Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 Broadcom Corporation
   4 * Copyright 2013 Linaro Limited
   5 */
   6
   7#include "clk-kona.h"
   8
   9#include <linux/delay.h>
  10#include <linux/io.h>
  11#include <linux/kernel.h>
  12#include <linux/clk-provider.h>
  13
  14/*
  15 * "Policies" affect the frequencies of bus clocks provided by a
  16 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
  17 * "Normal", and "Turbo".)  A lower policy number has lower power
  18 * consumption, and policy 2 is the default.
  19 */
  20#define CCU_POLICY_COUNT	4
  21
  22#define CCU_ACCESS_PASSWORD      0xA5A500
  23#define CLK_GATE_DELAY_LOOP      2000
  24
  25/* Bitfield operations */
  26
  27/* Produces a mask of set bits covering a range of a 32-bit value */
  28static inline u32 bitfield_mask(u32 shift, u32 width)
  29{
  30	return ((1 << width) - 1) << shift;
  31}
  32
  33/* Extract the value of a bitfield found within a given register value */
  34static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
  35{
  36	return (reg_val & bitfield_mask(shift, width)) >> shift;
  37}
  38
  39/* Replace the value of a bitfield found within a given register value */
  40static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
  41{
  42	u32 mask = bitfield_mask(shift, width);
  43
  44	return (reg_val & ~mask) | (val << shift);
  45}
  46
  47/* Divider and scaling helpers */
  48
  49/* Convert a divider into the scaled divisor value it represents. */
  50static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
  51{
  52	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
  53}
  54
  55/*
  56 * Build a scaled divider value as close as possible to the
  57 * given whole part (div_value) and fractional part (expressed
  58 * in billionths).
  59 */
  60u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
  61{
  62	u64 combined;
  63
  64	BUG_ON(!div_value);
  65	BUG_ON(billionths >= BILLION);
  66
  67	combined = (u64)div_value * BILLION + billionths;
  68	combined <<= div->u.s.frac_width;
  69
  70	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
  71}
  72
  73/* The scaled minimum divisor representable by a divider */
  74static inline u64
  75scaled_div_min(struct bcm_clk_div *div)
  76{
  77	if (divider_is_fixed(div))
  78		return (u64)div->u.fixed;
  79
  80	return scaled_div_value(div, 0);
  81}
  82
  83/* The scaled maximum divisor representable by a divider */
  84u64 scaled_div_max(struct bcm_clk_div *div)
  85{
  86	u32 reg_div;
  87
  88	if (divider_is_fixed(div))
  89		return (u64)div->u.fixed;
  90
  91	reg_div = ((u32)1 << div->u.s.width) - 1;
  92
  93	return scaled_div_value(div, reg_div);
  94}
  95
  96/*
  97 * Convert a scaled divisor into its divider representation as
  98 * stored in a divider register field.
  99 */
 100static inline u32
 101divider(struct bcm_clk_div *div, u64 scaled_div)
 102{
 103	BUG_ON(scaled_div < scaled_div_min(div));
 104	BUG_ON(scaled_div > scaled_div_max(div));
 105
 106	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
 107}
 108
 109/* Return a rate scaled for use when dividing by a scaled divisor. */
 110static inline u64
 111scale_rate(struct bcm_clk_div *div, u32 rate)
 112{
 113	if (divider_is_fixed(div))
 114		return (u64)rate;
 115
 116	return (u64)rate << div->u.s.frac_width;
 117}
 118
 119/* CCU access */
 120
 121/* Read a 32-bit register value from a CCU's address space. */
 122static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
 123{
 124	return readl(ccu->base + reg_offset);
 125}
 126
 127/* Write a 32-bit register value into a CCU's address space. */
 128static inline void
 129__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
 130{
 131	writel(reg_val, ccu->base + reg_offset);
 132}
 133
 134static inline unsigned long ccu_lock(struct ccu_data *ccu)
 135{
 136	unsigned long flags;
 137
 138	spin_lock_irqsave(&ccu->lock, flags);
 139
 140	return flags;
 141}
 142static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
 143{
 144	spin_unlock_irqrestore(&ccu->lock, flags);
 145}
 146
 147/*
 148 * Enable/disable write access to CCU protected registers.  The
 149 * WR_ACCESS register for all CCUs is at offset 0.
 150 */
 151static inline void __ccu_write_enable(struct ccu_data *ccu)
 152{
 153	if (ccu->write_enabled) {
 154		pr_err("%s: access already enabled for %s\n", __func__,
 155			ccu->name);
 156		return;
 157	}
 158	ccu->write_enabled = true;
 159	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
 160}
 161
 162static inline void __ccu_write_disable(struct ccu_data *ccu)
 163{
 164	if (!ccu->write_enabled) {
 165		pr_err("%s: access wasn't enabled for %s\n", __func__,
 166			ccu->name);
 167		return;
 168	}
 169
 170	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
 171	ccu->write_enabled = false;
 172}
 173
 174/*
 175 * Poll a register in a CCU's address space, returning when the
 176 * specified bit in that register's value is set (or clear).  Delay
 177 * a microsecond after each read of the register.  Returns true if
 178 * successful, or false if we gave up trying.
 179 *
 180 * Caller must ensure the CCU lock is held.
 181 */
 182static inline bool
 183__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
 184{
 185	unsigned int tries;
 186	u32 bit_mask = 1 << bit;
 187
 188	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
 189		u32 val;
 190		bool bit_val;
 191
 192		val = __ccu_read(ccu, reg_offset);
 193		bit_val = (val & bit_mask) != 0;
 194		if (bit_val == want)
 195			return true;
 196		udelay(1);
 197	}
 198	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
 199		ccu->name, reg_offset, bit, want ? "set" : "clear");
 200
 201	return false;
 202}
 203
 204/* Policy operations */
 205
 206static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
 207{
 208	struct bcm_policy_ctl *control = &ccu->policy.control;
 209	u32 offset;
 210	u32 go_bit;
 211	u32 mask;
 212	bool ret;
 213
 214	/* If we don't need to control policy for this CCU, we're done. */
 215	if (!policy_ctl_exists(control))
 216		return true;
 217
 218	offset = control->offset;
 219	go_bit = control->go_bit;
 220
 221	/* Ensure we're not busy before we start */
 222	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 223	if (!ret) {
 224		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
 225			__func__, ccu->name);
 226		return false;
 227	}
 228
 229	/*
 230	 * If it's a synchronous request, we'll wait for the voltage
 231	 * and frequency of the active load to stabilize before
 232	 * returning.  To do this we select the active load by
 233	 * setting the ATL bit.
 234	 *
 235	 * An asynchronous request instead ramps the voltage in the
 236	 * background, and when that process stabilizes, the target
 237	 * load is copied to the active load and the CCU frequency
 238	 * is switched.  We do this by selecting the target load
 239	 * (ATL bit clear) and setting the request auto-copy (AC bit
 240	 * set).
 241	 *
 242	 * Note, we do NOT read-modify-write this register.
 243	 */
 244	mask = (u32)1 << go_bit;
 245	if (sync)
 246		mask |= 1 << control->atl_bit;
 247	else
 248		mask |= 1 << control->ac_bit;
 249	__ccu_write(ccu, offset, mask);
 250
 251	/* Wait for indication that operation is complete. */
 252	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 253	if (!ret)
 254		pr_err("%s: ccu %s policy engine never started\n",
 255			__func__, ccu->name);
 256
 257	return ret;
 258}
 259
 260static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
 261{
 262	struct bcm_lvm_en *enable = &ccu->policy.enable;
 263	u32 offset;
 264	u32 enable_bit;
 265	bool ret;
 266
 267	/* If we don't need to control policy for this CCU, we're done. */
 268	if (!policy_lvm_en_exists(enable))
 269		return true;
 270
 271	/* Ensure we're not busy before we start */
 272	offset = enable->offset;
 273	enable_bit = enable->bit;
 274	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 275	if (!ret) {
 276		pr_err("%s: ccu %s policy engine already stopped\n",
 277			__func__, ccu->name);
 278		return false;
 279	}
 280
 281	/* Now set the bit to stop the engine (NO read-modify-write) */
 282	__ccu_write(ccu, offset, (u32)1 << enable_bit);
 283
 284	/* Wait for indication that it has stopped. */
 285	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 286	if (!ret)
 287		pr_err("%s: ccu %s policy engine never stopped\n",
 288			__func__, ccu->name);
 289
 290	return ret;
 291}
 292
 293/*
 294 * A CCU has four operating conditions ("policies"), and some clocks
 295 * can be disabled or enabled based on which policy is currently in
 296 * effect.  Such clocks have a bit in a "policy mask" register for
 297 * each policy indicating whether the clock is enabled for that
 298 * policy or not.  The bit position for a clock is the same for all
 299 * four registers, and the 32-bit registers are at consecutive
 300 * addresses.
 301 */
 302static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
 303{
 304	u32 offset;
 305	u32 mask;
 306	int i;
 307	bool ret;
 308
 309	if (!policy_exists(policy))
 310		return true;
 311
 312	/*
 313	 * We need to stop the CCU policy engine to allow update
 314	 * of our policy bits.
 315	 */
 316	if (!__ccu_policy_engine_stop(ccu)) {
 317		pr_err("%s: unable to stop CCU %s policy engine\n",
 318			__func__, ccu->name);
 319		return false;
 320	}
 321
 322	/*
 323	 * For now, if a clock defines its policy bit we just mark
 324	 * it "enabled" for all four policies.
 325	 */
 326	offset = policy->offset;
 327	mask = (u32)1 << policy->bit;
 328	for (i = 0; i < CCU_POLICY_COUNT; i++) {
 329		u32 reg_val;
 330
 331		reg_val = __ccu_read(ccu, offset);
 332		reg_val |= mask;
 333		__ccu_write(ccu, offset, reg_val);
 334		offset += sizeof(u32);
 335	}
 336
 337	/* We're done updating; fire up the policy engine again. */
 338	ret = __ccu_policy_engine_start(ccu, true);
 339	if (!ret)
 340		pr_err("%s: unable to restart CCU %s policy engine\n",
 341			__func__, ccu->name);
 342
 343	return ret;
 344}
 345
 346/* Gate operations */
 347
 348/* Determine whether a clock is gated.  CCU lock must be held.  */
 349static bool
 350__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 351{
 352	u32 bit_mask;
 353	u32 reg_val;
 354
 355	/* If there is no gate we can assume it's enabled. */
 356	if (!gate_exists(gate))
 357		return true;
 358
 359	bit_mask = 1 << gate->status_bit;
 360	reg_val = __ccu_read(ccu, gate->offset);
 361
 362	return (reg_val & bit_mask) != 0;
 363}
 364
 365/* Determine whether a clock is gated. */
 366static bool
 367is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 368{
 369	long flags;
 370	bool ret;
 371
 372	/* Avoid taking the lock if we can */
 373	if (!gate_exists(gate))
 374		return true;
 375
 376	flags = ccu_lock(ccu);
 377	ret = __is_clk_gate_enabled(ccu, gate);
 378	ccu_unlock(ccu, flags);
 379
 380	return ret;
 381}
 382
 383/*
 384 * Commit our desired gate state to the hardware.
 385 * Returns true if successful, false otherwise.
 386 */
 387static bool
 388__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 389{
 390	u32 reg_val;
 391	u32 mask;
 392	bool enabled = false;
 393
 394	BUG_ON(!gate_exists(gate));
 395	if (!gate_is_sw_controllable(gate))
 396		return true;		/* Nothing we can change */
 397
 398	reg_val = __ccu_read(ccu, gate->offset);
 399
 400	/* For a hardware/software gate, set which is in control */
 401	if (gate_is_hw_controllable(gate)) {
 402		mask = (u32)1 << gate->hw_sw_sel_bit;
 403		if (gate_is_sw_managed(gate))
 404			reg_val |= mask;
 405		else
 406			reg_val &= ~mask;
 407	}
 408
 409	/*
 410	 * If software is in control, enable or disable the gate.
 411	 * If hardware is, clear the enabled bit for good measure.
 412	 * If a software controlled gate can't be disabled, we're
 413	 * required to write a 0 into the enable bit (but the gate
 414	 * will be enabled).
 415	 */
 416	mask = (u32)1 << gate->en_bit;
 417	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
 418			!gate_is_no_disable(gate))
 419		reg_val |= mask;
 420	else
 421		reg_val &= ~mask;
 422
 423	__ccu_write(ccu, gate->offset, reg_val);
 424
 425	/* For a hardware controlled gate, we're done */
 426	if (!gate_is_sw_managed(gate))
 427		return true;
 428
 429	/* Otherwise wait for the gate to be in desired state */
 430	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
 431}
 432
 433/*
 434 * Initialize a gate.  Our desired state (hardware/software select,
 435 * and if software, its enable state) is committed to hardware
 436 * without the usual checks to see if it's already set up that way.
 437 * Returns true if successful, false otherwise.
 438 */
 439static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 440{
 441	if (!gate_exists(gate))
 442		return true;
 443	return __gate_commit(ccu, gate);
 444}
 445
 446/*
 447 * Set a gate to enabled or disabled state.  Does nothing if the
 448 * gate is not currently under software control, or if it is already
 449 * in the requested state.  Returns true if successful, false
 450 * otherwise.  CCU lock must be held.
 451 */
 452static bool
 453__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
 454{
 455	bool ret;
 456
 457	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 458		return true;	/* Nothing to do */
 459
 460	if (!enable && gate_is_no_disable(gate)) {
 461		pr_warn("%s: invalid gate disable request (ignoring)\n",
 462			__func__);
 463		return true;
 464	}
 465
 466	if (enable == gate_is_enabled(gate))
 467		return true;	/* No change */
 468
 469	gate_flip_enabled(gate);
 470	ret = __gate_commit(ccu, gate);
 471	if (!ret)
 472		gate_flip_enabled(gate);	/* Revert the change */
 473
 474	return ret;
 475}
 476
 477/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
 478static int clk_gate(struct ccu_data *ccu, const char *name,
 479			struct bcm_clk_gate *gate, bool enable)
 480{
 481	unsigned long flags;
 482	bool success;
 483
 484	/*
 485	 * Avoid taking the lock if we can.  We quietly ignore
 486	 * requests to change state that don't make sense.
 487	 */
 488	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 489		return 0;
 490	if (!enable && gate_is_no_disable(gate))
 491		return 0;
 492
 493	flags = ccu_lock(ccu);
 494	__ccu_write_enable(ccu);
 495
 496	success = __clk_gate(ccu, gate, enable);
 497
 498	__ccu_write_disable(ccu);
 499	ccu_unlock(ccu, flags);
 500
 501	if (success)
 502		return 0;
 503
 504	pr_err("%s: failed to %s gate for %s\n", __func__,
 505		enable ? "enable" : "disable", name);
 506
 507	return -EIO;
 508}
 509
 510/* Hysteresis operations */
 511
 512/*
 513 * If a clock gate requires a turn-off delay it will have
 514 * "hysteresis" register bits defined.  The first, if set, enables
 515 * the delay; and if enabled, the second bit determines whether the
 516 * delay is "low" or "high" (1 means high).  For now, if it's
 517 * defined for a clock, we set it.
 518 */
 519static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
 520{
 521	u32 offset;
 522	u32 reg_val;
 523	u32 mask;
 524
 525	if (!hyst_exists(hyst))
 526		return true;
 527
 528	offset = hyst->offset;
 529	mask = (u32)1 << hyst->en_bit;
 530	mask |= (u32)1 << hyst->val_bit;
 531
 532	reg_val = __ccu_read(ccu, offset);
 533	reg_val |= mask;
 534	__ccu_write(ccu, offset, reg_val);
 535
 536	return true;
 537}
 538
 539/* Trigger operations */
 540
 541/*
 542 * Caller must ensure CCU lock is held and access is enabled.
 543 * Returns true if successful, false otherwise.
 544 */
 545static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
 546{
 547	/* Trigger the clock and wait for it to finish */
 548	__ccu_write(ccu, trig->offset, 1 << trig->bit);
 549
 550	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
 551}
 552
 553/* Divider operations */
 554
 555/* Read a divider value and return the scaled divisor it represents. */
 556static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
 557{
 558	unsigned long flags;
 559	u32 reg_val;
 560	u32 reg_div;
 561
 562	if (divider_is_fixed(div))
 563		return (u64)div->u.fixed;
 564
 565	flags = ccu_lock(ccu);
 566	reg_val = __ccu_read(ccu, div->u.s.offset);
 567	ccu_unlock(ccu, flags);
 568
 569	/* Extract the full divider field from the register value */
 570	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
 571
 572	/* Return the scaled divisor value it represents */
 573	return scaled_div_value(div, reg_div);
 574}
 575
 576/*
 577 * Convert a divider's scaled divisor value into its recorded form
 578 * and commit it into the hardware divider register.
 579 *
 580 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 581 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 582 */
 583static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 584			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 585{
 586	bool enabled;
 587	u32 reg_div;
 588	u32 reg_val;
 589	int ret = 0;
 590
 591	BUG_ON(divider_is_fixed(div));
 592
 593	/*
 594	 * If we're just initializing the divider, and no initial
 595	 * state was defined in the device tree, we just find out
 596	 * what its current value is rather than updating it.
 597	 */
 598	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
 599		reg_val = __ccu_read(ccu, div->u.s.offset);
 600		reg_div = bitfield_extract(reg_val, div->u.s.shift,
 601						div->u.s.width);
 602		div->u.s.scaled_div = scaled_div_value(div, reg_div);
 603
 604		return 0;
 605	}
 606
 607	/* Convert the scaled divisor to the value we need to record */
 608	reg_div = divider(div, div->u.s.scaled_div);
 609
 610	/* Clock needs to be enabled before changing the rate */
 611	enabled = __is_clk_gate_enabled(ccu, gate);
 612	if (!enabled && !__clk_gate(ccu, gate, true)) {
 613		ret = -ENXIO;
 614		goto out;
 615	}
 616
 617	/* Replace the divider value and record the result */
 618	reg_val = __ccu_read(ccu, div->u.s.offset);
 619	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
 620					reg_div);
 621	__ccu_write(ccu, div->u.s.offset, reg_val);
 622
 623	/* If the trigger fails we still want to disable the gate */
 624	if (!__clk_trigger(ccu, trig))
 625		ret = -EIO;
 626
 627	/* Disable the clock again if it was disabled to begin with */
 628	if (!enabled && !__clk_gate(ccu, gate, false))
 629		ret = ret ? ret : -ENXIO;	/* return first error */
 630out:
 631	return ret;
 632}
 633
 634/*
 635 * Initialize a divider by committing our desired state to hardware
 636 * without the usual checks to see if it's already set up that way.
 637 * Returns true if successful, false otherwise.
 638 */
 639static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 640			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 641{
 642	if (!divider_exists(div) || divider_is_fixed(div))
 643		return true;
 644	return !__div_commit(ccu, gate, div, trig);
 645}
 646
 647static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 648			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
 649			u64 scaled_div)
 650{
 651	unsigned long flags;
 652	u64 previous;
 653	int ret;
 654
 655	BUG_ON(divider_is_fixed(div));
 656
 657	previous = div->u.s.scaled_div;
 658	if (previous == scaled_div)
 659		return 0;	/* No change */
 660
 661	div->u.s.scaled_div = scaled_div;
 662
 663	flags = ccu_lock(ccu);
 664	__ccu_write_enable(ccu);
 665
 666	ret = __div_commit(ccu, gate, div, trig);
 667
 668	__ccu_write_disable(ccu);
 669	ccu_unlock(ccu, flags);
 670
 671	if (ret)
 672		div->u.s.scaled_div = previous;		/* Revert the change */
 673
 674	return ret;
 675
 676}
 677
 678/* Common clock rate helpers */
 679
 680/*
 681 * Implement the common clock framework recalc_rate method, taking
 682 * into account a divider and an optional pre-divider.  The
 683 * pre-divider register pointer may be NULL.
 684 */
 685static unsigned long clk_recalc_rate(struct ccu_data *ccu,
 686			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
 687			unsigned long parent_rate)
 688{
 689	u64 scaled_parent_rate;
 690	u64 scaled_div;
 691	u64 result;
 692
 693	if (!divider_exists(div))
 694		return parent_rate;
 695
 696	if (parent_rate > (unsigned long)LONG_MAX)
 697		return 0;	/* actually this would be a caller bug */
 698
 699	/*
 700	 * If there is a pre-divider, divide the scaled parent rate
 701	 * by the pre-divider value first.  In this case--to improve
 702	 * accuracy--scale the parent rate by *both* the pre-divider
 703	 * value and the divider before actually computing the
 704	 * result of the pre-divider.
 705	 *
 706	 * If there's only one divider, just scale the parent rate.
 707	 */
 708	if (pre_div && divider_exists(pre_div)) {
 709		u64 scaled_rate;
 710
 711		scaled_rate = scale_rate(pre_div, parent_rate);
 712		scaled_rate = scale_rate(div, scaled_rate);
 713		scaled_div = divider_read_scaled(ccu, pre_div);
 714		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 715							scaled_div);
 716	} else  {
 717		scaled_parent_rate = scale_rate(div, parent_rate);
 718	}
 719
 720	/*
 721	 * Get the scaled divisor value, and divide the scaled
 722	 * parent rate by that to determine this clock's resulting
 723	 * rate.
 724	 */
 725	scaled_div = divider_read_scaled(ccu, div);
 726	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
 727
 728	return (unsigned long)result;
 729}
 730
 731/*
 732 * Compute the output rate produced when a given parent rate is fed
 733 * into two dividers.  The pre-divider can be NULL, and even if it's
 734 * non-null it may be nonexistent.  It's also OK for the divider to
 735 * be nonexistent, and in that case the pre-divider is also ignored.
 736 *
 737 * If scaled_div is non-null, it is used to return the scaled divisor
 738 * value used by the (downstream) divider to produce that rate.
 739 */
 740static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
 741				struct bcm_clk_div *pre_div,
 742				unsigned long rate, unsigned long parent_rate,
 743				u64 *scaled_div)
 744{
 745	u64 scaled_parent_rate;
 746	u64 min_scaled_div;
 747	u64 max_scaled_div;
 748	u64 best_scaled_div;
 749	u64 result;
 750
 751	BUG_ON(!divider_exists(div));
 752	BUG_ON(!rate);
 753	BUG_ON(parent_rate > (u64)LONG_MAX);
 754
 755	/*
 756	 * If there is a pre-divider, divide the scaled parent rate
 757	 * by the pre-divider value first.  In this case--to improve
 758	 * accuracy--scale the parent rate by *both* the pre-divider
 759	 * value and the divider before actually computing the
 760	 * result of the pre-divider.
 761	 *
 762	 * If there's only one divider, just scale the parent rate.
 763	 *
 764	 * For simplicity we treat the pre-divider as fixed (for now).
 765	 */
 766	if (divider_exists(pre_div)) {
 767		u64 scaled_rate;
 768		u64 scaled_pre_div;
 769
 770		scaled_rate = scale_rate(pre_div, parent_rate);
 771		scaled_rate = scale_rate(div, scaled_rate);
 772		scaled_pre_div = divider_read_scaled(ccu, pre_div);
 773		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 774							scaled_pre_div);
 775	} else {
 776		scaled_parent_rate = scale_rate(div, parent_rate);
 777	}
 778
 779	/*
 780	 * Compute the best possible divider and ensure it is in
 781	 * range.  A fixed divider can't be changed, so just report
 782	 * the best we can do.
 783	 */
 784	if (!divider_is_fixed(div)) {
 785		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
 786							rate);
 787		min_scaled_div = scaled_div_min(div);
 788		max_scaled_div = scaled_div_max(div);
 789		if (best_scaled_div > max_scaled_div)
 790			best_scaled_div = max_scaled_div;
 791		else if (best_scaled_div < min_scaled_div)
 792			best_scaled_div = min_scaled_div;
 793	} else {
 794		best_scaled_div = divider_read_scaled(ccu, div);
 795	}
 796
 797	/* OK, figure out the resulting rate */
 798	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
 799
 800	if (scaled_div)
 801		*scaled_div = best_scaled_div;
 802
 803	return (long)result;
 804}
 805
 806/* Common clock parent helpers */
 807
 808/*
 809 * For a given parent selector (register field) value, find the
 810 * index into a selector's parent_sel array that contains it.
 811 * Returns the index, or BAD_CLK_INDEX if it's not found.
 812 */
 813static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
 814{
 815	u8 i;
 816
 817	BUG_ON(sel->parent_count > (u32)U8_MAX);
 818	for (i = 0; i < sel->parent_count; i++)
 819		if (sel->parent_sel[i] == parent_sel)
 820			return i;
 821	return BAD_CLK_INDEX;
 822}
 823
 824/*
 825 * Fetch the current value of the selector, and translate that into
 826 * its corresponding index in the parent array we registered with
 827 * the clock framework.
 828 *
 829 * Returns parent array index that corresponds with the value found,
 830 * or BAD_CLK_INDEX if the found value is out of range.
 831 */
 832static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
 833{
 834	unsigned long flags;
 835	u32 reg_val;
 836	u32 parent_sel;
 837	u8 index;
 838
 839	/* If there's no selector, there's only one parent */
 840	if (!selector_exists(sel))
 841		return 0;
 842
 843	/* Get the value in the selector register */
 844	flags = ccu_lock(ccu);
 845	reg_val = __ccu_read(ccu, sel->offset);
 846	ccu_unlock(ccu, flags);
 847
 848	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 849
 850	/* Look up that selector's parent array index and return it */
 851	index = parent_index(sel, parent_sel);
 852	if (index == BAD_CLK_INDEX)
 853		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
 854			__func__, parent_sel, ccu->name, sel->offset);
 855
 856	return index;
 857}
 858
 859/*
 860 * Commit our desired selector value to the hardware.
 861 *
 862 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 863 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 864 */
 865static int
 866__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 867			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 868{
 869	u32 parent_sel;
 870	u32 reg_val;
 871	bool enabled;
 872	int ret = 0;
 873
 874	BUG_ON(!selector_exists(sel));
 875
 876	/*
 877	 * If we're just initializing the selector, and no initial
 878	 * state was defined in the device tree, we just find out
 879	 * what its current value is rather than updating it.
 880	 */
 881	if (sel->clk_index == BAD_CLK_INDEX) {
 882		u8 index;
 883
 884		reg_val = __ccu_read(ccu, sel->offset);
 885		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 886		index = parent_index(sel, parent_sel);
 887		if (index == BAD_CLK_INDEX)
 888			return -EINVAL;
 889		sel->clk_index = index;
 890
 891		return 0;
 892	}
 893
 894	BUG_ON((u32)sel->clk_index >= sel->parent_count);
 895	parent_sel = sel->parent_sel[sel->clk_index];
 896
 897	/* Clock needs to be enabled before changing the parent */
 898	enabled = __is_clk_gate_enabled(ccu, gate);
 899	if (!enabled && !__clk_gate(ccu, gate, true))
 900		return -ENXIO;
 901
 902	/* Replace the selector value and record the result */
 903	reg_val = __ccu_read(ccu, sel->offset);
 904	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
 905	__ccu_write(ccu, sel->offset, reg_val);
 906
 907	/* If the trigger fails we still want to disable the gate */
 908	if (!__clk_trigger(ccu, trig))
 909		ret = -EIO;
 910
 911	/* Disable the clock again if it was disabled to begin with */
 912	if (!enabled && !__clk_gate(ccu, gate, false))
 913		ret = ret ? ret : -ENXIO;	/* return first error */
 914
 915	return ret;
 916}
 917
 918/*
 919 * Initialize a selector by committing our desired state to hardware
 920 * without the usual checks to see if it's already set up that way.
 921 * Returns true if successful, false otherwise.
 922 */
 923static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 924			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 925{
 926	if (!selector_exists(sel))
 927		return true;
 928	return !__sel_commit(ccu, gate, sel, trig);
 929}
 930
 931/*
 932 * Write a new value into a selector register to switch to a
 933 * different parent clock.  Returns 0 on success, or an error code
 934 * (from __sel_commit()) otherwise.
 935 */
 936static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 937			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
 938			u8 index)
 939{
 940	unsigned long flags;
 941	u8 previous;
 942	int ret;
 943
 944	previous = sel->clk_index;
 945	if (previous == index)
 946		return 0;	/* No change */
 947
 948	sel->clk_index = index;
 949
 950	flags = ccu_lock(ccu);
 951	__ccu_write_enable(ccu);
 952
 953	ret = __sel_commit(ccu, gate, sel, trig);
 954
 955	__ccu_write_disable(ccu);
 956	ccu_unlock(ccu, flags);
 957
 958	if (ret)
 959		sel->clk_index = previous;	/* Revert the change */
 960
 961	return ret;
 962}
 963
 964/* Clock operations */
 965
 966static int kona_peri_clk_enable(struct clk_hw *hw)
 967{
 968	struct kona_clk *bcm_clk = to_kona_clk(hw);
 969	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 970
 971	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
 972}
 973
 974static void kona_peri_clk_disable(struct clk_hw *hw)
 975{
 976	struct kona_clk *bcm_clk = to_kona_clk(hw);
 977	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 978
 979	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
 980}
 981
 982static int kona_peri_clk_is_enabled(struct clk_hw *hw)
 983{
 984	struct kona_clk *bcm_clk = to_kona_clk(hw);
 985	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 986
 987	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
 988}
 989
 990static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
 991			unsigned long parent_rate)
 992{
 993	struct kona_clk *bcm_clk = to_kona_clk(hw);
 994	struct peri_clk_data *data = bcm_clk->u.peri;
 995
 996	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
 997				parent_rate);
 998}
 999
1000static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1001			unsigned long *parent_rate)
1002{
1003	struct kona_clk *bcm_clk = to_kona_clk(hw);
1004	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1005
1006	if (!divider_exists(div))
1007		return clk_hw_get_rate(hw);
1008
1009	/* Quietly avoid a zero rate */
1010	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1011				rate ? rate : 1, *parent_rate, NULL);
1012}
1013
1014static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1015					struct clk_rate_request *req)
1016{
1017	struct kona_clk *bcm_clk = to_kona_clk(hw);
1018	struct clk_hw *current_parent;
1019	unsigned long parent_rate;
1020	unsigned long best_delta;
1021	unsigned long best_rate;
1022	u32 parent_count;
1023	long rate;
1024	u32 which;
1025
1026	/*
1027	 * If there is no other parent to choose, use the current one.
1028	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1029	 */
1030	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1031	parent_count = (u32)bcm_clk->init_data.num_parents;
1032	if (parent_count < 2) {
1033		rate = kona_peri_clk_round_rate(hw, req->rate,
1034						&req->best_parent_rate);
1035		if (rate < 0)
1036			return rate;
1037
1038		req->rate = rate;
1039		return 0;
1040	}
1041
1042	/* Unless we can do better, stick with current parent */
1043	current_parent = clk_hw_get_parent(hw);
1044	parent_rate = clk_hw_get_rate(current_parent);
1045	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1046	best_delta = abs(best_rate - req->rate);
1047
1048	/* Check whether any other parent clock can produce a better result */
1049	for (which = 0; which < parent_count; which++) {
1050		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1051		unsigned long delta;
1052		unsigned long other_rate;
1053
1054		BUG_ON(!parent);
1055		if (parent == current_parent)
1056			continue;
1057
1058		/* We don't support CLK_SET_RATE_PARENT */
1059		parent_rate = clk_hw_get_rate(parent);
1060		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1061						      &parent_rate);
1062		delta = abs(other_rate - req->rate);
1063		if (delta < best_delta) {
1064			best_delta = delta;
1065			best_rate = other_rate;
1066			req->best_parent_hw = parent;
1067			req->best_parent_rate = parent_rate;
1068		}
1069	}
1070
1071	req->rate = best_rate;
1072	return 0;
1073}
1074
1075static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1076{
1077	struct kona_clk *bcm_clk = to_kona_clk(hw);
1078	struct peri_clk_data *data = bcm_clk->u.peri;
1079	struct bcm_clk_sel *sel = &data->sel;
1080	struct bcm_clk_trig *trig;
1081	int ret;
1082
1083	BUG_ON(index >= sel->parent_count);
1084
1085	/* If there's only one parent we don't require a selector */
1086	if (!selector_exists(sel))
1087		return 0;
1088
1089	/*
1090	 * The regular trigger is used by default, but if there's a
1091	 * pre-trigger we want to use that instead.
1092	 */
1093	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1094					       : &data->trig;
1095
1096	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1097	if (ret == -ENXIO) {
1098		pr_err("%s: gating failure for %s\n", __func__,
1099			bcm_clk->init_data.name);
1100		ret = -EIO;	/* Don't proliferate weird errors */
1101	} else if (ret == -EIO) {
1102		pr_err("%s: %strigger failed for %s\n", __func__,
1103			trig == &data->pre_trig ? "pre-" : "",
1104			bcm_clk->init_data.name);
1105	}
1106
1107	return ret;
1108}
1109
1110static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1111{
1112	struct kona_clk *bcm_clk = to_kona_clk(hw);
1113	struct peri_clk_data *data = bcm_clk->u.peri;
1114	u8 index;
1115
1116	index = selector_read_index(bcm_clk->ccu, &data->sel);
1117
1118	/* Not all callers would handle an out-of-range value gracefully */
1119	return index == BAD_CLK_INDEX ? 0 : index;
1120}
1121
1122static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1123			unsigned long parent_rate)
1124{
1125	struct kona_clk *bcm_clk = to_kona_clk(hw);
1126	struct peri_clk_data *data = bcm_clk->u.peri;
1127	struct bcm_clk_div *div = &data->div;
1128	u64 scaled_div = 0;
1129	int ret;
1130
1131	if (parent_rate > (unsigned long)LONG_MAX)
1132		return -EINVAL;
1133
1134	if (rate == clk_hw_get_rate(hw))
1135		return 0;
1136
1137	if (!divider_exists(div))
1138		return rate == parent_rate ? 0 : -EINVAL;
1139
1140	/*
1141	 * A fixed divider can't be changed.  (Nor can a fixed
1142	 * pre-divider be, but for now we never actually try to
1143	 * change that.)  Tolerate a request for a no-op change.
1144	 */
1145	if (divider_is_fixed(&data->div))
1146		return rate == parent_rate ? 0 : -EINVAL;
1147
1148	/*
1149	 * Get the scaled divisor value needed to achieve a clock
1150	 * rate as close as possible to what was requested, given
1151	 * the parent clock rate supplied.
1152	 */
1153	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1154				rate ? rate : 1, parent_rate, &scaled_div);
1155
1156	/*
1157	 * We aren't updating any pre-divider at this point, so
1158	 * we'll use the regular trigger.
1159	 */
1160	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1161				&data->trig, scaled_div);
1162	if (ret == -ENXIO) {
1163		pr_err("%s: gating failure for %s\n", __func__,
1164			bcm_clk->init_data.name);
1165		ret = -EIO;	/* Don't proliferate weird errors */
1166	} else if (ret == -EIO) {
1167		pr_err("%s: trigger failed for %s\n", __func__,
1168			bcm_clk->init_data.name);
1169	}
1170
1171	return ret;
1172}
1173
1174struct clk_ops kona_peri_clk_ops = {
1175	.enable = kona_peri_clk_enable,
1176	.disable = kona_peri_clk_disable,
1177	.is_enabled = kona_peri_clk_is_enabled,
1178	.recalc_rate = kona_peri_clk_recalc_rate,
1179	.determine_rate = kona_peri_clk_determine_rate,
1180	.set_parent = kona_peri_clk_set_parent,
1181	.get_parent = kona_peri_clk_get_parent,
1182	.set_rate = kona_peri_clk_set_rate,
1183};
1184
1185/* Put a peripheral clock into its initial state */
1186static bool __peri_clk_init(struct kona_clk *bcm_clk)
1187{
1188	struct ccu_data *ccu = bcm_clk->ccu;
1189	struct peri_clk_data *peri = bcm_clk->u.peri;
1190	const char *name = bcm_clk->init_data.name;
1191	struct bcm_clk_trig *trig;
1192
1193	BUG_ON(bcm_clk->type != bcm_clk_peri);
1194
1195	if (!policy_init(ccu, &peri->policy)) {
1196		pr_err("%s: error initializing policy for %s\n",
1197			__func__, name);
1198		return false;
1199	}
1200	if (!gate_init(ccu, &peri->gate)) {
1201		pr_err("%s: error initializing gate for %s\n", __func__, name);
1202		return false;
1203	}
1204	if (!hyst_init(ccu, &peri->hyst)) {
1205		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1206		return false;
1207	}
1208	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1209		pr_err("%s: error initializing divider for %s\n", __func__,
1210			name);
1211		return false;
1212	}
1213
1214	/*
1215	 * For the pre-divider and selector, the pre-trigger is used
1216	 * if it's present, otherwise we just use the regular trigger.
1217	 */
1218	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1219					       : &peri->trig;
1220
1221	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1222		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1223			name);
1224		return false;
1225	}
1226
1227	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1228		pr_err("%s: error initializing selector for %s\n", __func__,
1229			name);
1230		return false;
1231	}
1232
1233	return true;
1234}
1235
1236static bool __kona_clk_init(struct kona_clk *bcm_clk)
1237{
1238	switch (bcm_clk->type) {
1239	case bcm_clk_peri:
1240		return __peri_clk_init(bcm_clk);
1241	default:
1242		BUG();
1243	}
1244	return false;
1245}
1246
1247/* Set a CCU and all its clocks into their desired initial state */
1248bool __init kona_ccu_init(struct ccu_data *ccu)
1249{
1250	unsigned long flags;
1251	unsigned int which;
1252	struct kona_clk *kona_clks = ccu->kona_clks;
1253	bool success = true;
1254
1255	flags = ccu_lock(ccu);
1256	__ccu_write_enable(ccu);
1257
1258	for (which = 0; which < ccu->clk_num; which++) {
1259		struct kona_clk *bcm_clk = &kona_clks[which];
1260
1261		if (!bcm_clk->ccu)
1262			continue;
1263
1264		success &= __kona_clk_init(bcm_clk);
1265	}
1266
1267	__ccu_write_disable(ccu);
1268	ccu_unlock(ccu, flags);
1269	return success;
1270}