Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2016 Intel Corporation
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include <drm/drm_print.h>
   9
  10#include "gem/i915_gem_context.h"
  11#include "gem/i915_gem_internal.h"
  12#include "gt/intel_gt_print.h"
  13#include "gt/intel_gt_regs.h"
  14
  15#include "i915_cmd_parser.h"
  16#include "i915_drv.h"
  17#include "i915_irq.h"
  18#include "i915_reg.h"
  19#include "intel_breadcrumbs.h"
  20#include "intel_context.h"
  21#include "intel_engine.h"
  22#include "intel_engine_pm.h"
  23#include "intel_engine_regs.h"
  24#include "intel_engine_user.h"
  25#include "intel_execlists_submission.h"
  26#include "intel_gt.h"
  27#include "intel_gt_mcr.h"
  28#include "intel_gt_pm.h"
  29#include "intel_gt_requests.h"
  30#include "intel_lrc.h"
  31#include "intel_lrc_reg.h"
  32#include "intel_reset.h"
  33#include "intel_ring.h"
  34#include "uc/intel_guc_submission.h"
  35
  36/* Haswell does have the CXT_SIZE register however it does not appear to be
  37 * valid. Now, docs explain in dwords what is in the context object. The full
  38 * size is 70720 bytes, however, the power context and execlist context will
  39 * never be saved (power context is stored elsewhere, and execlists don't work
  40 * on HSW) - so the final size, including the extra state required for the
  41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
  42 */
  43#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
  44
  45#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  46#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
  47#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  48#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
  49
  50#define GEN8_LR_CONTEXT_OTHER_SIZE	(2 * PAGE_SIZE)
  51
  52#define MAX_MMIO_BASES 3
  53struct engine_info {
  54	u8 class;
  55	u8 instance;
  56	/* mmio bases table *must* be sorted in reverse graphics_ver order */
  57	struct engine_mmio_base {
  58		u32 graphics_ver : 8;
  59		u32 base : 24;
  60	} mmio_bases[MAX_MMIO_BASES];
  61};
  62
  63static const struct engine_info intel_engines[] = {
  64	[RCS0] = {
  65		.class = RENDER_CLASS,
  66		.instance = 0,
  67		.mmio_bases = {
  68			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
  69		},
  70	},
  71	[BCS0] = {
  72		.class = COPY_ENGINE_CLASS,
  73		.instance = 0,
  74		.mmio_bases = {
  75			{ .graphics_ver = 6, .base = BLT_RING_BASE }
  76		},
  77	},
  78	[BCS1] = {
  79		.class = COPY_ENGINE_CLASS,
  80		.instance = 1,
  81		.mmio_bases = {
  82			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
  83		},
  84	},
  85	[BCS2] = {
  86		.class = COPY_ENGINE_CLASS,
  87		.instance = 2,
  88		.mmio_bases = {
  89			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
  90		},
  91	},
  92	[BCS3] = {
  93		.class = COPY_ENGINE_CLASS,
  94		.instance = 3,
  95		.mmio_bases = {
  96			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
  97		},
  98	},
  99	[BCS4] = {
 100		.class = COPY_ENGINE_CLASS,
 101		.instance = 4,
 102		.mmio_bases = {
 103			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
 104		},
 105	},
 106	[BCS5] = {
 107		.class = COPY_ENGINE_CLASS,
 108		.instance = 5,
 109		.mmio_bases = {
 110			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
 111		},
 112	},
 113	[BCS6] = {
 114		.class = COPY_ENGINE_CLASS,
 115		.instance = 6,
 116		.mmio_bases = {
 117			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
 118		},
 119	},
 120	[BCS7] = {
 121		.class = COPY_ENGINE_CLASS,
 122		.instance = 7,
 123		.mmio_bases = {
 124			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
 125		},
 126	},
 127	[BCS8] = {
 128		.class = COPY_ENGINE_CLASS,
 129		.instance = 8,
 130		.mmio_bases = {
 131			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
 132		},
 133	},
 134	[VCS0] = {
 135		.class = VIDEO_DECODE_CLASS,
 136		.instance = 0,
 137		.mmio_bases = {
 138			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
 139			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
 140			{ .graphics_ver = 4, .base = BSD_RING_BASE }
 141		},
 142	},
 143	[VCS1] = {
 144		.class = VIDEO_DECODE_CLASS,
 145		.instance = 1,
 146		.mmio_bases = {
 147			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
 148			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
 149		},
 150	},
 151	[VCS2] = {
 152		.class = VIDEO_DECODE_CLASS,
 153		.instance = 2,
 154		.mmio_bases = {
 155			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
 156		},
 157	},
 158	[VCS3] = {
 159		.class = VIDEO_DECODE_CLASS,
 160		.instance = 3,
 161		.mmio_bases = {
 162			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
 163		},
 164	},
 165	[VCS4] = {
 166		.class = VIDEO_DECODE_CLASS,
 167		.instance = 4,
 168		.mmio_bases = {
 169			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
 170		},
 171	},
 172	[VCS5] = {
 173		.class = VIDEO_DECODE_CLASS,
 174		.instance = 5,
 175		.mmio_bases = {
 176			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
 177		},
 178	},
 179	[VCS6] = {
 180		.class = VIDEO_DECODE_CLASS,
 181		.instance = 6,
 182		.mmio_bases = {
 183			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
 184		},
 185	},
 186	[VCS7] = {
 187		.class = VIDEO_DECODE_CLASS,
 188		.instance = 7,
 189		.mmio_bases = {
 190			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
 191		},
 192	},
 193	[VECS0] = {
 194		.class = VIDEO_ENHANCEMENT_CLASS,
 195		.instance = 0,
 196		.mmio_bases = {
 197			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
 198			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
 199		},
 200	},
 201	[VECS1] = {
 202		.class = VIDEO_ENHANCEMENT_CLASS,
 203		.instance = 1,
 204		.mmio_bases = {
 205			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
 206		},
 207	},
 208	[VECS2] = {
 209		.class = VIDEO_ENHANCEMENT_CLASS,
 210		.instance = 2,
 211		.mmio_bases = {
 212			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
 213		},
 214	},
 215	[VECS3] = {
 216		.class = VIDEO_ENHANCEMENT_CLASS,
 217		.instance = 3,
 218		.mmio_bases = {
 219			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
 220		},
 221	},
 222	[CCS0] = {
 223		.class = COMPUTE_CLASS,
 224		.instance = 0,
 225		.mmio_bases = {
 226			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
 227		}
 228	},
 229	[CCS1] = {
 230		.class = COMPUTE_CLASS,
 231		.instance = 1,
 232		.mmio_bases = {
 233			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
 234		}
 235	},
 236	[CCS2] = {
 237		.class = COMPUTE_CLASS,
 238		.instance = 2,
 239		.mmio_bases = {
 240			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
 241		}
 242	},
 243	[CCS3] = {
 244		.class = COMPUTE_CLASS,
 245		.instance = 3,
 246		.mmio_bases = {
 247			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
 248		}
 249	},
 250	[GSC0] = {
 251		.class = OTHER_CLASS,
 252		.instance = OTHER_GSC_INSTANCE,
 253		.mmio_bases = {
 254			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
 255		}
 256	},
 257};
 258
 259/**
 260 * intel_engine_context_size() - return the size of the context for an engine
 261 * @gt: the gt
 262 * @class: engine class
 263 *
 264 * Each engine class may require a different amount of space for a context
 265 * image.
 266 *
 267 * Return: size (in bytes) of an engine class specific context image
 268 *
 269 * Note: this size includes the HWSP, which is part of the context image
 270 * in LRC mode, but does not include the "shared data page" used with
 271 * GuC submission. The caller should account for this if using the GuC.
 272 */
 273u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
 274{
 275	struct intel_uncore *uncore = gt->uncore;
 276	u32 cxt_size;
 277
 278	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
 279
 280	switch (class) {
 281	case COMPUTE_CLASS:
 282		fallthrough;
 283	case RENDER_CLASS:
 284		switch (GRAPHICS_VER(gt->i915)) {
 285		default:
 286			MISSING_CASE(GRAPHICS_VER(gt->i915));
 287			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
 288		case 12:
 289		case 11:
 290			return GEN11_LR_CONTEXT_RENDER_SIZE;
 291		case 9:
 292			return GEN9_LR_CONTEXT_RENDER_SIZE;
 293		case 8:
 294			return GEN8_LR_CONTEXT_RENDER_SIZE;
 295		case 7:
 296			if (IS_HASWELL(gt->i915))
 297				return HSW_CXT_TOTAL_SIZE;
 298
 299			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
 300			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
 301					PAGE_SIZE);
 302		case 6:
 303			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
 304			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
 305					PAGE_SIZE);
 306		case 5:
 307		case 4:
 308			/*
 309			 * There is a discrepancy here between the size reported
 310			 * by the register and the size of the context layout
 311			 * in the docs. Both are described as authorative!
 312			 *
 313			 * The discrepancy is on the order of a few cachelines,
 314			 * but the total is under one page (4k), which is our
 315			 * minimum allocation anyway so it should all come
 316			 * out in the wash.
 317			 */
 318			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
 319			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
 320			       GRAPHICS_VER(gt->i915), cxt_size * 64,
 321			       cxt_size - 1);
 322			return round_up(cxt_size * 64, PAGE_SIZE);
 323		case 3:
 324		case 2:
 325		/* For the special day when i810 gets merged. */
 326		case 1:
 327			return 0;
 328		}
 329		break;
 330	default:
 331		MISSING_CASE(class);
 332		fallthrough;
 333	case VIDEO_DECODE_CLASS:
 334	case VIDEO_ENHANCEMENT_CLASS:
 335	case COPY_ENGINE_CLASS:
 336	case OTHER_CLASS:
 337		if (GRAPHICS_VER(gt->i915) < 8)
 338			return 0;
 339		return GEN8_LR_CONTEXT_OTHER_SIZE;
 340	}
 341}
 342
 343static u32 __engine_mmio_base(struct drm_i915_private *i915,
 344			      const struct engine_mmio_base *bases)
 345{
 346	int i;
 347
 348	for (i = 0; i < MAX_MMIO_BASES; i++)
 349		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
 350			break;
 351
 352	GEM_BUG_ON(i == MAX_MMIO_BASES);
 353	GEM_BUG_ON(!bases[i].base);
 354
 355	return bases[i].base;
 356}
 357
 358static void __sprint_engine_name(struct intel_engine_cs *engine)
 359{
 360	/*
 361	 * Before we know what the uABI name for this engine will be,
 362	 * we still would like to keep track of this engine in the debug logs.
 363	 * We throw in a ' here as a reminder that this isn't its final name.
 364	 */
 365	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
 366			     intel_engine_class_repr(engine->class),
 367			     engine->instance) >= sizeof(engine->name));
 368}
 369
 370void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
 371{
 372	/*
 373	 * Though they added more rings on g4x/ilk, they did not add
 374	 * per-engine HWSTAM until gen6.
 375	 */
 376	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
 377		return;
 378
 379	if (GRAPHICS_VER(engine->i915) >= 3)
 380		ENGINE_WRITE(engine, RING_HWSTAM, mask);
 381	else
 382		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
 383}
 384
 385static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
 386{
 387	/* Mask off all writes into the unknown HWSP */
 388	intel_engine_set_hwsp_writemask(engine, ~0u);
 389}
 390
 391static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
 392{
 393	GEM_DEBUG_WARN_ON(iir);
 394}
 395
 396static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
 397{
 398	u32 reset_domain;
 399
 400	if (ver >= 11) {
 401		static const u32 engine_reset_domains[] = {
 402			[RCS0]  = GEN11_GRDOM_RENDER,
 403			[BCS0]  = GEN11_GRDOM_BLT,
 404			[BCS1]  = XEHPC_GRDOM_BLT1,
 405			[BCS2]  = XEHPC_GRDOM_BLT2,
 406			[BCS3]  = XEHPC_GRDOM_BLT3,
 407			[BCS4]  = XEHPC_GRDOM_BLT4,
 408			[BCS5]  = XEHPC_GRDOM_BLT5,
 409			[BCS6]  = XEHPC_GRDOM_BLT6,
 410			[BCS7]  = XEHPC_GRDOM_BLT7,
 411			[BCS8]  = XEHPC_GRDOM_BLT8,
 412			[VCS0]  = GEN11_GRDOM_MEDIA,
 413			[VCS1]  = GEN11_GRDOM_MEDIA2,
 414			[VCS2]  = GEN11_GRDOM_MEDIA3,
 415			[VCS3]  = GEN11_GRDOM_MEDIA4,
 416			[VCS4]  = GEN11_GRDOM_MEDIA5,
 417			[VCS5]  = GEN11_GRDOM_MEDIA6,
 418			[VCS6]  = GEN11_GRDOM_MEDIA7,
 419			[VCS7]  = GEN11_GRDOM_MEDIA8,
 420			[VECS0] = GEN11_GRDOM_VECS,
 421			[VECS1] = GEN11_GRDOM_VECS2,
 422			[VECS2] = GEN11_GRDOM_VECS3,
 423			[VECS3] = GEN11_GRDOM_VECS4,
 424			[CCS0]  = GEN11_GRDOM_RENDER,
 425			[CCS1]  = GEN11_GRDOM_RENDER,
 426			[CCS2]  = GEN11_GRDOM_RENDER,
 427			[CCS3]  = GEN11_GRDOM_RENDER,
 428			[GSC0]  = GEN12_GRDOM_GSC,
 429		};
 430		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 431			   !engine_reset_domains[id]);
 432		reset_domain = engine_reset_domains[id];
 433	} else {
 434		static const u32 engine_reset_domains[] = {
 435			[RCS0]  = GEN6_GRDOM_RENDER,
 436			[BCS0]  = GEN6_GRDOM_BLT,
 437			[VCS0]  = GEN6_GRDOM_MEDIA,
 438			[VCS1]  = GEN8_GRDOM_MEDIA2,
 439			[VECS0] = GEN6_GRDOM_VECS,
 440		};
 441		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 442			   !engine_reset_domains[id]);
 443		reset_domain = engine_reset_domains[id];
 444	}
 445
 446	return reset_domain;
 447}
 448
 449static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
 450			      u8 logical_instance)
 451{
 452	const struct engine_info *info = &intel_engines[id];
 453	struct drm_i915_private *i915 = gt->i915;
 454	struct intel_engine_cs *engine;
 455	u8 guc_class;
 456
 457	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
 458	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
 459	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
 460	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
 461
 462	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
 463		return -EINVAL;
 464
 465	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
 466		return -EINVAL;
 467
 468	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
 469		return -EINVAL;
 470
 471	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
 472		return -EINVAL;
 473
 474	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
 475	if (!engine)
 476		return -ENOMEM;
 477
 478	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
 479
 480	INIT_LIST_HEAD(&engine->pinned_contexts_list);
 481	engine->id = id;
 482	engine->legacy_idx = INVALID_ENGINE;
 483	engine->mask = BIT(id);
 484	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
 485						id);
 486	engine->i915 = i915;
 487	engine->gt = gt;
 488	engine->uncore = gt->uncore;
 489	guc_class = engine_class_to_guc_class(info->class);
 490	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
 491	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
 492
 493	engine->irq_handler = nop_irq_handler;
 494
 495	engine->class = info->class;
 496	engine->instance = info->instance;
 497	engine->logical_mask = BIT(logical_instance);
 498	__sprint_engine_name(engine);
 499
 500	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
 501	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
 502	     engine->class == RENDER_CLASS)
 503		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
 504
 505	/* features common between engines sharing EUs */
 506	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
 507		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
 508		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
 509	}
 510
 511	engine->props.heartbeat_interval_ms =
 512		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
 513	engine->props.max_busywait_duration_ns =
 514		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
 515	engine->props.preempt_timeout_ms =
 516		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
 517	engine->props.stop_timeout_ms =
 518		CONFIG_DRM_I915_STOP_TIMEOUT;
 519	engine->props.timeslice_duration_ms =
 520		CONFIG_DRM_I915_TIMESLICE_DURATION;
 521
 522	/*
 523	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
 524	 * some compute workloads run quite long threads. That means they get
 525	 * reset due to not pre-empting in a timely manner. So, bump the
 526	 * pre-emption timeout value to be much higher for compute engines.
 527	 */
 528	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
 529		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
 530
 531	/* Cap properties according to any system limits */
 532#define CLAMP_PROP(field) \
 533	do { \
 534		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
 535		if (clamp != engine->props.field) { \
 536			drm_notice(&engine->i915->drm, \
 537				   "Warning, clamping %s to %lld to prevent overflow\n", \
 538				   #field, clamp); \
 539			engine->props.field = clamp; \
 540		} \
 541	} while (0)
 542
 543	CLAMP_PROP(heartbeat_interval_ms);
 544	CLAMP_PROP(max_busywait_duration_ns);
 545	CLAMP_PROP(preempt_timeout_ms);
 546	CLAMP_PROP(stop_timeout_ms);
 547	CLAMP_PROP(timeslice_duration_ms);
 548
 549#undef CLAMP_PROP
 550
 551	engine->defaults = engine->props; /* never to change again */
 552
 553	engine->context_size = intel_engine_context_size(gt, engine->class);
 554	if (WARN_ON(engine->context_size > BIT(20)))
 555		engine->context_size = 0;
 556	if (engine->context_size)
 557		DRIVER_CAPS(i915)->has_logical_contexts = true;
 558
 559	ewma__engine_latency_init(&engine->latency);
 560
 561	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
 562
 563	/* Scrub mmio state on takeover */
 564	intel_engine_sanitize_mmio(engine);
 565
 566	gt->engine_class[info->class][info->instance] = engine;
 567	gt->engine[id] = engine;
 568
 569	return 0;
 570}
 571
 572u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
 573{
 574	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 575
 576	return value;
 577}
 578
 579u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
 580{
 581	value = min(value, jiffies_to_nsecs(2));
 582
 583	return value;
 584}
 585
 586u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
 587{
 588	/*
 589	 * NB: The GuC API only supports 32bit values. However, the limit is further
 590	 * reduced due to internal calculations which would otherwise overflow.
 591	 */
 592	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
 593		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
 594
 595	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 596
 597	return value;
 598}
 599
 600u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
 601{
 602	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 603
 604	return value;
 605}
 606
 607u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
 608{
 609	/*
 610	 * NB: The GuC API only supports 32bit values. However, the limit is further
 611	 * reduced due to internal calculations which would otherwise overflow.
 612	 */
 613	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
 614		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
 615
 616	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 617
 618	return value;
 619}
 620
 621static void __setup_engine_capabilities(struct intel_engine_cs *engine)
 622{
 623	struct drm_i915_private *i915 = engine->i915;
 624
 625	if (engine->class == VIDEO_DECODE_CLASS) {
 626		/*
 627		 * HEVC support is present on first engine instance
 628		 * before Gen11 and on all instances afterwards.
 629		 */
 630		if (GRAPHICS_VER(i915) >= 11 ||
 631		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 632			engine->uabi_capabilities |=
 633				I915_VIDEO_CLASS_CAPABILITY_HEVC;
 634
 635		/*
 636		 * SFC block is present only on even logical engine
 637		 * instances.
 638		 */
 639		if ((GRAPHICS_VER(i915) >= 11 &&
 640		     (engine->gt->info.vdbox_sfc_access &
 641		      BIT(engine->instance))) ||
 642		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 643			engine->uabi_capabilities |=
 644				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 645	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
 646		if (GRAPHICS_VER(i915) >= 9 &&
 647		    engine->gt->info.sfc_mask & BIT(engine->instance))
 648			engine->uabi_capabilities |=
 649				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 650	}
 651}
 652
 653static void intel_setup_engine_capabilities(struct intel_gt *gt)
 654{
 655	struct intel_engine_cs *engine;
 656	enum intel_engine_id id;
 657
 658	for_each_engine(engine, gt, id)
 659		__setup_engine_capabilities(engine);
 660}
 661
 662/**
 663 * intel_engines_release() - free the resources allocated for Command Streamers
 664 * @gt: pointer to struct intel_gt
 665 */
 666void intel_engines_release(struct intel_gt *gt)
 667{
 668	struct intel_engine_cs *engine;
 669	enum intel_engine_id id;
 670
 671	/*
 672	 * Before we release the resources held by engine, we must be certain
 673	 * that the HW is no longer accessing them -- having the GPU scribble
 674	 * to or read from a page being used for something else causes no end
 675	 * of fun.
 676	 *
 677	 * The GPU should be reset by this point, but assume the worst just
 678	 * in case we aborted before completely initialising the engines.
 679	 */
 680	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
 681	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
 682		__intel_gt_reset(gt, ALL_ENGINES);
 683
 684	/* Decouple the backend; but keep the layout for late GPU resets */
 685	for_each_engine(engine, gt, id) {
 686		if (!engine->release)
 687			continue;
 688
 689		intel_wakeref_wait_for_idle(&engine->wakeref);
 690		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
 691
 692		engine->release(engine);
 693		engine->release = NULL;
 694
 695		memset(&engine->reset, 0, sizeof(engine->reset));
 696	}
 697}
 698
 699void intel_engine_free_request_pool(struct intel_engine_cs *engine)
 700{
 701	if (!engine->request_pool)
 702		return;
 703
 704	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
 705}
 706
 707void intel_engines_free(struct intel_gt *gt)
 708{
 709	struct intel_engine_cs *engine;
 710	enum intel_engine_id id;
 711
 712	/* Free the requests! dma-resv keeps fences around for an eternity */
 713	rcu_barrier();
 714
 715	for_each_engine(engine, gt, id) {
 716		intel_engine_free_request_pool(engine);
 717		kfree(engine);
 718		gt->engine[id] = NULL;
 719	}
 720}
 721
 722static
 723bool gen11_vdbox_has_sfc(struct intel_gt *gt,
 724			 unsigned int physical_vdbox,
 725			 unsigned int logical_vdbox, u16 vdbox_mask)
 726{
 727	struct drm_i915_private *i915 = gt->i915;
 728
 729	/*
 730	 * In Gen11, only even numbered logical VDBOXes are hooked
 731	 * up to an SFC (Scaler & Format Converter) unit.
 732	 * In Gen12, Even numbered physical instance always are connected
 733	 * to an SFC. Odd numbered physical instances have SFC only if
 734	 * previous even instance is fused off.
 735	 *
 736	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
 737	 * in the fuse register that tells us whether a specific SFC is present.
 738	 */
 739	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
 740		return false;
 741	else if (MEDIA_VER(i915) >= 12)
 742		return (physical_vdbox % 2 == 0) ||
 743			!(BIT(physical_vdbox - 1) & vdbox_mask);
 744	else if (MEDIA_VER(i915) == 11)
 745		return logical_vdbox % 2 == 0;
 746
 747	return false;
 748}
 749
 750static void engine_mask_apply_media_fuses(struct intel_gt *gt)
 751{
 752	struct drm_i915_private *i915 = gt->i915;
 753	unsigned int logical_vdbox = 0;
 754	unsigned int i;
 755	u32 media_fuse, fuse1;
 756	u16 vdbox_mask;
 757	u16 vebox_mask;
 758
 759	if (MEDIA_VER(gt->i915) < 11)
 760		return;
 761
 762	/*
 763	 * On newer platforms the fusing register is called 'enable' and has
 764	 * enable semantics, while on older platforms it is called 'disable'
 765	 * and bits have disable semantices.
 766	 */
 767	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
 768	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
 769		media_fuse = ~media_fuse;
 770
 771	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
 772	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
 773		      GEN11_GT_VEBOX_DISABLE_SHIFT;
 774
 775	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
 776		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
 777		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
 778	} else {
 779		gt->info.sfc_mask = ~0;
 780	}
 781
 782	for (i = 0; i < I915_MAX_VCS; i++) {
 783		if (!HAS_ENGINE(gt, _VCS(i))) {
 784			vdbox_mask &= ~BIT(i);
 785			continue;
 786		}
 787
 788		if (!(BIT(i) & vdbox_mask)) {
 789			gt->info.engine_mask &= ~BIT(_VCS(i));
 790			gt_dbg(gt, "vcs%u fused off\n", i);
 791			continue;
 792		}
 793
 794		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
 795			gt->info.vdbox_sfc_access |= BIT(i);
 796		logical_vdbox++;
 797	}
 798	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
 799	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
 800
 801	for (i = 0; i < I915_MAX_VECS; i++) {
 802		if (!HAS_ENGINE(gt, _VECS(i))) {
 803			vebox_mask &= ~BIT(i);
 804			continue;
 805		}
 806
 807		if (!(BIT(i) & vebox_mask)) {
 808			gt->info.engine_mask &= ~BIT(_VECS(i));
 809			gt_dbg(gt, "vecs%u fused off\n", i);
 810		}
 811	}
 812	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
 813	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
 814}
 815
 816static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
 817{
 818	struct drm_i915_private *i915 = gt->i915;
 819	struct intel_gt_info *info = &gt->info;
 820	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
 821	unsigned long ccs_mask;
 822	unsigned int i;
 823
 824	if (GRAPHICS_VER(i915) < 11)
 825		return;
 826
 827	if (hweight32(CCS_MASK(gt)) <= 1)
 828		return;
 829
 830	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
 831						     ss_per_ccs);
 832	/*
 833	 * If all DSS in a quadrant are fused off, the corresponding CCS
 834	 * engine is not available for use.
 835	 */
 836	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
 837		info->engine_mask &= ~BIT(_CCS(i));
 838		gt_dbg(gt, "ccs%u fused off\n", i);
 839	}
 840}
 841
 842static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
 843{
 844	struct drm_i915_private *i915 = gt->i915;
 845	struct intel_gt_info *info = &gt->info;
 846	unsigned long meml3_mask;
 847	unsigned long quad;
 848
 849	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
 850	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
 851		return;
 852
 853	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
 854	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
 855
 856	/*
 857	 * Link Copy engines may be fused off according to meml3_mask. Each
 858	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
 859	 */
 860	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
 861		unsigned int instance = quad * 2 + 1;
 862		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
 863						   _BCS(instance));
 864
 865		if (mask & info->engine_mask) {
 866			gt_dbg(gt, "bcs%u fused off\n", instance);
 867			gt_dbg(gt, "bcs%u fused off\n", instance + 1);
 868
 869			info->engine_mask &= ~mask;
 870		}
 871	}
 872}
 873
 874/*
 875 * Determine which engines are fused off in our particular hardware.
 876 * Note that we have a catch-22 situation where we need to be able to access
 877 * the blitter forcewake domain to read the engine fuses, but at the same time
 878 * we need to know which engines are available on the system to know which
 879 * forcewake domains are present. We solve this by intializing the forcewake
 880 * domains based on the full engine mask in the platform capabilities before
 881 * calling this function and pruning the domains for fused-off engines
 882 * afterwards.
 883 */
 884static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
 885{
 886	struct intel_gt_info *info = &gt->info;
 887
 888	GEM_BUG_ON(!info->engine_mask);
 889
 890	engine_mask_apply_media_fuses(gt);
 891	engine_mask_apply_compute_fuses(gt);
 892	engine_mask_apply_copy_fuses(gt);
 893
 894	/*
 895	 * The only use of the GSC CS is to load and communicate with the GSC
 896	 * FW, so we have no use for it if we don't have the FW.
 897	 *
 898	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
 899	 * catch-22 situation that breaks media C6 due to 2 requirements:
 900	 * 1) once turned on, the GSC power well will not go to sleep unless the
 901	 *    GSC FW is loaded.
 902	 * 2) to enable idling (which is required for media C6) we need to
 903	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
 904	 *    submission, which will wake up the GSC power well.
 905	 */
 906	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
 907		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
 908		info->engine_mask &= ~BIT(GSC0);
 909	}
 910
 911	/*
 912	 * Do not create the command streamer for CCS slices beyond the first.
 913	 * All the workload submitted to the first engine will be shared among
 914	 * all the slices.
 915	 *
 916	 * Once the user will be allowed to customize the CCS mode, then this
 917	 * check needs to be removed.
 918	 */
 919	if (IS_DG2(gt->i915)) {
 920		u8 first_ccs = __ffs(CCS_MASK(gt));
 921
 922		/*
 923		 * Store the number of active cslices before
 924		 * changing the CCS engine configuration
 925		 */
 926		gt->ccs.cslices = CCS_MASK(gt);
 927
 928		/* Mask off all the CCS engine */
 929		info->engine_mask &= ~GENMASK(CCS3, CCS0);
 930		/* Put back in the first CCS engine */
 931		info->engine_mask |= BIT(_CCS(first_ccs));
 932	}
 933
 934	return info->engine_mask;
 935}
 936
 937static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
 938				 u8 class, const u8 *map, u8 num_instances)
 939{
 940	int i, j;
 941	u8 current_logical_id = 0;
 942
 943	for (j = 0; j < num_instances; ++j) {
 944		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
 945			if (!HAS_ENGINE(gt, i) ||
 946			    intel_engines[i].class != class)
 947				continue;
 948
 949			if (intel_engines[i].instance == map[j]) {
 950				logical_ids[intel_engines[i].instance] =
 951					current_logical_id++;
 952				break;
 953			}
 954		}
 955	}
 956}
 957
 958static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
 959{
 960	/*
 961	 * Logical to physical mapping is needed for proper support
 962	 * to split-frame feature.
 963	 */
 964	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
 965		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
 966
 967		populate_logical_ids(gt, logical_ids, class,
 968				     map, ARRAY_SIZE(map));
 969	} else {
 970		int i;
 971		u8 map[MAX_ENGINE_INSTANCE + 1];
 972
 973		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
 974			map[i] = i;
 975		populate_logical_ids(gt, logical_ids, class,
 976				     map, ARRAY_SIZE(map));
 977	}
 978}
 979
 980/**
 981 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
 982 * @gt: pointer to struct intel_gt
 983 *
 984 * Return: non-zero if the initialization failed.
 985 */
 986int intel_engines_init_mmio(struct intel_gt *gt)
 987{
 988	struct drm_i915_private *i915 = gt->i915;
 989	const unsigned int engine_mask = init_engine_mask(gt);
 990	unsigned int mask = 0;
 991	unsigned int i, class;
 992	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
 993	int err;
 994
 995	drm_WARN_ON(&i915->drm, engine_mask == 0);
 996	drm_WARN_ON(&i915->drm, engine_mask &
 997		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
 998
 999	if (i915_inject_probe_failure(i915))
1000		return -ENODEV;
1001
1002	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
1003		setup_logical_ids(gt, logical_ids, class);
1004
1005		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1006			u8 instance = intel_engines[i].instance;
1007
1008			if (intel_engines[i].class != class ||
1009			    !HAS_ENGINE(gt, i))
1010				continue;
1011
1012			err = intel_engine_setup(gt, i,
1013						 logical_ids[instance]);
1014			if (err)
1015				goto cleanup;
1016
1017			mask |= BIT(i);
1018		}
1019	}
1020
1021	/*
1022	 * Catch failures to update intel_engines table when the new engines
1023	 * are added to the driver by a warning and disabling the forgotten
1024	 * engines.
1025	 */
1026	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1027		gt->info.engine_mask = mask;
1028
1029	gt->info.num_engines = hweight32(mask);
1030
1031	intel_gt_check_and_clear_faults(gt);
1032
1033	intel_setup_engine_capabilities(gt);
1034
1035	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1036
1037	return 0;
1038
1039cleanup:
1040	intel_engines_free(gt);
1041	return err;
1042}
1043
1044void intel_engine_init_execlists(struct intel_engine_cs *engine)
1045{
1046	struct intel_engine_execlists * const execlists = &engine->execlists;
1047
1048	execlists->port_mask = 1;
1049	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1050	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1051
1052	memset(execlists->pending, 0, sizeof(execlists->pending));
1053	execlists->active =
1054		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1055}
1056
1057static void cleanup_status_page(struct intel_engine_cs *engine)
1058{
1059	struct i915_vma *vma;
1060
1061	/* Prevent writes into HWSP after returning the page to the system */
1062	intel_engine_set_hwsp_writemask(engine, ~0u);
1063
1064	vma = fetch_and_zero(&engine->status_page.vma);
1065	if (!vma)
1066		return;
1067
1068	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1069		i915_vma_unpin(vma);
1070
1071	i915_gem_object_unpin_map(vma->obj);
1072	i915_gem_object_put(vma->obj);
1073}
1074
1075static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1076				struct i915_gem_ww_ctx *ww,
1077				struct i915_vma *vma)
1078{
1079	unsigned int flags;
1080
1081	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1082		/*
1083		 * On g33, we cannot place HWS above 256MiB, so
1084		 * restrict its pinning to the low mappable arena.
1085		 * Though this restriction is not documented for
1086		 * gen4, gen5, or byt, they also behave similarly
1087		 * and hang if the HWS is placed at the top of the
1088		 * GTT. To generalise, it appears that all !llc
1089		 * platforms have issues with us placing the HWS
1090		 * above the mappable region (even though we never
1091		 * actually map it).
1092		 */
1093		flags = PIN_MAPPABLE;
1094	else
1095		flags = PIN_HIGH;
1096
1097	return i915_ggtt_pin(vma, ww, 0, flags);
1098}
1099
1100static int init_status_page(struct intel_engine_cs *engine)
1101{
1102	struct drm_i915_gem_object *obj;
1103	struct i915_gem_ww_ctx ww;
1104	struct i915_vma *vma;
1105	void *vaddr;
1106	int ret;
1107
1108	INIT_LIST_HEAD(&engine->status_page.timelines);
1109
1110	/*
1111	 * Though the HWS register does support 36bit addresses, historically
1112	 * we have had hangs and corruption reported due to wild writes if
1113	 * the HWS is placed above 4G. We only allow objects to be allocated
1114	 * in GFP_DMA32 for i965, and no earlier physical address users had
1115	 * access to more than 4G.
1116	 */
1117	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1118	if (IS_ERR(obj)) {
1119		gt_err(engine->gt, "Failed to allocate status page\n");
1120		return PTR_ERR(obj);
1121	}
1122
1123	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1124
1125	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1126	if (IS_ERR(vma)) {
1127		ret = PTR_ERR(vma);
1128		goto err_put;
1129	}
1130
1131	i915_gem_ww_ctx_init(&ww, true);
1132retry:
1133	ret = i915_gem_object_lock(obj, &ww);
1134	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1135		ret = pin_ggtt_status_page(engine, &ww, vma);
1136	if (ret)
1137		goto err;
1138
1139	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1140	if (IS_ERR(vaddr)) {
1141		ret = PTR_ERR(vaddr);
1142		goto err_unpin;
1143	}
1144
1145	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1146	engine->status_page.vma = vma;
1147
1148err_unpin:
1149	if (ret)
1150		i915_vma_unpin(vma);
1151err:
1152	if (ret == -EDEADLK) {
1153		ret = i915_gem_ww_ctx_backoff(&ww);
1154		if (!ret)
1155			goto retry;
1156	}
1157	i915_gem_ww_ctx_fini(&ww);
1158err_put:
1159	if (ret)
1160		i915_gem_object_put(obj);
1161	return ret;
1162}
1163
1164static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1165{
1166	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1167		[RENDER_CLASS].reg		= GEN8_RTCR,
1168		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1169		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1170		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1171	};
1172	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1173		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1174		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1175		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1176		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1177		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1178	};
1179	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1180		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1181		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1182		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1183		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1184		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1185	};
1186	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1187		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1188		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1189		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1190	};
1191	struct drm_i915_private *i915 = engine->i915;
1192	const unsigned int instance = engine->instance;
1193	const unsigned int class = engine->class;
1194	const union intel_engine_tlb_inv_reg *regs;
1195	union intel_engine_tlb_inv_reg reg;
1196	unsigned int num = 0;
1197	u32 val;
1198
1199	/*
1200	 * New platforms should not be added with catch-all-newer (>=)
1201	 * condition so that any later platform added triggers the below warning
1202	 * and in turn mandates a human cross-check of whether the invalidation
1203	 * flows have compatible semantics.
1204	 *
1205	 * For instance with the 11.00 -> 12.00 transition three out of five
1206	 * respective engine registers were moved to masked type. Then after the
1207	 * 12.00 -> 12.50 transition multi cast handling is required too.
1208	 */
1209
1210	if (engine->gt->type == GT_MEDIA) {
1211		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1212			regs = xelpmp_regs;
1213			num = ARRAY_SIZE(xelpmp_regs);
1214		}
1215	} else {
1216		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1217		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1218		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1219		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1220		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1221			regs = xehp_regs;
1222			num = ARRAY_SIZE(xehp_regs);
1223		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1224			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1225			regs = gen12_regs;
1226			num = ARRAY_SIZE(gen12_regs);
1227		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1228			regs = gen8_regs;
1229			num = ARRAY_SIZE(gen8_regs);
1230		} else if (GRAPHICS_VER(i915) < 8) {
1231			return 0;
1232		}
1233	}
1234
1235	if (gt_WARN_ONCE(engine->gt, !num,
1236			 "Platform does not implement TLB invalidation!"))
1237		return -ENODEV;
1238
1239	if (gt_WARN_ON_ONCE(engine->gt,
1240			    class >= num ||
1241			    (!regs[class].reg.reg &&
1242			     !regs[class].mcr_reg.reg)))
1243		return -ERANGE;
1244
1245	reg = regs[class];
1246
1247	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1248		/*
1249		 * There's only a single GSC instance, but it uses register bit
1250		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1251		 */
1252		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1253		val = 1;
1254	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1255		reg.reg = GEN8_M2TCR;
1256		val = 0;
1257	} else {
1258		val = instance;
1259	}
1260
1261	val = BIT(val);
1262
1263	engine->tlb_inv.mcr = regs == xehp_regs;
1264	engine->tlb_inv.reg = reg;
1265	engine->tlb_inv.done = val;
1266
1267	if (GRAPHICS_VER(i915) >= 12 &&
1268	    (engine->class == VIDEO_DECODE_CLASS ||
1269	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1270	     engine->class == COMPUTE_CLASS ||
1271	     engine->class == OTHER_CLASS))
1272		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1273	else
1274		engine->tlb_inv.request = val;
1275
1276	return 0;
1277}
1278
1279static int engine_setup_common(struct intel_engine_cs *engine)
1280{
1281	int err;
1282
1283	init_llist_head(&engine->barrier_tasks);
1284
1285	err = intel_engine_init_tlb_invalidation(engine);
1286	if (err)
1287		return err;
1288
1289	err = init_status_page(engine);
1290	if (err)
1291		return err;
1292
1293	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1294	if (!engine->breadcrumbs) {
1295		err = -ENOMEM;
1296		goto err_status;
1297	}
1298
1299	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1300	if (!engine->sched_engine) {
1301		err = -ENOMEM;
1302		goto err_sched_engine;
1303	}
1304	engine->sched_engine->private_data = engine;
1305
1306	err = intel_engine_init_cmd_parser(engine);
1307	if (err)
1308		goto err_cmd_parser;
1309
1310	intel_engine_init_execlists(engine);
1311	intel_engine_init__pm(engine);
1312	intel_engine_init_retire(engine);
1313
1314	/* Use the whole device by default */
1315	engine->sseu =
1316		intel_sseu_from_device_info(&engine->gt->info.sseu);
1317
1318	intel_engine_init_workarounds(engine);
1319	intel_engine_init_whitelist(engine);
1320	intel_engine_init_ctx_wa(engine);
1321
1322	if (GRAPHICS_VER(engine->i915) >= 12)
1323		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1324
1325	return 0;
1326
1327err_cmd_parser:
1328	i915_sched_engine_put(engine->sched_engine);
1329err_sched_engine:
1330	intel_breadcrumbs_put(engine->breadcrumbs);
1331err_status:
1332	cleanup_status_page(engine);
1333	return err;
1334}
1335
1336struct measure_breadcrumb {
1337	struct i915_request rq;
1338	struct intel_ring ring;
1339	u32 cs[2048];
1340};
1341
1342static int measure_breadcrumb_dw(struct intel_context *ce)
1343{
1344	struct intel_engine_cs *engine = ce->engine;
1345	struct measure_breadcrumb *frame;
1346	int dw;
1347
1348	GEM_BUG_ON(!engine->gt->scratch);
1349
1350	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1351	if (!frame)
1352		return -ENOMEM;
1353
1354	frame->rq.i915 = engine->i915;
1355	frame->rq.engine = engine;
1356	frame->rq.context = ce;
1357	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1358	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1359
1360	frame->ring.vaddr = frame->cs;
1361	frame->ring.size = sizeof(frame->cs);
1362	frame->ring.wrap =
1363		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1364	frame->ring.effective_size = frame->ring.size;
1365	intel_ring_update_space(&frame->ring);
1366	frame->rq.ring = &frame->ring;
1367
1368	mutex_lock(&ce->timeline->mutex);
1369	spin_lock_irq(&engine->sched_engine->lock);
1370
1371	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1372
1373	spin_unlock_irq(&engine->sched_engine->lock);
1374	mutex_unlock(&ce->timeline->mutex);
1375
1376	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1377
1378	kfree(frame);
1379	return dw;
1380}
1381
1382struct intel_context *
1383intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1384				   struct i915_address_space *vm,
1385				   unsigned int ring_size,
1386				   unsigned int hwsp,
1387				   struct lock_class_key *key,
1388				   const char *name)
1389{
1390	struct intel_context *ce;
1391	int err;
1392
1393	ce = intel_context_create(engine);
1394	if (IS_ERR(ce))
1395		return ce;
1396
1397	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1398	ce->timeline = page_pack_bits(NULL, hwsp);
1399	ce->ring = NULL;
1400	ce->ring_size = ring_size;
1401
1402	i915_vm_put(ce->vm);
1403	ce->vm = i915_vm_get(vm);
1404
1405	err = intel_context_pin(ce); /* perma-pin so it is always available */
1406	if (err) {
1407		intel_context_put(ce);
1408		return ERR_PTR(err);
1409	}
1410
1411	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1412
1413	/*
1414	 * Give our perma-pinned kernel timelines a separate lockdep class,
1415	 * so that we can use them from within the normal user timelines
1416	 * should we need to inject GPU operations during their request
1417	 * construction.
1418	 */
1419	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1420
1421	return ce;
1422}
1423
1424void intel_engine_destroy_pinned_context(struct intel_context *ce)
1425{
1426	struct intel_engine_cs *engine = ce->engine;
1427	struct i915_vma *hwsp = engine->status_page.vma;
1428
1429	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1430
1431	mutex_lock(&hwsp->vm->mutex);
1432	list_del(&ce->timeline->engine_link);
1433	mutex_unlock(&hwsp->vm->mutex);
1434
1435	list_del(&ce->pinned_contexts_link);
1436	intel_context_unpin(ce);
1437	intel_context_put(ce);
1438}
1439
1440static struct intel_context *
1441create_ggtt_bind_context(struct intel_engine_cs *engine)
1442{
1443	static struct lock_class_key kernel;
1444
1445	/*
1446	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1447	 * bind requets at a time so get a bigger ring.
1448	 */
1449	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1450						  I915_GEM_HWS_GGTT_BIND_ADDR,
1451						  &kernel, "ggtt_bind_context");
1452}
1453
1454static struct intel_context *
1455create_kernel_context(struct intel_engine_cs *engine)
1456{
1457	static struct lock_class_key kernel;
1458
1459	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1460						  I915_GEM_HWS_SEQNO_ADDR,
1461						  &kernel, "kernel_context");
1462}
1463
1464/*
1465 * engine_init_common - initialize engine state which might require hw access
1466 * @engine: Engine to initialize.
1467 *
1468 * Initializes @engine@ structure members shared between legacy and execlists
1469 * submission modes which do require hardware access.
1470 *
1471 * Typcally done at later stages of submission mode specific engine setup.
1472 *
1473 * Returns zero on success or an error code on failure.
1474 */
1475static int engine_init_common(struct intel_engine_cs *engine)
1476{
1477	struct intel_context *ce, *bce = NULL;
1478	int ret;
1479
1480	engine->set_default_submission(engine);
1481
1482	/*
1483	 * We may need to do things with the shrinker which
1484	 * require us to immediately switch back to the default
1485	 * context. This can cause a problem as pinning the
1486	 * default context also requires GTT space which may not
1487	 * be available. To avoid this we always pin the default
1488	 * context.
1489	 */
1490	ce = create_kernel_context(engine);
1491	if (IS_ERR(ce))
1492		return PTR_ERR(ce);
1493	/*
1494	 * Create a separate pinned context for GGTT update with blitter engine
1495	 * if a platform require such service. MI_UPDATE_GTT works on other
1496	 * engines as well but BCS should be less busy engine so pick that for
1497	 * GGTT updates.
1498	 */
1499	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1500		bce = create_ggtt_bind_context(engine);
1501		if (IS_ERR(bce)) {
1502			ret = PTR_ERR(bce);
1503			goto err_ce_context;
1504		}
1505	}
1506
1507	ret = measure_breadcrumb_dw(ce);
1508	if (ret < 0)
1509		goto err_bce_context;
1510
1511	engine->emit_fini_breadcrumb_dw = ret;
1512	engine->kernel_context = ce;
1513	engine->bind_context = bce;
1514
1515	return 0;
1516
1517err_bce_context:
1518	if (bce)
1519		intel_engine_destroy_pinned_context(bce);
1520err_ce_context:
1521	intel_engine_destroy_pinned_context(ce);
1522	return ret;
1523}
1524
1525int intel_engines_init(struct intel_gt *gt)
1526{
1527	int (*setup)(struct intel_engine_cs *engine);
1528	struct intel_engine_cs *engine;
1529	enum intel_engine_id id;
1530	int err;
1531
1532	if (intel_uc_uses_guc_submission(&gt->uc)) {
1533		gt->submission_method = INTEL_SUBMISSION_GUC;
1534		setup = intel_guc_submission_setup;
1535	} else if (HAS_EXECLISTS(gt->i915)) {
1536		gt->submission_method = INTEL_SUBMISSION_ELSP;
1537		setup = intel_execlists_submission_setup;
1538	} else {
1539		gt->submission_method = INTEL_SUBMISSION_RING;
1540		setup = intel_ring_submission_setup;
1541	}
1542
1543	for_each_engine(engine, gt, id) {
1544		err = engine_setup_common(engine);
1545		if (err)
1546			return err;
1547
1548		err = setup(engine);
1549		if (err) {
1550			intel_engine_cleanup_common(engine);
1551			return err;
1552		}
1553
1554		/* The backend should now be responsible for cleanup */
1555		GEM_BUG_ON(engine->release == NULL);
1556
1557		err = engine_init_common(engine);
1558		if (err)
1559			return err;
1560
1561		intel_engine_add_user(engine);
1562	}
1563
1564	return 0;
1565}
1566
1567/**
1568 * intel_engine_cleanup_common - cleans up the engine state created by
1569 *                                the common initiailizers.
1570 * @engine: Engine to cleanup.
1571 *
1572 * This cleans up everything created by the common helpers.
1573 */
1574void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1575{
1576	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1577
1578	i915_sched_engine_put(engine->sched_engine);
1579	intel_breadcrumbs_put(engine->breadcrumbs);
1580
1581	intel_engine_fini_retire(engine);
1582	intel_engine_cleanup_cmd_parser(engine);
1583
1584	if (engine->default_state)
1585		fput(engine->default_state);
1586
1587	if (engine->kernel_context)
1588		intel_engine_destroy_pinned_context(engine->kernel_context);
1589
1590	if (engine->bind_context)
1591		intel_engine_destroy_pinned_context(engine->bind_context);
1592
1593
1594	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1595	cleanup_status_page(engine);
1596
1597	intel_wa_list_free(&engine->ctx_wa_list);
1598	intel_wa_list_free(&engine->wa_list);
1599	intel_wa_list_free(&engine->whitelist);
1600}
1601
1602/**
1603 * intel_engine_resume - re-initializes the HW state of the engine
1604 * @engine: Engine to resume.
1605 *
1606 * Returns zero on success or an error code on failure.
1607 */
1608int intel_engine_resume(struct intel_engine_cs *engine)
1609{
1610	intel_engine_apply_workarounds(engine);
1611	intel_engine_apply_whitelist(engine);
1612
1613	return engine->resume(engine);
1614}
1615
1616u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1617{
1618	struct drm_i915_private *i915 = engine->i915;
1619
1620	u64 acthd;
1621
1622	if (GRAPHICS_VER(i915) >= 8)
1623		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1624	else if (GRAPHICS_VER(i915) >= 4)
1625		acthd = ENGINE_READ(engine, RING_ACTHD);
1626	else
1627		acthd = ENGINE_READ(engine, ACTHD);
1628
1629	return acthd;
1630}
1631
1632u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1633{
1634	u64 bbaddr;
1635
1636	if (GRAPHICS_VER(engine->i915) >= 8)
1637		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1638	else
1639		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1640
1641	return bbaddr;
1642}
1643
1644static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1645{
1646	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1647		return 0;
1648
1649	/*
1650	 * If we are doing a normal GPU reset, we can take our time and allow
1651	 * the engine to quiesce. We've stopped submission to the engine, and
1652	 * if we wait long enough an innocent context should complete and
1653	 * leave the engine idle. So they should not be caught unaware by
1654	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1655	 */
1656	return READ_ONCE(engine->props.stop_timeout_ms);
1657}
1658
1659static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1660				  int fast_timeout_us,
1661				  int slow_timeout_ms)
1662{
1663	struct intel_uncore *uncore = engine->uncore;
1664	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1665	int err;
1666
1667	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1668
1669	/*
1670	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1671	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1672	 */
1673	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1674		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1675				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1676
1677	err = __intel_wait_for_register_fw(engine->uncore, mode,
1678					   MODE_IDLE, MODE_IDLE,
1679					   fast_timeout_us,
1680					   slow_timeout_ms,
1681					   NULL);
1682
1683	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1684	intel_uncore_posting_read_fw(uncore, mode);
1685	return err;
1686}
1687
1688int intel_engine_stop_cs(struct intel_engine_cs *engine)
1689{
1690	int err = 0;
1691
1692	if (GRAPHICS_VER(engine->i915) < 3)
1693		return -ENODEV;
1694
1695	ENGINE_TRACE(engine, "\n");
1696	/*
1697	 * TODO: Find out why occasionally stopping the CS times out. Seen
1698	 * especially with gem_eio tests.
1699	 *
1700	 * Occasionally trying to stop the cs times out, but does not adversely
1701	 * affect functionality. The timeout is set as a config parameter that
1702	 * defaults to 100ms. In most cases the follow up operation is to wait
1703	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1704	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1705	 * caused, the caller must check and handle the return from this
1706	 * function.
1707	 */
1708	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1709		ENGINE_TRACE(engine,
1710			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1711			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1712			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1713
1714		/*
1715		 * Sometimes we observe that the idle flag is not
1716		 * set even though the ring is empty. So double
1717		 * check before giving up.
1718		 */
1719		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1720		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1721			err = -ETIMEDOUT;
1722	}
1723
1724	return err;
1725}
1726
1727void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1728{
1729	ENGINE_TRACE(engine, "\n");
1730
1731	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1732}
1733
1734static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1735{
1736	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1737		[RCS0] = MSG_IDLE_CS,
1738		[BCS0] = MSG_IDLE_BCS,
1739		[VCS0] = MSG_IDLE_VCS0,
1740		[VCS1] = MSG_IDLE_VCS1,
1741		[VCS2] = MSG_IDLE_VCS2,
1742		[VCS3] = MSG_IDLE_VCS3,
1743		[VCS4] = MSG_IDLE_VCS4,
1744		[VCS5] = MSG_IDLE_VCS5,
1745		[VCS6] = MSG_IDLE_VCS6,
1746		[VCS7] = MSG_IDLE_VCS7,
1747		[VECS0] = MSG_IDLE_VECS0,
1748		[VECS1] = MSG_IDLE_VECS1,
1749		[VECS2] = MSG_IDLE_VECS2,
1750		[VECS3] = MSG_IDLE_VECS3,
1751		[CCS0] = MSG_IDLE_CS,
1752		[CCS1] = MSG_IDLE_CS,
1753		[CCS2] = MSG_IDLE_CS,
1754		[CCS3] = MSG_IDLE_CS,
1755	};
1756	u32 val;
1757
1758	if (!_reg[engine->id].reg)
1759		return 0;
1760
1761	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1762
1763	/* bits[29:25] & bits[13:9] >> shift */
1764	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1765}
1766
1767static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1768{
1769	int ret;
1770
1771	/* Ensure GPM receives fw up/down after CS is stopped */
1772	udelay(1);
1773
1774	/* Wait for forcewake request to complete in GPM */
1775	ret =  __intel_wait_for_register_fw(gt->uncore,
1776					    GEN9_PWRGT_DOMAIN_STATUS,
1777					    fw_mask, fw_mask, 5000, 0, NULL);
1778
1779	/* Ensure CS receives fw ack from GPM */
1780	udelay(1);
1781
1782	if (ret)
1783		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1784}
1785
1786/*
1787 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1788 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1789 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1790 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1791 * are concerned only with the gt reset here, we use a logical OR of pending
1792 * forcewakeups from all reset domains and then wait for them to complete by
1793 * querying PWRGT_DOMAIN_STATUS.
1794 */
1795void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1796{
1797	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1798
1799	if (fw_pending)
1800		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1801}
1802
1803/* NB: please notice the memset */
1804void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1805			       struct intel_instdone *instdone)
1806{
1807	struct drm_i915_private *i915 = engine->i915;
1808	struct intel_uncore *uncore = engine->uncore;
1809	u32 mmio_base = engine->mmio_base;
1810	int slice;
1811	int subslice;
1812	int iter;
1813
1814	memset(instdone, 0, sizeof(*instdone));
1815
1816	if (GRAPHICS_VER(i915) >= 8) {
1817		instdone->instdone =
1818			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1819
1820		if (engine->id != RCS0)
1821			return;
1822
1823		instdone->slice_common =
1824			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1825		if (GRAPHICS_VER(i915) >= 12) {
1826			instdone->slice_common_extra[0] =
1827				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1828			instdone->slice_common_extra[1] =
1829				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1830		}
1831
1832		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1833			instdone->sampler[slice][subslice] =
1834				intel_gt_mcr_read(engine->gt,
1835						  GEN8_SAMPLER_INSTDONE,
1836						  slice, subslice);
1837			instdone->row[slice][subslice] =
1838				intel_gt_mcr_read(engine->gt,
1839						  GEN8_ROW_INSTDONE,
1840						  slice, subslice);
1841		}
1842
1843		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1844			for_each_ss_steering(iter, engine->gt, slice, subslice)
1845				instdone->geom_svg[slice][subslice] =
1846					intel_gt_mcr_read(engine->gt,
1847							  XEHPG_INSTDONE_GEOM_SVG,
1848							  slice, subslice);
1849		}
1850	} else if (GRAPHICS_VER(i915) >= 7) {
1851		instdone->instdone =
1852			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1853
1854		if (engine->id != RCS0)
1855			return;
1856
1857		instdone->slice_common =
1858			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1859		instdone->sampler[0][0] =
1860			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1861		instdone->row[0][0] =
1862			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1863	} else if (GRAPHICS_VER(i915) >= 4) {
1864		instdone->instdone =
1865			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1866		if (engine->id == RCS0)
1867			/* HACK: Using the wrong struct member */
1868			instdone->slice_common =
1869				intel_uncore_read(uncore, GEN4_INSTDONE1);
1870	} else {
1871		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1872	}
1873}
1874
1875static bool ring_is_idle(struct intel_engine_cs *engine)
1876{
1877	bool idle = true;
1878
1879	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1880		return true;
1881
1882	if (!intel_engine_pm_get_if_awake(engine))
1883		return true;
1884
1885	/* First check that no commands are left in the ring */
1886	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1887	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1888		idle = false;
1889
1890	/* No bit for gen2, so assume the CS parser is idle */
1891	if (GRAPHICS_VER(engine->i915) > 2 &&
1892	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1893		idle = false;
1894
1895	intel_engine_pm_put(engine);
1896
1897	return idle;
1898}
1899
1900void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1901{
1902	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1903
1904	if (!t->callback)
1905		return;
1906
1907	local_bh_disable();
1908	if (tasklet_trylock(t)) {
1909		/* Must wait for any GPU reset in progress. */
1910		if (__tasklet_is_enabled(t))
1911			t->callback(t);
1912		tasklet_unlock(t);
1913	}
1914	local_bh_enable();
1915
1916	/* Synchronise and wait for the tasklet on another CPU */
1917	if (sync)
1918		tasklet_unlock_wait(t);
1919}
1920
1921/**
1922 * intel_engine_is_idle() - Report if the engine has finished process all work
1923 * @engine: the intel_engine_cs
1924 *
1925 * Return true if there are no requests pending, nothing left to be submitted
1926 * to hardware, and that the engine is idle.
1927 */
1928bool intel_engine_is_idle(struct intel_engine_cs *engine)
1929{
1930	/* More white lies, if wedged, hw state is inconsistent */
1931	if (intel_gt_is_wedged(engine->gt))
1932		return true;
1933
1934	if (!intel_engine_pm_is_awake(engine))
1935		return true;
1936
1937	/* Waiting to drain ELSP? */
1938	intel_synchronize_hardirq(engine->i915);
1939	intel_engine_flush_submission(engine);
1940
1941	/* ELSP is empty, but there are ready requests? E.g. after reset */
1942	if (!i915_sched_engine_is_empty(engine->sched_engine))
1943		return false;
1944
1945	/* Ring stopped? */
1946	return ring_is_idle(engine);
1947}
1948
1949bool intel_engines_are_idle(struct intel_gt *gt)
1950{
1951	struct intel_engine_cs *engine;
1952	enum intel_engine_id id;
1953
1954	/*
1955	 * If the driver is wedged, HW state may be very inconsistent and
1956	 * report that it is still busy, even though we have stopped using it.
1957	 */
1958	if (intel_gt_is_wedged(gt))
1959		return true;
1960
1961	/* Already parked (and passed an idleness test); must still be idle */
1962	if (!READ_ONCE(gt->awake))
1963		return true;
1964
1965	for_each_engine(engine, gt, id) {
1966		if (!intel_engine_is_idle(engine))
1967			return false;
1968	}
1969
1970	return true;
1971}
1972
1973bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1974{
1975	if (!engine->irq_enable)
1976		return false;
1977
1978	/* Caller disables interrupts */
1979	spin_lock(engine->gt->irq_lock);
1980	engine->irq_enable(engine);
1981	spin_unlock(engine->gt->irq_lock);
1982
1983	return true;
1984}
1985
1986void intel_engine_irq_disable(struct intel_engine_cs *engine)
1987{
1988	if (!engine->irq_disable)
1989		return;
1990
1991	/* Caller disables interrupts */
1992	spin_lock(engine->gt->irq_lock);
1993	engine->irq_disable(engine);
1994	spin_unlock(engine->gt->irq_lock);
1995}
1996
1997void intel_engines_reset_default_submission(struct intel_gt *gt)
1998{
1999	struct intel_engine_cs *engine;
2000	enum intel_engine_id id;
2001
2002	for_each_engine(engine, gt, id) {
2003		if (engine->sanitize)
2004			engine->sanitize(engine);
2005
2006		engine->set_default_submission(engine);
2007	}
2008}
2009
2010bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
2011{
2012	switch (GRAPHICS_VER(engine->i915)) {
2013	case 2:
2014		return false; /* uses physical not virtual addresses */
2015	case 3:
2016		/* maybe only uses physical not virtual addresses */
2017		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
2018	case 4:
2019		return !IS_I965G(engine->i915); /* who knows! */
2020	case 6:
2021		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2022	default:
2023		return true;
2024	}
2025}
2026
2027static struct intel_timeline *get_timeline(struct i915_request *rq)
2028{
2029	struct intel_timeline *tl;
2030
2031	/*
2032	 * Even though we are holding the engine->sched_engine->lock here, there
2033	 * is no control over the submission queue per-se and we are
2034	 * inspecting the active state at a random point in time, with an
2035	 * unknown queue. Play safe and make sure the timeline remains valid.
2036	 * (Only being used for pretty printing, one extra kref shouldn't
2037	 * cause a camel stampede!)
2038	 */
2039	rcu_read_lock();
2040	tl = rcu_dereference(rq->timeline);
2041	if (!kref_get_unless_zero(&tl->kref))
2042		tl = NULL;
2043	rcu_read_unlock();
2044
2045	return tl;
2046}
2047
2048static int print_ring(char *buf, int sz, struct i915_request *rq)
2049{
2050	int len = 0;
2051
2052	if (!i915_request_signaled(rq)) {
2053		struct intel_timeline *tl = get_timeline(rq);
2054
2055		len = scnprintf(buf, sz,
2056				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2057				i915_ggtt_offset(rq->ring->vma),
2058				tl ? tl->hwsp_offset : 0,
2059				hwsp_seqno(rq),
2060				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2061						      1000 * 1000));
2062
2063		if (tl)
2064			intel_timeline_put(tl);
2065	}
2066
2067	return len;
2068}
2069
2070static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2071{
2072	const size_t rowsize = 8 * sizeof(u32);
2073	const void *prev = NULL;
2074	bool skip = false;
2075	size_t pos;
2076
2077	for (pos = 0; pos < len; pos += rowsize) {
2078		char line[128];
2079
2080		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2081			if (!skip) {
2082				drm_printf(m, "*\n");
2083				skip = true;
2084			}
2085			continue;
2086		}
2087
2088		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2089						rowsize, sizeof(u32),
2090						line, sizeof(line),
2091						false) >= sizeof(line));
2092		drm_printf(m, "[%04zx] %s\n", pos, line);
2093
2094		prev = buf + pos;
2095		skip = false;
2096	}
2097}
2098
2099static const char *repr_timer(const struct timer_list *t)
2100{
2101	if (!READ_ONCE(t->expires))
2102		return "inactive";
2103
2104	if (timer_pending(t))
2105		return "active";
2106
2107	return "expired";
2108}
2109
2110static void intel_engine_print_registers(struct intel_engine_cs *engine,
2111					 struct drm_printer *m)
2112{
2113	struct drm_i915_private *i915 = engine->i915;
2114	struct intel_engine_execlists * const execlists = &engine->execlists;
2115	u64 addr;
2116
2117	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2118		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2119	if (HAS_EXECLISTS(i915)) {
2120		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2121			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2122		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2123			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2124	}
2125	drm_printf(m, "\tRING_START: 0x%08x\n",
2126		   ENGINE_READ(engine, RING_START));
2127	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2128		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2129	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2130		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2131	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2132		   ENGINE_READ(engine, RING_CTL),
2133		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2134	if (GRAPHICS_VER(engine->i915) > 2) {
2135		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2136			   ENGINE_READ(engine, RING_MI_MODE),
2137			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2138	}
2139
2140	if (GRAPHICS_VER(i915) >= 6) {
2141		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2142			   ENGINE_READ(engine, RING_IMR));
2143		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2144			   ENGINE_READ(engine, RING_ESR));
2145		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2146			   ENGINE_READ(engine, RING_EMR));
2147		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2148			   ENGINE_READ(engine, RING_EIR));
2149	}
2150
2151	addr = intel_engine_get_active_head(engine);
2152	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2153		   upper_32_bits(addr), lower_32_bits(addr));
2154	addr = intel_engine_get_last_batch_head(engine);
2155	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2156		   upper_32_bits(addr), lower_32_bits(addr));
2157	if (GRAPHICS_VER(i915) >= 8)
2158		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2159	else if (GRAPHICS_VER(i915) >= 4)
2160		addr = ENGINE_READ(engine, RING_DMA_FADD);
2161	else
2162		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2163	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2164		   upper_32_bits(addr), lower_32_bits(addr));
2165	if (GRAPHICS_VER(i915) >= 4) {
2166		drm_printf(m, "\tIPEIR: 0x%08x\n",
2167			   ENGINE_READ(engine, RING_IPEIR));
2168		drm_printf(m, "\tIPEHR: 0x%08x\n",
2169			   ENGINE_READ(engine, RING_IPEHR));
2170	} else {
2171		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2172		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2173	}
2174
2175	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2176		struct i915_request * const *port, *rq;
2177		const u32 *hws =
2178			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2179		const u8 num_entries = execlists->csb_size;
2180		unsigned int idx;
2181		u8 read, write;
2182
2183		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2184			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2185			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2186			   repr_timer(&engine->execlists.preempt),
2187			   repr_timer(&engine->execlists.timer));
2188
2189		read = execlists->csb_head;
2190		write = READ_ONCE(*execlists->csb_write);
2191
2192		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2193			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2194			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2195			   read, write, num_entries);
2196
2197		if (read >= num_entries)
2198			read = 0;
2199		if (write >= num_entries)
2200			write = 0;
2201		if (read > write)
2202			write += num_entries;
2203		while (read < write) {
2204			idx = ++read % num_entries;
2205			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2206				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2207		}
2208
2209		i915_sched_engine_active_lock_bh(engine->sched_engine);
2210		rcu_read_lock();
2211		for (port = execlists->active; (rq = *port); port++) {
2212			char hdr[160];
2213			int len;
2214
2215			len = scnprintf(hdr, sizeof(hdr),
2216					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2217					(int)(port - execlists->active),
2218					rq->context->lrc.ccid,
2219					intel_context_is_closed(rq->context) ? "!" : "",
2220					intel_context_is_banned(rq->context) ? "*" : "");
2221			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2222			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2223			i915_request_show(m, rq, hdr, 0);
2224		}
2225		for (port = execlists->pending; (rq = *port); port++) {
2226			char hdr[160];
2227			int len;
2228
2229			len = scnprintf(hdr, sizeof(hdr),
2230					"\t\tPending[%d]: ccid:%08x%s%s, ",
2231					(int)(port - execlists->pending),
2232					rq->context->lrc.ccid,
2233					intel_context_is_closed(rq->context) ? "!" : "",
2234					intel_context_is_banned(rq->context) ? "*" : "");
2235			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2236			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2237			i915_request_show(m, rq, hdr, 0);
2238		}
2239		rcu_read_unlock();
2240		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2241	} else if (GRAPHICS_VER(i915) > 6) {
2242		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2243			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2244		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2245			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2246		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2247			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2248	}
2249}
2250
2251static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2252{
2253	struct i915_vma_resource *vma_res = rq->batch_res;
2254	void *ring;
2255	int size;
2256
2257	drm_printf(m,
2258		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2259		   rq->head, rq->postfix, rq->tail,
2260		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2261		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2262
2263	size = rq->tail - rq->head;
2264	if (rq->tail < rq->head)
2265		size += rq->ring->size;
2266
2267	ring = kmalloc(size, GFP_ATOMIC);
2268	if (ring) {
2269		const void *vaddr = rq->ring->vaddr;
2270		unsigned int head = rq->head;
2271		unsigned int len = 0;
2272
2273		if (rq->tail < head) {
2274			len = rq->ring->size - head;
2275			memcpy(ring, vaddr + head, len);
2276			head = 0;
2277		}
2278		memcpy(ring + len, vaddr + head, size - len);
2279
2280		hexdump(m, ring, size);
2281		kfree(ring);
2282	}
2283}
2284
2285static unsigned long read_ul(void *p, size_t x)
2286{
2287	return *(unsigned long *)(p + x);
2288}
2289
2290static void print_properties(struct intel_engine_cs *engine,
2291			     struct drm_printer *m)
2292{
2293	static const struct pmap {
2294		size_t offset;
2295		const char *name;
2296	} props[] = {
2297#define P(x) { \
2298	.offset = offsetof(typeof(engine->props), x), \
2299	.name = #x \
2300}
2301		P(heartbeat_interval_ms),
2302		P(max_busywait_duration_ns),
2303		P(preempt_timeout_ms),
2304		P(stop_timeout_ms),
2305		P(timeslice_duration_ms),
2306
2307		{},
2308#undef P
2309	};
2310	const struct pmap *p;
2311
2312	drm_printf(m, "\tProperties:\n");
2313	for (p = props; p->name; p++)
2314		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2315			   p->name,
2316			   read_ul(&engine->props, p->offset),
2317			   read_ul(&engine->defaults, p->offset));
2318}
2319
2320static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2321{
2322	struct intel_timeline *tl = get_timeline(rq);
2323
2324	i915_request_show(m, rq, msg, 0);
2325
2326	drm_printf(m, "\t\tring->start:  0x%08x\n",
2327		   i915_ggtt_offset(rq->ring->vma));
2328	drm_printf(m, "\t\tring->head:   0x%08x\n",
2329		   rq->ring->head);
2330	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2331		   rq->ring->tail);
2332	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2333		   rq->ring->emit);
2334	drm_printf(m, "\t\tring->space:  0x%08x\n",
2335		   rq->ring->space);
2336
2337	if (tl) {
2338		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2339			   tl->hwsp_offset);
2340		intel_timeline_put(tl);
2341	}
2342
2343	print_request_ring(m, rq);
2344
2345	if (rq->context->lrc_reg_state) {
2346		drm_printf(m, "Logical Ring Context:\n");
2347		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2348	}
2349}
2350
2351void intel_engine_dump_active_requests(struct list_head *requests,
2352				       struct i915_request *hung_rq,
2353				       struct drm_printer *m)
2354{
2355	struct i915_request *rq;
2356	const char *msg;
2357	enum i915_request_state state;
2358
2359	list_for_each_entry(rq, requests, sched.link) {
2360		if (rq == hung_rq)
2361			continue;
2362
2363		state = i915_test_request_state(rq);
2364		if (state < I915_REQUEST_QUEUED)
2365			continue;
2366
2367		if (state == I915_REQUEST_ACTIVE)
2368			msg = "\t\tactive on engine";
2369		else
2370			msg = "\t\tactive in queue";
2371
2372		engine_dump_request(rq, m, msg);
2373	}
2374}
2375
2376static void engine_dump_active_requests(struct intel_engine_cs *engine,
2377					struct drm_printer *m)
2378{
2379	struct intel_context *hung_ce = NULL;
2380	struct i915_request *hung_rq = NULL;
2381
2382	/*
2383	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2384	 * The GPU is still running so requests are still executing and any
2385	 * hardware reads will be out of date by the time they are reported.
2386	 * But the intention here is just to report an instantaneous snapshot
2387	 * so that's fine.
2388	 */
2389	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2390
2391	drm_printf(m, "\tRequests:\n");
2392
2393	if (hung_rq)
2394		engine_dump_request(hung_rq, m, "\t\thung");
2395	else if (hung_ce)
2396		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2397
2398	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2399		intel_guc_dump_active_requests(engine, hung_rq, m);
2400	else
2401		intel_execlists_dump_active_requests(engine, hung_rq, m);
2402
2403	if (hung_rq)
2404		i915_request_put(hung_rq);
2405}
2406
2407void intel_engine_dump(struct intel_engine_cs *engine,
2408		       struct drm_printer *m,
2409		       const char *header, ...)
2410{
2411	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2412	struct i915_request *rq;
2413	intel_wakeref_t wakeref;
2414	ktime_t dummy;
2415
2416	if (header) {
2417		va_list ap;
2418
2419		va_start(ap, header);
2420		drm_vprintf(m, header, &ap);
2421		va_end(ap);
2422	}
2423
2424	if (intel_gt_is_wedged(engine->gt))
2425		drm_printf(m, "*** WEDGED ***\n");
2426
2427	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2428	drm_printf(m, "\tBarriers?: %s\n",
2429		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2430	drm_printf(m, "\tLatency: %luus\n",
2431		   ewma__engine_latency_read(&engine->latency));
2432	if (intel_engine_supports_stats(engine))
2433		drm_printf(m, "\tRuntime: %llums\n",
2434			   ktime_to_ms(intel_engine_get_busy_time(engine,
2435								  &dummy)));
2436	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2437		   engine->fw_domain, READ_ONCE(engine->fw_active));
2438
2439	rcu_read_lock();
2440	rq = READ_ONCE(engine->heartbeat.systole);
2441	if (rq)
2442		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2443			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2444	rcu_read_unlock();
2445	drm_printf(m, "\tReset count: %d (global %d)\n",
2446		   i915_reset_engine_count(error, engine),
2447		   i915_reset_count(error));
2448	print_properties(engine, m);
2449
2450	engine_dump_active_requests(engine, m);
2451
2452	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2453	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2454	if (wakeref) {
2455		intel_engine_print_registers(engine, m);
2456		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2457	} else {
2458		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2459	}
2460
2461	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2462
2463	drm_printf(m, "HWSP:\n");
2464	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2465
2466	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2467
2468	intel_engine_print_breadcrumbs(engine, m);
2469}
2470
2471/**
2472 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2473 * @engine: engine to report on
2474 * @now: monotonic timestamp of sampling
2475 *
2476 * Returns accumulated time @engine was busy since engine stats were enabled.
2477 */
2478ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2479{
2480	return engine->busyness(engine, now);
2481}
2482
2483struct intel_context *
2484intel_engine_create_virtual(struct intel_engine_cs **siblings,
2485			    unsigned int count, unsigned long flags)
2486{
2487	if (count == 0)
2488		return ERR_PTR(-EINVAL);
2489
2490	if (count == 1 && !(flags & FORCE_VIRTUAL))
2491		return intel_context_create(siblings[0]);
2492
2493	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2494	return siblings[0]->cops->create_virtual(siblings, count, flags);
2495}
2496
2497static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2498{
2499	struct i915_request *request, *active = NULL;
2500
2501	/*
2502	 * This search does not work in GuC submission mode. However, the GuC
2503	 * will report the hanging context directly to the driver itself. So
2504	 * the driver should never get here when in GuC mode.
2505	 */
2506	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2507
2508	/*
2509	 * We are called by the error capture, reset and to dump engine
2510	 * state at random points in time. In particular, note that neither is
2511	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2512	 * and we assume that no more writes can happen (we waited long enough
2513	 * for all writes that were in transaction to be flushed) - adding an
2514	 * extra delay for a recent interrupt is pointless. Hence, we do
2515	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2516	 * At all other times, we must assume the GPU is still running, but
2517	 * we only care about the snapshot of this moment.
2518	 */
2519	lockdep_assert_held(&engine->sched_engine->lock);
2520
2521	rcu_read_lock();
2522	request = execlists_active(&engine->execlists);
2523	if (request) {
2524		struct intel_timeline *tl = request->context->timeline;
2525
2526		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2527			if (__i915_request_is_complete(request))
2528				break;
2529
2530			active = request;
2531		}
2532	}
2533	rcu_read_unlock();
2534	if (active)
2535		return active;
2536
2537	list_for_each_entry(request, &engine->sched_engine->requests,
2538			    sched.link) {
2539		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2540			continue;
2541
2542		active = request;
2543		break;
2544	}
2545
2546	return active;
2547}
2548
2549void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2550				  struct intel_context **ce, struct i915_request **rq)
2551{
2552	unsigned long flags;
2553
2554	*ce = intel_engine_get_hung_context(engine);
2555	if (*ce) {
2556		intel_engine_clear_hung_context(engine);
2557
2558		*rq = intel_context_get_active_request(*ce);
2559		return;
2560	}
2561
2562	/*
2563	 * Getting here with GuC enabled means it is a forced error capture
2564	 * with no actual hang. So, no need to attempt the execlist search.
2565	 */
2566	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2567		return;
2568
2569	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2570	*rq = engine_execlist_find_hung_request(engine);
2571	if (*rq)
2572		*rq = i915_request_get_rcu(*rq);
2573	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2574}
2575
2576void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2577{
2578	/*
2579	 * If there are any non-fused-off CCS engines, we need to enable CCS
2580	 * support in the RCU_MODE register.  This only needs to be done once,
2581	 * so for simplicity we'll take care of this in the RCS engine's
2582	 * resume handler; since the RCS and all CCS engines belong to the
2583	 * same reset domain and are reset together, this will also take care
2584	 * of re-applying the setting after i915-triggered resets.
2585	 */
2586	if (!CCS_MASK(engine->gt))
2587		return;
2588
2589	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2590			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2591}
2592
2593#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2594#include "mock_engine.c"
2595#include "selftest_engine.c"
2596#include "selftest_engine_cs.c"
2597#endif
1