Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
  46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
  47				     struct thread *th, bool lock);
  48
  49static struct dso *machine__kernel_dso(struct machine *machine)
  50{
  51	return map__dso(machine->vmlinux_map);
  52}
  53
  54static void dsos__init(struct dsos *dsos)
  55{
  56	INIT_LIST_HEAD(&dsos->head);
  57	dsos->root = RB_ROOT;
  58	init_rwsem(&dsos->lock);
  59}
  60
  61static void machine__threads_init(struct machine *machine)
  62{
  63	int i;
  64
  65	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  66		struct threads *threads = &machine->threads[i];
  67		threads->entries = RB_ROOT_CACHED;
  68		init_rwsem(&threads->lock);
  69		threads->nr = 0;
  70		threads->last_match = NULL;
  71	}
  72}
  73
  74static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
  75{
  76	int to_find = (int) *((pid_t *)key);
  77
  78	return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
  79}
  80
  81static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
  82						   struct rb_root *tree)
  83{
  84	pid_t to_find = thread__tid(th);
  85	struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
  86
  87	return rb_entry(nd, struct thread_rb_node, rb_node);
  88}
  89
  90static int machine__set_mmap_name(struct machine *machine)
  91{
  92	if (machine__is_host(machine))
  93		machine->mmap_name = strdup("[kernel.kallsyms]");
  94	else if (machine__is_default_guest(machine))
  95		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  96	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  97			  machine->pid) < 0)
  98		machine->mmap_name = NULL;
  99
 100	return machine->mmap_name ? 0 : -ENOMEM;
 101}
 102
 103static void thread__set_guest_comm(struct thread *thread, pid_t pid)
 104{
 105	char comm[64];
 106
 107	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 108	thread__set_comm(thread, comm, 0);
 109}
 110
 111int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
 112{
 113	int err = -ENOMEM;
 114
 115	memset(machine, 0, sizeof(*machine));
 116	machine->kmaps = maps__new(machine);
 117	if (machine->kmaps == NULL)
 118		return -ENOMEM;
 119
 120	RB_CLEAR_NODE(&machine->rb_node);
 121	dsos__init(&machine->dsos);
 122
 123	machine__threads_init(machine);
 124
 125	machine->vdso_info = NULL;
 126	machine->env = NULL;
 127
 128	machine->pid = pid;
 129
 130	machine->id_hdr_size = 0;
 131	machine->kptr_restrict_warned = false;
 132	machine->comm_exec = false;
 133	machine->kernel_start = 0;
 134	machine->vmlinux_map = NULL;
 135
 136	machine->root_dir = strdup(root_dir);
 137	if (machine->root_dir == NULL)
 138		goto out;
 139
 140	if (machine__set_mmap_name(machine))
 141		goto out;
 142
 143	if (pid != HOST_KERNEL_ID) {
 144		struct thread *thread = machine__findnew_thread(machine, -1,
 145								pid);
 146
 147		if (thread == NULL)
 148			goto out;
 149
 150		thread__set_guest_comm(thread, pid);
 151		thread__put(thread);
 152	}
 153
 154	machine->current_tid = NULL;
 155	err = 0;
 156
 157out:
 158	if (err) {
 159		zfree(&machine->kmaps);
 160		zfree(&machine->root_dir);
 161		zfree(&machine->mmap_name);
 162	}
 163	return 0;
 164}
 165
 166struct machine *machine__new_host(void)
 167{
 168	struct machine *machine = malloc(sizeof(*machine));
 169
 170	if (machine != NULL) {
 171		machine__init(machine, "", HOST_KERNEL_ID);
 172
 173		if (machine__create_kernel_maps(machine) < 0)
 174			goto out_delete;
 175	}
 176
 177	return machine;
 178out_delete:
 179	free(machine);
 180	return NULL;
 181}
 182
 183struct machine *machine__new_kallsyms(void)
 184{
 185	struct machine *machine = machine__new_host();
 186	/*
 187	 * FIXME:
 188	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 189	 *    ask for not using the kcore parsing code, once this one is fixed
 190	 *    to create a map per module.
 191	 */
 192	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 193		machine__delete(machine);
 194		machine = NULL;
 195	}
 196
 197	return machine;
 198}
 199
 200static void dsos__purge(struct dsos *dsos)
 201{
 202	struct dso *pos, *n;
 203
 204	down_write(&dsos->lock);
 205
 206	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 207		RB_CLEAR_NODE(&pos->rb_node);
 208		pos->root = NULL;
 209		list_del_init(&pos->node);
 210		dso__put(pos);
 211	}
 212
 213	up_write(&dsos->lock);
 214}
 215
 216static void dsos__exit(struct dsos *dsos)
 217{
 218	dsos__purge(dsos);
 219	exit_rwsem(&dsos->lock);
 220}
 221
 222void machine__delete_threads(struct machine *machine)
 223{
 224	struct rb_node *nd;
 225	int i;
 226
 227	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 228		struct threads *threads = &machine->threads[i];
 229		down_write(&threads->lock);
 230		nd = rb_first_cached(&threads->entries);
 231		while (nd) {
 232			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
 233
 234			nd = rb_next(nd);
 235			__machine__remove_thread(machine, trb, trb->thread, false);
 236		}
 237		up_write(&threads->lock);
 238	}
 239}
 240
 241void machine__exit(struct machine *machine)
 242{
 243	int i;
 244
 245	if (machine == NULL)
 246		return;
 247
 248	machine__destroy_kernel_maps(machine);
 249	maps__zput(machine->kmaps);
 250	dsos__exit(&machine->dsos);
 251	machine__exit_vdso(machine);
 252	zfree(&machine->root_dir);
 253	zfree(&machine->mmap_name);
 254	zfree(&machine->current_tid);
 255	zfree(&machine->kallsyms_filename);
 256
 257	machine__delete_threads(machine);
 258	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 259		struct threads *threads = &machine->threads[i];
 260
 261		exit_rwsem(&threads->lock);
 262	}
 263}
 264
 265void machine__delete(struct machine *machine)
 266{
 267	if (machine) {
 268		machine__exit(machine);
 269		free(machine);
 270	}
 271}
 272
 273void machines__init(struct machines *machines)
 274{
 275	machine__init(&machines->host, "", HOST_KERNEL_ID);
 276	machines->guests = RB_ROOT_CACHED;
 277}
 278
 279void machines__exit(struct machines *machines)
 280{
 281	machine__exit(&machines->host);
 282	/* XXX exit guest */
 283}
 284
 285struct machine *machines__add(struct machines *machines, pid_t pid,
 286			      const char *root_dir)
 287{
 288	struct rb_node **p = &machines->guests.rb_root.rb_node;
 289	struct rb_node *parent = NULL;
 290	struct machine *pos, *machine = malloc(sizeof(*machine));
 291	bool leftmost = true;
 292
 293	if (machine == NULL)
 294		return NULL;
 295
 296	if (machine__init(machine, root_dir, pid) != 0) {
 297		free(machine);
 298		return NULL;
 299	}
 300
 301	while (*p != NULL) {
 302		parent = *p;
 303		pos = rb_entry(parent, struct machine, rb_node);
 304		if (pid < pos->pid)
 305			p = &(*p)->rb_left;
 306		else {
 307			p = &(*p)->rb_right;
 308			leftmost = false;
 309		}
 310	}
 311
 312	rb_link_node(&machine->rb_node, parent, p);
 313	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 314
 315	machine->machines = machines;
 316
 317	return machine;
 318}
 319
 320void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 321{
 322	struct rb_node *nd;
 323
 324	machines->host.comm_exec = comm_exec;
 325
 326	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 327		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 328
 329		machine->comm_exec = comm_exec;
 330	}
 331}
 332
 333struct machine *machines__find(struct machines *machines, pid_t pid)
 334{
 335	struct rb_node **p = &machines->guests.rb_root.rb_node;
 336	struct rb_node *parent = NULL;
 337	struct machine *machine;
 338	struct machine *default_machine = NULL;
 339
 340	if (pid == HOST_KERNEL_ID)
 341		return &machines->host;
 342
 343	while (*p != NULL) {
 344		parent = *p;
 345		machine = rb_entry(parent, struct machine, rb_node);
 346		if (pid < machine->pid)
 347			p = &(*p)->rb_left;
 348		else if (pid > machine->pid)
 349			p = &(*p)->rb_right;
 350		else
 351			return machine;
 352		if (!machine->pid)
 353			default_machine = machine;
 354	}
 355
 356	return default_machine;
 357}
 358
 359struct machine *machines__findnew(struct machines *machines, pid_t pid)
 360{
 361	char path[PATH_MAX];
 362	const char *root_dir = "";
 363	struct machine *machine = machines__find(machines, pid);
 364
 365	if (machine && (machine->pid == pid))
 366		goto out;
 367
 368	if ((pid != HOST_KERNEL_ID) &&
 369	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 370	    (symbol_conf.guestmount)) {
 371		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 372		if (access(path, R_OK)) {
 373			static struct strlist *seen;
 374
 375			if (!seen)
 376				seen = strlist__new(NULL, NULL);
 377
 378			if (!strlist__has_entry(seen, path)) {
 379				pr_err("Can't access file %s\n", path);
 380				strlist__add(seen, path);
 381			}
 382			machine = NULL;
 383			goto out;
 384		}
 385		root_dir = path;
 386	}
 387
 388	machine = machines__add(machines, pid, root_dir);
 389out:
 390	return machine;
 391}
 392
 393struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 394{
 395	struct machine *machine = machines__find(machines, pid);
 396
 397	if (!machine)
 398		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 399	return machine;
 400}
 401
 402/*
 403 * A common case for KVM test programs is that the test program acts as the
 404 * hypervisor, creating, running and destroying the virtual machine, and
 405 * providing the guest object code from its own object code. In this case,
 406 * the VM is not running an OS, but only the functions loaded into it by the
 407 * hypervisor test program, and conveniently, loaded at the same virtual
 408 * addresses.
 409 *
 410 * Normally to resolve addresses, MMAP events are needed to map addresses
 411 * back to the object code and debug symbols for that object code.
 412 *
 413 * Currently, there is no way to get such mapping information from guests
 414 * but, in the scenario described above, the guest has the same mappings
 415 * as the hypervisor, so support for that scenario can be achieved.
 416 *
 417 * To support that, copy the host thread's maps to the guest thread's maps.
 418 * Note, we do not discover the guest until we encounter a guest event,
 419 * which works well because it is not until then that we know that the host
 420 * thread's maps have been set up.
 421 *
 422 * This function returns the guest thread. Apart from keeping the data
 423 * structures sane, using a thread belonging to the guest machine, instead
 424 * of the host thread, allows it to have its own comm (refer
 425 * thread__set_guest_comm()).
 426 */
 427static struct thread *findnew_guest_code(struct machine *machine,
 428					 struct machine *host_machine,
 429					 pid_t pid)
 430{
 431	struct thread *host_thread;
 432	struct thread *thread;
 433	int err;
 434
 435	if (!machine)
 436		return NULL;
 437
 438	thread = machine__findnew_thread(machine, -1, pid);
 439	if (!thread)
 440		return NULL;
 441
 442	/* Assume maps are set up if there are any */
 443	if (maps__nr_maps(thread__maps(thread)))
 444		return thread;
 445
 446	host_thread = machine__find_thread(host_machine, -1, pid);
 447	if (!host_thread)
 448		goto out_err;
 449
 450	thread__set_guest_comm(thread, pid);
 451
 452	/*
 453	 * Guest code can be found in hypervisor process at the same address
 454	 * so copy host maps.
 455	 */
 456	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
 457	thread__put(host_thread);
 458	if (err)
 459		goto out_err;
 460
 461	return thread;
 462
 463out_err:
 464	thread__zput(thread);
 465	return NULL;
 466}
 467
 468struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 469{
 470	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 471	struct machine *machine = machines__findnew(machines, pid);
 472
 473	return findnew_guest_code(machine, host_machine, pid);
 474}
 475
 476struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 477{
 478	struct machines *machines = machine->machines;
 479	struct machine *host_machine;
 480
 481	if (!machines)
 482		return NULL;
 483
 484	host_machine = machines__find(machines, HOST_KERNEL_ID);
 485
 486	return findnew_guest_code(machine, host_machine, pid);
 487}
 488
 489void machines__process_guests(struct machines *machines,
 490			      machine__process_t process, void *data)
 491{
 492	struct rb_node *nd;
 493
 494	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 495		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 496		process(pos, data);
 497	}
 498}
 499
 500void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 501{
 502	struct rb_node *node;
 503	struct machine *machine;
 504
 505	machines->host.id_hdr_size = id_hdr_size;
 506
 507	for (node = rb_first_cached(&machines->guests); node;
 508	     node = rb_next(node)) {
 509		machine = rb_entry(node, struct machine, rb_node);
 510		machine->id_hdr_size = id_hdr_size;
 511	}
 512
 513	return;
 514}
 515
 516static void machine__update_thread_pid(struct machine *machine,
 517				       struct thread *th, pid_t pid)
 518{
 519	struct thread *leader;
 520
 521	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
 522		return;
 523
 524	thread__set_pid(th, pid);
 525
 526	if (thread__pid(th) == thread__tid(th))
 527		return;
 528
 529	leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
 530	if (!leader)
 531		goto out_err;
 532
 533	if (!thread__maps(leader))
 534		thread__set_maps(leader, maps__new(machine));
 535
 536	if (!thread__maps(leader))
 537		goto out_err;
 538
 539	if (thread__maps(th) == thread__maps(leader))
 540		goto out_put;
 541
 542	if (thread__maps(th)) {
 543		/*
 544		 * Maps are created from MMAP events which provide the pid and
 545		 * tid.  Consequently there never should be any maps on a thread
 546		 * with an unknown pid.  Just print an error if there are.
 547		 */
 548		if (!maps__empty(thread__maps(th)))
 549			pr_err("Discarding thread maps for %d:%d\n",
 550				thread__pid(th), thread__tid(th));
 551		maps__put(thread__maps(th));
 552	}
 553
 554	thread__set_maps(th, maps__get(thread__maps(leader)));
 555out_put:
 556	thread__put(leader);
 557	return;
 558out_err:
 559	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
 560	goto out_put;
 561}
 562
 563/*
 564 * Front-end cache - TID lookups come in blocks,
 565 * so most of the time we dont have to look up
 566 * the full rbtree:
 567 */
 568static struct thread*
 569__threads__get_last_match(struct threads *threads, struct machine *machine,
 570			  int pid, int tid)
 571{
 572	struct thread *th;
 573
 574	th = threads->last_match;
 575	if (th != NULL) {
 576		if (thread__tid(th) == tid) {
 577			machine__update_thread_pid(machine, th, pid);
 578			return thread__get(th);
 579		}
 580		thread__put(threads->last_match);
 581		threads->last_match = NULL;
 582	}
 583
 584	return NULL;
 585}
 586
 587static struct thread*
 588threads__get_last_match(struct threads *threads, struct machine *machine,
 589			int pid, int tid)
 590{
 591	struct thread *th = NULL;
 592
 593	if (perf_singlethreaded)
 594		th = __threads__get_last_match(threads, machine, pid, tid);
 595
 596	return th;
 597}
 598
 599static void
 600__threads__set_last_match(struct threads *threads, struct thread *th)
 601{
 602	thread__put(threads->last_match);
 603	threads->last_match = thread__get(th);
 604}
 605
 606static void
 607threads__set_last_match(struct threads *threads, struct thread *th)
 608{
 609	if (perf_singlethreaded)
 610		__threads__set_last_match(threads, th);
 611}
 612
 613/*
 614 * Caller must eventually drop thread->refcnt returned with a successful
 615 * lookup/new thread inserted.
 616 */
 617static struct thread *____machine__findnew_thread(struct machine *machine,
 618						  struct threads *threads,
 619						  pid_t pid, pid_t tid,
 620						  bool create)
 621{
 622	struct rb_node **p = &threads->entries.rb_root.rb_node;
 623	struct rb_node *parent = NULL;
 624	struct thread *th;
 625	struct thread_rb_node *nd;
 626	bool leftmost = true;
 627
 628	th = threads__get_last_match(threads, machine, pid, tid);
 629	if (th)
 630		return th;
 631
 632	while (*p != NULL) {
 633		parent = *p;
 634		th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
 635
 636		if (thread__tid(th) == tid) {
 637			threads__set_last_match(threads, th);
 638			machine__update_thread_pid(machine, th, pid);
 639			return thread__get(th);
 640		}
 641
 642		if (tid < thread__tid(th))
 643			p = &(*p)->rb_left;
 644		else {
 645			p = &(*p)->rb_right;
 646			leftmost = false;
 647		}
 648	}
 649
 650	if (!create)
 651		return NULL;
 652
 653	th = thread__new(pid, tid);
 654	if (th == NULL)
 655		return NULL;
 656
 657	nd = malloc(sizeof(*nd));
 658	if (nd == NULL) {
 659		thread__put(th);
 660		return NULL;
 661	}
 662	nd->thread = th;
 663
 664	rb_link_node(&nd->rb_node, parent, p);
 665	rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
 666	/*
 667	 * We have to initialize maps separately after rb tree is updated.
 668	 *
 669	 * The reason is that we call machine__findnew_thread within
 670	 * thread__init_maps to find the thread leader and that would screwed
 671	 * the rb tree.
 672	 */
 673	if (thread__init_maps(th, machine)) {
 674		pr_err("Thread init failed thread %d\n", pid);
 675		rb_erase_cached(&nd->rb_node, &threads->entries);
 676		RB_CLEAR_NODE(&nd->rb_node);
 677		free(nd);
 678		thread__put(th);
 679		return NULL;
 680	}
 681	/*
 682	 * It is now in the rbtree, get a ref
 683	 */
 684	threads__set_last_match(threads, th);
 685	++threads->nr;
 686
 687	return thread__get(th);
 688}
 689
 690struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 691{
 692	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 693}
 694
 695struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 696				       pid_t tid)
 697{
 698	struct threads *threads = machine__threads(machine, tid);
 699	struct thread *th;
 700
 701	down_write(&threads->lock);
 702	th = __machine__findnew_thread(machine, pid, tid);
 703	up_write(&threads->lock);
 704	return th;
 705}
 706
 707struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 708				    pid_t tid)
 709{
 710	struct threads *threads = machine__threads(machine, tid);
 711	struct thread *th;
 712
 713	down_read(&threads->lock);
 714	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 715	up_read(&threads->lock);
 716	return th;
 717}
 718
 719/*
 720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 721 * So here a single thread is created for that, but actually there is a separate
 722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 723 * is only 1. That causes problems for some tools, requiring workarounds. For
 724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 725 */
 726struct thread *machine__idle_thread(struct machine *machine)
 727{
 728	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 729
 730	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 731	    thread__set_namespaces(thread, 0, NULL))
 732		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 733
 734	return thread;
 735}
 736
 737struct comm *machine__thread_exec_comm(struct machine *machine,
 738				       struct thread *thread)
 739{
 740	if (machine->comm_exec)
 741		return thread__exec_comm(thread);
 742	else
 743		return thread__comm(thread);
 744}
 745
 746int machine__process_comm_event(struct machine *machine, union perf_event *event,
 747				struct perf_sample *sample)
 748{
 749	struct thread *thread = machine__findnew_thread(machine,
 750							event->comm.pid,
 751							event->comm.tid);
 752	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 753	int err = 0;
 754
 755	if (exec)
 756		machine->comm_exec = true;
 757
 758	if (dump_trace)
 759		perf_event__fprintf_comm(event, stdout);
 760
 761	if (thread == NULL ||
 762	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 763		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 764		err = -1;
 765	}
 766
 767	thread__put(thread);
 768
 769	return err;
 770}
 771
 772int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 773				      union perf_event *event,
 774				      struct perf_sample *sample __maybe_unused)
 775{
 776	struct thread *thread = machine__findnew_thread(machine,
 777							event->namespaces.pid,
 778							event->namespaces.tid);
 779	int err = 0;
 780
 781	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 782		  "\nWARNING: kernel seems to support more namespaces than perf"
 783		  " tool.\nTry updating the perf tool..\n\n");
 784
 785	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 786		  "\nWARNING: perf tool seems to support more namespaces than"
 787		  " the kernel.\nTry updating the kernel..\n\n");
 788
 789	if (dump_trace)
 790		perf_event__fprintf_namespaces(event, stdout);
 791
 792	if (thread == NULL ||
 793	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 794		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 795		err = -1;
 796	}
 797
 798	thread__put(thread);
 799
 800	return err;
 801}
 802
 803int machine__process_cgroup_event(struct machine *machine,
 804				  union perf_event *event,
 805				  struct perf_sample *sample __maybe_unused)
 806{
 807	struct cgroup *cgrp;
 808
 809	if (dump_trace)
 810		perf_event__fprintf_cgroup(event, stdout);
 811
 812	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 813	if (cgrp == NULL)
 814		return -ENOMEM;
 815
 816	return 0;
 817}
 818
 819int machine__process_lost_event(struct machine *machine __maybe_unused,
 820				union perf_event *event, struct perf_sample *sample __maybe_unused)
 821{
 822	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 823		    event->lost.id, event->lost.lost);
 824	return 0;
 825}
 826
 827int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 828					union perf_event *event, struct perf_sample *sample)
 829{
 830	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 831		    sample->id, event->lost_samples.lost);
 832	return 0;
 833}
 834
 835static struct dso *machine__findnew_module_dso(struct machine *machine,
 836					       struct kmod_path *m,
 837					       const char *filename)
 838{
 839	struct dso *dso;
 840
 841	down_write(&machine->dsos.lock);
 842
 843	dso = __dsos__find(&machine->dsos, m->name, true);
 844	if (!dso) {
 845		dso = __dsos__addnew(&machine->dsos, m->name);
 846		if (dso == NULL)
 847			goto out_unlock;
 848
 849		dso__set_module_info(dso, m, machine);
 850		dso__set_long_name(dso, strdup(filename), true);
 851		dso->kernel = DSO_SPACE__KERNEL;
 852	}
 853
 854	dso__get(dso);
 855out_unlock:
 856	up_write(&machine->dsos.lock);
 857	return dso;
 858}
 859
 860int machine__process_aux_event(struct machine *machine __maybe_unused,
 861			       union perf_event *event)
 862{
 863	if (dump_trace)
 864		perf_event__fprintf_aux(event, stdout);
 865	return 0;
 866}
 867
 868int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 869					union perf_event *event)
 870{
 871	if (dump_trace)
 872		perf_event__fprintf_itrace_start(event, stdout);
 873	return 0;
 874}
 875
 876int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 877					    union perf_event *event)
 878{
 879	if (dump_trace)
 880		perf_event__fprintf_aux_output_hw_id(event, stdout);
 881	return 0;
 882}
 883
 884int machine__process_switch_event(struct machine *machine __maybe_unused,
 885				  union perf_event *event)
 886{
 887	if (dump_trace)
 888		perf_event__fprintf_switch(event, stdout);
 889	return 0;
 890}
 891
 892static int machine__process_ksymbol_register(struct machine *machine,
 893					     union perf_event *event,
 894					     struct perf_sample *sample __maybe_unused)
 895{
 896	struct symbol *sym;
 897	struct dso *dso;
 898	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 899	bool put_map = false;
 900	int err = 0;
 901
 902	if (!map) {
 903		dso = dso__new(event->ksymbol.name);
 904
 905		if (!dso) {
 906			err = -ENOMEM;
 907			goto out;
 908		}
 909		dso->kernel = DSO_SPACE__KERNEL;
 910		map = map__new2(0, dso);
 911		dso__put(dso);
 912		if (!map) {
 913			err = -ENOMEM;
 914			goto out;
 915		}
 916		/*
 917		 * The inserted map has a get on it, we need to put to release
 918		 * the reference count here, but do it after all accesses are
 919		 * done.
 920		 */
 921		put_map = true;
 922		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 923			dso->binary_type = DSO_BINARY_TYPE__OOL;
 924			dso->data.file_size = event->ksymbol.len;
 925			dso__set_loaded(dso);
 926		}
 927
 928		map__set_start(map, event->ksymbol.addr);
 929		map__set_end(map, map__start(map) + event->ksymbol.len);
 930		err = maps__insert(machine__kernel_maps(machine), map);
 931		if (err) {
 932			err = -ENOMEM;
 933			goto out;
 934		}
 935
 936		dso__set_loaded(dso);
 937
 938		if (is_bpf_image(event->ksymbol.name)) {
 939			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 940			dso__set_long_name(dso, "", false);
 941		}
 942	} else {
 943		dso = map__dso(map);
 944	}
 945
 946	sym = symbol__new(map__map_ip(map, map__start(map)),
 947			  event->ksymbol.len,
 948			  0, 0, event->ksymbol.name);
 949	if (!sym) {
 950		err = -ENOMEM;
 951		goto out;
 952	}
 953	dso__insert_symbol(dso, sym);
 954out:
 955	if (put_map)
 956		map__put(map);
 957	return err;
 958}
 959
 960static int machine__process_ksymbol_unregister(struct machine *machine,
 961					       union perf_event *event,
 962					       struct perf_sample *sample __maybe_unused)
 963{
 964	struct symbol *sym;
 965	struct map *map;
 966
 967	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 968	if (!map)
 969		return 0;
 970
 971	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
 972		maps__remove(machine__kernel_maps(machine), map);
 973	else {
 974		struct dso *dso = map__dso(map);
 975
 976		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
 977		if (sym)
 978			dso__delete_symbol(dso, sym);
 979	}
 980
 981	return 0;
 982}
 983
 984int machine__process_ksymbol(struct machine *machine __maybe_unused,
 985			     union perf_event *event,
 986			     struct perf_sample *sample)
 987{
 988	if (dump_trace)
 989		perf_event__fprintf_ksymbol(event, stdout);
 990
 991	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 992		return machine__process_ksymbol_unregister(machine, event,
 993							   sample);
 994	return machine__process_ksymbol_register(machine, event, sample);
 995}
 996
 997int machine__process_text_poke(struct machine *machine, union perf_event *event,
 998			       struct perf_sample *sample __maybe_unused)
 999{
1000	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1001	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1002	struct dso *dso = map ? map__dso(map) : NULL;
1003
1004	if (dump_trace)
1005		perf_event__fprintf_text_poke(event, machine, stdout);
1006
1007	if (!event->text_poke.new_len)
1008		return 0;
1009
1010	if (cpumode != PERF_RECORD_MISC_KERNEL) {
1011		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1012		return 0;
1013	}
1014
1015	if (dso) {
1016		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1017		int ret;
1018
1019		/*
1020		 * Kernel maps might be changed when loading symbols so loading
1021		 * must be done prior to using kernel maps.
1022		 */
1023		map__load(map);
1024		ret = dso__data_write_cache_addr(dso, map, machine,
1025						 event->text_poke.addr,
1026						 new_bytes,
1027						 event->text_poke.new_len);
1028		if (ret != event->text_poke.new_len)
1029			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1030				 event->text_poke.addr);
1031	} else {
1032		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1033			 event->text_poke.addr);
1034	}
1035
 
1036	return 0;
1037}
1038
1039static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1040					      const char *filename)
1041{
1042	struct map *map = NULL;
1043	struct kmod_path m;
1044	struct dso *dso;
1045	int err;
1046
1047	if (kmod_path__parse_name(&m, filename))
1048		return NULL;
1049
1050	dso = machine__findnew_module_dso(machine, &m, filename);
1051	if (dso == NULL)
1052		goto out;
1053
1054	map = map__new2(start, dso);
1055	if (map == NULL)
1056		goto out;
1057
1058	err = maps__insert(machine__kernel_maps(machine), map);
1059	/* If maps__insert failed, return NULL. */
1060	if (err) {
1061		map__put(map);
1062		map = NULL;
1063	}
1064out:
1065	/* put the dso here, corresponding to  machine__findnew_module_dso */
1066	dso__put(dso);
1067	zfree(&m.name);
1068	return map;
1069}
1070
1071size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1072{
1073	struct rb_node *nd;
1074	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1075
1076	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1077		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1078		ret += __dsos__fprintf(&pos->dsos.head, fp);
1079	}
1080
1081	return ret;
1082}
1083
1084size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1085				     bool (skip)(struct dso *dso, int parm), int parm)
1086{
1087	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1088}
1089
1090size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1091				     bool (skip)(struct dso *dso, int parm), int parm)
1092{
1093	struct rb_node *nd;
1094	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1095
1096	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1097		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1098		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1099	}
1100	return ret;
1101}
1102
1103size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1104{
1105	int i;
1106	size_t printed = 0;
1107	struct dso *kdso = machine__kernel_dso(machine);
1108
1109	if (kdso->has_build_id) {
1110		char filename[PATH_MAX];
1111		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1112					   false))
1113			printed += fprintf(fp, "[0] %s\n", filename);
1114	}
1115
1116	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1117		printed += fprintf(fp, "[%d] %s\n",
1118				   i + kdso->has_build_id, vmlinux_path[i]);
1119
1120	return printed;
1121}
1122
1123size_t machine__fprintf(struct machine *machine, FILE *fp)
1124{
1125	struct rb_node *nd;
1126	size_t ret;
1127	int i;
1128
1129	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1130		struct threads *threads = &machine->threads[i];
1131
1132		down_read(&threads->lock);
1133
1134		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 
 
1135
1136		for (nd = rb_first_cached(&threads->entries); nd;
1137		     nd = rb_next(nd)) {
1138			struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
 
1139
1140			ret += thread__fprintf(pos, fp);
1141		}
 
 
 
 
 
1142
1143		up_read(&threads->lock);
1144	}
1145	return ret;
1146}
1147
1148static struct dso *machine__get_kernel(struct machine *machine)
1149{
1150	const char *vmlinux_name = machine->mmap_name;
1151	struct dso *kernel;
1152
1153	if (machine__is_host(machine)) {
1154		if (symbol_conf.vmlinux_name)
1155			vmlinux_name = symbol_conf.vmlinux_name;
1156
1157		kernel = machine__findnew_kernel(machine, vmlinux_name,
1158						 "[kernel]", DSO_SPACE__KERNEL);
1159	} else {
1160		if (symbol_conf.default_guest_vmlinux_name)
1161			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1162
1163		kernel = machine__findnew_kernel(machine, vmlinux_name,
1164						 "[guest.kernel]",
1165						 DSO_SPACE__KERNEL_GUEST);
1166	}
1167
1168	if (kernel != NULL && (!kernel->has_build_id))
1169		dso__read_running_kernel_build_id(kernel, machine);
1170
1171	return kernel;
1172}
1173
1174void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1175				    size_t bufsz)
1176{
1177	if (machine__is_default_guest(machine))
1178		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1179	else
1180		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1181}
1182
1183const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1184
1185/* Figure out the start address of kernel map from /proc/kallsyms.
1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1187 * symbol_name if it's not that important.
1188 */
1189static int machine__get_running_kernel_start(struct machine *machine,
1190					     const char **symbol_name,
1191					     u64 *start, u64 *end)
1192{
1193	char filename[PATH_MAX];
1194	int i, err = -1;
1195	const char *name;
1196	u64 addr = 0;
1197
1198	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1199
1200	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1201		return 0;
1202
1203	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1204		err = kallsyms__get_function_start(filename, name, &addr);
1205		if (!err)
1206			break;
1207	}
1208
1209	if (err)
1210		return -1;
1211
1212	if (symbol_name)
1213		*symbol_name = name;
1214
1215	*start = addr;
1216
1217	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1218	if (err)
1219		err = kallsyms__get_function_start(filename, "_etext", &addr);
1220	if (!err)
1221		*end = addr;
1222
1223	return 0;
1224}
1225
1226int machine__create_extra_kernel_map(struct machine *machine,
1227				     struct dso *kernel,
1228				     struct extra_kernel_map *xm)
1229{
1230	struct kmap *kmap;
1231	struct map *map;
1232	int err;
1233
1234	map = map__new2(xm->start, kernel);
1235	if (!map)
1236		return -ENOMEM;
1237
1238	map__set_end(map, xm->end);
1239	map__set_pgoff(map, xm->pgoff);
1240
1241	kmap = map__kmap(map);
1242
1243	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1244
1245	err = maps__insert(machine__kernel_maps(machine), map);
1246
1247	if (!err) {
1248		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1249			kmap->name, map__start(map), map__end(map));
1250	}
1251
1252	map__put(map);
1253
1254	return err;
1255}
1256
1257static u64 find_entry_trampoline(struct dso *dso)
1258{
1259	/* Duplicates are removed so lookup all aliases */
1260	const char *syms[] = {
1261		"_entry_trampoline",
1262		"__entry_trampoline_start",
1263		"entry_SYSCALL_64_trampoline",
1264	};
1265	struct symbol *sym = dso__first_symbol(dso);
1266	unsigned int i;
1267
1268	for (; sym; sym = dso__next_symbol(sym)) {
1269		if (sym->binding != STB_GLOBAL)
1270			continue;
1271		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1272			if (!strcmp(sym->name, syms[i]))
1273				return sym->start;
1274		}
1275	}
1276
1277	return 0;
1278}
1279
1280/*
1281 * These values can be used for kernels that do not have symbols for the entry
1282 * trampolines in kallsyms.
1283 */
1284#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1285#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1286#define X86_64_ENTRY_TRAMPOLINE		0x6000
1287
1288struct machine__map_x86_64_entry_trampolines_args {
1289	struct maps *kmaps;
1290	bool found;
1291};
1292
1293static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1294{
1295	struct machine__map_x86_64_entry_trampolines_args *args = data;
1296	struct map *dest_map;
1297	struct kmap *kmap = __map__kmap(map);
1298
1299	if (!kmap || !is_entry_trampoline(kmap->name))
1300		return 0;
1301
1302	dest_map = maps__find(args->kmaps, map__pgoff(map));
1303	if (dest_map != map)
1304		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1305
 
1306	args->found = true;
1307	return 0;
1308}
1309
1310/* Map x86_64 PTI entry trampolines */
1311int machine__map_x86_64_entry_trampolines(struct machine *machine,
1312					  struct dso *kernel)
1313{
1314	struct machine__map_x86_64_entry_trampolines_args args = {
1315		.kmaps = machine__kernel_maps(machine),
1316		.found = false,
1317	};
1318	int nr_cpus_avail, cpu;
1319	u64 pgoff;
1320
1321	/*
1322	 * In the vmlinux case, pgoff is a virtual address which must now be
1323	 * mapped to a vmlinux offset.
1324	 */
1325	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1326
1327	if (args.found || machine->trampolines_mapped)
1328		return 0;
1329
1330	pgoff = find_entry_trampoline(kernel);
1331	if (!pgoff)
1332		return 0;
1333
1334	nr_cpus_avail = machine__nr_cpus_avail(machine);
1335
1336	/* Add a 1 page map for each CPU's entry trampoline */
1337	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1338		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1339			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1340			 X86_64_ENTRY_TRAMPOLINE;
1341		struct extra_kernel_map xm = {
1342			.start = va,
1343			.end   = va + page_size,
1344			.pgoff = pgoff,
1345		};
1346
1347		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1348
1349		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1350			return -1;
1351	}
1352
1353	machine->trampolines_mapped = nr_cpus_avail;
1354
1355	return 0;
1356}
1357
1358int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1359					     struct dso *kernel __maybe_unused)
1360{
1361	return 0;
1362}
1363
1364static int
1365__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1366{
1367	/* In case of renewal the kernel map, destroy previous one */
1368	machine__destroy_kernel_maps(machine);
1369
1370	map__put(machine->vmlinux_map);
1371	machine->vmlinux_map = map__new2(0, kernel);
1372	if (machine->vmlinux_map == NULL)
1373		return -ENOMEM;
1374
1375	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1376	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1377}
1378
1379void machine__destroy_kernel_maps(struct machine *machine)
1380{
1381	struct kmap *kmap;
1382	struct map *map = machine__kernel_map(machine);
1383
1384	if (map == NULL)
1385		return;
1386
1387	kmap = map__kmap(map);
1388	maps__remove(machine__kernel_maps(machine), map);
1389	if (kmap && kmap->ref_reloc_sym) {
1390		zfree((char **)&kmap->ref_reloc_sym->name);
1391		zfree(&kmap->ref_reloc_sym);
1392	}
1393
1394	map__zput(machine->vmlinux_map);
1395}
1396
1397int machines__create_guest_kernel_maps(struct machines *machines)
1398{
1399	int ret = 0;
1400	struct dirent **namelist = NULL;
1401	int i, items = 0;
1402	char path[PATH_MAX];
1403	pid_t pid;
1404	char *endp;
1405
1406	if (symbol_conf.default_guest_vmlinux_name ||
1407	    symbol_conf.default_guest_modules ||
1408	    symbol_conf.default_guest_kallsyms) {
1409		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1410	}
1411
1412	if (symbol_conf.guestmount) {
1413		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1414		if (items <= 0)
1415			return -ENOENT;
1416		for (i = 0; i < items; i++) {
1417			if (!isdigit(namelist[i]->d_name[0])) {
1418				/* Filter out . and .. */
1419				continue;
1420			}
1421			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1422			if ((*endp != '\0') ||
1423			    (endp == namelist[i]->d_name) ||
1424			    (errno == ERANGE)) {
1425				pr_debug("invalid directory (%s). Skipping.\n",
1426					 namelist[i]->d_name);
1427				continue;
1428			}
1429			sprintf(path, "%s/%s/proc/kallsyms",
1430				symbol_conf.guestmount,
1431				namelist[i]->d_name);
1432			ret = access(path, R_OK);
1433			if (ret) {
1434				pr_debug("Can't access file %s\n", path);
1435				goto failure;
1436			}
1437			machines__create_kernel_maps(machines, pid);
1438		}
1439failure:
1440		free(namelist);
1441	}
1442
1443	return ret;
1444}
1445
1446void machines__destroy_kernel_maps(struct machines *machines)
1447{
1448	struct rb_node *next = rb_first_cached(&machines->guests);
1449
1450	machine__destroy_kernel_maps(&machines->host);
1451
1452	while (next) {
1453		struct machine *pos = rb_entry(next, struct machine, rb_node);
1454
1455		next = rb_next(&pos->rb_node);
1456		rb_erase_cached(&pos->rb_node, &machines->guests);
1457		machine__delete(pos);
1458	}
1459}
1460
1461int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1462{
1463	struct machine *machine = machines__findnew(machines, pid);
1464
1465	if (machine == NULL)
1466		return -1;
1467
1468	return machine__create_kernel_maps(machine);
1469}
1470
1471int machine__load_kallsyms(struct machine *machine, const char *filename)
1472{
1473	struct map *map = machine__kernel_map(machine);
1474	struct dso *dso = map__dso(map);
1475	int ret = __dso__load_kallsyms(dso, filename, map, true);
1476
1477	if (ret > 0) {
1478		dso__set_loaded(dso);
1479		/*
1480		 * Since /proc/kallsyms will have multiple sessions for the
1481		 * kernel, with modules between them, fixup the end of all
1482		 * sections.
1483		 */
1484		maps__fixup_end(machine__kernel_maps(machine));
1485	}
1486
1487	return ret;
1488}
1489
1490int machine__load_vmlinux_path(struct machine *machine)
1491{
1492	struct map *map = machine__kernel_map(machine);
1493	struct dso *dso = map__dso(map);
1494	int ret = dso__load_vmlinux_path(dso, map);
1495
1496	if (ret > 0)
1497		dso__set_loaded(dso);
1498
1499	return ret;
1500}
1501
1502static char *get_kernel_version(const char *root_dir)
1503{
1504	char version[PATH_MAX];
1505	FILE *file;
1506	char *name, *tmp;
1507	const char *prefix = "Linux version ";
1508
1509	sprintf(version, "%s/proc/version", root_dir);
1510	file = fopen(version, "r");
1511	if (!file)
1512		return NULL;
1513
1514	tmp = fgets(version, sizeof(version), file);
1515	fclose(file);
1516	if (!tmp)
1517		return NULL;
1518
1519	name = strstr(version, prefix);
1520	if (!name)
1521		return NULL;
1522	name += strlen(prefix);
1523	tmp = strchr(name, ' ');
1524	if (tmp)
1525		*tmp = '\0';
1526
1527	return strdup(name);
1528}
1529
1530static bool is_kmod_dso(struct dso *dso)
1531{
1532	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1533	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1534}
1535
1536static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1537{
1538	char *long_name;
1539	struct dso *dso;
1540	struct map *map = maps__find_by_name(maps, m->name);
1541
1542	if (map == NULL)
1543		return 0;
1544
1545	long_name = strdup(path);
1546	if (long_name == NULL)
 
1547		return -ENOMEM;
 
1548
1549	dso = map__dso(map);
1550	dso__set_long_name(dso, long_name, true);
1551	dso__kernel_module_get_build_id(dso, "");
1552
1553	/*
1554	 * Full name could reveal us kmod compression, so
1555	 * we need to update the symtab_type if needed.
1556	 */
1557	if (m->comp && is_kmod_dso(dso)) {
1558		dso->symtab_type++;
1559		dso->comp = m->comp;
1560	}
1561
1562	return 0;
1563}
1564
1565static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1566{
1567	struct dirent *dent;
1568	DIR *dir = opendir(dir_name);
1569	int ret = 0;
1570
1571	if (!dir) {
1572		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1573		return -1;
1574	}
1575
1576	while ((dent = readdir(dir)) != NULL) {
1577		char path[PATH_MAX];
1578		struct stat st;
1579
1580		/*sshfs might return bad dent->d_type, so we have to stat*/
1581		path__join(path, sizeof(path), dir_name, dent->d_name);
1582		if (stat(path, &st))
1583			continue;
1584
1585		if (S_ISDIR(st.st_mode)) {
1586			if (!strcmp(dent->d_name, ".") ||
1587			    !strcmp(dent->d_name, ".."))
1588				continue;
1589
1590			/* Do not follow top-level source and build symlinks */
1591			if (depth == 0) {
1592				if (!strcmp(dent->d_name, "source") ||
1593				    !strcmp(dent->d_name, "build"))
1594					continue;
1595			}
1596
1597			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1598			if (ret < 0)
1599				goto out;
1600		} else {
1601			struct kmod_path m;
1602
1603			ret = kmod_path__parse_name(&m, dent->d_name);
1604			if (ret)
1605				goto out;
1606
1607			if (m.kmod)
1608				ret = maps__set_module_path(maps, path, &m);
1609
1610			zfree(&m.name);
1611
1612			if (ret)
1613				goto out;
1614		}
1615	}
1616
1617out:
1618	closedir(dir);
1619	return ret;
1620}
1621
1622static int machine__set_modules_path(struct machine *machine)
1623{
1624	char *version;
1625	char modules_path[PATH_MAX];
1626
1627	version = get_kernel_version(machine->root_dir);
1628	if (!version)
1629		return -1;
1630
1631	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1632		 machine->root_dir, version);
1633	free(version);
1634
1635	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1636}
1637int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1638				u64 *size __maybe_unused,
1639				const char *name __maybe_unused)
1640{
1641	return 0;
1642}
1643
1644static int machine__create_module(void *arg, const char *name, u64 start,
1645				  u64 size)
1646{
1647	struct machine *machine = arg;
1648	struct map *map;
1649
1650	if (arch__fix_module_text_start(&start, &size, name) < 0)
1651		return -1;
1652
1653	map = machine__addnew_module_map(machine, start, name);
1654	if (map == NULL)
1655		return -1;
1656	map__set_end(map, start + size);
1657
1658	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1659	map__put(map);
1660	return 0;
1661}
1662
1663static int machine__create_modules(struct machine *machine)
1664{
1665	const char *modules;
1666	char path[PATH_MAX];
1667
1668	if (machine__is_default_guest(machine)) {
1669		modules = symbol_conf.default_guest_modules;
1670	} else {
1671		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1672		modules = path;
1673	}
1674
1675	if (symbol__restricted_filename(modules, "/proc/modules"))
1676		return -1;
1677
1678	if (modules__parse(modules, machine, machine__create_module))
1679		return -1;
1680
1681	if (!machine__set_modules_path(machine))
1682		return 0;
1683
1684	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1685
1686	return 0;
1687}
1688
1689static void machine__set_kernel_mmap(struct machine *machine,
1690				     u64 start, u64 end)
1691{
1692	map__set_start(machine->vmlinux_map, start);
1693	map__set_end(machine->vmlinux_map, end);
1694	/*
1695	 * Be a bit paranoid here, some perf.data file came with
1696	 * a zero sized synthesized MMAP event for the kernel.
1697	 */
1698	if (start == 0 && end == 0)
1699		map__set_end(machine->vmlinux_map, ~0ULL);
1700}
1701
1702static int machine__update_kernel_mmap(struct machine *machine,
1703				     u64 start, u64 end)
1704{
1705	struct map *orig, *updated;
1706	int err;
1707
1708	orig = machine->vmlinux_map;
1709	updated = map__get(orig);
1710
1711	machine->vmlinux_map = updated;
1712	machine__set_kernel_mmap(machine, start, end);
1713	maps__remove(machine__kernel_maps(machine), orig);
 
1714	err = maps__insert(machine__kernel_maps(machine), updated);
1715	map__put(orig);
1716
1717	return err;
1718}
1719
1720int machine__create_kernel_maps(struct machine *machine)
1721{
1722	struct dso *kernel = machine__get_kernel(machine);
1723	const char *name = NULL;
1724	u64 start = 0, end = ~0ULL;
1725	int ret;
1726
1727	if (kernel == NULL)
1728		return -1;
1729
1730	ret = __machine__create_kernel_maps(machine, kernel);
1731	if (ret < 0)
1732		goto out_put;
1733
1734	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1735		if (machine__is_host(machine))
1736			pr_debug("Problems creating module maps, "
1737				 "continuing anyway...\n");
1738		else
1739			pr_debug("Problems creating module maps for guest %d, "
1740				 "continuing anyway...\n", machine->pid);
1741	}
1742
1743	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1744		if (name &&
1745		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1746			machine__destroy_kernel_maps(machine);
1747			ret = -1;
1748			goto out_put;
1749		}
1750
1751		/*
1752		 * we have a real start address now, so re-order the kmaps
1753		 * assume it's the last in the kmaps
1754		 */
1755		ret = machine__update_kernel_mmap(machine, start, end);
1756		if (ret < 0)
1757			goto out_put;
1758	}
1759
1760	if (machine__create_extra_kernel_maps(machine, kernel))
1761		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1762
1763	if (end == ~0ULL) {
1764		/* update end address of the kernel map using adjacent module address */
1765		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1766							 machine__kernel_map(machine));
1767
1768		if (next)
1769			machine__set_kernel_mmap(machine, start, map__start(next));
 
 
1770	}
1771
1772out_put:
1773	dso__put(kernel);
1774	return ret;
1775}
1776
1777static bool machine__uses_kcore(struct machine *machine)
1778{
1779	struct dso *dso;
1780
1781	list_for_each_entry(dso, &machine->dsos.head, node) {
1782		if (dso__is_kcore(dso))
1783			return true;
1784	}
1785
1786	return false;
1787}
1788
1789static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1790					     struct extra_kernel_map *xm)
1791{
1792	return machine__is(machine, "x86_64") &&
1793	       is_entry_trampoline(xm->name);
1794}
1795
1796static int machine__process_extra_kernel_map(struct machine *machine,
1797					     struct extra_kernel_map *xm)
1798{
1799	struct dso *kernel = machine__kernel_dso(machine);
1800
1801	if (kernel == NULL)
1802		return -1;
1803
1804	return machine__create_extra_kernel_map(machine, kernel, xm);
1805}
1806
1807static int machine__process_kernel_mmap_event(struct machine *machine,
1808					      struct extra_kernel_map *xm,
1809					      struct build_id *bid)
1810{
1811	enum dso_space_type dso_space;
1812	bool is_kernel_mmap;
1813	const char *mmap_name = machine->mmap_name;
1814
1815	/* If we have maps from kcore then we do not need or want any others */
1816	if (machine__uses_kcore(machine))
1817		return 0;
1818
1819	if (machine__is_host(machine))
1820		dso_space = DSO_SPACE__KERNEL;
1821	else
1822		dso_space = DSO_SPACE__KERNEL_GUEST;
1823
1824	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1825	if (!is_kernel_mmap && !machine__is_host(machine)) {
1826		/*
1827		 * If the event was recorded inside the guest and injected into
1828		 * the host perf.data file, then it will match a host mmap_name,
1829		 * so try that - see machine__set_mmap_name().
1830		 */
1831		mmap_name = "[kernel.kallsyms]";
1832		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1833	}
1834	if (xm->name[0] == '/' ||
1835	    (!is_kernel_mmap && xm->name[0] == '[')) {
1836		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1837
1838		if (map == NULL)
1839			goto out_problem;
1840
1841		map__set_end(map, map__start(map) + xm->end - xm->start);
1842
1843		if (build_id__is_defined(bid))
1844			dso__set_build_id(map__dso(map), bid);
1845
1846		map__put(map);
1847	} else if (is_kernel_mmap) {
1848		const char *symbol_name = xm->name + strlen(mmap_name);
1849		/*
1850		 * Should be there already, from the build-id table in
1851		 * the header.
1852		 */
1853		struct dso *kernel = NULL;
1854		struct dso *dso;
1855
1856		down_read(&machine->dsos.lock);
1857
1858		list_for_each_entry(dso, &machine->dsos.head, node) {
1859
1860			/*
1861			 * The cpumode passed to is_kernel_module is not the
1862			 * cpumode of *this* event. If we insist on passing
1863			 * correct cpumode to is_kernel_module, we should
1864			 * record the cpumode when we adding this dso to the
1865			 * linked list.
1866			 *
1867			 * However we don't really need passing correct
1868			 * cpumode.  We know the correct cpumode must be kernel
1869			 * mode (if not, we should not link it onto kernel_dsos
1870			 * list).
1871			 *
1872			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1873			 * is_kernel_module() treats it as a kernel cpumode.
1874			 */
1875
1876			if (!dso->kernel ||
1877			    is_kernel_module(dso->long_name,
1878					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1879				continue;
1880
1881
1882			kernel = dso__get(dso);
1883			break;
1884		}
1885
1886		up_read(&machine->dsos.lock);
1887
1888		if (kernel == NULL)
1889			kernel = machine__findnew_dso(machine, machine->mmap_name);
1890		if (kernel == NULL)
1891			goto out_problem;
1892
1893		kernel->kernel = dso_space;
1894		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1895			dso__put(kernel);
1896			goto out_problem;
1897		}
1898
1899		if (strstr(kernel->long_name, "vmlinux"))
1900			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1901
1902		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1903			dso__put(kernel);
1904			goto out_problem;
1905		}
1906
1907		if (build_id__is_defined(bid))
1908			dso__set_build_id(kernel, bid);
1909
1910		/*
1911		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1912		 * symbol. Effectively having zero here means that at record
1913		 * time /proc/sys/kernel/kptr_restrict was non zero.
1914		 */
1915		if (xm->pgoff != 0) {
1916			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1917							symbol_name,
1918							xm->pgoff);
1919		}
1920
1921		if (machine__is_default_guest(machine)) {
1922			/*
1923			 * preload dso of guest kernel and modules
1924			 */
1925			dso__load(kernel, machine__kernel_map(machine));
1926		}
1927		dso__put(kernel);
1928	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1929		return machine__process_extra_kernel_map(machine, xm);
1930	}
1931	return 0;
1932out_problem:
1933	return -1;
1934}
1935
1936int machine__process_mmap2_event(struct machine *machine,
1937				 union perf_event *event,
1938				 struct perf_sample *sample)
1939{
1940	struct thread *thread;
1941	struct map *map;
1942	struct dso_id dso_id = {
1943		.maj = event->mmap2.maj,
1944		.min = event->mmap2.min,
1945		.ino = event->mmap2.ino,
1946		.ino_generation = event->mmap2.ino_generation,
1947	};
1948	struct build_id __bid, *bid = NULL;
1949	int ret = 0;
1950
1951	if (dump_trace)
1952		perf_event__fprintf_mmap2(event, stdout);
1953
1954	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1955		bid = &__bid;
1956		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1957	}
1958
1959	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1960	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1961		struct extra_kernel_map xm = {
1962			.start = event->mmap2.start,
1963			.end   = event->mmap2.start + event->mmap2.len,
1964			.pgoff = event->mmap2.pgoff,
1965		};
1966
1967		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1968		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1969		if (ret < 0)
1970			goto out_problem;
1971		return 0;
1972	}
1973
1974	thread = machine__findnew_thread(machine, event->mmap2.pid,
1975					event->mmap2.tid);
1976	if (thread == NULL)
1977		goto out_problem;
1978
1979	map = map__new(machine, event->mmap2.start,
1980			event->mmap2.len, event->mmap2.pgoff,
1981			&dso_id, event->mmap2.prot,
1982			event->mmap2.flags, bid,
1983			event->mmap2.filename, thread);
1984
1985	if (map == NULL)
1986		goto out_problem_map;
1987
1988	ret = thread__insert_map(thread, map);
1989	if (ret)
1990		goto out_problem_insert;
1991
1992	thread__put(thread);
1993	map__put(map);
1994	return 0;
1995
1996out_problem_insert:
1997	map__put(map);
1998out_problem_map:
1999	thread__put(thread);
2000out_problem:
2001	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
2002	return 0;
2003}
2004
2005int machine__process_mmap_event(struct machine *machine, union perf_event *event,
2006				struct perf_sample *sample)
2007{
2008	struct thread *thread;
2009	struct map *map;
2010	u32 prot = 0;
2011	int ret = 0;
2012
2013	if (dump_trace)
2014		perf_event__fprintf_mmap(event, stdout);
2015
2016	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2017	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2018		struct extra_kernel_map xm = {
2019			.start = event->mmap.start,
2020			.end   = event->mmap.start + event->mmap.len,
2021			.pgoff = event->mmap.pgoff,
2022		};
2023
2024		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2025		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2026		if (ret < 0)
2027			goto out_problem;
2028		return 0;
2029	}
2030
2031	thread = machine__findnew_thread(machine, event->mmap.pid,
2032					 event->mmap.tid);
2033	if (thread == NULL)
2034		goto out_problem;
2035
2036	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2037		prot = PROT_EXEC;
2038
2039	map = map__new(machine, event->mmap.start,
2040			event->mmap.len, event->mmap.pgoff,
2041			NULL, prot, 0, NULL, event->mmap.filename, thread);
2042
2043	if (map == NULL)
2044		goto out_problem_map;
2045
2046	ret = thread__insert_map(thread, map);
2047	if (ret)
2048		goto out_problem_insert;
2049
2050	thread__put(thread);
2051	map__put(map);
2052	return 0;
2053
2054out_problem_insert:
2055	map__put(map);
2056out_problem_map:
2057	thread__put(thread);
2058out_problem:
2059	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2060	return 0;
2061}
2062
2063static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2064				     struct thread *th, bool lock)
2065{
2066	struct threads *threads = machine__threads(machine, thread__tid(th));
2067
2068	if (!nd)
2069		nd = thread_rb_node__find(th, &threads->entries.rb_root);
2070
2071	if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th))
2072		threads__set_last_match(threads, NULL);
2073
2074	if (lock)
2075		down_write(&threads->lock);
2076
2077	BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2078
2079	thread__put(nd->thread);
2080	rb_erase_cached(&nd->rb_node, &threads->entries);
2081	RB_CLEAR_NODE(&nd->rb_node);
2082	--threads->nr;
2083
2084	free(nd);
2085
2086	if (lock)
2087		up_write(&threads->lock);
2088}
2089
2090void machine__remove_thread(struct machine *machine, struct thread *th)
2091{
2092	return __machine__remove_thread(machine, NULL, th, true);
2093}
2094
2095int machine__process_fork_event(struct machine *machine, union perf_event *event,
2096				struct perf_sample *sample)
2097{
2098	struct thread *thread = machine__find_thread(machine,
2099						     event->fork.pid,
2100						     event->fork.tid);
2101	struct thread *parent = machine__findnew_thread(machine,
2102							event->fork.ppid,
2103							event->fork.ptid);
2104	bool do_maps_clone = true;
2105	int err = 0;
2106
2107	if (dump_trace)
2108		perf_event__fprintf_task(event, stdout);
2109
2110	/*
2111	 * There may be an existing thread that is not actually the parent,
2112	 * either because we are processing events out of order, or because the
2113	 * (fork) event that would have removed the thread was lost. Assume the
2114	 * latter case and continue on as best we can.
2115	 */
2116	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2117		dump_printf("removing erroneous parent thread %d/%d\n",
2118			    thread__pid(parent), thread__tid(parent));
2119		machine__remove_thread(machine, parent);
2120		thread__put(parent);
2121		parent = machine__findnew_thread(machine, event->fork.ppid,
2122						 event->fork.ptid);
2123	}
2124
2125	/* if a thread currently exists for the thread id remove it */
2126	if (thread != NULL) {
2127		machine__remove_thread(machine, thread);
2128		thread__put(thread);
2129	}
2130
2131	thread = machine__findnew_thread(machine, event->fork.pid,
2132					 event->fork.tid);
2133	/*
2134	 * When synthesizing FORK events, we are trying to create thread
2135	 * objects for the already running tasks on the machine.
2136	 *
2137	 * Normally, for a kernel FORK event, we want to clone the parent's
2138	 * maps because that is what the kernel just did.
2139	 *
2140	 * But when synthesizing, this should not be done.  If we do, we end up
2141	 * with overlapping maps as we process the synthesized MMAP2 events that
2142	 * get delivered shortly thereafter.
2143	 *
2144	 * Use the FORK event misc flags in an internal way to signal this
2145	 * situation, so we can elide the map clone when appropriate.
2146	 */
2147	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2148		do_maps_clone = false;
2149
2150	if (thread == NULL || parent == NULL ||
2151	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2152		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2153		err = -1;
2154	}
2155	thread__put(thread);
2156	thread__put(parent);
2157
2158	return err;
2159}
2160
2161int machine__process_exit_event(struct machine *machine, union perf_event *event,
2162				struct perf_sample *sample __maybe_unused)
2163{
2164	struct thread *thread = machine__find_thread(machine,
2165						     event->fork.pid,
2166						     event->fork.tid);
2167
2168	if (dump_trace)
2169		perf_event__fprintf_task(event, stdout);
2170
2171	if (thread != NULL) {
2172		if (symbol_conf.keep_exited_threads)
2173			thread__set_exited(thread, /*exited=*/true);
2174		else
2175			machine__remove_thread(machine, thread);
2176	}
2177	thread__put(thread);
2178	return 0;
2179}
2180
2181int machine__process_event(struct machine *machine, union perf_event *event,
2182			   struct perf_sample *sample)
2183{
2184	int ret;
2185
2186	switch (event->header.type) {
2187	case PERF_RECORD_COMM:
2188		ret = machine__process_comm_event(machine, event, sample); break;
2189	case PERF_RECORD_MMAP:
2190		ret = machine__process_mmap_event(machine, event, sample); break;
2191	case PERF_RECORD_NAMESPACES:
2192		ret = machine__process_namespaces_event(machine, event, sample); break;
2193	case PERF_RECORD_CGROUP:
2194		ret = machine__process_cgroup_event(machine, event, sample); break;
2195	case PERF_RECORD_MMAP2:
2196		ret = machine__process_mmap2_event(machine, event, sample); break;
2197	case PERF_RECORD_FORK:
2198		ret = machine__process_fork_event(machine, event, sample); break;
2199	case PERF_RECORD_EXIT:
2200		ret = machine__process_exit_event(machine, event, sample); break;
2201	case PERF_RECORD_LOST:
2202		ret = machine__process_lost_event(machine, event, sample); break;
2203	case PERF_RECORD_AUX:
2204		ret = machine__process_aux_event(machine, event); break;
2205	case PERF_RECORD_ITRACE_START:
2206		ret = machine__process_itrace_start_event(machine, event); break;
2207	case PERF_RECORD_LOST_SAMPLES:
2208		ret = machine__process_lost_samples_event(machine, event, sample); break;
2209	case PERF_RECORD_SWITCH:
2210	case PERF_RECORD_SWITCH_CPU_WIDE:
2211		ret = machine__process_switch_event(machine, event); break;
2212	case PERF_RECORD_KSYMBOL:
2213		ret = machine__process_ksymbol(machine, event, sample); break;
2214	case PERF_RECORD_BPF_EVENT:
2215		ret = machine__process_bpf(machine, event, sample); break;
2216	case PERF_RECORD_TEXT_POKE:
2217		ret = machine__process_text_poke(machine, event, sample); break;
2218	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2219		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2220	default:
2221		ret = -1;
2222		break;
2223	}
2224
2225	return ret;
2226}
2227
2228static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2229{
2230	return regexec(regex, sym->name, 0, NULL, 0) == 0;
2231}
2232
2233static void ip__resolve_ams(struct thread *thread,
2234			    struct addr_map_symbol *ams,
2235			    u64 ip)
2236{
2237	struct addr_location al;
2238
2239	addr_location__init(&al);
2240	/*
2241	 * We cannot use the header.misc hint to determine whether a
2242	 * branch stack address is user, kernel, guest, hypervisor.
2243	 * Branches may straddle the kernel/user/hypervisor boundaries.
2244	 * Thus, we have to try consecutively until we find a match
2245	 * or else, the symbol is unknown
2246	 */
2247	thread__find_cpumode_addr_location(thread, ip, &al);
2248
2249	ams->addr = ip;
2250	ams->al_addr = al.addr;
2251	ams->al_level = al.level;
2252	ams->ms.maps = maps__get(al.maps);
2253	ams->ms.sym = al.sym;
2254	ams->ms.map = map__get(al.map);
2255	ams->phys_addr = 0;
2256	ams->data_page_size = 0;
2257	addr_location__exit(&al);
2258}
2259
2260static void ip__resolve_data(struct thread *thread,
2261			     u8 m, struct addr_map_symbol *ams,
2262			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2263{
2264	struct addr_location al;
2265
2266	addr_location__init(&al);
2267
2268	thread__find_symbol(thread, m, addr, &al);
2269
2270	ams->addr = addr;
2271	ams->al_addr = al.addr;
2272	ams->al_level = al.level;
2273	ams->ms.maps = maps__get(al.maps);
2274	ams->ms.sym = al.sym;
2275	ams->ms.map = map__get(al.map);
2276	ams->phys_addr = phys_addr;
2277	ams->data_page_size = daddr_page_size;
2278	addr_location__exit(&al);
2279}
2280
2281struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2282				     struct addr_location *al)
2283{
2284	struct mem_info *mi = mem_info__new();
2285
2286	if (!mi)
2287		return NULL;
2288
2289	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2290	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2291			 sample->addr, sample->phys_addr,
2292			 sample->data_page_size);
2293	mi->data_src.val = sample->data_src;
2294
2295	return mi;
2296}
2297
2298static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2299{
2300	struct map *map = ms->map;
2301	char *srcline = NULL;
2302	struct dso *dso;
2303
2304	if (!map || callchain_param.key == CCKEY_FUNCTION)
2305		return srcline;
2306
2307	dso = map__dso(map);
2308	srcline = srcline__tree_find(&dso->srclines, ip);
2309	if (!srcline) {
2310		bool show_sym = false;
2311		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2312
2313		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2314				      ms->sym, show_sym, show_addr, ip);
2315		srcline__tree_insert(&dso->srclines, ip, srcline);
2316	}
2317
2318	return srcline;
2319}
2320
2321struct iterations {
2322	int nr_loop_iter;
2323	u64 cycles;
2324};
2325
2326static int add_callchain_ip(struct thread *thread,
2327			    struct callchain_cursor *cursor,
2328			    struct symbol **parent,
2329			    struct addr_location *root_al,
2330			    u8 *cpumode,
2331			    u64 ip,
2332			    bool branch,
2333			    struct branch_flags *flags,
2334			    struct iterations *iter,
2335			    u64 branch_from)
2336{
2337	struct map_symbol ms = {};
2338	struct addr_location al;
2339	int nr_loop_iter = 0, err = 0;
2340	u64 iter_cycles = 0;
2341	const char *srcline = NULL;
2342
2343	addr_location__init(&al);
2344	al.filtered = 0;
2345	al.sym = NULL;
2346	al.srcline = NULL;
2347	if (!cpumode) {
2348		thread__find_cpumode_addr_location(thread, ip, &al);
2349	} else {
2350		if (ip >= PERF_CONTEXT_MAX) {
2351			switch (ip) {
2352			case PERF_CONTEXT_HV:
2353				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2354				break;
2355			case PERF_CONTEXT_KERNEL:
2356				*cpumode = PERF_RECORD_MISC_KERNEL;
2357				break;
2358			case PERF_CONTEXT_USER:
2359				*cpumode = PERF_RECORD_MISC_USER;
2360				break;
2361			default:
2362				pr_debug("invalid callchain context: "
2363					 "%"PRId64"\n", (s64) ip);
2364				/*
2365				 * It seems the callchain is corrupted.
2366				 * Discard all.
2367				 */
2368				callchain_cursor_reset(cursor);
2369				err = 1;
2370				goto out;
2371			}
2372			goto out;
2373		}
2374		thread__find_symbol(thread, *cpumode, ip, &al);
2375	}
2376
2377	if (al.sym != NULL) {
2378		if (perf_hpp_list.parent && !*parent &&
2379		    symbol__match_regex(al.sym, &parent_regex))
2380			*parent = al.sym;
2381		else if (have_ignore_callees && root_al &&
2382		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2383			/* Treat this symbol as the root,
2384			   forgetting its callees. */
2385			addr_location__copy(root_al, &al);
2386			callchain_cursor_reset(cursor);
2387		}
2388	}
2389
2390	if (symbol_conf.hide_unresolved && al.sym == NULL)
2391		goto out;
2392
2393	if (iter) {
2394		nr_loop_iter = iter->nr_loop_iter;
2395		iter_cycles = iter->cycles;
2396	}
2397
2398	ms.maps = maps__get(al.maps);
2399	ms.map = map__get(al.map);
2400	ms.sym = al.sym;
2401	srcline = callchain_srcline(&ms, al.addr);
2402	err = callchain_cursor_append(cursor, ip, &ms,
2403				      branch, flags, nr_loop_iter,
2404				      iter_cycles, branch_from, srcline);
2405out:
2406	addr_location__exit(&al);
2407	map_symbol__exit(&ms);
2408	return err;
2409}
2410
2411struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2412					   struct addr_location *al)
2413{
2414	unsigned int i;
2415	const struct branch_stack *bs = sample->branch_stack;
2416	struct branch_entry *entries = perf_sample__branch_entries(sample);
2417	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2418
2419	if (!bi)
2420		return NULL;
2421
2422	for (i = 0; i < bs->nr; i++) {
2423		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2424		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2425		bi[i].flags = entries[i].flags;
2426	}
2427	return bi;
2428}
2429
2430static void save_iterations(struct iterations *iter,
2431			    struct branch_entry *be, int nr)
2432{
2433	int i;
2434
2435	iter->nr_loop_iter++;
2436	iter->cycles = 0;
2437
2438	for (i = 0; i < nr; i++)
2439		iter->cycles += be[i].flags.cycles;
2440}
2441
2442#define CHASHSZ 127
2443#define CHASHBITS 7
2444#define NO_ENTRY 0xff
2445
2446#define PERF_MAX_BRANCH_DEPTH 127
2447
2448/* Remove loops. */
2449static int remove_loops(struct branch_entry *l, int nr,
2450			struct iterations *iter)
2451{
2452	int i, j, off;
2453	unsigned char chash[CHASHSZ];
2454
2455	memset(chash, NO_ENTRY, sizeof(chash));
2456
2457	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2458
2459	for (i = 0; i < nr; i++) {
2460		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2461
2462		/* no collision handling for now */
2463		if (chash[h] == NO_ENTRY) {
2464			chash[h] = i;
2465		} else if (l[chash[h]].from == l[i].from) {
2466			bool is_loop = true;
2467			/* check if it is a real loop */
2468			off = 0;
2469			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2470				if (l[j].from != l[i + off].from) {
2471					is_loop = false;
2472					break;
2473				}
2474			if (is_loop) {
2475				j = nr - (i + off);
2476				if (j > 0) {
2477					save_iterations(iter + i + off,
2478						l + i, off);
2479
2480					memmove(iter + i, iter + i + off,
2481						j * sizeof(*iter));
2482
2483					memmove(l + i, l + i + off,
2484						j * sizeof(*l));
2485				}
2486
2487				nr -= off;
2488			}
2489		}
2490	}
2491	return nr;
2492}
2493
2494static int lbr_callchain_add_kernel_ip(struct thread *thread,
2495				       struct callchain_cursor *cursor,
2496				       struct perf_sample *sample,
2497				       struct symbol **parent,
2498				       struct addr_location *root_al,
2499				       u64 branch_from,
2500				       bool callee, int end)
2501{
2502	struct ip_callchain *chain = sample->callchain;
2503	u8 cpumode = PERF_RECORD_MISC_USER;
2504	int err, i;
2505
2506	if (callee) {
2507		for (i = 0; i < end + 1; i++) {
2508			err = add_callchain_ip(thread, cursor, parent,
2509					       root_al, &cpumode, chain->ips[i],
2510					       false, NULL, NULL, branch_from);
2511			if (err)
2512				return err;
2513		}
2514		return 0;
2515	}
2516
2517	for (i = end; i >= 0; i--) {
2518		err = add_callchain_ip(thread, cursor, parent,
2519				       root_al, &cpumode, chain->ips[i],
2520				       false, NULL, NULL, branch_from);
2521		if (err)
2522			return err;
2523	}
2524
2525	return 0;
2526}
2527
2528static void save_lbr_cursor_node(struct thread *thread,
2529				 struct callchain_cursor *cursor,
2530				 int idx)
2531{
2532	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2533
2534	if (!lbr_stitch)
2535		return;
2536
2537	if (cursor->pos == cursor->nr) {
2538		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2539		return;
2540	}
2541
2542	if (!cursor->curr)
2543		cursor->curr = cursor->first;
2544	else
2545		cursor->curr = cursor->curr->next;
2546	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2547	       sizeof(struct callchain_cursor_node));
2548
2549	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2550	cursor->pos++;
2551}
2552
2553static int lbr_callchain_add_lbr_ip(struct thread *thread,
2554				    struct callchain_cursor *cursor,
2555				    struct perf_sample *sample,
2556				    struct symbol **parent,
2557				    struct addr_location *root_al,
2558				    u64 *branch_from,
2559				    bool callee)
2560{
2561	struct branch_stack *lbr_stack = sample->branch_stack;
2562	struct branch_entry *entries = perf_sample__branch_entries(sample);
2563	u8 cpumode = PERF_RECORD_MISC_USER;
2564	int lbr_nr = lbr_stack->nr;
2565	struct branch_flags *flags;
2566	int err, i;
2567	u64 ip;
2568
2569	/*
2570	 * The curr and pos are not used in writing session. They are cleared
2571	 * in callchain_cursor_commit() when the writing session is closed.
2572	 * Using curr and pos to track the current cursor node.
2573	 */
2574	if (thread__lbr_stitch(thread)) {
2575		cursor->curr = NULL;
2576		cursor->pos = cursor->nr;
2577		if (cursor->nr) {
2578			cursor->curr = cursor->first;
2579			for (i = 0; i < (int)(cursor->nr - 1); i++)
2580				cursor->curr = cursor->curr->next;
2581		}
2582	}
2583
2584	if (callee) {
2585		/* Add LBR ip from first entries.to */
2586		ip = entries[0].to;
2587		flags = &entries[0].flags;
2588		*branch_from = entries[0].from;
2589		err = add_callchain_ip(thread, cursor, parent,
2590				       root_al, &cpumode, ip,
2591				       true, flags, NULL,
2592				       *branch_from);
2593		if (err)
2594			return err;
2595
2596		/*
2597		 * The number of cursor node increases.
2598		 * Move the current cursor node.
2599		 * But does not need to save current cursor node for entry 0.
2600		 * It's impossible to stitch the whole LBRs of previous sample.
2601		 */
2602		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2603			if (!cursor->curr)
2604				cursor->curr = cursor->first;
2605			else
2606				cursor->curr = cursor->curr->next;
2607			cursor->pos++;
2608		}
2609
2610		/* Add LBR ip from entries.from one by one. */
2611		for (i = 0; i < lbr_nr; i++) {
2612			ip = entries[i].from;
2613			flags = &entries[i].flags;
2614			err = add_callchain_ip(thread, cursor, parent,
2615					       root_al, &cpumode, ip,
2616					       true, flags, NULL,
2617					       *branch_from);
2618			if (err)
2619				return err;
2620			save_lbr_cursor_node(thread, cursor, i);
2621		}
2622		return 0;
2623	}
2624
2625	/* Add LBR ip from entries.from one by one. */
2626	for (i = lbr_nr - 1; i >= 0; i--) {
2627		ip = entries[i].from;
2628		flags = &entries[i].flags;
2629		err = add_callchain_ip(thread, cursor, parent,
2630				       root_al, &cpumode, ip,
2631				       true, flags, NULL,
2632				       *branch_from);
2633		if (err)
2634			return err;
2635		save_lbr_cursor_node(thread, cursor, i);
2636	}
2637
2638	if (lbr_nr > 0) {
2639		/* Add LBR ip from first entries.to */
2640		ip = entries[0].to;
2641		flags = &entries[0].flags;
2642		*branch_from = entries[0].from;
2643		err = add_callchain_ip(thread, cursor, parent,
2644				root_al, &cpumode, ip,
2645				true, flags, NULL,
2646				*branch_from);
2647		if (err)
2648			return err;
2649	}
2650
2651	return 0;
2652}
2653
2654static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2655					     struct callchain_cursor *cursor)
2656{
2657	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2658	struct callchain_cursor_node *cnode;
2659	struct stitch_list *stitch_node;
2660	int err;
2661
2662	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2663		cnode = &stitch_node->cursor;
2664
2665		err = callchain_cursor_append(cursor, cnode->ip,
2666					      &cnode->ms,
2667					      cnode->branch,
2668					      &cnode->branch_flags,
2669					      cnode->nr_loop_iter,
2670					      cnode->iter_cycles,
2671					      cnode->branch_from,
2672					      cnode->srcline);
2673		if (err)
2674			return err;
2675	}
2676	return 0;
2677}
2678
2679static struct stitch_list *get_stitch_node(struct thread *thread)
2680{
2681	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2682	struct stitch_list *stitch_node;
2683
2684	if (!list_empty(&lbr_stitch->free_lists)) {
2685		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2686					       struct stitch_list, node);
2687		list_del(&stitch_node->node);
2688
2689		return stitch_node;
2690	}
2691
2692	return malloc(sizeof(struct stitch_list));
2693}
2694
2695static bool has_stitched_lbr(struct thread *thread,
2696			     struct perf_sample *cur,
2697			     struct perf_sample *prev,
2698			     unsigned int max_lbr,
2699			     bool callee)
2700{
2701	struct branch_stack *cur_stack = cur->branch_stack;
2702	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2703	struct branch_stack *prev_stack = prev->branch_stack;
2704	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2705	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2706	int i, j, nr_identical_branches = 0;
2707	struct stitch_list *stitch_node;
2708	u64 cur_base, distance;
2709
2710	if (!cur_stack || !prev_stack)
2711		return false;
2712
2713	/* Find the physical index of the base-of-stack for current sample. */
2714	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2715
2716	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2717						     (max_lbr + prev_stack->hw_idx - cur_base);
2718	/* Previous sample has shorter stack. Nothing can be stitched. */
2719	if (distance + 1 > prev_stack->nr)
2720		return false;
2721
2722	/*
2723	 * Check if there are identical LBRs between two samples.
2724	 * Identical LBRs must have same from, to and flags values. Also,
2725	 * they have to be saved in the same LBR registers (same physical
2726	 * index).
2727	 *
2728	 * Starts from the base-of-stack of current sample.
2729	 */
2730	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2731		if ((prev_entries[i].from != cur_entries[j].from) ||
2732		    (prev_entries[i].to != cur_entries[j].to) ||
2733		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2734			break;
2735		nr_identical_branches++;
2736	}
2737
2738	if (!nr_identical_branches)
2739		return false;
2740
2741	/*
2742	 * Save the LBRs between the base-of-stack of previous sample
2743	 * and the base-of-stack of current sample into lbr_stitch->lists.
2744	 * These LBRs will be stitched later.
2745	 */
2746	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2747
2748		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2749			continue;
2750
2751		stitch_node = get_stitch_node(thread);
2752		if (!stitch_node)
2753			return false;
2754
2755		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2756		       sizeof(struct callchain_cursor_node));
2757
2758		if (callee)
2759			list_add(&stitch_node->node, &lbr_stitch->lists);
2760		else
2761			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2762	}
2763
2764	return true;
2765}
2766
2767static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2768{
2769	if (thread__lbr_stitch(thread))
2770		return true;
2771
2772	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2773	if (!thread__lbr_stitch(thread))
2774		goto err;
2775
2776	thread__lbr_stitch(thread)->prev_lbr_cursor =
2777		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2778	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2779		goto free_lbr_stitch;
2780
2781	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2782	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2783
2784	return true;
2785
2786free_lbr_stitch:
2787	free(thread__lbr_stitch(thread));
2788	thread__set_lbr_stitch(thread, NULL);
2789err:
2790	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2791	thread__set_lbr_stitch_enable(thread, false);
2792	return false;
2793}
2794
2795/*
2796 * Resolve LBR callstack chain sample
2797 * Return:
2798 * 1 on success get LBR callchain information
2799 * 0 no available LBR callchain information, should try fp
2800 * negative error code on other errors.
2801 */
2802static int resolve_lbr_callchain_sample(struct thread *thread,
2803					struct callchain_cursor *cursor,
2804					struct perf_sample *sample,
2805					struct symbol **parent,
2806					struct addr_location *root_al,
2807					int max_stack,
2808					unsigned int max_lbr)
2809{
2810	bool callee = (callchain_param.order == ORDER_CALLEE);
2811	struct ip_callchain *chain = sample->callchain;
2812	int chain_nr = min(max_stack, (int)chain->nr), i;
2813	struct lbr_stitch *lbr_stitch;
2814	bool stitched_lbr = false;
2815	u64 branch_from = 0;
2816	int err;
2817
2818	for (i = 0; i < chain_nr; i++) {
2819		if (chain->ips[i] == PERF_CONTEXT_USER)
2820			break;
2821	}
2822
2823	/* LBR only affects the user callchain */
2824	if (i == chain_nr)
2825		return 0;
2826
2827	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2828	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2829		lbr_stitch = thread__lbr_stitch(thread);
2830
2831		stitched_lbr = has_stitched_lbr(thread, sample,
2832						&lbr_stitch->prev_sample,
2833						max_lbr, callee);
2834
2835		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2836			list_replace_init(&lbr_stitch->lists,
2837					  &lbr_stitch->free_lists);
2838		}
2839		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2840	}
2841
2842	if (callee) {
2843		/* Add kernel ip */
2844		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2845						  parent, root_al, branch_from,
2846						  true, i);
2847		if (err)
2848			goto error;
2849
2850		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2851					       root_al, &branch_from, true);
2852		if (err)
2853			goto error;
2854
2855		if (stitched_lbr) {
2856			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2857			if (err)
2858				goto error;
2859		}
2860
2861	} else {
2862		if (stitched_lbr) {
2863			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2864			if (err)
2865				goto error;
2866		}
2867		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2868					       root_al, &branch_from, false);
2869		if (err)
2870			goto error;
2871
2872		/* Add kernel ip */
2873		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2874						  parent, root_al, branch_from,
2875						  false, i);
2876		if (err)
2877			goto error;
2878	}
2879	return 1;
2880
2881error:
2882	return (err < 0) ? err : 0;
2883}
2884
2885static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2886			     struct callchain_cursor *cursor,
2887			     struct symbol **parent,
2888			     struct addr_location *root_al,
2889			     u8 *cpumode, int ent)
2890{
2891	int err = 0;
2892
2893	while (--ent >= 0) {
2894		u64 ip = chain->ips[ent];
2895
2896		if (ip >= PERF_CONTEXT_MAX) {
2897			err = add_callchain_ip(thread, cursor, parent,
2898					       root_al, cpumode, ip,
2899					       false, NULL, NULL, 0);
2900			break;
2901		}
2902	}
2903	return err;
2904}
2905
2906static u64 get_leaf_frame_caller(struct perf_sample *sample,
2907		struct thread *thread, int usr_idx)
2908{
2909	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2910		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2911	else
2912		return 0;
2913}
2914
2915static int thread__resolve_callchain_sample(struct thread *thread,
2916					    struct callchain_cursor *cursor,
2917					    struct evsel *evsel,
2918					    struct perf_sample *sample,
2919					    struct symbol **parent,
2920					    struct addr_location *root_al,
2921					    int max_stack)
2922{
2923	struct branch_stack *branch = sample->branch_stack;
2924	struct branch_entry *entries = perf_sample__branch_entries(sample);
2925	struct ip_callchain *chain = sample->callchain;
2926	int chain_nr = 0;
2927	u8 cpumode = PERF_RECORD_MISC_USER;
2928	int i, j, err, nr_entries, usr_idx;
2929	int skip_idx = -1;
2930	int first_call = 0;
2931	u64 leaf_frame_caller;
2932
2933	if (chain)
2934		chain_nr = chain->nr;
2935
2936	if (evsel__has_branch_callstack(evsel)) {
2937		struct perf_env *env = evsel__env(evsel);
2938
2939		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2940						   root_al, max_stack,
2941						   !env ? 0 : env->max_branches);
2942		if (err)
2943			return (err < 0) ? err : 0;
2944	}
2945
2946	/*
2947	 * Based on DWARF debug information, some architectures skip
2948	 * a callchain entry saved by the kernel.
2949	 */
2950	skip_idx = arch_skip_callchain_idx(thread, chain);
2951
2952	/*
2953	 * Add branches to call stack for easier browsing. This gives
2954	 * more context for a sample than just the callers.
2955	 *
2956	 * This uses individual histograms of paths compared to the
2957	 * aggregated histograms the normal LBR mode uses.
2958	 *
2959	 * Limitations for now:
2960	 * - No extra filters
2961	 * - No annotations (should annotate somehow)
2962	 */
2963
2964	if (branch && callchain_param.branch_callstack) {
2965		int nr = min(max_stack, (int)branch->nr);
2966		struct branch_entry be[nr];
2967		struct iterations iter[nr];
2968
2969		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2970			pr_warning("corrupted branch chain. skipping...\n");
2971			goto check_calls;
2972		}
2973
2974		for (i = 0; i < nr; i++) {
2975			if (callchain_param.order == ORDER_CALLEE) {
2976				be[i] = entries[i];
2977
2978				if (chain == NULL)
2979					continue;
2980
2981				/*
2982				 * Check for overlap into the callchain.
2983				 * The return address is one off compared to
2984				 * the branch entry. To adjust for this
2985				 * assume the calling instruction is not longer
2986				 * than 8 bytes.
2987				 */
2988				if (i == skip_idx ||
2989				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2990					first_call++;
2991				else if (be[i].from < chain->ips[first_call] &&
2992				    be[i].from >= chain->ips[first_call] - 8)
2993					first_call++;
2994			} else
2995				be[i] = entries[branch->nr - i - 1];
2996		}
2997
2998		memset(iter, 0, sizeof(struct iterations) * nr);
2999		nr = remove_loops(be, nr, iter);
3000
3001		for (i = 0; i < nr; i++) {
3002			err = add_callchain_ip(thread, cursor, parent,
3003					       root_al,
3004					       NULL, be[i].to,
3005					       true, &be[i].flags,
3006					       NULL, be[i].from);
3007
3008			if (!err)
3009				err = add_callchain_ip(thread, cursor, parent, root_al,
3010						       NULL, be[i].from,
3011						       true, &be[i].flags,
3012						       &iter[i], 0);
3013			if (err == -EINVAL)
3014				break;
3015			if (err)
3016				return err;
3017		}
3018
3019		if (chain_nr == 0)
3020			return 0;
3021
3022		chain_nr -= nr;
3023	}
3024
3025check_calls:
3026	if (chain && callchain_param.order != ORDER_CALLEE) {
3027		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3028					&cpumode, chain->nr - first_call);
3029		if (err)
3030			return (err < 0) ? err : 0;
3031	}
3032	for (i = first_call, nr_entries = 0;
3033	     i < chain_nr && nr_entries < max_stack; i++) {
3034		u64 ip;
3035
3036		if (callchain_param.order == ORDER_CALLEE)
3037			j = i;
3038		else
3039			j = chain->nr - i - 1;
3040
3041#ifdef HAVE_SKIP_CALLCHAIN_IDX
3042		if (j == skip_idx)
3043			continue;
3044#endif
3045		ip = chain->ips[j];
3046		if (ip < PERF_CONTEXT_MAX)
3047                       ++nr_entries;
3048		else if (callchain_param.order != ORDER_CALLEE) {
3049			err = find_prev_cpumode(chain, thread, cursor, parent,
3050						root_al, &cpumode, j);
3051			if (err)
3052				return (err < 0) ? err : 0;
3053			continue;
3054		}
3055
3056		/*
3057		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3058		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3059		 * the index will be different in order to add the missing frame
3060		 * at the right place.
3061		 */
3062
3063		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3064
3065		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3066
3067			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3068
3069			/*
3070			 * check if leaf_frame_Caller != ip to not add the same
3071			 * value twice.
3072			 */
3073
3074			if (leaf_frame_caller && leaf_frame_caller != ip) {
3075
3076				err = add_callchain_ip(thread, cursor, parent,
3077					       root_al, &cpumode, leaf_frame_caller,
3078					       false, NULL, NULL, 0);
3079				if (err)
3080					return (err < 0) ? err : 0;
3081			}
3082		}
3083
3084		err = add_callchain_ip(thread, cursor, parent,
3085				       root_al, &cpumode, ip,
3086				       false, NULL, NULL, 0);
3087
3088		if (err)
3089			return (err < 0) ? err : 0;
3090	}
3091
3092	return 0;
3093}
3094
3095static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3096{
3097	struct symbol *sym = ms->sym;
3098	struct map *map = ms->map;
3099	struct inline_node *inline_node;
3100	struct inline_list *ilist;
3101	struct dso *dso;
3102	u64 addr;
3103	int ret = 1;
3104	struct map_symbol ilist_ms;
3105
3106	if (!symbol_conf.inline_name || !map || !sym)
3107		return ret;
3108
3109	addr = map__dso_map_ip(map, ip);
3110	addr = map__rip_2objdump(map, addr);
3111	dso = map__dso(map);
3112
3113	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3114	if (!inline_node) {
3115		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3116		if (!inline_node)
3117			return ret;
3118		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3119	}
3120
3121	ilist_ms = (struct map_symbol) {
3122		.maps = maps__get(ms->maps),
3123		.map = map__get(map),
3124	};
3125	list_for_each_entry(ilist, &inline_node->val, list) {
3126		ilist_ms.sym = ilist->symbol;
3127		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3128					      NULL, 0, 0, 0, ilist->srcline);
3129
3130		if (ret != 0)
3131			return ret;
3132	}
3133	map_symbol__exit(&ilist_ms);
3134
3135	return ret;
3136}
3137
3138static int unwind_entry(struct unwind_entry *entry, void *arg)
3139{
3140	struct callchain_cursor *cursor = arg;
3141	const char *srcline = NULL;
3142	u64 addr = entry->ip;
3143
3144	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3145		return 0;
3146
3147	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3148		return 0;
3149
3150	/*
3151	 * Convert entry->ip from a virtual address to an offset in
3152	 * its corresponding binary.
3153	 */
3154	if (entry->ms.map)
3155		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3156
3157	srcline = callchain_srcline(&entry->ms, addr);
3158	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3159				       false, NULL, 0, 0, 0, srcline);
3160}
3161
3162static int thread__resolve_callchain_unwind(struct thread *thread,
3163					    struct callchain_cursor *cursor,
3164					    struct evsel *evsel,
3165					    struct perf_sample *sample,
3166					    int max_stack)
3167{
3168	/* Can we do dwarf post unwind? */
3169	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3170	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3171		return 0;
3172
3173	/* Bail out if nothing was captured. */
3174	if ((!sample->user_regs.regs) ||
3175	    (!sample->user_stack.size))
3176		return 0;
3177
3178	return unwind__get_entries(unwind_entry, cursor,
3179				   thread, sample, max_stack, false);
3180}
3181
3182int thread__resolve_callchain(struct thread *thread,
3183			      struct callchain_cursor *cursor,
3184			      struct evsel *evsel,
3185			      struct perf_sample *sample,
3186			      struct symbol **parent,
3187			      struct addr_location *root_al,
3188			      int max_stack)
3189{
3190	int ret = 0;
3191
3192	if (cursor == NULL)
3193		return -ENOMEM;
3194
3195	callchain_cursor_reset(cursor);
3196
3197	if (callchain_param.order == ORDER_CALLEE) {
3198		ret = thread__resolve_callchain_sample(thread, cursor,
3199						       evsel, sample,
3200						       parent, root_al,
3201						       max_stack);
3202		if (ret)
3203			return ret;
3204		ret = thread__resolve_callchain_unwind(thread, cursor,
3205						       evsel, sample,
3206						       max_stack);
3207	} else {
3208		ret = thread__resolve_callchain_unwind(thread, cursor,
3209						       evsel, sample,
3210						       max_stack);
3211		if (ret)
3212			return ret;
3213		ret = thread__resolve_callchain_sample(thread, cursor,
3214						       evsel, sample,
3215						       parent, root_al,
3216						       max_stack);
3217	}
3218
3219	return ret;
3220}
3221
3222int machine__for_each_thread(struct machine *machine,
3223			     int (*fn)(struct thread *thread, void *p),
3224			     void *priv)
3225{
3226	struct threads *threads;
3227	struct rb_node *nd;
3228	int rc = 0;
3229	int i;
3230
3231	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3232		threads = &machine->threads[i];
3233		for (nd = rb_first_cached(&threads->entries); nd;
3234		     nd = rb_next(nd)) {
3235			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3236
3237			rc = fn(trb->thread, priv);
3238			if (rc != 0)
3239				return rc;
3240		}
3241	}
3242	return rc;
3243}
3244
3245int machines__for_each_thread(struct machines *machines,
3246			      int (*fn)(struct thread *thread, void *p),
3247			      void *priv)
3248{
3249	struct rb_node *nd;
3250	int rc = 0;
3251
3252	rc = machine__for_each_thread(&machines->host, fn, priv);
3253	if (rc != 0)
3254		return rc;
3255
3256	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3257		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3258
3259		rc = machine__for_each_thread(machine, fn, priv);
3260		if (rc != 0)
3261			return rc;
3262	}
3263	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264}
3265
3266pid_t machine__get_current_tid(struct machine *machine, int cpu)
3267{
3268	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3269		return -1;
3270
3271	return machine->current_tid[cpu];
3272}
3273
3274int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3275			     pid_t tid)
3276{
3277	struct thread *thread;
3278	const pid_t init_val = -1;
3279
3280	if (cpu < 0)
3281		return -EINVAL;
3282
3283	if (realloc_array_as_needed(machine->current_tid,
3284				    machine->current_tid_sz,
3285				    (unsigned int)cpu,
3286				    &init_val))
3287		return -ENOMEM;
3288
3289	machine->current_tid[cpu] = tid;
3290
3291	thread = machine__findnew_thread(machine, pid, tid);
3292	if (!thread)
3293		return -ENOMEM;
3294
3295	thread__set_cpu(thread, cpu);
3296	thread__put(thread);
3297
3298	return 0;
3299}
3300
3301/*
3302 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3303 * machine__normalized_is() if a normalized arch is needed.
3304 */
3305bool machine__is(struct machine *machine, const char *arch)
3306{
3307	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3308}
3309
3310bool machine__normalized_is(struct machine *machine, const char *arch)
3311{
3312	return machine && !strcmp(perf_env__arch(machine->env), arch);
3313}
3314
3315int machine__nr_cpus_avail(struct machine *machine)
3316{
3317	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3318}
3319
3320int machine__get_kernel_start(struct machine *machine)
3321{
3322	struct map *map = machine__kernel_map(machine);
3323	int err = 0;
3324
3325	/*
3326	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3327	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3328	 * all addresses including kernel addresses are less than 2^32.  In
3329	 * that case (32-bit system), if the kernel mapping is unknown, all
3330	 * addresses will be assumed to be in user space - see
3331	 * machine__kernel_ip().
3332	 */
3333	machine->kernel_start = 1ULL << 63;
3334	if (map) {
3335		err = map__load(map);
3336		/*
3337		 * On x86_64, PTI entry trampolines are less than the
3338		 * start of kernel text, but still above 2^63. So leave
3339		 * kernel_start = 1ULL << 63 for x86_64.
3340		 */
3341		if (!err && !machine__is(machine, "x86_64"))
3342			machine->kernel_start = map__start(map);
3343	}
3344	return err;
3345}
3346
3347u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3348{
3349	u8 addr_cpumode = cpumode;
3350	bool kernel_ip;
3351
3352	if (!machine->single_address_space)
3353		goto out;
3354
3355	kernel_ip = machine__kernel_ip(machine, addr);
3356	switch (cpumode) {
3357	case PERF_RECORD_MISC_KERNEL:
3358	case PERF_RECORD_MISC_USER:
3359		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3360					   PERF_RECORD_MISC_USER;
3361		break;
3362	case PERF_RECORD_MISC_GUEST_KERNEL:
3363	case PERF_RECORD_MISC_GUEST_USER:
3364		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3365					   PERF_RECORD_MISC_GUEST_USER;
3366		break;
3367	default:
3368		break;
3369	}
3370out:
3371	return addr_cpumode;
3372}
3373
3374struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3375{
3376	return dsos__findnew_id(&machine->dsos, filename, id);
3377}
3378
3379struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3380{
3381	return machine__findnew_dso_id(machine, filename, NULL);
3382}
3383
3384char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3385{
3386	struct machine *machine = vmachine;
3387	struct map *map;
3388	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3389
3390	if (sym == NULL)
3391		return NULL;
3392
3393	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3394	*addrp = map__unmap_ip(map, sym->start);
3395	return sym->name;
3396}
3397
3398int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3399{
3400	struct dso *pos;
3401	int err = 0;
3402
3403	list_for_each_entry(pos, &machine->dsos.head, node) {
3404		if (fn(pos, machine, priv))
3405			err = -1;
3406	}
3407	return err;
3408}
3409
3410int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3411{
3412	struct maps *maps = machine__kernel_maps(machine);
3413
3414	return maps__for_each_map(maps, fn, priv);
3415}
3416
3417bool machine__is_lock_function(struct machine *machine, u64 addr)
3418{
3419	if (!machine->sched.text_start) {
3420		struct map *kmap;
3421		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3422
3423		if (!sym) {
3424			/* to avoid retry */
3425			machine->sched.text_start = 1;
3426			return false;
3427		}
3428
3429		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3430
3431		/* should not fail from here */
3432		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3433		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3434
3435		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3436		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3437
3438		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3439		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3440	}
3441
3442	/* failed to get kernel symbols */
3443	if (machine->sched.text_start == 1)
3444		return false;
3445
3446	/* mutex and rwsem functions are in sched text section */
3447	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3448		return true;
3449
3450	/* spinlock functions are in lock text section */
3451	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3452		return true;
3453
3454	return false;
3455}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
 
 
 
  46static struct dso *machine__kernel_dso(struct machine *machine)
  47{
  48	return map__dso(machine->vmlinux_map);
  49}
  50
  51static void dsos__init(struct dsos *dsos)
  52{
  53	INIT_LIST_HEAD(&dsos->head);
  54	dsos->root = RB_ROOT;
  55	init_rwsem(&dsos->lock);
  56}
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58static int machine__set_mmap_name(struct machine *machine)
  59{
  60	if (machine__is_host(machine))
  61		machine->mmap_name = strdup("[kernel.kallsyms]");
  62	else if (machine__is_default_guest(machine))
  63		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  64	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  65			  machine->pid) < 0)
  66		machine->mmap_name = NULL;
  67
  68	return machine->mmap_name ? 0 : -ENOMEM;
  69}
  70
  71static void thread__set_guest_comm(struct thread *thread, pid_t pid)
  72{
  73	char comm[64];
  74
  75	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  76	thread__set_comm(thread, comm, 0);
  77}
  78
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	machine->kmaps = maps__new(machine);
  85	if (machine->kmaps == NULL)
  86		return -ENOMEM;
  87
  88	RB_CLEAR_NODE(&machine->rb_node);
  89	dsos__init(&machine->dsos);
  90
  91	threads__init(&machine->threads);
  92
  93	machine->vdso_info = NULL;
  94	machine->env = NULL;
  95
  96	machine->pid = pid;
  97
  98	machine->id_hdr_size = 0;
  99	machine->kptr_restrict_warned = false;
 100	machine->comm_exec = false;
 101	machine->kernel_start = 0;
 102	machine->vmlinux_map = NULL;
 103
 104	machine->root_dir = strdup(root_dir);
 105	if (machine->root_dir == NULL)
 106		goto out;
 107
 108	if (machine__set_mmap_name(machine))
 109		goto out;
 110
 111	if (pid != HOST_KERNEL_ID) {
 112		struct thread *thread = machine__findnew_thread(machine, -1,
 113								pid);
 114
 115		if (thread == NULL)
 116			goto out;
 117
 118		thread__set_guest_comm(thread, pid);
 119		thread__put(thread);
 120	}
 121
 122	machine->current_tid = NULL;
 123	err = 0;
 124
 125out:
 126	if (err) {
 127		zfree(&machine->kmaps);
 128		zfree(&machine->root_dir);
 129		zfree(&machine->mmap_name);
 130	}
 131	return 0;
 132}
 133
 134struct machine *machine__new_host(void)
 135{
 136	struct machine *machine = malloc(sizeof(*machine));
 137
 138	if (machine != NULL) {
 139		machine__init(machine, "", HOST_KERNEL_ID);
 140
 141		if (machine__create_kernel_maps(machine) < 0)
 142			goto out_delete;
 143	}
 144
 145	return machine;
 146out_delete:
 147	free(machine);
 148	return NULL;
 149}
 150
 151struct machine *machine__new_kallsyms(void)
 152{
 153	struct machine *machine = machine__new_host();
 154	/*
 155	 * FIXME:
 156	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 157	 *    ask for not using the kcore parsing code, once this one is fixed
 158	 *    to create a map per module.
 159	 */
 160	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 161		machine__delete(machine);
 162		machine = NULL;
 163	}
 164
 165	return machine;
 166}
 167
 168static void dsos__purge(struct dsos *dsos)
 169{
 170	struct dso *pos, *n;
 171
 172	down_write(&dsos->lock);
 173
 174	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 175		RB_CLEAR_NODE(&pos->rb_node);
 176		pos->root = NULL;
 177		list_del_init(&pos->node);
 178		dso__put(pos);
 179	}
 180
 181	up_write(&dsos->lock);
 182}
 183
 184static void dsos__exit(struct dsos *dsos)
 185{
 186	dsos__purge(dsos);
 187	exit_rwsem(&dsos->lock);
 188}
 189
 190void machine__delete_threads(struct machine *machine)
 191{
 192	threads__remove_all_threads(&machine->threads);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193}
 194
 195void machine__exit(struct machine *machine)
 196{
 
 
 197	if (machine == NULL)
 198		return;
 199
 200	machine__destroy_kernel_maps(machine);
 201	maps__zput(machine->kmaps);
 202	dsos__exit(&machine->dsos);
 203	machine__exit_vdso(machine);
 204	zfree(&machine->root_dir);
 205	zfree(&machine->mmap_name);
 206	zfree(&machine->current_tid);
 207	zfree(&machine->kallsyms_filename);
 208
 209	threads__exit(&machine->threads);
 
 
 
 
 
 210}
 211
 212void machine__delete(struct machine *machine)
 213{
 214	if (machine) {
 215		machine__exit(machine);
 216		free(machine);
 217	}
 218}
 219
 220void machines__init(struct machines *machines)
 221{
 222	machine__init(&machines->host, "", HOST_KERNEL_ID);
 223	machines->guests = RB_ROOT_CACHED;
 224}
 225
 226void machines__exit(struct machines *machines)
 227{
 228	machine__exit(&machines->host);
 229	/* XXX exit guest */
 230}
 231
 232struct machine *machines__add(struct machines *machines, pid_t pid,
 233			      const char *root_dir)
 234{
 235	struct rb_node **p = &machines->guests.rb_root.rb_node;
 236	struct rb_node *parent = NULL;
 237	struct machine *pos, *machine = malloc(sizeof(*machine));
 238	bool leftmost = true;
 239
 240	if (machine == NULL)
 241		return NULL;
 242
 243	if (machine__init(machine, root_dir, pid) != 0) {
 244		free(machine);
 245		return NULL;
 246	}
 247
 248	while (*p != NULL) {
 249		parent = *p;
 250		pos = rb_entry(parent, struct machine, rb_node);
 251		if (pid < pos->pid)
 252			p = &(*p)->rb_left;
 253		else {
 254			p = &(*p)->rb_right;
 255			leftmost = false;
 256		}
 257	}
 258
 259	rb_link_node(&machine->rb_node, parent, p);
 260	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 261
 262	machine->machines = machines;
 263
 264	return machine;
 265}
 266
 267void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 268{
 269	struct rb_node *nd;
 270
 271	machines->host.comm_exec = comm_exec;
 272
 273	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 274		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 275
 276		machine->comm_exec = comm_exec;
 277	}
 278}
 279
 280struct machine *machines__find(struct machines *machines, pid_t pid)
 281{
 282	struct rb_node **p = &machines->guests.rb_root.rb_node;
 283	struct rb_node *parent = NULL;
 284	struct machine *machine;
 285	struct machine *default_machine = NULL;
 286
 287	if (pid == HOST_KERNEL_ID)
 288		return &machines->host;
 289
 290	while (*p != NULL) {
 291		parent = *p;
 292		machine = rb_entry(parent, struct machine, rb_node);
 293		if (pid < machine->pid)
 294			p = &(*p)->rb_left;
 295		else if (pid > machine->pid)
 296			p = &(*p)->rb_right;
 297		else
 298			return machine;
 299		if (!machine->pid)
 300			default_machine = machine;
 301	}
 302
 303	return default_machine;
 304}
 305
 306struct machine *machines__findnew(struct machines *machines, pid_t pid)
 307{
 308	char path[PATH_MAX];
 309	const char *root_dir = "";
 310	struct machine *machine = machines__find(machines, pid);
 311
 312	if (machine && (machine->pid == pid))
 313		goto out;
 314
 315	if ((pid != HOST_KERNEL_ID) &&
 316	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 317	    (symbol_conf.guestmount)) {
 318		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 319		if (access(path, R_OK)) {
 320			static struct strlist *seen;
 321
 322			if (!seen)
 323				seen = strlist__new(NULL, NULL);
 324
 325			if (!strlist__has_entry(seen, path)) {
 326				pr_err("Can't access file %s\n", path);
 327				strlist__add(seen, path);
 328			}
 329			machine = NULL;
 330			goto out;
 331		}
 332		root_dir = path;
 333	}
 334
 335	machine = machines__add(machines, pid, root_dir);
 336out:
 337	return machine;
 338}
 339
 340struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 341{
 342	struct machine *machine = machines__find(machines, pid);
 343
 344	if (!machine)
 345		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 346	return machine;
 347}
 348
 349/*
 350 * A common case for KVM test programs is that the test program acts as the
 351 * hypervisor, creating, running and destroying the virtual machine, and
 352 * providing the guest object code from its own object code. In this case,
 353 * the VM is not running an OS, but only the functions loaded into it by the
 354 * hypervisor test program, and conveniently, loaded at the same virtual
 355 * addresses.
 356 *
 357 * Normally to resolve addresses, MMAP events are needed to map addresses
 358 * back to the object code and debug symbols for that object code.
 359 *
 360 * Currently, there is no way to get such mapping information from guests
 361 * but, in the scenario described above, the guest has the same mappings
 362 * as the hypervisor, so support for that scenario can be achieved.
 363 *
 364 * To support that, copy the host thread's maps to the guest thread's maps.
 365 * Note, we do not discover the guest until we encounter a guest event,
 366 * which works well because it is not until then that we know that the host
 367 * thread's maps have been set up.
 368 *
 369 * This function returns the guest thread. Apart from keeping the data
 370 * structures sane, using a thread belonging to the guest machine, instead
 371 * of the host thread, allows it to have its own comm (refer
 372 * thread__set_guest_comm()).
 373 */
 374static struct thread *findnew_guest_code(struct machine *machine,
 375					 struct machine *host_machine,
 376					 pid_t pid)
 377{
 378	struct thread *host_thread;
 379	struct thread *thread;
 380	int err;
 381
 382	if (!machine)
 383		return NULL;
 384
 385	thread = machine__findnew_thread(machine, -1, pid);
 386	if (!thread)
 387		return NULL;
 388
 389	/* Assume maps are set up if there are any */
 390	if (!maps__empty(thread__maps(thread)))
 391		return thread;
 392
 393	host_thread = machine__find_thread(host_machine, -1, pid);
 394	if (!host_thread)
 395		goto out_err;
 396
 397	thread__set_guest_comm(thread, pid);
 398
 399	/*
 400	 * Guest code can be found in hypervisor process at the same address
 401	 * so copy host maps.
 402	 */
 403	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
 404	thread__put(host_thread);
 405	if (err)
 406		goto out_err;
 407
 408	return thread;
 409
 410out_err:
 411	thread__zput(thread);
 412	return NULL;
 413}
 414
 415struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 416{
 417	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 418	struct machine *machine = machines__findnew(machines, pid);
 419
 420	return findnew_guest_code(machine, host_machine, pid);
 421}
 422
 423struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 424{
 425	struct machines *machines = machine->machines;
 426	struct machine *host_machine;
 427
 428	if (!machines)
 429		return NULL;
 430
 431	host_machine = machines__find(machines, HOST_KERNEL_ID);
 432
 433	return findnew_guest_code(machine, host_machine, pid);
 434}
 435
 436void machines__process_guests(struct machines *machines,
 437			      machine__process_t process, void *data)
 438{
 439	struct rb_node *nd;
 440
 441	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 442		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 443		process(pos, data);
 444	}
 445}
 446
 447void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 448{
 449	struct rb_node *node;
 450	struct machine *machine;
 451
 452	machines->host.id_hdr_size = id_hdr_size;
 453
 454	for (node = rb_first_cached(&machines->guests); node;
 455	     node = rb_next(node)) {
 456		machine = rb_entry(node, struct machine, rb_node);
 457		machine->id_hdr_size = id_hdr_size;
 458	}
 459
 460	return;
 461}
 462
 463static void machine__update_thread_pid(struct machine *machine,
 464				       struct thread *th, pid_t pid)
 465{
 466	struct thread *leader;
 467
 468	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
 469		return;
 470
 471	thread__set_pid(th, pid);
 472
 473	if (thread__pid(th) == thread__tid(th))
 474		return;
 475
 476	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
 477	if (!leader)
 478		goto out_err;
 479
 480	if (!thread__maps(leader))
 481		thread__set_maps(leader, maps__new(machine));
 482
 483	if (!thread__maps(leader))
 484		goto out_err;
 485
 486	if (thread__maps(th) == thread__maps(leader))
 487		goto out_put;
 488
 489	if (thread__maps(th)) {
 490		/*
 491		 * Maps are created from MMAP events which provide the pid and
 492		 * tid.  Consequently there never should be any maps on a thread
 493		 * with an unknown pid.  Just print an error if there are.
 494		 */
 495		if (!maps__empty(thread__maps(th)))
 496			pr_err("Discarding thread maps for %d:%d\n",
 497				thread__pid(th), thread__tid(th));
 498		maps__put(thread__maps(th));
 499	}
 500
 501	thread__set_maps(th, maps__get(thread__maps(leader)));
 502out_put:
 503	thread__put(leader);
 504	return;
 505out_err:
 506	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
 507	goto out_put;
 508}
 509
 510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511 * Caller must eventually drop thread->refcnt returned with a successful
 512 * lookup/new thread inserted.
 513 */
 514static struct thread *__machine__findnew_thread(struct machine *machine,
 515						pid_t pid,
 516						pid_t tid,
 517						bool create)
 518{
 519	struct thread *th = threads__find(&machine->threads, tid);
 520	bool created;
 
 
 
 521
 522	if (th) {
 523		machine__update_thread_pid(machine, th, pid);
 524		return th;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525	}
 
 526	if (!create)
 527		return NULL;
 528
 529	th = threads__findnew(&machine->threads, pid, tid, &created);
 530	if (created) {
 531		/*
 532		 * We have to initialize maps separately after rb tree is
 533		 * updated.
 534		 *
 535		 * The reason is that we call machine__findnew_thread within
 536		 * thread__init_maps to find the thread leader and that would
 537		 * screwed the rb tree.
 538		 */
 539		if (thread__init_maps(th, machine)) {
 540			pr_err("Thread init failed thread %d\n", pid);
 541			threads__remove(&machine->threads, th);
 542			thread__put(th);
 543			return NULL;
 544		}
 545	} else
 546		machine__update_thread_pid(machine, th, pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	return th;
 
 
 549}
 550
 551struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 
 552{
 553	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
 
 
 
 
 
 
 554}
 555
 556struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 557				    pid_t tid)
 558{
 559	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
 
 
 
 
 
 
 560}
 561
 562/*
 563 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 564 * So here a single thread is created for that, but actually there is a separate
 565 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 566 * is only 1. That causes problems for some tools, requiring workarounds. For
 567 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 568 */
 569struct thread *machine__idle_thread(struct machine *machine)
 570{
 571	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 572
 573	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 574	    thread__set_namespaces(thread, 0, NULL))
 575		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 576
 577	return thread;
 578}
 579
 580struct comm *machine__thread_exec_comm(struct machine *machine,
 581				       struct thread *thread)
 582{
 583	if (machine->comm_exec)
 584		return thread__exec_comm(thread);
 585	else
 586		return thread__comm(thread);
 587}
 588
 589int machine__process_comm_event(struct machine *machine, union perf_event *event,
 590				struct perf_sample *sample)
 591{
 592	struct thread *thread = machine__findnew_thread(machine,
 593							event->comm.pid,
 594							event->comm.tid);
 595	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 596	int err = 0;
 597
 598	if (exec)
 599		machine->comm_exec = true;
 600
 601	if (dump_trace)
 602		perf_event__fprintf_comm(event, stdout);
 603
 604	if (thread == NULL ||
 605	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 606		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 607		err = -1;
 608	}
 609
 610	thread__put(thread);
 611
 612	return err;
 613}
 614
 615int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 616				      union perf_event *event,
 617				      struct perf_sample *sample __maybe_unused)
 618{
 619	struct thread *thread = machine__findnew_thread(machine,
 620							event->namespaces.pid,
 621							event->namespaces.tid);
 622	int err = 0;
 623
 624	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 625		  "\nWARNING: kernel seems to support more namespaces than perf"
 626		  " tool.\nTry updating the perf tool..\n\n");
 627
 628	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 629		  "\nWARNING: perf tool seems to support more namespaces than"
 630		  " the kernel.\nTry updating the kernel..\n\n");
 631
 632	if (dump_trace)
 633		perf_event__fprintf_namespaces(event, stdout);
 634
 635	if (thread == NULL ||
 636	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 637		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 638		err = -1;
 639	}
 640
 641	thread__put(thread);
 642
 643	return err;
 644}
 645
 646int machine__process_cgroup_event(struct machine *machine,
 647				  union perf_event *event,
 648				  struct perf_sample *sample __maybe_unused)
 649{
 650	struct cgroup *cgrp;
 651
 652	if (dump_trace)
 653		perf_event__fprintf_cgroup(event, stdout);
 654
 655	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 656	if (cgrp == NULL)
 657		return -ENOMEM;
 658
 659	return 0;
 660}
 661
 662int machine__process_lost_event(struct machine *machine __maybe_unused,
 663				union perf_event *event, struct perf_sample *sample __maybe_unused)
 664{
 665	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 666		    event->lost.id, event->lost.lost);
 667	return 0;
 668}
 669
 670int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 671					union perf_event *event, struct perf_sample *sample)
 672{
 673	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 674		    sample->id, event->lost_samples.lost);
 675	return 0;
 676}
 677
 678static struct dso *machine__findnew_module_dso(struct machine *machine,
 679					       struct kmod_path *m,
 680					       const char *filename)
 681{
 682	struct dso *dso;
 683
 684	down_write(&machine->dsos.lock);
 685
 686	dso = __dsos__find(&machine->dsos, m->name, true);
 687	if (!dso) {
 688		dso = __dsos__addnew(&machine->dsos, m->name);
 689		if (dso == NULL)
 690			goto out_unlock;
 691
 692		dso__set_module_info(dso, m, machine);
 693		dso__set_long_name(dso, strdup(filename), true);
 694		dso->kernel = DSO_SPACE__KERNEL;
 695	}
 696
 697	dso__get(dso);
 698out_unlock:
 699	up_write(&machine->dsos.lock);
 700	return dso;
 701}
 702
 703int machine__process_aux_event(struct machine *machine __maybe_unused,
 704			       union perf_event *event)
 705{
 706	if (dump_trace)
 707		perf_event__fprintf_aux(event, stdout);
 708	return 0;
 709}
 710
 711int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 712					union perf_event *event)
 713{
 714	if (dump_trace)
 715		perf_event__fprintf_itrace_start(event, stdout);
 716	return 0;
 717}
 718
 719int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 720					    union perf_event *event)
 721{
 722	if (dump_trace)
 723		perf_event__fprintf_aux_output_hw_id(event, stdout);
 724	return 0;
 725}
 726
 727int machine__process_switch_event(struct machine *machine __maybe_unused,
 728				  union perf_event *event)
 729{
 730	if (dump_trace)
 731		perf_event__fprintf_switch(event, stdout);
 732	return 0;
 733}
 734
 735static int machine__process_ksymbol_register(struct machine *machine,
 736					     union perf_event *event,
 737					     struct perf_sample *sample __maybe_unused)
 738{
 739	struct symbol *sym;
 740	struct dso *dso;
 741	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 
 742	int err = 0;
 743
 744	if (!map) {
 745		dso = dso__new(event->ksymbol.name);
 746
 747		if (!dso) {
 748			err = -ENOMEM;
 749			goto out;
 750		}
 751		dso->kernel = DSO_SPACE__KERNEL;
 752		map = map__new2(0, dso);
 753		dso__put(dso);
 754		if (!map) {
 755			err = -ENOMEM;
 756			goto out;
 757		}
 
 
 
 
 
 
 758		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 759			dso->binary_type = DSO_BINARY_TYPE__OOL;
 760			dso->data.file_size = event->ksymbol.len;
 761			dso__set_loaded(dso);
 762		}
 763
 764		map__set_start(map, event->ksymbol.addr);
 765		map__set_end(map, map__start(map) + event->ksymbol.len);
 766		err = maps__insert(machine__kernel_maps(machine), map);
 767		if (err) {
 768			err = -ENOMEM;
 769			goto out;
 770		}
 771
 772		dso__set_loaded(dso);
 773
 774		if (is_bpf_image(event->ksymbol.name)) {
 775			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 776			dso__set_long_name(dso, "", false);
 777		}
 778	} else {
 779		dso = map__dso(map);
 780	}
 781
 782	sym = symbol__new(map__map_ip(map, map__start(map)),
 783			  event->ksymbol.len,
 784			  0, 0, event->ksymbol.name);
 785	if (!sym) {
 786		err = -ENOMEM;
 787		goto out;
 788	}
 789	dso__insert_symbol(dso, sym);
 790out:
 791	map__put(map);
 
 792	return err;
 793}
 794
 795static int machine__process_ksymbol_unregister(struct machine *machine,
 796					       union perf_event *event,
 797					       struct perf_sample *sample __maybe_unused)
 798{
 799	struct symbol *sym;
 800	struct map *map;
 801
 802	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 803	if (!map)
 804		return 0;
 805
 806	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
 807		maps__remove(machine__kernel_maps(machine), map);
 808	else {
 809		struct dso *dso = map__dso(map);
 810
 811		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
 812		if (sym)
 813			dso__delete_symbol(dso, sym);
 814	}
 815	map__put(map);
 816	return 0;
 817}
 818
 819int machine__process_ksymbol(struct machine *machine __maybe_unused,
 820			     union perf_event *event,
 821			     struct perf_sample *sample)
 822{
 823	if (dump_trace)
 824		perf_event__fprintf_ksymbol(event, stdout);
 825
 826	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 827		return machine__process_ksymbol_unregister(machine, event,
 828							   sample);
 829	return machine__process_ksymbol_register(machine, event, sample);
 830}
 831
 832int machine__process_text_poke(struct machine *machine, union perf_event *event,
 833			       struct perf_sample *sample __maybe_unused)
 834{
 835	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
 836	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 837	struct dso *dso = map ? map__dso(map) : NULL;
 838
 839	if (dump_trace)
 840		perf_event__fprintf_text_poke(event, machine, stdout);
 841
 842	if (!event->text_poke.new_len)
 843		goto out;
 844
 845	if (cpumode != PERF_RECORD_MISC_KERNEL) {
 846		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 847		goto out;
 848	}
 849
 850	if (dso) {
 851		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 852		int ret;
 853
 854		/*
 855		 * Kernel maps might be changed when loading symbols so loading
 856		 * must be done prior to using kernel maps.
 857		 */
 858		map__load(map);
 859		ret = dso__data_write_cache_addr(dso, map, machine,
 860						 event->text_poke.addr,
 861						 new_bytes,
 862						 event->text_poke.new_len);
 863		if (ret != event->text_poke.new_len)
 864			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 865				 event->text_poke.addr);
 866	} else {
 867		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 868			 event->text_poke.addr);
 869	}
 870out:
 871	map__put(map);
 872	return 0;
 873}
 874
 875static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 876					      const char *filename)
 877{
 878	struct map *map = NULL;
 879	struct kmod_path m;
 880	struct dso *dso;
 881	int err;
 882
 883	if (kmod_path__parse_name(&m, filename))
 884		return NULL;
 885
 886	dso = machine__findnew_module_dso(machine, &m, filename);
 887	if (dso == NULL)
 888		goto out;
 889
 890	map = map__new2(start, dso);
 891	if (map == NULL)
 892		goto out;
 893
 894	err = maps__insert(machine__kernel_maps(machine), map);
 895	/* If maps__insert failed, return NULL. */
 896	if (err) {
 897		map__put(map);
 898		map = NULL;
 899	}
 900out:
 901	/* put the dso here, corresponding to  machine__findnew_module_dso */
 902	dso__put(dso);
 903	zfree(&m.name);
 904	return map;
 905}
 906
 907size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 908{
 909	struct rb_node *nd;
 910	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 911
 912	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 913		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 914		ret += __dsos__fprintf(&pos->dsos.head, fp);
 915	}
 916
 917	return ret;
 918}
 919
 920size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 921				     bool (skip)(struct dso *dso, int parm), int parm)
 922{
 923	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 924}
 925
 926size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 927				     bool (skip)(struct dso *dso, int parm), int parm)
 928{
 929	struct rb_node *nd;
 930	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 931
 932	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 933		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 934		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 935	}
 936	return ret;
 937}
 938
 939size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 940{
 941	int i;
 942	size_t printed = 0;
 943	struct dso *kdso = machine__kernel_dso(machine);
 944
 945	if (kdso->has_build_id) {
 946		char filename[PATH_MAX];
 947		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 948					   false))
 949			printed += fprintf(fp, "[0] %s\n", filename);
 950	}
 951
 952	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 953		printed += fprintf(fp, "[%d] %s\n",
 954				   i + kdso->has_build_id, vmlinux_path[i]);
 955
 956	return printed;
 957}
 958
 959struct machine_fprintf_cb_args {
 960	FILE *fp;
 961	size_t printed;
 962};
 
 
 
 
 
 
 963
 964static int machine_fprintf_cb(struct thread *thread, void *data)
 965{
 966	struct machine_fprintf_cb_args *args = data;
 967
 968	/* TODO: handle fprintf errors. */
 969	args->printed += thread__fprintf(thread, args->fp);
 970	return 0;
 971}
 972
 973size_t machine__fprintf(struct machine *machine, FILE *fp)
 974{
 975	struct machine_fprintf_cb_args args = {
 976		.fp = fp,
 977		.printed = 0,
 978	};
 979	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
 980
 981	machine__for_each_thread(machine, machine_fprintf_cb, &args);
 982	return ret + args.printed;
 
 983}
 984
 985static struct dso *machine__get_kernel(struct machine *machine)
 986{
 987	const char *vmlinux_name = machine->mmap_name;
 988	struct dso *kernel;
 989
 990	if (machine__is_host(machine)) {
 991		if (symbol_conf.vmlinux_name)
 992			vmlinux_name = symbol_conf.vmlinux_name;
 993
 994		kernel = machine__findnew_kernel(machine, vmlinux_name,
 995						 "[kernel]", DSO_SPACE__KERNEL);
 996	} else {
 997		if (symbol_conf.default_guest_vmlinux_name)
 998			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 999
1000		kernel = machine__findnew_kernel(machine, vmlinux_name,
1001						 "[guest.kernel]",
1002						 DSO_SPACE__KERNEL_GUEST);
1003	}
1004
1005	if (kernel != NULL && (!kernel->has_build_id))
1006		dso__read_running_kernel_build_id(kernel, machine);
1007
1008	return kernel;
1009}
1010
1011void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012				    size_t bufsz)
1013{
1014	if (machine__is_default_guest(machine))
1015		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016	else
1017		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018}
1019
1020const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021
1022/* Figure out the start address of kernel map from /proc/kallsyms.
1023 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024 * symbol_name if it's not that important.
1025 */
1026static int machine__get_running_kernel_start(struct machine *machine,
1027					     const char **symbol_name,
1028					     u64 *start, u64 *end)
1029{
1030	char filename[PATH_MAX];
1031	int i, err = -1;
1032	const char *name;
1033	u64 addr = 0;
1034
1035	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036
1037	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038		return 0;
1039
1040	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041		err = kallsyms__get_function_start(filename, name, &addr);
1042		if (!err)
1043			break;
1044	}
1045
1046	if (err)
1047		return -1;
1048
1049	if (symbol_name)
1050		*symbol_name = name;
1051
1052	*start = addr;
1053
1054	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055	if (err)
1056		err = kallsyms__get_function_start(filename, "_etext", &addr);
1057	if (!err)
1058		*end = addr;
1059
1060	return 0;
1061}
1062
1063int machine__create_extra_kernel_map(struct machine *machine,
1064				     struct dso *kernel,
1065				     struct extra_kernel_map *xm)
1066{
1067	struct kmap *kmap;
1068	struct map *map;
1069	int err;
1070
1071	map = map__new2(xm->start, kernel);
1072	if (!map)
1073		return -ENOMEM;
1074
1075	map__set_end(map, xm->end);
1076	map__set_pgoff(map, xm->pgoff);
1077
1078	kmap = map__kmap(map);
1079
1080	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081
1082	err = maps__insert(machine__kernel_maps(machine), map);
1083
1084	if (!err) {
1085		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086			kmap->name, map__start(map), map__end(map));
1087	}
1088
1089	map__put(map);
1090
1091	return err;
1092}
1093
1094static u64 find_entry_trampoline(struct dso *dso)
1095{
1096	/* Duplicates are removed so lookup all aliases */
1097	const char *syms[] = {
1098		"_entry_trampoline",
1099		"__entry_trampoline_start",
1100		"entry_SYSCALL_64_trampoline",
1101	};
1102	struct symbol *sym = dso__first_symbol(dso);
1103	unsigned int i;
1104
1105	for (; sym; sym = dso__next_symbol(sym)) {
1106		if (sym->binding != STB_GLOBAL)
1107			continue;
1108		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109			if (!strcmp(sym->name, syms[i]))
1110				return sym->start;
1111		}
1112	}
1113
1114	return 0;
1115}
1116
1117/*
1118 * These values can be used for kernels that do not have symbols for the entry
1119 * trampolines in kallsyms.
1120 */
1121#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1122#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1123#define X86_64_ENTRY_TRAMPOLINE		0x6000
1124
1125struct machine__map_x86_64_entry_trampolines_args {
1126	struct maps *kmaps;
1127	bool found;
1128};
1129
1130static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131{
1132	struct machine__map_x86_64_entry_trampolines_args *args = data;
1133	struct map *dest_map;
1134	struct kmap *kmap = __map__kmap(map);
1135
1136	if (!kmap || !is_entry_trampoline(kmap->name))
1137		return 0;
1138
1139	dest_map = maps__find(args->kmaps, map__pgoff(map));
1140	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142
1143	map__put(dest_map);
1144	args->found = true;
1145	return 0;
1146}
1147
1148/* Map x86_64 PTI entry trampolines */
1149int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150					  struct dso *kernel)
1151{
1152	struct machine__map_x86_64_entry_trampolines_args args = {
1153		.kmaps = machine__kernel_maps(machine),
1154		.found = false,
1155	};
1156	int nr_cpus_avail, cpu;
1157	u64 pgoff;
1158
1159	/*
1160	 * In the vmlinux case, pgoff is a virtual address which must now be
1161	 * mapped to a vmlinux offset.
1162	 */
1163	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164
1165	if (args.found || machine->trampolines_mapped)
1166		return 0;
1167
1168	pgoff = find_entry_trampoline(kernel);
1169	if (!pgoff)
1170		return 0;
1171
1172	nr_cpus_avail = machine__nr_cpus_avail(machine);
1173
1174	/* Add a 1 page map for each CPU's entry trampoline */
1175	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178			 X86_64_ENTRY_TRAMPOLINE;
1179		struct extra_kernel_map xm = {
1180			.start = va,
1181			.end   = va + page_size,
1182			.pgoff = pgoff,
1183		};
1184
1185		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186
1187		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188			return -1;
1189	}
1190
1191	machine->trampolines_mapped = nr_cpus_avail;
1192
1193	return 0;
1194}
1195
1196int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197					     struct dso *kernel __maybe_unused)
1198{
1199	return 0;
1200}
1201
1202static int
1203__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204{
1205	/* In case of renewal the kernel map, destroy previous one */
1206	machine__destroy_kernel_maps(machine);
1207
1208	map__put(machine->vmlinux_map);
1209	machine->vmlinux_map = map__new2(0, kernel);
1210	if (machine->vmlinux_map == NULL)
1211		return -ENOMEM;
1212
1213	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215}
1216
1217void machine__destroy_kernel_maps(struct machine *machine)
1218{
1219	struct kmap *kmap;
1220	struct map *map = machine__kernel_map(machine);
1221
1222	if (map == NULL)
1223		return;
1224
1225	kmap = map__kmap(map);
1226	maps__remove(machine__kernel_maps(machine), map);
1227	if (kmap && kmap->ref_reloc_sym) {
1228		zfree((char **)&kmap->ref_reloc_sym->name);
1229		zfree(&kmap->ref_reloc_sym);
1230	}
1231
1232	map__zput(machine->vmlinux_map);
1233}
1234
1235int machines__create_guest_kernel_maps(struct machines *machines)
1236{
1237	int ret = 0;
1238	struct dirent **namelist = NULL;
1239	int i, items = 0;
1240	char path[PATH_MAX];
1241	pid_t pid;
1242	char *endp;
1243
1244	if (symbol_conf.default_guest_vmlinux_name ||
1245	    symbol_conf.default_guest_modules ||
1246	    symbol_conf.default_guest_kallsyms) {
1247		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248	}
1249
1250	if (symbol_conf.guestmount) {
1251		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252		if (items <= 0)
1253			return -ENOENT;
1254		for (i = 0; i < items; i++) {
1255			if (!isdigit(namelist[i]->d_name[0])) {
1256				/* Filter out . and .. */
1257				continue;
1258			}
1259			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260			if ((*endp != '\0') ||
1261			    (endp == namelist[i]->d_name) ||
1262			    (errno == ERANGE)) {
1263				pr_debug("invalid directory (%s). Skipping.\n",
1264					 namelist[i]->d_name);
1265				continue;
1266			}
1267			sprintf(path, "%s/%s/proc/kallsyms",
1268				symbol_conf.guestmount,
1269				namelist[i]->d_name);
1270			ret = access(path, R_OK);
1271			if (ret) {
1272				pr_debug("Can't access file %s\n", path);
1273				goto failure;
1274			}
1275			machines__create_kernel_maps(machines, pid);
1276		}
1277failure:
1278		free(namelist);
1279	}
1280
1281	return ret;
1282}
1283
1284void machines__destroy_kernel_maps(struct machines *machines)
1285{
1286	struct rb_node *next = rb_first_cached(&machines->guests);
1287
1288	machine__destroy_kernel_maps(&machines->host);
1289
1290	while (next) {
1291		struct machine *pos = rb_entry(next, struct machine, rb_node);
1292
1293		next = rb_next(&pos->rb_node);
1294		rb_erase_cached(&pos->rb_node, &machines->guests);
1295		machine__delete(pos);
1296	}
1297}
1298
1299int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300{
1301	struct machine *machine = machines__findnew(machines, pid);
1302
1303	if (machine == NULL)
1304		return -1;
1305
1306	return machine__create_kernel_maps(machine);
1307}
1308
1309int machine__load_kallsyms(struct machine *machine, const char *filename)
1310{
1311	struct map *map = machine__kernel_map(machine);
1312	struct dso *dso = map__dso(map);
1313	int ret = __dso__load_kallsyms(dso, filename, map, true);
1314
1315	if (ret > 0) {
1316		dso__set_loaded(dso);
1317		/*
1318		 * Since /proc/kallsyms will have multiple sessions for the
1319		 * kernel, with modules between them, fixup the end of all
1320		 * sections.
1321		 */
1322		maps__fixup_end(machine__kernel_maps(machine));
1323	}
1324
1325	return ret;
1326}
1327
1328int machine__load_vmlinux_path(struct machine *machine)
1329{
1330	struct map *map = machine__kernel_map(machine);
1331	struct dso *dso = map__dso(map);
1332	int ret = dso__load_vmlinux_path(dso, map);
1333
1334	if (ret > 0)
1335		dso__set_loaded(dso);
1336
1337	return ret;
1338}
1339
1340static char *get_kernel_version(const char *root_dir)
1341{
1342	char version[PATH_MAX];
1343	FILE *file;
1344	char *name, *tmp;
1345	const char *prefix = "Linux version ";
1346
1347	sprintf(version, "%s/proc/version", root_dir);
1348	file = fopen(version, "r");
1349	if (!file)
1350		return NULL;
1351
1352	tmp = fgets(version, sizeof(version), file);
1353	fclose(file);
1354	if (!tmp)
1355		return NULL;
1356
1357	name = strstr(version, prefix);
1358	if (!name)
1359		return NULL;
1360	name += strlen(prefix);
1361	tmp = strchr(name, ' ');
1362	if (tmp)
1363		*tmp = '\0';
1364
1365	return strdup(name);
1366}
1367
1368static bool is_kmod_dso(struct dso *dso)
1369{
1370	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372}
1373
1374static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375{
1376	char *long_name;
1377	struct dso *dso;
1378	struct map *map = maps__find_by_name(maps, m->name);
1379
1380	if (map == NULL)
1381		return 0;
1382
1383	long_name = strdup(path);
1384	if (long_name == NULL) {
1385		map__put(map);
1386		return -ENOMEM;
1387	}
1388
1389	dso = map__dso(map);
1390	dso__set_long_name(dso, long_name, true);
1391	dso__kernel_module_get_build_id(dso, "");
1392
1393	/*
1394	 * Full name could reveal us kmod compression, so
1395	 * we need to update the symtab_type if needed.
1396	 */
1397	if (m->comp && is_kmod_dso(dso)) {
1398		dso->symtab_type++;
1399		dso->comp = m->comp;
1400	}
1401	map__put(map);
1402	return 0;
1403}
1404
1405static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406{
1407	struct dirent *dent;
1408	DIR *dir = opendir(dir_name);
1409	int ret = 0;
1410
1411	if (!dir) {
1412		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413		return -1;
1414	}
1415
1416	while ((dent = readdir(dir)) != NULL) {
1417		char path[PATH_MAX];
1418		struct stat st;
1419
1420		/*sshfs might return bad dent->d_type, so we have to stat*/
1421		path__join(path, sizeof(path), dir_name, dent->d_name);
1422		if (stat(path, &st))
1423			continue;
1424
1425		if (S_ISDIR(st.st_mode)) {
1426			if (!strcmp(dent->d_name, ".") ||
1427			    !strcmp(dent->d_name, ".."))
1428				continue;
1429
1430			/* Do not follow top-level source and build symlinks */
1431			if (depth == 0) {
1432				if (!strcmp(dent->d_name, "source") ||
1433				    !strcmp(dent->d_name, "build"))
1434					continue;
1435			}
1436
1437			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438			if (ret < 0)
1439				goto out;
1440		} else {
1441			struct kmod_path m;
1442
1443			ret = kmod_path__parse_name(&m, dent->d_name);
1444			if (ret)
1445				goto out;
1446
1447			if (m.kmod)
1448				ret = maps__set_module_path(maps, path, &m);
1449
1450			zfree(&m.name);
1451
1452			if (ret)
1453				goto out;
1454		}
1455	}
1456
1457out:
1458	closedir(dir);
1459	return ret;
1460}
1461
1462static int machine__set_modules_path(struct machine *machine)
1463{
1464	char *version;
1465	char modules_path[PATH_MAX];
1466
1467	version = get_kernel_version(machine->root_dir);
1468	if (!version)
1469		return -1;
1470
1471	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472		 machine->root_dir, version);
1473	free(version);
1474
1475	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476}
1477int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478				u64 *size __maybe_unused,
1479				const char *name __maybe_unused)
1480{
1481	return 0;
1482}
1483
1484static int machine__create_module(void *arg, const char *name, u64 start,
1485				  u64 size)
1486{
1487	struct machine *machine = arg;
1488	struct map *map;
1489
1490	if (arch__fix_module_text_start(&start, &size, name) < 0)
1491		return -1;
1492
1493	map = machine__addnew_module_map(machine, start, name);
1494	if (map == NULL)
1495		return -1;
1496	map__set_end(map, start + size);
1497
1498	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499	map__put(map);
1500	return 0;
1501}
1502
1503static int machine__create_modules(struct machine *machine)
1504{
1505	const char *modules;
1506	char path[PATH_MAX];
1507
1508	if (machine__is_default_guest(machine)) {
1509		modules = symbol_conf.default_guest_modules;
1510	} else {
1511		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512		modules = path;
1513	}
1514
1515	if (symbol__restricted_filename(modules, "/proc/modules"))
1516		return -1;
1517
1518	if (modules__parse(modules, machine, machine__create_module))
1519		return -1;
1520
1521	if (!machine__set_modules_path(machine))
1522		return 0;
1523
1524	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525
1526	return 0;
1527}
1528
1529static void machine__set_kernel_mmap(struct machine *machine,
1530				     u64 start, u64 end)
1531{
1532	map__set_start(machine->vmlinux_map, start);
1533	map__set_end(machine->vmlinux_map, end);
1534	/*
1535	 * Be a bit paranoid here, some perf.data file came with
1536	 * a zero sized synthesized MMAP event for the kernel.
1537	 */
1538	if (start == 0 && end == 0)
1539		map__set_end(machine->vmlinux_map, ~0ULL);
1540}
1541
1542static int machine__update_kernel_mmap(struct machine *machine,
1543				     u64 start, u64 end)
1544{
1545	struct map *orig, *updated;
1546	int err;
1547
1548	orig = machine->vmlinux_map;
1549	updated = map__get(orig);
1550
1551	machine->vmlinux_map = updated;
 
1552	maps__remove(machine__kernel_maps(machine), orig);
1553	machine__set_kernel_mmap(machine, start, end);
1554	err = maps__insert(machine__kernel_maps(machine), updated);
1555	map__put(orig);
1556
1557	return err;
1558}
1559
1560int machine__create_kernel_maps(struct machine *machine)
1561{
1562	struct dso *kernel = machine__get_kernel(machine);
1563	const char *name = NULL;
1564	u64 start = 0, end = ~0ULL;
1565	int ret;
1566
1567	if (kernel == NULL)
1568		return -1;
1569
1570	ret = __machine__create_kernel_maps(machine, kernel);
1571	if (ret < 0)
1572		goto out_put;
1573
1574	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575		if (machine__is_host(machine))
1576			pr_debug("Problems creating module maps, "
1577				 "continuing anyway...\n");
1578		else
1579			pr_debug("Problems creating module maps for guest %d, "
1580				 "continuing anyway...\n", machine->pid);
1581	}
1582
1583	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584		if (name &&
1585		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586			machine__destroy_kernel_maps(machine);
1587			ret = -1;
1588			goto out_put;
1589		}
1590
1591		/*
1592		 * we have a real start address now, so re-order the kmaps
1593		 * assume it's the last in the kmaps
1594		 */
1595		ret = machine__update_kernel_mmap(machine, start, end);
1596		if (ret < 0)
1597			goto out_put;
1598	}
1599
1600	if (machine__create_extra_kernel_maps(machine, kernel))
1601		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602
1603	if (end == ~0ULL) {
1604		/* update end address of the kernel map using adjacent module address */
1605		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606							 machine__kernel_map(machine));
1607
1608		if (next) {
1609			machine__set_kernel_mmap(machine, start, map__start(next));
1610			map__put(next);
1611		}
1612	}
1613
1614out_put:
1615	dso__put(kernel);
1616	return ret;
1617}
1618
1619static bool machine__uses_kcore(struct machine *machine)
1620{
1621	struct dso *dso;
1622
1623	list_for_each_entry(dso, &machine->dsos.head, node) {
1624		if (dso__is_kcore(dso))
1625			return true;
1626	}
1627
1628	return false;
1629}
1630
1631static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632					     struct extra_kernel_map *xm)
1633{
1634	return machine__is(machine, "x86_64") &&
1635	       is_entry_trampoline(xm->name);
1636}
1637
1638static int machine__process_extra_kernel_map(struct machine *machine,
1639					     struct extra_kernel_map *xm)
1640{
1641	struct dso *kernel = machine__kernel_dso(machine);
1642
1643	if (kernel == NULL)
1644		return -1;
1645
1646	return machine__create_extra_kernel_map(machine, kernel, xm);
1647}
1648
1649static int machine__process_kernel_mmap_event(struct machine *machine,
1650					      struct extra_kernel_map *xm,
1651					      struct build_id *bid)
1652{
1653	enum dso_space_type dso_space;
1654	bool is_kernel_mmap;
1655	const char *mmap_name = machine->mmap_name;
1656
1657	/* If we have maps from kcore then we do not need or want any others */
1658	if (machine__uses_kcore(machine))
1659		return 0;
1660
1661	if (machine__is_host(machine))
1662		dso_space = DSO_SPACE__KERNEL;
1663	else
1664		dso_space = DSO_SPACE__KERNEL_GUEST;
1665
1666	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667	if (!is_kernel_mmap && !machine__is_host(machine)) {
1668		/*
1669		 * If the event was recorded inside the guest and injected into
1670		 * the host perf.data file, then it will match a host mmap_name,
1671		 * so try that - see machine__set_mmap_name().
1672		 */
1673		mmap_name = "[kernel.kallsyms]";
1674		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675	}
1676	if (xm->name[0] == '/' ||
1677	    (!is_kernel_mmap && xm->name[0] == '[')) {
1678		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679
1680		if (map == NULL)
1681			goto out_problem;
1682
1683		map__set_end(map, map__start(map) + xm->end - xm->start);
1684
1685		if (build_id__is_defined(bid))
1686			dso__set_build_id(map__dso(map), bid);
1687
1688		map__put(map);
1689	} else if (is_kernel_mmap) {
1690		const char *symbol_name = xm->name + strlen(mmap_name);
1691		/*
1692		 * Should be there already, from the build-id table in
1693		 * the header.
1694		 */
1695		struct dso *kernel = NULL;
1696		struct dso *dso;
1697
1698		down_read(&machine->dsos.lock);
1699
1700		list_for_each_entry(dso, &machine->dsos.head, node) {
1701
1702			/*
1703			 * The cpumode passed to is_kernel_module is not the
1704			 * cpumode of *this* event. If we insist on passing
1705			 * correct cpumode to is_kernel_module, we should
1706			 * record the cpumode when we adding this dso to the
1707			 * linked list.
1708			 *
1709			 * However we don't really need passing correct
1710			 * cpumode.  We know the correct cpumode must be kernel
1711			 * mode (if not, we should not link it onto kernel_dsos
1712			 * list).
1713			 *
1714			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715			 * is_kernel_module() treats it as a kernel cpumode.
1716			 */
1717
1718			if (!dso->kernel ||
1719			    is_kernel_module(dso->long_name,
1720					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721				continue;
1722
1723
1724			kernel = dso__get(dso);
1725			break;
1726		}
1727
1728		up_read(&machine->dsos.lock);
1729
1730		if (kernel == NULL)
1731			kernel = machine__findnew_dso(machine, machine->mmap_name);
1732		if (kernel == NULL)
1733			goto out_problem;
1734
1735		kernel->kernel = dso_space;
1736		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737			dso__put(kernel);
1738			goto out_problem;
1739		}
1740
1741		if (strstr(kernel->long_name, "vmlinux"))
1742			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743
1744		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745			dso__put(kernel);
1746			goto out_problem;
1747		}
1748
1749		if (build_id__is_defined(bid))
1750			dso__set_build_id(kernel, bid);
1751
1752		/*
1753		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1754		 * symbol. Effectively having zero here means that at record
1755		 * time /proc/sys/kernel/kptr_restrict was non zero.
1756		 */
1757		if (xm->pgoff != 0) {
1758			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759							symbol_name,
1760							xm->pgoff);
1761		}
1762
1763		if (machine__is_default_guest(machine)) {
1764			/*
1765			 * preload dso of guest kernel and modules
1766			 */
1767			dso__load(kernel, machine__kernel_map(machine));
1768		}
1769		dso__put(kernel);
1770	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771		return machine__process_extra_kernel_map(machine, xm);
1772	}
1773	return 0;
1774out_problem:
1775	return -1;
1776}
1777
1778int machine__process_mmap2_event(struct machine *machine,
1779				 union perf_event *event,
1780				 struct perf_sample *sample)
1781{
1782	struct thread *thread;
1783	struct map *map;
1784	struct dso_id dso_id = {
1785		.maj = event->mmap2.maj,
1786		.min = event->mmap2.min,
1787		.ino = event->mmap2.ino,
1788		.ino_generation = event->mmap2.ino_generation,
1789	};
1790	struct build_id __bid, *bid = NULL;
1791	int ret = 0;
1792
1793	if (dump_trace)
1794		perf_event__fprintf_mmap2(event, stdout);
1795
1796	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797		bid = &__bid;
1798		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799	}
1800
1801	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803		struct extra_kernel_map xm = {
1804			.start = event->mmap2.start,
1805			.end   = event->mmap2.start + event->mmap2.len,
1806			.pgoff = event->mmap2.pgoff,
1807		};
1808
1809		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811		if (ret < 0)
1812			goto out_problem;
1813		return 0;
1814	}
1815
1816	thread = machine__findnew_thread(machine, event->mmap2.pid,
1817					event->mmap2.tid);
1818	if (thread == NULL)
1819		goto out_problem;
1820
1821	map = map__new(machine, event->mmap2.start,
1822			event->mmap2.len, event->mmap2.pgoff,
1823			&dso_id, event->mmap2.prot,
1824			event->mmap2.flags, bid,
1825			event->mmap2.filename, thread);
1826
1827	if (map == NULL)
1828		goto out_problem_map;
1829
1830	ret = thread__insert_map(thread, map);
1831	if (ret)
1832		goto out_problem_insert;
1833
1834	thread__put(thread);
1835	map__put(map);
1836	return 0;
1837
1838out_problem_insert:
1839	map__put(map);
1840out_problem_map:
1841	thread__put(thread);
1842out_problem:
1843	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844	return 0;
1845}
1846
1847int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848				struct perf_sample *sample)
1849{
1850	struct thread *thread;
1851	struct map *map;
1852	u32 prot = 0;
1853	int ret = 0;
1854
1855	if (dump_trace)
1856		perf_event__fprintf_mmap(event, stdout);
1857
1858	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860		struct extra_kernel_map xm = {
1861			.start = event->mmap.start,
1862			.end   = event->mmap.start + event->mmap.len,
1863			.pgoff = event->mmap.pgoff,
1864		};
1865
1866		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868		if (ret < 0)
1869			goto out_problem;
1870		return 0;
1871	}
1872
1873	thread = machine__findnew_thread(machine, event->mmap.pid,
1874					 event->mmap.tid);
1875	if (thread == NULL)
1876		goto out_problem;
1877
1878	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879		prot = PROT_EXEC;
1880
1881	map = map__new(machine, event->mmap.start,
1882			event->mmap.len, event->mmap.pgoff,
1883			NULL, prot, 0, NULL, event->mmap.filename, thread);
1884
1885	if (map == NULL)
1886		goto out_problem_map;
1887
1888	ret = thread__insert_map(thread, map);
1889	if (ret)
1890		goto out_problem_insert;
1891
1892	thread__put(thread);
1893	map__put(map);
1894	return 0;
1895
1896out_problem_insert:
1897	map__put(map);
1898out_problem_map:
1899	thread__put(thread);
1900out_problem:
1901	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902	return 0;
1903}
1904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1905void machine__remove_thread(struct machine *machine, struct thread *th)
1906{
1907	return threads__remove(&machine->threads, th);
1908}
1909
1910int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911				struct perf_sample *sample)
1912{
1913	struct thread *thread = machine__find_thread(machine,
1914						     event->fork.pid,
1915						     event->fork.tid);
1916	struct thread *parent = machine__findnew_thread(machine,
1917							event->fork.ppid,
1918							event->fork.ptid);
1919	bool do_maps_clone = true;
1920	int err = 0;
1921
1922	if (dump_trace)
1923		perf_event__fprintf_task(event, stdout);
1924
1925	/*
1926	 * There may be an existing thread that is not actually the parent,
1927	 * either because we are processing events out of order, or because the
1928	 * (fork) event that would have removed the thread was lost. Assume the
1929	 * latter case and continue on as best we can.
1930	 */
1931	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932		dump_printf("removing erroneous parent thread %d/%d\n",
1933			    thread__pid(parent), thread__tid(parent));
1934		machine__remove_thread(machine, parent);
1935		thread__put(parent);
1936		parent = machine__findnew_thread(machine, event->fork.ppid,
1937						 event->fork.ptid);
1938	}
1939
1940	/* if a thread currently exists for the thread id remove it */
1941	if (thread != NULL) {
1942		machine__remove_thread(machine, thread);
1943		thread__put(thread);
1944	}
1945
1946	thread = machine__findnew_thread(machine, event->fork.pid,
1947					 event->fork.tid);
1948	/*
1949	 * When synthesizing FORK events, we are trying to create thread
1950	 * objects for the already running tasks on the machine.
1951	 *
1952	 * Normally, for a kernel FORK event, we want to clone the parent's
1953	 * maps because that is what the kernel just did.
1954	 *
1955	 * But when synthesizing, this should not be done.  If we do, we end up
1956	 * with overlapping maps as we process the synthesized MMAP2 events that
1957	 * get delivered shortly thereafter.
1958	 *
1959	 * Use the FORK event misc flags in an internal way to signal this
1960	 * situation, so we can elide the map clone when appropriate.
1961	 */
1962	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963		do_maps_clone = false;
1964
1965	if (thread == NULL || parent == NULL ||
1966	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968		err = -1;
1969	}
1970	thread__put(thread);
1971	thread__put(parent);
1972
1973	return err;
1974}
1975
1976int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977				struct perf_sample *sample __maybe_unused)
1978{
1979	struct thread *thread = machine__find_thread(machine,
1980						     event->fork.pid,
1981						     event->fork.tid);
1982
1983	if (dump_trace)
1984		perf_event__fprintf_task(event, stdout);
1985
1986	if (thread != NULL) {
1987		if (symbol_conf.keep_exited_threads)
1988			thread__set_exited(thread, /*exited=*/true);
1989		else
1990			machine__remove_thread(machine, thread);
1991	}
1992	thread__put(thread);
1993	return 0;
1994}
1995
1996int machine__process_event(struct machine *machine, union perf_event *event,
1997			   struct perf_sample *sample)
1998{
1999	int ret;
2000
2001	switch (event->header.type) {
2002	case PERF_RECORD_COMM:
2003		ret = machine__process_comm_event(machine, event, sample); break;
2004	case PERF_RECORD_MMAP:
2005		ret = machine__process_mmap_event(machine, event, sample); break;
2006	case PERF_RECORD_NAMESPACES:
2007		ret = machine__process_namespaces_event(machine, event, sample); break;
2008	case PERF_RECORD_CGROUP:
2009		ret = machine__process_cgroup_event(machine, event, sample); break;
2010	case PERF_RECORD_MMAP2:
2011		ret = machine__process_mmap2_event(machine, event, sample); break;
2012	case PERF_RECORD_FORK:
2013		ret = machine__process_fork_event(machine, event, sample); break;
2014	case PERF_RECORD_EXIT:
2015		ret = machine__process_exit_event(machine, event, sample); break;
2016	case PERF_RECORD_LOST:
2017		ret = machine__process_lost_event(machine, event, sample); break;
2018	case PERF_RECORD_AUX:
2019		ret = machine__process_aux_event(machine, event); break;
2020	case PERF_RECORD_ITRACE_START:
2021		ret = machine__process_itrace_start_event(machine, event); break;
2022	case PERF_RECORD_LOST_SAMPLES:
2023		ret = machine__process_lost_samples_event(machine, event, sample); break;
2024	case PERF_RECORD_SWITCH:
2025	case PERF_RECORD_SWITCH_CPU_WIDE:
2026		ret = machine__process_switch_event(machine, event); break;
2027	case PERF_RECORD_KSYMBOL:
2028		ret = machine__process_ksymbol(machine, event, sample); break;
2029	case PERF_RECORD_BPF_EVENT:
2030		ret = machine__process_bpf(machine, event, sample); break;
2031	case PERF_RECORD_TEXT_POKE:
2032		ret = machine__process_text_poke(machine, event, sample); break;
2033	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035	default:
2036		ret = -1;
2037		break;
2038	}
2039
2040	return ret;
2041}
2042
2043static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044{
2045	return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046}
2047
2048static void ip__resolve_ams(struct thread *thread,
2049			    struct addr_map_symbol *ams,
2050			    u64 ip)
2051{
2052	struct addr_location al;
2053
2054	addr_location__init(&al);
2055	/*
2056	 * We cannot use the header.misc hint to determine whether a
2057	 * branch stack address is user, kernel, guest, hypervisor.
2058	 * Branches may straddle the kernel/user/hypervisor boundaries.
2059	 * Thus, we have to try consecutively until we find a match
2060	 * or else, the symbol is unknown
2061	 */
2062	thread__find_cpumode_addr_location(thread, ip, &al);
2063
2064	ams->addr = ip;
2065	ams->al_addr = al.addr;
2066	ams->al_level = al.level;
2067	ams->ms.maps = maps__get(al.maps);
2068	ams->ms.sym = al.sym;
2069	ams->ms.map = map__get(al.map);
2070	ams->phys_addr = 0;
2071	ams->data_page_size = 0;
2072	addr_location__exit(&al);
2073}
2074
2075static void ip__resolve_data(struct thread *thread,
2076			     u8 m, struct addr_map_symbol *ams,
2077			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2078{
2079	struct addr_location al;
2080
2081	addr_location__init(&al);
2082
2083	thread__find_symbol(thread, m, addr, &al);
2084
2085	ams->addr = addr;
2086	ams->al_addr = al.addr;
2087	ams->al_level = al.level;
2088	ams->ms.maps = maps__get(al.maps);
2089	ams->ms.sym = al.sym;
2090	ams->ms.map = map__get(al.map);
2091	ams->phys_addr = phys_addr;
2092	ams->data_page_size = daddr_page_size;
2093	addr_location__exit(&al);
2094}
2095
2096struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097				     struct addr_location *al)
2098{
2099	struct mem_info *mi = mem_info__new();
2100
2101	if (!mi)
2102		return NULL;
2103
2104	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106			 sample->addr, sample->phys_addr,
2107			 sample->data_page_size);
2108	mi->data_src.val = sample->data_src;
2109
2110	return mi;
2111}
2112
2113static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114{
2115	struct map *map = ms->map;
2116	char *srcline = NULL;
2117	struct dso *dso;
2118
2119	if (!map || callchain_param.key == CCKEY_FUNCTION)
2120		return srcline;
2121
2122	dso = map__dso(map);
2123	srcline = srcline__tree_find(&dso->srclines, ip);
2124	if (!srcline) {
2125		bool show_sym = false;
2126		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127
2128		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129				      ms->sym, show_sym, show_addr, ip);
2130		srcline__tree_insert(&dso->srclines, ip, srcline);
2131	}
2132
2133	return srcline;
2134}
2135
2136struct iterations {
2137	int nr_loop_iter;
2138	u64 cycles;
2139};
2140
2141static int add_callchain_ip(struct thread *thread,
2142			    struct callchain_cursor *cursor,
2143			    struct symbol **parent,
2144			    struct addr_location *root_al,
2145			    u8 *cpumode,
2146			    u64 ip,
2147			    bool branch,
2148			    struct branch_flags *flags,
2149			    struct iterations *iter,
2150			    u64 branch_from)
2151{
2152	struct map_symbol ms = {};
2153	struct addr_location al;
2154	int nr_loop_iter = 0, err = 0;
2155	u64 iter_cycles = 0;
2156	const char *srcline = NULL;
2157
2158	addr_location__init(&al);
2159	al.filtered = 0;
2160	al.sym = NULL;
2161	al.srcline = NULL;
2162	if (!cpumode) {
2163		thread__find_cpumode_addr_location(thread, ip, &al);
2164	} else {
2165		if (ip >= PERF_CONTEXT_MAX) {
2166			switch (ip) {
2167			case PERF_CONTEXT_HV:
2168				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169				break;
2170			case PERF_CONTEXT_KERNEL:
2171				*cpumode = PERF_RECORD_MISC_KERNEL;
2172				break;
2173			case PERF_CONTEXT_USER:
2174				*cpumode = PERF_RECORD_MISC_USER;
2175				break;
2176			default:
2177				pr_debug("invalid callchain context: "
2178					 "%"PRId64"\n", (s64) ip);
2179				/*
2180				 * It seems the callchain is corrupted.
2181				 * Discard all.
2182				 */
2183				callchain_cursor_reset(cursor);
2184				err = 1;
2185				goto out;
2186			}
2187			goto out;
2188		}
2189		thread__find_symbol(thread, *cpumode, ip, &al);
2190	}
2191
2192	if (al.sym != NULL) {
2193		if (perf_hpp_list.parent && !*parent &&
2194		    symbol__match_regex(al.sym, &parent_regex))
2195			*parent = al.sym;
2196		else if (have_ignore_callees && root_al &&
2197		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198			/* Treat this symbol as the root,
2199			   forgetting its callees. */
2200			addr_location__copy(root_al, &al);
2201			callchain_cursor_reset(cursor);
2202		}
2203	}
2204
2205	if (symbol_conf.hide_unresolved && al.sym == NULL)
2206		goto out;
2207
2208	if (iter) {
2209		nr_loop_iter = iter->nr_loop_iter;
2210		iter_cycles = iter->cycles;
2211	}
2212
2213	ms.maps = maps__get(al.maps);
2214	ms.map = map__get(al.map);
2215	ms.sym = al.sym;
2216	srcline = callchain_srcline(&ms, al.addr);
2217	err = callchain_cursor_append(cursor, ip, &ms,
2218				      branch, flags, nr_loop_iter,
2219				      iter_cycles, branch_from, srcline);
2220out:
2221	addr_location__exit(&al);
2222	map_symbol__exit(&ms);
2223	return err;
2224}
2225
2226struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227					   struct addr_location *al)
2228{
2229	unsigned int i;
2230	const struct branch_stack *bs = sample->branch_stack;
2231	struct branch_entry *entries = perf_sample__branch_entries(sample);
2232	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234	if (!bi)
2235		return NULL;
2236
2237	for (i = 0; i < bs->nr; i++) {
2238		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240		bi[i].flags = entries[i].flags;
2241	}
2242	return bi;
2243}
2244
2245static void save_iterations(struct iterations *iter,
2246			    struct branch_entry *be, int nr)
2247{
2248	int i;
2249
2250	iter->nr_loop_iter++;
2251	iter->cycles = 0;
2252
2253	for (i = 0; i < nr; i++)
2254		iter->cycles += be[i].flags.cycles;
2255}
2256
2257#define CHASHSZ 127
2258#define CHASHBITS 7
2259#define NO_ENTRY 0xff
2260
2261#define PERF_MAX_BRANCH_DEPTH 127
2262
2263/* Remove loops. */
2264static int remove_loops(struct branch_entry *l, int nr,
2265			struct iterations *iter)
2266{
2267	int i, j, off;
2268	unsigned char chash[CHASHSZ];
2269
2270	memset(chash, NO_ENTRY, sizeof(chash));
2271
2272	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274	for (i = 0; i < nr; i++) {
2275		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277		/* no collision handling for now */
2278		if (chash[h] == NO_ENTRY) {
2279			chash[h] = i;
2280		} else if (l[chash[h]].from == l[i].from) {
2281			bool is_loop = true;
2282			/* check if it is a real loop */
2283			off = 0;
2284			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285				if (l[j].from != l[i + off].from) {
2286					is_loop = false;
2287					break;
2288				}
2289			if (is_loop) {
2290				j = nr - (i + off);
2291				if (j > 0) {
2292					save_iterations(iter + i + off,
2293						l + i, off);
2294
2295					memmove(iter + i, iter + i + off,
2296						j * sizeof(*iter));
2297
2298					memmove(l + i, l + i + off,
2299						j * sizeof(*l));
2300				}
2301
2302				nr -= off;
2303			}
2304		}
2305	}
2306	return nr;
2307}
2308
2309static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310				       struct callchain_cursor *cursor,
2311				       struct perf_sample *sample,
2312				       struct symbol **parent,
2313				       struct addr_location *root_al,
2314				       u64 branch_from,
2315				       bool callee, int end)
2316{
2317	struct ip_callchain *chain = sample->callchain;
2318	u8 cpumode = PERF_RECORD_MISC_USER;
2319	int err, i;
2320
2321	if (callee) {
2322		for (i = 0; i < end + 1; i++) {
2323			err = add_callchain_ip(thread, cursor, parent,
2324					       root_al, &cpumode, chain->ips[i],
2325					       false, NULL, NULL, branch_from);
2326			if (err)
2327				return err;
2328		}
2329		return 0;
2330	}
2331
2332	for (i = end; i >= 0; i--) {
2333		err = add_callchain_ip(thread, cursor, parent,
2334				       root_al, &cpumode, chain->ips[i],
2335				       false, NULL, NULL, branch_from);
2336		if (err)
2337			return err;
2338	}
2339
2340	return 0;
2341}
2342
2343static void save_lbr_cursor_node(struct thread *thread,
2344				 struct callchain_cursor *cursor,
2345				 int idx)
2346{
2347	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348
2349	if (!lbr_stitch)
2350		return;
2351
2352	if (cursor->pos == cursor->nr) {
2353		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354		return;
2355	}
2356
2357	if (!cursor->curr)
2358		cursor->curr = cursor->first;
2359	else
2360		cursor->curr = cursor->curr->next;
2361	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362	       sizeof(struct callchain_cursor_node));
2363
2364	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365	cursor->pos++;
2366}
2367
2368static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369				    struct callchain_cursor *cursor,
2370				    struct perf_sample *sample,
2371				    struct symbol **parent,
2372				    struct addr_location *root_al,
2373				    u64 *branch_from,
2374				    bool callee)
2375{
2376	struct branch_stack *lbr_stack = sample->branch_stack;
2377	struct branch_entry *entries = perf_sample__branch_entries(sample);
2378	u8 cpumode = PERF_RECORD_MISC_USER;
2379	int lbr_nr = lbr_stack->nr;
2380	struct branch_flags *flags;
2381	int err, i;
2382	u64 ip;
2383
2384	/*
2385	 * The curr and pos are not used in writing session. They are cleared
2386	 * in callchain_cursor_commit() when the writing session is closed.
2387	 * Using curr and pos to track the current cursor node.
2388	 */
2389	if (thread__lbr_stitch(thread)) {
2390		cursor->curr = NULL;
2391		cursor->pos = cursor->nr;
2392		if (cursor->nr) {
2393			cursor->curr = cursor->first;
2394			for (i = 0; i < (int)(cursor->nr - 1); i++)
2395				cursor->curr = cursor->curr->next;
2396		}
2397	}
2398
2399	if (callee) {
2400		/* Add LBR ip from first entries.to */
2401		ip = entries[0].to;
2402		flags = &entries[0].flags;
2403		*branch_from = entries[0].from;
2404		err = add_callchain_ip(thread, cursor, parent,
2405				       root_al, &cpumode, ip,
2406				       true, flags, NULL,
2407				       *branch_from);
2408		if (err)
2409			return err;
2410
2411		/*
2412		 * The number of cursor node increases.
2413		 * Move the current cursor node.
2414		 * But does not need to save current cursor node for entry 0.
2415		 * It's impossible to stitch the whole LBRs of previous sample.
2416		 */
2417		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418			if (!cursor->curr)
2419				cursor->curr = cursor->first;
2420			else
2421				cursor->curr = cursor->curr->next;
2422			cursor->pos++;
2423		}
2424
2425		/* Add LBR ip from entries.from one by one. */
2426		for (i = 0; i < lbr_nr; i++) {
2427			ip = entries[i].from;
2428			flags = &entries[i].flags;
2429			err = add_callchain_ip(thread, cursor, parent,
2430					       root_al, &cpumode, ip,
2431					       true, flags, NULL,
2432					       *branch_from);
2433			if (err)
2434				return err;
2435			save_lbr_cursor_node(thread, cursor, i);
2436		}
2437		return 0;
2438	}
2439
2440	/* Add LBR ip from entries.from one by one. */
2441	for (i = lbr_nr - 1; i >= 0; i--) {
2442		ip = entries[i].from;
2443		flags = &entries[i].flags;
2444		err = add_callchain_ip(thread, cursor, parent,
2445				       root_al, &cpumode, ip,
2446				       true, flags, NULL,
2447				       *branch_from);
2448		if (err)
2449			return err;
2450		save_lbr_cursor_node(thread, cursor, i);
2451	}
2452
2453	if (lbr_nr > 0) {
2454		/* Add LBR ip from first entries.to */
2455		ip = entries[0].to;
2456		flags = &entries[0].flags;
2457		*branch_from = entries[0].from;
2458		err = add_callchain_ip(thread, cursor, parent,
2459				root_al, &cpumode, ip,
2460				true, flags, NULL,
2461				*branch_from);
2462		if (err)
2463			return err;
2464	}
2465
2466	return 0;
2467}
2468
2469static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470					     struct callchain_cursor *cursor)
2471{
2472	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473	struct callchain_cursor_node *cnode;
2474	struct stitch_list *stitch_node;
2475	int err;
2476
2477	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478		cnode = &stitch_node->cursor;
2479
2480		err = callchain_cursor_append(cursor, cnode->ip,
2481					      &cnode->ms,
2482					      cnode->branch,
2483					      &cnode->branch_flags,
2484					      cnode->nr_loop_iter,
2485					      cnode->iter_cycles,
2486					      cnode->branch_from,
2487					      cnode->srcline);
2488		if (err)
2489			return err;
2490	}
2491	return 0;
2492}
2493
2494static struct stitch_list *get_stitch_node(struct thread *thread)
2495{
2496	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497	struct stitch_list *stitch_node;
2498
2499	if (!list_empty(&lbr_stitch->free_lists)) {
2500		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501					       struct stitch_list, node);
2502		list_del(&stitch_node->node);
2503
2504		return stitch_node;
2505	}
2506
2507	return malloc(sizeof(struct stitch_list));
2508}
2509
2510static bool has_stitched_lbr(struct thread *thread,
2511			     struct perf_sample *cur,
2512			     struct perf_sample *prev,
2513			     unsigned int max_lbr,
2514			     bool callee)
2515{
2516	struct branch_stack *cur_stack = cur->branch_stack;
2517	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518	struct branch_stack *prev_stack = prev->branch_stack;
2519	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521	int i, j, nr_identical_branches = 0;
2522	struct stitch_list *stitch_node;
2523	u64 cur_base, distance;
2524
2525	if (!cur_stack || !prev_stack)
2526		return false;
2527
2528	/* Find the physical index of the base-of-stack for current sample. */
2529	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530
2531	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532						     (max_lbr + prev_stack->hw_idx - cur_base);
2533	/* Previous sample has shorter stack. Nothing can be stitched. */
2534	if (distance + 1 > prev_stack->nr)
2535		return false;
2536
2537	/*
2538	 * Check if there are identical LBRs between two samples.
2539	 * Identical LBRs must have same from, to and flags values. Also,
2540	 * they have to be saved in the same LBR registers (same physical
2541	 * index).
2542	 *
2543	 * Starts from the base-of-stack of current sample.
2544	 */
2545	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546		if ((prev_entries[i].from != cur_entries[j].from) ||
2547		    (prev_entries[i].to != cur_entries[j].to) ||
2548		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549			break;
2550		nr_identical_branches++;
2551	}
2552
2553	if (!nr_identical_branches)
2554		return false;
2555
2556	/*
2557	 * Save the LBRs between the base-of-stack of previous sample
2558	 * and the base-of-stack of current sample into lbr_stitch->lists.
2559	 * These LBRs will be stitched later.
2560	 */
2561	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562
2563		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564			continue;
2565
2566		stitch_node = get_stitch_node(thread);
2567		if (!stitch_node)
2568			return false;
2569
2570		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571		       sizeof(struct callchain_cursor_node));
2572
2573		if (callee)
2574			list_add(&stitch_node->node, &lbr_stitch->lists);
2575		else
2576			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577	}
2578
2579	return true;
2580}
2581
2582static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583{
2584	if (thread__lbr_stitch(thread))
2585		return true;
2586
2587	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588	if (!thread__lbr_stitch(thread))
2589		goto err;
2590
2591	thread__lbr_stitch(thread)->prev_lbr_cursor =
2592		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594		goto free_lbr_stitch;
2595
2596	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598
2599	return true;
2600
2601free_lbr_stitch:
2602	free(thread__lbr_stitch(thread));
2603	thread__set_lbr_stitch(thread, NULL);
2604err:
2605	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606	thread__set_lbr_stitch_enable(thread, false);
2607	return false;
2608}
2609
2610/*
2611 * Resolve LBR callstack chain sample
2612 * Return:
2613 * 1 on success get LBR callchain information
2614 * 0 no available LBR callchain information, should try fp
2615 * negative error code on other errors.
2616 */
2617static int resolve_lbr_callchain_sample(struct thread *thread,
2618					struct callchain_cursor *cursor,
2619					struct perf_sample *sample,
2620					struct symbol **parent,
2621					struct addr_location *root_al,
2622					int max_stack,
2623					unsigned int max_lbr)
2624{
2625	bool callee = (callchain_param.order == ORDER_CALLEE);
2626	struct ip_callchain *chain = sample->callchain;
2627	int chain_nr = min(max_stack, (int)chain->nr), i;
2628	struct lbr_stitch *lbr_stitch;
2629	bool stitched_lbr = false;
2630	u64 branch_from = 0;
2631	int err;
2632
2633	for (i = 0; i < chain_nr; i++) {
2634		if (chain->ips[i] == PERF_CONTEXT_USER)
2635			break;
2636	}
2637
2638	/* LBR only affects the user callchain */
2639	if (i == chain_nr)
2640		return 0;
2641
2642	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644		lbr_stitch = thread__lbr_stitch(thread);
2645
2646		stitched_lbr = has_stitched_lbr(thread, sample,
2647						&lbr_stitch->prev_sample,
2648						max_lbr, callee);
2649
2650		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651			list_replace_init(&lbr_stitch->lists,
2652					  &lbr_stitch->free_lists);
2653		}
2654		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655	}
2656
2657	if (callee) {
2658		/* Add kernel ip */
2659		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660						  parent, root_al, branch_from,
2661						  true, i);
2662		if (err)
2663			goto error;
2664
2665		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666					       root_al, &branch_from, true);
2667		if (err)
2668			goto error;
2669
2670		if (stitched_lbr) {
2671			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672			if (err)
2673				goto error;
2674		}
2675
2676	} else {
2677		if (stitched_lbr) {
2678			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679			if (err)
2680				goto error;
2681		}
2682		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683					       root_al, &branch_from, false);
2684		if (err)
2685			goto error;
2686
2687		/* Add kernel ip */
2688		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689						  parent, root_al, branch_from,
2690						  false, i);
2691		if (err)
2692			goto error;
2693	}
2694	return 1;
2695
2696error:
2697	return (err < 0) ? err : 0;
2698}
2699
2700static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701			     struct callchain_cursor *cursor,
2702			     struct symbol **parent,
2703			     struct addr_location *root_al,
2704			     u8 *cpumode, int ent)
2705{
2706	int err = 0;
2707
2708	while (--ent >= 0) {
2709		u64 ip = chain->ips[ent];
2710
2711		if (ip >= PERF_CONTEXT_MAX) {
2712			err = add_callchain_ip(thread, cursor, parent,
2713					       root_al, cpumode, ip,
2714					       false, NULL, NULL, 0);
2715			break;
2716		}
2717	}
2718	return err;
2719}
2720
2721static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722		struct thread *thread, int usr_idx)
2723{
2724	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726	else
2727		return 0;
2728}
2729
2730static int thread__resolve_callchain_sample(struct thread *thread,
2731					    struct callchain_cursor *cursor,
2732					    struct evsel *evsel,
2733					    struct perf_sample *sample,
2734					    struct symbol **parent,
2735					    struct addr_location *root_al,
2736					    int max_stack)
2737{
2738	struct branch_stack *branch = sample->branch_stack;
2739	struct branch_entry *entries = perf_sample__branch_entries(sample);
2740	struct ip_callchain *chain = sample->callchain;
2741	int chain_nr = 0;
2742	u8 cpumode = PERF_RECORD_MISC_USER;
2743	int i, j, err, nr_entries, usr_idx;
2744	int skip_idx = -1;
2745	int first_call = 0;
2746	u64 leaf_frame_caller;
2747
2748	if (chain)
2749		chain_nr = chain->nr;
2750
2751	if (evsel__has_branch_callstack(evsel)) {
2752		struct perf_env *env = evsel__env(evsel);
2753
2754		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755						   root_al, max_stack,
2756						   !env ? 0 : env->max_branches);
2757		if (err)
2758			return (err < 0) ? err : 0;
2759	}
2760
2761	/*
2762	 * Based on DWARF debug information, some architectures skip
2763	 * a callchain entry saved by the kernel.
2764	 */
2765	skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767	/*
2768	 * Add branches to call stack for easier browsing. This gives
2769	 * more context for a sample than just the callers.
2770	 *
2771	 * This uses individual histograms of paths compared to the
2772	 * aggregated histograms the normal LBR mode uses.
2773	 *
2774	 * Limitations for now:
2775	 * - No extra filters
2776	 * - No annotations (should annotate somehow)
2777	 */
2778
2779	if (branch && callchain_param.branch_callstack) {
2780		int nr = min(max_stack, (int)branch->nr);
2781		struct branch_entry be[nr];
2782		struct iterations iter[nr];
2783
2784		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785			pr_warning("corrupted branch chain. skipping...\n");
2786			goto check_calls;
2787		}
2788
2789		for (i = 0; i < nr; i++) {
2790			if (callchain_param.order == ORDER_CALLEE) {
2791				be[i] = entries[i];
2792
2793				if (chain == NULL)
2794					continue;
2795
2796				/*
2797				 * Check for overlap into the callchain.
2798				 * The return address is one off compared to
2799				 * the branch entry. To adjust for this
2800				 * assume the calling instruction is not longer
2801				 * than 8 bytes.
2802				 */
2803				if (i == skip_idx ||
2804				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805					first_call++;
2806				else if (be[i].from < chain->ips[first_call] &&
2807				    be[i].from >= chain->ips[first_call] - 8)
2808					first_call++;
2809			} else
2810				be[i] = entries[branch->nr - i - 1];
2811		}
2812
2813		memset(iter, 0, sizeof(struct iterations) * nr);
2814		nr = remove_loops(be, nr, iter);
2815
2816		for (i = 0; i < nr; i++) {
2817			err = add_callchain_ip(thread, cursor, parent,
2818					       root_al,
2819					       NULL, be[i].to,
2820					       true, &be[i].flags,
2821					       NULL, be[i].from);
2822
2823			if (!err)
2824				err = add_callchain_ip(thread, cursor, parent, root_al,
2825						       NULL, be[i].from,
2826						       true, &be[i].flags,
2827						       &iter[i], 0);
2828			if (err == -EINVAL)
2829				break;
2830			if (err)
2831				return err;
2832		}
2833
2834		if (chain_nr == 0)
2835			return 0;
2836
2837		chain_nr -= nr;
2838	}
2839
2840check_calls:
2841	if (chain && callchain_param.order != ORDER_CALLEE) {
2842		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843					&cpumode, chain->nr - first_call);
2844		if (err)
2845			return (err < 0) ? err : 0;
2846	}
2847	for (i = first_call, nr_entries = 0;
2848	     i < chain_nr && nr_entries < max_stack; i++) {
2849		u64 ip;
2850
2851		if (callchain_param.order == ORDER_CALLEE)
2852			j = i;
2853		else
2854			j = chain->nr - i - 1;
2855
2856#ifdef HAVE_SKIP_CALLCHAIN_IDX
2857		if (j == skip_idx)
2858			continue;
2859#endif
2860		ip = chain->ips[j];
2861		if (ip < PERF_CONTEXT_MAX)
2862                       ++nr_entries;
2863		else if (callchain_param.order != ORDER_CALLEE) {
2864			err = find_prev_cpumode(chain, thread, cursor, parent,
2865						root_al, &cpumode, j);
2866			if (err)
2867				return (err < 0) ? err : 0;
2868			continue;
2869		}
2870
2871		/*
2872		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874		 * the index will be different in order to add the missing frame
2875		 * at the right place.
2876		 */
2877
2878		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884			/*
2885			 * check if leaf_frame_Caller != ip to not add the same
2886			 * value twice.
2887			 */
2888
2889			if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891				err = add_callchain_ip(thread, cursor, parent,
2892					       root_al, &cpumode, leaf_frame_caller,
2893					       false, NULL, NULL, 0);
2894				if (err)
2895					return (err < 0) ? err : 0;
2896			}
2897		}
2898
2899		err = add_callchain_ip(thread, cursor, parent,
2900				       root_al, &cpumode, ip,
2901				       false, NULL, NULL, 0);
2902
2903		if (err)
2904			return (err < 0) ? err : 0;
2905	}
2906
2907	return 0;
2908}
2909
2910static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911{
2912	struct symbol *sym = ms->sym;
2913	struct map *map = ms->map;
2914	struct inline_node *inline_node;
2915	struct inline_list *ilist;
2916	struct dso *dso;
2917	u64 addr;
2918	int ret = 1;
2919	struct map_symbol ilist_ms;
2920
2921	if (!symbol_conf.inline_name || !map || !sym)
2922		return ret;
2923
2924	addr = map__dso_map_ip(map, ip);
2925	addr = map__rip_2objdump(map, addr);
2926	dso = map__dso(map);
2927
2928	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929	if (!inline_node) {
2930		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931		if (!inline_node)
2932			return ret;
2933		inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934	}
2935
2936	ilist_ms = (struct map_symbol) {
2937		.maps = maps__get(ms->maps),
2938		.map = map__get(map),
2939	};
2940	list_for_each_entry(ilist, &inline_node->val, list) {
2941		ilist_ms.sym = ilist->symbol;
2942		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943					      NULL, 0, 0, 0, ilist->srcline);
2944
2945		if (ret != 0)
2946			return ret;
2947	}
2948	map_symbol__exit(&ilist_ms);
2949
2950	return ret;
2951}
2952
2953static int unwind_entry(struct unwind_entry *entry, void *arg)
2954{
2955	struct callchain_cursor *cursor = arg;
2956	const char *srcline = NULL;
2957	u64 addr = entry->ip;
2958
2959	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960		return 0;
2961
2962	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963		return 0;
2964
2965	/*
2966	 * Convert entry->ip from a virtual address to an offset in
2967	 * its corresponding binary.
2968	 */
2969	if (entry->ms.map)
2970		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971
2972	srcline = callchain_srcline(&entry->ms, addr);
2973	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974				       false, NULL, 0, 0, 0, srcline);
2975}
2976
2977static int thread__resolve_callchain_unwind(struct thread *thread,
2978					    struct callchain_cursor *cursor,
2979					    struct evsel *evsel,
2980					    struct perf_sample *sample,
2981					    int max_stack)
2982{
2983	/* Can we do dwarf post unwind? */
2984	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986		return 0;
2987
2988	/* Bail out if nothing was captured. */
2989	if ((!sample->user_regs.regs) ||
2990	    (!sample->user_stack.size))
2991		return 0;
2992
2993	return unwind__get_entries(unwind_entry, cursor,
2994				   thread, sample, max_stack, false);
2995}
2996
2997int thread__resolve_callchain(struct thread *thread,
2998			      struct callchain_cursor *cursor,
2999			      struct evsel *evsel,
3000			      struct perf_sample *sample,
3001			      struct symbol **parent,
3002			      struct addr_location *root_al,
3003			      int max_stack)
3004{
3005	int ret = 0;
3006
3007	if (cursor == NULL)
3008		return -ENOMEM;
3009
3010	callchain_cursor_reset(cursor);
3011
3012	if (callchain_param.order == ORDER_CALLEE) {
3013		ret = thread__resolve_callchain_sample(thread, cursor,
3014						       evsel, sample,
3015						       parent, root_al,
3016						       max_stack);
3017		if (ret)
3018			return ret;
3019		ret = thread__resolve_callchain_unwind(thread, cursor,
3020						       evsel, sample,
3021						       max_stack);
3022	} else {
3023		ret = thread__resolve_callchain_unwind(thread, cursor,
3024						       evsel, sample,
3025						       max_stack);
3026		if (ret)
3027			return ret;
3028		ret = thread__resolve_callchain_sample(thread, cursor,
3029						       evsel, sample,
3030						       parent, root_al,
3031						       max_stack);
3032	}
3033
3034	return ret;
3035}
3036
3037int machine__for_each_thread(struct machine *machine,
3038			     int (*fn)(struct thread *thread, void *p),
3039			     void *priv)
3040{
3041	return threads__for_each_thread(&machine->threads, fn, priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042}
3043
3044int machines__for_each_thread(struct machines *machines,
3045			      int (*fn)(struct thread *thread, void *p),
3046			      void *priv)
3047{
3048	struct rb_node *nd;
3049	int rc = 0;
3050
3051	rc = machine__for_each_thread(&machines->host, fn, priv);
3052	if (rc != 0)
3053		return rc;
3054
3055	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057
3058		rc = machine__for_each_thread(machine, fn, priv);
3059		if (rc != 0)
3060			return rc;
3061	}
3062	return rc;
3063}
3064
3065
3066static int thread_list_cb(struct thread *thread, void *data)
3067{
3068	struct list_head *list = data;
3069	struct thread_list *entry = malloc(sizeof(*entry));
3070
3071	if (!entry)
3072		return -ENOMEM;
3073
3074	entry->thread = thread__get(thread);
3075	list_add_tail(&entry->list, list);
3076	return 0;
3077}
3078
3079int machine__thread_list(struct machine *machine, struct list_head *list)
3080{
3081	return machine__for_each_thread(machine, thread_list_cb, list);
3082}
3083
3084void thread_list__delete(struct list_head *list)
3085{
3086	struct thread_list *pos, *next;
3087
3088	list_for_each_entry_safe(pos, next, list, list) {
3089		thread__zput(pos->thread);
3090		list_del(&pos->list);
3091		free(pos);
3092	}
3093}
3094
3095pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096{
3097	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098		return -1;
3099
3100	return machine->current_tid[cpu];
3101}
3102
3103int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104			     pid_t tid)
3105{
3106	struct thread *thread;
3107	const pid_t init_val = -1;
3108
3109	if (cpu < 0)
3110		return -EINVAL;
3111
3112	if (realloc_array_as_needed(machine->current_tid,
3113				    machine->current_tid_sz,
3114				    (unsigned int)cpu,
3115				    &init_val))
3116		return -ENOMEM;
3117
3118	machine->current_tid[cpu] = tid;
3119
3120	thread = machine__findnew_thread(machine, pid, tid);
3121	if (!thread)
3122		return -ENOMEM;
3123
3124	thread__set_cpu(thread, cpu);
3125	thread__put(thread);
3126
3127	return 0;
3128}
3129
3130/*
3131 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132 * machine__normalized_is() if a normalized arch is needed.
3133 */
3134bool machine__is(struct machine *machine, const char *arch)
3135{
3136	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137}
3138
3139bool machine__normalized_is(struct machine *machine, const char *arch)
3140{
3141	return machine && !strcmp(perf_env__arch(machine->env), arch);
3142}
3143
3144int machine__nr_cpus_avail(struct machine *machine)
3145{
3146	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147}
3148
3149int machine__get_kernel_start(struct machine *machine)
3150{
3151	struct map *map = machine__kernel_map(machine);
3152	int err = 0;
3153
3154	/*
3155	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3156	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3157	 * all addresses including kernel addresses are less than 2^32.  In
3158	 * that case (32-bit system), if the kernel mapping is unknown, all
3159	 * addresses will be assumed to be in user space - see
3160	 * machine__kernel_ip().
3161	 */
3162	machine->kernel_start = 1ULL << 63;
3163	if (map) {
3164		err = map__load(map);
3165		/*
3166		 * On x86_64, PTI entry trampolines are less than the
3167		 * start of kernel text, but still above 2^63. So leave
3168		 * kernel_start = 1ULL << 63 for x86_64.
3169		 */
3170		if (!err && !machine__is(machine, "x86_64"))
3171			machine->kernel_start = map__start(map);
3172	}
3173	return err;
3174}
3175
3176u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177{
3178	u8 addr_cpumode = cpumode;
3179	bool kernel_ip;
3180
3181	if (!machine->single_address_space)
3182		goto out;
3183
3184	kernel_ip = machine__kernel_ip(machine, addr);
3185	switch (cpumode) {
3186	case PERF_RECORD_MISC_KERNEL:
3187	case PERF_RECORD_MISC_USER:
3188		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189					   PERF_RECORD_MISC_USER;
3190		break;
3191	case PERF_RECORD_MISC_GUEST_KERNEL:
3192	case PERF_RECORD_MISC_GUEST_USER:
3193		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194					   PERF_RECORD_MISC_GUEST_USER;
3195		break;
3196	default:
3197		break;
3198	}
3199out:
3200	return addr_cpumode;
3201}
3202
3203struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204{
3205	return dsos__findnew_id(&machine->dsos, filename, id);
3206}
3207
3208struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209{
3210	return machine__findnew_dso_id(machine, filename, NULL);
3211}
3212
3213char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214{
3215	struct machine *machine = vmachine;
3216	struct map *map;
3217	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218
3219	if (sym == NULL)
3220		return NULL;
3221
3222	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223	*addrp = map__unmap_ip(map, sym->start);
3224	return sym->name;
3225}
3226
3227int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228{
3229	struct dso *pos;
3230	int err = 0;
3231
3232	list_for_each_entry(pos, &machine->dsos.head, node) {
3233		if (fn(pos, machine, priv))
3234			err = -1;
3235	}
3236	return err;
3237}
3238
3239int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240{
3241	struct maps *maps = machine__kernel_maps(machine);
3242
3243	return maps__for_each_map(maps, fn, priv);
3244}
3245
3246bool machine__is_lock_function(struct machine *machine, u64 addr)
3247{
3248	if (!machine->sched.text_start) {
3249		struct map *kmap;
3250		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251
3252		if (!sym) {
3253			/* to avoid retry */
3254			machine->sched.text_start = 1;
3255			return false;
3256		}
3257
3258		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259
3260		/* should not fail from here */
3261		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263
3264		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266
3267		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269	}
3270
3271	/* failed to get kernel symbols */
3272	if (machine->sched.text_start == 1)
3273		return false;
3274
3275	/* mutex and rwsem functions are in sched text section */
3276	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277		return true;
3278
3279	/* spinlock functions are in lock text section */
3280	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281		return true;
3282
3283	return false;
3284}