Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/dma-buf.h>
  19#include <linux/dma-fence.h>
  20#include <linux/dma-resv.h>
  21#include <linux/pagemap.h>
  22#include <linux/export.h>
  23#include <linux/fs_parser.h>
  24#include <linux/hid.h>
  25#include <linux/mm.h>
  26#include <linux/module.h>
  27#include <linux/scatterlist.h>
  28#include <linux/sched/signal.h>
  29#include <linux/uio.h>
  30#include <linux/vmalloc.h>
  31#include <asm/unaligned.h>
  32
  33#include <linux/usb/ccid.h>
  34#include <linux/usb/composite.h>
  35#include <linux/usb/functionfs.h>
  36
  37#include <linux/aio.h>
  38#include <linux/kthread.h>
  39#include <linux/poll.h>
  40#include <linux/eventfd.h>
  41
  42#include "u_fs.h"
  43#include "u_f.h"
  44#include "u_os_desc.h"
  45#include "configfs.h"
  46
  47#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  48
  49#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
  50
  51MODULE_IMPORT_NS(DMA_BUF);
  52
  53/* Reference counter handling */
  54static void ffs_data_get(struct ffs_data *ffs);
  55static void ffs_data_put(struct ffs_data *ffs);
  56/* Creates new ffs_data object. */
  57static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  58	__attribute__((malloc));
  59
  60/* Opened counter handling. */
  61static void ffs_data_opened(struct ffs_data *ffs);
  62static void ffs_data_closed(struct ffs_data *ffs);
  63
  64/* Called with ffs->mutex held; take over ownership of data. */
  65static int __must_check
  66__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  67static int __must_check
  68__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  69
  70
  71/* The function structure ***************************************************/
  72
  73struct ffs_ep;
  74
  75struct ffs_function {
  76	struct usb_configuration	*conf;
  77	struct usb_gadget		*gadget;
  78	struct ffs_data			*ffs;
  79
  80	struct ffs_ep			*eps;
  81	u8				eps_revmap[16];
  82	short				*interfaces_nums;
  83
  84	struct usb_function		function;
  85};
  86
  87
  88static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  89{
  90	return container_of(f, struct ffs_function, function);
  91}
  92
  93
  94static inline enum ffs_setup_state
  95ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  96{
  97	return (enum ffs_setup_state)
  98		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  99}
 100
 101
 102static void ffs_func_eps_disable(struct ffs_function *func);
 103static int __must_check ffs_func_eps_enable(struct ffs_function *func);
 104
 105static int ffs_func_bind(struct usb_configuration *,
 106			 struct usb_function *);
 107static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 108static void ffs_func_disable(struct usb_function *);
 109static int ffs_func_setup(struct usb_function *,
 110			  const struct usb_ctrlrequest *);
 111static bool ffs_func_req_match(struct usb_function *,
 112			       const struct usb_ctrlrequest *,
 113			       bool config0);
 114static void ffs_func_suspend(struct usb_function *);
 115static void ffs_func_resume(struct usb_function *);
 116
 117
 118static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 119static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 120
 121
 122/* The endpoints structures *************************************************/
 123
 124struct ffs_ep {
 125	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 126	struct usb_request		*req;	/* P: epfile->mutex */
 127
 128	/* [0]: full speed, [1]: high speed, [2]: super speed */
 129	struct usb_endpoint_descriptor	*descs[3];
 130
 131	u8				num;
 132};
 133
 134struct ffs_dmabuf_priv {
 135	struct list_head entry;
 136	struct kref ref;
 137	struct ffs_data *ffs;
 138	struct dma_buf_attachment *attach;
 139	struct sg_table *sgt;
 140	enum dma_data_direction dir;
 141	spinlock_t lock;
 142	u64 context;
 143	struct usb_request *req;	/* P: ffs->eps_lock */
 144	struct usb_ep *ep;		/* P: ffs->eps_lock */
 145};
 146
 147struct ffs_dma_fence {
 148	struct dma_fence base;
 149	struct ffs_dmabuf_priv *priv;
 150	struct work_struct work;
 151};
 152
 153struct ffs_epfile {
 154	/* Protects ep->ep and ep->req. */
 155	struct mutex			mutex;
 156
 157	struct ffs_data			*ffs;
 158	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 159
 160	struct dentry			*dentry;
 161
 162	/*
 163	 * Buffer for holding data from partial reads which may happen since
 164	 * we’re rounding user read requests to a multiple of a max packet size.
 165	 *
 166	 * The pointer is initialised with NULL value and may be set by
 167	 * __ffs_epfile_read_data function to point to a temporary buffer.
 168	 *
 169	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 170	 * data from said buffer and eventually free it.  Importantly, while the
 171	 * function is using the buffer, it sets the pointer to NULL.  This is
 172	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 173	 * can never run concurrently (they are synchronised by epfile->mutex)
 174	 * so the latter will not assign a new value to the pointer.
 175	 *
 176	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 177	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 178	 * value is crux of the synchronisation between ffs_func_eps_disable and
 179	 * __ffs_epfile_read_data.
 180	 *
 181	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 182	 * pointer back to its old value (as described above), but seeing as the
 183	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 184	 * the buffer.
 185	 *
 186	 * == State transitions ==
 187	 *
 188	 * • ptr == NULL:  (initial state)
 189	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 190	 *   â—¦ __ffs_epfile_read_buffered:    nop
 191	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 192	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 193	 * • ptr == DROP:
 194	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 195	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 196	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 197	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 198	 * • ptr == buf:
 199	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 200	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 201	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 202	 *                                    is always called first
 203	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 204	 * • ptr == NULL and reading:
 205	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 206	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 207	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 208	 *   ◦ reading finishes and …
 209	 *     … all data read:               free buf, go to ptr == NULL
 210	 *     … otherwise:                   go to ptr == buf and reading
 211	 * • ptr == DROP and reading:
 212	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 213	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 214	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 215	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 216	 */
 217	struct ffs_buffer		*read_buffer;
 218#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 219
 220	char				name[5];
 221
 222	unsigned char			in;	/* P: ffs->eps_lock */
 223	unsigned char			isoc;	/* P: ffs->eps_lock */
 224
 225	unsigned char			_pad;
 226
 227	/* Protects dmabufs */
 228	struct mutex			dmabufs_mutex;
 229	struct list_head		dmabufs; /* P: dmabufs_mutex */
 230	atomic_t			seqno;
 231};
 232
 233struct ffs_buffer {
 234	size_t length;
 235	char *data;
 236	char storage[] __counted_by(length);
 237};
 238
 239/*  ffs_io_data structure ***************************************************/
 240
 241struct ffs_io_data {
 242	bool aio;
 243	bool read;
 244
 245	struct kiocb *kiocb;
 246	struct iov_iter data;
 247	const void *to_free;
 248	char *buf;
 249
 250	struct mm_struct *mm;
 251	struct work_struct work;
 252
 253	struct usb_ep *ep;
 254	struct usb_request *req;
 255	struct sg_table sgt;
 256	bool use_sg;
 257
 258	struct ffs_data *ffs;
 259
 260	int status;
 261	struct completion done;
 262};
 263
 264struct ffs_desc_helper {
 265	struct ffs_data *ffs;
 266	unsigned interfaces_count;
 267	unsigned eps_count;
 268};
 269
 270static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 271static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 272
 273static struct dentry *
 274ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 275		   const struct file_operations *fops);
 276
 277/* Devices management *******************************************************/
 278
 279DEFINE_MUTEX(ffs_lock);
 280EXPORT_SYMBOL_GPL(ffs_lock);
 281
 282static struct ffs_dev *_ffs_find_dev(const char *name);
 283static struct ffs_dev *_ffs_alloc_dev(void);
 284static void _ffs_free_dev(struct ffs_dev *dev);
 285static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 286static void ffs_release_dev(struct ffs_dev *ffs_dev);
 287static int ffs_ready(struct ffs_data *ffs);
 288static void ffs_closed(struct ffs_data *ffs);
 289
 290/* Misc helper functions ****************************************************/
 291
 292static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 293	__attribute__((warn_unused_result, nonnull));
 294static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 295	__attribute__((warn_unused_result, nonnull));
 296
 297
 298/* Control file aka ep0 *****************************************************/
 299
 300static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 301{
 302	struct ffs_data *ffs = req->context;
 303
 304	complete(&ffs->ep0req_completion);
 305}
 306
 307static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 308	__releases(&ffs->ev.waitq.lock)
 309{
 310	struct usb_request *req = ffs->ep0req;
 311	int ret;
 312
 313	if (!req) {
 314		spin_unlock_irq(&ffs->ev.waitq.lock);
 315		return -EINVAL;
 316	}
 317
 318	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 319
 320	spin_unlock_irq(&ffs->ev.waitq.lock);
 321
 322	req->buf      = data;
 323	req->length   = len;
 324
 325	/*
 326	 * UDC layer requires to provide a buffer even for ZLP, but should
 327	 * not use it at all. Let's provide some poisoned pointer to catch
 328	 * possible bug in the driver.
 329	 */
 330	if (req->buf == NULL)
 331		req->buf = (void *)0xDEADBABE;
 332
 333	reinit_completion(&ffs->ep0req_completion);
 334
 335	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 336	if (ret < 0)
 337		return ret;
 338
 339	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 340	if (ret) {
 341		usb_ep_dequeue(ffs->gadget->ep0, req);
 342		return -EINTR;
 343	}
 344
 345	ffs->setup_state = FFS_NO_SETUP;
 346	return req->status ? req->status : req->actual;
 347}
 348
 349static int __ffs_ep0_stall(struct ffs_data *ffs)
 350{
 351	if (ffs->ev.can_stall) {
 352		pr_vdebug("ep0 stall\n");
 353		usb_ep_set_halt(ffs->gadget->ep0);
 354		ffs->setup_state = FFS_NO_SETUP;
 355		return -EL2HLT;
 356	} else {
 357		pr_debug("bogus ep0 stall!\n");
 358		return -ESRCH;
 359	}
 360}
 361
 362static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 363			     size_t len, loff_t *ptr)
 364{
 365	struct ffs_data *ffs = file->private_data;
 366	ssize_t ret;
 367	char *data;
 368
 369	/* Fast check if setup was canceled */
 370	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 371		return -EIDRM;
 372
 373	/* Acquire mutex */
 374	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 375	if (ret < 0)
 376		return ret;
 377
 378	/* Check state */
 379	switch (ffs->state) {
 380	case FFS_READ_DESCRIPTORS:
 381	case FFS_READ_STRINGS:
 382		/* Copy data */
 383		if (len < 16) {
 384			ret = -EINVAL;
 385			break;
 386		}
 387
 388		data = ffs_prepare_buffer(buf, len);
 389		if (IS_ERR(data)) {
 390			ret = PTR_ERR(data);
 391			break;
 392		}
 393
 394		/* Handle data */
 395		if (ffs->state == FFS_READ_DESCRIPTORS) {
 396			pr_info("read descriptors\n");
 397			ret = __ffs_data_got_descs(ffs, data, len);
 398			if (ret < 0)
 399				break;
 400
 401			ffs->state = FFS_READ_STRINGS;
 402			ret = len;
 403		} else {
 404			pr_info("read strings\n");
 405			ret = __ffs_data_got_strings(ffs, data, len);
 406			if (ret < 0)
 407				break;
 408
 409			ret = ffs_epfiles_create(ffs);
 410			if (ret) {
 411				ffs->state = FFS_CLOSING;
 412				break;
 413			}
 414
 415			ffs->state = FFS_ACTIVE;
 416			mutex_unlock(&ffs->mutex);
 417
 418			ret = ffs_ready(ffs);
 419			if (ret < 0) {
 420				ffs->state = FFS_CLOSING;
 421				return ret;
 422			}
 423
 424			return len;
 425		}
 426		break;
 427
 428	case FFS_ACTIVE:
 429		data = NULL;
 430		/*
 431		 * We're called from user space, we can use _irq
 432		 * rather then _irqsave
 433		 */
 434		spin_lock_irq(&ffs->ev.waitq.lock);
 435		switch (ffs_setup_state_clear_cancelled(ffs)) {
 436		case FFS_SETUP_CANCELLED:
 437			ret = -EIDRM;
 438			goto done_spin;
 439
 440		case FFS_NO_SETUP:
 441			ret = -ESRCH;
 442			goto done_spin;
 443
 444		case FFS_SETUP_PENDING:
 445			break;
 446		}
 447
 448		/* FFS_SETUP_PENDING */
 449		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 450			spin_unlock_irq(&ffs->ev.waitq.lock);
 451			ret = __ffs_ep0_stall(ffs);
 452			break;
 453		}
 454
 455		/* FFS_SETUP_PENDING and not stall */
 456		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 457
 458		spin_unlock_irq(&ffs->ev.waitq.lock);
 459
 460		data = ffs_prepare_buffer(buf, len);
 461		if (IS_ERR(data)) {
 462			ret = PTR_ERR(data);
 463			break;
 464		}
 465
 466		spin_lock_irq(&ffs->ev.waitq.lock);
 467
 468		/*
 469		 * We are guaranteed to be still in FFS_ACTIVE state
 470		 * but the state of setup could have changed from
 471		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 472		 * to check for that.  If that happened we copied data
 473		 * from user space in vain but it's unlikely.
 474		 *
 475		 * For sure we are not in FFS_NO_SETUP since this is
 476		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 477		 * transition can be performed and it's protected by
 478		 * mutex.
 479		 */
 480		if (ffs_setup_state_clear_cancelled(ffs) ==
 481		    FFS_SETUP_CANCELLED) {
 482			ret = -EIDRM;
 483done_spin:
 484			spin_unlock_irq(&ffs->ev.waitq.lock);
 485		} else {
 486			/* unlocks spinlock */
 487			ret = __ffs_ep0_queue_wait(ffs, data, len);
 488		}
 489		kfree(data);
 490		break;
 491
 492	default:
 493		ret = -EBADFD;
 494		break;
 495	}
 496
 497	mutex_unlock(&ffs->mutex);
 498	return ret;
 499}
 500
 501/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 502static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 503				     size_t n)
 504	__releases(&ffs->ev.waitq.lock)
 505{
 506	/*
 507	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 508	 * size of ffs->ev.types array (which is four) so that's how much space
 509	 * we reserve.
 510	 */
 511	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 512	const size_t size = n * sizeof *events;
 513	unsigned i = 0;
 514
 515	memset(events, 0, size);
 516
 517	do {
 518		events[i].type = ffs->ev.types[i];
 519		if (events[i].type == FUNCTIONFS_SETUP) {
 520			events[i].u.setup = ffs->ev.setup;
 521			ffs->setup_state = FFS_SETUP_PENDING;
 522		}
 523	} while (++i < n);
 524
 525	ffs->ev.count -= n;
 526	if (ffs->ev.count)
 527		memmove(ffs->ev.types, ffs->ev.types + n,
 528			ffs->ev.count * sizeof *ffs->ev.types);
 529
 530	spin_unlock_irq(&ffs->ev.waitq.lock);
 531	mutex_unlock(&ffs->mutex);
 532
 533	return copy_to_user(buf, events, size) ? -EFAULT : size;
 534}
 535
 536static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 537			    size_t len, loff_t *ptr)
 538{
 539	struct ffs_data *ffs = file->private_data;
 540	char *data = NULL;
 541	size_t n;
 542	int ret;
 543
 544	/* Fast check if setup was canceled */
 545	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 546		return -EIDRM;
 547
 548	/* Acquire mutex */
 549	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 550	if (ret < 0)
 551		return ret;
 552
 553	/* Check state */
 554	if (ffs->state != FFS_ACTIVE) {
 555		ret = -EBADFD;
 556		goto done_mutex;
 557	}
 558
 559	/*
 560	 * We're called from user space, we can use _irq rather then
 561	 * _irqsave
 562	 */
 563	spin_lock_irq(&ffs->ev.waitq.lock);
 564
 565	switch (ffs_setup_state_clear_cancelled(ffs)) {
 566	case FFS_SETUP_CANCELLED:
 567		ret = -EIDRM;
 568		break;
 569
 570	case FFS_NO_SETUP:
 571		n = len / sizeof(struct usb_functionfs_event);
 572		if (!n) {
 573			ret = -EINVAL;
 574			break;
 575		}
 576
 577		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 578			ret = -EAGAIN;
 579			break;
 580		}
 581
 582		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 583							ffs->ev.count)) {
 584			ret = -EINTR;
 585			break;
 586		}
 587
 588		/* unlocks spinlock */
 589		return __ffs_ep0_read_events(ffs, buf,
 590					     min(n, (size_t)ffs->ev.count));
 591
 592	case FFS_SETUP_PENDING:
 593		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 594			spin_unlock_irq(&ffs->ev.waitq.lock);
 595			ret = __ffs_ep0_stall(ffs);
 596			goto done_mutex;
 597		}
 598
 599		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 600
 601		spin_unlock_irq(&ffs->ev.waitq.lock);
 602
 603		if (len) {
 604			data = kmalloc(len, GFP_KERNEL);
 605			if (!data) {
 606				ret = -ENOMEM;
 607				goto done_mutex;
 608			}
 609		}
 610
 611		spin_lock_irq(&ffs->ev.waitq.lock);
 612
 613		/* See ffs_ep0_write() */
 614		if (ffs_setup_state_clear_cancelled(ffs) ==
 615		    FFS_SETUP_CANCELLED) {
 616			ret = -EIDRM;
 617			break;
 618		}
 619
 620		/* unlocks spinlock */
 621		ret = __ffs_ep0_queue_wait(ffs, data, len);
 622		if ((ret > 0) && (copy_to_user(buf, data, len)))
 623			ret = -EFAULT;
 624		goto done_mutex;
 625
 626	default:
 627		ret = -EBADFD;
 628		break;
 629	}
 630
 631	spin_unlock_irq(&ffs->ev.waitq.lock);
 632done_mutex:
 633	mutex_unlock(&ffs->mutex);
 634	kfree(data);
 635	return ret;
 636}
 637
 638static int ffs_ep0_open(struct inode *inode, struct file *file)
 639{
 640	struct ffs_data *ffs = inode->i_private;
 641
 642	if (ffs->state == FFS_CLOSING)
 643		return -EBUSY;
 644
 645	file->private_data = ffs;
 646	ffs_data_opened(ffs);
 647
 648	return stream_open(inode, file);
 649}
 650
 651static int ffs_ep0_release(struct inode *inode, struct file *file)
 652{
 653	struct ffs_data *ffs = file->private_data;
 654
 655	ffs_data_closed(ffs);
 656
 657	return 0;
 658}
 659
 660static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 661{
 662	struct ffs_data *ffs = file->private_data;
 663	struct usb_gadget *gadget = ffs->gadget;
 664	long ret;
 665
 666	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 667		struct ffs_function *func = ffs->func;
 668		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 669	} else if (gadget && gadget->ops->ioctl) {
 670		ret = gadget->ops->ioctl(gadget, code, value);
 671	} else {
 672		ret = -ENOTTY;
 673	}
 674
 675	return ret;
 676}
 677
 678static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 679{
 680	struct ffs_data *ffs = file->private_data;
 681	__poll_t mask = EPOLLWRNORM;
 682	int ret;
 683
 684	poll_wait(file, &ffs->ev.waitq, wait);
 685
 686	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 687	if (ret < 0)
 688		return mask;
 689
 690	switch (ffs->state) {
 691	case FFS_READ_DESCRIPTORS:
 692	case FFS_READ_STRINGS:
 693		mask |= EPOLLOUT;
 694		break;
 695
 696	case FFS_ACTIVE:
 697		switch (ffs->setup_state) {
 698		case FFS_NO_SETUP:
 699			if (ffs->ev.count)
 700				mask |= EPOLLIN;
 701			break;
 702
 703		case FFS_SETUP_PENDING:
 704		case FFS_SETUP_CANCELLED:
 705			mask |= (EPOLLIN | EPOLLOUT);
 706			break;
 707		}
 708		break;
 709
 710	case FFS_CLOSING:
 711		break;
 712	case FFS_DEACTIVATED:
 713		break;
 714	}
 715
 716	mutex_unlock(&ffs->mutex);
 717
 718	return mask;
 719}
 720
 721static const struct file_operations ffs_ep0_operations = {
 722	.llseek =	no_llseek,
 723
 724	.open =		ffs_ep0_open,
 725	.write =	ffs_ep0_write,
 726	.read =		ffs_ep0_read,
 727	.release =	ffs_ep0_release,
 728	.unlocked_ioctl =	ffs_ep0_ioctl,
 729	.poll =		ffs_ep0_poll,
 730};
 731
 732
 733/* "Normal" endpoints operations ********************************************/
 734
 735static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 736{
 737	struct ffs_io_data *io_data = req->context;
 738
 739	if (req->status)
 740		io_data->status = req->status;
 741	else
 742		io_data->status = req->actual;
 743
 744	complete(&io_data->done);
 745}
 746
 747static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 748{
 749	ssize_t ret = copy_to_iter(data, data_len, iter);
 750	if (ret == data_len)
 751		return ret;
 752
 753	if (iov_iter_count(iter))
 754		return -EFAULT;
 755
 756	/*
 757	 * Dear user space developer!
 758	 *
 759	 * TL;DR: To stop getting below error message in your kernel log, change
 760	 * user space code using functionfs to align read buffers to a max
 761	 * packet size.
 762	 *
 763	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 764	 * packet size.  When unaligned buffer is passed to functionfs, it
 765	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 766	 *
 767	 * Unfortunately, this means that host may send more data than was
 768	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 769	 * that excess data so it simply drops it.
 770	 *
 771	 * Was the buffer aligned in the first place, no such problem would
 772	 * happen.
 773	 *
 774	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 775	 * by splitting a request into multiple parts.  This splitting may still
 776	 * be a problem though so it’s likely best to align the buffer
 777	 * regardless of it being AIO or not..
 778	 *
 779	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 780	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 781	 * affected.
 782	 */
 783	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 784	       "Align read buffer size to max packet size to avoid the problem.\n",
 785	       data_len, ret);
 786
 787	return ret;
 788}
 789
 790/*
 791 * allocate a virtually contiguous buffer and create a scatterlist describing it
 792 * @sg_table	- pointer to a place to be filled with sg_table contents
 793 * @size	- required buffer size
 794 */
 795static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 796{
 797	struct page **pages;
 798	void *vaddr, *ptr;
 799	unsigned int n_pages;
 800	int i;
 801
 802	vaddr = vmalloc(sz);
 803	if (!vaddr)
 804		return NULL;
 805
 806	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 807	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 808	if (!pages) {
 809		vfree(vaddr);
 810
 811		return NULL;
 812	}
 813	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 814		pages[i] = vmalloc_to_page(ptr);
 815
 816	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 817		kvfree(pages);
 818		vfree(vaddr);
 819
 820		return NULL;
 821	}
 822	kvfree(pages);
 823
 824	return vaddr;
 825}
 826
 827static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 828	size_t data_len)
 829{
 830	if (io_data->use_sg)
 831		return ffs_build_sg_list(&io_data->sgt, data_len);
 832
 833	return kmalloc(data_len, GFP_KERNEL);
 834}
 835
 836static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 837{
 838	if (!io_data->buf)
 839		return;
 840
 841	if (io_data->use_sg) {
 842		sg_free_table(&io_data->sgt);
 843		vfree(io_data->buf);
 844	} else {
 845		kfree(io_data->buf);
 846	}
 847}
 848
 849static void ffs_user_copy_worker(struct work_struct *work)
 850{
 851	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 852						   work);
 853	int ret = io_data->status;
 854	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 855	unsigned long flags;
 856
 857	if (io_data->read && ret > 0) {
 858		kthread_use_mm(io_data->mm);
 859		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 860		kthread_unuse_mm(io_data->mm);
 861	}
 862
 863	io_data->kiocb->ki_complete(io_data->kiocb, ret);
 864
 865	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 866		eventfd_signal(io_data->ffs->ffs_eventfd);
 867
 868	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
 869	usb_ep_free_request(io_data->ep, io_data->req);
 870	io_data->req = NULL;
 871	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
 872
 873	if (io_data->read)
 874		kfree(io_data->to_free);
 875	ffs_free_buffer(io_data);
 876	kfree(io_data);
 877}
 878
 879static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 880					 struct usb_request *req)
 881{
 882	struct ffs_io_data *io_data = req->context;
 883	struct ffs_data *ffs = io_data->ffs;
 884
 885	io_data->status = req->status ? req->status : req->actual;
 886
 887	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 888	queue_work(ffs->io_completion_wq, &io_data->work);
 889}
 890
 891static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 892{
 893	/*
 894	 * See comment in struct ffs_epfile for full read_buffer pointer
 895	 * synchronisation story.
 896	 */
 897	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 898	if (buf && buf != READ_BUFFER_DROP)
 899		kfree(buf);
 900}
 901
 902/* Assumes epfile->mutex is held. */
 903static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 904					  struct iov_iter *iter)
 905{
 906	/*
 907	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 908	 * the buffer while we are using it.  See comment in struct ffs_epfile
 909	 * for full read_buffer pointer synchronisation story.
 910	 */
 911	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 912	ssize_t ret;
 913	if (!buf || buf == READ_BUFFER_DROP)
 914		return 0;
 915
 916	ret = copy_to_iter(buf->data, buf->length, iter);
 917	if (buf->length == ret) {
 918		kfree(buf);
 919		return ret;
 920	}
 921
 922	if (iov_iter_count(iter)) {
 923		ret = -EFAULT;
 924	} else {
 925		buf->length -= ret;
 926		buf->data += ret;
 927	}
 928
 929	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 930		kfree(buf);
 931
 932	return ret;
 933}
 934
 935/* Assumes epfile->mutex is held. */
 936static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 937				      void *data, int data_len,
 938				      struct iov_iter *iter)
 939{
 940	struct ffs_buffer *buf;
 941
 942	ssize_t ret = copy_to_iter(data, data_len, iter);
 943	if (data_len == ret)
 944		return ret;
 945
 946	if (iov_iter_count(iter))
 947		return -EFAULT;
 948
 949	/* See ffs_copy_to_iter for more context. */
 950	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 951		data_len, ret);
 952
 953	data_len -= ret;
 954	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
 955	if (!buf)
 956		return -ENOMEM;
 957	buf->length = data_len;
 958	buf->data = buf->storage;
 959	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
 960
 961	/*
 962	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 963	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 964	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 965	 * story.
 966	 */
 967	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 968		kfree(buf);
 969
 970	return ret;
 971}
 972
 973static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
 974{
 975	struct ffs_epfile *epfile = file->private_data;
 976	struct ffs_ep *ep;
 977	int ret;
 978
 979	/* Wait for endpoint to be enabled */
 980	ep = epfile->ep;
 981	if (!ep) {
 982		if (file->f_flags & O_NONBLOCK)
 983			return ERR_PTR(-EAGAIN);
 984
 985		ret = wait_event_interruptible(
 986				epfile->ffs->wait, (ep = epfile->ep));
 987		if (ret)
 988			return ERR_PTR(-EINTR);
 989	}
 990
 991	return ep;
 992}
 993
 994static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 995{
 996	struct ffs_epfile *epfile = file->private_data;
 997	struct usb_request *req;
 998	struct ffs_ep *ep;
 999	char *data = NULL;
1000	ssize_t ret, data_len = -EINVAL;
1001	int halt;
1002
1003	/* Are we still active? */
1004	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1005		return -ENODEV;
1006
1007	ep = ffs_epfile_wait_ep(file);
1008	if (IS_ERR(ep))
1009		return PTR_ERR(ep);
1010
1011	/* Do we halt? */
1012	halt = (!io_data->read == !epfile->in);
1013	if (halt && epfile->isoc)
1014		return -EINVAL;
1015
1016	/* We will be using request and read_buffer */
1017	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1018	if (ret)
1019		goto error;
1020
1021	/* Allocate & copy */
1022	if (!halt) {
1023		struct usb_gadget *gadget;
1024
1025		/*
1026		 * Do we have buffered data from previous partial read?  Check
1027		 * that for synchronous case only because we do not have
1028		 * facility to ‘wake up’ a pending asynchronous read and push
1029		 * buffered data to it which we would need to make things behave
1030		 * consistently.
1031		 */
1032		if (!io_data->aio && io_data->read) {
1033			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1034			if (ret)
1035				goto error_mutex;
1036		}
1037
1038		/*
1039		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1040		 * before the waiting completes, so do not assign to 'gadget'
1041		 * earlier
1042		 */
1043		gadget = epfile->ffs->gadget;
1044
1045		spin_lock_irq(&epfile->ffs->eps_lock);
1046		/* In the meantime, endpoint got disabled or changed. */
1047		if (epfile->ep != ep) {
1048			ret = -ESHUTDOWN;
1049			goto error_lock;
1050		}
1051		data_len = iov_iter_count(&io_data->data);
1052		/*
1053		 * Controller may require buffer size to be aligned to
1054		 * maxpacketsize of an out endpoint.
1055		 */
1056		if (io_data->read)
1057			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1058
1059		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1060		spin_unlock_irq(&epfile->ffs->eps_lock);
1061
1062		data = ffs_alloc_buffer(io_data, data_len);
1063		if (!data) {
1064			ret = -ENOMEM;
1065			goto error_mutex;
1066		}
1067		if (!io_data->read &&
1068		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1069			ret = -EFAULT;
1070			goto error_mutex;
1071		}
1072	}
1073
1074	spin_lock_irq(&epfile->ffs->eps_lock);
1075
1076	if (epfile->ep != ep) {
1077		/* In the meantime, endpoint got disabled or changed. */
1078		ret = -ESHUTDOWN;
1079	} else if (halt) {
1080		ret = usb_ep_set_halt(ep->ep);
1081		if (!ret)
1082			ret = -EBADMSG;
1083	} else if (data_len == -EINVAL) {
1084		/*
1085		 * Sanity Check: even though data_len can't be used
1086		 * uninitialized at the time I write this comment, some
1087		 * compilers complain about this situation.
1088		 * In order to keep the code clean from warnings, data_len is
1089		 * being initialized to -EINVAL during its declaration, which
1090		 * means we can't rely on compiler anymore to warn no future
1091		 * changes won't result in data_len being used uninitialized.
1092		 * For such reason, we're adding this redundant sanity check
1093		 * here.
1094		 */
1095		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1096		ret = -EINVAL;
1097	} else if (!io_data->aio) {
1098		bool interrupted = false;
1099
1100		req = ep->req;
1101		if (io_data->use_sg) {
1102			req->buf = NULL;
1103			req->sg	= io_data->sgt.sgl;
1104			req->num_sgs = io_data->sgt.nents;
1105		} else {
1106			req->buf = data;
1107			req->num_sgs = 0;
1108		}
1109		req->length = data_len;
1110
1111		io_data->buf = data;
1112
1113		init_completion(&io_data->done);
1114		req->context  = io_data;
1115		req->complete = ffs_epfile_io_complete;
1116
1117		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118		if (ret < 0)
1119			goto error_lock;
1120
1121		spin_unlock_irq(&epfile->ffs->eps_lock);
1122
1123		if (wait_for_completion_interruptible(&io_data->done)) {
1124			spin_lock_irq(&epfile->ffs->eps_lock);
1125			if (epfile->ep != ep) {
1126				ret = -ESHUTDOWN;
1127				goto error_lock;
1128			}
1129			/*
1130			 * To avoid race condition with ffs_epfile_io_complete,
1131			 * dequeue the request first then check
1132			 * status. usb_ep_dequeue API should guarantee no race
1133			 * condition with req->complete callback.
1134			 */
1135			usb_ep_dequeue(ep->ep, req);
1136			spin_unlock_irq(&epfile->ffs->eps_lock);
1137			wait_for_completion(&io_data->done);
1138			interrupted = io_data->status < 0;
1139		}
1140
1141		if (interrupted)
1142			ret = -EINTR;
1143		else if (io_data->read && io_data->status > 0)
1144			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1145						     &io_data->data);
1146		else
1147			ret = io_data->status;
1148		goto error_mutex;
1149	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1150		ret = -ENOMEM;
1151	} else {
1152		if (io_data->use_sg) {
1153			req->buf = NULL;
1154			req->sg	= io_data->sgt.sgl;
1155			req->num_sgs = io_data->sgt.nents;
1156		} else {
1157			req->buf = data;
1158			req->num_sgs = 0;
1159		}
1160		req->length = data_len;
1161
1162		io_data->buf = data;
1163		io_data->ep = ep->ep;
1164		io_data->req = req;
1165		io_data->ffs = epfile->ffs;
1166
1167		req->context  = io_data;
1168		req->complete = ffs_epfile_async_io_complete;
1169
1170		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1171		if (ret) {
1172			io_data->req = NULL;
1173			usb_ep_free_request(ep->ep, req);
1174			goto error_lock;
1175		}
1176
1177		ret = -EIOCBQUEUED;
1178		/*
1179		 * Do not kfree the buffer in this function.  It will be freed
1180		 * by ffs_user_copy_worker.
1181		 */
1182		data = NULL;
1183	}
1184
1185error_lock:
1186	spin_unlock_irq(&epfile->ffs->eps_lock);
1187error_mutex:
1188	mutex_unlock(&epfile->mutex);
1189error:
1190	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1191		ffs_free_buffer(io_data);
1192	return ret;
1193}
1194
1195static int
1196ffs_epfile_open(struct inode *inode, struct file *file)
1197{
1198	struct ffs_epfile *epfile = inode->i_private;
1199
1200	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1201		return -ENODEV;
1202
1203	file->private_data = epfile;
1204	ffs_data_opened(epfile->ffs);
1205
1206	return stream_open(inode, file);
1207}
1208
1209static int ffs_aio_cancel(struct kiocb *kiocb)
1210{
1211	struct ffs_io_data *io_data = kiocb->private;
1212	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1213	unsigned long flags;
1214	int value;
1215
1216	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1217
1218	if (io_data && io_data->ep && io_data->req)
1219		value = usb_ep_dequeue(io_data->ep, io_data->req);
1220	else
1221		value = -EINVAL;
1222
1223	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1224
1225	return value;
1226}
1227
1228static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1229{
1230	struct ffs_io_data io_data, *p = &io_data;
1231	ssize_t res;
1232
1233	if (!is_sync_kiocb(kiocb)) {
1234		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1235		if (!p)
1236			return -ENOMEM;
1237		p->aio = true;
1238	} else {
1239		memset(p, 0, sizeof(*p));
1240		p->aio = false;
1241	}
1242
1243	p->read = false;
1244	p->kiocb = kiocb;
1245	p->data = *from;
1246	p->mm = current->mm;
1247
1248	kiocb->private = p;
1249
1250	if (p->aio)
1251		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1252
1253	res = ffs_epfile_io(kiocb->ki_filp, p);
1254	if (res == -EIOCBQUEUED)
1255		return res;
1256	if (p->aio)
1257		kfree(p);
1258	else
1259		*from = p->data;
1260	return res;
1261}
1262
1263static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1264{
1265	struct ffs_io_data io_data, *p = &io_data;
1266	ssize_t res;
1267
1268	if (!is_sync_kiocb(kiocb)) {
1269		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1270		if (!p)
1271			return -ENOMEM;
1272		p->aio = true;
1273	} else {
1274		memset(p, 0, sizeof(*p));
1275		p->aio = false;
1276	}
1277
1278	p->read = true;
1279	p->kiocb = kiocb;
1280	if (p->aio) {
1281		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1282		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1283			kfree(p);
1284			return -ENOMEM;
1285		}
1286	} else {
1287		p->data = *to;
1288		p->to_free = NULL;
1289	}
1290	p->mm = current->mm;
1291
1292	kiocb->private = p;
1293
1294	if (p->aio)
1295		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1296
1297	res = ffs_epfile_io(kiocb->ki_filp, p);
1298	if (res == -EIOCBQUEUED)
1299		return res;
1300
1301	if (p->aio) {
1302		kfree(p->to_free);
1303		kfree(p);
1304	} else {
1305		*to = p->data;
1306	}
1307	return res;
1308}
1309
1310static void ffs_dmabuf_release(struct kref *ref)
1311{
1312	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1313	struct dma_buf_attachment *attach = priv->attach;
1314	struct dma_buf *dmabuf = attach->dmabuf;
1315
1316	pr_vdebug("FFS DMABUF release\n");
1317	dma_resv_lock(dmabuf->resv, NULL);
1318	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1319	dma_resv_unlock(dmabuf->resv);
1320
1321	dma_buf_detach(attach->dmabuf, attach);
1322	dma_buf_put(dmabuf);
1323	kfree(priv);
1324}
1325
1326static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1327{
1328	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1329
1330	kref_get(&priv->ref);
1331}
1332
1333static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1334{
1335	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1336
1337	kref_put(&priv->ref, ffs_dmabuf_release);
1338}
1339
1340static int
1341ffs_epfile_release(struct inode *inode, struct file *file)
1342{
1343	struct ffs_epfile *epfile = inode->i_private;
1344	struct ffs_dmabuf_priv *priv, *tmp;
1345	struct ffs_data *ffs = epfile->ffs;
1346
1347	mutex_lock(&epfile->dmabufs_mutex);
1348
1349	/* Close all attached DMABUFs */
1350	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1351		/* Cancel any pending transfer */
1352		spin_lock_irq(&ffs->eps_lock);
1353		if (priv->ep && priv->req)
1354			usb_ep_dequeue(priv->ep, priv->req);
1355		spin_unlock_irq(&ffs->eps_lock);
1356
1357		list_del(&priv->entry);
1358		ffs_dmabuf_put(priv->attach);
1359	}
1360
1361	mutex_unlock(&epfile->dmabufs_mutex);
1362
1363	__ffs_epfile_read_buffer_free(epfile);
1364	ffs_data_closed(epfile->ffs);
1365
1366	return 0;
1367}
1368
1369static void ffs_dmabuf_cleanup(struct work_struct *work)
1370{
1371	struct ffs_dma_fence *dma_fence =
1372		container_of(work, struct ffs_dma_fence, work);
1373	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1374	struct dma_buf_attachment *attach = priv->attach;
1375	struct dma_fence *fence = &dma_fence->base;
1376
1377	ffs_dmabuf_put(attach);
1378	dma_fence_put(fence);
1379}
1380
1381static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1382{
1383	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1384	struct dma_fence *fence = &dma_fence->base;
1385	bool cookie = dma_fence_begin_signalling();
1386
1387	dma_fence_get(fence);
1388	fence->error = ret;
1389	dma_fence_signal(fence);
1390	dma_fence_end_signalling(cookie);
1391
1392	/*
1393	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1394	 * It can't be done here, as the unref functions might try to lock
1395	 * the resv object, which would deadlock.
1396	 */
1397	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1398	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1399}
1400
1401static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1402					  struct usb_request *req)
1403{
1404	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1405	ffs_dmabuf_signal_done(req->context, req->status);
1406	usb_ep_free_request(ep, req);
1407}
1408
1409static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1410{
1411	return "functionfs";
1412}
1413
1414static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1415{
1416	return "";
1417}
1418
1419static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1420{
1421	struct ffs_dma_fence *dma_fence =
1422		container_of(fence, struct ffs_dma_fence, base);
1423
1424	kfree(dma_fence);
1425}
1426
1427static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1428	.get_driver_name	= ffs_dmabuf_get_driver_name,
1429	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1430	.release		= ffs_dmabuf_fence_release,
1431};
1432
1433static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1434{
1435	if (!nonblock)
1436		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1437
1438	if (!dma_resv_trylock(dmabuf->resv))
1439		return -EBUSY;
1440
1441	return 0;
1442}
1443
1444static struct dma_buf_attachment *
1445ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1446{
1447	struct device *dev = epfile->ffs->gadget->dev.parent;
1448	struct dma_buf_attachment *attach = NULL;
1449	struct ffs_dmabuf_priv *priv;
1450
1451	mutex_lock(&epfile->dmabufs_mutex);
1452
1453	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1454		if (priv->attach->dev == dev
1455		    && priv->attach->dmabuf == dmabuf) {
1456			attach = priv->attach;
1457			break;
1458		}
1459	}
1460
1461	if (attach)
1462		ffs_dmabuf_get(attach);
1463
1464	mutex_unlock(&epfile->dmabufs_mutex);
1465
1466	return attach ?: ERR_PTR(-EPERM);
1467}
1468
1469static int ffs_dmabuf_attach(struct file *file, int fd)
1470{
1471	bool nonblock = file->f_flags & O_NONBLOCK;
1472	struct ffs_epfile *epfile = file->private_data;
1473	struct usb_gadget *gadget = epfile->ffs->gadget;
1474	struct dma_buf_attachment *attach;
1475	struct ffs_dmabuf_priv *priv;
1476	enum dma_data_direction dir;
1477	struct sg_table *sg_table;
1478	struct dma_buf *dmabuf;
1479	int err;
1480
1481	if (!gadget || !gadget->sg_supported)
1482		return -EPERM;
1483
1484	dmabuf = dma_buf_get(fd);
1485	if (IS_ERR(dmabuf))
1486		return PTR_ERR(dmabuf);
1487
1488	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1489	if (IS_ERR(attach)) {
1490		err = PTR_ERR(attach);
1491		goto err_dmabuf_put;
1492	}
1493
1494	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1495	if (!priv) {
1496		err = -ENOMEM;
1497		goto err_dmabuf_detach;
1498	}
1499
1500	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1501
1502	err = ffs_dma_resv_lock(dmabuf, nonblock);
1503	if (err)
1504		goto err_free_priv;
1505
1506	sg_table = dma_buf_map_attachment(attach, dir);
1507	dma_resv_unlock(dmabuf->resv);
1508
1509	if (IS_ERR(sg_table)) {
1510		err = PTR_ERR(sg_table);
1511		goto err_free_priv;
1512	}
1513
1514	attach->importer_priv = priv;
1515
1516	priv->sgt = sg_table;
1517	priv->dir = dir;
1518	priv->ffs = epfile->ffs;
1519	priv->attach = attach;
1520	spin_lock_init(&priv->lock);
1521	kref_init(&priv->ref);
1522	priv->context = dma_fence_context_alloc(1);
1523
1524	mutex_lock(&epfile->dmabufs_mutex);
1525	list_add(&priv->entry, &epfile->dmabufs);
1526	mutex_unlock(&epfile->dmabufs_mutex);
1527
1528	return 0;
1529
1530err_free_priv:
1531	kfree(priv);
1532err_dmabuf_detach:
1533	dma_buf_detach(dmabuf, attach);
1534err_dmabuf_put:
1535	dma_buf_put(dmabuf);
1536
1537	return err;
1538}
1539
1540static int ffs_dmabuf_detach(struct file *file, int fd)
1541{
1542	struct ffs_epfile *epfile = file->private_data;
1543	struct ffs_data *ffs = epfile->ffs;
1544	struct device *dev = ffs->gadget->dev.parent;
1545	struct ffs_dmabuf_priv *priv, *tmp;
1546	struct dma_buf *dmabuf;
1547	int ret = -EPERM;
1548
1549	dmabuf = dma_buf_get(fd);
1550	if (IS_ERR(dmabuf))
1551		return PTR_ERR(dmabuf);
1552
1553	mutex_lock(&epfile->dmabufs_mutex);
1554
1555	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1556		if (priv->attach->dev == dev
1557		    && priv->attach->dmabuf == dmabuf) {
1558			/* Cancel any pending transfer */
1559			spin_lock_irq(&ffs->eps_lock);
1560			if (priv->ep && priv->req)
1561				usb_ep_dequeue(priv->ep, priv->req);
1562			spin_unlock_irq(&ffs->eps_lock);
1563
1564			list_del(&priv->entry);
1565
1566			/* Unref the reference from ffs_dmabuf_attach() */
1567			ffs_dmabuf_put(priv->attach);
1568			ret = 0;
1569			break;
1570		}
1571	}
1572
1573	mutex_unlock(&epfile->dmabufs_mutex);
1574	dma_buf_put(dmabuf);
1575
1576	return ret;
1577}
1578
1579static int ffs_dmabuf_transfer(struct file *file,
1580			       const struct usb_ffs_dmabuf_transfer_req *req)
1581{
1582	bool nonblock = file->f_flags & O_NONBLOCK;
1583	struct ffs_epfile *epfile = file->private_data;
1584	struct dma_buf_attachment *attach;
1585	struct ffs_dmabuf_priv *priv;
1586	struct ffs_dma_fence *fence;
1587	struct usb_request *usb_req;
1588	enum dma_resv_usage resv_dir;
1589	struct dma_buf *dmabuf;
1590	unsigned long timeout;
1591	struct ffs_ep *ep;
1592	bool cookie;
1593	u32 seqno;
1594	long retl;
1595	int ret;
1596
1597	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1598		return -EINVAL;
1599
1600	dmabuf = dma_buf_get(req->fd);
1601	if (IS_ERR(dmabuf))
1602		return PTR_ERR(dmabuf);
1603
1604	if (req->length > dmabuf->size || req->length == 0) {
1605		ret = -EINVAL;
1606		goto err_dmabuf_put;
1607	}
1608
1609	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1610	if (IS_ERR(attach)) {
1611		ret = PTR_ERR(attach);
1612		goto err_dmabuf_put;
1613	}
1614
1615	priv = attach->importer_priv;
1616
1617	ep = ffs_epfile_wait_ep(file);
1618	if (IS_ERR(ep)) {
1619		ret = PTR_ERR(ep);
1620		goto err_attachment_put;
1621	}
1622
1623	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1624	if (ret)
1625		goto err_attachment_put;
1626
1627	/* Make sure we don't have writers */
1628	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1629	retl = dma_resv_wait_timeout(dmabuf->resv,
1630				     dma_resv_usage_rw(epfile->in),
1631				     true, timeout);
1632	if (retl == 0)
1633		retl = -EBUSY;
1634	if (retl < 0) {
1635		ret = (int)retl;
1636		goto err_resv_unlock;
1637	}
1638
1639	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1640	if (ret)
1641		goto err_resv_unlock;
1642
1643	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1644	if (!fence) {
1645		ret = -ENOMEM;
1646		goto err_resv_unlock;
1647	}
1648
1649	fence->priv = priv;
1650
1651	spin_lock_irq(&epfile->ffs->eps_lock);
1652
1653	/* In the meantime, endpoint got disabled or changed. */
1654	if (epfile->ep != ep) {
1655		ret = -ESHUTDOWN;
1656		goto err_fence_put;
1657	}
1658
1659	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1660	if (!usb_req) {
1661		ret = -ENOMEM;
1662		goto err_fence_put;
1663	}
1664
1665	/*
1666	 * usb_ep_queue() guarantees that all transfers are processed in the
1667	 * order they are enqueued, so we can use a simple incrementing
1668	 * sequence number for the dma_fence.
1669	 */
1670	seqno = atomic_add_return(1, &epfile->seqno);
1671
1672	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1673		       &priv->lock, priv->context, seqno);
1674
1675	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1676
1677	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1678	dma_resv_unlock(dmabuf->resv);
1679
1680	/* Now that the dma_fence is in place, queue the transfer. */
1681
1682	usb_req->length = req->length;
1683	usb_req->buf = NULL;
1684	usb_req->sg = priv->sgt->sgl;
1685	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1686	usb_req->sg_was_mapped = true;
1687	usb_req->context  = fence;
1688	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1689
1690	cookie = dma_fence_begin_signalling();
1691	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1692	dma_fence_end_signalling(cookie);
1693	if (!ret) {
1694		priv->req = usb_req;
1695		priv->ep = ep->ep;
1696	} else {
1697		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1698		ffs_dmabuf_signal_done(fence, ret);
1699		usb_ep_free_request(ep->ep, usb_req);
1700	}
1701
1702	spin_unlock_irq(&epfile->ffs->eps_lock);
1703	dma_buf_put(dmabuf);
1704
1705	return ret;
1706
1707err_fence_put:
1708	spin_unlock_irq(&epfile->ffs->eps_lock);
1709	dma_fence_put(&fence->base);
1710err_resv_unlock:
1711	dma_resv_unlock(dmabuf->resv);
1712err_attachment_put:
1713	ffs_dmabuf_put(attach);
1714err_dmabuf_put:
1715	dma_buf_put(dmabuf);
1716
1717	return ret;
1718}
1719
1720static long ffs_epfile_ioctl(struct file *file, unsigned code,
1721			     unsigned long value)
1722{
1723	struct ffs_epfile *epfile = file->private_data;
1724	struct ffs_ep *ep;
1725	int ret;
1726
1727	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1728		return -ENODEV;
1729
1730	switch (code) {
1731	case FUNCTIONFS_DMABUF_ATTACH:
1732	{
1733		int fd;
1734
1735		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1736			ret = -EFAULT;
1737			break;
1738		}
1739
1740		return ffs_dmabuf_attach(file, fd);
1741	}
1742	case FUNCTIONFS_DMABUF_DETACH:
1743	{
1744		int fd;
1745
1746		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1747			ret = -EFAULT;
1748			break;
1749		}
1750
1751		return ffs_dmabuf_detach(file, fd);
1752	}
1753	case FUNCTIONFS_DMABUF_TRANSFER:
1754	{
1755		struct usb_ffs_dmabuf_transfer_req req;
1756
1757		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1758			ret = -EFAULT;
1759			break;
1760		}
1761
1762		return ffs_dmabuf_transfer(file, &req);
1763	}
1764	default:
1765		break;
1766	}
1767
1768	/* Wait for endpoint to be enabled */
1769	ep = ffs_epfile_wait_ep(file);
1770	if (IS_ERR(ep))
1771		return PTR_ERR(ep);
1772
1773	spin_lock_irq(&epfile->ffs->eps_lock);
1774
1775	/* In the meantime, endpoint got disabled or changed. */
1776	if (epfile->ep != ep) {
1777		spin_unlock_irq(&epfile->ffs->eps_lock);
1778		return -ESHUTDOWN;
1779	}
1780
1781	switch (code) {
1782	case FUNCTIONFS_FIFO_STATUS:
1783		ret = usb_ep_fifo_status(epfile->ep->ep);
1784		break;
1785	case FUNCTIONFS_FIFO_FLUSH:
1786		usb_ep_fifo_flush(epfile->ep->ep);
1787		ret = 0;
1788		break;
1789	case FUNCTIONFS_CLEAR_HALT:
1790		ret = usb_ep_clear_halt(epfile->ep->ep);
1791		break;
1792	case FUNCTIONFS_ENDPOINT_REVMAP:
1793		ret = epfile->ep->num;
1794		break;
1795	case FUNCTIONFS_ENDPOINT_DESC:
1796	{
1797		int desc_idx;
1798		struct usb_endpoint_descriptor desc1, *desc;
1799
1800		switch (epfile->ffs->gadget->speed) {
1801		case USB_SPEED_SUPER:
1802		case USB_SPEED_SUPER_PLUS:
1803			desc_idx = 2;
1804			break;
1805		case USB_SPEED_HIGH:
1806			desc_idx = 1;
1807			break;
1808		default:
1809			desc_idx = 0;
1810		}
1811
1812		desc = epfile->ep->descs[desc_idx];
1813		memcpy(&desc1, desc, desc->bLength);
1814
1815		spin_unlock_irq(&epfile->ffs->eps_lock);
1816		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1817		if (ret)
1818			ret = -EFAULT;
1819		return ret;
1820	}
1821	default:
1822		ret = -ENOTTY;
1823	}
1824	spin_unlock_irq(&epfile->ffs->eps_lock);
1825
1826	return ret;
1827}
1828
1829static const struct file_operations ffs_epfile_operations = {
1830	.llseek =	no_llseek,
1831
1832	.open =		ffs_epfile_open,
1833	.write_iter =	ffs_epfile_write_iter,
1834	.read_iter =	ffs_epfile_read_iter,
1835	.release =	ffs_epfile_release,
1836	.unlocked_ioctl =	ffs_epfile_ioctl,
1837	.compat_ioctl = compat_ptr_ioctl,
1838};
1839
1840
1841/* File system and super block operations ***********************************/
1842
1843/*
1844 * Mounting the file system creates a controller file, used first for
1845 * function configuration then later for event monitoring.
1846 */
1847
1848static struct inode *__must_check
1849ffs_sb_make_inode(struct super_block *sb, void *data,
1850		  const struct file_operations *fops,
1851		  const struct inode_operations *iops,
1852		  struct ffs_file_perms *perms)
1853{
1854	struct inode *inode;
1855
1856	inode = new_inode(sb);
1857
1858	if (inode) {
1859		struct timespec64 ts = inode_set_ctime_current(inode);
1860
1861		inode->i_ino	 = get_next_ino();
1862		inode->i_mode    = perms->mode;
1863		inode->i_uid     = perms->uid;
1864		inode->i_gid     = perms->gid;
1865		inode_set_atime_to_ts(inode, ts);
1866		inode_set_mtime_to_ts(inode, ts);
1867		inode->i_private = data;
1868		if (fops)
1869			inode->i_fop = fops;
1870		if (iops)
1871			inode->i_op  = iops;
1872	}
1873
1874	return inode;
1875}
1876
1877/* Create "regular" file */
1878static struct dentry *ffs_sb_create_file(struct super_block *sb,
1879					const char *name, void *data,
1880					const struct file_operations *fops)
1881{
1882	struct ffs_data	*ffs = sb->s_fs_info;
1883	struct dentry	*dentry;
1884	struct inode	*inode;
1885
1886	dentry = d_alloc_name(sb->s_root, name);
1887	if (!dentry)
1888		return NULL;
1889
1890	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1891	if (!inode) {
1892		dput(dentry);
1893		return NULL;
1894	}
1895
1896	d_add(dentry, inode);
1897	return dentry;
1898}
1899
1900/* Super block */
1901static const struct super_operations ffs_sb_operations = {
1902	.statfs =	simple_statfs,
1903	.drop_inode =	generic_delete_inode,
1904};
1905
1906struct ffs_sb_fill_data {
1907	struct ffs_file_perms perms;
1908	umode_t root_mode;
1909	const char *dev_name;
1910	bool no_disconnect;
1911	struct ffs_data *ffs_data;
1912};
1913
1914static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1915{
1916	struct ffs_sb_fill_data *data = fc->fs_private;
1917	struct inode	*inode;
1918	struct ffs_data	*ffs = data->ffs_data;
1919
1920	ffs->sb              = sb;
1921	data->ffs_data       = NULL;
1922	sb->s_fs_info        = ffs;
1923	sb->s_blocksize      = PAGE_SIZE;
1924	sb->s_blocksize_bits = PAGE_SHIFT;
1925	sb->s_magic          = FUNCTIONFS_MAGIC;
1926	sb->s_op             = &ffs_sb_operations;
1927	sb->s_time_gran      = 1;
1928
1929	/* Root inode */
1930	data->perms.mode = data->root_mode;
1931	inode = ffs_sb_make_inode(sb, NULL,
1932				  &simple_dir_operations,
1933				  &simple_dir_inode_operations,
1934				  &data->perms);
1935	sb->s_root = d_make_root(inode);
1936	if (!sb->s_root)
1937		return -ENOMEM;
1938
1939	/* EP0 file */
1940	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1941		return -ENOMEM;
1942
1943	return 0;
1944}
1945
1946enum {
1947	Opt_no_disconnect,
1948	Opt_rmode,
1949	Opt_fmode,
1950	Opt_mode,
1951	Opt_uid,
1952	Opt_gid,
1953};
1954
1955static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1956	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1957	fsparam_u32	("rmode",		Opt_rmode),
1958	fsparam_u32	("fmode",		Opt_fmode),
1959	fsparam_u32	("mode",		Opt_mode),
1960	fsparam_u32	("uid",			Opt_uid),
1961	fsparam_u32	("gid",			Opt_gid),
1962	{}
1963};
1964
1965static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1966{
1967	struct ffs_sb_fill_data *data = fc->fs_private;
1968	struct fs_parse_result result;
1969	int opt;
1970
1971	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1972	if (opt < 0)
1973		return opt;
1974
1975	switch (opt) {
1976	case Opt_no_disconnect:
1977		data->no_disconnect = result.boolean;
1978		break;
1979	case Opt_rmode:
1980		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1981		break;
1982	case Opt_fmode:
1983		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1984		break;
1985	case Opt_mode:
1986		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1987		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1988		break;
1989
1990	case Opt_uid:
1991		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1992		if (!uid_valid(data->perms.uid))
1993			goto unmapped_value;
1994		break;
1995	case Opt_gid:
1996		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1997		if (!gid_valid(data->perms.gid))
1998			goto unmapped_value;
1999		break;
2000
2001	default:
2002		return -ENOPARAM;
2003	}
2004
2005	return 0;
2006
2007unmapped_value:
2008	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2009}
2010
2011/*
2012 * Set up the superblock for a mount.
2013 */
2014static int ffs_fs_get_tree(struct fs_context *fc)
2015{
2016	struct ffs_sb_fill_data *ctx = fc->fs_private;
2017	struct ffs_data	*ffs;
2018	int ret;
2019
2020	if (!fc->source)
2021		return invalf(fc, "No source specified");
2022
2023	ffs = ffs_data_new(fc->source);
2024	if (!ffs)
2025		return -ENOMEM;
2026	ffs->file_perms = ctx->perms;
2027	ffs->no_disconnect = ctx->no_disconnect;
2028
2029	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2030	if (!ffs->dev_name) {
2031		ffs_data_put(ffs);
2032		return -ENOMEM;
2033	}
2034
2035	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2036	if (ret) {
2037		ffs_data_put(ffs);
2038		return ret;
2039	}
2040
2041	ctx->ffs_data = ffs;
2042	return get_tree_nodev(fc, ffs_sb_fill);
2043}
2044
2045static void ffs_fs_free_fc(struct fs_context *fc)
2046{
2047	struct ffs_sb_fill_data *ctx = fc->fs_private;
2048
2049	if (ctx) {
2050		if (ctx->ffs_data) {
2051			ffs_data_put(ctx->ffs_data);
2052		}
2053
2054		kfree(ctx);
2055	}
2056}
2057
2058static const struct fs_context_operations ffs_fs_context_ops = {
2059	.free		= ffs_fs_free_fc,
2060	.parse_param	= ffs_fs_parse_param,
2061	.get_tree	= ffs_fs_get_tree,
2062};
2063
2064static int ffs_fs_init_fs_context(struct fs_context *fc)
2065{
2066	struct ffs_sb_fill_data *ctx;
2067
2068	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2069	if (!ctx)
2070		return -ENOMEM;
2071
2072	ctx->perms.mode = S_IFREG | 0600;
2073	ctx->perms.uid = GLOBAL_ROOT_UID;
2074	ctx->perms.gid = GLOBAL_ROOT_GID;
2075	ctx->root_mode = S_IFDIR | 0500;
2076	ctx->no_disconnect = false;
2077
2078	fc->fs_private = ctx;
2079	fc->ops = &ffs_fs_context_ops;
2080	return 0;
2081}
2082
2083static void
2084ffs_fs_kill_sb(struct super_block *sb)
2085{
2086	kill_litter_super(sb);
2087	if (sb->s_fs_info)
2088		ffs_data_closed(sb->s_fs_info);
2089}
2090
2091static struct file_system_type ffs_fs_type = {
2092	.owner		= THIS_MODULE,
2093	.name		= "functionfs",
2094	.init_fs_context = ffs_fs_init_fs_context,
2095	.parameters	= ffs_fs_fs_parameters,
2096	.kill_sb	= ffs_fs_kill_sb,
2097};
2098MODULE_ALIAS_FS("functionfs");
2099
2100
2101/* Driver's main init/cleanup functions *************************************/
2102
2103static int functionfs_init(void)
2104{
2105	int ret;
2106
2107	ret = register_filesystem(&ffs_fs_type);
2108	if (!ret)
2109		pr_info("file system registered\n");
2110	else
2111		pr_err("failed registering file system (%d)\n", ret);
2112
2113	return ret;
2114}
2115
2116static void functionfs_cleanup(void)
2117{
2118	pr_info("unloading\n");
2119	unregister_filesystem(&ffs_fs_type);
2120}
2121
2122
2123/* ffs_data and ffs_function construction and destruction code **************/
2124
2125static void ffs_data_clear(struct ffs_data *ffs);
2126static void ffs_data_reset(struct ffs_data *ffs);
2127
2128static void ffs_data_get(struct ffs_data *ffs)
2129{
2130	refcount_inc(&ffs->ref);
2131}
2132
2133static void ffs_data_opened(struct ffs_data *ffs)
2134{
2135	refcount_inc(&ffs->ref);
2136	if (atomic_add_return(1, &ffs->opened) == 1 &&
2137			ffs->state == FFS_DEACTIVATED) {
2138		ffs->state = FFS_CLOSING;
2139		ffs_data_reset(ffs);
2140	}
2141}
2142
2143static void ffs_data_put(struct ffs_data *ffs)
2144{
2145	if (refcount_dec_and_test(&ffs->ref)) {
2146		pr_info("%s(): freeing\n", __func__);
2147		ffs_data_clear(ffs);
2148		ffs_release_dev(ffs->private_data);
2149		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2150		       swait_active(&ffs->ep0req_completion.wait) ||
2151		       waitqueue_active(&ffs->wait));
2152		destroy_workqueue(ffs->io_completion_wq);
2153		kfree(ffs->dev_name);
2154		kfree(ffs);
2155	}
2156}
2157
2158static void ffs_data_closed(struct ffs_data *ffs)
2159{
2160	struct ffs_epfile *epfiles;
2161	unsigned long flags;
2162
2163	if (atomic_dec_and_test(&ffs->opened)) {
2164		if (ffs->no_disconnect) {
2165			ffs->state = FFS_DEACTIVATED;
2166			spin_lock_irqsave(&ffs->eps_lock, flags);
2167			epfiles = ffs->epfiles;
2168			ffs->epfiles = NULL;
2169			spin_unlock_irqrestore(&ffs->eps_lock,
2170							flags);
2171
2172			if (epfiles)
2173				ffs_epfiles_destroy(epfiles,
2174						 ffs->eps_count);
2175
2176			if (ffs->setup_state == FFS_SETUP_PENDING)
2177				__ffs_ep0_stall(ffs);
2178		} else {
2179			ffs->state = FFS_CLOSING;
2180			ffs_data_reset(ffs);
2181		}
2182	}
2183	if (atomic_read(&ffs->opened) < 0) {
2184		ffs->state = FFS_CLOSING;
2185		ffs_data_reset(ffs);
2186	}
2187
2188	ffs_data_put(ffs);
2189}
2190
2191static struct ffs_data *ffs_data_new(const char *dev_name)
2192{
2193	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2194	if (!ffs)
2195		return NULL;
2196
2197	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2198	if (!ffs->io_completion_wq) {
2199		kfree(ffs);
2200		return NULL;
2201	}
2202
2203	refcount_set(&ffs->ref, 1);
2204	atomic_set(&ffs->opened, 0);
2205	ffs->state = FFS_READ_DESCRIPTORS;
2206	mutex_init(&ffs->mutex);
2207	spin_lock_init(&ffs->eps_lock);
2208	init_waitqueue_head(&ffs->ev.waitq);
2209	init_waitqueue_head(&ffs->wait);
2210	init_completion(&ffs->ep0req_completion);
2211
2212	/* XXX REVISIT need to update it in some places, or do we? */
2213	ffs->ev.can_stall = 1;
2214
2215	return ffs;
2216}
2217
2218static void ffs_data_clear(struct ffs_data *ffs)
2219{
2220	struct ffs_epfile *epfiles;
2221	unsigned long flags;
2222
2223	ffs_closed(ffs);
2224
2225	BUG_ON(ffs->gadget);
2226
2227	spin_lock_irqsave(&ffs->eps_lock, flags);
2228	epfiles = ffs->epfiles;
2229	ffs->epfiles = NULL;
2230	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2231
2232	/*
2233	 * potential race possible between ffs_func_eps_disable
2234	 * & ffs_epfile_release therefore maintaining a local
2235	 * copy of epfile will save us from use-after-free.
2236	 */
2237	if (epfiles) {
2238		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2239		ffs->epfiles = NULL;
2240	}
2241
2242	if (ffs->ffs_eventfd) {
2243		eventfd_ctx_put(ffs->ffs_eventfd);
2244		ffs->ffs_eventfd = NULL;
2245	}
2246
2247	kfree(ffs->raw_descs_data);
2248	kfree(ffs->raw_strings);
2249	kfree(ffs->stringtabs);
2250}
2251
2252static void ffs_data_reset(struct ffs_data *ffs)
2253{
2254	ffs_data_clear(ffs);
2255
2256	ffs->raw_descs_data = NULL;
2257	ffs->raw_descs = NULL;
2258	ffs->raw_strings = NULL;
2259	ffs->stringtabs = NULL;
2260
2261	ffs->raw_descs_length = 0;
2262	ffs->fs_descs_count = 0;
2263	ffs->hs_descs_count = 0;
2264	ffs->ss_descs_count = 0;
2265
2266	ffs->strings_count = 0;
2267	ffs->interfaces_count = 0;
2268	ffs->eps_count = 0;
2269
2270	ffs->ev.count = 0;
2271
2272	ffs->state = FFS_READ_DESCRIPTORS;
2273	ffs->setup_state = FFS_NO_SETUP;
2274	ffs->flags = 0;
2275
2276	ffs->ms_os_descs_ext_prop_count = 0;
2277	ffs->ms_os_descs_ext_prop_name_len = 0;
2278	ffs->ms_os_descs_ext_prop_data_len = 0;
2279}
2280
2281
2282static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2283{
2284	struct usb_gadget_strings **lang;
2285	int first_id;
2286
2287	if (WARN_ON(ffs->state != FFS_ACTIVE
2288		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2289		return -EBADFD;
2290
2291	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2292	if (first_id < 0)
2293		return first_id;
2294
2295	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2296	if (!ffs->ep0req)
2297		return -ENOMEM;
2298	ffs->ep0req->complete = ffs_ep0_complete;
2299	ffs->ep0req->context = ffs;
2300
2301	lang = ffs->stringtabs;
2302	if (lang) {
2303		for (; *lang; ++lang) {
2304			struct usb_string *str = (*lang)->strings;
2305			int id = first_id;
2306			for (; str->s; ++id, ++str)
2307				str->id = id;
2308		}
2309	}
2310
2311	ffs->gadget = cdev->gadget;
2312	ffs_data_get(ffs);
2313	return 0;
2314}
2315
2316static void functionfs_unbind(struct ffs_data *ffs)
2317{
2318	if (!WARN_ON(!ffs->gadget)) {
2319		/* dequeue before freeing ep0req */
2320		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2321		mutex_lock(&ffs->mutex);
2322		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2323		ffs->ep0req = NULL;
2324		ffs->gadget = NULL;
2325		clear_bit(FFS_FL_BOUND, &ffs->flags);
2326		mutex_unlock(&ffs->mutex);
2327		ffs_data_put(ffs);
2328	}
2329}
2330
2331static int ffs_epfiles_create(struct ffs_data *ffs)
2332{
2333	struct ffs_epfile *epfile, *epfiles;
2334	unsigned i, count;
2335
2336	count = ffs->eps_count;
2337	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2338	if (!epfiles)
2339		return -ENOMEM;
2340
2341	epfile = epfiles;
2342	for (i = 1; i <= count; ++i, ++epfile) {
2343		epfile->ffs = ffs;
2344		mutex_init(&epfile->mutex);
2345		mutex_init(&epfile->dmabufs_mutex);
2346		INIT_LIST_HEAD(&epfile->dmabufs);
2347		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2348			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2349		else
2350			sprintf(epfile->name, "ep%u", i);
2351		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2352						 epfile,
2353						 &ffs_epfile_operations);
2354		if (!epfile->dentry) {
2355			ffs_epfiles_destroy(epfiles, i - 1);
2356			return -ENOMEM;
2357		}
2358	}
2359
2360	ffs->epfiles = epfiles;
2361	return 0;
2362}
2363
2364static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2365{
2366	struct ffs_epfile *epfile = epfiles;
2367
2368	for (; count; --count, ++epfile) {
2369		BUG_ON(mutex_is_locked(&epfile->mutex));
2370		if (epfile->dentry) {
2371			d_delete(epfile->dentry);
2372			dput(epfile->dentry);
2373			epfile->dentry = NULL;
2374		}
2375	}
2376
2377	kfree(epfiles);
2378}
2379
2380static void ffs_func_eps_disable(struct ffs_function *func)
2381{
2382	struct ffs_ep *ep;
2383	struct ffs_epfile *epfile;
2384	unsigned short count;
2385	unsigned long flags;
2386
2387	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2388	count = func->ffs->eps_count;
2389	epfile = func->ffs->epfiles;
2390	ep = func->eps;
2391	while (count--) {
2392		/* pending requests get nuked */
2393		if (ep->ep)
2394			usb_ep_disable(ep->ep);
2395		++ep;
2396
2397		if (epfile) {
2398			epfile->ep = NULL;
2399			__ffs_epfile_read_buffer_free(epfile);
2400			++epfile;
2401		}
2402	}
2403	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2404}
2405
2406static int ffs_func_eps_enable(struct ffs_function *func)
2407{
2408	struct ffs_data *ffs;
2409	struct ffs_ep *ep;
2410	struct ffs_epfile *epfile;
2411	unsigned short count;
2412	unsigned long flags;
2413	int ret = 0;
2414
2415	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2416	ffs = func->ffs;
2417	ep = func->eps;
2418	epfile = ffs->epfiles;
2419	count = ffs->eps_count;
2420	while(count--) {
2421		ep->ep->driver_data = ep;
2422
2423		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2424		if (ret) {
2425			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2426					__func__, ep->ep->name, ret);
2427			break;
2428		}
2429
2430		ret = usb_ep_enable(ep->ep);
2431		if (!ret) {
2432			epfile->ep = ep;
2433			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2434			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2435		} else {
2436			break;
2437		}
2438
2439		++ep;
2440		++epfile;
2441	}
2442
2443	wake_up_interruptible(&ffs->wait);
2444	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2445
2446	return ret;
2447}
2448
2449
2450/* Parsing and building descriptors and strings *****************************/
2451
2452/*
2453 * This validates if data pointed by data is a valid USB descriptor as
2454 * well as record how many interfaces, endpoints and strings are
2455 * required by given configuration.  Returns address after the
2456 * descriptor or NULL if data is invalid.
2457 */
2458
2459enum ffs_entity_type {
2460	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2461};
2462
2463enum ffs_os_desc_type {
2464	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2465};
2466
2467typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2468				   u8 *valuep,
2469				   struct usb_descriptor_header *desc,
2470				   void *priv);
2471
2472typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2473				    struct usb_os_desc_header *h, void *data,
2474				    unsigned len, void *priv);
2475
2476static int __must_check ffs_do_single_desc(char *data, unsigned len,
2477					   ffs_entity_callback entity,
2478					   void *priv, int *current_class)
2479{
2480	struct usb_descriptor_header *_ds = (void *)data;
2481	u8 length;
2482	int ret;
2483
2484	/* At least two bytes are required: length and type */
2485	if (len < 2) {
2486		pr_vdebug("descriptor too short\n");
2487		return -EINVAL;
2488	}
2489
2490	/* If we have at least as many bytes as the descriptor takes? */
2491	length = _ds->bLength;
2492	if (len < length) {
2493		pr_vdebug("descriptor longer then available data\n");
2494		return -EINVAL;
2495	}
2496
2497#define __entity_check_INTERFACE(val)  1
2498#define __entity_check_STRING(val)     (val)
2499#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2500#define __entity(type, val) do {					\
2501		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2502		if (!__entity_check_ ##type(val)) {			\
2503			pr_vdebug("invalid entity's value\n");		\
2504			return -EINVAL;					\
2505		}							\
2506		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2507		if (ret < 0) {						\
2508			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2509				 (val), ret);				\
2510			return ret;					\
2511		}							\
2512	} while (0)
2513
2514	/* Parse descriptor depending on type. */
2515	switch (_ds->bDescriptorType) {
2516	case USB_DT_DEVICE:
2517	case USB_DT_CONFIG:
2518	case USB_DT_STRING:
2519	case USB_DT_DEVICE_QUALIFIER:
2520		/* function can't have any of those */
2521		pr_vdebug("descriptor reserved for gadget: %d\n",
2522		      _ds->bDescriptorType);
2523		return -EINVAL;
2524
2525	case USB_DT_INTERFACE: {
2526		struct usb_interface_descriptor *ds = (void *)_ds;
2527		pr_vdebug("interface descriptor\n");
2528		if (length != sizeof *ds)
2529			goto inv_length;
2530
2531		__entity(INTERFACE, ds->bInterfaceNumber);
2532		if (ds->iInterface)
2533			__entity(STRING, ds->iInterface);
2534		*current_class = ds->bInterfaceClass;
2535	}
2536		break;
2537
2538	case USB_DT_ENDPOINT: {
2539		struct usb_endpoint_descriptor *ds = (void *)_ds;
2540		pr_vdebug("endpoint descriptor\n");
2541		if (length != USB_DT_ENDPOINT_SIZE &&
2542		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2543			goto inv_length;
2544		__entity(ENDPOINT, ds->bEndpointAddress);
2545	}
2546		break;
2547
2548	case USB_TYPE_CLASS | 0x01:
2549		if (*current_class == USB_INTERFACE_CLASS_HID) {
2550			pr_vdebug("hid descriptor\n");
2551			if (length != sizeof(struct hid_descriptor))
2552				goto inv_length;
2553			break;
2554		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2555			pr_vdebug("ccid descriptor\n");
2556			if (length != sizeof(struct ccid_descriptor))
2557				goto inv_length;
2558			break;
2559		} else {
2560			pr_vdebug("unknown descriptor: %d for class %d\n",
2561			      _ds->bDescriptorType, *current_class);
2562			return -EINVAL;
2563		}
2564
2565	case USB_DT_OTG:
2566		if (length != sizeof(struct usb_otg_descriptor))
2567			goto inv_length;
2568		break;
2569
2570	case USB_DT_INTERFACE_ASSOCIATION: {
2571		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2572		pr_vdebug("interface association descriptor\n");
2573		if (length != sizeof *ds)
2574			goto inv_length;
2575		if (ds->iFunction)
2576			__entity(STRING, ds->iFunction);
2577	}
2578		break;
2579
2580	case USB_DT_SS_ENDPOINT_COMP:
2581		pr_vdebug("EP SS companion descriptor\n");
2582		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2583			goto inv_length;
2584		break;
2585
2586	case USB_DT_OTHER_SPEED_CONFIG:
2587	case USB_DT_INTERFACE_POWER:
2588	case USB_DT_DEBUG:
2589	case USB_DT_SECURITY:
2590	case USB_DT_CS_RADIO_CONTROL:
2591		/* TODO */
2592		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2593		return -EINVAL;
2594
2595	default:
2596		/* We should never be here */
2597		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2598		return -EINVAL;
2599
2600inv_length:
2601		pr_vdebug("invalid length: %d (descriptor %d)\n",
2602			  _ds->bLength, _ds->bDescriptorType);
2603		return -EINVAL;
2604	}
2605
2606#undef __entity
2607#undef __entity_check_DESCRIPTOR
2608#undef __entity_check_INTERFACE
2609#undef __entity_check_STRING
2610#undef __entity_check_ENDPOINT
2611
2612	return length;
2613}
2614
2615static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2616				     ffs_entity_callback entity, void *priv)
2617{
2618	const unsigned _len = len;
2619	unsigned long num = 0;
2620	int current_class = -1;
2621
2622	for (;;) {
2623		int ret;
2624
2625		if (num == count)
2626			data = NULL;
2627
2628		/* Record "descriptor" entity */
2629		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2630		if (ret < 0) {
2631			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2632				 num, ret);
2633			return ret;
2634		}
2635
2636		if (!data)
2637			return _len - len;
2638
2639		ret = ffs_do_single_desc(data, len, entity, priv,
2640			&current_class);
2641		if (ret < 0) {
2642			pr_debug("%s returns %d\n", __func__, ret);
2643			return ret;
2644		}
2645
2646		len -= ret;
2647		data += ret;
2648		++num;
2649	}
2650}
2651
2652static int __ffs_data_do_entity(enum ffs_entity_type type,
2653				u8 *valuep, struct usb_descriptor_header *desc,
2654				void *priv)
2655{
2656	struct ffs_desc_helper *helper = priv;
2657	struct usb_endpoint_descriptor *d;
2658
2659	switch (type) {
2660	case FFS_DESCRIPTOR:
2661		break;
2662
2663	case FFS_INTERFACE:
2664		/*
2665		 * Interfaces are indexed from zero so if we
2666		 * encountered interface "n" then there are at least
2667		 * "n+1" interfaces.
2668		 */
2669		if (*valuep >= helper->interfaces_count)
2670			helper->interfaces_count = *valuep + 1;
2671		break;
2672
2673	case FFS_STRING:
2674		/*
2675		 * Strings are indexed from 1 (0 is reserved
2676		 * for languages list)
2677		 */
2678		if (*valuep > helper->ffs->strings_count)
2679			helper->ffs->strings_count = *valuep;
2680		break;
2681
2682	case FFS_ENDPOINT:
2683		d = (void *)desc;
2684		helper->eps_count++;
2685		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2686			return -EINVAL;
2687		/* Check if descriptors for any speed were already parsed */
2688		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2689			helper->ffs->eps_addrmap[helper->eps_count] =
2690				d->bEndpointAddress;
2691		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2692				d->bEndpointAddress)
2693			return -EINVAL;
2694		break;
2695	}
2696
2697	return 0;
2698}
2699
2700static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2701				   struct usb_os_desc_header *desc)
2702{
2703	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2704	u16 w_index = le16_to_cpu(desc->wIndex);
2705
2706	if (bcd_version == 0x1) {
2707		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2708			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2709	} else if (bcd_version != 0x100) {
2710		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2711			  bcd_version);
2712		return -EINVAL;
2713	}
2714	switch (w_index) {
2715	case 0x4:
2716		*next_type = FFS_OS_DESC_EXT_COMPAT;
2717		break;
2718	case 0x5:
2719		*next_type = FFS_OS_DESC_EXT_PROP;
2720		break;
2721	default:
2722		pr_vdebug("unsupported os descriptor type: %d", w_index);
2723		return -EINVAL;
2724	}
2725
2726	return sizeof(*desc);
2727}
2728
2729/*
2730 * Process all extended compatibility/extended property descriptors
2731 * of a feature descriptor
2732 */
2733static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2734					      enum ffs_os_desc_type type,
2735					      u16 feature_count,
2736					      ffs_os_desc_callback entity,
2737					      void *priv,
2738					      struct usb_os_desc_header *h)
2739{
2740	int ret;
2741	const unsigned _len = len;
2742
2743	/* loop over all ext compat/ext prop descriptors */
2744	while (feature_count--) {
2745		ret = entity(type, h, data, len, priv);
2746		if (ret < 0) {
2747			pr_debug("bad OS descriptor, type: %d\n", type);
2748			return ret;
2749		}
2750		data += ret;
2751		len -= ret;
2752	}
2753	return _len - len;
2754}
2755
2756/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2757static int __must_check ffs_do_os_descs(unsigned count,
2758					char *data, unsigned len,
2759					ffs_os_desc_callback entity, void *priv)
2760{
2761	const unsigned _len = len;
2762	unsigned long num = 0;
2763
2764	for (num = 0; num < count; ++num) {
2765		int ret;
2766		enum ffs_os_desc_type type;
2767		u16 feature_count;
2768		struct usb_os_desc_header *desc = (void *)data;
2769
2770		if (len < sizeof(*desc))
2771			return -EINVAL;
2772
2773		/*
2774		 * Record "descriptor" entity.
2775		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2776		 * Move the data pointer to the beginning of extended
2777		 * compatibilities proper or extended properties proper
2778		 * portions of the data
2779		 */
2780		if (le32_to_cpu(desc->dwLength) > len)
2781			return -EINVAL;
2782
2783		ret = __ffs_do_os_desc_header(&type, desc);
2784		if (ret < 0) {
2785			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2786				 num, ret);
2787			return ret;
2788		}
2789		/*
2790		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2791		 */
2792		feature_count = le16_to_cpu(desc->wCount);
2793		if (type == FFS_OS_DESC_EXT_COMPAT &&
2794		    (feature_count > 255 || desc->Reserved))
2795				return -EINVAL;
2796		len -= ret;
2797		data += ret;
2798
2799		/*
2800		 * Process all function/property descriptors
2801		 * of this Feature Descriptor
2802		 */
2803		ret = ffs_do_single_os_desc(data, len, type,
2804					    feature_count, entity, priv, desc);
2805		if (ret < 0) {
2806			pr_debug("%s returns %d\n", __func__, ret);
2807			return ret;
2808		}
2809
2810		len -= ret;
2811		data += ret;
2812	}
2813	return _len - len;
2814}
2815
2816/*
2817 * Validate contents of the buffer from userspace related to OS descriptors.
2818 */
2819static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2820				 struct usb_os_desc_header *h, void *data,
2821				 unsigned len, void *priv)
2822{
2823	struct ffs_data *ffs = priv;
2824	u8 length;
2825
2826	switch (type) {
2827	case FFS_OS_DESC_EXT_COMPAT: {
2828		struct usb_ext_compat_desc *d = data;
2829		int i;
2830
2831		if (len < sizeof(*d) ||
2832		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2833			return -EINVAL;
2834		if (d->Reserved1 != 1) {
2835			/*
2836			 * According to the spec, Reserved1 must be set to 1
2837			 * but older kernels incorrectly rejected non-zero
2838			 * values.  We fix it here to avoid returning EINVAL
2839			 * in response to values we used to accept.
2840			 */
2841			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2842			d->Reserved1 = 1;
2843		}
2844		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2845			if (d->Reserved2[i])
2846				return -EINVAL;
2847
2848		length = sizeof(struct usb_ext_compat_desc);
2849	}
2850		break;
2851	case FFS_OS_DESC_EXT_PROP: {
2852		struct usb_ext_prop_desc *d = data;
2853		u32 type, pdl;
2854		u16 pnl;
2855
2856		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2857			return -EINVAL;
2858		length = le32_to_cpu(d->dwSize);
2859		if (len < length)
2860			return -EINVAL;
2861		type = le32_to_cpu(d->dwPropertyDataType);
2862		if (type < USB_EXT_PROP_UNICODE ||
2863		    type > USB_EXT_PROP_UNICODE_MULTI) {
2864			pr_vdebug("unsupported os descriptor property type: %d",
2865				  type);
2866			return -EINVAL;
2867		}
2868		pnl = le16_to_cpu(d->wPropertyNameLength);
2869		if (length < 14 + pnl) {
2870			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2871				  length, pnl, type);
2872			return -EINVAL;
2873		}
2874		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2875		if (length != 14 + pnl + pdl) {
2876			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2877				  length, pnl, pdl, type);
2878			return -EINVAL;
2879		}
2880		++ffs->ms_os_descs_ext_prop_count;
2881		/* property name reported to the host as "WCHAR"s */
2882		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2883		ffs->ms_os_descs_ext_prop_data_len += pdl;
2884	}
2885		break;
2886	default:
2887		pr_vdebug("unknown descriptor: %d\n", type);
2888		return -EINVAL;
2889	}
2890	return length;
2891}
2892
2893static int __ffs_data_got_descs(struct ffs_data *ffs,
2894				char *const _data, size_t len)
2895{
2896	char *data = _data, *raw_descs;
2897	unsigned os_descs_count = 0, counts[3], flags;
2898	int ret = -EINVAL, i;
2899	struct ffs_desc_helper helper;
2900
2901	if (get_unaligned_le32(data + 4) != len)
2902		goto error;
2903
2904	switch (get_unaligned_le32(data)) {
2905	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2906		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2907		data += 8;
2908		len  -= 8;
2909		break;
2910	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2911		flags = get_unaligned_le32(data + 8);
2912		ffs->user_flags = flags;
2913		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2914			      FUNCTIONFS_HAS_HS_DESC |
2915			      FUNCTIONFS_HAS_SS_DESC |
2916			      FUNCTIONFS_HAS_MS_OS_DESC |
2917			      FUNCTIONFS_VIRTUAL_ADDR |
2918			      FUNCTIONFS_EVENTFD |
2919			      FUNCTIONFS_ALL_CTRL_RECIP |
2920			      FUNCTIONFS_CONFIG0_SETUP)) {
2921			ret = -ENOSYS;
2922			goto error;
2923		}
2924		data += 12;
2925		len  -= 12;
2926		break;
2927	default:
2928		goto error;
2929	}
2930
2931	if (flags & FUNCTIONFS_EVENTFD) {
2932		if (len < 4)
2933			goto error;
2934		ffs->ffs_eventfd =
2935			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2936		if (IS_ERR(ffs->ffs_eventfd)) {
2937			ret = PTR_ERR(ffs->ffs_eventfd);
2938			ffs->ffs_eventfd = NULL;
2939			goto error;
2940		}
2941		data += 4;
2942		len  -= 4;
2943	}
2944
2945	/* Read fs_count, hs_count and ss_count (if present) */
2946	for (i = 0; i < 3; ++i) {
2947		if (!(flags & (1 << i))) {
2948			counts[i] = 0;
2949		} else if (len < 4) {
2950			goto error;
2951		} else {
2952			counts[i] = get_unaligned_le32(data);
2953			data += 4;
2954			len  -= 4;
2955		}
2956	}
2957	if (flags & (1 << i)) {
2958		if (len < 4) {
2959			goto error;
2960		}
2961		os_descs_count = get_unaligned_le32(data);
2962		data += 4;
2963		len -= 4;
2964	}
2965
2966	/* Read descriptors */
2967	raw_descs = data;
2968	helper.ffs = ffs;
2969	for (i = 0; i < 3; ++i) {
2970		if (!counts[i])
2971			continue;
2972		helper.interfaces_count = 0;
2973		helper.eps_count = 0;
2974		ret = ffs_do_descs(counts[i], data, len,
2975				   __ffs_data_do_entity, &helper);
2976		if (ret < 0)
2977			goto error;
2978		if (!ffs->eps_count && !ffs->interfaces_count) {
2979			ffs->eps_count = helper.eps_count;
2980			ffs->interfaces_count = helper.interfaces_count;
2981		} else {
2982			if (ffs->eps_count != helper.eps_count) {
2983				ret = -EINVAL;
2984				goto error;
2985			}
2986			if (ffs->interfaces_count != helper.interfaces_count) {
2987				ret = -EINVAL;
2988				goto error;
2989			}
2990		}
2991		data += ret;
2992		len  -= ret;
2993	}
2994	if (os_descs_count) {
2995		ret = ffs_do_os_descs(os_descs_count, data, len,
2996				      __ffs_data_do_os_desc, ffs);
2997		if (ret < 0)
2998			goto error;
2999		data += ret;
3000		len -= ret;
3001	}
3002
3003	if (raw_descs == data || len) {
3004		ret = -EINVAL;
3005		goto error;
3006	}
3007
3008	ffs->raw_descs_data	= _data;
3009	ffs->raw_descs		= raw_descs;
3010	ffs->raw_descs_length	= data - raw_descs;
3011	ffs->fs_descs_count	= counts[0];
3012	ffs->hs_descs_count	= counts[1];
3013	ffs->ss_descs_count	= counts[2];
3014	ffs->ms_os_descs_count	= os_descs_count;
3015
3016	return 0;
3017
3018error:
3019	kfree(_data);
3020	return ret;
3021}
3022
3023static int __ffs_data_got_strings(struct ffs_data *ffs,
3024				  char *const _data, size_t len)
3025{
3026	u32 str_count, needed_count, lang_count;
3027	struct usb_gadget_strings **stringtabs, *t;
3028	const char *data = _data;
3029	struct usb_string *s;
3030
3031	if (len < 16 ||
3032	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3033	    get_unaligned_le32(data + 4) != len)
3034		goto error;
3035	str_count  = get_unaligned_le32(data + 8);
3036	lang_count = get_unaligned_le32(data + 12);
3037
3038	/* if one is zero the other must be zero */
3039	if (!str_count != !lang_count)
3040		goto error;
3041
3042	/* Do we have at least as many strings as descriptors need? */
3043	needed_count = ffs->strings_count;
3044	if (str_count < needed_count)
3045		goto error;
3046
3047	/*
3048	 * If we don't need any strings just return and free all
3049	 * memory.
3050	 */
3051	if (!needed_count) {
3052		kfree(_data);
3053		return 0;
3054	}
3055
3056	/* Allocate everything in one chunk so there's less maintenance. */
3057	{
3058		unsigned i = 0;
3059		vla_group(d);
3060		vla_item(d, struct usb_gadget_strings *, stringtabs,
3061			size_add(lang_count, 1));
3062		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3063		vla_item(d, struct usb_string, strings,
3064			size_mul(lang_count, (needed_count + 1)));
3065
3066		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3067
3068		if (!vlabuf) {
3069			kfree(_data);
3070			return -ENOMEM;
3071		}
3072
3073		/* Initialize the VLA pointers */
3074		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3075		t = vla_ptr(vlabuf, d, stringtab);
3076		i = lang_count;
3077		do {
3078			*stringtabs++ = t++;
3079		} while (--i);
3080		*stringtabs = NULL;
3081
3082		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3083		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084		t = vla_ptr(vlabuf, d, stringtab);
3085		s = vla_ptr(vlabuf, d, strings);
3086	}
3087
3088	/* For each language */
3089	data += 16;
3090	len -= 16;
3091
3092	do { /* lang_count > 0 so we can use do-while */
3093		unsigned needed = needed_count;
3094		u32 str_per_lang = str_count;
3095
3096		if (len < 3)
3097			goto error_free;
3098		t->language = get_unaligned_le16(data);
3099		t->strings  = s;
3100		++t;
3101
3102		data += 2;
3103		len -= 2;
3104
3105		/* For each string */
3106		do { /* str_count > 0 so we can use do-while */
3107			size_t length = strnlen(data, len);
3108
3109			if (length == len)
3110				goto error_free;
3111
3112			/*
3113			 * User may provide more strings then we need,
3114			 * if that's the case we simply ignore the
3115			 * rest
3116			 */
3117			if (needed) {
3118				/*
3119				 * s->id will be set while adding
3120				 * function to configuration so for
3121				 * now just leave garbage here.
3122				 */
3123				s->s = data;
3124				--needed;
3125				++s;
3126			}
3127
3128			data += length + 1;
3129			len -= length + 1;
3130		} while (--str_per_lang);
3131
3132		s->id = 0;   /* terminator */
3133		s->s = NULL;
3134		++s;
3135
3136	} while (--lang_count);
3137
3138	/* Some garbage left? */
3139	if (len)
3140		goto error_free;
3141
3142	/* Done! */
3143	ffs->stringtabs = stringtabs;
3144	ffs->raw_strings = _data;
3145
3146	return 0;
3147
3148error_free:
3149	kfree(stringtabs);
3150error:
3151	kfree(_data);
3152	return -EINVAL;
3153}
3154
3155
3156/* Events handling and management *******************************************/
3157
3158static void __ffs_event_add(struct ffs_data *ffs,
3159			    enum usb_functionfs_event_type type)
3160{
3161	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3162	int neg = 0;
3163
3164	/*
3165	 * Abort any unhandled setup
3166	 *
3167	 * We do not need to worry about some cmpxchg() changing value
3168	 * of ffs->setup_state without holding the lock because when
3169	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3170	 * the source does nothing.
3171	 */
3172	if (ffs->setup_state == FFS_SETUP_PENDING)
3173		ffs->setup_state = FFS_SETUP_CANCELLED;
3174
3175	/*
3176	 * Logic of this function guarantees that there are at most four pending
3177	 * evens on ffs->ev.types queue.  This is important because the queue
3178	 * has space for four elements only and __ffs_ep0_read_events function
3179	 * depends on that limit as well.  If more event types are added, those
3180	 * limits have to be revisited or guaranteed to still hold.
3181	 */
3182	switch (type) {
3183	case FUNCTIONFS_RESUME:
3184		rem_type2 = FUNCTIONFS_SUSPEND;
3185		fallthrough;
3186	case FUNCTIONFS_SUSPEND:
3187	case FUNCTIONFS_SETUP:
3188		rem_type1 = type;
3189		/* Discard all similar events */
3190		break;
3191
3192	case FUNCTIONFS_BIND:
3193	case FUNCTIONFS_UNBIND:
3194	case FUNCTIONFS_DISABLE:
3195	case FUNCTIONFS_ENABLE:
3196		/* Discard everything other then power management. */
3197		rem_type1 = FUNCTIONFS_SUSPEND;
3198		rem_type2 = FUNCTIONFS_RESUME;
3199		neg = 1;
3200		break;
3201
3202	default:
3203		WARN(1, "%d: unknown event, this should not happen\n", type);
3204		return;
3205	}
3206
3207	{
3208		u8 *ev  = ffs->ev.types, *out = ev;
3209		unsigned n = ffs->ev.count;
3210		for (; n; --n, ++ev)
3211			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3212				*out++ = *ev;
3213			else
3214				pr_vdebug("purging event %d\n", *ev);
3215		ffs->ev.count = out - ffs->ev.types;
3216	}
3217
3218	pr_vdebug("adding event %d\n", type);
3219	ffs->ev.types[ffs->ev.count++] = type;
3220	wake_up_locked(&ffs->ev.waitq);
3221	if (ffs->ffs_eventfd)
3222		eventfd_signal(ffs->ffs_eventfd);
3223}
3224
3225static void ffs_event_add(struct ffs_data *ffs,
3226			  enum usb_functionfs_event_type type)
3227{
3228	unsigned long flags;
3229	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3230	__ffs_event_add(ffs, type);
3231	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3232}
3233
3234/* Bind/unbind USB function hooks *******************************************/
3235
3236static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3237{
3238	int i;
3239
3240	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3241		if (ffs->eps_addrmap[i] == endpoint_address)
3242			return i;
3243	return -ENOENT;
3244}
3245
3246static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3247				    struct usb_descriptor_header *desc,
3248				    void *priv)
3249{
3250	struct usb_endpoint_descriptor *ds = (void *)desc;
3251	struct ffs_function *func = priv;
3252	struct ffs_ep *ffs_ep;
3253	unsigned ep_desc_id;
3254	int idx;
3255	static const char *speed_names[] = { "full", "high", "super" };
3256
3257	if (type != FFS_DESCRIPTOR)
3258		return 0;
3259
3260	/*
3261	 * If ss_descriptors is not NULL, we are reading super speed
3262	 * descriptors; if hs_descriptors is not NULL, we are reading high
3263	 * speed descriptors; otherwise, we are reading full speed
3264	 * descriptors.
3265	 */
3266	if (func->function.ss_descriptors) {
3267		ep_desc_id = 2;
3268		func->function.ss_descriptors[(long)valuep] = desc;
3269	} else if (func->function.hs_descriptors) {
3270		ep_desc_id = 1;
3271		func->function.hs_descriptors[(long)valuep] = desc;
3272	} else {
3273		ep_desc_id = 0;
3274		func->function.fs_descriptors[(long)valuep]    = desc;
3275	}
3276
3277	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3278		return 0;
3279
3280	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3281	if (idx < 0)
3282		return idx;
3283
3284	ffs_ep = func->eps + idx;
3285
3286	if (ffs_ep->descs[ep_desc_id]) {
3287		pr_err("two %sspeed descriptors for EP %d\n",
3288			  speed_names[ep_desc_id],
3289			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3290		return -EINVAL;
3291	}
3292	ffs_ep->descs[ep_desc_id] = ds;
3293
3294	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3295	if (ffs_ep->ep) {
3296		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3297		if (!ds->wMaxPacketSize)
3298			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3299	} else {
3300		struct usb_request *req;
3301		struct usb_ep *ep;
3302		u8 bEndpointAddress;
3303		u16 wMaxPacketSize;
3304
3305		/*
3306		 * We back up bEndpointAddress because autoconfig overwrites
3307		 * it with physical endpoint address.
3308		 */
3309		bEndpointAddress = ds->bEndpointAddress;
3310		/*
3311		 * We back up wMaxPacketSize because autoconfig treats
3312		 * endpoint descriptors as if they were full speed.
3313		 */
3314		wMaxPacketSize = ds->wMaxPacketSize;
3315		pr_vdebug("autoconfig\n");
3316		ep = usb_ep_autoconfig(func->gadget, ds);
3317		if (!ep)
3318			return -ENOTSUPP;
3319		ep->driver_data = func->eps + idx;
3320
3321		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3322		if (!req)
3323			return -ENOMEM;
3324
3325		ffs_ep->ep  = ep;
3326		ffs_ep->req = req;
3327		func->eps_revmap[ds->bEndpointAddress &
3328				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3329		/*
3330		 * If we use virtual address mapping, we restore
3331		 * original bEndpointAddress value.
3332		 */
3333		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3334			ds->bEndpointAddress = bEndpointAddress;
3335		/*
3336		 * Restore wMaxPacketSize which was potentially
3337		 * overwritten by autoconfig.
3338		 */
3339		ds->wMaxPacketSize = wMaxPacketSize;
3340	}
3341	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3342
3343	return 0;
3344}
3345
3346static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3347				   struct usb_descriptor_header *desc,
3348				   void *priv)
3349{
3350	struct ffs_function *func = priv;
3351	unsigned idx;
3352	u8 newValue;
3353
3354	switch (type) {
3355	default:
3356	case FFS_DESCRIPTOR:
3357		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3358		return 0;
3359
3360	case FFS_INTERFACE:
3361		idx = *valuep;
3362		if (func->interfaces_nums[idx] < 0) {
3363			int id = usb_interface_id(func->conf, &func->function);
3364			if (id < 0)
3365				return id;
3366			func->interfaces_nums[idx] = id;
3367		}
3368		newValue = func->interfaces_nums[idx];
3369		break;
3370
3371	case FFS_STRING:
3372		/* String' IDs are allocated when fsf_data is bound to cdev */
3373		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3374		break;
3375
3376	case FFS_ENDPOINT:
3377		/*
3378		 * USB_DT_ENDPOINT are handled in
3379		 * __ffs_func_bind_do_descs().
3380		 */
3381		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3382			return 0;
3383
3384		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3385		if (!func->eps[idx].ep)
3386			return -EINVAL;
3387
3388		{
3389			struct usb_endpoint_descriptor **descs;
3390			descs = func->eps[idx].descs;
3391			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3392		}
3393		break;
3394	}
3395
3396	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3397	*valuep = newValue;
3398	return 0;
3399}
3400
3401static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3402				      struct usb_os_desc_header *h, void *data,
3403				      unsigned len, void *priv)
3404{
3405	struct ffs_function *func = priv;
3406	u8 length = 0;
3407
3408	switch (type) {
3409	case FFS_OS_DESC_EXT_COMPAT: {
3410		struct usb_ext_compat_desc *desc = data;
3411		struct usb_os_desc_table *t;
3412
3413		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3414		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3415		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3416		       sizeof_field(struct usb_ext_compat_desc, IDs));
3417		length = sizeof(*desc);
3418	}
3419		break;
3420	case FFS_OS_DESC_EXT_PROP: {
3421		struct usb_ext_prop_desc *desc = data;
3422		struct usb_os_desc_table *t;
3423		struct usb_os_desc_ext_prop *ext_prop;
3424		char *ext_prop_name;
3425		char *ext_prop_data;
3426
3427		t = &func->function.os_desc_table[h->interface];
3428		t->if_id = func->interfaces_nums[h->interface];
3429
3430		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3431		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3432
3433		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3434		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3435		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3436			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3437		length = ext_prop->name_len + ext_prop->data_len + 14;
3438
3439		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3440		func->ffs->ms_os_descs_ext_prop_name_avail +=
3441			ext_prop->name_len;
3442
3443		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3444		func->ffs->ms_os_descs_ext_prop_data_avail +=
3445			ext_prop->data_len;
3446		memcpy(ext_prop_data,
3447		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3448		       ext_prop->data_len);
3449		/* unicode data reported to the host as "WCHAR"s */
3450		switch (ext_prop->type) {
3451		case USB_EXT_PROP_UNICODE:
3452		case USB_EXT_PROP_UNICODE_ENV:
3453		case USB_EXT_PROP_UNICODE_LINK:
3454		case USB_EXT_PROP_UNICODE_MULTI:
3455			ext_prop->data_len *= 2;
3456			break;
3457		}
3458		ext_prop->data = ext_prop_data;
3459
3460		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3461		       ext_prop->name_len);
3462		/* property name reported to the host as "WCHAR"s */
3463		ext_prop->name_len *= 2;
3464		ext_prop->name = ext_prop_name;
3465
3466		t->os_desc->ext_prop_len +=
3467			ext_prop->name_len + ext_prop->data_len + 14;
3468		++t->os_desc->ext_prop_count;
3469		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3470	}
3471		break;
3472	default:
3473		pr_vdebug("unknown descriptor: %d\n", type);
3474	}
3475
3476	return length;
3477}
3478
3479static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3480						struct usb_configuration *c)
3481{
3482	struct ffs_function *func = ffs_func_from_usb(f);
3483	struct f_fs_opts *ffs_opts =
3484		container_of(f->fi, struct f_fs_opts, func_inst);
3485	struct ffs_data *ffs_data;
3486	int ret;
3487
3488	/*
3489	 * Legacy gadget triggers binding in functionfs_ready_callback,
3490	 * which already uses locking; taking the same lock here would
3491	 * cause a deadlock.
3492	 *
3493	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3494	 */
3495	if (!ffs_opts->no_configfs)
3496		ffs_dev_lock();
3497	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3498	ffs_data = ffs_opts->dev->ffs_data;
3499	if (!ffs_opts->no_configfs)
3500		ffs_dev_unlock();
3501	if (ret)
3502		return ERR_PTR(ret);
3503
3504	func->ffs = ffs_data;
3505	func->conf = c;
3506	func->gadget = c->cdev->gadget;
3507
3508	/*
3509	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3510	 * configurations are bound in sequence with list_for_each_entry,
3511	 * in each configuration its functions are bound in sequence
3512	 * with list_for_each_entry, so we assume no race condition
3513	 * with regard to ffs_opts->bound access
3514	 */
3515	if (!ffs_opts->refcnt) {
3516		ret = functionfs_bind(func->ffs, c->cdev);
3517		if (ret)
3518			return ERR_PTR(ret);
3519	}
3520	ffs_opts->refcnt++;
3521	func->function.strings = func->ffs->stringtabs;
3522
3523	return ffs_opts;
3524}
3525
3526static int _ffs_func_bind(struct usb_configuration *c,
3527			  struct usb_function *f)
3528{
3529	struct ffs_function *func = ffs_func_from_usb(f);
3530	struct ffs_data *ffs = func->ffs;
3531
3532	const int full = !!func->ffs->fs_descs_count;
3533	const int high = !!func->ffs->hs_descs_count;
3534	const int super = !!func->ffs->ss_descs_count;
3535
3536	int fs_len, hs_len, ss_len, ret, i;
3537	struct ffs_ep *eps_ptr;
3538
3539	/* Make it a single chunk, less management later on */
3540	vla_group(d);
3541	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3542	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3543		full ? ffs->fs_descs_count + 1 : 0);
3544	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3545		high ? ffs->hs_descs_count + 1 : 0);
3546	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3547		super ? ffs->ss_descs_count + 1 : 0);
3548	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3549	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3550			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3551	vla_item_with_sz(d, char[16], ext_compat,
3552			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3553	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3554			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3555	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3556			 ffs->ms_os_descs_ext_prop_count);
3557	vla_item_with_sz(d, char, ext_prop_name,
3558			 ffs->ms_os_descs_ext_prop_name_len);
3559	vla_item_with_sz(d, char, ext_prop_data,
3560			 ffs->ms_os_descs_ext_prop_data_len);
3561	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3562	char *vlabuf;
3563
3564	/* Has descriptors only for speeds gadget does not support */
3565	if (!(full | high | super))
3566		return -ENOTSUPP;
3567
3568	/* Allocate a single chunk, less management later on */
3569	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3570	if (!vlabuf)
3571		return -ENOMEM;
3572
3573	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3574	ffs->ms_os_descs_ext_prop_name_avail =
3575		vla_ptr(vlabuf, d, ext_prop_name);
3576	ffs->ms_os_descs_ext_prop_data_avail =
3577		vla_ptr(vlabuf, d, ext_prop_data);
3578
3579	/* Copy descriptors  */
3580	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3581	       ffs->raw_descs_length);
3582
3583	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3584	eps_ptr = vla_ptr(vlabuf, d, eps);
3585	for (i = 0; i < ffs->eps_count; i++)
3586		eps_ptr[i].num = -1;
3587
3588	/* Save pointers
3589	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3590	*/
3591	func->eps             = vla_ptr(vlabuf, d, eps);
3592	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3593
3594	/*
3595	 * Go through all the endpoint descriptors and allocate
3596	 * endpoints first, so that later we can rewrite the endpoint
3597	 * numbers without worrying that it may be described later on.
3598	 */
3599	if (full) {
3600		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3601		fs_len = ffs_do_descs(ffs->fs_descs_count,
3602				      vla_ptr(vlabuf, d, raw_descs),
3603				      d_raw_descs__sz,
3604				      __ffs_func_bind_do_descs, func);
3605		if (fs_len < 0) {
3606			ret = fs_len;
3607			goto error;
3608		}
3609	} else {
3610		fs_len = 0;
3611	}
3612
3613	if (high) {
3614		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3615		hs_len = ffs_do_descs(ffs->hs_descs_count,
3616				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3617				      d_raw_descs__sz - fs_len,
3618				      __ffs_func_bind_do_descs, func);
3619		if (hs_len < 0) {
3620			ret = hs_len;
3621			goto error;
3622		}
3623	} else {
3624		hs_len = 0;
3625	}
3626
3627	if (super) {
3628		func->function.ss_descriptors = func->function.ssp_descriptors =
3629			vla_ptr(vlabuf, d, ss_descs);
3630		ss_len = ffs_do_descs(ffs->ss_descs_count,
3631				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3632				d_raw_descs__sz - fs_len - hs_len,
3633				__ffs_func_bind_do_descs, func);
3634		if (ss_len < 0) {
3635			ret = ss_len;
3636			goto error;
3637		}
3638	} else {
3639		ss_len = 0;
3640	}
3641
3642	/*
3643	 * Now handle interface numbers allocation and interface and
3644	 * endpoint numbers rewriting.  We can do that in one go
3645	 * now.
3646	 */
3647	ret = ffs_do_descs(ffs->fs_descs_count +
3648			   (high ? ffs->hs_descs_count : 0) +
3649			   (super ? ffs->ss_descs_count : 0),
3650			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3651			   __ffs_func_bind_do_nums, func);
3652	if (ret < 0)
3653		goto error;
3654
3655	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3656	if (c->cdev->use_os_string) {
3657		for (i = 0; i < ffs->interfaces_count; ++i) {
3658			struct usb_os_desc *desc;
3659
3660			desc = func->function.os_desc_table[i].os_desc =
3661				vla_ptr(vlabuf, d, os_desc) +
3662				i * sizeof(struct usb_os_desc);
3663			desc->ext_compat_id =
3664				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3665			INIT_LIST_HEAD(&desc->ext_prop);
3666		}
3667		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3668				      vla_ptr(vlabuf, d, raw_descs) +
3669				      fs_len + hs_len + ss_len,
3670				      d_raw_descs__sz - fs_len - hs_len -
3671				      ss_len,
3672				      __ffs_func_bind_do_os_desc, func);
3673		if (ret < 0)
3674			goto error;
3675	}
3676	func->function.os_desc_n =
3677		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3678
3679	/* And we're done */
3680	ffs_event_add(ffs, FUNCTIONFS_BIND);
3681	return 0;
3682
3683error:
3684	/* XXX Do we need to release all claimed endpoints here? */
3685	return ret;
3686}
3687
3688static int ffs_func_bind(struct usb_configuration *c,
3689			 struct usb_function *f)
3690{
3691	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3692	struct ffs_function *func = ffs_func_from_usb(f);
3693	int ret;
3694
3695	if (IS_ERR(ffs_opts))
3696		return PTR_ERR(ffs_opts);
3697
3698	ret = _ffs_func_bind(c, f);
3699	if (ret && !--ffs_opts->refcnt)
3700		functionfs_unbind(func->ffs);
3701
3702	return ret;
3703}
3704
3705
3706/* Other USB function hooks *************************************************/
3707
3708static void ffs_reset_work(struct work_struct *work)
3709{
3710	struct ffs_data *ffs = container_of(work,
3711		struct ffs_data, reset_work);
3712	ffs_data_reset(ffs);
3713}
3714
3715static int ffs_func_set_alt(struct usb_function *f,
3716			    unsigned interface, unsigned alt)
3717{
3718	struct ffs_function *func = ffs_func_from_usb(f);
3719	struct ffs_data *ffs = func->ffs;
3720	int ret = 0, intf;
3721
3722	if (alt != (unsigned)-1) {
3723		intf = ffs_func_revmap_intf(func, interface);
3724		if (intf < 0)
3725			return intf;
3726	}
3727
3728	if (ffs->func)
3729		ffs_func_eps_disable(ffs->func);
3730
3731	if (ffs->state == FFS_DEACTIVATED) {
3732		ffs->state = FFS_CLOSING;
3733		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3734		schedule_work(&ffs->reset_work);
3735		return -ENODEV;
3736	}
3737
3738	if (ffs->state != FFS_ACTIVE)
3739		return -ENODEV;
3740
3741	if (alt == (unsigned)-1) {
3742		ffs->func = NULL;
3743		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3744		return 0;
3745	}
3746
3747	ffs->func = func;
3748	ret = ffs_func_eps_enable(func);
3749	if (ret >= 0)
3750		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3751	return ret;
3752}
3753
3754static void ffs_func_disable(struct usb_function *f)
3755{
3756	ffs_func_set_alt(f, 0, (unsigned)-1);
3757}
3758
3759static int ffs_func_setup(struct usb_function *f,
3760			  const struct usb_ctrlrequest *creq)
3761{
3762	struct ffs_function *func = ffs_func_from_usb(f);
3763	struct ffs_data *ffs = func->ffs;
3764	unsigned long flags;
3765	int ret;
3766
3767	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3768	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3769	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3770	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3771	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3772
3773	/*
3774	 * Most requests directed to interface go through here
3775	 * (notable exceptions are set/get interface) so we need to
3776	 * handle them.  All other either handled by composite or
3777	 * passed to usb_configuration->setup() (if one is set).  No
3778	 * matter, we will handle requests directed to endpoint here
3779	 * as well (as it's straightforward).  Other request recipient
3780	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3781	 * is being used.
3782	 */
3783	if (ffs->state != FFS_ACTIVE)
3784		return -ENODEV;
3785
3786	switch (creq->bRequestType & USB_RECIP_MASK) {
3787	case USB_RECIP_INTERFACE:
3788		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3789		if (ret < 0)
3790			return ret;
3791		break;
3792
3793	case USB_RECIP_ENDPOINT:
3794		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3795		if (ret < 0)
3796			return ret;
3797		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3798			ret = func->ffs->eps_addrmap[ret];
3799		break;
3800
3801	default:
3802		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3803			ret = le16_to_cpu(creq->wIndex);
3804		else
3805			return -EOPNOTSUPP;
3806	}
3807
3808	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3809	ffs->ev.setup = *creq;
3810	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3811	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3812	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3813
3814	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3815}
3816
3817static bool ffs_func_req_match(struct usb_function *f,
3818			       const struct usb_ctrlrequest *creq,
3819			       bool config0)
3820{
3821	struct ffs_function *func = ffs_func_from_usb(f);
3822
3823	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3824		return false;
3825
3826	switch (creq->bRequestType & USB_RECIP_MASK) {
3827	case USB_RECIP_INTERFACE:
3828		return (ffs_func_revmap_intf(func,
3829					     le16_to_cpu(creq->wIndex)) >= 0);
3830	case USB_RECIP_ENDPOINT:
3831		return (ffs_func_revmap_ep(func,
3832					   le16_to_cpu(creq->wIndex)) >= 0);
3833	default:
3834		return (bool) (func->ffs->user_flags &
3835			       FUNCTIONFS_ALL_CTRL_RECIP);
3836	}
3837}
3838
3839static void ffs_func_suspend(struct usb_function *f)
3840{
3841	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3842}
3843
3844static void ffs_func_resume(struct usb_function *f)
3845{
3846	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3847}
3848
3849
3850/* Endpoint and interface numbers reverse mapping ***************************/
3851
3852static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3853{
3854	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3855	return num ? num : -EDOM;
3856}
3857
3858static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3859{
3860	short *nums = func->interfaces_nums;
3861	unsigned count = func->ffs->interfaces_count;
3862
3863	for (; count; --count, ++nums) {
3864		if (*nums >= 0 && *nums == intf)
3865			return nums - func->interfaces_nums;
3866	}
3867
3868	return -EDOM;
3869}
3870
3871
3872/* Devices management *******************************************************/
3873
3874static LIST_HEAD(ffs_devices);
3875
3876static struct ffs_dev *_ffs_do_find_dev(const char *name)
3877{
3878	struct ffs_dev *dev;
3879
3880	if (!name)
3881		return NULL;
3882
3883	list_for_each_entry(dev, &ffs_devices, entry) {
3884		if (strcmp(dev->name, name) == 0)
3885			return dev;
3886	}
3887
3888	return NULL;
3889}
3890
3891/*
3892 * ffs_lock must be taken by the caller of this function
3893 */
3894static struct ffs_dev *_ffs_get_single_dev(void)
3895{
3896	struct ffs_dev *dev;
3897
3898	if (list_is_singular(&ffs_devices)) {
3899		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3900		if (dev->single)
3901			return dev;
3902	}
3903
3904	return NULL;
3905}
3906
3907/*
3908 * ffs_lock must be taken by the caller of this function
3909 */
3910static struct ffs_dev *_ffs_find_dev(const char *name)
3911{
3912	struct ffs_dev *dev;
3913
3914	dev = _ffs_get_single_dev();
3915	if (dev)
3916		return dev;
3917
3918	return _ffs_do_find_dev(name);
3919}
3920
3921/* Configfs support *********************************************************/
3922
3923static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3924{
3925	return container_of(to_config_group(item), struct f_fs_opts,
3926			    func_inst.group);
3927}
3928
3929static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3930{
3931	struct f_fs_opts *opts = to_ffs_opts(item);
3932	int ready;
3933
3934	ffs_dev_lock();
3935	ready = opts->dev->desc_ready;
3936	ffs_dev_unlock();
3937
3938	return sprintf(page, "%d\n", ready);
3939}
3940
3941CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3942
3943static struct configfs_attribute *ffs_attrs[] = {
3944	&f_fs_opts_attr_ready,
3945	NULL,
3946};
3947
3948static void ffs_attr_release(struct config_item *item)
3949{
3950	struct f_fs_opts *opts = to_ffs_opts(item);
3951
3952	usb_put_function_instance(&opts->func_inst);
3953}
3954
3955static struct configfs_item_operations ffs_item_ops = {
3956	.release	= ffs_attr_release,
3957};
3958
3959static const struct config_item_type ffs_func_type = {
3960	.ct_item_ops	= &ffs_item_ops,
3961	.ct_attrs	= ffs_attrs,
3962	.ct_owner	= THIS_MODULE,
3963};
3964
3965
3966/* Function registration interface ******************************************/
3967
3968static void ffs_free_inst(struct usb_function_instance *f)
3969{
3970	struct f_fs_opts *opts;
3971
3972	opts = to_f_fs_opts(f);
3973	ffs_release_dev(opts->dev);
3974	ffs_dev_lock();
3975	_ffs_free_dev(opts->dev);
3976	ffs_dev_unlock();
3977	kfree(opts);
3978}
3979
3980static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3981{
3982	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3983		return -ENAMETOOLONG;
3984	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3985}
3986
3987static struct usb_function_instance *ffs_alloc_inst(void)
3988{
3989	struct f_fs_opts *opts;
3990	struct ffs_dev *dev;
3991
3992	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3993	if (!opts)
3994		return ERR_PTR(-ENOMEM);
3995
3996	opts->func_inst.set_inst_name = ffs_set_inst_name;
3997	opts->func_inst.free_func_inst = ffs_free_inst;
3998	ffs_dev_lock();
3999	dev = _ffs_alloc_dev();
4000	ffs_dev_unlock();
4001	if (IS_ERR(dev)) {
4002		kfree(opts);
4003		return ERR_CAST(dev);
4004	}
4005	opts->dev = dev;
4006	dev->opts = opts;
4007
4008	config_group_init_type_name(&opts->func_inst.group, "",
4009				    &ffs_func_type);
4010	return &opts->func_inst;
4011}
4012
4013static void ffs_free(struct usb_function *f)
4014{
4015	kfree(ffs_func_from_usb(f));
4016}
4017
4018static void ffs_func_unbind(struct usb_configuration *c,
4019			    struct usb_function *f)
4020{
4021	struct ffs_function *func = ffs_func_from_usb(f);
4022	struct ffs_data *ffs = func->ffs;
4023	struct f_fs_opts *opts =
4024		container_of(f->fi, struct f_fs_opts, func_inst);
4025	struct ffs_ep *ep = func->eps;
4026	unsigned count = ffs->eps_count;
4027	unsigned long flags;
4028
4029	if (ffs->func == func) {
4030		ffs_func_eps_disable(func);
4031		ffs->func = NULL;
4032	}
4033
4034	/* Drain any pending AIO completions */
4035	drain_workqueue(ffs->io_completion_wq);
4036
4037	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4038	if (!--opts->refcnt)
4039		functionfs_unbind(ffs);
4040
4041	/* cleanup after autoconfig */
4042	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4043	while (count--) {
4044		if (ep->ep && ep->req)
4045			usb_ep_free_request(ep->ep, ep->req);
4046		ep->req = NULL;
4047		++ep;
4048	}
4049	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4050	kfree(func->eps);
4051	func->eps = NULL;
4052	/*
4053	 * eps, descriptors and interfaces_nums are allocated in the
4054	 * same chunk so only one free is required.
4055	 */
4056	func->function.fs_descriptors = NULL;
4057	func->function.hs_descriptors = NULL;
4058	func->function.ss_descriptors = NULL;
4059	func->function.ssp_descriptors = NULL;
4060	func->interfaces_nums = NULL;
4061
4062}
4063
4064static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4065{
4066	struct ffs_function *func;
4067
4068	func = kzalloc(sizeof(*func), GFP_KERNEL);
4069	if (!func)
4070		return ERR_PTR(-ENOMEM);
4071
4072	func->function.name    = "Function FS Gadget";
4073
4074	func->function.bind    = ffs_func_bind;
4075	func->function.unbind  = ffs_func_unbind;
4076	func->function.set_alt = ffs_func_set_alt;
4077	func->function.disable = ffs_func_disable;
4078	func->function.setup   = ffs_func_setup;
4079	func->function.req_match = ffs_func_req_match;
4080	func->function.suspend = ffs_func_suspend;
4081	func->function.resume  = ffs_func_resume;
4082	func->function.free_func = ffs_free;
4083
4084	return &func->function;
4085}
4086
4087/*
4088 * ffs_lock must be taken by the caller of this function
4089 */
4090static struct ffs_dev *_ffs_alloc_dev(void)
4091{
4092	struct ffs_dev *dev;
4093	int ret;
4094
4095	if (_ffs_get_single_dev())
4096			return ERR_PTR(-EBUSY);
4097
4098	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4099	if (!dev)
4100		return ERR_PTR(-ENOMEM);
4101
4102	if (list_empty(&ffs_devices)) {
4103		ret = functionfs_init();
4104		if (ret) {
4105			kfree(dev);
4106			return ERR_PTR(ret);
4107		}
4108	}
4109
4110	list_add(&dev->entry, &ffs_devices);
4111
4112	return dev;
4113}
4114
4115int ffs_name_dev(struct ffs_dev *dev, const char *name)
4116{
4117	struct ffs_dev *existing;
4118	int ret = 0;
4119
4120	ffs_dev_lock();
4121
4122	existing = _ffs_do_find_dev(name);
4123	if (!existing)
4124		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4125	else if (existing != dev)
4126		ret = -EBUSY;
4127
4128	ffs_dev_unlock();
4129
4130	return ret;
4131}
4132EXPORT_SYMBOL_GPL(ffs_name_dev);
4133
4134int ffs_single_dev(struct ffs_dev *dev)
4135{
4136	int ret;
4137
4138	ret = 0;
4139	ffs_dev_lock();
4140
4141	if (!list_is_singular(&ffs_devices))
4142		ret = -EBUSY;
4143	else
4144		dev->single = true;
4145
4146	ffs_dev_unlock();
4147	return ret;
4148}
4149EXPORT_SYMBOL_GPL(ffs_single_dev);
4150
4151/*
4152 * ffs_lock must be taken by the caller of this function
4153 */
4154static void _ffs_free_dev(struct ffs_dev *dev)
4155{
4156	list_del(&dev->entry);
4157
4158	kfree(dev);
4159	if (list_empty(&ffs_devices))
4160		functionfs_cleanup();
4161}
4162
4163static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4164{
4165	int ret = 0;
4166	struct ffs_dev *ffs_dev;
4167
4168	ffs_dev_lock();
4169
4170	ffs_dev = _ffs_find_dev(dev_name);
4171	if (!ffs_dev) {
4172		ret = -ENOENT;
4173	} else if (ffs_dev->mounted) {
4174		ret = -EBUSY;
4175	} else if (ffs_dev->ffs_acquire_dev_callback &&
4176		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4177		ret = -ENOENT;
4178	} else {
4179		ffs_dev->mounted = true;
4180		ffs_dev->ffs_data = ffs_data;
4181		ffs_data->private_data = ffs_dev;
4182	}
4183
4184	ffs_dev_unlock();
4185	return ret;
4186}
4187
4188static void ffs_release_dev(struct ffs_dev *ffs_dev)
4189{
4190	ffs_dev_lock();
4191
4192	if (ffs_dev && ffs_dev->mounted) {
4193		ffs_dev->mounted = false;
4194		if (ffs_dev->ffs_data) {
4195			ffs_dev->ffs_data->private_data = NULL;
4196			ffs_dev->ffs_data = NULL;
4197		}
4198
4199		if (ffs_dev->ffs_release_dev_callback)
4200			ffs_dev->ffs_release_dev_callback(ffs_dev);
4201	}
4202
4203	ffs_dev_unlock();
4204}
4205
4206static int ffs_ready(struct ffs_data *ffs)
4207{
4208	struct ffs_dev *ffs_obj;
4209	int ret = 0;
4210
4211	ffs_dev_lock();
4212
4213	ffs_obj = ffs->private_data;
4214	if (!ffs_obj) {
4215		ret = -EINVAL;
4216		goto done;
4217	}
4218	if (WARN_ON(ffs_obj->desc_ready)) {
4219		ret = -EBUSY;
4220		goto done;
4221	}
4222
4223	ffs_obj->desc_ready = true;
4224
4225	if (ffs_obj->ffs_ready_callback) {
4226		ret = ffs_obj->ffs_ready_callback(ffs);
4227		if (ret)
4228			goto done;
4229	}
4230
4231	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4232done:
4233	ffs_dev_unlock();
4234	return ret;
4235}
4236
4237static void ffs_closed(struct ffs_data *ffs)
4238{
4239	struct ffs_dev *ffs_obj;
4240	struct f_fs_opts *opts;
4241	struct config_item *ci;
4242
4243	ffs_dev_lock();
4244
4245	ffs_obj = ffs->private_data;
4246	if (!ffs_obj)
4247		goto done;
4248
4249	ffs_obj->desc_ready = false;
4250
4251	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4252	    ffs_obj->ffs_closed_callback)
4253		ffs_obj->ffs_closed_callback(ffs);
4254
4255	if (ffs_obj->opts)
4256		opts = ffs_obj->opts;
4257	else
4258		goto done;
4259
4260	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4261	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4262		goto done;
4263
4264	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4265	ffs_dev_unlock();
4266
4267	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4268		unregister_gadget_item(ci);
4269	return;
4270done:
4271	ffs_dev_unlock();
4272}
4273
4274/* Misc helper functions ****************************************************/
4275
4276static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4277{
4278	return nonblock
4279		? mutex_trylock(mutex) ? 0 : -EAGAIN
4280		: mutex_lock_interruptible(mutex);
4281}
4282
4283static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4284{
4285	char *data;
4286
4287	if (!len)
4288		return NULL;
4289
4290	data = memdup_user(buf, len);
4291	if (IS_ERR(data))
4292		return data;
4293
4294	pr_vdebug("Buffer from user space:\n");
4295	ffs_dump_mem("", data, len);
4296
4297	return data;
4298}
4299
4300DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4301MODULE_LICENSE("GPL");
4302MODULE_AUTHOR("Michal Nazarewicz");
1