;
2107	struct amdgpu_task_info *task_info;
2108	u64 addr;
2109
2110	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2111	if (instance < 0 || instance >= adev->sdma.num_instances) {
2112		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2113		return -EINVAL;
2114	}
2115
2116	addr = (u64)entry->src_data[0] << 12;
2117	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2118
2119	dev_dbg_ratelimited(adev->dev,
2120			   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
2121			   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2122			   entry->pasid);
2123
2124	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
2125	if (task_info) {
2126		dev_dbg_ratelimited(adev->dev,
2127				    " for process %s pid %d thread %s pid %d\n",
2128				    task_info->process_name, task_info->tgid,
2129				    task_info->task_name, task_info->pid);
2130		amdgpu_vm_put_task_info(task_info);
2131	}
2132
2133	return 0;
2134}
2135
2136static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2137					      struct amdgpu_irq_src *source,
2138					      struct amdgpu_iv_entry *entry)
2139{
2140	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2141	sdma_v4_0_print_iv_entry(adev, entry);
2142	return 0;
2143}
2144
2145static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2146					      struct amdgpu_irq_src *source,
2147					      struct amdgpu_iv_entry *entry)
2148{
2149	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2150	sdma_v4_0_print_iv_entry(adev, entry);
2151	return 0;
2152}
2153
2154static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2155					      struct amdgpu_irq_src *source,
2156					      struct amdgpu_iv_entry *entry)
2157{
2158	dev_dbg_ratelimited(adev->dev,
2159		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2160	sdma_v4_0_print_iv_entry(adev, entry);
2161	return 0;
2162}
2163
2164static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2165					      struct amdgpu_irq_src *source,
2166					      struct amdgpu_iv_entry *entry)
2167{
2168	dev_dbg_ratelimited(adev->dev,
2169		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2170	sdma_v4_0_print_iv_entry(adev, entry);
2171	return 0;
2172}
2173
2174static void sdma_v4_0_update_medium_grain_clock_gating(
2175		struct amdgpu_device *adev,
2176		bool enable)
2177{
2178	uint32_t data, def;
2179	int i;
2180
2181	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2182		for (i = 0; i < adev->sdma.num_instances; i++) {
2183			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2184			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2185				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2186				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2187				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2188				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2189				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2190				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2191				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2192			if (def != data)
2193				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2194		}
2195	} else {
2196		for (i = 0; i < adev->sdma.num_instances; i++) {
2197			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2198			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2199				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2200				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2201				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2202				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2203				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2204				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2205				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2206			if (def != data)
2207				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2208		}
2209	}
2210}
2211
2212
2213static void sdma_v4_0_update_medium_grain_light_sleep(
2214		struct amdgpu_device *adev,
2215		bool enable)
2216{
2217	uint32_t data, def;
2218	int i;
2219
2220	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2221		for (i = 0; i < adev->sdma.num_instances; i++) {
2222			/* 1-not override: enable sdma mem light sleep */
2223			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2224			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2225			if (def != data)
2226				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2227		}
2228	} else {
2229		for (i = 0; i < adev->sdma.num_instances; i++) {
2230		/* 0-override:disable sdma mem light sleep */
2231			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2232			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2233			if (def != data)
2234				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2235		}
2236	}
2237}
2238
2239static int sdma_v4_0_set_clockgating_state(void *handle,
2240					  enum amd_clockgating_state state)
2241{
2242	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2243
2244	if (amdgpu_sriov_vf(adev))
2245		return 0;
2246
2247	sdma_v4_0_update_medium_grain_clock_gating(adev,
2248			state == AMD_CG_STATE_GATE);
2249	sdma_v4_0_update_medium_grain_light_sleep(adev,
2250			state == AMD_CG_STATE_GATE);
2251	return 0;
2252}
2253
2254static int sdma_v4_0_set_powergating_state(void *handle,
2255					  enum amd_powergating_state state)
2256{
2257	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2258
2259	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2260	case IP_VERSION(4, 1, 0):
2261	case IP_VERSION(4, 1, 1):
2262	case IP_VERSION(4, 1, 2):
2263		sdma_v4_1_update_power_gating(adev,
2264				state == AMD_PG_STATE_GATE);
2265		break;
2266	default:
2267		break;
2268	}
2269
2270	return 0;
2271}
2272
2273static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2274{
2275	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2276	int data;
2277
2278	if (amdgpu_sriov_vf(adev))
2279		*flags = 0;
2280
2281	/* AMD_CG_SUPPORT_SDMA_MGCG */
2282	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2283	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2284		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2285
2286	/* AMD_CG_SUPPORT_SDMA_LS */
2287	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2288	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2289		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2290}
2291
2292const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2293	.name = "sdma_v4_0",
2294	.early_init = sdma_v4_0_early_init,
2295	.late_init = sdma_v4_0_late_init,
2296	.sw_init = sdma_v4_0_sw_init,
2297	.sw_fini = sdma_v4_0_sw_fini,
2298	.hw_init = sdma_v4_0_hw_init,
2299	.hw_fini = sdma_v4_0_hw_fini,
2300	.suspend = sdma_v4_0_suspend,
2301	.resume = sdma_v4_0_resume,
2302	.is_idle = sdma_v4_0_is_idle,
2303	.wait_for_idle = sdma_v4_0_wait_for_idle,
2304	.soft_reset = sdma_v4_0_soft_reset,
2305	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2306	.set_powergating_state = sdma_v4_0_set_powergating_state,
2307	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2308};
2309
2310static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2311	.type = AMDGPU_RING_TYPE_SDMA,
2312	.align_mask = 0xff,
2313	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2314	.support_64bit_ptrs = true,
2315	.secure_submission_supported = true,
2316	.get_rptr = sdma_v4_0_ring_get_rptr,
2317	.get_wptr = sdma_v4_0_ring_get_wptr,
2318	.set_wptr = sdma_v4_0_ring_set_wptr,
2319	.emit_frame_size =
2320		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2321		3 + /* hdp invalidate */
2322		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2323		/* sdma_v4_0_ring_emit_vm_flush */
2324		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2325		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2326		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2327	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2328	.emit_ib = sdma_v4_0_ring_emit_ib,
2329	.emit_fence = sdma_v4_0_ring_emit_fence,
2330	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2331	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2332	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2333	.test_ring = sdma_v4_0_ring_test_ring,
2334	.test_ib = sdma_v4_0_ring_test_ib,
2335	.insert_nop = sdma_v4_0_ring_insert_nop,
2336	.pad_ib = sdma_v4_0_ring_pad_ib,
2337	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2338	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2339	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2340};
2341
2342static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2343	.type = AMDGPU_RING_TYPE_SDMA,
2344	.align_mask = 0xff,
2345	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2346	.support_64bit_ptrs = true,
2347	.secure_submission_supported = true,
2348	.get_rptr = sdma_v4_0_ring_get_rptr,
2349	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2350	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2351	.emit_frame_size =
2352		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2353		3 + /* hdp invalidate */
2354		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2355		/* sdma_v4_0_ring_emit_vm_flush */
2356		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2357		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2358		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2359	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2360	.emit_ib = sdma_v4_0_ring_emit_ib,
2361	.emit_fence = sdma_v4_0_ring_emit_fence,
2362	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2363	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2364	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2365	.test_ring = sdma_v4_0_ring_test_ring,
2366	.test_ib = sdma_v4_0_ring_test_ib,
2367	.insert_nop = sdma_v4_0_ring_insert_nop,
2368	.pad_ib = sdma_v4_0_ring_pad_ib,
2369	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2370	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2371	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2372};
2373
2374static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2375{
2376	int i;
2377
2378	for (i = 0; i < adev->sdma.num_instances; i++) {
2379		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2380		adev->sdma.instance[i].ring.me = i;
2381		if (adev->sdma.has_page_queue) {
2382			adev->sdma.instance[i].page.funcs =
2383					&sdma_v4_0_page_ring_funcs;
2384			adev->sdma.instance[i].page.me = i;
2385		}
2386	}
2387}
2388
2389static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2390	.set = sdma_v4_0_set_trap_irq_state,
2391	.process = sdma_v4_0_process_trap_irq,
2392};
2393
2394static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2395	.process = sdma_v4_0_process_illegal_inst_irq,
2396};
2397
2398static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2399	.set = sdma_v4_0_set_ecc_irq_state,
2400	.process = amdgpu_sdma_process_ecc_irq,
2401};
2402
2403static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2404	.process = sdma_v4_0_process_vm_hole_irq,
2405};
2406
2407static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2408	.process = sdma_v4_0_process_doorbell_invalid_irq,
2409};
2410
2411static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2412	.process = sdma_v4_0_process_pool_timeout_irq,
2413};
2414
2415static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2416	.process = sdma_v4_0_process_srbm_write_irq,
2417};
2418
2419static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2420{
2421	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2422	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2423	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2424	switch (adev->sdma.num_instances) {
2425	case 5:
2426	case 8:
2427		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2428		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2429		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2430		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2431		break;
2432	default:
2433		break;
2434	}
2435	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2436	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2437	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2438	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2439	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2440	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2441	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2442}
2443
2444/**
2445 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2446 *
2447 * @ib: indirect buffer to copy to
2448 * @src_offset: src GPU address
2449 * @dst_offset: dst GPU address
2450 * @byte_count: number of bytes to xfer
2451 * @tmz: if a secure copy should be used
2452 *
2453 * Copy GPU buffers using the DMA engine (VEGA10/12).
2454 * Used by the amdgpu ttm implementation to move pages if
2455 * registered as the asic copy callback.
2456 */
2457static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2458				       uint64_t src_offset,
2459				       uint64_t dst_offset,
2460				       uint32_t byte_count,
2461				       bool tmz)
2462{
2463	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2464		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2465		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2466	ib->ptr[ib->length_dw++] = byte_count - 1;
2467	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2468	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2469	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2470	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2471	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2472}
2473
2474/**
2475 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2476 *
2477 * @ib: indirect buffer to copy to
2478 * @src_data: value to write to buffer
2479 * @dst_offset: dst GPU address
2480 * @byte_count: number of bytes to xfer
2481 *
2482 * Fill GPU buffers using the DMA engine (VEGA10/12).
2483 */
2484static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2485				       uint32_t src_data,
2486				       uint64_t dst_offset,
2487				       uint32_t byte_count)
2488{
2489	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2490	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2491	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2492	ib->ptr[ib->length_dw++] = src_data;
2493	ib->ptr[ib->length_dw++] = byte_count - 1;
2494}
2495
2496static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2497	.copy_max_bytes = 0x400000,
2498	.copy_num_dw = 7,
2499	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2500
2501	.fill_max_bytes = 0x400000,
2502	.fill_num_dw = 5,
2503	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2504};
2505
2506static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2507{
2508	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2509	if (adev->sdma.has_page_queue)
2510		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2511	else
2512		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2513}
2514
2515static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2516	.copy_pte_num_dw = 7,
2517	.copy_pte = sdma_v4_0_vm_copy_pte,
2518
2519	.write_pte = sdma_v4_0_vm_write_pte,
2520	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2521};
2522
2523static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2524{
2525	struct drm_gpu_scheduler *sched;
2526	unsigned i;
2527
2528	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2529	for (i = 0; i < adev->sdma.num_instances; i++) {
2530		if (adev->sdma.has_page_queue)
2531			sched = &adev->sdma.instance[i].page.sched;
2532		else
2533			sched = &adev->sdma.instance[i].ring.sched;
2534		adev->vm_manager.vm_pte_scheds[i] = sched;
2535	}
2536	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2537}
2538
2539static void sdma_v4_0_get_ras_error_count(uint32_t value,
2540					uint32_t instance,
2541					uint32_t *sec_count)
2542{
2543	uint32_t i;
2544	uint32_t sec_cnt;
2545
2546	/* double bits error (multiple bits) error detection is not supported */
2547	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2548		/* the SDMA_EDC_COUNTER register in each sdma instance
2549		 * shares the same sed shift_mask
2550		 * */
2551		sec_cnt = (value &
2552			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2553			sdma_v4_0_ras_fields[i].sec_count_shift;
2554		if (sec_cnt) {
2555			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2556				sdma_v4_0_ras_fields[i].name,
2557				instance, sec_cnt);
2558			*sec_count += sec_cnt;
2559		}
2560	}
2561}
2562
2563static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2564			uint32_t instance, void *ras_error_status)
2565{
2566	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2567	uint32_t sec_count = 0;
2568	uint32_t reg_value = 0;
2569
2570	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2571	/* double bit error is not supported */
2572	if (reg_value)
2573		sdma_v4_0_get_ras_error_count(reg_value,
2574				instance, &sec_count);
2575	/* err_data->ce_count should be initialized to 0
2576	 * before calling into this function */
2577	err_data->ce_count += sec_count;
2578	/* double bit error is not supported
2579	 * set ue count to 0 */
2580	err_data->ue_count = 0;
2581
2582	return 0;
2583};
2584
2585static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2586{
2587	int i = 0;
2588
2589	for (i = 0; i < adev->sdma.num_instances; i++) {
2590		if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2591			dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2592			return;
2593		}
2594	}
2595}
2596
2597static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2598{
2599	int i;
2600
2601	/* read back edc counter registers to clear the counters */
2602	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2603		for (i = 0; i < adev->sdma.num_instances; i++)
2604			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2605	}
2606}
2607
2608const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2609	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2610	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2611};
2612
2613static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2614	.ras_block = {
2615		.hw_ops = &sdma_v4_0_ras_hw_ops,
2616		.ras_cb = sdma_v4_0_process_ras_data_cb,
2617	},
2618};
2619
2620static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2621{
2622	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2623	case IP_VERSION(4, 2, 0):
2624	case IP_VERSION(4, 2, 2):
2625		adev->sdma.ras = &sdma_v4_0_ras;
2626		break;
2627	case IP_VERSION(4, 4, 0):
2628		adev->sdma.ras = &sdma_v4_4_ras;
2629		break;
2630	default:
2631		break;
2632	}
2633}
2634
2635const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2636	.type = AMD_IP_BLOCK_TYPE_SDMA,
2637	.major = 4,
2638	.minor = 0,
2639	.rev = 0,
2640	.funcs = &sdma_v4_0_ip_funcs,
2641};