Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 | // SPDX-License-Identifier: GPL-2.0 /* * PCI Endpoint *Controller* (EPC) library * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I <kishon@ti.com> */ #include <linux/device.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pci-epc.h> #include <linux/pci-epf.h> #include <linux/pci-ep-cfs.h> static struct class *pci_epc_class; static void devm_pci_epc_release(struct device *dev, void *res) { struct pci_epc *epc = *(struct pci_epc **)res; pci_epc_destroy(epc); } static int devm_pci_epc_match(struct device *dev, void *res, void *match_data) { struct pci_epc **epc = res; return *epc == match_data; } /** * pci_epc_put() - release the PCI endpoint controller * @epc: epc returned by pci_epc_get() * * release the refcount the caller obtained by invoking pci_epc_get() */ void pci_epc_put(struct pci_epc *epc) { if (IS_ERR_OR_NULL(epc)) return; module_put(epc->ops->owner); put_device(&epc->dev); } EXPORT_SYMBOL_GPL(pci_epc_put); /** * pci_epc_get() - get the PCI endpoint controller * @epc_name: device name of the endpoint controller * * Invoke to get struct pci_epc * corresponding to the device name of the * endpoint controller */ struct pci_epc *pci_epc_get(const char *epc_name) { int ret = -EINVAL; struct pci_epc *epc; struct device *dev; struct class_dev_iter iter; class_dev_iter_init(&iter, pci_epc_class, NULL, NULL); while ((dev = class_dev_iter_next(&iter))) { if (strcmp(epc_name, dev_name(dev))) continue; epc = to_pci_epc(dev); if (!try_module_get(epc->ops->owner)) { ret = -EINVAL; goto err; } class_dev_iter_exit(&iter); get_device(&epc->dev); return epc; } err: class_dev_iter_exit(&iter); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(pci_epc_get); /** * pci_epc_get_first_free_bar() - helper to get first unreserved BAR * @epc_features: pci_epc_features structure that holds the reserved bar bitmap * * Invoke to get the first unreserved BAR that can be used by the endpoint * function. For any incorrect value in reserved_bar return '0'. */ enum pci_barno pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) { return pci_epc_get_next_free_bar(epc_features, BAR_0); } EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); /** * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar * @epc_features: pci_epc_features structure that holds the reserved bar bitmap * @bar: the starting BAR number from where unreserved BAR should be searched * * Invoke to get the next unreserved BAR starting from @bar that can be used * for endpoint function. For any incorrect value in reserved_bar return '0'. */ enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features *epc_features, enum pci_barno bar) { unsigned long free_bar; if (!epc_features) return BAR_0; /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) bar++; /* Find if the reserved BAR is also a 64-bit BAR */ free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */ free_bar <<= 1; free_bar |= epc_features->reserved_bar; free_bar = find_next_zero_bit(&free_bar, 6, bar); if (free_bar > 5) return NO_BAR; return free_bar; } EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); /** * pci_epc_get_features() - get the features supported by EPC * @epc: the features supported by *this* EPC device will be returned * @func_no: the features supported by the EPC device specific to the * endpoint function with func_no will be returned * @vfunc_no: the features supported by the EPC device specific to the * virtual endpoint function with vfunc_no will be returned * * Invoke to get the features provided by the EPC which may be * specific to an endpoint function. Returns pci_epc_features on success * and NULL for any failures. */ const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { const struct pci_epc_features *epc_features; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return NULL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return NULL; if (!epc->ops->get_features) return NULL; mutex_lock(&epc->lock); epc_features = epc->ops->get_features(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); return epc_features; } EXPORT_SYMBOL_GPL(pci_epc_get_features); /** * pci_epc_stop() - stop the PCI link * @epc: the link of the EPC device that has to be stopped * * Invoke to stop the PCI link */ void pci_epc_stop(struct pci_epc *epc) { if (IS_ERR(epc) || !epc->ops->stop) return; mutex_lock(&epc->lock); epc->ops->stop(epc); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_stop); /** * pci_epc_start() - start the PCI link * @epc: the link of *this* EPC device has to be started * * Invoke to start the PCI link */ int pci_epc_start(struct pci_epc *epc) { int ret; if (IS_ERR(epc)) return -EINVAL; if (!epc->ops->start) return 0; mutex_lock(&epc->lock); ret = epc->ops->start(epc); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_start); /** * pci_epc_raise_irq() - interrupt the host system * @epc: the EPC device which has to interrupt the host * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @type: specify the type of interrupt; INTX, MSI or MSI-X * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N) * * Invoke to raise an INTX, MSI or MSI-X interrupt */ int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, unsigned int type, u16 interrupt_num) { int ret; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->raise_irq) return 0; mutex_lock(&epc->lock); ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_raise_irq); /** * pci_epc_map_msi_irq() - Map physical address to MSI address and return * MSI data * @epc: the EPC device which has the MSI capability * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: the physical address of the outbound region * @interrupt_num: the MSI interrupt number with range (1-N) * @entry_size: Size of Outbound address region for each interrupt * @msi_data: the data that should be written in order to raise MSI interrupt * with interrupt number as 'interrupt num' * @msi_addr_offset: Offset of MSI address from the aligned outbound address * to which the MSI address is mapped * * Invoke to map physical address to MSI address and return MSI data. The * physical address should be an address in the outbound region. This is * required to implement doorbell functionality of NTB wherein EPC on either * side of the interface (primary and secondary) can directly write to the * physical address (in outbound region) of the other interface to ring * doorbell. */ int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size, u32 *msi_data, u32 *msi_addr_offset) { int ret; if (IS_ERR_OR_NULL(epc)) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->map_msi_irq) return -EINVAL; mutex_lock(&epc->lock); ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr, interrupt_num, entry_size, msi_data, msi_addr_offset); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); /** * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated * @epc: the EPC device to which MSI interrupts was requested * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * * Invoke to get the number of MSI interrupts allocated by the RC */ int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { int interrupt; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return 0; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return 0; if (!epc->ops->get_msi) return 0; mutex_lock(&epc->lock); interrupt = epc->ops->get_msi(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); if (interrupt < 0) return 0; interrupt = 1 << interrupt; return interrupt; } EXPORT_SYMBOL_GPL(pci_epc_get_msi); /** * pci_epc_set_msi() - set the number of MSI interrupt numbers required * @epc: the EPC device on which MSI has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @interrupts: number of MSI interrupts required by the EPF * * Invoke to set the required number of MSI interrupts. */ int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts) { int ret; u8 encode_int; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || interrupts < 1 || interrupts > 32) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->set_msi) return 0; encode_int = order_base_2(interrupts); mutex_lock(&epc->lock); ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_msi); /** * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated * @epc: the EPC device to which MSI-X interrupts was requested * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * * Invoke to get the number of MSI-X interrupts allocated by the RC */ int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { int interrupt; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return 0; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return 0; if (!epc->ops->get_msix) return 0; mutex_lock(&epc->lock); interrupt = epc->ops->get_msix(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); if (interrupt < 0) return 0; return interrupt + 1; } EXPORT_SYMBOL_GPL(pci_epc_get_msix); /** * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required * @epc: the EPC device on which MSI-X has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @interrupts: number of MSI-X interrupts required by the EPF * @bir: BAR where the MSI-X table resides * @offset: Offset pointing to the start of MSI-X table * * Invoke to set the required number of MSI-X interrupts. */ int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u16 interrupts, enum pci_barno bir, u32 offset) { int ret; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || interrupts < 1 || interrupts > 2048) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->set_msix) return 0; mutex_lock(&epc->lock); ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir, offset); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_msix); /** * pci_epc_unmap_addr() - unmap CPU address from PCI address * @epc: the EPC device on which address is allocated * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: physical address of the local system * * Invoke to unmap the CPU address from PCI address. */ void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr) { if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return; if (!epc->ops->unmap_addr) return; mutex_lock(&epc->lock); epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); /** * pci_epc_map_addr() - map CPU address to PCI address * @epc: the EPC device on which address is allocated * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: physical address of the local system * @pci_addr: PCI address to which the physical address should be mapped * @size: the size of the allocation * * Invoke to map CPU address with PCI address. */ int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr, u64 pci_addr, size_t size) { int ret; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->map_addr) return 0; mutex_lock(&epc->lock); ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr, size); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_map_addr); /** * pci_epc_clear_bar() - reset the BAR * @epc: the EPC device for which the BAR has to be cleared * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @epf_bar: the struct epf_bar that contains the BAR information * * Invoke to reset the BAR of the endpoint device. */ void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_bar *epf_bar) { if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || (epf_bar->barno == BAR_5 && epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) return; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return; if (!epc->ops->clear_bar) return; mutex_lock(&epc->lock); epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_clear_bar); /** * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space * @epc: the EPC device on which BAR has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @epf_bar: the struct epf_bar that contains the BAR information * * Invoke to configure the BAR of the endpoint device. */ int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_bar *epf_bar) { int ret; int flags = epf_bar->flags; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || (epf_bar->barno == BAR_5 && flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || (flags & PCI_BASE_ADDRESS_SPACE_IO && flags & PCI_BASE_ADDRESS_IO_MASK) || (upper_32_bits(epf_bar->size) && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; if (!epc->ops->set_bar) return 0; mutex_lock(&epc->lock); ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_bar); /** * pci_epc_write_header() - write standard configuration header * @epc: the EPC device to which the configuration header should be written * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @header: standard configuration header fields * * Invoke to write the configuration header to the endpoint controller. Every * endpoint controller will have a dedicated location to which the standard * configuration header would be written. The callback function should write * the header fields to this dedicated location. */ int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_header *header) { int ret; if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return -EINVAL; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return -EINVAL; /* Only Virtual Function #1 has deviceID */ if (vfunc_no > 1) return -EINVAL; if (!epc->ops->write_header) return 0; mutex_lock(&epc->lock); ret = epc->ops->write_header(epc, func_no, vfunc_no, header); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_write_header); /** * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller * @epc: the EPC device to which the endpoint function should be added * @epf: the endpoint function to be added * @type: Identifies if the EPC is connected to the primary or secondary * interface of EPF * * A PCI endpoint device can have one or more functions. In the case of PCIe, * the specification allows up to 8 PCIe endpoint functions. Invoke * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. */ int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, enum pci_epc_interface_type type) { struct list_head *list; u32 func_no; int ret = 0; if (IS_ERR_OR_NULL(epc) || epf->is_vf) return -EINVAL; if (type == PRIMARY_INTERFACE && epf->epc) return -EBUSY; if (type == SECONDARY_INTERFACE && epf->sec_epc) return -EBUSY; mutex_lock(&epc->list_lock); func_no = find_first_zero_bit(&epc->function_num_map, BITS_PER_LONG); if (func_no >= BITS_PER_LONG) { ret = -EINVAL; goto ret; } if (func_no > epc->max_functions - 1) { dev_err(&epc->dev, "Exceeding max supported Function Number\n"); ret = -EINVAL; goto ret; } set_bit(func_no, &epc->function_num_map); if (type == PRIMARY_INTERFACE) { epf->func_no = func_no; epf->epc = epc; list = &epf->list; } else { epf->sec_epc_func_no = func_no; epf->sec_epc = epc; list = &epf->sec_epc_list; } list_add_tail(list, &epc->pci_epf); ret: mutex_unlock(&epc->list_lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_add_epf); /** * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller * @epc: the EPC device from which the endpoint function should be removed * @epf: the endpoint function to be removed * @type: identifies if the EPC is connected to the primary or secondary * interface of EPF * * Invoke to remove PCI endpoint function from the endpoint controller. */ void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, enum pci_epc_interface_type type) { struct list_head *list; u32 func_no = 0; if (IS_ERR_OR_NULL(epc) || !epf) return; if (type == PRIMARY_INTERFACE) { func_no = epf->func_no; list = &epf->list; } else { func_no = epf->sec_epc_func_no; list = &epf->sec_epc_list; } mutex_lock(&epc->list_lock); clear_bit(func_no, &epc->function_num_map); list_del(list); epf->epc = NULL; mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_remove_epf); /** * pci_epc_linkup() - Notify the EPF device that EPC device has established a * connection with the Root Complex. * @epc: the EPC device which has established link with the host * * Invoke to Notify the EPF device that the EPC device has established a * connection with the Root Complex. */ void pci_epc_linkup(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->link_up) epf->event_ops->link_up(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_linkup); /** * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the * connection with the Root Complex. * @epc: the EPC device which has dropped the link with the host * * Invoke to Notify the EPF device that the EPC device has dropped the * connection with the Root Complex. */ void pci_epc_linkdown(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->link_down) epf->event_ops->link_down(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_linkdown); /** * pci_epc_init_notify() - Notify the EPF device that EPC device's core * initialization is completed. * @epc: the EPC device whose core initialization is completed * * Invoke to Notify the EPF device that the EPC device's initialization * is completed. */ void pci_epc_init_notify(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->core_init) epf->event_ops->core_init(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_init_notify); /** * pci_epc_bme_notify() - Notify the EPF device that the EPC device has received * the BME event from the Root complex * @epc: the EPC device that received the BME event * * Invoke to Notify the EPF device that the EPC device has received the Bus * Master Enable (BME) event from the Root complex */ void pci_epc_bme_notify(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->bme) epf->event_ops->bme(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_bme_notify); /** * pci_epc_destroy() - destroy the EPC device * @epc: the EPC device that has to be destroyed * * Invoke to destroy the PCI EPC device */ void pci_epc_destroy(struct pci_epc *epc) { pci_ep_cfs_remove_epc_group(epc->group); device_unregister(&epc->dev); } EXPORT_SYMBOL_GPL(pci_epc_destroy); /** * devm_pci_epc_destroy() - destroy the EPC device * @dev: device that wants to destroy the EPC * @epc: the EPC device that has to be destroyed * * Invoke to destroy the devres associated with this * pci_epc and destroy the EPC device. */ void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc) { int r; r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match, epc); dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n"); } EXPORT_SYMBOL_GPL(devm_pci_epc_destroy); static void pci_epc_release(struct device *dev) { kfree(to_pci_epc(dev)); } /** * __pci_epc_create() - create a new endpoint controller (EPC) device * @dev: device that is creating the new EPC * @ops: function pointers for performing EPC operations * @owner: the owner of the module that creates the EPC device * * Invoke to create a new EPC device and add it to pci_epc class. */ struct pci_epc * __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, struct module *owner) { int ret; struct pci_epc *epc; if (WARN_ON(!dev)) { ret = -EINVAL; goto err_ret; } epc = kzalloc(sizeof(*epc), GFP_KERNEL); if (!epc) { ret = -ENOMEM; goto err_ret; } mutex_init(&epc->lock); mutex_init(&epc->list_lock); INIT_LIST_HEAD(&epc->pci_epf); device_initialize(&epc->dev); epc->dev.class = pci_epc_class; epc->dev.parent = dev; epc->dev.release = pci_epc_release; epc->ops = ops; ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); if (ret) goto put_dev; ret = device_add(&epc->dev); if (ret) goto put_dev; epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); return epc; put_dev: put_device(&epc->dev); err_ret: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(__pci_epc_create); /** * __devm_pci_epc_create() - create a new endpoint controller (EPC) device * @dev: device that is creating the new EPC * @ops: function pointers for performing EPC operations * @owner: the owner of the module that creates the EPC device * * Invoke to create a new EPC device and add it to pci_epc class. * While at that, it also associates the device with the pci_epc using devres. * On driver detach, release function is invoked on the devres data, * then, devres data is freed. */ struct pci_epc * __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, struct module *owner) { struct pci_epc **ptr, *epc; ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); epc = __pci_epc_create(dev, ops, owner); if (!IS_ERR(epc)) { *ptr = epc; devres_add(dev, ptr); } else { devres_free(ptr); } return epc; } EXPORT_SYMBOL_GPL(__devm_pci_epc_create); static int __init pci_epc_init(void) { pci_epc_class = class_create("pci_epc"); if (IS_ERR(pci_epc_class)) { pr_err("failed to create pci epc class --> %ld\n", PTR_ERR(pci_epc_class)); return PTR_ERR(pci_epc_class); } return 0; } module_init(pci_epc_init); static void __exit pci_epc_exit(void) { class_destroy(pci_epc_class); } module_exit(pci_epc_exit); MODULE_DESCRIPTION("PCI EPC Library"); MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); |