Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/kmemleak.h>
38#include <linux/stacktrace.h>
39#include <linux/prefetch.h>
40#include <linux/memcontrol.h>
41#include <linux/random.h>
42#include <kunit/test.h>
43#include <kunit/test-bug.h>
44#include <linux/sort.h>
45
46#include <linux/debugfs.h>
47#include <trace/events/kmem.h>
48
49#include "internal.h"
50
51/*
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
58 *
59 * slab_mutex
60 *
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
69 *
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
77 *
78 * Frozen slabs
79 *
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
87 *
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
102 * list_lock
103 *
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
115 *
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
179 *
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
183 */
184
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
204#define USE_LOCKLESS_FAST_PATH() (false)
205#endif
206
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219#endif /* CONFIG_SLUB_DEBUG */
220
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
223 gfp_t flags;
224 unsigned int orig_size;
225 void *object;
226};
227
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231}
232
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
239void *fixup_red_left(struct kmem_cache *s, void *p)
240{
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
243
244 return p;
245}
246
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
256/*
257 * Issues still to be resolved:
258 *
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
261 * - Variable sizing of the per node arrays
262 */
263
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
267#ifndef CONFIG_SLUB_TINY
268/*
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
272#define MIN_PARTIAL 5
273
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
278 */
279#define MAX_PARTIAL 10
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
284
285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
287
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
296/*
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slub_debug=O is used and a cache's min order increases with
299 * metadata.
300 */
301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
306
307/* Internal SLUB flags */
308/* Poison object */
309#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
310/* Use cmpxchg_double */
311
312#ifdef system_has_freelist_aba
313#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
314#else
315#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
316#endif
317
318/*
319 * Tracking user of a slab.
320 */
321#define TRACK_ADDRS_COUNT 16
322struct track {
323 unsigned long addr; /* Called from address */
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
326#endif
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
334#ifdef SLAB_SUPPORTS_SYSFS
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
337#else
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
341#endif
342
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated frozen slabs */
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
403static inline void stat(const struct kmem_cache *s, enum stat_item si)
404{
405#ifdef CONFIG_SLUB_STATS
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
411#endif
412}
413
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
457#ifndef CONFIG_SLUB_TINY
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
462#endif
463
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
481{
482 unsigned long encoded;
483
484#ifdef CONFIG_SLAB_FREELIST_HARDENED
485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486#else
487 encoded = (unsigned long)ptr;
488#endif
489 return (freeptr_t){.v = encoded};
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499#else
500 decoded = (void *)ptr.v;
501#endif
502 return decoded;
503}
504
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
507 unsigned long ptr_addr;
508 freeptr_t p;
509
510 object = kasan_reset_tag(object);
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
514}
515
516#ifndef CONFIG_SLUB_TINY
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
519 prefetchw(object + s->offset);
520}
521#endif
522
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
536 unsigned long freepointer_addr;
537 freeptr_t p;
538
539 if (!debug_pagealloc_enabled_static())
540 return get_freepointer(s, object);
541
542 object = kasan_reset_tag(object);
543 freepointer_addr = (unsigned long)object + s->offset;
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
546}
547
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558}
559
560/* Loop over all objects in a slab */
561#define for_each_object(__p, __s, __addr, __objects) \
562 for (__p = fixup_red_left(__s, __addr); \
563 __p < (__addr) + (__objects) * (__s)->size; \
564 __p += (__s)->size)
565
566static inline unsigned int order_objects(unsigned int order, unsigned int size)
567{
568 return ((unsigned int)PAGE_SIZE << order) / size;
569}
570
571static inline struct kmem_cache_order_objects oo_make(unsigned int order,
572 unsigned int size)
573{
574 struct kmem_cache_order_objects x = {
575 (order << OO_SHIFT) + order_objects(order, size)
576 };
577
578 return x;
579}
580
581static inline unsigned int oo_order(struct kmem_cache_order_objects x)
582{
583 return x.x >> OO_SHIFT;
584}
585
586static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
587{
588 return x.x & OO_MASK;
589}
590
591#ifdef CONFIG_SLUB_CPU_PARTIAL
592static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
593{
594 unsigned int nr_slabs;
595
596 s->cpu_partial = nr_objects;
597
598 /*
599 * We take the number of objects but actually limit the number of
600 * slabs on the per cpu partial list, in order to limit excessive
601 * growth of the list. For simplicity we assume that the slabs will
602 * be half-full.
603 */
604 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
605 s->cpu_partial_slabs = nr_slabs;
606}
607#else
608static inline void
609slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
610{
611}
612#endif /* CONFIG_SLUB_CPU_PARTIAL */
613
614/*
615 * Per slab locking using the pagelock
616 */
617static __always_inline void slab_lock(struct slab *slab)
618{
619 struct page *page = slab_page(slab);
620
621 VM_BUG_ON_PAGE(PageTail(page), page);
622 bit_spin_lock(PG_locked, &page->flags);
623}
624
625static __always_inline void slab_unlock(struct slab *slab)
626{
627 struct page *page = slab_page(slab);
628
629 VM_BUG_ON_PAGE(PageTail(page), page);
630 bit_spin_unlock(PG_locked, &page->flags);
631}
632
633static inline bool
634__update_freelist_fast(struct slab *slab,
635 void *freelist_old, unsigned long counters_old,
636 void *freelist_new, unsigned long counters_new)
637{
638#ifdef system_has_freelist_aba
639 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
640 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
641
642 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
643#else
644 return false;
645#endif
646}
647
648static inline bool
649__update_freelist_slow(struct slab *slab,
650 void *freelist_old, unsigned long counters_old,
651 void *freelist_new, unsigned long counters_new)
652{
653 bool ret = false;
654
655 slab_lock(slab);
656 if (slab->freelist == freelist_old &&
657 slab->counters == counters_old) {
658 slab->freelist = freelist_new;
659 slab->counters = counters_new;
660 ret = true;
661 }
662 slab_unlock(slab);
663
664 return ret;
665}
666
667/*
668 * Interrupts must be disabled (for the fallback code to work right), typically
669 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
670 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
671 * allocation/ free operation in hardirq context. Therefore nothing can
672 * interrupt the operation.
673 */
674static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
675 void *freelist_old, unsigned long counters_old,
676 void *freelist_new, unsigned long counters_new,
677 const char *n)
678{
679 bool ret;
680
681 if (USE_LOCKLESS_FAST_PATH())
682 lockdep_assert_irqs_disabled();
683
684 if (s->flags & __CMPXCHG_DOUBLE) {
685 ret = __update_freelist_fast(slab, freelist_old, counters_old,
686 freelist_new, counters_new);
687 } else {
688 ret = __update_freelist_slow(slab, freelist_old, counters_old,
689 freelist_new, counters_new);
690 }
691 if (likely(ret))
692 return true;
693
694 cpu_relax();
695 stat(s, CMPXCHG_DOUBLE_FAIL);
696
697#ifdef SLUB_DEBUG_CMPXCHG
698 pr_info("%s %s: cmpxchg double redo ", n, s->name);
699#endif
700
701 return false;
702}
703
704static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705 void *freelist_old, unsigned long counters_old,
706 void *freelist_new, unsigned long counters_new,
707 const char *n)
708{
709 bool ret;
710
711 if (s->flags & __CMPXCHG_DOUBLE) {
712 ret = __update_freelist_fast(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
714 } else {
715 unsigned long flags;
716
717 local_irq_save(flags);
718 ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 freelist_new, counters_new);
720 local_irq_restore(flags);
721 }
722 if (likely(ret))
723 return true;
724
725 cpu_relax();
726 stat(s, CMPXCHG_DOUBLE_FAIL);
727
728#ifdef SLUB_DEBUG_CMPXCHG
729 pr_info("%s %s: cmpxchg double redo ", n, s->name);
730#endif
731
732 return false;
733}
734
735#ifdef CONFIG_SLUB_DEBUG
736static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
737static DEFINE_SPINLOCK(object_map_lock);
738
739static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
740 struct slab *slab)
741{
742 void *addr = slab_address(slab);
743 void *p;
744
745 bitmap_zero(obj_map, slab->objects);
746
747 for (p = slab->freelist; p; p = get_freepointer(s, p))
748 set_bit(__obj_to_index(s, addr, p), obj_map);
749}
750
751#if IS_ENABLED(CONFIG_KUNIT)
752static bool slab_add_kunit_errors(void)
753{
754 struct kunit_resource *resource;
755
756 if (!kunit_get_current_test())
757 return false;
758
759 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
760 if (!resource)
761 return false;
762
763 (*(int *)resource->data)++;
764 kunit_put_resource(resource);
765 return true;
766}
767#else
768static inline bool slab_add_kunit_errors(void) { return false; }
769#endif
770
771static inline unsigned int size_from_object(struct kmem_cache *s)
772{
773 if (s->flags & SLAB_RED_ZONE)
774 return s->size - s->red_left_pad;
775
776 return s->size;
777}
778
779static inline void *restore_red_left(struct kmem_cache *s, void *p)
780{
781 if (s->flags & SLAB_RED_ZONE)
782 p -= s->red_left_pad;
783
784 return p;
785}
786
787/*
788 * Debug settings:
789 */
790#if defined(CONFIG_SLUB_DEBUG_ON)
791static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
792#else
793static slab_flags_t slub_debug;
794#endif
795
796static char *slub_debug_string;
797static int disable_higher_order_debug;
798
799/*
800 * slub is about to manipulate internal object metadata. This memory lies
801 * outside the range of the allocated object, so accessing it would normally
802 * be reported by kasan as a bounds error. metadata_access_enable() is used
803 * to tell kasan that these accesses are OK.
804 */
805static inline void metadata_access_enable(void)
806{
807 kasan_disable_current();
808}
809
810static inline void metadata_access_disable(void)
811{
812 kasan_enable_current();
813}
814
815/*
816 * Object debugging
817 */
818
819/* Verify that a pointer has an address that is valid within a slab page */
820static inline int check_valid_pointer(struct kmem_cache *s,
821 struct slab *slab, void *object)
822{
823 void *base;
824
825 if (!object)
826 return 1;
827
828 base = slab_address(slab);
829 object = kasan_reset_tag(object);
830 object = restore_red_left(s, object);
831 if (object < base || object >= base + slab->objects * s->size ||
832 (object - base) % s->size) {
833 return 0;
834 }
835
836 return 1;
837}
838
839static void print_section(char *level, char *text, u8 *addr,
840 unsigned int length)
841{
842 metadata_access_enable();
843 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
844 16, 1, kasan_reset_tag((void *)addr), length, 1);
845 metadata_access_disable();
846}
847
848/*
849 * See comment in calculate_sizes().
850 */
851static inline bool freeptr_outside_object(struct kmem_cache *s)
852{
853 return s->offset >= s->inuse;
854}
855
856/*
857 * Return offset of the end of info block which is inuse + free pointer if
858 * not overlapping with object.
859 */
860static inline unsigned int get_info_end(struct kmem_cache *s)
861{
862 if (freeptr_outside_object(s))
863 return s->inuse + sizeof(void *);
864 else
865 return s->inuse;
866}
867
868static struct track *get_track(struct kmem_cache *s, void *object,
869 enum track_item alloc)
870{
871 struct track *p;
872
873 p = object + get_info_end(s);
874
875 return kasan_reset_tag(p + alloc);
876}
877
878#ifdef CONFIG_STACKDEPOT
879static noinline depot_stack_handle_t set_track_prepare(void)
880{
881 depot_stack_handle_t handle;
882 unsigned long entries[TRACK_ADDRS_COUNT];
883 unsigned int nr_entries;
884
885 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
886 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887
888 return handle;
889}
890#else
891static inline depot_stack_handle_t set_track_prepare(void)
892{
893 return 0;
894}
895#endif
896
897static void set_track_update(struct kmem_cache *s, void *object,
898 enum track_item alloc, unsigned long addr,
899 depot_stack_handle_t handle)
900{
901 struct track *p = get_track(s, object, alloc);
902
903#ifdef CONFIG_STACKDEPOT
904 p->handle = handle;
905#endif
906 p->addr = addr;
907 p->cpu = smp_processor_id();
908 p->pid = current->pid;
909 p->when = jiffies;
910}
911
912static __always_inline void set_track(struct kmem_cache *s, void *object,
913 enum track_item alloc, unsigned long addr)
914{
915 depot_stack_handle_t handle = set_track_prepare();
916
917 set_track_update(s, object, alloc, addr, handle);
918}
919
920static void init_tracking(struct kmem_cache *s, void *object)
921{
922 struct track *p;
923
924 if (!(s->flags & SLAB_STORE_USER))
925 return;
926
927 p = get_track(s, object, TRACK_ALLOC);
928 memset(p, 0, 2*sizeof(struct track));
929}
930
931static void print_track(const char *s, struct track *t, unsigned long pr_time)
932{
933 depot_stack_handle_t handle __maybe_unused;
934
935 if (!t->addr)
936 return;
937
938 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
939 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
940#ifdef CONFIG_STACKDEPOT
941 handle = READ_ONCE(t->handle);
942 if (handle)
943 stack_depot_print(handle);
944 else
945 pr_err("object allocation/free stack trace missing\n");
946#endif
947}
948
949void print_tracking(struct kmem_cache *s, void *object)
950{
951 unsigned long pr_time = jiffies;
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
955 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
957}
958
959static void print_slab_info(const struct slab *slab)
960{
961 struct folio *folio = (struct folio *)slab_folio(slab);
962
963 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964 slab, slab->objects, slab->inuse, slab->freelist,
965 folio_flags(folio, 0));
966}
967
968/*
969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970 * family will round up the real request size to these fixed ones, so
971 * there could be an extra area than what is requested. Save the original
972 * request size in the meta data area, for better debug and sanity check.
973 */
974static inline void set_orig_size(struct kmem_cache *s,
975 void *object, unsigned int orig_size)
976{
977 void *p = kasan_reset_tag(object);
978 unsigned int kasan_meta_size;
979
980 if (!slub_debug_orig_size(s))
981 return;
982
983 /*
984 * KASAN can save its free meta data inside of the object at offset 0.
985 * If this meta data size is larger than 'orig_size', it will overlap
986 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987 * 'orig_size' to be as at least as big as KASAN's meta data.
988 */
989 kasan_meta_size = kasan_metadata_size(s, true);
990 if (kasan_meta_size > orig_size)
991 orig_size = kasan_meta_size;
992
993 p += get_info_end(s);
994 p += sizeof(struct track) * 2;
995
996 *(unsigned int *)p = orig_size;
997}
998
999static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000{
1001 void *p = kasan_reset_tag(object);
1002
1003 if (!slub_debug_orig_size(s))
1004 return s->object_size;
1005
1006 p += get_info_end(s);
1007 p += sizeof(struct track) * 2;
1008
1009 return *(unsigned int *)p;
1010}
1011
1012void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013{
1014 set_orig_size(s, (void *)object, s->object_size);
1015}
1016
1017static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018{
1019 struct va_format vaf;
1020 va_list args;
1021
1022 va_start(args, fmt);
1023 vaf.fmt = fmt;
1024 vaf.va = &args;
1025 pr_err("=============================================================================\n");
1026 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027 pr_err("-----------------------------------------------------------------------------\n\n");
1028 va_end(args);
1029}
1030
1031__printf(2, 3)
1032static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033{
1034 struct va_format vaf;
1035 va_list args;
1036
1037 if (slab_add_kunit_errors())
1038 return;
1039
1040 va_start(args, fmt);
1041 vaf.fmt = fmt;
1042 vaf.va = &args;
1043 pr_err("FIX %s: %pV\n", s->name, &vaf);
1044 va_end(args);
1045}
1046
1047static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048{
1049 unsigned int off; /* Offset of last byte */
1050 u8 *addr = slab_address(slab);
1051
1052 print_tracking(s, p);
1053
1054 print_slab_info(slab);
1055
1056 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057 p, p - addr, get_freepointer(s, p));
1058
1059 if (s->flags & SLAB_RED_ZONE)
1060 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1061 s->red_left_pad);
1062 else if (p > addr + 16)
1063 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064
1065 print_section(KERN_ERR, "Object ", p,
1066 min_t(unsigned int, s->object_size, PAGE_SIZE));
1067 if (s->flags & SLAB_RED_ZONE)
1068 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1069 s->inuse - s->object_size);
1070
1071 off = get_info_end(s);
1072
1073 if (s->flags & SLAB_STORE_USER)
1074 off += 2 * sizeof(struct track);
1075
1076 if (slub_debug_orig_size(s))
1077 off += sizeof(unsigned int);
1078
1079 off += kasan_metadata_size(s, false);
1080
1081 if (off != size_from_object(s))
1082 /* Beginning of the filler is the free pointer */
1083 print_section(KERN_ERR, "Padding ", p + off,
1084 size_from_object(s) - off);
1085
1086 dump_stack();
1087}
1088
1089static void object_err(struct kmem_cache *s, struct slab *slab,
1090 u8 *object, char *reason)
1091{
1092 if (slab_add_kunit_errors())
1093 return;
1094
1095 slab_bug(s, "%s", reason);
1096 print_trailer(s, slab, object);
1097 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098}
1099
1100static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101 void **freelist, void *nextfree)
1102{
1103 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104 !check_valid_pointer(s, slab, nextfree) && freelist) {
1105 object_err(s, slab, *freelist, "Freechain corrupt");
1106 *freelist = NULL;
1107 slab_fix(s, "Isolate corrupted freechain");
1108 return true;
1109 }
1110
1111 return false;
1112}
1113
1114static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115 const char *fmt, ...)
1116{
1117 va_list args;
1118 char buf[100];
1119
1120 if (slab_add_kunit_errors())
1121 return;
1122
1123 va_start(args, fmt);
1124 vsnprintf(buf, sizeof(buf), fmt, args);
1125 va_end(args);
1126 slab_bug(s, "%s", buf);
1127 print_slab_info(slab);
1128 dump_stack();
1129 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130}
1131
1132static void init_object(struct kmem_cache *s, void *object, u8 val)
1133{
1134 u8 *p = kasan_reset_tag(object);
1135 unsigned int poison_size = s->object_size;
1136
1137 if (s->flags & SLAB_RED_ZONE) {
1138 memset(p - s->red_left_pad, val, s->red_left_pad);
1139
1140 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141 /*
1142 * Redzone the extra allocated space by kmalloc than
1143 * requested, and the poison size will be limited to
1144 * the original request size accordingly.
1145 */
1146 poison_size = get_orig_size(s, object);
1147 }
1148 }
1149
1150 if (s->flags & __OBJECT_POISON) {
1151 memset(p, POISON_FREE, poison_size - 1);
1152 p[poison_size - 1] = POISON_END;
1153 }
1154
1155 if (s->flags & SLAB_RED_ZONE)
1156 memset(p + poison_size, val, s->inuse - poison_size);
1157}
1158
1159static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160 void *from, void *to)
1161{
1162 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163 memset(from, data, to - from);
1164}
1165
1166static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167 u8 *object, char *what,
1168 u8 *start, unsigned int value, unsigned int bytes)
1169{
1170 u8 *fault;
1171 u8 *end;
1172 u8 *addr = slab_address(slab);
1173
1174 metadata_access_enable();
1175 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176 metadata_access_disable();
1177 if (!fault)
1178 return 1;
1179
1180 end = start + bytes;
1181 while (end > fault && end[-1] == value)
1182 end--;
1183
1184 if (slab_add_kunit_errors())
1185 goto skip_bug_print;
1186
1187 slab_bug(s, "%s overwritten", what);
1188 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189 fault, end - 1, fault - addr,
1190 fault[0], value);
1191 print_trailer(s, slab, object);
1192 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193
1194skip_bug_print:
1195 restore_bytes(s, what, value, fault, end);
1196 return 0;
1197}
1198
1199/*
1200 * Object layout:
1201 *
1202 * object address
1203 * Bytes of the object to be managed.
1204 * If the freepointer may overlay the object then the free
1205 * pointer is at the middle of the object.
1206 *
1207 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208 * 0xa5 (POISON_END)
1209 *
1210 * object + s->object_size
1211 * Padding to reach word boundary. This is also used for Redzoning.
1212 * Padding is extended by another word if Redzoning is enabled and
1213 * object_size == inuse.
1214 *
1215 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216 * 0xcc (RED_ACTIVE) for objects in use.
1217 *
1218 * object + s->inuse
1219 * Meta data starts here.
1220 *
1221 * A. Free pointer (if we cannot overwrite object on free)
1222 * B. Tracking data for SLAB_STORE_USER
1223 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224 * D. Padding to reach required alignment boundary or at minimum
1225 * one word if debugging is on to be able to detect writes
1226 * before the word boundary.
1227 *
1228 * Padding is done using 0x5a (POISON_INUSE)
1229 *
1230 * object + s->size
1231 * Nothing is used beyond s->size.
1232 *
1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234 * ignored. And therefore no slab options that rely on these boundaries
1235 * may be used with merged slabcaches.
1236 */
1237
1238static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239{
1240 unsigned long off = get_info_end(s); /* The end of info */
1241
1242 if (s->flags & SLAB_STORE_USER) {
1243 /* We also have user information there */
1244 off += 2 * sizeof(struct track);
1245
1246 if (s->flags & SLAB_KMALLOC)
1247 off += sizeof(unsigned int);
1248 }
1249
1250 off += kasan_metadata_size(s, false);
1251
1252 if (size_from_object(s) == off)
1253 return 1;
1254
1255 return check_bytes_and_report(s, slab, p, "Object padding",
1256 p + off, POISON_INUSE, size_from_object(s) - off);
1257}
1258
1259/* Check the pad bytes at the end of a slab page */
1260static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261{
1262 u8 *start;
1263 u8 *fault;
1264 u8 *end;
1265 u8 *pad;
1266 int length;
1267 int remainder;
1268
1269 if (!(s->flags & SLAB_POISON))
1270 return;
1271
1272 start = slab_address(slab);
1273 length = slab_size(slab);
1274 end = start + length;
1275 remainder = length % s->size;
1276 if (!remainder)
1277 return;
1278
1279 pad = end - remainder;
1280 metadata_access_enable();
1281 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282 metadata_access_disable();
1283 if (!fault)
1284 return;
1285 while (end > fault && end[-1] == POISON_INUSE)
1286 end--;
1287
1288 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289 fault, end - 1, fault - start);
1290 print_section(KERN_ERR, "Padding ", pad, remainder);
1291
1292 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1293}
1294
1295static int check_object(struct kmem_cache *s, struct slab *slab,
1296 void *object, u8 val)
1297{
1298 u8 *p = object;
1299 u8 *endobject = object + s->object_size;
1300 unsigned int orig_size, kasan_meta_size;
1301
1302 if (s->flags & SLAB_RED_ZONE) {
1303 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304 object - s->red_left_pad, val, s->red_left_pad))
1305 return 0;
1306
1307 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308 endobject, val, s->inuse - s->object_size))
1309 return 0;
1310
1311 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312 orig_size = get_orig_size(s, object);
1313
1314 if (s->object_size > orig_size &&
1315 !check_bytes_and_report(s, slab, object,
1316 "kmalloc Redzone", p + orig_size,
1317 val, s->object_size - orig_size)) {
1318 return 0;
1319 }
1320 }
1321 } else {
1322 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323 check_bytes_and_report(s, slab, p, "Alignment padding",
1324 endobject, POISON_INUSE,
1325 s->inuse - s->object_size);
1326 }
1327 }
1328
1329 if (s->flags & SLAB_POISON) {
1330 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331 /*
1332 * KASAN can save its free meta data inside of the
1333 * object at offset 0. Thus, skip checking the part of
1334 * the redzone that overlaps with the meta data.
1335 */
1336 kasan_meta_size = kasan_metadata_size(s, true);
1337 if (kasan_meta_size < s->object_size - 1 &&
1338 !check_bytes_and_report(s, slab, p, "Poison",
1339 p + kasan_meta_size, POISON_FREE,
1340 s->object_size - kasan_meta_size - 1))
1341 return 0;
1342 if (kasan_meta_size < s->object_size &&
1343 !check_bytes_and_report(s, slab, p, "End Poison",
1344 p + s->object_size - 1, POISON_END, 1))
1345 return 0;
1346 }
1347 /*
1348 * check_pad_bytes cleans up on its own.
1349 */
1350 check_pad_bytes(s, slab, p);
1351 }
1352
1353 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354 /*
1355 * Object and freepointer overlap. Cannot check
1356 * freepointer while object is allocated.
1357 */
1358 return 1;
1359
1360 /* Check free pointer validity */
1361 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362 object_err(s, slab, p, "Freepointer corrupt");
1363 /*
1364 * No choice but to zap it and thus lose the remainder
1365 * of the free objects in this slab. May cause
1366 * another error because the object count is now wrong.
1367 */
1368 set_freepointer(s, p, NULL);
1369 return 0;
1370 }
1371 return 1;
1372}
1373
1374static int check_slab(struct kmem_cache *s, struct slab *slab)
1375{
1376 int maxobj;
1377
1378 if (!folio_test_slab(slab_folio(slab))) {
1379 slab_err(s, slab, "Not a valid slab page");
1380 return 0;
1381 }
1382
1383 maxobj = order_objects(slab_order(slab), s->size);
1384 if (slab->objects > maxobj) {
1385 slab_err(s, slab, "objects %u > max %u",
1386 slab->objects, maxobj);
1387 return 0;
1388 }
1389 if (slab->inuse > slab->objects) {
1390 slab_err(s, slab, "inuse %u > max %u",
1391 slab->inuse, slab->objects);
1392 return 0;
1393 }
1394 /* Slab_pad_check fixes things up after itself */
1395 slab_pad_check(s, slab);
1396 return 1;
1397}
1398
1399/*
1400 * Determine if a certain object in a slab is on the freelist. Must hold the
1401 * slab lock to guarantee that the chains are in a consistent state.
1402 */
1403static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404{
1405 int nr = 0;
1406 void *fp;
1407 void *object = NULL;
1408 int max_objects;
1409
1410 fp = slab->freelist;
1411 while (fp && nr <= slab->objects) {
1412 if (fp == search)
1413 return 1;
1414 if (!check_valid_pointer(s, slab, fp)) {
1415 if (object) {
1416 object_err(s, slab, object,
1417 "Freechain corrupt");
1418 set_freepointer(s, object, NULL);
1419 } else {
1420 slab_err(s, slab, "Freepointer corrupt");
1421 slab->freelist = NULL;
1422 slab->inuse = slab->objects;
1423 slab_fix(s, "Freelist cleared");
1424 return 0;
1425 }
1426 break;
1427 }
1428 object = fp;
1429 fp = get_freepointer(s, object);
1430 nr++;
1431 }
1432
1433 max_objects = order_objects(slab_order(slab), s->size);
1434 if (max_objects > MAX_OBJS_PER_PAGE)
1435 max_objects = MAX_OBJS_PER_PAGE;
1436
1437 if (slab->objects != max_objects) {
1438 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439 slab->objects, max_objects);
1440 slab->objects = max_objects;
1441 slab_fix(s, "Number of objects adjusted");
1442 }
1443 if (slab->inuse != slab->objects - nr) {
1444 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445 slab->inuse, slab->objects - nr);
1446 slab->inuse = slab->objects - nr;
1447 slab_fix(s, "Object count adjusted");
1448 }
1449 return search == NULL;
1450}
1451
1452static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453 int alloc)
1454{
1455 if (s->flags & SLAB_TRACE) {
1456 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457 s->name,
1458 alloc ? "alloc" : "free",
1459 object, slab->inuse,
1460 slab->freelist);
1461
1462 if (!alloc)
1463 print_section(KERN_INFO, "Object ", (void *)object,
1464 s->object_size);
1465
1466 dump_stack();
1467 }
1468}
1469
1470/*
1471 * Tracking of fully allocated slabs for debugging purposes.
1472 */
1473static void add_full(struct kmem_cache *s,
1474 struct kmem_cache_node *n, struct slab *slab)
1475{
1476 if (!(s->flags & SLAB_STORE_USER))
1477 return;
1478
1479 lockdep_assert_held(&n->list_lock);
1480 list_add(&slab->slab_list, &n->full);
1481}
1482
1483static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484{
1485 if (!(s->flags & SLAB_STORE_USER))
1486 return;
1487
1488 lockdep_assert_held(&n->list_lock);
1489 list_del(&slab->slab_list);
1490}
1491
1492static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493{
1494 return atomic_long_read(&n->nr_slabs);
1495}
1496
1497static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498{
1499 struct kmem_cache_node *n = get_node(s, node);
1500
1501 /*
1502 * May be called early in order to allocate a slab for the
1503 * kmem_cache_node structure. Solve the chicken-egg
1504 * dilemma by deferring the increment of the count during
1505 * bootstrap (see early_kmem_cache_node_alloc).
1506 */
1507 if (likely(n)) {
1508 atomic_long_inc(&n->nr_slabs);
1509 atomic_long_add(objects, &n->total_objects);
1510 }
1511}
1512static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1513{
1514 struct kmem_cache_node *n = get_node(s, node);
1515
1516 atomic_long_dec(&n->nr_slabs);
1517 atomic_long_sub(objects, &n->total_objects);
1518}
1519
1520/* Object debug checks for alloc/free paths */
1521static void setup_object_debug(struct kmem_cache *s, void *object)
1522{
1523 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1524 return;
1525
1526 init_object(s, object, SLUB_RED_INACTIVE);
1527 init_tracking(s, object);
1528}
1529
1530static
1531void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1532{
1533 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1534 return;
1535
1536 metadata_access_enable();
1537 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1538 metadata_access_disable();
1539}
1540
1541static inline int alloc_consistency_checks(struct kmem_cache *s,
1542 struct slab *slab, void *object)
1543{
1544 if (!check_slab(s, slab))
1545 return 0;
1546
1547 if (!check_valid_pointer(s, slab, object)) {
1548 object_err(s, slab, object, "Freelist Pointer check fails");
1549 return 0;
1550 }
1551
1552 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1553 return 0;
1554
1555 return 1;
1556}
1557
1558static noinline bool alloc_debug_processing(struct kmem_cache *s,
1559 struct slab *slab, void *object, int orig_size)
1560{
1561 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1562 if (!alloc_consistency_checks(s, slab, object))
1563 goto bad;
1564 }
1565
1566 /* Success. Perform special debug activities for allocs */
1567 trace(s, slab, object, 1);
1568 set_orig_size(s, object, orig_size);
1569 init_object(s, object, SLUB_RED_ACTIVE);
1570 return true;
1571
1572bad:
1573 if (folio_test_slab(slab_folio(slab))) {
1574 /*
1575 * If this is a slab page then lets do the best we can
1576 * to avoid issues in the future. Marking all objects
1577 * as used avoids touching the remaining objects.
1578 */
1579 slab_fix(s, "Marking all objects used");
1580 slab->inuse = slab->objects;
1581 slab->freelist = NULL;
1582 }
1583 return false;
1584}
1585
1586static inline int free_consistency_checks(struct kmem_cache *s,
1587 struct slab *slab, void *object, unsigned long addr)
1588{
1589 if (!check_valid_pointer(s, slab, object)) {
1590 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1591 return 0;
1592 }
1593
1594 if (on_freelist(s, slab, object)) {
1595 object_err(s, slab, object, "Object already free");
1596 return 0;
1597 }
1598
1599 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1600 return 0;
1601
1602 if (unlikely(s != slab->slab_cache)) {
1603 if (!folio_test_slab(slab_folio(slab))) {
1604 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1605 object);
1606 } else if (!slab->slab_cache) {
1607 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1608 object);
1609 dump_stack();
1610 } else
1611 object_err(s, slab, object,
1612 "page slab pointer corrupt.");
1613 return 0;
1614 }
1615 return 1;
1616}
1617
1618/*
1619 * Parse a block of slub_debug options. Blocks are delimited by ';'
1620 *
1621 * @str: start of block
1622 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1623 * @slabs: return start of list of slabs, or NULL when there's no list
1624 * @init: assume this is initial parsing and not per-kmem-create parsing
1625 *
1626 * returns the start of next block if there's any, or NULL
1627 */
1628static char *
1629parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1630{
1631 bool higher_order_disable = false;
1632
1633 /* Skip any completely empty blocks */
1634 while (*str && *str == ';')
1635 str++;
1636
1637 if (*str == ',') {
1638 /*
1639 * No options but restriction on slabs. This means full
1640 * debugging for slabs matching a pattern.
1641 */
1642 *flags = DEBUG_DEFAULT_FLAGS;
1643 goto check_slabs;
1644 }
1645 *flags = 0;
1646
1647 /* Determine which debug features should be switched on */
1648 for (; *str && *str != ',' && *str != ';'; str++) {
1649 switch (tolower(*str)) {
1650 case '-':
1651 *flags = 0;
1652 break;
1653 case 'f':
1654 *flags |= SLAB_CONSISTENCY_CHECKS;
1655 break;
1656 case 'z':
1657 *flags |= SLAB_RED_ZONE;
1658 break;
1659 case 'p':
1660 *flags |= SLAB_POISON;
1661 break;
1662 case 'u':
1663 *flags |= SLAB_STORE_USER;
1664 break;
1665 case 't':
1666 *flags |= SLAB_TRACE;
1667 break;
1668 case 'a':
1669 *flags |= SLAB_FAILSLAB;
1670 break;
1671 case 'o':
1672 /*
1673 * Avoid enabling debugging on caches if its minimum
1674 * order would increase as a result.
1675 */
1676 higher_order_disable = true;
1677 break;
1678 default:
1679 if (init)
1680 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1681 }
1682 }
1683check_slabs:
1684 if (*str == ',')
1685 *slabs = ++str;
1686 else
1687 *slabs = NULL;
1688
1689 /* Skip over the slab list */
1690 while (*str && *str != ';')
1691 str++;
1692
1693 /* Skip any completely empty blocks */
1694 while (*str && *str == ';')
1695 str++;
1696
1697 if (init && higher_order_disable)
1698 disable_higher_order_debug = 1;
1699
1700 if (*str)
1701 return str;
1702 else
1703 return NULL;
1704}
1705
1706static int __init setup_slub_debug(char *str)
1707{
1708 slab_flags_t flags;
1709 slab_flags_t global_flags;
1710 char *saved_str;
1711 char *slab_list;
1712 bool global_slub_debug_changed = false;
1713 bool slab_list_specified = false;
1714
1715 global_flags = DEBUG_DEFAULT_FLAGS;
1716 if (*str++ != '=' || !*str)
1717 /*
1718 * No options specified. Switch on full debugging.
1719 */
1720 goto out;
1721
1722 saved_str = str;
1723 while (str) {
1724 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1725
1726 if (!slab_list) {
1727 global_flags = flags;
1728 global_slub_debug_changed = true;
1729 } else {
1730 slab_list_specified = true;
1731 if (flags & SLAB_STORE_USER)
1732 stack_depot_request_early_init();
1733 }
1734 }
1735
1736 /*
1737 * For backwards compatibility, a single list of flags with list of
1738 * slabs means debugging is only changed for those slabs, so the global
1739 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1740 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1741 * long as there is no option specifying flags without a slab list.
1742 */
1743 if (slab_list_specified) {
1744 if (!global_slub_debug_changed)
1745 global_flags = slub_debug;
1746 slub_debug_string = saved_str;
1747 }
1748out:
1749 slub_debug = global_flags;
1750 if (slub_debug & SLAB_STORE_USER)
1751 stack_depot_request_early_init();
1752 if (slub_debug != 0 || slub_debug_string)
1753 static_branch_enable(&slub_debug_enabled);
1754 else
1755 static_branch_disable(&slub_debug_enabled);
1756 if ((static_branch_unlikely(&init_on_alloc) ||
1757 static_branch_unlikely(&init_on_free)) &&
1758 (slub_debug & SLAB_POISON))
1759 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1760 return 1;
1761}
1762
1763__setup("slub_debug", setup_slub_debug);
1764
1765/*
1766 * kmem_cache_flags - apply debugging options to the cache
1767 * @object_size: the size of an object without meta data
1768 * @flags: flags to set
1769 * @name: name of the cache
1770 *
1771 * Debug option(s) are applied to @flags. In addition to the debug
1772 * option(s), if a slab name (or multiple) is specified i.e.
1773 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1774 * then only the select slabs will receive the debug option(s).
1775 */
1776slab_flags_t kmem_cache_flags(unsigned int object_size,
1777 slab_flags_t flags, const char *name)
1778{
1779 char *iter;
1780 size_t len;
1781 char *next_block;
1782 slab_flags_t block_flags;
1783 slab_flags_t slub_debug_local = slub_debug;
1784
1785 if (flags & SLAB_NO_USER_FLAGS)
1786 return flags;
1787
1788 /*
1789 * If the slab cache is for debugging (e.g. kmemleak) then
1790 * don't store user (stack trace) information by default,
1791 * but let the user enable it via the command line below.
1792 */
1793 if (flags & SLAB_NOLEAKTRACE)
1794 slub_debug_local &= ~SLAB_STORE_USER;
1795
1796 len = strlen(name);
1797 next_block = slub_debug_string;
1798 /* Go through all blocks of debug options, see if any matches our slab's name */
1799 while (next_block) {
1800 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1801 if (!iter)
1802 continue;
1803 /* Found a block that has a slab list, search it */
1804 while (*iter) {
1805 char *end, *glob;
1806 size_t cmplen;
1807
1808 end = strchrnul(iter, ',');
1809 if (next_block && next_block < end)
1810 end = next_block - 1;
1811
1812 glob = strnchr(iter, end - iter, '*');
1813 if (glob)
1814 cmplen = glob - iter;
1815 else
1816 cmplen = max_t(size_t, len, (end - iter));
1817
1818 if (!strncmp(name, iter, cmplen)) {
1819 flags |= block_flags;
1820 return flags;
1821 }
1822
1823 if (!*end || *end == ';')
1824 break;
1825 iter = end + 1;
1826 }
1827 }
1828
1829 return flags | slub_debug_local;
1830}
1831#else /* !CONFIG_SLUB_DEBUG */
1832static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1833static inline
1834void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1835
1836static inline bool alloc_debug_processing(struct kmem_cache *s,
1837 struct slab *slab, void *object, int orig_size) { return true; }
1838
1839static inline bool free_debug_processing(struct kmem_cache *s,
1840 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1841 unsigned long addr, depot_stack_handle_t handle) { return true; }
1842
1843static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1844static inline int check_object(struct kmem_cache *s, struct slab *slab,
1845 void *object, u8 val) { return 1; }
1846static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1847static inline void set_track(struct kmem_cache *s, void *object,
1848 enum track_item alloc, unsigned long addr) {}
1849static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1850 struct slab *slab) {}
1851static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1852 struct slab *slab) {}
1853slab_flags_t kmem_cache_flags(unsigned int object_size,
1854 slab_flags_t flags, const char *name)
1855{
1856 return flags;
1857}
1858#define slub_debug 0
1859
1860#define disable_higher_order_debug 0
1861
1862static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1863 { return 0; }
1864static inline void inc_slabs_node(struct kmem_cache *s, int node,
1865 int objects) {}
1866static inline void dec_slabs_node(struct kmem_cache *s, int node,
1867 int objects) {}
1868
1869#ifndef CONFIG_SLUB_TINY
1870static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1871 void **freelist, void *nextfree)
1872{
1873 return false;
1874}
1875#endif
1876#endif /* CONFIG_SLUB_DEBUG */
1877
1878static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1879{
1880 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1882}
1883
1884#ifdef CONFIG_MEMCG_KMEM
1885static inline void memcg_free_slab_cgroups(struct slab *slab)
1886{
1887 kfree(slab_objcgs(slab));
1888 slab->memcg_data = 0;
1889}
1890
1891static inline size_t obj_full_size(struct kmem_cache *s)
1892{
1893 /*
1894 * For each accounted object there is an extra space which is used
1895 * to store obj_cgroup membership. Charge it too.
1896 */
1897 return s->size + sizeof(struct obj_cgroup *);
1898}
1899
1900/*
1901 * Returns false if the allocation should fail.
1902 */
1903static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904 struct list_lru *lru,
1905 struct obj_cgroup **objcgp,
1906 size_t objects, gfp_t flags)
1907{
1908 /*
1909 * The obtained objcg pointer is safe to use within the current scope,
1910 * defined by current task or set_active_memcg() pair.
1911 * obj_cgroup_get() is used to get a permanent reference.
1912 */
1913 struct obj_cgroup *objcg = current_obj_cgroup();
1914 if (!objcg)
1915 return true;
1916
1917 if (lru) {
1918 int ret;
1919 struct mem_cgroup *memcg;
1920
1921 memcg = get_mem_cgroup_from_objcg(objcg);
1922 ret = memcg_list_lru_alloc(memcg, lru, flags);
1923 css_put(&memcg->css);
1924
1925 if (ret)
1926 return false;
1927 }
1928
1929 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1930 return false;
1931
1932 *objcgp = objcg;
1933 return true;
1934}
1935
1936/*
1937 * Returns false if the allocation should fail.
1938 */
1939static __fastpath_inline
1940bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941 struct obj_cgroup **objcgp, size_t objects,
1942 gfp_t flags)
1943{
1944 if (!memcg_kmem_online())
1945 return true;
1946
1947 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1948 return true;
1949
1950 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1951 flags));
1952}
1953
1954static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955 struct obj_cgroup *objcg,
1956 gfp_t flags, size_t size,
1957 void **p)
1958{
1959 struct slab *slab;
1960 unsigned long off;
1961 size_t i;
1962
1963 flags &= gfp_allowed_mask;
1964
1965 for (i = 0; i < size; i++) {
1966 if (likely(p[i])) {
1967 slab = virt_to_slab(p[i]);
1968
1969 if (!slab_objcgs(slab) &&
1970 memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971 obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 continue;
1973 }
1974
1975 off = obj_to_index(s, slab, p[i]);
1976 obj_cgroup_get(objcg);
1977 slab_objcgs(slab)[off] = objcg;
1978 mod_objcg_state(objcg, slab_pgdat(slab),
1979 cache_vmstat_idx(s), obj_full_size(s));
1980 } else {
1981 obj_cgroup_uncharge(objcg, obj_full_size(s));
1982 }
1983 }
1984}
1985
1986static __fastpath_inline
1987void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988 gfp_t flags, size_t size, void **p)
1989{
1990 if (likely(!memcg_kmem_online() || !objcg))
1991 return;
1992
1993 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1994}
1995
1996static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997 void **p, int objects,
1998 struct obj_cgroup **objcgs)
1999{
2000 for (int i = 0; i < objects; i++) {
2001 struct obj_cgroup *objcg;
2002 unsigned int off;
2003
2004 off = obj_to_index(s, slab, p[i]);
2005 objcg = objcgs[off];
2006 if (!objcg)
2007 continue;
2008
2009 objcgs[off] = NULL;
2010 obj_cgroup_uncharge(objcg, obj_full_size(s));
2011 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2012 -obj_full_size(s));
2013 obj_cgroup_put(objcg);
2014 }
2015}
2016
2017static __fastpath_inline
2018void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2019 int objects)
2020{
2021 struct obj_cgroup **objcgs;
2022
2023 if (!memcg_kmem_online())
2024 return;
2025
2026 objcgs = slab_objcgs(slab);
2027 if (likely(!objcgs))
2028 return;
2029
2030 __memcg_slab_free_hook(s, slab, p, objects, objcgs);
2031}
2032
2033static inline
2034void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035 struct obj_cgroup *objcg)
2036{
2037 if (objcg)
2038 obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2039}
2040#else /* CONFIG_MEMCG_KMEM */
2041static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
2042{
2043 return NULL;
2044}
2045
2046static inline void memcg_free_slab_cgroups(struct slab *slab)
2047{
2048}
2049
2050static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2051 struct list_lru *lru,
2052 struct obj_cgroup **objcgp,
2053 size_t objects, gfp_t flags)
2054{
2055 return true;
2056}
2057
2058static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2059 struct obj_cgroup *objcg,
2060 gfp_t flags, size_t size,
2061 void **p)
2062{
2063}
2064
2065static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2066 void **p, int objects)
2067{
2068}
2069
2070static inline
2071void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2072 struct obj_cgroup *objcg)
2073{
2074}
2075#endif /* CONFIG_MEMCG_KMEM */
2076
2077/*
2078 * Hooks for other subsystems that check memory allocations. In a typical
2079 * production configuration these hooks all should produce no code at all.
2080 *
2081 * Returns true if freeing of the object can proceed, false if its reuse
2082 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2083 */
2084static __always_inline
2085bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2086{
2087 kmemleak_free_recursive(x, s->flags);
2088 kmsan_slab_free(s, x);
2089
2090 debug_check_no_locks_freed(x, s->object_size);
2091
2092 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2093 debug_check_no_obj_freed(x, s->object_size);
2094
2095 /* Use KCSAN to help debug racy use-after-free. */
2096 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2097 __kcsan_check_access(x, s->object_size,
2098 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2099
2100 if (kfence_free(x))
2101 return false;
2102
2103 /*
2104 * As memory initialization might be integrated into KASAN,
2105 * kasan_slab_free and initialization memset's must be
2106 * kept together to avoid discrepancies in behavior.
2107 *
2108 * The initialization memset's clear the object and the metadata,
2109 * but don't touch the SLAB redzone.
2110 */
2111 if (unlikely(init)) {
2112 int rsize;
2113
2114 if (!kasan_has_integrated_init())
2115 memset(kasan_reset_tag(x), 0, s->object_size);
2116 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2118 s->size - s->inuse - rsize);
2119 }
2120 /* KASAN might put x into memory quarantine, delaying its reuse. */
2121 return !kasan_slab_free(s, x, init);
2122}
2123
2124static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2125 void **head, void **tail,
2126 int *cnt)
2127{
2128
2129 void *object;
2130 void *next = *head;
2131 void *old_tail = *tail;
2132 bool init;
2133
2134 if (is_kfence_address(next)) {
2135 slab_free_hook(s, next, false);
2136 return false;
2137 }
2138
2139 /* Head and tail of the reconstructed freelist */
2140 *head = NULL;
2141 *tail = NULL;
2142
2143 init = slab_want_init_on_free(s);
2144
2145 do {
2146 object = next;
2147 next = get_freepointer(s, object);
2148
2149 /* If object's reuse doesn't have to be delayed */
2150 if (likely(slab_free_hook(s, object, init))) {
2151 /* Move object to the new freelist */
2152 set_freepointer(s, object, *head);
2153 *head = object;
2154 if (!*tail)
2155 *tail = object;
2156 } else {
2157 /*
2158 * Adjust the reconstructed freelist depth
2159 * accordingly if object's reuse is delayed.
2160 */
2161 --(*cnt);
2162 }
2163 } while (object != old_tail);
2164
2165 return *head != NULL;
2166}
2167
2168static void *setup_object(struct kmem_cache *s, void *object)
2169{
2170 setup_object_debug(s, object);
2171 object = kasan_init_slab_obj(s, object);
2172 if (unlikely(s->ctor)) {
2173 kasan_unpoison_new_object(s, object);
2174 s->ctor(object);
2175 kasan_poison_new_object(s, object);
2176 }
2177 return object;
2178}
2179
2180/*
2181 * Slab allocation and freeing
2182 */
2183static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184 struct kmem_cache_order_objects oo)
2185{
2186 struct folio *folio;
2187 struct slab *slab;
2188 unsigned int order = oo_order(oo);
2189
2190 folio = (struct folio *)alloc_pages_node(node, flags, order);
2191 if (!folio)
2192 return NULL;
2193
2194 slab = folio_slab(folio);
2195 __folio_set_slab(folio);
2196 /* Make the flag visible before any changes to folio->mapping */
2197 smp_wmb();
2198 if (folio_is_pfmemalloc(folio))
2199 slab_set_pfmemalloc(slab);
2200
2201 return slab;
2202}
2203
2204#ifdef CONFIG_SLAB_FREELIST_RANDOM
2205/* Pre-initialize the random sequence cache */
2206static int init_cache_random_seq(struct kmem_cache *s)
2207{
2208 unsigned int count = oo_objects(s->oo);
2209 int err;
2210
2211 /* Bailout if already initialised */
2212 if (s->random_seq)
2213 return 0;
2214
2215 err = cache_random_seq_create(s, count, GFP_KERNEL);
2216 if (err) {
2217 pr_err("SLUB: Unable to initialize free list for %s\n",
2218 s->name);
2219 return err;
2220 }
2221
2222 /* Transform to an offset on the set of pages */
2223 if (s->random_seq) {
2224 unsigned int i;
2225
2226 for (i = 0; i < count; i++)
2227 s->random_seq[i] *= s->size;
2228 }
2229 return 0;
2230}
2231
2232/* Initialize each random sequence freelist per cache */
2233static void __init init_freelist_randomization(void)
2234{
2235 struct kmem_cache *s;
2236
2237 mutex_lock(&slab_mutex);
2238
2239 list_for_each_entry(s, &slab_caches, list)
2240 init_cache_random_seq(s);
2241
2242 mutex_unlock(&slab_mutex);
2243}
2244
2245/* Get the next entry on the pre-computed freelist randomized */
2246static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
2247 unsigned long *pos, void *start,
2248 unsigned long page_limit,
2249 unsigned long freelist_count)
2250{
2251 unsigned int idx;
2252
2253 /*
2254 * If the target page allocation failed, the number of objects on the
2255 * page might be smaller than the usual size defined by the cache.
2256 */
2257 do {
2258 idx = s->random_seq[*pos];
2259 *pos += 1;
2260 if (*pos >= freelist_count)
2261 *pos = 0;
2262 } while (unlikely(idx >= page_limit));
2263
2264 return (char *)start + idx;
2265}
2266
2267/* Shuffle the single linked freelist based on a random pre-computed sequence */
2268static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2269{
2270 void *start;
2271 void *cur;
2272 void *next;
2273 unsigned long idx, pos, page_limit, freelist_count;
2274
2275 if (slab->objects < 2 || !s->random_seq)
2276 return false;
2277
2278 freelist_count = oo_objects(s->oo);
2279 pos = get_random_u32_below(freelist_count);
2280
2281 page_limit = slab->objects * s->size;
2282 start = fixup_red_left(s, slab_address(slab));
2283
2284 /* First entry is used as the base of the freelist */
2285 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
2286 freelist_count);
2287 cur = setup_object(s, cur);
2288 slab->freelist = cur;
2289
2290 for (idx = 1; idx < slab->objects; idx++) {
2291 next = next_freelist_entry(s, slab, &pos, start, page_limit,
2292 freelist_count);
2293 next = setup_object(s, next);
2294 set_freepointer(s, cur, next);
2295 cur = next;
2296 }
2297 set_freepointer(s, cur, NULL);
2298
2299 return true;
2300}
2301#else
2302static inline int init_cache_random_seq(struct kmem_cache *s)
2303{
2304 return 0;
2305}
2306static inline void init_freelist_randomization(void) { }
2307static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2308{
2309 return false;
2310}
2311#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2312
2313static __always_inline void account_slab(struct slab *slab, int order,
2314 struct kmem_cache *s, gfp_t gfp)
2315{
2316 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2317 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2318
2319 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2320 PAGE_SIZE << order);
2321}
2322
2323static __always_inline void unaccount_slab(struct slab *slab, int order,
2324 struct kmem_cache *s)
2325{
2326 if (memcg_kmem_online())
2327 memcg_free_slab_cgroups(slab);
2328
2329 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2330 -(PAGE_SIZE << order));
2331}
2332
2333static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2334{
2335 struct slab *slab;
2336 struct kmem_cache_order_objects oo = s->oo;
2337 gfp_t alloc_gfp;
2338 void *start, *p, *next;
2339 int idx;
2340 bool shuffle;
2341
2342 flags &= gfp_allowed_mask;
2343
2344 flags |= s->allocflags;
2345
2346 /*
2347 * Let the initial higher-order allocation fail under memory pressure
2348 * so we fall-back to the minimum order allocation.
2349 */
2350 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2351 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2352 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2353
2354 slab = alloc_slab_page(alloc_gfp, node, oo);
2355 if (unlikely(!slab)) {
2356 oo = s->min;
2357 alloc_gfp = flags;
2358 /*
2359 * Allocation may have failed due to fragmentation.
2360 * Try a lower order alloc if possible
2361 */
2362 slab = alloc_slab_page(alloc_gfp, node, oo);
2363 if (unlikely(!slab))
2364 return NULL;
2365 stat(s, ORDER_FALLBACK);
2366 }
2367
2368 slab->objects = oo_objects(oo);
2369 slab->inuse = 0;
2370 slab->frozen = 0;
2371
2372 account_slab(slab, oo_order(oo), s, flags);
2373
2374 slab->slab_cache = s;
2375
2376 kasan_poison_slab(slab);
2377
2378 start = slab_address(slab);
2379
2380 setup_slab_debug(s, slab, start);
2381
2382 shuffle = shuffle_freelist(s, slab);
2383
2384 if (!shuffle) {
2385 start = fixup_red_left(s, start);
2386 start = setup_object(s, start);
2387 slab->freelist = start;
2388 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2389 next = p + s->size;
2390 next = setup_object(s, next);
2391 set_freepointer(s, p, next);
2392 p = next;
2393 }
2394 set_freepointer(s, p, NULL);
2395 }
2396
2397 return slab;
2398}
2399
2400static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2401{
2402 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2403 flags = kmalloc_fix_flags(flags);
2404
2405 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2406
2407 return allocate_slab(s,
2408 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2409}
2410
2411static void __free_slab(struct kmem_cache *s, struct slab *slab)
2412{
2413 struct folio *folio = slab_folio(slab);
2414 int order = folio_order(folio);
2415 int pages = 1 << order;
2416
2417 __slab_clear_pfmemalloc(slab);
2418 folio->mapping = NULL;
2419 /* Make the mapping reset visible before clearing the flag */
2420 smp_wmb();
2421 __folio_clear_slab(folio);
2422 mm_account_reclaimed_pages(pages);
2423 unaccount_slab(slab, order, s);
2424 __free_pages(&folio->page, order);
2425}
2426
2427static void rcu_free_slab(struct rcu_head *h)
2428{
2429 struct slab *slab = container_of(h, struct slab, rcu_head);
2430
2431 __free_slab(slab->slab_cache, slab);
2432}
2433
2434static void free_slab(struct kmem_cache *s, struct slab *slab)
2435{
2436 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2437 void *p;
2438
2439 slab_pad_check(s, slab);
2440 for_each_object(p, s, slab_address(slab), slab->objects)
2441 check_object(s, slab, p, SLUB_RED_INACTIVE);
2442 }
2443
2444 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2445 call_rcu(&slab->rcu_head, rcu_free_slab);
2446 else
2447 __free_slab(s, slab);
2448}
2449
2450static void discard_slab(struct kmem_cache *s, struct slab *slab)
2451{
2452 dec_slabs_node(s, slab_nid(slab), slab->objects);
2453 free_slab(s, slab);
2454}
2455
2456/*
2457 * SLUB reuses PG_workingset bit to keep track of whether it's on
2458 * the per-node partial list.
2459 */
2460static inline bool slab_test_node_partial(const struct slab *slab)
2461{
2462 return folio_test_workingset((struct folio *)slab_folio(slab));
2463}
2464
2465static inline void slab_set_node_partial(struct slab *slab)
2466{
2467 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2468}
2469
2470static inline void slab_clear_node_partial(struct slab *slab)
2471{
2472 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2473}
2474
2475/*
2476 * Management of partially allocated slabs.
2477 */
2478static inline void
2479__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2480{
2481 n->nr_partial++;
2482 if (tail == DEACTIVATE_TO_TAIL)
2483 list_add_tail(&slab->slab_list, &n->partial);
2484 else
2485 list_add(&slab->slab_list, &n->partial);
2486 slab_set_node_partial(slab);
2487}
2488
2489static inline void add_partial(struct kmem_cache_node *n,
2490 struct slab *slab, int tail)
2491{
2492 lockdep_assert_held(&n->list_lock);
2493 __add_partial(n, slab, tail);
2494}
2495
2496static inline void remove_partial(struct kmem_cache_node *n,
2497 struct slab *slab)
2498{
2499 lockdep_assert_held(&n->list_lock);
2500 list_del(&slab->slab_list);
2501 slab_clear_node_partial(slab);
2502 n->nr_partial--;
2503}
2504
2505/*
2506 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2507 * slab from the n->partial list. Remove only a single object from the slab, do
2508 * the alloc_debug_processing() checks and leave the slab on the list, or move
2509 * it to full list if it was the last free object.
2510 */
2511static void *alloc_single_from_partial(struct kmem_cache *s,
2512 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2513{
2514 void *object;
2515
2516 lockdep_assert_held(&n->list_lock);
2517
2518 object = slab->freelist;
2519 slab->freelist = get_freepointer(s, object);
2520 slab->inuse++;
2521
2522 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2523 remove_partial(n, slab);
2524 return NULL;
2525 }
2526
2527 if (slab->inuse == slab->objects) {
2528 remove_partial(n, slab);
2529 add_full(s, n, slab);
2530 }
2531
2532 return object;
2533}
2534
2535/*
2536 * Called only for kmem_cache_debug() caches to allocate from a freshly
2537 * allocated slab. Allocate a single object instead of whole freelist
2538 * and put the slab to the partial (or full) list.
2539 */
2540static void *alloc_single_from_new_slab(struct kmem_cache *s,
2541 struct slab *slab, int orig_size)
2542{
2543 int nid = slab_nid(slab);
2544 struct kmem_cache_node *n = get_node(s, nid);
2545 unsigned long flags;
2546 void *object;
2547
2548
2549 object = slab->freelist;
2550 slab->freelist = get_freepointer(s, object);
2551 slab->inuse = 1;
2552
2553 if (!alloc_debug_processing(s, slab, object, orig_size))
2554 /*
2555 * It's not really expected that this would fail on a
2556 * freshly allocated slab, but a concurrent memory
2557 * corruption in theory could cause that.
2558 */
2559 return NULL;
2560
2561 spin_lock_irqsave(&n->list_lock, flags);
2562
2563 if (slab->inuse == slab->objects)
2564 add_full(s, n, slab);
2565 else
2566 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2567
2568 inc_slabs_node(s, nid, slab->objects);
2569 spin_unlock_irqrestore(&n->list_lock, flags);
2570
2571 return object;
2572}
2573
2574#ifdef CONFIG_SLUB_CPU_PARTIAL
2575static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2576#else
2577static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2578 int drain) { }
2579#endif
2580static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2581
2582/*
2583 * Try to allocate a partial slab from a specific node.
2584 */
2585static struct slab *get_partial_node(struct kmem_cache *s,
2586 struct kmem_cache_node *n,
2587 struct partial_context *pc)
2588{
2589 struct slab *slab, *slab2, *partial = NULL;
2590 unsigned long flags;
2591 unsigned int partial_slabs = 0;
2592
2593 /*
2594 * Racy check. If we mistakenly see no partial slabs then we
2595 * just allocate an empty slab. If we mistakenly try to get a
2596 * partial slab and there is none available then get_partial()
2597 * will return NULL.
2598 */
2599 if (!n || !n->nr_partial)
2600 return NULL;
2601
2602 spin_lock_irqsave(&n->list_lock, flags);
2603 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2604 if (!pfmemalloc_match(slab, pc->flags))
2605 continue;
2606
2607 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2608 void *object = alloc_single_from_partial(s, n, slab,
2609 pc->orig_size);
2610 if (object) {
2611 partial = slab;
2612 pc->object = object;
2613 break;
2614 }
2615 continue;
2616 }
2617
2618 remove_partial(n, slab);
2619
2620 if (!partial) {
2621 partial = slab;
2622 stat(s, ALLOC_FROM_PARTIAL);
2623 } else {
2624 put_cpu_partial(s, slab, 0);
2625 stat(s, CPU_PARTIAL_NODE);
2626 partial_slabs++;
2627 }
2628#ifdef CONFIG_SLUB_CPU_PARTIAL
2629 if (!kmem_cache_has_cpu_partial(s)
2630 || partial_slabs > s->cpu_partial_slabs / 2)
2631 break;
2632#else
2633 break;
2634#endif
2635
2636 }
2637 spin_unlock_irqrestore(&n->list_lock, flags);
2638 return partial;
2639}
2640
2641/*
2642 * Get a slab from somewhere. Search in increasing NUMA distances.
2643 */
2644static struct slab *get_any_partial(struct kmem_cache *s,
2645 struct partial_context *pc)
2646{
2647#ifdef CONFIG_NUMA
2648 struct zonelist *zonelist;
2649 struct zoneref *z;
2650 struct zone *zone;
2651 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2652 struct slab *slab;
2653 unsigned int cpuset_mems_cookie;
2654
2655 /*
2656 * The defrag ratio allows a configuration of the tradeoffs between
2657 * inter node defragmentation and node local allocations. A lower
2658 * defrag_ratio increases the tendency to do local allocations
2659 * instead of attempting to obtain partial slabs from other nodes.
2660 *
2661 * If the defrag_ratio is set to 0 then kmalloc() always
2662 * returns node local objects. If the ratio is higher then kmalloc()
2663 * may return off node objects because partial slabs are obtained
2664 * from other nodes and filled up.
2665 *
2666 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2667 * (which makes defrag_ratio = 1000) then every (well almost)
2668 * allocation will first attempt to defrag slab caches on other nodes.
2669 * This means scanning over all nodes to look for partial slabs which
2670 * may be expensive if we do it every time we are trying to find a slab
2671 * with available objects.
2672 */
2673 if (!s->remote_node_defrag_ratio ||
2674 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2675 return NULL;
2676
2677 do {
2678 cpuset_mems_cookie = read_mems_allowed_begin();
2679 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2680 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2681 struct kmem_cache_node *n;
2682
2683 n = get_node(s, zone_to_nid(zone));
2684
2685 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2686 n->nr_partial > s->min_partial) {
2687 slab = get_partial_node(s, n, pc);
2688 if (slab) {
2689 /*
2690 * Don't check read_mems_allowed_retry()
2691 * here - if mems_allowed was updated in
2692 * parallel, that was a harmless race
2693 * between allocation and the cpuset
2694 * update
2695 */
2696 return slab;
2697 }
2698 }
2699 }
2700 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2701#endif /* CONFIG_NUMA */
2702 return NULL;
2703}
2704
2705/*
2706 * Get a partial slab, lock it and return it.
2707 */
2708static struct slab *get_partial(struct kmem_cache *s, int node,
2709 struct partial_context *pc)
2710{
2711 struct slab *slab;
2712 int searchnode = node;
2713
2714 if (node == NUMA_NO_NODE)
2715 searchnode = numa_mem_id();
2716
2717 slab = get_partial_node(s, get_node(s, searchnode), pc);
2718 if (slab || node != NUMA_NO_NODE)
2719 return slab;
2720
2721 return get_any_partial(s, pc);
2722}
2723
2724#ifndef CONFIG_SLUB_TINY
2725
2726#ifdef CONFIG_PREEMPTION
2727/*
2728 * Calculate the next globally unique transaction for disambiguation
2729 * during cmpxchg. The transactions start with the cpu number and are then
2730 * incremented by CONFIG_NR_CPUS.
2731 */
2732#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2733#else
2734/*
2735 * No preemption supported therefore also no need to check for
2736 * different cpus.
2737 */
2738#define TID_STEP 1
2739#endif /* CONFIG_PREEMPTION */
2740
2741static inline unsigned long next_tid(unsigned long tid)
2742{
2743 return tid + TID_STEP;
2744}
2745
2746#ifdef SLUB_DEBUG_CMPXCHG
2747static inline unsigned int tid_to_cpu(unsigned long tid)
2748{
2749 return tid % TID_STEP;
2750}
2751
2752static inline unsigned long tid_to_event(unsigned long tid)
2753{
2754 return tid / TID_STEP;
2755}
2756#endif
2757
2758static inline unsigned int init_tid(int cpu)
2759{
2760 return cpu;
2761}
2762
2763static inline void note_cmpxchg_failure(const char *n,
2764 const struct kmem_cache *s, unsigned long tid)
2765{
2766#ifdef SLUB_DEBUG_CMPXCHG
2767 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2768
2769 pr_info("%s %s: cmpxchg redo ", n, s->name);
2770
2771#ifdef CONFIG_PREEMPTION
2772 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2773 pr_warn("due to cpu change %d -> %d\n",
2774 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2775 else
2776#endif
2777 if (tid_to_event(tid) != tid_to_event(actual_tid))
2778 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2779 tid_to_event(tid), tid_to_event(actual_tid));
2780 else
2781 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2782 actual_tid, tid, next_tid(tid));
2783#endif
2784 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2785}
2786
2787static void init_kmem_cache_cpus(struct kmem_cache *s)
2788{
2789 int cpu;
2790 struct kmem_cache_cpu *c;
2791
2792 for_each_possible_cpu(cpu) {
2793 c = per_cpu_ptr(s->cpu_slab, cpu);
2794 local_lock_init(&c->lock);
2795 c->tid = init_tid(cpu);
2796 }
2797}
2798
2799/*
2800 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2801 * unfreezes the slabs and puts it on the proper list.
2802 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2803 * by the caller.
2804 */
2805static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2806 void *freelist)
2807{
2808 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2809 int free_delta = 0;
2810 void *nextfree, *freelist_iter, *freelist_tail;
2811 int tail = DEACTIVATE_TO_HEAD;
2812 unsigned long flags = 0;
2813 struct slab new;
2814 struct slab old;
2815
2816 if (slab->freelist) {
2817 stat(s, DEACTIVATE_REMOTE_FREES);
2818 tail = DEACTIVATE_TO_TAIL;
2819 }
2820
2821 /*
2822 * Stage one: Count the objects on cpu's freelist as free_delta and
2823 * remember the last object in freelist_tail for later splicing.
2824 */
2825 freelist_tail = NULL;
2826 freelist_iter = freelist;
2827 while (freelist_iter) {
2828 nextfree = get_freepointer(s, freelist_iter);
2829
2830 /*
2831 * If 'nextfree' is invalid, it is possible that the object at
2832 * 'freelist_iter' is already corrupted. So isolate all objects
2833 * starting at 'freelist_iter' by skipping them.
2834 */
2835 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2836 break;
2837
2838 freelist_tail = freelist_iter;
2839 free_delta++;
2840
2841 freelist_iter = nextfree;
2842 }
2843
2844 /*
2845 * Stage two: Unfreeze the slab while splicing the per-cpu
2846 * freelist to the head of slab's freelist.
2847 */
2848 do {
2849 old.freelist = READ_ONCE(slab->freelist);
2850 old.counters = READ_ONCE(slab->counters);
2851 VM_BUG_ON(!old.frozen);
2852
2853 /* Determine target state of the slab */
2854 new.counters = old.counters;
2855 new.frozen = 0;
2856 if (freelist_tail) {
2857 new.inuse -= free_delta;
2858 set_freepointer(s, freelist_tail, old.freelist);
2859 new.freelist = freelist;
2860 } else {
2861 new.freelist = old.freelist;
2862 }
2863 } while (!slab_update_freelist(s, slab,
2864 old.freelist, old.counters,
2865 new.freelist, new.counters,
2866 "unfreezing slab"));
2867
2868 /*
2869 * Stage three: Manipulate the slab list based on the updated state.
2870 */
2871 if (!new.inuse && n->nr_partial >= s->min_partial) {
2872 stat(s, DEACTIVATE_EMPTY);
2873 discard_slab(s, slab);
2874 stat(s, FREE_SLAB);
2875 } else if (new.freelist) {
2876 spin_lock_irqsave(&n->list_lock, flags);
2877 add_partial(n, slab, tail);
2878 spin_unlock_irqrestore(&n->list_lock, flags);
2879 stat(s, tail);
2880 } else {
2881 stat(s, DEACTIVATE_FULL);
2882 }
2883}
2884
2885#ifdef CONFIG_SLUB_CPU_PARTIAL
2886static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2887{
2888 struct kmem_cache_node *n = NULL, *n2 = NULL;
2889 struct slab *slab, *slab_to_discard = NULL;
2890 unsigned long flags = 0;
2891
2892 while (partial_slab) {
2893 slab = partial_slab;
2894 partial_slab = slab->next;
2895
2896 n2 = get_node(s, slab_nid(slab));
2897 if (n != n2) {
2898 if (n)
2899 spin_unlock_irqrestore(&n->list_lock, flags);
2900
2901 n = n2;
2902 spin_lock_irqsave(&n->list_lock, flags);
2903 }
2904
2905 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2906 slab->next = slab_to_discard;
2907 slab_to_discard = slab;
2908 } else {
2909 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2910 stat(s, FREE_ADD_PARTIAL);
2911 }
2912 }
2913
2914 if (n)
2915 spin_unlock_irqrestore(&n->list_lock, flags);
2916
2917 while (slab_to_discard) {
2918 slab = slab_to_discard;
2919 slab_to_discard = slab_to_discard->next;
2920
2921 stat(s, DEACTIVATE_EMPTY);
2922 discard_slab(s, slab);
2923 stat(s, FREE_SLAB);
2924 }
2925}
2926
2927/*
2928 * Put all the cpu partial slabs to the node partial list.
2929 */
2930static void put_partials(struct kmem_cache *s)
2931{
2932 struct slab *partial_slab;
2933 unsigned long flags;
2934
2935 local_lock_irqsave(&s->cpu_slab->lock, flags);
2936 partial_slab = this_cpu_read(s->cpu_slab->partial);
2937 this_cpu_write(s->cpu_slab->partial, NULL);
2938 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2939
2940 if (partial_slab)
2941 __put_partials(s, partial_slab);
2942}
2943
2944static void put_partials_cpu(struct kmem_cache *s,
2945 struct kmem_cache_cpu *c)
2946{
2947 struct slab *partial_slab;
2948
2949 partial_slab = slub_percpu_partial(c);
2950 c->partial = NULL;
2951
2952 if (partial_slab)
2953 __put_partials(s, partial_slab);
2954}
2955
2956/*
2957 * Put a slab into a partial slab slot if available.
2958 *
2959 * If we did not find a slot then simply move all the partials to the
2960 * per node partial list.
2961 */
2962static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2963{
2964 struct slab *oldslab;
2965 struct slab *slab_to_put = NULL;
2966 unsigned long flags;
2967 int slabs = 0;
2968
2969 local_lock_irqsave(&s->cpu_slab->lock, flags);
2970
2971 oldslab = this_cpu_read(s->cpu_slab->partial);
2972
2973 if (oldslab) {
2974 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2975 /*
2976 * Partial array is full. Move the existing set to the
2977 * per node partial list. Postpone the actual unfreezing
2978 * outside of the critical section.
2979 */
2980 slab_to_put = oldslab;
2981 oldslab = NULL;
2982 } else {
2983 slabs = oldslab->slabs;
2984 }
2985 }
2986
2987 slabs++;
2988
2989 slab->slabs = slabs;
2990 slab->next = oldslab;
2991
2992 this_cpu_write(s->cpu_slab->partial, slab);
2993
2994 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2995
2996 if (slab_to_put) {
2997 __put_partials(s, slab_to_put);
2998 stat(s, CPU_PARTIAL_DRAIN);
2999 }
3000}
3001
3002#else /* CONFIG_SLUB_CPU_PARTIAL */
3003
3004static inline void put_partials(struct kmem_cache *s) { }
3005static inline void put_partials_cpu(struct kmem_cache *s,
3006 struct kmem_cache_cpu *c) { }
3007
3008#endif /* CONFIG_SLUB_CPU_PARTIAL */
3009
3010static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3011{
3012 unsigned long flags;
3013 struct slab *slab;
3014 void *freelist;
3015
3016 local_lock_irqsave(&s->cpu_slab->lock, flags);
3017
3018 slab = c->slab;
3019 freelist = c->freelist;
3020
3021 c->slab = NULL;
3022 c->freelist = NULL;
3023 c->tid = next_tid(c->tid);
3024
3025 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3026
3027 if (slab) {
3028 deactivate_slab(s, slab, freelist);
3029 stat(s, CPUSLAB_FLUSH);
3030 }
3031}
3032
3033static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3034{
3035 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3036 void *freelist = c->freelist;
3037 struct slab *slab = c->slab;
3038
3039 c->slab = NULL;
3040 c->freelist = NULL;
3041 c->tid = next_tid(c->tid);
3042
3043 if (slab) {
3044 deactivate_slab(s, slab, freelist);
3045 stat(s, CPUSLAB_FLUSH);
3046 }
3047
3048 put_partials_cpu(s, c);
3049}
3050
3051struct slub_flush_work {
3052 struct work_struct work;
3053 struct kmem_cache *s;
3054 bool skip;
3055};
3056
3057/*
3058 * Flush cpu slab.
3059 *
3060 * Called from CPU work handler with migration disabled.
3061 */
3062static void flush_cpu_slab(struct work_struct *w)
3063{
3064 struct kmem_cache *s;
3065 struct kmem_cache_cpu *c;
3066 struct slub_flush_work *sfw;
3067
3068 sfw = container_of(w, struct slub_flush_work, work);
3069
3070 s = sfw->s;
3071 c = this_cpu_ptr(s->cpu_slab);
3072
3073 if (c->slab)
3074 flush_slab(s, c);
3075
3076 put_partials(s);
3077}
3078
3079static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3080{
3081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3082
3083 return c->slab || slub_percpu_partial(c);
3084}
3085
3086static DEFINE_MUTEX(flush_lock);
3087static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3088
3089static void flush_all_cpus_locked(struct kmem_cache *s)
3090{
3091 struct slub_flush_work *sfw;
3092 unsigned int cpu;
3093
3094 lockdep_assert_cpus_held();
3095 mutex_lock(&flush_lock);
3096
3097 for_each_online_cpu(cpu) {
3098 sfw = &per_cpu(slub_flush, cpu);
3099 if (!has_cpu_slab(cpu, s)) {
3100 sfw->skip = true;
3101 continue;
3102 }
3103 INIT_WORK(&sfw->work, flush_cpu_slab);
3104 sfw->skip = false;
3105 sfw->s = s;
3106 queue_work_on(cpu, flushwq, &sfw->work);
3107 }
3108
3109 for_each_online_cpu(cpu) {
3110 sfw = &per_cpu(slub_flush, cpu);
3111 if (sfw->skip)
3112 continue;
3113 flush_work(&sfw->work);
3114 }
3115
3116 mutex_unlock(&flush_lock);
3117}
3118
3119static void flush_all(struct kmem_cache *s)
3120{
3121 cpus_read_lock();
3122 flush_all_cpus_locked(s);
3123 cpus_read_unlock();
3124}
3125
3126/*
3127 * Use the cpu notifier to insure that the cpu slabs are flushed when
3128 * necessary.
3129 */
3130static int slub_cpu_dead(unsigned int cpu)
3131{
3132 struct kmem_cache *s;
3133
3134 mutex_lock(&slab_mutex);
3135 list_for_each_entry(s, &slab_caches, list)
3136 __flush_cpu_slab(s, cpu);
3137 mutex_unlock(&slab_mutex);
3138 return 0;
3139}
3140
3141#else /* CONFIG_SLUB_TINY */
3142static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3143static inline void flush_all(struct kmem_cache *s) { }
3144static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3145static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3146#endif /* CONFIG_SLUB_TINY */
3147
3148/*
3149 * Check if the objects in a per cpu structure fit numa
3150 * locality expectations.
3151 */
3152static inline int node_match(struct slab *slab, int node)
3153{
3154#ifdef CONFIG_NUMA
3155 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3156 return 0;
3157#endif
3158 return 1;
3159}
3160
3161#ifdef CONFIG_SLUB_DEBUG
3162static int count_free(struct slab *slab)
3163{
3164 return slab->objects - slab->inuse;
3165}
3166
3167static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3168{
3169 return atomic_long_read(&n->total_objects);
3170}
3171
3172/* Supports checking bulk free of a constructed freelist */
3173static inline bool free_debug_processing(struct kmem_cache *s,
3174 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3175 unsigned long addr, depot_stack_handle_t handle)
3176{
3177 bool checks_ok = false;
3178 void *object = head;
3179 int cnt = 0;
3180
3181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182 if (!check_slab(s, slab))
3183 goto out;
3184 }
3185
3186 if (slab->inuse < *bulk_cnt) {
3187 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3188 slab->inuse, *bulk_cnt);
3189 goto out;
3190 }
3191
3192next_object:
3193
3194 if (++cnt > *bulk_cnt)
3195 goto out_cnt;
3196
3197 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3198 if (!free_consistency_checks(s, slab, object, addr))
3199 goto out;
3200 }
3201
3202 if (s->flags & SLAB_STORE_USER)
3203 set_track_update(s, object, TRACK_FREE, addr, handle);
3204 trace(s, slab, object, 0);
3205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3206 init_object(s, object, SLUB_RED_INACTIVE);
3207
3208 /* Reached end of constructed freelist yet? */
3209 if (object != tail) {
3210 object = get_freepointer(s, object);
3211 goto next_object;
3212 }
3213 checks_ok = true;
3214
3215out_cnt:
3216 if (cnt != *bulk_cnt) {
3217 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3218 *bulk_cnt, cnt);
3219 *bulk_cnt = cnt;
3220 }
3221
3222out:
3223
3224 if (!checks_ok)
3225 slab_fix(s, "Object at 0x%p not freed", object);
3226
3227 return checks_ok;
3228}
3229#endif /* CONFIG_SLUB_DEBUG */
3230
3231#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3232static unsigned long count_partial(struct kmem_cache_node *n,
3233 int (*get_count)(struct slab *))
3234{
3235 unsigned long flags;
3236 unsigned long x = 0;
3237 struct slab *slab;
3238
3239 spin_lock_irqsave(&n->list_lock, flags);
3240 list_for_each_entry(slab, &n->partial, slab_list)
3241 x += get_count(slab);
3242 spin_unlock_irqrestore(&n->list_lock, flags);
3243 return x;
3244}
3245#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3246
3247#ifdef CONFIG_SLUB_DEBUG
3248static noinline void
3249slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3250{
3251 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3252 DEFAULT_RATELIMIT_BURST);
3253 int node;
3254 struct kmem_cache_node *n;
3255
3256 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3257 return;
3258
3259 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3260 nid, gfpflags, &gfpflags);
3261 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3262 s->name, s->object_size, s->size, oo_order(s->oo),
3263 oo_order(s->min));
3264
3265 if (oo_order(s->min) > get_order(s->object_size))
3266 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3267 s->name);
3268
3269 for_each_kmem_cache_node(s, node, n) {
3270 unsigned long nr_slabs;
3271 unsigned long nr_objs;
3272 unsigned long nr_free;
3273
3274 nr_free = count_partial(n, count_free);
3275 nr_slabs = node_nr_slabs(n);
3276 nr_objs = node_nr_objs(n);
3277
3278 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3279 node, nr_slabs, nr_objs, nr_free);
3280 }
3281}
3282#else /* CONFIG_SLUB_DEBUG */
3283static inline void
3284slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3285#endif
3286
3287static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3288{
3289 if (unlikely(slab_test_pfmemalloc(slab)))
3290 return gfp_pfmemalloc_allowed(gfpflags);
3291
3292 return true;
3293}
3294
3295#ifndef CONFIG_SLUB_TINY
3296static inline bool
3297__update_cpu_freelist_fast(struct kmem_cache *s,
3298 void *freelist_old, void *freelist_new,
3299 unsigned long tid)
3300{
3301 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3302 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3303
3304 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3305 &old.full, new.full);
3306}
3307
3308/*
3309 * Check the slab->freelist and either transfer the freelist to the
3310 * per cpu freelist or deactivate the slab.
3311 *
3312 * The slab is still frozen if the return value is not NULL.
3313 *
3314 * If this function returns NULL then the slab has been unfrozen.
3315 */
3316static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3317{
3318 struct slab new;
3319 unsigned long counters;
3320 void *freelist;
3321
3322 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3323
3324 do {
3325 freelist = slab->freelist;
3326 counters = slab->counters;
3327
3328 new.counters = counters;
3329 VM_BUG_ON(!new.frozen);
3330
3331 new.inuse = slab->objects;
3332 new.frozen = freelist != NULL;
3333
3334 } while (!__slab_update_freelist(s, slab,
3335 freelist, counters,
3336 NULL, new.counters,
3337 "get_freelist"));
3338
3339 return freelist;
3340}
3341
3342/*
3343 * Freeze the partial slab and return the pointer to the freelist.
3344 */
3345static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3346{
3347 struct slab new;
3348 unsigned long counters;
3349 void *freelist;
3350
3351 do {
3352 freelist = slab->freelist;
3353 counters = slab->counters;
3354
3355 new.counters = counters;
3356 VM_BUG_ON(new.frozen);
3357
3358 new.inuse = slab->objects;
3359 new.frozen = 1;
3360
3361 } while (!slab_update_freelist(s, slab,
3362 freelist, counters,
3363 NULL, new.counters,
3364 "freeze_slab"));
3365
3366 return freelist;
3367}
3368
3369/*
3370 * Slow path. The lockless freelist is empty or we need to perform
3371 * debugging duties.
3372 *
3373 * Processing is still very fast if new objects have been freed to the
3374 * regular freelist. In that case we simply take over the regular freelist
3375 * as the lockless freelist and zap the regular freelist.
3376 *
3377 * If that is not working then we fall back to the partial lists. We take the
3378 * first element of the freelist as the object to allocate now and move the
3379 * rest of the freelist to the lockless freelist.
3380 *
3381 * And if we were unable to get a new slab from the partial slab lists then
3382 * we need to allocate a new slab. This is the slowest path since it involves
3383 * a call to the page allocator and the setup of a new slab.
3384 *
3385 * Version of __slab_alloc to use when we know that preemption is
3386 * already disabled (which is the case for bulk allocation).
3387 */
3388static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3389 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3390{
3391 void *freelist;
3392 struct slab *slab;
3393 unsigned long flags;
3394 struct partial_context pc;
3395
3396 stat(s, ALLOC_SLOWPATH);
3397
3398reread_slab:
3399
3400 slab = READ_ONCE(c->slab);
3401 if (!slab) {
3402 /*
3403 * if the node is not online or has no normal memory, just
3404 * ignore the node constraint
3405 */
3406 if (unlikely(node != NUMA_NO_NODE &&
3407 !node_isset(node, slab_nodes)))
3408 node = NUMA_NO_NODE;
3409 goto new_slab;
3410 }
3411
3412 if (unlikely(!node_match(slab, node))) {
3413 /*
3414 * same as above but node_match() being false already
3415 * implies node != NUMA_NO_NODE
3416 */
3417 if (!node_isset(node, slab_nodes)) {
3418 node = NUMA_NO_NODE;
3419 } else {
3420 stat(s, ALLOC_NODE_MISMATCH);
3421 goto deactivate_slab;
3422 }
3423 }
3424
3425 /*
3426 * By rights, we should be searching for a slab page that was
3427 * PFMEMALLOC but right now, we are losing the pfmemalloc
3428 * information when the page leaves the per-cpu allocator
3429 */
3430 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3431 goto deactivate_slab;
3432
3433 /* must check again c->slab in case we got preempted and it changed */
3434 local_lock_irqsave(&s->cpu_slab->lock, flags);
3435 if (unlikely(slab != c->slab)) {
3436 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3437 goto reread_slab;
3438 }
3439 freelist = c->freelist;
3440 if (freelist)
3441 goto load_freelist;
3442
3443 freelist = get_freelist(s, slab);
3444
3445 if (!freelist) {
3446 c->slab = NULL;
3447 c->tid = next_tid(c->tid);
3448 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3449 stat(s, DEACTIVATE_BYPASS);
3450 goto new_slab;
3451 }
3452
3453 stat(s, ALLOC_REFILL);
3454
3455load_freelist:
3456
3457 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3458
3459 /*
3460 * freelist is pointing to the list of objects to be used.
3461 * slab is pointing to the slab from which the objects are obtained.
3462 * That slab must be frozen for per cpu allocations to work.
3463 */
3464 VM_BUG_ON(!c->slab->frozen);
3465 c->freelist = get_freepointer(s, freelist);
3466 c->tid = next_tid(c->tid);
3467 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3468 return freelist;
3469
3470deactivate_slab:
3471
3472 local_lock_irqsave(&s->cpu_slab->lock, flags);
3473 if (slab != c->slab) {
3474 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3475 goto reread_slab;
3476 }
3477 freelist = c->freelist;
3478 c->slab = NULL;
3479 c->freelist = NULL;
3480 c->tid = next_tid(c->tid);
3481 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3482 deactivate_slab(s, slab, freelist);
3483
3484new_slab:
3485
3486#ifdef CONFIG_SLUB_CPU_PARTIAL
3487 while (slub_percpu_partial(c)) {
3488 local_lock_irqsave(&s->cpu_slab->lock, flags);
3489 if (unlikely(c->slab)) {
3490 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3491 goto reread_slab;
3492 }
3493 if (unlikely(!slub_percpu_partial(c))) {
3494 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3495 /* we were preempted and partial list got empty */
3496 goto new_objects;
3497 }
3498
3499 slab = slub_percpu_partial(c);
3500 slub_set_percpu_partial(c, slab);
3501 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3502 stat(s, CPU_PARTIAL_ALLOC);
3503
3504 if (unlikely(!node_match(slab, node) ||
3505 !pfmemalloc_match(slab, gfpflags))) {
3506 slab->next = NULL;
3507 __put_partials(s, slab);
3508 continue;
3509 }
3510
3511 freelist = freeze_slab(s, slab);
3512 goto retry_load_slab;
3513 }
3514#endif
3515
3516new_objects:
3517
3518 pc.flags = gfpflags;
3519 pc.orig_size = orig_size;
3520 slab = get_partial(s, node, &pc);
3521 if (slab) {
3522 if (kmem_cache_debug(s)) {
3523 freelist = pc.object;
3524 /*
3525 * For debug caches here we had to go through
3526 * alloc_single_from_partial() so just store the
3527 * tracking info and return the object.
3528 */
3529 if (s->flags & SLAB_STORE_USER)
3530 set_track(s, freelist, TRACK_ALLOC, addr);
3531
3532 return freelist;
3533 }
3534
3535 freelist = freeze_slab(s, slab);
3536 goto retry_load_slab;
3537 }
3538
3539 slub_put_cpu_ptr(s->cpu_slab);
3540 slab = new_slab(s, gfpflags, node);
3541 c = slub_get_cpu_ptr(s->cpu_slab);
3542
3543 if (unlikely(!slab)) {
3544 slab_out_of_memory(s, gfpflags, node);
3545 return NULL;
3546 }
3547
3548 stat(s, ALLOC_SLAB);
3549
3550 if (kmem_cache_debug(s)) {
3551 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3552
3553 if (unlikely(!freelist))
3554 goto new_objects;
3555
3556 if (s->flags & SLAB_STORE_USER)
3557 set_track(s, freelist, TRACK_ALLOC, addr);
3558
3559 return freelist;
3560 }
3561
3562 /*
3563 * No other reference to the slab yet so we can
3564 * muck around with it freely without cmpxchg
3565 */
3566 freelist = slab->freelist;
3567 slab->freelist = NULL;
3568 slab->inuse = slab->objects;
3569 slab->frozen = 1;
3570
3571 inc_slabs_node(s, slab_nid(slab), slab->objects);
3572
3573 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3574 /*
3575 * For !pfmemalloc_match() case we don't load freelist so that
3576 * we don't make further mismatched allocations easier.
3577 */
3578 deactivate_slab(s, slab, get_freepointer(s, freelist));
3579 return freelist;
3580 }
3581
3582retry_load_slab:
3583
3584 local_lock_irqsave(&s->cpu_slab->lock, flags);
3585 if (unlikely(c->slab)) {
3586 void *flush_freelist = c->freelist;
3587 struct slab *flush_slab = c->slab;
3588
3589 c->slab = NULL;
3590 c->freelist = NULL;
3591 c->tid = next_tid(c->tid);
3592
3593 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3594
3595 deactivate_slab(s, flush_slab, flush_freelist);
3596
3597 stat(s, CPUSLAB_FLUSH);
3598
3599 goto retry_load_slab;
3600 }
3601 c->slab = slab;
3602
3603 goto load_freelist;
3604}
3605
3606/*
3607 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3608 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3609 * pointer.
3610 */
3611static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3612 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3613{
3614 void *p;
3615
3616#ifdef CONFIG_PREEMPT_COUNT
3617 /*
3618 * We may have been preempted and rescheduled on a different
3619 * cpu before disabling preemption. Need to reload cpu area
3620 * pointer.
3621 */
3622 c = slub_get_cpu_ptr(s->cpu_slab);
3623#endif
3624
3625 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3626#ifdef CONFIG_PREEMPT_COUNT
3627 slub_put_cpu_ptr(s->cpu_slab);
3628#endif
3629 return p;
3630}
3631
3632static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3633 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3634{
3635 struct kmem_cache_cpu *c;
3636 struct slab *slab;
3637 unsigned long tid;
3638 void *object;
3639
3640redo:
3641 /*
3642 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3643 * enabled. We may switch back and forth between cpus while
3644 * reading from one cpu area. That does not matter as long
3645 * as we end up on the original cpu again when doing the cmpxchg.
3646 *
3647 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3648 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3649 * the tid. If we are preempted and switched to another cpu between the
3650 * two reads, it's OK as the two are still associated with the same cpu
3651 * and cmpxchg later will validate the cpu.
3652 */
3653 c = raw_cpu_ptr(s->cpu_slab);
3654 tid = READ_ONCE(c->tid);
3655
3656 /*
3657 * Irqless object alloc/free algorithm used here depends on sequence
3658 * of fetching cpu_slab's data. tid should be fetched before anything
3659 * on c to guarantee that object and slab associated with previous tid
3660 * won't be used with current tid. If we fetch tid first, object and
3661 * slab could be one associated with next tid and our alloc/free
3662 * request will be failed. In this case, we will retry. So, no problem.
3663 */
3664 barrier();
3665
3666 /*
3667 * The transaction ids are globally unique per cpu and per operation on
3668 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3669 * occurs on the right processor and that there was no operation on the
3670 * linked list in between.
3671 */
3672
3673 object = c->freelist;
3674 slab = c->slab;
3675
3676 if (!USE_LOCKLESS_FAST_PATH() ||
3677 unlikely(!object || !slab || !node_match(slab, node))) {
3678 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3679 } else {
3680 void *next_object = get_freepointer_safe(s, object);
3681
3682 /*
3683 * The cmpxchg will only match if there was no additional
3684 * operation and if we are on the right processor.
3685 *
3686 * The cmpxchg does the following atomically (without lock
3687 * semantics!)
3688 * 1. Relocate first pointer to the current per cpu area.
3689 * 2. Verify that tid and freelist have not been changed
3690 * 3. If they were not changed replace tid and freelist
3691 *
3692 * Since this is without lock semantics the protection is only
3693 * against code executing on this cpu *not* from access by
3694 * other cpus.
3695 */
3696 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3697 note_cmpxchg_failure("slab_alloc", s, tid);
3698 goto redo;
3699 }
3700 prefetch_freepointer(s, next_object);
3701 stat(s, ALLOC_FASTPATH);
3702 }
3703
3704 return object;
3705}
3706#else /* CONFIG_SLUB_TINY */
3707static void *__slab_alloc_node(struct kmem_cache *s,
3708 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3709{
3710 struct partial_context pc;
3711 struct slab *slab;
3712 void *object;
3713
3714 pc.flags = gfpflags;
3715 pc.orig_size = orig_size;
3716 slab = get_partial(s, node, &pc);
3717
3718 if (slab)
3719 return pc.object;
3720
3721 slab = new_slab(s, gfpflags, node);
3722 if (unlikely(!slab)) {
3723 slab_out_of_memory(s, gfpflags, node);
3724 return NULL;
3725 }
3726
3727 object = alloc_single_from_new_slab(s, slab, orig_size);
3728
3729 return object;
3730}
3731#endif /* CONFIG_SLUB_TINY */
3732
3733/*
3734 * If the object has been wiped upon free, make sure it's fully initialized by
3735 * zeroing out freelist pointer.
3736 */
3737static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3738 void *obj)
3739{
3740 if (unlikely(slab_want_init_on_free(s)) && obj)
3741 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3742 0, sizeof(void *));
3743}
3744
3745noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3746{
3747 if (__should_failslab(s, gfpflags))
3748 return -ENOMEM;
3749 return 0;
3750}
3751ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3752
3753static __fastpath_inline
3754struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3755 struct list_lru *lru,
3756 struct obj_cgroup **objcgp,
3757 size_t size, gfp_t flags)
3758{
3759 flags &= gfp_allowed_mask;
3760
3761 might_alloc(flags);
3762
3763 if (unlikely(should_failslab(s, flags)))
3764 return NULL;
3765
3766 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3767 return NULL;
3768
3769 return s;
3770}
3771
3772static __fastpath_inline
3773void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
3774 gfp_t flags, size_t size, void **p, bool init,
3775 unsigned int orig_size)
3776{
3777 unsigned int zero_size = s->object_size;
3778 bool kasan_init = init;
3779 size_t i;
3780 gfp_t init_flags = flags & gfp_allowed_mask;
3781
3782 /*
3783 * For kmalloc object, the allocated memory size(object_size) is likely
3784 * larger than the requested size(orig_size). If redzone check is
3785 * enabled for the extra space, don't zero it, as it will be redzoned
3786 * soon. The redzone operation for this extra space could be seen as a
3787 * replacement of current poisoning under certain debug option, and
3788 * won't break other sanity checks.
3789 */
3790 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3791 (s->flags & SLAB_KMALLOC))
3792 zero_size = orig_size;
3793
3794 /*
3795 * When slub_debug is enabled, avoid memory initialization integrated
3796 * into KASAN and instead zero out the memory via the memset below with
3797 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3798 * cause false-positive reports. This does not lead to a performance
3799 * penalty on production builds, as slub_debug is not intended to be
3800 * enabled there.
3801 */
3802 if (__slub_debug_enabled())
3803 kasan_init = false;
3804
3805 /*
3806 * As memory initialization might be integrated into KASAN,
3807 * kasan_slab_alloc and initialization memset must be
3808 * kept together to avoid discrepancies in behavior.
3809 *
3810 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3811 */
3812 for (i = 0; i < size; i++) {
3813 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3814 if (p[i] && init && (!kasan_init ||
3815 !kasan_has_integrated_init()))
3816 memset(p[i], 0, zero_size);
3817 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3818 s->flags, init_flags);
3819 kmsan_slab_alloc(s, p[i], init_flags);
3820 }
3821
3822 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3823}
3824
3825/*
3826 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3827 * have the fastpath folded into their functions. So no function call
3828 * overhead for requests that can be satisfied on the fastpath.
3829 *
3830 * The fastpath works by first checking if the lockless freelist can be used.
3831 * If not then __slab_alloc is called for slow processing.
3832 *
3833 * Otherwise we can simply pick the next object from the lockless free list.
3834 */
3835static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3836 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3837{
3838 void *object;
3839 struct obj_cgroup *objcg = NULL;
3840 bool init = false;
3841
3842 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3843 if (unlikely(!s))
3844 return NULL;
3845
3846 object = kfence_alloc(s, orig_size, gfpflags);
3847 if (unlikely(object))
3848 goto out;
3849
3850 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3851
3852 maybe_wipe_obj_freeptr(s, object);
3853 init = slab_want_init_on_alloc(gfpflags, s);
3854
3855out:
3856 /*
3857 * When init equals 'true', like for kzalloc() family, only
3858 * @orig_size bytes might be zeroed instead of s->object_size
3859 */
3860 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3861
3862 return object;
3863}
3864
3865void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3866{
3867 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3868 s->object_size);
3869
3870 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3871
3872 return ret;
3873}
3874EXPORT_SYMBOL(kmem_cache_alloc);
3875
3876void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3877 gfp_t gfpflags)
3878{
3879 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3880 s->object_size);
3881
3882 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3883
3884 return ret;
3885}
3886EXPORT_SYMBOL(kmem_cache_alloc_lru);
3887
3888/**
3889 * kmem_cache_alloc_node - Allocate an object on the specified node
3890 * @s: The cache to allocate from.
3891 * @gfpflags: See kmalloc().
3892 * @node: node number of the target node.
3893 *
3894 * Identical to kmem_cache_alloc but it will allocate memory on the given
3895 * node, which can improve the performance for cpu bound structures.
3896 *
3897 * Fallback to other node is possible if __GFP_THISNODE is not set.
3898 *
3899 * Return: pointer to the new object or %NULL in case of error
3900 */
3901void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3902{
3903 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3904
3905 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3906
3907 return ret;
3908}
3909EXPORT_SYMBOL(kmem_cache_alloc_node);
3910
3911/*
3912 * To avoid unnecessary overhead, we pass through large allocation requests
3913 * directly to the page allocator. We use __GFP_COMP, because we will need to
3914 * know the allocation order to free the pages properly in kfree.
3915 */
3916static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3917{
3918 struct folio *folio;
3919 void *ptr = NULL;
3920 unsigned int order = get_order(size);
3921
3922 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3923 flags = kmalloc_fix_flags(flags);
3924
3925 flags |= __GFP_COMP;
3926 folio = (struct folio *)alloc_pages_node(node, flags, order);
3927 if (folio) {
3928 ptr = folio_address(folio);
3929 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3930 PAGE_SIZE << order);
3931 }
3932
3933 ptr = kasan_kmalloc_large(ptr, size, flags);
3934 /* As ptr might get tagged, call kmemleak hook after KASAN. */
3935 kmemleak_alloc(ptr, size, 1, flags);
3936 kmsan_kmalloc_large(ptr, size, flags);
3937
3938 return ptr;
3939}
3940
3941void *kmalloc_large(size_t size, gfp_t flags)
3942{
3943 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3944
3945 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3946 flags, NUMA_NO_NODE);
3947 return ret;
3948}
3949EXPORT_SYMBOL(kmalloc_large);
3950
3951void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3952{
3953 void *ret = __kmalloc_large_node(size, flags, node);
3954
3955 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3956 flags, node);
3957 return ret;
3958}
3959EXPORT_SYMBOL(kmalloc_large_node);
3960
3961static __always_inline
3962void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3963 unsigned long caller)
3964{
3965 struct kmem_cache *s;
3966 void *ret;
3967
3968 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3969 ret = __kmalloc_large_node(size, flags, node);
3970 trace_kmalloc(caller, ret, size,
3971 PAGE_SIZE << get_order(size), flags, node);
3972 return ret;
3973 }
3974
3975 if (unlikely(!size))
3976 return ZERO_SIZE_PTR;
3977
3978 s = kmalloc_slab(size, flags, caller);
3979
3980 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3981 ret = kasan_kmalloc(s, ret, size, flags);
3982 trace_kmalloc(caller, ret, size, s->size, flags, node);
3983 return ret;
3984}
3985
3986void *__kmalloc_node(size_t size, gfp_t flags, int node)
3987{
3988 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3989}
3990EXPORT_SYMBOL(__kmalloc_node);
3991
3992void *__kmalloc(size_t size, gfp_t flags)
3993{
3994 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3995}
3996EXPORT_SYMBOL(__kmalloc);
3997
3998void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3999 int node, unsigned long caller)
4000{
4001 return __do_kmalloc_node(size, flags, node, caller);
4002}
4003EXPORT_SYMBOL(__kmalloc_node_track_caller);
4004
4005void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4006{
4007 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4008 _RET_IP_, size);
4009
4010 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4011
4012 ret = kasan_kmalloc(s, ret, size, gfpflags);
4013 return ret;
4014}
4015EXPORT_SYMBOL(kmalloc_trace);
4016
4017void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4018 int node, size_t size)
4019{
4020 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4021
4022 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4023
4024 ret = kasan_kmalloc(s, ret, size, gfpflags);
4025 return ret;
4026}
4027EXPORT_SYMBOL(kmalloc_node_trace);
4028
4029static noinline void free_to_partial_list(
4030 struct kmem_cache *s, struct slab *slab,
4031 void *head, void *tail, int bulk_cnt,
4032 unsigned long addr)
4033{
4034 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4035 struct slab *slab_free = NULL;
4036 int cnt = bulk_cnt;
4037 unsigned long flags;
4038 depot_stack_handle_t handle = 0;
4039
4040 if (s->flags & SLAB_STORE_USER)
4041 handle = set_track_prepare();
4042
4043 spin_lock_irqsave(&n->list_lock, flags);
4044
4045 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4046 void *prior = slab->freelist;
4047
4048 /* Perform the actual freeing while we still hold the locks */
4049 slab->inuse -= cnt;
4050 set_freepointer(s, tail, prior);
4051 slab->freelist = head;
4052
4053 /*
4054 * If the slab is empty, and node's partial list is full,
4055 * it should be discarded anyway no matter it's on full or
4056 * partial list.
4057 */
4058 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4059 slab_free = slab;
4060
4061 if (!prior) {
4062 /* was on full list */
4063 remove_full(s, n, slab);
4064 if (!slab_free) {
4065 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4066 stat(s, FREE_ADD_PARTIAL);
4067 }
4068 } else if (slab_free) {
4069 remove_partial(n, slab);
4070 stat(s, FREE_REMOVE_PARTIAL);
4071 }
4072 }
4073
4074 if (slab_free) {
4075 /*
4076 * Update the counters while still holding n->list_lock to
4077 * prevent spurious validation warnings
4078 */
4079 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4080 }
4081
4082 spin_unlock_irqrestore(&n->list_lock, flags);
4083
4084 if (slab_free) {
4085 stat(s, FREE_SLAB);
4086 free_slab(s, slab_free);
4087 }
4088}
4089
4090/*
4091 * Slow path handling. This may still be called frequently since objects
4092 * have a longer lifetime than the cpu slabs in most processing loads.
4093 *
4094 * So we still attempt to reduce cache line usage. Just take the slab
4095 * lock and free the item. If there is no additional partial slab
4096 * handling required then we can return immediately.
4097 */
4098static void __slab_free(struct kmem_cache *s, struct slab *slab,
4099 void *head, void *tail, int cnt,
4100 unsigned long addr)
4101
4102{
4103 void *prior;
4104 int was_frozen;
4105 struct slab new;
4106 unsigned long counters;
4107 struct kmem_cache_node *n = NULL;
4108 unsigned long flags;
4109 bool on_node_partial;
4110
4111 stat(s, FREE_SLOWPATH);
4112
4113 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4114 free_to_partial_list(s, slab, head, tail, cnt, addr);
4115 return;
4116 }
4117
4118 do {
4119 if (unlikely(n)) {
4120 spin_unlock_irqrestore(&n->list_lock, flags);
4121 n = NULL;
4122 }
4123 prior = slab->freelist;
4124 counters = slab->counters;
4125 set_freepointer(s, tail, prior);
4126 new.counters = counters;
4127 was_frozen = new.frozen;
4128 new.inuse -= cnt;
4129 if ((!new.inuse || !prior) && !was_frozen) {
4130 /* Needs to be taken off a list */
4131 if (!kmem_cache_has_cpu_partial(s) || prior) {
4132
4133 n = get_node(s, slab_nid(slab));
4134 /*
4135 * Speculatively acquire the list_lock.
4136 * If the cmpxchg does not succeed then we may
4137 * drop the list_lock without any processing.
4138 *
4139 * Otherwise the list_lock will synchronize with
4140 * other processors updating the list of slabs.
4141 */
4142 spin_lock_irqsave(&n->list_lock, flags);
4143
4144 on_node_partial = slab_test_node_partial(slab);
4145 }
4146 }
4147
4148 } while (!slab_update_freelist(s, slab,
4149 prior, counters,
4150 head, new.counters,
4151 "__slab_free"));
4152
4153 if (likely(!n)) {
4154
4155 if (likely(was_frozen)) {
4156 /*
4157 * The list lock was not taken therefore no list
4158 * activity can be necessary.
4159 */
4160 stat(s, FREE_FROZEN);
4161 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4162 /*
4163 * If we started with a full slab then put it onto the
4164 * per cpu partial list.
4165 */
4166 put_cpu_partial(s, slab, 1);
4167 stat(s, CPU_PARTIAL_FREE);
4168 }
4169
4170 return;
4171 }
4172
4173 /*
4174 * This slab was partially empty but not on the per-node partial list,
4175 * in which case we shouldn't manipulate its list, just return.
4176 */
4177 if (prior && !on_node_partial) {
4178 spin_unlock_irqrestore(&n->list_lock, flags);
4179 return;
4180 }
4181
4182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4183 goto slab_empty;
4184
4185 /*
4186 * Objects left in the slab. If it was not on the partial list before
4187 * then add it.
4188 */
4189 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4190 remove_full(s, n, slab);
4191 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4192 stat(s, FREE_ADD_PARTIAL);
4193 }
4194 spin_unlock_irqrestore(&n->list_lock, flags);
4195 return;
4196
4197slab_empty:
4198 if (prior) {
4199 /*
4200 * Slab on the partial list.
4201 */
4202 remove_partial(n, slab);
4203 stat(s, FREE_REMOVE_PARTIAL);
4204 } else {
4205 /* Slab must be on the full list */
4206 remove_full(s, n, slab);
4207 }
4208
4209 spin_unlock_irqrestore(&n->list_lock, flags);
4210 stat(s, FREE_SLAB);
4211 discard_slab(s, slab);
4212}
4213
4214#ifndef CONFIG_SLUB_TINY
4215/*
4216 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4217 * can perform fastpath freeing without additional function calls.
4218 *
4219 * The fastpath is only possible if we are freeing to the current cpu slab
4220 * of this processor. This typically the case if we have just allocated
4221 * the item before.
4222 *
4223 * If fastpath is not possible then fall back to __slab_free where we deal
4224 * with all sorts of special processing.
4225 *
4226 * Bulk free of a freelist with several objects (all pointing to the
4227 * same slab) possible by specifying head and tail ptr, plus objects
4228 * count (cnt). Bulk free indicated by tail pointer being set.
4229 */
4230static __always_inline void do_slab_free(struct kmem_cache *s,
4231 struct slab *slab, void *head, void *tail,
4232 int cnt, unsigned long addr)
4233{
4234 struct kmem_cache_cpu *c;
4235 unsigned long tid;
4236 void **freelist;
4237
4238redo:
4239 /*
4240 * Determine the currently cpus per cpu slab.
4241 * The cpu may change afterward. However that does not matter since
4242 * data is retrieved via this pointer. If we are on the same cpu
4243 * during the cmpxchg then the free will succeed.
4244 */
4245 c = raw_cpu_ptr(s->cpu_slab);
4246 tid = READ_ONCE(c->tid);
4247
4248 /* Same with comment on barrier() in slab_alloc_node() */
4249 barrier();
4250
4251 if (unlikely(slab != c->slab)) {
4252 __slab_free(s, slab, head, tail, cnt, addr);
4253 return;
4254 }
4255
4256 if (USE_LOCKLESS_FAST_PATH()) {
4257 freelist = READ_ONCE(c->freelist);
4258
4259 set_freepointer(s, tail, freelist);
4260
4261 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4262 note_cmpxchg_failure("slab_free", s, tid);
4263 goto redo;
4264 }
4265 } else {
4266 /* Update the free list under the local lock */
4267 local_lock(&s->cpu_slab->lock);
4268 c = this_cpu_ptr(s->cpu_slab);
4269 if (unlikely(slab != c->slab)) {
4270 local_unlock(&s->cpu_slab->lock);
4271 goto redo;
4272 }
4273 tid = c->tid;
4274 freelist = c->freelist;
4275
4276 set_freepointer(s, tail, freelist);
4277 c->freelist = head;
4278 c->tid = next_tid(tid);
4279
4280 local_unlock(&s->cpu_slab->lock);
4281 }
4282 stat_add(s, FREE_FASTPATH, cnt);
4283}
4284#else /* CONFIG_SLUB_TINY */
4285static void do_slab_free(struct kmem_cache *s,
4286 struct slab *slab, void *head, void *tail,
4287 int cnt, unsigned long addr)
4288{
4289 __slab_free(s, slab, head, tail, cnt, addr);
4290}
4291#endif /* CONFIG_SLUB_TINY */
4292
4293static __fastpath_inline
4294void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4295 unsigned long addr)
4296{
4297 memcg_slab_free_hook(s, slab, &object, 1);
4298
4299 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4300 do_slab_free(s, slab, object, object, 1, addr);
4301}
4302
4303static __fastpath_inline
4304void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4305 void *tail, void **p, int cnt, unsigned long addr)
4306{
4307 memcg_slab_free_hook(s, slab, p, cnt);
4308 /*
4309 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4310 * to remove objects, whose reuse must be delayed.
4311 */
4312 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4313 do_slab_free(s, slab, head, tail, cnt, addr);
4314}
4315
4316#ifdef CONFIG_KASAN_GENERIC
4317void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4318{
4319 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4320}
4321#endif
4322
4323static inline struct kmem_cache *virt_to_cache(const void *obj)
4324{
4325 struct slab *slab;
4326
4327 slab = virt_to_slab(obj);
4328 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4329 return NULL;
4330 return slab->slab_cache;
4331}
4332
4333static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4334{
4335 struct kmem_cache *cachep;
4336
4337 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4338 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4339 return s;
4340
4341 cachep = virt_to_cache(x);
4342 if (WARN(cachep && cachep != s,
4343 "%s: Wrong slab cache. %s but object is from %s\n",
4344 __func__, s->name, cachep->name))
4345 print_tracking(cachep, x);
4346 return cachep;
4347}
4348
4349/**
4350 * kmem_cache_free - Deallocate an object
4351 * @s: The cache the allocation was from.
4352 * @x: The previously allocated object.
4353 *
4354 * Free an object which was previously allocated from this
4355 * cache.
4356 */
4357void kmem_cache_free(struct kmem_cache *s, void *x)
4358{
4359 s = cache_from_obj(s, x);
4360 if (!s)
4361 return;
4362 trace_kmem_cache_free(_RET_IP_, x, s);
4363 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4364}
4365EXPORT_SYMBOL(kmem_cache_free);
4366
4367static void free_large_kmalloc(struct folio *folio, void *object)
4368{
4369 unsigned int order = folio_order(folio);
4370
4371 if (WARN_ON_ONCE(order == 0))
4372 pr_warn_once("object pointer: 0x%p\n", object);
4373
4374 kmemleak_free(object);
4375 kasan_kfree_large(object);
4376 kmsan_kfree_large(object);
4377
4378 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4379 -(PAGE_SIZE << order));
4380 folio_put(folio);
4381}
4382
4383/**
4384 * kfree - free previously allocated memory
4385 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4386 *
4387 * If @object is NULL, no operation is performed.
4388 */
4389void kfree(const void *object)
4390{
4391 struct folio *folio;
4392 struct slab *slab;
4393 struct kmem_cache *s;
4394 void *x = (void *)object;
4395
4396 trace_kfree(_RET_IP_, object);
4397
4398 if (unlikely(ZERO_OR_NULL_PTR(object)))
4399 return;
4400
4401 folio = virt_to_folio(object);
4402 if (unlikely(!folio_test_slab(folio))) {
4403 free_large_kmalloc(folio, (void *)object);
4404 return;
4405 }
4406
4407 slab = folio_slab(folio);
4408 s = slab->slab_cache;
4409 slab_free(s, slab, x, _RET_IP_);
4410}
4411EXPORT_SYMBOL(kfree);
4412
4413struct detached_freelist {
4414 struct slab *slab;
4415 void *tail;
4416 void *freelist;
4417 int cnt;
4418 struct kmem_cache *s;
4419};
4420
4421/*
4422 * This function progressively scans the array with free objects (with
4423 * a limited look ahead) and extract objects belonging to the same
4424 * slab. It builds a detached freelist directly within the given
4425 * slab/objects. This can happen without any need for
4426 * synchronization, because the objects are owned by running process.
4427 * The freelist is build up as a single linked list in the objects.
4428 * The idea is, that this detached freelist can then be bulk
4429 * transferred to the real freelist(s), but only requiring a single
4430 * synchronization primitive. Look ahead in the array is limited due
4431 * to performance reasons.
4432 */
4433static inline
4434int build_detached_freelist(struct kmem_cache *s, size_t size,
4435 void **p, struct detached_freelist *df)
4436{
4437 int lookahead = 3;
4438 void *object;
4439 struct folio *folio;
4440 size_t same;
4441
4442 object = p[--size];
4443 folio = virt_to_folio(object);
4444 if (!s) {
4445 /* Handle kalloc'ed objects */
4446 if (unlikely(!folio_test_slab(folio))) {
4447 free_large_kmalloc(folio, object);
4448 df->slab = NULL;
4449 return size;
4450 }
4451 /* Derive kmem_cache from object */
4452 df->slab = folio_slab(folio);
4453 df->s = df->slab->slab_cache;
4454 } else {
4455 df->slab = folio_slab(folio);
4456 df->s = cache_from_obj(s, object); /* Support for memcg */
4457 }
4458
4459 /* Start new detached freelist */
4460 df->tail = object;
4461 df->freelist = object;
4462 df->cnt = 1;
4463
4464 if (is_kfence_address(object))
4465 return size;
4466
4467 set_freepointer(df->s, object, NULL);
4468
4469 same = size;
4470 while (size) {
4471 object = p[--size];
4472 /* df->slab is always set at this point */
4473 if (df->slab == virt_to_slab(object)) {
4474 /* Opportunity build freelist */
4475 set_freepointer(df->s, object, df->freelist);
4476 df->freelist = object;
4477 df->cnt++;
4478 same--;
4479 if (size != same)
4480 swap(p[size], p[same]);
4481 continue;
4482 }
4483
4484 /* Limit look ahead search */
4485 if (!--lookahead)
4486 break;
4487 }
4488
4489 return same;
4490}
4491
4492/*
4493 * Internal bulk free of objects that were not initialised by the post alloc
4494 * hooks and thus should not be processed by the free hooks
4495 */
4496static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4497{
4498 if (!size)
4499 return;
4500
4501 do {
4502 struct detached_freelist df;
4503
4504 size = build_detached_freelist(s, size, p, &df);
4505 if (!df.slab)
4506 continue;
4507
4508 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4509 _RET_IP_);
4510 } while (likely(size));
4511}
4512
4513/* Note that interrupts must be enabled when calling this function. */
4514void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4515{
4516 if (!size)
4517 return;
4518
4519 do {
4520 struct detached_freelist df;
4521
4522 size = build_detached_freelist(s, size, p, &df);
4523 if (!df.slab)
4524 continue;
4525
4526 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4527 df.cnt, _RET_IP_);
4528 } while (likely(size));
4529}
4530EXPORT_SYMBOL(kmem_cache_free_bulk);
4531
4532#ifndef CONFIG_SLUB_TINY
4533static inline
4534int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4535 void **p)
4536{
4537 struct kmem_cache_cpu *c;
4538 unsigned long irqflags;
4539 int i;
4540
4541 /*
4542 * Drain objects in the per cpu slab, while disabling local
4543 * IRQs, which protects against PREEMPT and interrupts
4544 * handlers invoking normal fastpath.
4545 */
4546 c = slub_get_cpu_ptr(s->cpu_slab);
4547 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4548
4549 for (i = 0; i < size; i++) {
4550 void *object = kfence_alloc(s, s->object_size, flags);
4551
4552 if (unlikely(object)) {
4553 p[i] = object;
4554 continue;
4555 }
4556
4557 object = c->freelist;
4558 if (unlikely(!object)) {
4559 /*
4560 * We may have removed an object from c->freelist using
4561 * the fastpath in the previous iteration; in that case,
4562 * c->tid has not been bumped yet.
4563 * Since ___slab_alloc() may reenable interrupts while
4564 * allocating memory, we should bump c->tid now.
4565 */
4566 c->tid = next_tid(c->tid);
4567
4568 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4569
4570 /*
4571 * Invoking slow path likely have side-effect
4572 * of re-populating per CPU c->freelist
4573 */
4574 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4575 _RET_IP_, c, s->object_size);
4576 if (unlikely(!p[i]))
4577 goto error;
4578
4579 c = this_cpu_ptr(s->cpu_slab);
4580 maybe_wipe_obj_freeptr(s, p[i]);
4581
4582 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4583
4584 continue; /* goto for-loop */
4585 }
4586 c->freelist = get_freepointer(s, object);
4587 p[i] = object;
4588 maybe_wipe_obj_freeptr(s, p[i]);
4589 stat(s, ALLOC_FASTPATH);
4590 }
4591 c->tid = next_tid(c->tid);
4592 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4593 slub_put_cpu_ptr(s->cpu_slab);
4594
4595 return i;
4596
4597error:
4598 slub_put_cpu_ptr(s->cpu_slab);
4599 __kmem_cache_free_bulk(s, i, p);
4600 return 0;
4601
4602}
4603#else /* CONFIG_SLUB_TINY */
4604static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4605 size_t size, void **p)
4606{
4607 int i;
4608
4609 for (i = 0; i < size; i++) {
4610 void *object = kfence_alloc(s, s->object_size, flags);
4611
4612 if (unlikely(object)) {
4613 p[i] = object;
4614 continue;
4615 }
4616
4617 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4618 _RET_IP_, s->object_size);
4619 if (unlikely(!p[i]))
4620 goto error;
4621
4622 maybe_wipe_obj_freeptr(s, p[i]);
4623 }
4624
4625 return i;
4626
4627error:
4628 __kmem_cache_free_bulk(s, i, p);
4629 return 0;
4630}
4631#endif /* CONFIG_SLUB_TINY */
4632
4633/* Note that interrupts must be enabled when calling this function. */
4634int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4635 void **p)
4636{
4637 int i;
4638 struct obj_cgroup *objcg = NULL;
4639
4640 if (!size)
4641 return 0;
4642
4643 /* memcg and kmem_cache debug support */
4644 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4645 if (unlikely(!s))
4646 return 0;
4647
4648 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4649
4650 /*
4651 * memcg and kmem_cache debug support and memory initialization.
4652 * Done outside of the IRQ disabled fastpath loop.
4653 */
4654 if (likely(i != 0)) {
4655 slab_post_alloc_hook(s, objcg, flags, size, p,
4656 slab_want_init_on_alloc(flags, s), s->object_size);
4657 } else {
4658 memcg_slab_alloc_error_hook(s, size, objcg);
4659 }
4660
4661 return i;
4662}
4663EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4664
4665
4666/*
4667 * Object placement in a slab is made very easy because we always start at
4668 * offset 0. If we tune the size of the object to the alignment then we can
4669 * get the required alignment by putting one properly sized object after
4670 * another.
4671 *
4672 * Notice that the allocation order determines the sizes of the per cpu
4673 * caches. Each processor has always one slab available for allocations.
4674 * Increasing the allocation order reduces the number of times that slabs
4675 * must be moved on and off the partial lists and is therefore a factor in
4676 * locking overhead.
4677 */
4678
4679/*
4680 * Minimum / Maximum order of slab pages. This influences locking overhead
4681 * and slab fragmentation. A higher order reduces the number of partial slabs
4682 * and increases the number of allocations possible without having to
4683 * take the list_lock.
4684 */
4685static unsigned int slub_min_order;
4686static unsigned int slub_max_order =
4687 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4688static unsigned int slub_min_objects;
4689
4690/*
4691 * Calculate the order of allocation given an slab object size.
4692 *
4693 * The order of allocation has significant impact on performance and other
4694 * system components. Generally order 0 allocations should be preferred since
4695 * order 0 does not cause fragmentation in the page allocator. Larger objects
4696 * be problematic to put into order 0 slabs because there may be too much
4697 * unused space left. We go to a higher order if more than 1/16th of the slab
4698 * would be wasted.
4699 *
4700 * In order to reach satisfactory performance we must ensure that a minimum
4701 * number of objects is in one slab. Otherwise we may generate too much
4702 * activity on the partial lists which requires taking the list_lock. This is
4703 * less a concern for large slabs though which are rarely used.
4704 *
4705 * slub_max_order specifies the order where we begin to stop considering the
4706 * number of objects in a slab as critical. If we reach slub_max_order then
4707 * we try to keep the page order as low as possible. So we accept more waste
4708 * of space in favor of a small page order.
4709 *
4710 * Higher order allocations also allow the placement of more objects in a
4711 * slab and thereby reduce object handling overhead. If the user has
4712 * requested a higher minimum order then we start with that one instead of
4713 * the smallest order which will fit the object.
4714 */
4715static inline unsigned int calc_slab_order(unsigned int size,
4716 unsigned int min_order, unsigned int max_order,
4717 unsigned int fract_leftover)
4718{
4719 unsigned int order;
4720
4721 for (order = min_order; order <= max_order; order++) {
4722
4723 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4724 unsigned int rem;
4725
4726 rem = slab_size % size;
4727
4728 if (rem <= slab_size / fract_leftover)
4729 break;
4730 }
4731
4732 return order;
4733}
4734
4735static inline int calculate_order(unsigned int size)
4736{
4737 unsigned int order;
4738 unsigned int min_objects;
4739 unsigned int max_objects;
4740 unsigned int min_order;
4741
4742 min_objects = slub_min_objects;
4743 if (!min_objects) {
4744 /*
4745 * Some architectures will only update present cpus when
4746 * onlining them, so don't trust the number if it's just 1. But
4747 * we also don't want to use nr_cpu_ids always, as on some other
4748 * architectures, there can be many possible cpus, but never
4749 * onlined. Here we compromise between trying to avoid too high
4750 * order on systems that appear larger than they are, and too
4751 * low order on systems that appear smaller than they are.
4752 */
4753 unsigned int nr_cpus = num_present_cpus();
4754 if (nr_cpus <= 1)
4755 nr_cpus = nr_cpu_ids;
4756 min_objects = 4 * (fls(nr_cpus) + 1);
4757 }
4758 /* min_objects can't be 0 because get_order(0) is undefined */
4759 max_objects = max(order_objects(slub_max_order, size), 1U);
4760 min_objects = min(min_objects, max_objects);
4761
4762 min_order = max_t(unsigned int, slub_min_order,
4763 get_order(min_objects * size));
4764 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4765 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4766
4767 /*
4768 * Attempt to find best configuration for a slab. This works by first
4769 * attempting to generate a layout with the best possible configuration
4770 * and backing off gradually.
4771 *
4772 * We start with accepting at most 1/16 waste and try to find the
4773 * smallest order from min_objects-derived/slub_min_order up to
4774 * slub_max_order that will satisfy the constraint. Note that increasing
4775 * the order can only result in same or less fractional waste, not more.
4776 *
4777 * If that fails, we increase the acceptable fraction of waste and try
4778 * again. The last iteration with fraction of 1/2 would effectively
4779 * accept any waste and give us the order determined by min_objects, as
4780 * long as at least single object fits within slub_max_order.
4781 */
4782 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4783 order = calc_slab_order(size, min_order, slub_max_order,
4784 fraction);
4785 if (order <= slub_max_order)
4786 return order;
4787 }
4788
4789 /*
4790 * Doh this slab cannot be placed using slub_max_order.
4791 */
4792 order = get_order(size);
4793 if (order <= MAX_PAGE_ORDER)
4794 return order;
4795 return -ENOSYS;
4796}
4797
4798static void
4799init_kmem_cache_node(struct kmem_cache_node *n)
4800{
4801 n->nr_partial = 0;
4802 spin_lock_init(&n->list_lock);
4803 INIT_LIST_HEAD(&n->partial);
4804#ifdef CONFIG_SLUB_DEBUG
4805 atomic_long_set(&n->nr_slabs, 0);
4806 atomic_long_set(&n->total_objects, 0);
4807 INIT_LIST_HEAD(&n->full);
4808#endif
4809}
4810
4811#ifndef CONFIG_SLUB_TINY
4812static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4813{
4814 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4815 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4816 sizeof(struct kmem_cache_cpu));
4817
4818 /*
4819 * Must align to double word boundary for the double cmpxchg
4820 * instructions to work; see __pcpu_double_call_return_bool().
4821 */
4822 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4823 2 * sizeof(void *));
4824
4825 if (!s->cpu_slab)
4826 return 0;
4827
4828 init_kmem_cache_cpus(s);
4829
4830 return 1;
4831}
4832#else
4833static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4834{
4835 return 1;
4836}
4837#endif /* CONFIG_SLUB_TINY */
4838
4839static struct kmem_cache *kmem_cache_node;
4840
4841/*
4842 * No kmalloc_node yet so do it by hand. We know that this is the first
4843 * slab on the node for this slabcache. There are no concurrent accesses
4844 * possible.
4845 *
4846 * Note that this function only works on the kmem_cache_node
4847 * when allocating for the kmem_cache_node. This is used for bootstrapping
4848 * memory on a fresh node that has no slab structures yet.
4849 */
4850static void early_kmem_cache_node_alloc(int node)
4851{
4852 struct slab *slab;
4853 struct kmem_cache_node *n;
4854
4855 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4856
4857 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4858
4859 BUG_ON(!slab);
4860 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4861 if (slab_nid(slab) != node) {
4862 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4863 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4864 }
4865
4866 n = slab->freelist;
4867 BUG_ON(!n);
4868#ifdef CONFIG_SLUB_DEBUG
4869 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4870 init_tracking(kmem_cache_node, n);
4871#endif
4872 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4873 slab->freelist = get_freepointer(kmem_cache_node, n);
4874 slab->inuse = 1;
4875 kmem_cache_node->node[node] = n;
4876 init_kmem_cache_node(n);
4877 inc_slabs_node(kmem_cache_node, node, slab->objects);
4878
4879 /*
4880 * No locks need to be taken here as it has just been
4881 * initialized and there is no concurrent access.
4882 */
4883 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4884}
4885
4886static void free_kmem_cache_nodes(struct kmem_cache *s)
4887{
4888 int node;
4889 struct kmem_cache_node *n;
4890
4891 for_each_kmem_cache_node(s, node, n) {
4892 s->node[node] = NULL;
4893 kmem_cache_free(kmem_cache_node, n);
4894 }
4895}
4896
4897void __kmem_cache_release(struct kmem_cache *s)
4898{
4899 cache_random_seq_destroy(s);
4900#ifndef CONFIG_SLUB_TINY
4901 free_percpu(s->cpu_slab);
4902#endif
4903 free_kmem_cache_nodes(s);
4904}
4905
4906static int init_kmem_cache_nodes(struct kmem_cache *s)
4907{
4908 int node;
4909
4910 for_each_node_mask(node, slab_nodes) {
4911 struct kmem_cache_node *n;
4912
4913 if (slab_state == DOWN) {
4914 early_kmem_cache_node_alloc(node);
4915 continue;
4916 }
4917 n = kmem_cache_alloc_node(kmem_cache_node,
4918 GFP_KERNEL, node);
4919
4920 if (!n) {
4921 free_kmem_cache_nodes(s);
4922 return 0;
4923 }
4924
4925 init_kmem_cache_node(n);
4926 s->node[node] = n;
4927 }
4928 return 1;
4929}
4930
4931static void set_cpu_partial(struct kmem_cache *s)
4932{
4933#ifdef CONFIG_SLUB_CPU_PARTIAL
4934 unsigned int nr_objects;
4935
4936 /*
4937 * cpu_partial determined the maximum number of objects kept in the
4938 * per cpu partial lists of a processor.
4939 *
4940 * Per cpu partial lists mainly contain slabs that just have one
4941 * object freed. If they are used for allocation then they can be
4942 * filled up again with minimal effort. The slab will never hit the
4943 * per node partial lists and therefore no locking will be required.
4944 *
4945 * For backwards compatibility reasons, this is determined as number
4946 * of objects, even though we now limit maximum number of pages, see
4947 * slub_set_cpu_partial()
4948 */
4949 if (!kmem_cache_has_cpu_partial(s))
4950 nr_objects = 0;
4951 else if (s->size >= PAGE_SIZE)
4952 nr_objects = 6;
4953 else if (s->size >= 1024)
4954 nr_objects = 24;
4955 else if (s->size >= 256)
4956 nr_objects = 52;
4957 else
4958 nr_objects = 120;
4959
4960 slub_set_cpu_partial(s, nr_objects);
4961#endif
4962}
4963
4964/*
4965 * calculate_sizes() determines the order and the distribution of data within
4966 * a slab object.
4967 */
4968static int calculate_sizes(struct kmem_cache *s)
4969{
4970 slab_flags_t flags = s->flags;
4971 unsigned int size = s->object_size;
4972 unsigned int order;
4973
4974 /*
4975 * Round up object size to the next word boundary. We can only
4976 * place the free pointer at word boundaries and this determines
4977 * the possible location of the free pointer.
4978 */
4979 size = ALIGN(size, sizeof(void *));
4980
4981#ifdef CONFIG_SLUB_DEBUG
4982 /*
4983 * Determine if we can poison the object itself. If the user of
4984 * the slab may touch the object after free or before allocation
4985 * then we should never poison the object itself.
4986 */
4987 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4988 !s->ctor)
4989 s->flags |= __OBJECT_POISON;
4990 else
4991 s->flags &= ~__OBJECT_POISON;
4992
4993
4994 /*
4995 * If we are Redzoning then check if there is some space between the
4996 * end of the object and the free pointer. If not then add an
4997 * additional word to have some bytes to store Redzone information.
4998 */
4999 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5000 size += sizeof(void *);
5001#endif
5002
5003 /*
5004 * With that we have determined the number of bytes in actual use
5005 * by the object and redzoning.
5006 */
5007 s->inuse = size;
5008
5009 if (slub_debug_orig_size(s) ||
5010 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5011 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5012 s->ctor) {
5013 /*
5014 * Relocate free pointer after the object if it is not
5015 * permitted to overwrite the first word of the object on
5016 * kmem_cache_free.
5017 *
5018 * This is the case if we do RCU, have a constructor or
5019 * destructor, are poisoning the objects, or are
5020 * redzoning an object smaller than sizeof(void *).
5021 *
5022 * The assumption that s->offset >= s->inuse means free
5023 * pointer is outside of the object is used in the
5024 * freeptr_outside_object() function. If that is no
5025 * longer true, the function needs to be modified.
5026 */
5027 s->offset = size;
5028 size += sizeof(void *);
5029 } else {
5030 /*
5031 * Store freelist pointer near middle of object to keep
5032 * it away from the edges of the object to avoid small
5033 * sized over/underflows from neighboring allocations.
5034 */
5035 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5036 }
5037
5038#ifdef CONFIG_SLUB_DEBUG
5039 if (flags & SLAB_STORE_USER) {
5040 /*
5041 * Need to store information about allocs and frees after
5042 * the object.
5043 */
5044 size += 2 * sizeof(struct track);
5045
5046 /* Save the original kmalloc request size */
5047 if (flags & SLAB_KMALLOC)
5048 size += sizeof(unsigned int);
5049 }
5050#endif
5051
5052 kasan_cache_create(s, &size, &s->flags);
5053#ifdef CONFIG_SLUB_DEBUG
5054 if (flags & SLAB_RED_ZONE) {
5055 /*
5056 * Add some empty padding so that we can catch
5057 * overwrites from earlier objects rather than let
5058 * tracking information or the free pointer be
5059 * corrupted if a user writes before the start
5060 * of the object.
5061 */
5062 size += sizeof(void *);
5063
5064 s->red_left_pad = sizeof(void *);
5065 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5066 size += s->red_left_pad;
5067 }
5068#endif
5069
5070 /*
5071 * SLUB stores one object immediately after another beginning from
5072 * offset 0. In order to align the objects we have to simply size
5073 * each object to conform to the alignment.
5074 */
5075 size = ALIGN(size, s->align);
5076 s->size = size;
5077 s->reciprocal_size = reciprocal_value(size);
5078 order = calculate_order(size);
5079
5080 if ((int)order < 0)
5081 return 0;
5082
5083 s->allocflags = 0;
5084 if (order)
5085 s->allocflags |= __GFP_COMP;
5086
5087 if (s->flags & SLAB_CACHE_DMA)
5088 s->allocflags |= GFP_DMA;
5089
5090 if (s->flags & SLAB_CACHE_DMA32)
5091 s->allocflags |= GFP_DMA32;
5092
5093 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5094 s->allocflags |= __GFP_RECLAIMABLE;
5095
5096 /*
5097 * Determine the number of objects per slab
5098 */
5099 s->oo = oo_make(order, size);
5100 s->min = oo_make(get_order(size), size);
5101
5102 return !!oo_objects(s->oo);
5103}
5104
5105static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5106{
5107 s->flags = kmem_cache_flags(s->size, flags, s->name);
5108#ifdef CONFIG_SLAB_FREELIST_HARDENED
5109 s->random = get_random_long();
5110#endif
5111
5112 if (!calculate_sizes(s))
5113 goto error;
5114 if (disable_higher_order_debug) {
5115 /*
5116 * Disable debugging flags that store metadata if the min slab
5117 * order increased.
5118 */
5119 if (get_order(s->size) > get_order(s->object_size)) {
5120 s->flags &= ~DEBUG_METADATA_FLAGS;
5121 s->offset = 0;
5122 if (!calculate_sizes(s))
5123 goto error;
5124 }
5125 }
5126
5127#ifdef system_has_freelist_aba
5128 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5129 /* Enable fast mode */
5130 s->flags |= __CMPXCHG_DOUBLE;
5131 }
5132#endif
5133
5134 /*
5135 * The larger the object size is, the more slabs we want on the partial
5136 * list to avoid pounding the page allocator excessively.
5137 */
5138 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5139 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5140
5141 set_cpu_partial(s);
5142
5143#ifdef CONFIG_NUMA
5144 s->remote_node_defrag_ratio = 1000;
5145#endif
5146
5147 /* Initialize the pre-computed randomized freelist if slab is up */
5148 if (slab_state >= UP) {
5149 if (init_cache_random_seq(s))
5150 goto error;
5151 }
5152
5153 if (!init_kmem_cache_nodes(s))
5154 goto error;
5155
5156 if (alloc_kmem_cache_cpus(s))
5157 return 0;
5158
5159error:
5160 __kmem_cache_release(s);
5161 return -EINVAL;
5162}
5163
5164static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5165 const char *text)
5166{
5167#ifdef CONFIG_SLUB_DEBUG
5168 void *addr = slab_address(slab);
5169 void *p;
5170
5171 slab_err(s, slab, text, s->name);
5172
5173 spin_lock(&object_map_lock);
5174 __fill_map(object_map, s, slab);
5175
5176 for_each_object(p, s, addr, slab->objects) {
5177
5178 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5179 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5180 print_tracking(s, p);
5181 }
5182 }
5183 spin_unlock(&object_map_lock);
5184#endif
5185}
5186
5187/*
5188 * Attempt to free all partial slabs on a node.
5189 * This is called from __kmem_cache_shutdown(). We must take list_lock
5190 * because sysfs file might still access partial list after the shutdowning.
5191 */
5192static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5193{
5194 LIST_HEAD(discard);
5195 struct slab *slab, *h;
5196
5197 BUG_ON(irqs_disabled());
5198 spin_lock_irq(&n->list_lock);
5199 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5200 if (!slab->inuse) {
5201 remove_partial(n, slab);
5202 list_add(&slab->slab_list, &discard);
5203 } else {
5204 list_slab_objects(s, slab,
5205 "Objects remaining in %s on __kmem_cache_shutdown()");
5206 }
5207 }
5208 spin_unlock_irq(&n->list_lock);
5209
5210 list_for_each_entry_safe(slab, h, &discard, slab_list)
5211 discard_slab(s, slab);
5212}
5213
5214bool __kmem_cache_empty(struct kmem_cache *s)
5215{
5216 int node;
5217 struct kmem_cache_node *n;
5218
5219 for_each_kmem_cache_node(s, node, n)
5220 if (n->nr_partial || node_nr_slabs(n))
5221 return false;
5222 return true;
5223}
5224
5225/*
5226 * Release all resources used by a slab cache.
5227 */
5228int __kmem_cache_shutdown(struct kmem_cache *s)
5229{
5230 int node;
5231 struct kmem_cache_node *n;
5232
5233 flush_all_cpus_locked(s);
5234 /* Attempt to free all objects */
5235 for_each_kmem_cache_node(s, node, n) {
5236 free_partial(s, n);
5237 if (n->nr_partial || node_nr_slabs(n))
5238 return 1;
5239 }
5240 return 0;
5241}
5242
5243#ifdef CONFIG_PRINTK
5244void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5245{
5246 void *base;
5247 int __maybe_unused i;
5248 unsigned int objnr;
5249 void *objp;
5250 void *objp0;
5251 struct kmem_cache *s = slab->slab_cache;
5252 struct track __maybe_unused *trackp;
5253
5254 kpp->kp_ptr = object;
5255 kpp->kp_slab = slab;
5256 kpp->kp_slab_cache = s;
5257 base = slab_address(slab);
5258 objp0 = kasan_reset_tag(object);
5259#ifdef CONFIG_SLUB_DEBUG
5260 objp = restore_red_left(s, objp0);
5261#else
5262 objp = objp0;
5263#endif
5264 objnr = obj_to_index(s, slab, objp);
5265 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5266 objp = base + s->size * objnr;
5267 kpp->kp_objp = objp;
5268 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5269 || (objp - base) % s->size) ||
5270 !(s->flags & SLAB_STORE_USER))
5271 return;
5272#ifdef CONFIG_SLUB_DEBUG
5273 objp = fixup_red_left(s, objp);
5274 trackp = get_track(s, objp, TRACK_ALLOC);
5275 kpp->kp_ret = (void *)trackp->addr;
5276#ifdef CONFIG_STACKDEPOT
5277 {
5278 depot_stack_handle_t handle;
5279 unsigned long *entries;
5280 unsigned int nr_entries;
5281
5282 handle = READ_ONCE(trackp->handle);
5283 if (handle) {
5284 nr_entries = stack_depot_fetch(handle, &entries);
5285 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5286 kpp->kp_stack[i] = (void *)entries[i];
5287 }
5288
5289 trackp = get_track(s, objp, TRACK_FREE);
5290 handle = READ_ONCE(trackp->handle);
5291 if (handle) {
5292 nr_entries = stack_depot_fetch(handle, &entries);
5293 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5294 kpp->kp_free_stack[i] = (void *)entries[i];
5295 }
5296 }
5297#endif
5298#endif
5299}
5300#endif
5301
5302/********************************************************************
5303 * Kmalloc subsystem
5304 *******************************************************************/
5305
5306static int __init setup_slub_min_order(char *str)
5307{
5308 get_option(&str, (int *)&slub_min_order);
5309
5310 if (slub_min_order > slub_max_order)
5311 slub_max_order = slub_min_order;
5312
5313 return 1;
5314}
5315
5316__setup("slub_min_order=", setup_slub_min_order);
5317
5318static int __init setup_slub_max_order(char *str)
5319{
5320 get_option(&str, (int *)&slub_max_order);
5321 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5322
5323 if (slub_min_order > slub_max_order)
5324 slub_min_order = slub_max_order;
5325
5326 return 1;
5327}
5328
5329__setup("slub_max_order=", setup_slub_max_order);
5330
5331static int __init setup_slub_min_objects(char *str)
5332{
5333 get_option(&str, (int *)&slub_min_objects);
5334
5335 return 1;
5336}
5337
5338__setup("slub_min_objects=", setup_slub_min_objects);
5339
5340#ifdef CONFIG_HARDENED_USERCOPY
5341/*
5342 * Rejects incorrectly sized objects and objects that are to be copied
5343 * to/from userspace but do not fall entirely within the containing slab
5344 * cache's usercopy region.
5345 *
5346 * Returns NULL if check passes, otherwise const char * to name of cache
5347 * to indicate an error.
5348 */
5349void __check_heap_object(const void *ptr, unsigned long n,
5350 const struct slab *slab, bool to_user)
5351{
5352 struct kmem_cache *s;
5353 unsigned int offset;
5354 bool is_kfence = is_kfence_address(ptr);
5355
5356 ptr = kasan_reset_tag(ptr);
5357
5358 /* Find object and usable object size. */
5359 s = slab->slab_cache;
5360
5361 /* Reject impossible pointers. */
5362 if (ptr < slab_address(slab))
5363 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5364 to_user, 0, n);
5365
5366 /* Find offset within object. */
5367 if (is_kfence)
5368 offset = ptr - kfence_object_start(ptr);
5369 else
5370 offset = (ptr - slab_address(slab)) % s->size;
5371
5372 /* Adjust for redzone and reject if within the redzone. */
5373 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5374 if (offset < s->red_left_pad)
5375 usercopy_abort("SLUB object in left red zone",
5376 s->name, to_user, offset, n);
5377 offset -= s->red_left_pad;
5378 }
5379
5380 /* Allow address range falling entirely within usercopy region. */
5381 if (offset >= s->useroffset &&
5382 offset - s->useroffset <= s->usersize &&
5383 n <= s->useroffset - offset + s->usersize)
5384 return;
5385
5386 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5387}
5388#endif /* CONFIG_HARDENED_USERCOPY */
5389
5390#define SHRINK_PROMOTE_MAX 32
5391
5392/*
5393 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5394 * up most to the head of the partial lists. New allocations will then
5395 * fill those up and thus they can be removed from the partial lists.
5396 *
5397 * The slabs with the least items are placed last. This results in them
5398 * being allocated from last increasing the chance that the last objects
5399 * are freed in them.
5400 */
5401static int __kmem_cache_do_shrink(struct kmem_cache *s)
5402{
5403 int node;
5404 int i;
5405 struct kmem_cache_node *n;
5406 struct slab *slab;
5407 struct slab *t;
5408 struct list_head discard;
5409 struct list_head promote[SHRINK_PROMOTE_MAX];
5410 unsigned long flags;
5411 int ret = 0;
5412
5413 for_each_kmem_cache_node(s, node, n) {
5414 INIT_LIST_HEAD(&discard);
5415 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5416 INIT_LIST_HEAD(promote + i);
5417
5418 spin_lock_irqsave(&n->list_lock, flags);
5419
5420 /*
5421 * Build lists of slabs to discard or promote.
5422 *
5423 * Note that concurrent frees may occur while we hold the
5424 * list_lock. slab->inuse here is the upper limit.
5425 */
5426 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5427 int free = slab->objects - slab->inuse;
5428
5429 /* Do not reread slab->inuse */
5430 barrier();
5431
5432 /* We do not keep full slabs on the list */
5433 BUG_ON(free <= 0);
5434
5435 if (free == slab->objects) {
5436 list_move(&slab->slab_list, &discard);
5437 slab_clear_node_partial(slab);
5438 n->nr_partial--;
5439 dec_slabs_node(s, node, slab->objects);
5440 } else if (free <= SHRINK_PROMOTE_MAX)
5441 list_move(&slab->slab_list, promote + free - 1);
5442 }
5443
5444 /*
5445 * Promote the slabs filled up most to the head of the
5446 * partial list.
5447 */
5448 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5449 list_splice(promote + i, &n->partial);
5450
5451 spin_unlock_irqrestore(&n->list_lock, flags);
5452
5453 /* Release empty slabs */
5454 list_for_each_entry_safe(slab, t, &discard, slab_list)
5455 free_slab(s, slab);
5456
5457 if (node_nr_slabs(n))
5458 ret = 1;
5459 }
5460
5461 return ret;
5462}
5463
5464int __kmem_cache_shrink(struct kmem_cache *s)
5465{
5466 flush_all(s);
5467 return __kmem_cache_do_shrink(s);
5468}
5469
5470static int slab_mem_going_offline_callback(void *arg)
5471{
5472 struct kmem_cache *s;
5473
5474 mutex_lock(&slab_mutex);
5475 list_for_each_entry(s, &slab_caches, list) {
5476 flush_all_cpus_locked(s);
5477 __kmem_cache_do_shrink(s);
5478 }
5479 mutex_unlock(&slab_mutex);
5480
5481 return 0;
5482}
5483
5484static void slab_mem_offline_callback(void *arg)
5485{
5486 struct memory_notify *marg = arg;
5487 int offline_node;
5488
5489 offline_node = marg->status_change_nid_normal;
5490
5491 /*
5492 * If the node still has available memory. we need kmem_cache_node
5493 * for it yet.
5494 */
5495 if (offline_node < 0)
5496 return;
5497
5498 mutex_lock(&slab_mutex);
5499 node_clear(offline_node, slab_nodes);
5500 /*
5501 * We no longer free kmem_cache_node structures here, as it would be
5502 * racy with all get_node() users, and infeasible to protect them with
5503 * slab_mutex.
5504 */
5505 mutex_unlock(&slab_mutex);
5506}
5507
5508static int slab_mem_going_online_callback(void *arg)
5509{
5510 struct kmem_cache_node *n;
5511 struct kmem_cache *s;
5512 struct memory_notify *marg = arg;
5513 int nid = marg->status_change_nid_normal;
5514 int ret = 0;
5515
5516 /*
5517 * If the node's memory is already available, then kmem_cache_node is
5518 * already created. Nothing to do.
5519 */
5520 if (nid < 0)
5521 return 0;
5522
5523 /*
5524 * We are bringing a node online. No memory is available yet. We must
5525 * allocate a kmem_cache_node structure in order to bring the node
5526 * online.
5527 */
5528 mutex_lock(&slab_mutex);
5529 list_for_each_entry(s, &slab_caches, list) {
5530 /*
5531 * The structure may already exist if the node was previously
5532 * onlined and offlined.
5533 */
5534 if (get_node(s, nid))
5535 continue;
5536 /*
5537 * XXX: kmem_cache_alloc_node will fallback to other nodes
5538 * since memory is not yet available from the node that
5539 * is brought up.
5540 */
5541 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5542 if (!n) {
5543 ret = -ENOMEM;
5544 goto out;
5545 }
5546 init_kmem_cache_node(n);
5547 s->node[nid] = n;
5548 }
5549 /*
5550 * Any cache created after this point will also have kmem_cache_node
5551 * initialized for the new node.
5552 */
5553 node_set(nid, slab_nodes);
5554out:
5555 mutex_unlock(&slab_mutex);
5556 return ret;
5557}
5558
5559static int slab_memory_callback(struct notifier_block *self,
5560 unsigned long action, void *arg)
5561{
5562 int ret = 0;
5563
5564 switch (action) {
5565 case MEM_GOING_ONLINE:
5566 ret = slab_mem_going_online_callback(arg);
5567 break;
5568 case MEM_GOING_OFFLINE:
5569 ret = slab_mem_going_offline_callback(arg);
5570 break;
5571 case MEM_OFFLINE:
5572 case MEM_CANCEL_ONLINE:
5573 slab_mem_offline_callback(arg);
5574 break;
5575 case MEM_ONLINE:
5576 case MEM_CANCEL_OFFLINE:
5577 break;
5578 }
5579 if (ret)
5580 ret = notifier_from_errno(ret);
5581 else
5582 ret = NOTIFY_OK;
5583 return ret;
5584}
5585
5586/********************************************************************
5587 * Basic setup of slabs
5588 *******************************************************************/
5589
5590/*
5591 * Used for early kmem_cache structures that were allocated using
5592 * the page allocator. Allocate them properly then fix up the pointers
5593 * that may be pointing to the wrong kmem_cache structure.
5594 */
5595
5596static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5597{
5598 int node;
5599 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5600 struct kmem_cache_node *n;
5601
5602 memcpy(s, static_cache, kmem_cache->object_size);
5603
5604 /*
5605 * This runs very early, and only the boot processor is supposed to be
5606 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5607 * IPIs around.
5608 */
5609 __flush_cpu_slab(s, smp_processor_id());
5610 for_each_kmem_cache_node(s, node, n) {
5611 struct slab *p;
5612
5613 list_for_each_entry(p, &n->partial, slab_list)
5614 p->slab_cache = s;
5615
5616#ifdef CONFIG_SLUB_DEBUG
5617 list_for_each_entry(p, &n->full, slab_list)
5618 p->slab_cache = s;
5619#endif
5620 }
5621 list_add(&s->list, &slab_caches);
5622 return s;
5623}
5624
5625void __init kmem_cache_init(void)
5626{
5627 static __initdata struct kmem_cache boot_kmem_cache,
5628 boot_kmem_cache_node;
5629 int node;
5630
5631 if (debug_guardpage_minorder())
5632 slub_max_order = 0;
5633
5634 /* Print slub debugging pointers without hashing */
5635 if (__slub_debug_enabled())
5636 no_hash_pointers_enable(NULL);
5637
5638 kmem_cache_node = &boot_kmem_cache_node;
5639 kmem_cache = &boot_kmem_cache;
5640
5641 /*
5642 * Initialize the nodemask for which we will allocate per node
5643 * structures. Here we don't need taking slab_mutex yet.
5644 */
5645 for_each_node_state(node, N_NORMAL_MEMORY)
5646 node_set(node, slab_nodes);
5647
5648 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5649 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5650
5651 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5652
5653 /* Able to allocate the per node structures */
5654 slab_state = PARTIAL;
5655
5656 create_boot_cache(kmem_cache, "kmem_cache",
5657 offsetof(struct kmem_cache, node) +
5658 nr_node_ids * sizeof(struct kmem_cache_node *),
5659 SLAB_HWCACHE_ALIGN, 0, 0);
5660
5661 kmem_cache = bootstrap(&boot_kmem_cache);
5662 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5663
5664 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5665 setup_kmalloc_cache_index_table();
5666 create_kmalloc_caches(0);
5667
5668 /* Setup random freelists for each cache */
5669 init_freelist_randomization();
5670
5671 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5672 slub_cpu_dead);
5673
5674 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5675 cache_line_size(),
5676 slub_min_order, slub_max_order, slub_min_objects,
5677 nr_cpu_ids, nr_node_ids);
5678}
5679
5680void __init kmem_cache_init_late(void)
5681{
5682#ifndef CONFIG_SLUB_TINY
5683 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5684 WARN_ON(!flushwq);
5685#endif
5686}
5687
5688struct kmem_cache *
5689__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5690 slab_flags_t flags, void (*ctor)(void *))
5691{
5692 struct kmem_cache *s;
5693
5694 s = find_mergeable(size, align, flags, name, ctor);
5695 if (s) {
5696 if (sysfs_slab_alias(s, name))
5697 return NULL;
5698
5699 s->refcount++;
5700
5701 /*
5702 * Adjust the object sizes so that we clear
5703 * the complete object on kzalloc.
5704 */
5705 s->object_size = max(s->object_size, size);
5706 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5707 }
5708
5709 return s;
5710}
5711
5712int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5713{
5714 int err;
5715
5716 err = kmem_cache_open(s, flags);
5717 if (err)
5718 return err;
5719
5720 /* Mutex is not taken during early boot */
5721 if (slab_state <= UP)
5722 return 0;
5723
5724 err = sysfs_slab_add(s);
5725 if (err) {
5726 __kmem_cache_release(s);
5727 return err;
5728 }
5729
5730 if (s->flags & SLAB_STORE_USER)
5731 debugfs_slab_add(s);
5732
5733 return 0;
5734}
5735
5736#ifdef SLAB_SUPPORTS_SYSFS
5737static int count_inuse(struct slab *slab)
5738{
5739 return slab->inuse;
5740}
5741
5742static int count_total(struct slab *slab)
5743{
5744 return slab->objects;
5745}
5746#endif
5747
5748#ifdef CONFIG_SLUB_DEBUG
5749static void validate_slab(struct kmem_cache *s, struct slab *slab,
5750 unsigned long *obj_map)
5751{
5752 void *p;
5753 void *addr = slab_address(slab);
5754
5755 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5756 return;
5757
5758 /* Now we know that a valid freelist exists */
5759 __fill_map(obj_map, s, slab);
5760 for_each_object(p, s, addr, slab->objects) {
5761 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5762 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5763
5764 if (!check_object(s, slab, p, val))
5765 break;
5766 }
5767}
5768
5769static int validate_slab_node(struct kmem_cache *s,
5770 struct kmem_cache_node *n, unsigned long *obj_map)
5771{
5772 unsigned long count = 0;
5773 struct slab *slab;
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&n->list_lock, flags);
5777
5778 list_for_each_entry(slab, &n->partial, slab_list) {
5779 validate_slab(s, slab, obj_map);
5780 count++;
5781 }
5782 if (count != n->nr_partial) {
5783 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5784 s->name, count, n->nr_partial);
5785 slab_add_kunit_errors();
5786 }
5787
5788 if (!(s->flags & SLAB_STORE_USER))
5789 goto out;
5790
5791 list_for_each_entry(slab, &n->full, slab_list) {
5792 validate_slab(s, slab, obj_map);
5793 count++;
5794 }
5795 if (count != node_nr_slabs(n)) {
5796 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5797 s->name, count, node_nr_slabs(n));
5798 slab_add_kunit_errors();
5799 }
5800
5801out:
5802 spin_unlock_irqrestore(&n->list_lock, flags);
5803 return count;
5804}
5805
5806long validate_slab_cache(struct kmem_cache *s)
5807{
5808 int node;
5809 unsigned long count = 0;
5810 struct kmem_cache_node *n;
5811 unsigned long *obj_map;
5812
5813 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5814 if (!obj_map)
5815 return -ENOMEM;
5816
5817 flush_all(s);
5818 for_each_kmem_cache_node(s, node, n)
5819 count += validate_slab_node(s, n, obj_map);
5820
5821 bitmap_free(obj_map);
5822
5823 return count;
5824}
5825EXPORT_SYMBOL(validate_slab_cache);
5826
5827#ifdef CONFIG_DEBUG_FS
5828/*
5829 * Generate lists of code addresses where slabcache objects are allocated
5830 * and freed.
5831 */
5832
5833struct location {
5834 depot_stack_handle_t handle;
5835 unsigned long count;
5836 unsigned long addr;
5837 unsigned long waste;
5838 long long sum_time;
5839 long min_time;
5840 long max_time;
5841 long min_pid;
5842 long max_pid;
5843 DECLARE_BITMAP(cpus, NR_CPUS);
5844 nodemask_t nodes;
5845};
5846
5847struct loc_track {
5848 unsigned long max;
5849 unsigned long count;
5850 struct location *loc;
5851 loff_t idx;
5852};
5853
5854static struct dentry *slab_debugfs_root;
5855
5856static void free_loc_track(struct loc_track *t)
5857{
5858 if (t->max)
5859 free_pages((unsigned long)t->loc,
5860 get_order(sizeof(struct location) * t->max));
5861}
5862
5863static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5864{
5865 struct location *l;
5866 int order;
5867
5868 order = get_order(sizeof(struct location) * max);
5869
5870 l = (void *)__get_free_pages(flags, order);
5871 if (!l)
5872 return 0;
5873
5874 if (t->count) {
5875 memcpy(l, t->loc, sizeof(struct location) * t->count);
5876 free_loc_track(t);
5877 }
5878 t->max = max;
5879 t->loc = l;
5880 return 1;
5881}
5882
5883static int add_location(struct loc_track *t, struct kmem_cache *s,
5884 const struct track *track,
5885 unsigned int orig_size)
5886{
5887 long start, end, pos;
5888 struct location *l;
5889 unsigned long caddr, chandle, cwaste;
5890 unsigned long age = jiffies - track->when;
5891 depot_stack_handle_t handle = 0;
5892 unsigned int waste = s->object_size - orig_size;
5893
5894#ifdef CONFIG_STACKDEPOT
5895 handle = READ_ONCE(track->handle);
5896#endif
5897 start = -1;
5898 end = t->count;
5899
5900 for ( ; ; ) {
5901 pos = start + (end - start + 1) / 2;
5902
5903 /*
5904 * There is nothing at "end". If we end up there
5905 * we need to add something to before end.
5906 */
5907 if (pos == end)
5908 break;
5909
5910 l = &t->loc[pos];
5911 caddr = l->addr;
5912 chandle = l->handle;
5913 cwaste = l->waste;
5914 if ((track->addr == caddr) && (handle == chandle) &&
5915 (waste == cwaste)) {
5916
5917 l->count++;
5918 if (track->when) {
5919 l->sum_time += age;
5920 if (age < l->min_time)
5921 l->min_time = age;
5922 if (age > l->max_time)
5923 l->max_time = age;
5924
5925 if (track->pid < l->min_pid)
5926 l->min_pid = track->pid;
5927 if (track->pid > l->max_pid)
5928 l->max_pid = track->pid;
5929
5930 cpumask_set_cpu(track->cpu,
5931 to_cpumask(l->cpus));
5932 }
5933 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5934 return 1;
5935 }
5936
5937 if (track->addr < caddr)
5938 end = pos;
5939 else if (track->addr == caddr && handle < chandle)
5940 end = pos;
5941 else if (track->addr == caddr && handle == chandle &&
5942 waste < cwaste)
5943 end = pos;
5944 else
5945 start = pos;
5946 }
5947
5948 /*
5949 * Not found. Insert new tracking element.
5950 */
5951 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5952 return 0;
5953
5954 l = t->loc + pos;
5955 if (pos < t->count)
5956 memmove(l + 1, l,
5957 (t->count - pos) * sizeof(struct location));
5958 t->count++;
5959 l->count = 1;
5960 l->addr = track->addr;
5961 l->sum_time = age;
5962 l->min_time = age;
5963 l->max_time = age;
5964 l->min_pid = track->pid;
5965 l->max_pid = track->pid;
5966 l->handle = handle;
5967 l->waste = waste;
5968 cpumask_clear(to_cpumask(l->cpus));
5969 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5970 nodes_clear(l->nodes);
5971 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5972 return 1;
5973}
5974
5975static void process_slab(struct loc_track *t, struct kmem_cache *s,
5976 struct slab *slab, enum track_item alloc,
5977 unsigned long *obj_map)
5978{
5979 void *addr = slab_address(slab);
5980 bool is_alloc = (alloc == TRACK_ALLOC);
5981 void *p;
5982
5983 __fill_map(obj_map, s, slab);
5984
5985 for_each_object(p, s, addr, slab->objects)
5986 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5987 add_location(t, s, get_track(s, p, alloc),
5988 is_alloc ? get_orig_size(s, p) :
5989 s->object_size);
5990}
5991#endif /* CONFIG_DEBUG_FS */
5992#endif /* CONFIG_SLUB_DEBUG */
5993
5994#ifdef SLAB_SUPPORTS_SYSFS
5995enum slab_stat_type {
5996 SL_ALL, /* All slabs */
5997 SL_PARTIAL, /* Only partially allocated slabs */
5998 SL_CPU, /* Only slabs used for cpu caches */
5999 SL_OBJECTS, /* Determine allocated objects not slabs */
6000 SL_TOTAL /* Determine object capacity not slabs */
6001};
6002
6003#define SO_ALL (1 << SL_ALL)
6004#define SO_PARTIAL (1 << SL_PARTIAL)
6005#define SO_CPU (1 << SL_CPU)
6006#define SO_OBJECTS (1 << SL_OBJECTS)
6007#define SO_TOTAL (1 << SL_TOTAL)
6008
6009static ssize_t show_slab_objects(struct kmem_cache *s,
6010 char *buf, unsigned long flags)
6011{
6012 unsigned long total = 0;
6013 int node;
6014 int x;
6015 unsigned long *nodes;
6016 int len = 0;
6017
6018 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6019 if (!nodes)
6020 return -ENOMEM;
6021
6022 if (flags & SO_CPU) {
6023 int cpu;
6024
6025 for_each_possible_cpu(cpu) {
6026 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6027 cpu);
6028 int node;
6029 struct slab *slab;
6030
6031 slab = READ_ONCE(c->slab);
6032 if (!slab)
6033 continue;
6034
6035 node = slab_nid(slab);
6036 if (flags & SO_TOTAL)
6037 x = slab->objects;
6038 else if (flags & SO_OBJECTS)
6039 x = slab->inuse;
6040 else
6041 x = 1;
6042
6043 total += x;
6044 nodes[node] += x;
6045
6046#ifdef CONFIG_SLUB_CPU_PARTIAL
6047 slab = slub_percpu_partial_read_once(c);
6048 if (slab) {
6049 node = slab_nid(slab);
6050 if (flags & SO_TOTAL)
6051 WARN_ON_ONCE(1);
6052 else if (flags & SO_OBJECTS)
6053 WARN_ON_ONCE(1);
6054 else
6055 x = slab->slabs;
6056 total += x;
6057 nodes[node] += x;
6058 }
6059#endif
6060 }
6061 }
6062
6063 /*
6064 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6065 * already held which will conflict with an existing lock order:
6066 *
6067 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6068 *
6069 * We don't really need mem_hotplug_lock (to hold off
6070 * slab_mem_going_offline_callback) here because slab's memory hot
6071 * unplug code doesn't destroy the kmem_cache->node[] data.
6072 */
6073
6074#ifdef CONFIG_SLUB_DEBUG
6075 if (flags & SO_ALL) {
6076 struct kmem_cache_node *n;
6077
6078 for_each_kmem_cache_node(s, node, n) {
6079
6080 if (flags & SO_TOTAL)
6081 x = node_nr_objs(n);
6082 else if (flags & SO_OBJECTS)
6083 x = node_nr_objs(n) - count_partial(n, count_free);
6084 else
6085 x = node_nr_slabs(n);
6086 total += x;
6087 nodes[node] += x;
6088 }
6089
6090 } else
6091#endif
6092 if (flags & SO_PARTIAL) {
6093 struct kmem_cache_node *n;
6094
6095 for_each_kmem_cache_node(s, node, n) {
6096 if (flags & SO_TOTAL)
6097 x = count_partial(n, count_total);
6098 else if (flags & SO_OBJECTS)
6099 x = count_partial(n, count_inuse);
6100 else
6101 x = n->nr_partial;
6102 total += x;
6103 nodes[node] += x;
6104 }
6105 }
6106
6107 len += sysfs_emit_at(buf, len, "%lu", total);
6108#ifdef CONFIG_NUMA
6109 for (node = 0; node < nr_node_ids; node++) {
6110 if (nodes[node])
6111 len += sysfs_emit_at(buf, len, " N%d=%lu",
6112 node, nodes[node]);
6113 }
6114#endif
6115 len += sysfs_emit_at(buf, len, "\n");
6116 kfree(nodes);
6117
6118 return len;
6119}
6120
6121#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6122#define to_slab(n) container_of(n, struct kmem_cache, kobj)
6123
6124struct slab_attribute {
6125 struct attribute attr;
6126 ssize_t (*show)(struct kmem_cache *s, char *buf);
6127 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6128};
6129
6130#define SLAB_ATTR_RO(_name) \
6131 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6132
6133#define SLAB_ATTR(_name) \
6134 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6135
6136static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6137{
6138 return sysfs_emit(buf, "%u\n", s->size);
6139}
6140SLAB_ATTR_RO(slab_size);
6141
6142static ssize_t align_show(struct kmem_cache *s, char *buf)
6143{
6144 return sysfs_emit(buf, "%u\n", s->align);
6145}
6146SLAB_ATTR_RO(align);
6147
6148static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6149{
6150 return sysfs_emit(buf, "%u\n", s->object_size);
6151}
6152SLAB_ATTR_RO(object_size);
6153
6154static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6155{
6156 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6157}
6158SLAB_ATTR_RO(objs_per_slab);
6159
6160static ssize_t order_show(struct kmem_cache *s, char *buf)
6161{
6162 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6163}
6164SLAB_ATTR_RO(order);
6165
6166static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6167{
6168 return sysfs_emit(buf, "%lu\n", s->min_partial);
6169}
6170
6171static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6172 size_t length)
6173{
6174 unsigned long min;
6175 int err;
6176
6177 err = kstrtoul(buf, 10, &min);
6178 if (err)
6179 return err;
6180
6181 s->min_partial = min;
6182 return length;
6183}
6184SLAB_ATTR(min_partial);
6185
6186static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6187{
6188 unsigned int nr_partial = 0;
6189#ifdef CONFIG_SLUB_CPU_PARTIAL
6190 nr_partial = s->cpu_partial;
6191#endif
6192
6193 return sysfs_emit(buf, "%u\n", nr_partial);
6194}
6195
6196static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6197 size_t length)
6198{
6199 unsigned int objects;
6200 int err;
6201
6202 err = kstrtouint(buf, 10, &objects);
6203 if (err)
6204 return err;
6205 if (objects && !kmem_cache_has_cpu_partial(s))
6206 return -EINVAL;
6207
6208 slub_set_cpu_partial(s, objects);
6209 flush_all(s);
6210 return length;
6211}
6212SLAB_ATTR(cpu_partial);
6213
6214static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6215{
6216 if (!s->ctor)
6217 return 0;
6218 return sysfs_emit(buf, "%pS\n", s->ctor);
6219}
6220SLAB_ATTR_RO(ctor);
6221
6222static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6223{
6224 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6225}
6226SLAB_ATTR_RO(aliases);
6227
6228static ssize_t partial_show(struct kmem_cache *s, char *buf)
6229{
6230 return show_slab_objects(s, buf, SO_PARTIAL);
6231}
6232SLAB_ATTR_RO(partial);
6233
6234static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6235{
6236 return show_slab_objects(s, buf, SO_CPU);
6237}
6238SLAB_ATTR_RO(cpu_slabs);
6239
6240static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6241{
6242 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6243}
6244SLAB_ATTR_RO(objects_partial);
6245
6246static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6247{
6248 int objects = 0;
6249 int slabs = 0;
6250 int cpu __maybe_unused;
6251 int len = 0;
6252
6253#ifdef CONFIG_SLUB_CPU_PARTIAL
6254 for_each_online_cpu(cpu) {
6255 struct slab *slab;
6256
6257 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6258
6259 if (slab)
6260 slabs += slab->slabs;
6261 }
6262#endif
6263
6264 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6265 objects = (slabs * oo_objects(s->oo)) / 2;
6266 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6267
6268#ifdef CONFIG_SLUB_CPU_PARTIAL
6269 for_each_online_cpu(cpu) {
6270 struct slab *slab;
6271
6272 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6273 if (slab) {
6274 slabs = READ_ONCE(slab->slabs);
6275 objects = (slabs * oo_objects(s->oo)) / 2;
6276 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6277 cpu, objects, slabs);
6278 }
6279 }
6280#endif
6281 len += sysfs_emit_at(buf, len, "\n");
6282
6283 return len;
6284}
6285SLAB_ATTR_RO(slabs_cpu_partial);
6286
6287static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6288{
6289 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6290}
6291SLAB_ATTR_RO(reclaim_account);
6292
6293static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6294{
6295 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6296}
6297SLAB_ATTR_RO(hwcache_align);
6298
6299#ifdef CONFIG_ZONE_DMA
6300static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6301{
6302 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6303}
6304SLAB_ATTR_RO(cache_dma);
6305#endif
6306
6307#ifdef CONFIG_HARDENED_USERCOPY
6308static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6309{
6310 return sysfs_emit(buf, "%u\n", s->usersize);
6311}
6312SLAB_ATTR_RO(usersize);
6313#endif
6314
6315static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6316{
6317 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6318}
6319SLAB_ATTR_RO(destroy_by_rcu);
6320
6321#ifdef CONFIG_SLUB_DEBUG
6322static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6323{
6324 return show_slab_objects(s, buf, SO_ALL);
6325}
6326SLAB_ATTR_RO(slabs);
6327
6328static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6329{
6330 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6331}
6332SLAB_ATTR_RO(total_objects);
6333
6334static ssize_t objects_show(struct kmem_cache *s, char *buf)
6335{
6336 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6337}
6338SLAB_ATTR_RO(objects);
6339
6340static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6341{
6342 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6343}
6344SLAB_ATTR_RO(sanity_checks);
6345
6346static ssize_t trace_show(struct kmem_cache *s, char *buf)
6347{
6348 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6349}
6350SLAB_ATTR_RO(trace);
6351
6352static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6353{
6354 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6355}
6356
6357SLAB_ATTR_RO(red_zone);
6358
6359static ssize_t poison_show(struct kmem_cache *s, char *buf)
6360{
6361 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6362}
6363
6364SLAB_ATTR_RO(poison);
6365
6366static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6367{
6368 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6369}
6370
6371SLAB_ATTR_RO(store_user);
6372
6373static ssize_t validate_show(struct kmem_cache *s, char *buf)
6374{
6375 return 0;
6376}
6377
6378static ssize_t validate_store(struct kmem_cache *s,
6379 const char *buf, size_t length)
6380{
6381 int ret = -EINVAL;
6382
6383 if (buf[0] == '1' && kmem_cache_debug(s)) {
6384 ret = validate_slab_cache(s);
6385 if (ret >= 0)
6386 ret = length;
6387 }
6388 return ret;
6389}
6390SLAB_ATTR(validate);
6391
6392#endif /* CONFIG_SLUB_DEBUG */
6393
6394#ifdef CONFIG_FAILSLAB
6395static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6396{
6397 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6398}
6399
6400static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6401 size_t length)
6402{
6403 if (s->refcount > 1)
6404 return -EINVAL;
6405
6406 if (buf[0] == '1')
6407 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6408 else
6409 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6410
6411 return length;
6412}
6413SLAB_ATTR(failslab);
6414#endif
6415
6416static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6417{
6418 return 0;
6419}
6420
6421static ssize_t shrink_store(struct kmem_cache *s,
6422 const char *buf, size_t length)
6423{
6424 if (buf[0] == '1')
6425 kmem_cache_shrink(s);
6426 else
6427 return -EINVAL;
6428 return length;
6429}
6430SLAB_ATTR(shrink);
6431
6432#ifdef CONFIG_NUMA
6433static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6434{
6435 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6436}
6437
6438static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6439 const char *buf, size_t length)
6440{
6441 unsigned int ratio;
6442 int err;
6443
6444 err = kstrtouint(buf, 10, &ratio);
6445 if (err)
6446 return err;
6447 if (ratio > 100)
6448 return -ERANGE;
6449
6450 s->remote_node_defrag_ratio = ratio * 10;
6451
6452 return length;
6453}
6454SLAB_ATTR(remote_node_defrag_ratio);
6455#endif
6456
6457#ifdef CONFIG_SLUB_STATS
6458static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6459{
6460 unsigned long sum = 0;
6461 int cpu;
6462 int len = 0;
6463 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6464
6465 if (!data)
6466 return -ENOMEM;
6467
6468 for_each_online_cpu(cpu) {
6469 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6470
6471 data[cpu] = x;
6472 sum += x;
6473 }
6474
6475 len += sysfs_emit_at(buf, len, "%lu", sum);
6476
6477#ifdef CONFIG_SMP
6478 for_each_online_cpu(cpu) {
6479 if (data[cpu])
6480 len += sysfs_emit_at(buf, len, " C%d=%u",
6481 cpu, data[cpu]);
6482 }
6483#endif
6484 kfree(data);
6485 len += sysfs_emit_at(buf, len, "\n");
6486
6487 return len;
6488}
6489
6490static void clear_stat(struct kmem_cache *s, enum stat_item si)
6491{
6492 int cpu;
6493
6494 for_each_online_cpu(cpu)
6495 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6496}
6497
6498#define STAT_ATTR(si, text) \
6499static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6500{ \
6501 return show_stat(s, buf, si); \
6502} \
6503static ssize_t text##_store(struct kmem_cache *s, \
6504 const char *buf, size_t length) \
6505{ \
6506 if (buf[0] != '0') \
6507 return -EINVAL; \
6508 clear_stat(s, si); \
6509 return length; \
6510} \
6511SLAB_ATTR(text); \
6512
6513STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6514STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6515STAT_ATTR(FREE_FASTPATH, free_fastpath);
6516STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6517STAT_ATTR(FREE_FROZEN, free_frozen);
6518STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6519STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6520STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6521STAT_ATTR(ALLOC_SLAB, alloc_slab);
6522STAT_ATTR(ALLOC_REFILL, alloc_refill);
6523STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6524STAT_ATTR(FREE_SLAB, free_slab);
6525STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6526STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6527STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6528STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6529STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6530STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6531STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6532STAT_ATTR(ORDER_FALLBACK, order_fallback);
6533STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6534STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6535STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6536STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6537STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6538STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6539#endif /* CONFIG_SLUB_STATS */
6540
6541#ifdef CONFIG_KFENCE
6542static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6543{
6544 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6545}
6546
6547static ssize_t skip_kfence_store(struct kmem_cache *s,
6548 const char *buf, size_t length)
6549{
6550 int ret = length;
6551
6552 if (buf[0] == '0')
6553 s->flags &= ~SLAB_SKIP_KFENCE;
6554 else if (buf[0] == '1')
6555 s->flags |= SLAB_SKIP_KFENCE;
6556 else
6557 ret = -EINVAL;
6558
6559 return ret;
6560}
6561SLAB_ATTR(skip_kfence);
6562#endif
6563
6564static struct attribute *slab_attrs[] = {
6565 &slab_size_attr.attr,
6566 &object_size_attr.attr,
6567 &objs_per_slab_attr.attr,
6568 &order_attr.attr,
6569 &min_partial_attr.attr,
6570 &cpu_partial_attr.attr,
6571 &objects_partial_attr.attr,
6572 &partial_attr.attr,
6573 &cpu_slabs_attr.attr,
6574 &ctor_attr.attr,
6575 &aliases_attr.attr,
6576 &align_attr.attr,
6577 &hwcache_align_attr.attr,
6578 &reclaim_account_attr.attr,
6579 &destroy_by_rcu_attr.attr,
6580 &shrink_attr.attr,
6581 &slabs_cpu_partial_attr.attr,
6582#ifdef CONFIG_SLUB_DEBUG
6583 &total_objects_attr.attr,
6584 &objects_attr.attr,
6585 &slabs_attr.attr,
6586 &sanity_checks_attr.attr,
6587 &trace_attr.attr,
6588 &red_zone_attr.attr,
6589 &poison_attr.attr,
6590 &store_user_attr.attr,
6591 &validate_attr.attr,
6592#endif
6593#ifdef CONFIG_ZONE_DMA
6594 &cache_dma_attr.attr,
6595#endif
6596#ifdef CONFIG_NUMA
6597 &remote_node_defrag_ratio_attr.attr,
6598#endif
6599#ifdef CONFIG_SLUB_STATS
6600 &alloc_fastpath_attr.attr,
6601 &alloc_slowpath_attr.attr,
6602 &free_fastpath_attr.attr,
6603 &free_slowpath_attr.attr,
6604 &free_frozen_attr.attr,
6605 &free_add_partial_attr.attr,
6606 &free_remove_partial_attr.attr,
6607 &alloc_from_partial_attr.attr,
6608 &alloc_slab_attr.attr,
6609 &alloc_refill_attr.attr,
6610 &alloc_node_mismatch_attr.attr,
6611 &free_slab_attr.attr,
6612 &cpuslab_flush_attr.attr,
6613 &deactivate_full_attr.attr,
6614 &deactivate_empty_attr.attr,
6615 &deactivate_to_head_attr.attr,
6616 &deactivate_to_tail_attr.attr,
6617 &deactivate_remote_frees_attr.attr,
6618 &deactivate_bypass_attr.attr,
6619 &order_fallback_attr.attr,
6620 &cmpxchg_double_fail_attr.attr,
6621 &cmpxchg_double_cpu_fail_attr.attr,
6622 &cpu_partial_alloc_attr.attr,
6623 &cpu_partial_free_attr.attr,
6624 &cpu_partial_node_attr.attr,
6625 &cpu_partial_drain_attr.attr,
6626#endif
6627#ifdef CONFIG_FAILSLAB
6628 &failslab_attr.attr,
6629#endif
6630#ifdef CONFIG_HARDENED_USERCOPY
6631 &usersize_attr.attr,
6632#endif
6633#ifdef CONFIG_KFENCE
6634 &skip_kfence_attr.attr,
6635#endif
6636
6637 NULL
6638};
6639
6640static const struct attribute_group slab_attr_group = {
6641 .attrs = slab_attrs,
6642};
6643
6644static ssize_t slab_attr_show(struct kobject *kobj,
6645 struct attribute *attr,
6646 char *buf)
6647{
6648 struct slab_attribute *attribute;
6649 struct kmem_cache *s;
6650
6651 attribute = to_slab_attr(attr);
6652 s = to_slab(kobj);
6653
6654 if (!attribute->show)
6655 return -EIO;
6656
6657 return attribute->show(s, buf);
6658}
6659
6660static ssize_t slab_attr_store(struct kobject *kobj,
6661 struct attribute *attr,
6662 const char *buf, size_t len)
6663{
6664 struct slab_attribute *attribute;
6665 struct kmem_cache *s;
6666
6667 attribute = to_slab_attr(attr);
6668 s = to_slab(kobj);
6669
6670 if (!attribute->store)
6671 return -EIO;
6672
6673 return attribute->store(s, buf, len);
6674}
6675
6676static void kmem_cache_release(struct kobject *k)
6677{
6678 slab_kmem_cache_release(to_slab(k));
6679}
6680
6681static const struct sysfs_ops slab_sysfs_ops = {
6682 .show = slab_attr_show,
6683 .store = slab_attr_store,
6684};
6685
6686static const struct kobj_type slab_ktype = {
6687 .sysfs_ops = &slab_sysfs_ops,
6688 .release = kmem_cache_release,
6689};
6690
6691static struct kset *slab_kset;
6692
6693static inline struct kset *cache_kset(struct kmem_cache *s)
6694{
6695 return slab_kset;
6696}
6697
6698#define ID_STR_LENGTH 32
6699
6700/* Create a unique string id for a slab cache:
6701 *
6702 * Format :[flags-]size
6703 */
6704static char *create_unique_id(struct kmem_cache *s)
6705{
6706 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6707 char *p = name;
6708
6709 if (!name)
6710 return ERR_PTR(-ENOMEM);
6711
6712 *p++ = ':';
6713 /*
6714 * First flags affecting slabcache operations. We will only
6715 * get here for aliasable slabs so we do not need to support
6716 * too many flags. The flags here must cover all flags that
6717 * are matched during merging to guarantee that the id is
6718 * unique.
6719 */
6720 if (s->flags & SLAB_CACHE_DMA)
6721 *p++ = 'd';
6722 if (s->flags & SLAB_CACHE_DMA32)
6723 *p++ = 'D';
6724 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6725 *p++ = 'a';
6726 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6727 *p++ = 'F';
6728 if (s->flags & SLAB_ACCOUNT)
6729 *p++ = 'A';
6730 if (p != name + 1)
6731 *p++ = '-';
6732 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6733
6734 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6735 kfree(name);
6736 return ERR_PTR(-EINVAL);
6737 }
6738 kmsan_unpoison_memory(name, p - name);
6739 return name;
6740}
6741
6742static int sysfs_slab_add(struct kmem_cache *s)
6743{
6744 int err;
6745 const char *name;
6746 struct kset *kset = cache_kset(s);
6747 int unmergeable = slab_unmergeable(s);
6748
6749 if (!unmergeable && disable_higher_order_debug &&
6750 (slub_debug & DEBUG_METADATA_FLAGS))
6751 unmergeable = 1;
6752
6753 if (unmergeable) {
6754 /*
6755 * Slabcache can never be merged so we can use the name proper.
6756 * This is typically the case for debug situations. In that
6757 * case we can catch duplicate names easily.
6758 */
6759 sysfs_remove_link(&slab_kset->kobj, s->name);
6760 name = s->name;
6761 } else {
6762 /*
6763 * Create a unique name for the slab as a target
6764 * for the symlinks.
6765 */
6766 name = create_unique_id(s);
6767 if (IS_ERR(name))
6768 return PTR_ERR(name);
6769 }
6770
6771 s->kobj.kset = kset;
6772 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6773 if (err)
6774 goto out;
6775
6776 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6777 if (err)
6778 goto out_del_kobj;
6779
6780 if (!unmergeable) {
6781 /* Setup first alias */
6782 sysfs_slab_alias(s, s->name);
6783 }
6784out:
6785 if (!unmergeable)
6786 kfree(name);
6787 return err;
6788out_del_kobj:
6789 kobject_del(&s->kobj);
6790 goto out;
6791}
6792
6793void sysfs_slab_unlink(struct kmem_cache *s)
6794{
6795 if (slab_state >= FULL)
6796 kobject_del(&s->kobj);
6797}
6798
6799void sysfs_slab_release(struct kmem_cache *s)
6800{
6801 if (slab_state >= FULL)
6802 kobject_put(&s->kobj);
6803}
6804
6805/*
6806 * Need to buffer aliases during bootup until sysfs becomes
6807 * available lest we lose that information.
6808 */
6809struct saved_alias {
6810 struct kmem_cache *s;
6811 const char *name;
6812 struct saved_alias *next;
6813};
6814
6815static struct saved_alias *alias_list;
6816
6817static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6818{
6819 struct saved_alias *al;
6820
6821 if (slab_state == FULL) {
6822 /*
6823 * If we have a leftover link then remove it.
6824 */
6825 sysfs_remove_link(&slab_kset->kobj, name);
6826 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6827 }
6828
6829 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6830 if (!al)
6831 return -ENOMEM;
6832
6833 al->s = s;
6834 al->name = name;
6835 al->next = alias_list;
6836 alias_list = al;
6837 kmsan_unpoison_memory(al, sizeof(*al));
6838 return 0;
6839}
6840
6841static int __init slab_sysfs_init(void)
6842{
6843 struct kmem_cache *s;
6844 int err;
6845
6846 mutex_lock(&slab_mutex);
6847
6848 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6849 if (!slab_kset) {
6850 mutex_unlock(&slab_mutex);
6851 pr_err("Cannot register slab subsystem.\n");
6852 return -ENOMEM;
6853 }
6854
6855 slab_state = FULL;
6856
6857 list_for_each_entry(s, &slab_caches, list) {
6858 err = sysfs_slab_add(s);
6859 if (err)
6860 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6861 s->name);
6862 }
6863
6864 while (alias_list) {
6865 struct saved_alias *al = alias_list;
6866
6867 alias_list = alias_list->next;
6868 err = sysfs_slab_alias(al->s, al->name);
6869 if (err)
6870 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6871 al->name);
6872 kfree(al);
6873 }
6874
6875 mutex_unlock(&slab_mutex);
6876 return 0;
6877}
6878late_initcall(slab_sysfs_init);
6879#endif /* SLAB_SUPPORTS_SYSFS */
6880
6881#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6882static int slab_debugfs_show(struct seq_file *seq, void *v)
6883{
6884 struct loc_track *t = seq->private;
6885 struct location *l;
6886 unsigned long idx;
6887
6888 idx = (unsigned long) t->idx;
6889 if (idx < t->count) {
6890 l = &t->loc[idx];
6891
6892 seq_printf(seq, "%7ld ", l->count);
6893
6894 if (l->addr)
6895 seq_printf(seq, "%pS", (void *)l->addr);
6896 else
6897 seq_puts(seq, "<not-available>");
6898
6899 if (l->waste)
6900 seq_printf(seq, " waste=%lu/%lu",
6901 l->count * l->waste, l->waste);
6902
6903 if (l->sum_time != l->min_time) {
6904 seq_printf(seq, " age=%ld/%llu/%ld",
6905 l->min_time, div_u64(l->sum_time, l->count),
6906 l->max_time);
6907 } else
6908 seq_printf(seq, " age=%ld", l->min_time);
6909
6910 if (l->min_pid != l->max_pid)
6911 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6912 else
6913 seq_printf(seq, " pid=%ld",
6914 l->min_pid);
6915
6916 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6917 seq_printf(seq, " cpus=%*pbl",
6918 cpumask_pr_args(to_cpumask(l->cpus)));
6919
6920 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6921 seq_printf(seq, " nodes=%*pbl",
6922 nodemask_pr_args(&l->nodes));
6923
6924#ifdef CONFIG_STACKDEPOT
6925 {
6926 depot_stack_handle_t handle;
6927 unsigned long *entries;
6928 unsigned int nr_entries, j;
6929
6930 handle = READ_ONCE(l->handle);
6931 if (handle) {
6932 nr_entries = stack_depot_fetch(handle, &entries);
6933 seq_puts(seq, "\n");
6934 for (j = 0; j < nr_entries; j++)
6935 seq_printf(seq, " %pS\n", (void *)entries[j]);
6936 }
6937 }
6938#endif
6939 seq_puts(seq, "\n");
6940 }
6941
6942 if (!idx && !t->count)
6943 seq_puts(seq, "No data\n");
6944
6945 return 0;
6946}
6947
6948static void slab_debugfs_stop(struct seq_file *seq, void *v)
6949{
6950}
6951
6952static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6953{
6954 struct loc_track *t = seq->private;
6955
6956 t->idx = ++(*ppos);
6957 if (*ppos <= t->count)
6958 return ppos;
6959
6960 return NULL;
6961}
6962
6963static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6964{
6965 struct location *loc1 = (struct location *)a;
6966 struct location *loc2 = (struct location *)b;
6967
6968 if (loc1->count > loc2->count)
6969 return -1;
6970 else
6971 return 1;
6972}
6973
6974static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6975{
6976 struct loc_track *t = seq->private;
6977
6978 t->idx = *ppos;
6979 return ppos;
6980}
6981
6982static const struct seq_operations slab_debugfs_sops = {
6983 .start = slab_debugfs_start,
6984 .next = slab_debugfs_next,
6985 .stop = slab_debugfs_stop,
6986 .show = slab_debugfs_show,
6987};
6988
6989static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6990{
6991
6992 struct kmem_cache_node *n;
6993 enum track_item alloc;
6994 int node;
6995 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6996 sizeof(struct loc_track));
6997 struct kmem_cache *s = file_inode(filep)->i_private;
6998 unsigned long *obj_map;
6999
7000 if (!t)
7001 return -ENOMEM;
7002
7003 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7004 if (!obj_map) {
7005 seq_release_private(inode, filep);
7006 return -ENOMEM;
7007 }
7008
7009 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7010 alloc = TRACK_ALLOC;
7011 else
7012 alloc = TRACK_FREE;
7013
7014 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7015 bitmap_free(obj_map);
7016 seq_release_private(inode, filep);
7017 return -ENOMEM;
7018 }
7019
7020 for_each_kmem_cache_node(s, node, n) {
7021 unsigned long flags;
7022 struct slab *slab;
7023
7024 if (!node_nr_slabs(n))
7025 continue;
7026
7027 spin_lock_irqsave(&n->list_lock, flags);
7028 list_for_each_entry(slab, &n->partial, slab_list)
7029 process_slab(t, s, slab, alloc, obj_map);
7030 list_for_each_entry(slab, &n->full, slab_list)
7031 process_slab(t, s, slab, alloc, obj_map);
7032 spin_unlock_irqrestore(&n->list_lock, flags);
7033 }
7034
7035 /* Sort locations by count */
7036 sort_r(t->loc, t->count, sizeof(struct location),
7037 cmp_loc_by_count, NULL, NULL);
7038
7039 bitmap_free(obj_map);
7040 return 0;
7041}
7042
7043static int slab_debug_trace_release(struct inode *inode, struct file *file)
7044{
7045 struct seq_file *seq = file->private_data;
7046 struct loc_track *t = seq->private;
7047
7048 free_loc_track(t);
7049 return seq_release_private(inode, file);
7050}
7051
7052static const struct file_operations slab_debugfs_fops = {
7053 .open = slab_debug_trace_open,
7054 .read = seq_read,
7055 .llseek = seq_lseek,
7056 .release = slab_debug_trace_release,
7057};
7058
7059static void debugfs_slab_add(struct kmem_cache *s)
7060{
7061 struct dentry *slab_cache_dir;
7062
7063 if (unlikely(!slab_debugfs_root))
7064 return;
7065
7066 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7067
7068 debugfs_create_file("alloc_traces", 0400,
7069 slab_cache_dir, s, &slab_debugfs_fops);
7070
7071 debugfs_create_file("free_traces", 0400,
7072 slab_cache_dir, s, &slab_debugfs_fops);
7073}
7074
7075void debugfs_slab_release(struct kmem_cache *s)
7076{
7077 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7078}
7079
7080static int __init slab_debugfs_init(void)
7081{
7082 struct kmem_cache *s;
7083
7084 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7085
7086 list_for_each_entry(s, &slab_caches, list)
7087 if (s->flags & SLAB_STORE_USER)
7088 debugfs_slab_add(s);
7089
7090 return 0;
7091
7092}
7093__initcall(slab_debugfs_init);
7094#endif
7095/*
7096 * The /proc/slabinfo ABI
7097 */
7098#ifdef CONFIG_SLUB_DEBUG
7099void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7100{
7101 unsigned long nr_slabs = 0;
7102 unsigned long nr_objs = 0;
7103 unsigned long nr_free = 0;
7104 int node;
7105 struct kmem_cache_node *n;
7106
7107 for_each_kmem_cache_node(s, node, n) {
7108 nr_slabs += node_nr_slabs(n);
7109 nr_objs += node_nr_objs(n);
7110 nr_free += count_partial(n, count_free);
7111 }
7112
7113 sinfo->active_objs = nr_objs - nr_free;
7114 sinfo->num_objs = nr_objs;
7115 sinfo->active_slabs = nr_slabs;
7116 sinfo->num_slabs = nr_slabs;
7117 sinfo->objects_per_slab = oo_objects(s->oo);
7118 sinfo->cache_order = oo_order(s->oo);
7119}
7120
7121void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7122{
7123}
7124
7125ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7126 size_t count, loff_t *ppos)
7127{
7128 return -EIO;
7129}
7130#endif /* CONFIG_SLUB_DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/kmemleak.h>
38#include <linux/stacktrace.h>
39#include <linux/prefetch.h>
40#include <linux/memcontrol.h>
41#include <linux/random.h>
42#include <kunit/test.h>
43#include <kunit/test-bug.h>
44#include <linux/sort.h>
45
46#include <linux/debugfs.h>
47#include <trace/events/kmem.h>
48
49#include "internal.h"
50
51/*
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
58 *
59 * slab_mutex
60 *
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
69 *
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
77 *
78 * Frozen slabs
79 *
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
87 *
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
102 * list_lock
103 *
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
115 *
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
179 *
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
183 */
184
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
204#define USE_LOCKLESS_FAST_PATH() (false)
205#endif
206
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219#endif /* CONFIG_SLUB_DEBUG */
220
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
223 gfp_t flags;
224 unsigned int orig_size;
225 void *object;
226};
227
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231}
232
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
239void *fixup_red_left(struct kmem_cache *s, void *p)
240{
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
243
244 return p;
245}
246
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
256/*
257 * Issues still to be resolved:
258 *
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
261 * - Variable sizing of the per node arrays
262 */
263
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
267#ifndef CONFIG_SLUB_TINY
268/*
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
272#define MIN_PARTIAL 5
273
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
278 */
279#define MAX_PARTIAL 10
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
284
285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
287
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
296/*
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
299 * metadata.
300 */
301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
306
307/* Internal SLUB flags */
308/* Poison object */
309#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310/* Use cmpxchg_double */
311
312#ifdef system_has_freelist_aba
313#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314#else
315#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
316#endif
317
318/*
319 * Tracking user of a slab.
320 */
321#define TRACK_ADDRS_COUNT 16
322struct track {
323 unsigned long addr; /* Called from address */
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
326#endif
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
334#ifdef SLAB_SUPPORTS_SYSFS
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
337#else
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
341#endif
342
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
403static inline void stat(const struct kmem_cache *s, enum stat_item si)
404{
405#ifdef CONFIG_SLUB_STATS
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
411#endif
412}
413
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
457#ifndef CONFIG_SLUB_TINY
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
462#endif
463
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
481{
482 unsigned long encoded;
483
484#ifdef CONFIG_SLAB_FREELIST_HARDENED
485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486#else
487 encoded = (unsigned long)ptr;
488#endif
489 return (freeptr_t){.v = encoded};
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499#else
500 decoded = (void *)ptr.v;
501#endif
502 return decoded;
503}
504
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
507 unsigned long ptr_addr;
508 freeptr_t p;
509
510 object = kasan_reset_tag(object);
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
514}
515
516#ifndef CONFIG_SLUB_TINY
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
519 prefetchw(object + s->offset);
520}
521#endif
522
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
536 unsigned long freepointer_addr;
537 freeptr_t p;
538
539 if (!debug_pagealloc_enabled_static())
540 return get_freepointer(s, object);
541
542 object = kasan_reset_tag(object);
543 freepointer_addr = (unsigned long)object + s->offset;
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
546}
547
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558}
559
560/*
561 * See comment in calculate_sizes().
562 */
563static inline bool freeptr_outside_object(struct kmem_cache *s)
564{
565 return s->offset >= s->inuse;
566}
567
568/*
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
571 */
572static inline unsigned int get_info_end(struct kmem_cache *s)
573{
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
576 else
577 return s->inuse;
578}
579
580/* Loop over all objects in a slab */
581#define for_each_object(__p, __s, __addr, __objects) \
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
584 __p += (__s)->size)
585
586static inline unsigned int order_objects(unsigned int order, unsigned int size)
587{
588 return ((unsigned int)PAGE_SIZE << order) / size;
589}
590
591static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 unsigned int size)
593{
594 struct kmem_cache_order_objects x = {
595 (order << OO_SHIFT) + order_objects(order, size)
596 };
597
598 return x;
599}
600
601static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602{
603 return x.x >> OO_SHIFT;
604}
605
606static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607{
608 return x.x & OO_MASK;
609}
610
611#ifdef CONFIG_SLUB_CPU_PARTIAL
612static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613{
614 unsigned int nr_slabs;
615
616 s->cpu_partial = nr_objects;
617
618 /*
619 * We take the number of objects but actually limit the number of
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
622 * be half-full.
623 */
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
626}
627#else
628static inline void
629slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
630{
631}
632#endif /* CONFIG_SLUB_CPU_PARTIAL */
633
634/*
635 * Per slab locking using the pagelock
636 */
637static __always_inline void slab_lock(struct slab *slab)
638{
639 struct page *page = slab_page(slab);
640
641 VM_BUG_ON_PAGE(PageTail(page), page);
642 bit_spin_lock(PG_locked, &page->flags);
643}
644
645static __always_inline void slab_unlock(struct slab *slab)
646{
647 struct page *page = slab_page(slab);
648
649 VM_BUG_ON_PAGE(PageTail(page), page);
650 bit_spin_unlock(PG_locked, &page->flags);
651}
652
653static inline bool
654__update_freelist_fast(struct slab *slab,
655 void *freelist_old, unsigned long counters_old,
656 void *freelist_new, unsigned long counters_new)
657{
658#ifdef system_has_freelist_aba
659 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
660 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
661
662 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
663#else
664 return false;
665#endif
666}
667
668static inline bool
669__update_freelist_slow(struct slab *slab,
670 void *freelist_old, unsigned long counters_old,
671 void *freelist_new, unsigned long counters_new)
672{
673 bool ret = false;
674
675 slab_lock(slab);
676 if (slab->freelist == freelist_old &&
677 slab->counters == counters_old) {
678 slab->freelist = freelist_new;
679 slab->counters = counters_new;
680 ret = true;
681 }
682 slab_unlock(slab);
683
684 return ret;
685}
686
687/*
688 * Interrupts must be disabled (for the fallback code to work right), typically
689 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
690 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
691 * allocation/ free operation in hardirq context. Therefore nothing can
692 * interrupt the operation.
693 */
694static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
695 void *freelist_old, unsigned long counters_old,
696 void *freelist_new, unsigned long counters_new,
697 const char *n)
698{
699 bool ret;
700
701 if (USE_LOCKLESS_FAST_PATH())
702 lockdep_assert_irqs_disabled();
703
704 if (s->flags & __CMPXCHG_DOUBLE) {
705 ret = __update_freelist_fast(slab, freelist_old, counters_old,
706 freelist_new, counters_new);
707 } else {
708 ret = __update_freelist_slow(slab, freelist_old, counters_old,
709 freelist_new, counters_new);
710 }
711 if (likely(ret))
712 return true;
713
714 cpu_relax();
715 stat(s, CMPXCHG_DOUBLE_FAIL);
716
717#ifdef SLUB_DEBUG_CMPXCHG
718 pr_info("%s %s: cmpxchg double redo ", n, s->name);
719#endif
720
721 return false;
722}
723
724static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
725 void *freelist_old, unsigned long counters_old,
726 void *freelist_new, unsigned long counters_new,
727 const char *n)
728{
729 bool ret;
730
731 if (s->flags & __CMPXCHG_DOUBLE) {
732 ret = __update_freelist_fast(slab, freelist_old, counters_old,
733 freelist_new, counters_new);
734 } else {
735 unsigned long flags;
736
737 local_irq_save(flags);
738 ret = __update_freelist_slow(slab, freelist_old, counters_old,
739 freelist_new, counters_new);
740 local_irq_restore(flags);
741 }
742 if (likely(ret))
743 return true;
744
745 cpu_relax();
746 stat(s, CMPXCHG_DOUBLE_FAIL);
747
748#ifdef SLUB_DEBUG_CMPXCHG
749 pr_info("%s %s: cmpxchg double redo ", n, s->name);
750#endif
751
752 return false;
753}
754
755#ifdef CONFIG_SLUB_DEBUG
756static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
757static DEFINE_SPINLOCK(object_map_lock);
758
759static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
760 struct slab *slab)
761{
762 void *addr = slab_address(slab);
763 void *p;
764
765 bitmap_zero(obj_map, slab->objects);
766
767 for (p = slab->freelist; p; p = get_freepointer(s, p))
768 set_bit(__obj_to_index(s, addr, p), obj_map);
769}
770
771#if IS_ENABLED(CONFIG_KUNIT)
772static bool slab_add_kunit_errors(void)
773{
774 struct kunit_resource *resource;
775
776 if (!kunit_get_current_test())
777 return false;
778
779 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
780 if (!resource)
781 return false;
782
783 (*(int *)resource->data)++;
784 kunit_put_resource(resource);
785 return true;
786}
787#else
788static inline bool slab_add_kunit_errors(void) { return false; }
789#endif
790
791static inline unsigned int size_from_object(struct kmem_cache *s)
792{
793 if (s->flags & SLAB_RED_ZONE)
794 return s->size - s->red_left_pad;
795
796 return s->size;
797}
798
799static inline void *restore_red_left(struct kmem_cache *s, void *p)
800{
801 if (s->flags & SLAB_RED_ZONE)
802 p -= s->red_left_pad;
803
804 return p;
805}
806
807/*
808 * Debug settings:
809 */
810#if defined(CONFIG_SLUB_DEBUG_ON)
811static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
812#else
813static slab_flags_t slub_debug;
814#endif
815
816static char *slub_debug_string;
817static int disable_higher_order_debug;
818
819/*
820 * slub is about to manipulate internal object metadata. This memory lies
821 * outside the range of the allocated object, so accessing it would normally
822 * be reported by kasan as a bounds error. metadata_access_enable() is used
823 * to tell kasan that these accesses are OK.
824 */
825static inline void metadata_access_enable(void)
826{
827 kasan_disable_current();
828}
829
830static inline void metadata_access_disable(void)
831{
832 kasan_enable_current();
833}
834
835/*
836 * Object debugging
837 */
838
839/* Verify that a pointer has an address that is valid within a slab page */
840static inline int check_valid_pointer(struct kmem_cache *s,
841 struct slab *slab, void *object)
842{
843 void *base;
844
845 if (!object)
846 return 1;
847
848 base = slab_address(slab);
849 object = kasan_reset_tag(object);
850 object = restore_red_left(s, object);
851 if (object < base || object >= base + slab->objects * s->size ||
852 (object - base) % s->size) {
853 return 0;
854 }
855
856 return 1;
857}
858
859static void print_section(char *level, char *text, u8 *addr,
860 unsigned int length)
861{
862 metadata_access_enable();
863 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
864 16, 1, kasan_reset_tag((void *)addr), length, 1);
865 metadata_access_disable();
866}
867
868static struct track *get_track(struct kmem_cache *s, void *object,
869 enum track_item alloc)
870{
871 struct track *p;
872
873 p = object + get_info_end(s);
874
875 return kasan_reset_tag(p + alloc);
876}
877
878#ifdef CONFIG_STACKDEPOT
879static noinline depot_stack_handle_t set_track_prepare(void)
880{
881 depot_stack_handle_t handle;
882 unsigned long entries[TRACK_ADDRS_COUNT];
883 unsigned int nr_entries;
884
885 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
886 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887
888 return handle;
889}
890#else
891static inline depot_stack_handle_t set_track_prepare(void)
892{
893 return 0;
894}
895#endif
896
897static void set_track_update(struct kmem_cache *s, void *object,
898 enum track_item alloc, unsigned long addr,
899 depot_stack_handle_t handle)
900{
901 struct track *p = get_track(s, object, alloc);
902
903#ifdef CONFIG_STACKDEPOT
904 p->handle = handle;
905#endif
906 p->addr = addr;
907 p->cpu = smp_processor_id();
908 p->pid = current->pid;
909 p->when = jiffies;
910}
911
912static __always_inline void set_track(struct kmem_cache *s, void *object,
913 enum track_item alloc, unsigned long addr)
914{
915 depot_stack_handle_t handle = set_track_prepare();
916
917 set_track_update(s, object, alloc, addr, handle);
918}
919
920static void init_tracking(struct kmem_cache *s, void *object)
921{
922 struct track *p;
923
924 if (!(s->flags & SLAB_STORE_USER))
925 return;
926
927 p = get_track(s, object, TRACK_ALLOC);
928 memset(p, 0, 2*sizeof(struct track));
929}
930
931static void print_track(const char *s, struct track *t, unsigned long pr_time)
932{
933 depot_stack_handle_t handle __maybe_unused;
934
935 if (!t->addr)
936 return;
937
938 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
939 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
940#ifdef CONFIG_STACKDEPOT
941 handle = READ_ONCE(t->handle);
942 if (handle)
943 stack_depot_print(handle);
944 else
945 pr_err("object allocation/free stack trace missing\n");
946#endif
947}
948
949void print_tracking(struct kmem_cache *s, void *object)
950{
951 unsigned long pr_time = jiffies;
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
955 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
957}
958
959static void print_slab_info(const struct slab *slab)
960{
961 struct folio *folio = (struct folio *)slab_folio(slab);
962
963 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964 slab, slab->objects, slab->inuse, slab->freelist,
965 folio_flags(folio, 0));
966}
967
968/*
969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970 * family will round up the real request size to these fixed ones, so
971 * there could be an extra area than what is requested. Save the original
972 * request size in the meta data area, for better debug and sanity check.
973 */
974static inline void set_orig_size(struct kmem_cache *s,
975 void *object, unsigned int orig_size)
976{
977 void *p = kasan_reset_tag(object);
978 unsigned int kasan_meta_size;
979
980 if (!slub_debug_orig_size(s))
981 return;
982
983 /*
984 * KASAN can save its free meta data inside of the object at offset 0.
985 * If this meta data size is larger than 'orig_size', it will overlap
986 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987 * 'orig_size' to be as at least as big as KASAN's meta data.
988 */
989 kasan_meta_size = kasan_metadata_size(s, true);
990 if (kasan_meta_size > orig_size)
991 orig_size = kasan_meta_size;
992
993 p += get_info_end(s);
994 p += sizeof(struct track) * 2;
995
996 *(unsigned int *)p = orig_size;
997}
998
999static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000{
1001 void *p = kasan_reset_tag(object);
1002
1003 if (!slub_debug_orig_size(s))
1004 return s->object_size;
1005
1006 p += get_info_end(s);
1007 p += sizeof(struct track) * 2;
1008
1009 return *(unsigned int *)p;
1010}
1011
1012void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013{
1014 set_orig_size(s, (void *)object, s->object_size);
1015}
1016
1017static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018{
1019 struct va_format vaf;
1020 va_list args;
1021
1022 va_start(args, fmt);
1023 vaf.fmt = fmt;
1024 vaf.va = &args;
1025 pr_err("=============================================================================\n");
1026 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027 pr_err("-----------------------------------------------------------------------------\n\n");
1028 va_end(args);
1029}
1030
1031__printf(2, 3)
1032static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033{
1034 struct va_format vaf;
1035 va_list args;
1036
1037 if (slab_add_kunit_errors())
1038 return;
1039
1040 va_start(args, fmt);
1041 vaf.fmt = fmt;
1042 vaf.va = &args;
1043 pr_err("FIX %s: %pV\n", s->name, &vaf);
1044 va_end(args);
1045}
1046
1047static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048{
1049 unsigned int off; /* Offset of last byte */
1050 u8 *addr = slab_address(slab);
1051
1052 print_tracking(s, p);
1053
1054 print_slab_info(slab);
1055
1056 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057 p, p - addr, get_freepointer(s, p));
1058
1059 if (s->flags & SLAB_RED_ZONE)
1060 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1061 s->red_left_pad);
1062 else if (p > addr + 16)
1063 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064
1065 print_section(KERN_ERR, "Object ", p,
1066 min_t(unsigned int, s->object_size, PAGE_SIZE));
1067 if (s->flags & SLAB_RED_ZONE)
1068 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1069 s->inuse - s->object_size);
1070
1071 off = get_info_end(s);
1072
1073 if (s->flags & SLAB_STORE_USER)
1074 off += 2 * sizeof(struct track);
1075
1076 if (slub_debug_orig_size(s))
1077 off += sizeof(unsigned int);
1078
1079 off += kasan_metadata_size(s, false);
1080
1081 if (off != size_from_object(s))
1082 /* Beginning of the filler is the free pointer */
1083 print_section(KERN_ERR, "Padding ", p + off,
1084 size_from_object(s) - off);
1085
1086 dump_stack();
1087}
1088
1089static void object_err(struct kmem_cache *s, struct slab *slab,
1090 u8 *object, char *reason)
1091{
1092 if (slab_add_kunit_errors())
1093 return;
1094
1095 slab_bug(s, "%s", reason);
1096 print_trailer(s, slab, object);
1097 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098}
1099
1100static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101 void **freelist, void *nextfree)
1102{
1103 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104 !check_valid_pointer(s, slab, nextfree) && freelist) {
1105 object_err(s, slab, *freelist, "Freechain corrupt");
1106 *freelist = NULL;
1107 slab_fix(s, "Isolate corrupted freechain");
1108 return true;
1109 }
1110
1111 return false;
1112}
1113
1114static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115 const char *fmt, ...)
1116{
1117 va_list args;
1118 char buf[100];
1119
1120 if (slab_add_kunit_errors())
1121 return;
1122
1123 va_start(args, fmt);
1124 vsnprintf(buf, sizeof(buf), fmt, args);
1125 va_end(args);
1126 slab_bug(s, "%s", buf);
1127 print_slab_info(slab);
1128 dump_stack();
1129 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130}
1131
1132static void init_object(struct kmem_cache *s, void *object, u8 val)
1133{
1134 u8 *p = kasan_reset_tag(object);
1135 unsigned int poison_size = s->object_size;
1136
1137 if (s->flags & SLAB_RED_ZONE) {
1138 memset(p - s->red_left_pad, val, s->red_left_pad);
1139
1140 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141 /*
1142 * Redzone the extra allocated space by kmalloc than
1143 * requested, and the poison size will be limited to
1144 * the original request size accordingly.
1145 */
1146 poison_size = get_orig_size(s, object);
1147 }
1148 }
1149
1150 if (s->flags & __OBJECT_POISON) {
1151 memset(p, POISON_FREE, poison_size - 1);
1152 p[poison_size - 1] = POISON_END;
1153 }
1154
1155 if (s->flags & SLAB_RED_ZONE)
1156 memset(p + poison_size, val, s->inuse - poison_size);
1157}
1158
1159static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160 void *from, void *to)
1161{
1162 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163 memset(from, data, to - from);
1164}
1165
1166static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167 u8 *object, char *what,
1168 u8 *start, unsigned int value, unsigned int bytes)
1169{
1170 u8 *fault;
1171 u8 *end;
1172 u8 *addr = slab_address(slab);
1173
1174 metadata_access_enable();
1175 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176 metadata_access_disable();
1177 if (!fault)
1178 return 1;
1179
1180 end = start + bytes;
1181 while (end > fault && end[-1] == value)
1182 end--;
1183
1184 if (slab_add_kunit_errors())
1185 goto skip_bug_print;
1186
1187 slab_bug(s, "%s overwritten", what);
1188 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189 fault, end - 1, fault - addr,
1190 fault[0], value);
1191 print_trailer(s, slab, object);
1192 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193
1194skip_bug_print:
1195 restore_bytes(s, what, value, fault, end);
1196 return 0;
1197}
1198
1199/*
1200 * Object layout:
1201 *
1202 * object address
1203 * Bytes of the object to be managed.
1204 * If the freepointer may overlay the object then the free
1205 * pointer is at the middle of the object.
1206 *
1207 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208 * 0xa5 (POISON_END)
1209 *
1210 * object + s->object_size
1211 * Padding to reach word boundary. This is also used for Redzoning.
1212 * Padding is extended by another word if Redzoning is enabled and
1213 * object_size == inuse.
1214 *
1215 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216 * 0xcc (RED_ACTIVE) for objects in use.
1217 *
1218 * object + s->inuse
1219 * Meta data starts here.
1220 *
1221 * A. Free pointer (if we cannot overwrite object on free)
1222 * B. Tracking data for SLAB_STORE_USER
1223 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224 * D. Padding to reach required alignment boundary or at minimum
1225 * one word if debugging is on to be able to detect writes
1226 * before the word boundary.
1227 *
1228 * Padding is done using 0x5a (POISON_INUSE)
1229 *
1230 * object + s->size
1231 * Nothing is used beyond s->size.
1232 *
1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234 * ignored. And therefore no slab options that rely on these boundaries
1235 * may be used with merged slabcaches.
1236 */
1237
1238static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239{
1240 unsigned long off = get_info_end(s); /* The end of info */
1241
1242 if (s->flags & SLAB_STORE_USER) {
1243 /* We also have user information there */
1244 off += 2 * sizeof(struct track);
1245
1246 if (s->flags & SLAB_KMALLOC)
1247 off += sizeof(unsigned int);
1248 }
1249
1250 off += kasan_metadata_size(s, false);
1251
1252 if (size_from_object(s) == off)
1253 return 1;
1254
1255 return check_bytes_and_report(s, slab, p, "Object padding",
1256 p + off, POISON_INUSE, size_from_object(s) - off);
1257}
1258
1259/* Check the pad bytes at the end of a slab page */
1260static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261{
1262 u8 *start;
1263 u8 *fault;
1264 u8 *end;
1265 u8 *pad;
1266 int length;
1267 int remainder;
1268
1269 if (!(s->flags & SLAB_POISON))
1270 return;
1271
1272 start = slab_address(slab);
1273 length = slab_size(slab);
1274 end = start + length;
1275 remainder = length % s->size;
1276 if (!remainder)
1277 return;
1278
1279 pad = end - remainder;
1280 metadata_access_enable();
1281 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282 metadata_access_disable();
1283 if (!fault)
1284 return;
1285 while (end > fault && end[-1] == POISON_INUSE)
1286 end--;
1287
1288 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289 fault, end - 1, fault - start);
1290 print_section(KERN_ERR, "Padding ", pad, remainder);
1291
1292 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1293}
1294
1295static int check_object(struct kmem_cache *s, struct slab *slab,
1296 void *object, u8 val)
1297{
1298 u8 *p = object;
1299 u8 *endobject = object + s->object_size;
1300 unsigned int orig_size, kasan_meta_size;
1301
1302 if (s->flags & SLAB_RED_ZONE) {
1303 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304 object - s->red_left_pad, val, s->red_left_pad))
1305 return 0;
1306
1307 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308 endobject, val, s->inuse - s->object_size))
1309 return 0;
1310
1311 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312 orig_size = get_orig_size(s, object);
1313
1314 if (s->object_size > orig_size &&
1315 !check_bytes_and_report(s, slab, object,
1316 "kmalloc Redzone", p + orig_size,
1317 val, s->object_size - orig_size)) {
1318 return 0;
1319 }
1320 }
1321 } else {
1322 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323 check_bytes_and_report(s, slab, p, "Alignment padding",
1324 endobject, POISON_INUSE,
1325 s->inuse - s->object_size);
1326 }
1327 }
1328
1329 if (s->flags & SLAB_POISON) {
1330 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331 /*
1332 * KASAN can save its free meta data inside of the
1333 * object at offset 0. Thus, skip checking the part of
1334 * the redzone that overlaps with the meta data.
1335 */
1336 kasan_meta_size = kasan_metadata_size(s, true);
1337 if (kasan_meta_size < s->object_size - 1 &&
1338 !check_bytes_and_report(s, slab, p, "Poison",
1339 p + kasan_meta_size, POISON_FREE,
1340 s->object_size - kasan_meta_size - 1))
1341 return 0;
1342 if (kasan_meta_size < s->object_size &&
1343 !check_bytes_and_report(s, slab, p, "End Poison",
1344 p + s->object_size - 1, POISON_END, 1))
1345 return 0;
1346 }
1347 /*
1348 * check_pad_bytes cleans up on its own.
1349 */
1350 check_pad_bytes(s, slab, p);
1351 }
1352
1353 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354 /*
1355 * Object and freepointer overlap. Cannot check
1356 * freepointer while object is allocated.
1357 */
1358 return 1;
1359
1360 /* Check free pointer validity */
1361 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362 object_err(s, slab, p, "Freepointer corrupt");
1363 /*
1364 * No choice but to zap it and thus lose the remainder
1365 * of the free objects in this slab. May cause
1366 * another error because the object count is now wrong.
1367 */
1368 set_freepointer(s, p, NULL);
1369 return 0;
1370 }
1371 return 1;
1372}
1373
1374static int check_slab(struct kmem_cache *s, struct slab *slab)
1375{
1376 int maxobj;
1377
1378 if (!folio_test_slab(slab_folio(slab))) {
1379 slab_err(s, slab, "Not a valid slab page");
1380 return 0;
1381 }
1382
1383 maxobj = order_objects(slab_order(slab), s->size);
1384 if (slab->objects > maxobj) {
1385 slab_err(s, slab, "objects %u > max %u",
1386 slab->objects, maxobj);
1387 return 0;
1388 }
1389 if (slab->inuse > slab->objects) {
1390 slab_err(s, slab, "inuse %u > max %u",
1391 slab->inuse, slab->objects);
1392 return 0;
1393 }
1394 /* Slab_pad_check fixes things up after itself */
1395 slab_pad_check(s, slab);
1396 return 1;
1397}
1398
1399/*
1400 * Determine if a certain object in a slab is on the freelist. Must hold the
1401 * slab lock to guarantee that the chains are in a consistent state.
1402 */
1403static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404{
1405 int nr = 0;
1406 void *fp;
1407 void *object = NULL;
1408 int max_objects;
1409
1410 fp = slab->freelist;
1411 while (fp && nr <= slab->objects) {
1412 if (fp == search)
1413 return 1;
1414 if (!check_valid_pointer(s, slab, fp)) {
1415 if (object) {
1416 object_err(s, slab, object,
1417 "Freechain corrupt");
1418 set_freepointer(s, object, NULL);
1419 } else {
1420 slab_err(s, slab, "Freepointer corrupt");
1421 slab->freelist = NULL;
1422 slab->inuse = slab->objects;
1423 slab_fix(s, "Freelist cleared");
1424 return 0;
1425 }
1426 break;
1427 }
1428 object = fp;
1429 fp = get_freepointer(s, object);
1430 nr++;
1431 }
1432
1433 max_objects = order_objects(slab_order(slab), s->size);
1434 if (max_objects > MAX_OBJS_PER_PAGE)
1435 max_objects = MAX_OBJS_PER_PAGE;
1436
1437 if (slab->objects != max_objects) {
1438 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439 slab->objects, max_objects);
1440 slab->objects = max_objects;
1441 slab_fix(s, "Number of objects adjusted");
1442 }
1443 if (slab->inuse != slab->objects - nr) {
1444 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445 slab->inuse, slab->objects - nr);
1446 slab->inuse = slab->objects - nr;
1447 slab_fix(s, "Object count adjusted");
1448 }
1449 return search == NULL;
1450}
1451
1452static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453 int alloc)
1454{
1455 if (s->flags & SLAB_TRACE) {
1456 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457 s->name,
1458 alloc ? "alloc" : "free",
1459 object, slab->inuse,
1460 slab->freelist);
1461
1462 if (!alloc)
1463 print_section(KERN_INFO, "Object ", (void *)object,
1464 s->object_size);
1465
1466 dump_stack();
1467 }
1468}
1469
1470/*
1471 * Tracking of fully allocated slabs for debugging purposes.
1472 */
1473static void add_full(struct kmem_cache *s,
1474 struct kmem_cache_node *n, struct slab *slab)
1475{
1476 if (!(s->flags & SLAB_STORE_USER))
1477 return;
1478
1479 lockdep_assert_held(&n->list_lock);
1480 list_add(&slab->slab_list, &n->full);
1481}
1482
1483static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484{
1485 if (!(s->flags & SLAB_STORE_USER))
1486 return;
1487
1488 lockdep_assert_held(&n->list_lock);
1489 list_del(&slab->slab_list);
1490}
1491
1492static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493{
1494 return atomic_long_read(&n->nr_slabs);
1495}
1496
1497static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498{
1499 struct kmem_cache_node *n = get_node(s, node);
1500
1501 atomic_long_inc(&n->nr_slabs);
1502 atomic_long_add(objects, &n->total_objects);
1503}
1504static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1505{
1506 struct kmem_cache_node *n = get_node(s, node);
1507
1508 atomic_long_dec(&n->nr_slabs);
1509 atomic_long_sub(objects, &n->total_objects);
1510}
1511
1512/* Object debug checks for alloc/free paths */
1513static void setup_object_debug(struct kmem_cache *s, void *object)
1514{
1515 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1516 return;
1517
1518 init_object(s, object, SLUB_RED_INACTIVE);
1519 init_tracking(s, object);
1520}
1521
1522static
1523void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1524{
1525 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1526 return;
1527
1528 metadata_access_enable();
1529 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1530 metadata_access_disable();
1531}
1532
1533static inline int alloc_consistency_checks(struct kmem_cache *s,
1534 struct slab *slab, void *object)
1535{
1536 if (!check_slab(s, slab))
1537 return 0;
1538
1539 if (!check_valid_pointer(s, slab, object)) {
1540 object_err(s, slab, object, "Freelist Pointer check fails");
1541 return 0;
1542 }
1543
1544 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1545 return 0;
1546
1547 return 1;
1548}
1549
1550static noinline bool alloc_debug_processing(struct kmem_cache *s,
1551 struct slab *slab, void *object, int orig_size)
1552{
1553 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1554 if (!alloc_consistency_checks(s, slab, object))
1555 goto bad;
1556 }
1557
1558 /* Success. Perform special debug activities for allocs */
1559 trace(s, slab, object, 1);
1560 set_orig_size(s, object, orig_size);
1561 init_object(s, object, SLUB_RED_ACTIVE);
1562 return true;
1563
1564bad:
1565 if (folio_test_slab(slab_folio(slab))) {
1566 /*
1567 * If this is a slab page then lets do the best we can
1568 * to avoid issues in the future. Marking all objects
1569 * as used avoids touching the remaining objects.
1570 */
1571 slab_fix(s, "Marking all objects used");
1572 slab->inuse = slab->objects;
1573 slab->freelist = NULL;
1574 }
1575 return false;
1576}
1577
1578static inline int free_consistency_checks(struct kmem_cache *s,
1579 struct slab *slab, void *object, unsigned long addr)
1580{
1581 if (!check_valid_pointer(s, slab, object)) {
1582 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1583 return 0;
1584 }
1585
1586 if (on_freelist(s, slab, object)) {
1587 object_err(s, slab, object, "Object already free");
1588 return 0;
1589 }
1590
1591 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1592 return 0;
1593
1594 if (unlikely(s != slab->slab_cache)) {
1595 if (!folio_test_slab(slab_folio(slab))) {
1596 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1597 object);
1598 } else if (!slab->slab_cache) {
1599 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1600 object);
1601 dump_stack();
1602 } else
1603 object_err(s, slab, object,
1604 "page slab pointer corrupt.");
1605 return 0;
1606 }
1607 return 1;
1608}
1609
1610/*
1611 * Parse a block of slab_debug options. Blocks are delimited by ';'
1612 *
1613 * @str: start of block
1614 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1615 * @slabs: return start of list of slabs, or NULL when there's no list
1616 * @init: assume this is initial parsing and not per-kmem-create parsing
1617 *
1618 * returns the start of next block if there's any, or NULL
1619 */
1620static char *
1621parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1622{
1623 bool higher_order_disable = false;
1624
1625 /* Skip any completely empty blocks */
1626 while (*str && *str == ';')
1627 str++;
1628
1629 if (*str == ',') {
1630 /*
1631 * No options but restriction on slabs. This means full
1632 * debugging for slabs matching a pattern.
1633 */
1634 *flags = DEBUG_DEFAULT_FLAGS;
1635 goto check_slabs;
1636 }
1637 *flags = 0;
1638
1639 /* Determine which debug features should be switched on */
1640 for (; *str && *str != ',' && *str != ';'; str++) {
1641 switch (tolower(*str)) {
1642 case '-':
1643 *flags = 0;
1644 break;
1645 case 'f':
1646 *flags |= SLAB_CONSISTENCY_CHECKS;
1647 break;
1648 case 'z':
1649 *flags |= SLAB_RED_ZONE;
1650 break;
1651 case 'p':
1652 *flags |= SLAB_POISON;
1653 break;
1654 case 'u':
1655 *flags |= SLAB_STORE_USER;
1656 break;
1657 case 't':
1658 *flags |= SLAB_TRACE;
1659 break;
1660 case 'a':
1661 *flags |= SLAB_FAILSLAB;
1662 break;
1663 case 'o':
1664 /*
1665 * Avoid enabling debugging on caches if its minimum
1666 * order would increase as a result.
1667 */
1668 higher_order_disable = true;
1669 break;
1670 default:
1671 if (init)
1672 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1673 }
1674 }
1675check_slabs:
1676 if (*str == ',')
1677 *slabs = ++str;
1678 else
1679 *slabs = NULL;
1680
1681 /* Skip over the slab list */
1682 while (*str && *str != ';')
1683 str++;
1684
1685 /* Skip any completely empty blocks */
1686 while (*str && *str == ';')
1687 str++;
1688
1689 if (init && higher_order_disable)
1690 disable_higher_order_debug = 1;
1691
1692 if (*str)
1693 return str;
1694 else
1695 return NULL;
1696}
1697
1698static int __init setup_slub_debug(char *str)
1699{
1700 slab_flags_t flags;
1701 slab_flags_t global_flags;
1702 char *saved_str;
1703 char *slab_list;
1704 bool global_slub_debug_changed = false;
1705 bool slab_list_specified = false;
1706
1707 global_flags = DEBUG_DEFAULT_FLAGS;
1708 if (*str++ != '=' || !*str)
1709 /*
1710 * No options specified. Switch on full debugging.
1711 */
1712 goto out;
1713
1714 saved_str = str;
1715 while (str) {
1716 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1717
1718 if (!slab_list) {
1719 global_flags = flags;
1720 global_slub_debug_changed = true;
1721 } else {
1722 slab_list_specified = true;
1723 if (flags & SLAB_STORE_USER)
1724 stack_depot_request_early_init();
1725 }
1726 }
1727
1728 /*
1729 * For backwards compatibility, a single list of flags with list of
1730 * slabs means debugging is only changed for those slabs, so the global
1731 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1732 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1733 * long as there is no option specifying flags without a slab list.
1734 */
1735 if (slab_list_specified) {
1736 if (!global_slub_debug_changed)
1737 global_flags = slub_debug;
1738 slub_debug_string = saved_str;
1739 }
1740out:
1741 slub_debug = global_flags;
1742 if (slub_debug & SLAB_STORE_USER)
1743 stack_depot_request_early_init();
1744 if (slub_debug != 0 || slub_debug_string)
1745 static_branch_enable(&slub_debug_enabled);
1746 else
1747 static_branch_disable(&slub_debug_enabled);
1748 if ((static_branch_unlikely(&init_on_alloc) ||
1749 static_branch_unlikely(&init_on_free)) &&
1750 (slub_debug & SLAB_POISON))
1751 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1752 return 1;
1753}
1754
1755__setup("slab_debug", setup_slub_debug);
1756__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1757
1758/*
1759 * kmem_cache_flags - apply debugging options to the cache
1760 * @flags: flags to set
1761 * @name: name of the cache
1762 *
1763 * Debug option(s) are applied to @flags. In addition to the debug
1764 * option(s), if a slab name (or multiple) is specified i.e.
1765 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1766 * then only the select slabs will receive the debug option(s).
1767 */
1768slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1769{
1770 char *iter;
1771 size_t len;
1772 char *next_block;
1773 slab_flags_t block_flags;
1774 slab_flags_t slub_debug_local = slub_debug;
1775
1776 if (flags & SLAB_NO_USER_FLAGS)
1777 return flags;
1778
1779 /*
1780 * If the slab cache is for debugging (e.g. kmemleak) then
1781 * don't store user (stack trace) information by default,
1782 * but let the user enable it via the command line below.
1783 */
1784 if (flags & SLAB_NOLEAKTRACE)
1785 slub_debug_local &= ~SLAB_STORE_USER;
1786
1787 len = strlen(name);
1788 next_block = slub_debug_string;
1789 /* Go through all blocks of debug options, see if any matches our slab's name */
1790 while (next_block) {
1791 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1792 if (!iter)
1793 continue;
1794 /* Found a block that has a slab list, search it */
1795 while (*iter) {
1796 char *end, *glob;
1797 size_t cmplen;
1798
1799 end = strchrnul(iter, ',');
1800 if (next_block && next_block < end)
1801 end = next_block - 1;
1802
1803 glob = strnchr(iter, end - iter, '*');
1804 if (glob)
1805 cmplen = glob - iter;
1806 else
1807 cmplen = max_t(size_t, len, (end - iter));
1808
1809 if (!strncmp(name, iter, cmplen)) {
1810 flags |= block_flags;
1811 return flags;
1812 }
1813
1814 if (!*end || *end == ';')
1815 break;
1816 iter = end + 1;
1817 }
1818 }
1819
1820 return flags | slub_debug_local;
1821}
1822#else /* !CONFIG_SLUB_DEBUG */
1823static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1824static inline
1825void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1826
1827static inline bool alloc_debug_processing(struct kmem_cache *s,
1828 struct slab *slab, void *object, int orig_size) { return true; }
1829
1830static inline bool free_debug_processing(struct kmem_cache *s,
1831 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1832 unsigned long addr, depot_stack_handle_t handle) { return true; }
1833
1834static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1835static inline int check_object(struct kmem_cache *s, struct slab *slab,
1836 void *object, u8 val) { return 1; }
1837static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1838static inline void set_track(struct kmem_cache *s, void *object,
1839 enum track_item alloc, unsigned long addr) {}
1840static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1841 struct slab *slab) {}
1842static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1843 struct slab *slab) {}
1844slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1845{
1846 return flags;
1847}
1848#define slub_debug 0
1849
1850#define disable_higher_order_debug 0
1851
1852static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1853 { return 0; }
1854static inline void inc_slabs_node(struct kmem_cache *s, int node,
1855 int objects) {}
1856static inline void dec_slabs_node(struct kmem_cache *s, int node,
1857 int objects) {}
1858
1859#ifndef CONFIG_SLUB_TINY
1860static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1861 void **freelist, void *nextfree)
1862{
1863 return false;
1864}
1865#endif
1866#endif /* CONFIG_SLUB_DEBUG */
1867
1868static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1869{
1870 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1871 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1872}
1873
1874#ifdef CONFIG_MEMCG_KMEM
1875static inline void memcg_free_slab_cgroups(struct slab *slab)
1876{
1877 kfree(slab_objcgs(slab));
1878 slab->memcg_data = 0;
1879}
1880
1881static inline size_t obj_full_size(struct kmem_cache *s)
1882{
1883 /*
1884 * For each accounted object there is an extra space which is used
1885 * to store obj_cgroup membership. Charge it too.
1886 */
1887 return s->size + sizeof(struct obj_cgroup *);
1888}
1889
1890/*
1891 * Returns false if the allocation should fail.
1892 */
1893static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1894 struct list_lru *lru,
1895 struct obj_cgroup **objcgp,
1896 size_t objects, gfp_t flags)
1897{
1898 /*
1899 * The obtained objcg pointer is safe to use within the current scope,
1900 * defined by current task or set_active_memcg() pair.
1901 * obj_cgroup_get() is used to get a permanent reference.
1902 */
1903 struct obj_cgroup *objcg = current_obj_cgroup();
1904 if (!objcg)
1905 return true;
1906
1907 if (lru) {
1908 int ret;
1909 struct mem_cgroup *memcg;
1910
1911 memcg = get_mem_cgroup_from_objcg(objcg);
1912 ret = memcg_list_lru_alloc(memcg, lru, flags);
1913 css_put(&memcg->css);
1914
1915 if (ret)
1916 return false;
1917 }
1918
1919 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1920 return false;
1921
1922 *objcgp = objcg;
1923 return true;
1924}
1925
1926/*
1927 * Returns false if the allocation should fail.
1928 */
1929static __fastpath_inline
1930bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1931 struct obj_cgroup **objcgp, size_t objects,
1932 gfp_t flags)
1933{
1934 if (!memcg_kmem_online())
1935 return true;
1936
1937 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1938 return true;
1939
1940 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1941 flags));
1942}
1943
1944static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1945 struct obj_cgroup *objcg,
1946 gfp_t flags, size_t size,
1947 void **p)
1948{
1949 struct slab *slab;
1950 unsigned long off;
1951 size_t i;
1952
1953 flags &= gfp_allowed_mask;
1954
1955 for (i = 0; i < size; i++) {
1956 if (likely(p[i])) {
1957 slab = virt_to_slab(p[i]);
1958
1959 if (!slab_objcgs(slab) &&
1960 memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1961 obj_cgroup_uncharge(objcg, obj_full_size(s));
1962 continue;
1963 }
1964
1965 off = obj_to_index(s, slab, p[i]);
1966 obj_cgroup_get(objcg);
1967 slab_objcgs(slab)[off] = objcg;
1968 mod_objcg_state(objcg, slab_pgdat(slab),
1969 cache_vmstat_idx(s), obj_full_size(s));
1970 } else {
1971 obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 }
1973 }
1974}
1975
1976static __fastpath_inline
1977void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1978 gfp_t flags, size_t size, void **p)
1979{
1980 if (likely(!memcg_kmem_online() || !objcg))
1981 return;
1982
1983 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1984}
1985
1986static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1987 void **p, int objects,
1988 struct obj_cgroup **objcgs)
1989{
1990 for (int i = 0; i < objects; i++) {
1991 struct obj_cgroup *objcg;
1992 unsigned int off;
1993
1994 off = obj_to_index(s, slab, p[i]);
1995 objcg = objcgs[off];
1996 if (!objcg)
1997 continue;
1998
1999 objcgs[off] = NULL;
2000 obj_cgroup_uncharge(objcg, obj_full_size(s));
2001 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2002 -obj_full_size(s));
2003 obj_cgroup_put(objcg);
2004 }
2005}
2006
2007static __fastpath_inline
2008void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2009 int objects)
2010{
2011 struct obj_cgroup **objcgs;
2012
2013 if (!memcg_kmem_online())
2014 return;
2015
2016 objcgs = slab_objcgs(slab);
2017 if (likely(!objcgs))
2018 return;
2019
2020 __memcg_slab_free_hook(s, slab, p, objects, objcgs);
2021}
2022
2023static inline
2024void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2025 struct obj_cgroup *objcg)
2026{
2027 if (objcg)
2028 obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2029}
2030#else /* CONFIG_MEMCG_KMEM */
2031static inline void memcg_free_slab_cgroups(struct slab *slab)
2032{
2033}
2034
2035static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2036 struct list_lru *lru,
2037 struct obj_cgroup **objcgp,
2038 size_t objects, gfp_t flags)
2039{
2040 return true;
2041}
2042
2043static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2044 struct obj_cgroup *objcg,
2045 gfp_t flags, size_t size,
2046 void **p)
2047{
2048}
2049
2050static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2051 void **p, int objects)
2052{
2053}
2054
2055static inline
2056void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2057 struct obj_cgroup *objcg)
2058{
2059}
2060#endif /* CONFIG_MEMCG_KMEM */
2061
2062/*
2063 * Hooks for other subsystems that check memory allocations. In a typical
2064 * production configuration these hooks all should produce no code at all.
2065 *
2066 * Returns true if freeing of the object can proceed, false if its reuse
2067 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2068 */
2069static __always_inline
2070bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2071{
2072 kmemleak_free_recursive(x, s->flags);
2073 kmsan_slab_free(s, x);
2074
2075 debug_check_no_locks_freed(x, s->object_size);
2076
2077 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2078 debug_check_no_obj_freed(x, s->object_size);
2079
2080 /* Use KCSAN to help debug racy use-after-free. */
2081 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2082 __kcsan_check_access(x, s->object_size,
2083 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2084
2085 if (kfence_free(x))
2086 return false;
2087
2088 /*
2089 * As memory initialization might be integrated into KASAN,
2090 * kasan_slab_free and initialization memset's must be
2091 * kept together to avoid discrepancies in behavior.
2092 *
2093 * The initialization memset's clear the object and the metadata,
2094 * but don't touch the SLAB redzone.
2095 *
2096 * The object's freepointer is also avoided if stored outside the
2097 * object.
2098 */
2099 if (unlikely(init)) {
2100 int rsize;
2101 unsigned int inuse;
2102
2103 inuse = get_info_end(s);
2104 if (!kasan_has_integrated_init())
2105 memset(kasan_reset_tag(x), 0, s->object_size);
2106 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2107 memset((char *)kasan_reset_tag(x) + inuse, 0,
2108 s->size - inuse - rsize);
2109 }
2110 /* KASAN might put x into memory quarantine, delaying its reuse. */
2111 return !kasan_slab_free(s, x, init);
2112}
2113
2114static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2115 void **head, void **tail,
2116 int *cnt)
2117{
2118
2119 void *object;
2120 void *next = *head;
2121 void *old_tail = *tail;
2122 bool init;
2123
2124 if (is_kfence_address(next)) {
2125 slab_free_hook(s, next, false);
2126 return false;
2127 }
2128
2129 /* Head and tail of the reconstructed freelist */
2130 *head = NULL;
2131 *tail = NULL;
2132
2133 init = slab_want_init_on_free(s);
2134
2135 do {
2136 object = next;
2137 next = get_freepointer(s, object);
2138
2139 /* If object's reuse doesn't have to be delayed */
2140 if (likely(slab_free_hook(s, object, init))) {
2141 /* Move object to the new freelist */
2142 set_freepointer(s, object, *head);
2143 *head = object;
2144 if (!*tail)
2145 *tail = object;
2146 } else {
2147 /*
2148 * Adjust the reconstructed freelist depth
2149 * accordingly if object's reuse is delayed.
2150 */
2151 --(*cnt);
2152 }
2153 } while (object != old_tail);
2154
2155 return *head != NULL;
2156}
2157
2158static void *setup_object(struct kmem_cache *s, void *object)
2159{
2160 setup_object_debug(s, object);
2161 object = kasan_init_slab_obj(s, object);
2162 if (unlikely(s->ctor)) {
2163 kasan_unpoison_new_object(s, object);
2164 s->ctor(object);
2165 kasan_poison_new_object(s, object);
2166 }
2167 return object;
2168}
2169
2170/*
2171 * Slab allocation and freeing
2172 */
2173static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2174 struct kmem_cache_order_objects oo)
2175{
2176 struct folio *folio;
2177 struct slab *slab;
2178 unsigned int order = oo_order(oo);
2179
2180 folio = (struct folio *)alloc_pages_node(node, flags, order);
2181 if (!folio)
2182 return NULL;
2183
2184 slab = folio_slab(folio);
2185 __folio_set_slab(folio);
2186 /* Make the flag visible before any changes to folio->mapping */
2187 smp_wmb();
2188 if (folio_is_pfmemalloc(folio))
2189 slab_set_pfmemalloc(slab);
2190
2191 return slab;
2192}
2193
2194#ifdef CONFIG_SLAB_FREELIST_RANDOM
2195/* Pre-initialize the random sequence cache */
2196static int init_cache_random_seq(struct kmem_cache *s)
2197{
2198 unsigned int count = oo_objects(s->oo);
2199 int err;
2200
2201 /* Bailout if already initialised */
2202 if (s->random_seq)
2203 return 0;
2204
2205 err = cache_random_seq_create(s, count, GFP_KERNEL);
2206 if (err) {
2207 pr_err("SLUB: Unable to initialize free list for %s\n",
2208 s->name);
2209 return err;
2210 }
2211
2212 /* Transform to an offset on the set of pages */
2213 if (s->random_seq) {
2214 unsigned int i;
2215
2216 for (i = 0; i < count; i++)
2217 s->random_seq[i] *= s->size;
2218 }
2219 return 0;
2220}
2221
2222/* Initialize each random sequence freelist per cache */
2223static void __init init_freelist_randomization(void)
2224{
2225 struct kmem_cache *s;
2226
2227 mutex_lock(&slab_mutex);
2228
2229 list_for_each_entry(s, &slab_caches, list)
2230 init_cache_random_seq(s);
2231
2232 mutex_unlock(&slab_mutex);
2233}
2234
2235/* Get the next entry on the pre-computed freelist randomized */
2236static void *next_freelist_entry(struct kmem_cache *s,
2237 unsigned long *pos, void *start,
2238 unsigned long page_limit,
2239 unsigned long freelist_count)
2240{
2241 unsigned int idx;
2242
2243 /*
2244 * If the target page allocation failed, the number of objects on the
2245 * page might be smaller than the usual size defined by the cache.
2246 */
2247 do {
2248 idx = s->random_seq[*pos];
2249 *pos += 1;
2250 if (*pos >= freelist_count)
2251 *pos = 0;
2252 } while (unlikely(idx >= page_limit));
2253
2254 return (char *)start + idx;
2255}
2256
2257/* Shuffle the single linked freelist based on a random pre-computed sequence */
2258static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2259{
2260 void *start;
2261 void *cur;
2262 void *next;
2263 unsigned long idx, pos, page_limit, freelist_count;
2264
2265 if (slab->objects < 2 || !s->random_seq)
2266 return false;
2267
2268 freelist_count = oo_objects(s->oo);
2269 pos = get_random_u32_below(freelist_count);
2270
2271 page_limit = slab->objects * s->size;
2272 start = fixup_red_left(s, slab_address(slab));
2273
2274 /* First entry is used as the base of the freelist */
2275 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2276 cur = setup_object(s, cur);
2277 slab->freelist = cur;
2278
2279 for (idx = 1; idx < slab->objects; idx++) {
2280 next = next_freelist_entry(s, &pos, start, page_limit,
2281 freelist_count);
2282 next = setup_object(s, next);
2283 set_freepointer(s, cur, next);
2284 cur = next;
2285 }
2286 set_freepointer(s, cur, NULL);
2287
2288 return true;
2289}
2290#else
2291static inline int init_cache_random_seq(struct kmem_cache *s)
2292{
2293 return 0;
2294}
2295static inline void init_freelist_randomization(void) { }
2296static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2297{
2298 return false;
2299}
2300#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2301
2302static __always_inline void account_slab(struct slab *slab, int order,
2303 struct kmem_cache *s, gfp_t gfp)
2304{
2305 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2306 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2307
2308 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2309 PAGE_SIZE << order);
2310}
2311
2312static __always_inline void unaccount_slab(struct slab *slab, int order,
2313 struct kmem_cache *s)
2314{
2315 if (memcg_kmem_online())
2316 memcg_free_slab_cgroups(slab);
2317
2318 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2319 -(PAGE_SIZE << order));
2320}
2321
2322static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2323{
2324 struct slab *slab;
2325 struct kmem_cache_order_objects oo = s->oo;
2326 gfp_t alloc_gfp;
2327 void *start, *p, *next;
2328 int idx;
2329 bool shuffle;
2330
2331 flags &= gfp_allowed_mask;
2332
2333 flags |= s->allocflags;
2334
2335 /*
2336 * Let the initial higher-order allocation fail under memory pressure
2337 * so we fall-back to the minimum order allocation.
2338 */
2339 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2340 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2341 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2342
2343 slab = alloc_slab_page(alloc_gfp, node, oo);
2344 if (unlikely(!slab)) {
2345 oo = s->min;
2346 alloc_gfp = flags;
2347 /*
2348 * Allocation may have failed due to fragmentation.
2349 * Try a lower order alloc if possible
2350 */
2351 slab = alloc_slab_page(alloc_gfp, node, oo);
2352 if (unlikely(!slab))
2353 return NULL;
2354 stat(s, ORDER_FALLBACK);
2355 }
2356
2357 slab->objects = oo_objects(oo);
2358 slab->inuse = 0;
2359 slab->frozen = 0;
2360
2361 account_slab(slab, oo_order(oo), s, flags);
2362
2363 slab->slab_cache = s;
2364
2365 kasan_poison_slab(slab);
2366
2367 start = slab_address(slab);
2368
2369 setup_slab_debug(s, slab, start);
2370
2371 shuffle = shuffle_freelist(s, slab);
2372
2373 if (!shuffle) {
2374 start = fixup_red_left(s, start);
2375 start = setup_object(s, start);
2376 slab->freelist = start;
2377 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2378 next = p + s->size;
2379 next = setup_object(s, next);
2380 set_freepointer(s, p, next);
2381 p = next;
2382 }
2383 set_freepointer(s, p, NULL);
2384 }
2385
2386 return slab;
2387}
2388
2389static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2390{
2391 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2392 flags = kmalloc_fix_flags(flags);
2393
2394 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2395
2396 return allocate_slab(s,
2397 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2398}
2399
2400static void __free_slab(struct kmem_cache *s, struct slab *slab)
2401{
2402 struct folio *folio = slab_folio(slab);
2403 int order = folio_order(folio);
2404 int pages = 1 << order;
2405
2406 __slab_clear_pfmemalloc(slab);
2407 folio->mapping = NULL;
2408 /* Make the mapping reset visible before clearing the flag */
2409 smp_wmb();
2410 __folio_clear_slab(folio);
2411 mm_account_reclaimed_pages(pages);
2412 unaccount_slab(slab, order, s);
2413 __free_pages(&folio->page, order);
2414}
2415
2416static void rcu_free_slab(struct rcu_head *h)
2417{
2418 struct slab *slab = container_of(h, struct slab, rcu_head);
2419
2420 __free_slab(slab->slab_cache, slab);
2421}
2422
2423static void free_slab(struct kmem_cache *s, struct slab *slab)
2424{
2425 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2426 void *p;
2427
2428 slab_pad_check(s, slab);
2429 for_each_object(p, s, slab_address(slab), slab->objects)
2430 check_object(s, slab, p, SLUB_RED_INACTIVE);
2431 }
2432
2433 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2434 call_rcu(&slab->rcu_head, rcu_free_slab);
2435 else
2436 __free_slab(s, slab);
2437}
2438
2439static void discard_slab(struct kmem_cache *s, struct slab *slab)
2440{
2441 dec_slabs_node(s, slab_nid(slab), slab->objects);
2442 free_slab(s, slab);
2443}
2444
2445/*
2446 * SLUB reuses PG_workingset bit to keep track of whether it's on
2447 * the per-node partial list.
2448 */
2449static inline bool slab_test_node_partial(const struct slab *slab)
2450{
2451 return folio_test_workingset((struct folio *)slab_folio(slab));
2452}
2453
2454static inline void slab_set_node_partial(struct slab *slab)
2455{
2456 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2457}
2458
2459static inline void slab_clear_node_partial(struct slab *slab)
2460{
2461 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2462}
2463
2464/*
2465 * Management of partially allocated slabs.
2466 */
2467static inline void
2468__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2469{
2470 n->nr_partial++;
2471 if (tail == DEACTIVATE_TO_TAIL)
2472 list_add_tail(&slab->slab_list, &n->partial);
2473 else
2474 list_add(&slab->slab_list, &n->partial);
2475 slab_set_node_partial(slab);
2476}
2477
2478static inline void add_partial(struct kmem_cache_node *n,
2479 struct slab *slab, int tail)
2480{
2481 lockdep_assert_held(&n->list_lock);
2482 __add_partial(n, slab, tail);
2483}
2484
2485static inline void remove_partial(struct kmem_cache_node *n,
2486 struct slab *slab)
2487{
2488 lockdep_assert_held(&n->list_lock);
2489 list_del(&slab->slab_list);
2490 slab_clear_node_partial(slab);
2491 n->nr_partial--;
2492}
2493
2494/*
2495 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2496 * slab from the n->partial list. Remove only a single object from the slab, do
2497 * the alloc_debug_processing() checks and leave the slab on the list, or move
2498 * it to full list if it was the last free object.
2499 */
2500static void *alloc_single_from_partial(struct kmem_cache *s,
2501 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2502{
2503 void *object;
2504
2505 lockdep_assert_held(&n->list_lock);
2506
2507 object = slab->freelist;
2508 slab->freelist = get_freepointer(s, object);
2509 slab->inuse++;
2510
2511 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2512 remove_partial(n, slab);
2513 return NULL;
2514 }
2515
2516 if (slab->inuse == slab->objects) {
2517 remove_partial(n, slab);
2518 add_full(s, n, slab);
2519 }
2520
2521 return object;
2522}
2523
2524/*
2525 * Called only for kmem_cache_debug() caches to allocate from a freshly
2526 * allocated slab. Allocate a single object instead of whole freelist
2527 * and put the slab to the partial (or full) list.
2528 */
2529static void *alloc_single_from_new_slab(struct kmem_cache *s,
2530 struct slab *slab, int orig_size)
2531{
2532 int nid = slab_nid(slab);
2533 struct kmem_cache_node *n = get_node(s, nid);
2534 unsigned long flags;
2535 void *object;
2536
2537
2538 object = slab->freelist;
2539 slab->freelist = get_freepointer(s, object);
2540 slab->inuse = 1;
2541
2542 if (!alloc_debug_processing(s, slab, object, orig_size))
2543 /*
2544 * It's not really expected that this would fail on a
2545 * freshly allocated slab, but a concurrent memory
2546 * corruption in theory could cause that.
2547 */
2548 return NULL;
2549
2550 spin_lock_irqsave(&n->list_lock, flags);
2551
2552 if (slab->inuse == slab->objects)
2553 add_full(s, n, slab);
2554 else
2555 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2556
2557 inc_slabs_node(s, nid, slab->objects);
2558 spin_unlock_irqrestore(&n->list_lock, flags);
2559
2560 return object;
2561}
2562
2563#ifdef CONFIG_SLUB_CPU_PARTIAL
2564static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2565#else
2566static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2567 int drain) { }
2568#endif
2569static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2570
2571/*
2572 * Try to allocate a partial slab from a specific node.
2573 */
2574static struct slab *get_partial_node(struct kmem_cache *s,
2575 struct kmem_cache_node *n,
2576 struct partial_context *pc)
2577{
2578 struct slab *slab, *slab2, *partial = NULL;
2579 unsigned long flags;
2580 unsigned int partial_slabs = 0;
2581
2582 /*
2583 * Racy check. If we mistakenly see no partial slabs then we
2584 * just allocate an empty slab. If we mistakenly try to get a
2585 * partial slab and there is none available then get_partial()
2586 * will return NULL.
2587 */
2588 if (!n || !n->nr_partial)
2589 return NULL;
2590
2591 spin_lock_irqsave(&n->list_lock, flags);
2592 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2593 if (!pfmemalloc_match(slab, pc->flags))
2594 continue;
2595
2596 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2597 void *object = alloc_single_from_partial(s, n, slab,
2598 pc->orig_size);
2599 if (object) {
2600 partial = slab;
2601 pc->object = object;
2602 break;
2603 }
2604 continue;
2605 }
2606
2607 remove_partial(n, slab);
2608
2609 if (!partial) {
2610 partial = slab;
2611 stat(s, ALLOC_FROM_PARTIAL);
2612 } else {
2613 put_cpu_partial(s, slab, 0);
2614 stat(s, CPU_PARTIAL_NODE);
2615 partial_slabs++;
2616 }
2617#ifdef CONFIG_SLUB_CPU_PARTIAL
2618 if (!kmem_cache_has_cpu_partial(s)
2619 || partial_slabs > s->cpu_partial_slabs / 2)
2620 break;
2621#else
2622 break;
2623#endif
2624
2625 }
2626 spin_unlock_irqrestore(&n->list_lock, flags);
2627 return partial;
2628}
2629
2630/*
2631 * Get a slab from somewhere. Search in increasing NUMA distances.
2632 */
2633static struct slab *get_any_partial(struct kmem_cache *s,
2634 struct partial_context *pc)
2635{
2636#ifdef CONFIG_NUMA
2637 struct zonelist *zonelist;
2638 struct zoneref *z;
2639 struct zone *zone;
2640 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2641 struct slab *slab;
2642 unsigned int cpuset_mems_cookie;
2643
2644 /*
2645 * The defrag ratio allows a configuration of the tradeoffs between
2646 * inter node defragmentation and node local allocations. A lower
2647 * defrag_ratio increases the tendency to do local allocations
2648 * instead of attempting to obtain partial slabs from other nodes.
2649 *
2650 * If the defrag_ratio is set to 0 then kmalloc() always
2651 * returns node local objects. If the ratio is higher then kmalloc()
2652 * may return off node objects because partial slabs are obtained
2653 * from other nodes and filled up.
2654 *
2655 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2656 * (which makes defrag_ratio = 1000) then every (well almost)
2657 * allocation will first attempt to defrag slab caches on other nodes.
2658 * This means scanning over all nodes to look for partial slabs which
2659 * may be expensive if we do it every time we are trying to find a slab
2660 * with available objects.
2661 */
2662 if (!s->remote_node_defrag_ratio ||
2663 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2664 return NULL;
2665
2666 do {
2667 cpuset_mems_cookie = read_mems_allowed_begin();
2668 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2669 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2670 struct kmem_cache_node *n;
2671
2672 n = get_node(s, zone_to_nid(zone));
2673
2674 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2675 n->nr_partial > s->min_partial) {
2676 slab = get_partial_node(s, n, pc);
2677 if (slab) {
2678 /*
2679 * Don't check read_mems_allowed_retry()
2680 * here - if mems_allowed was updated in
2681 * parallel, that was a harmless race
2682 * between allocation and the cpuset
2683 * update
2684 */
2685 return slab;
2686 }
2687 }
2688 }
2689 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2690#endif /* CONFIG_NUMA */
2691 return NULL;
2692}
2693
2694/*
2695 * Get a partial slab, lock it and return it.
2696 */
2697static struct slab *get_partial(struct kmem_cache *s, int node,
2698 struct partial_context *pc)
2699{
2700 struct slab *slab;
2701 int searchnode = node;
2702
2703 if (node == NUMA_NO_NODE)
2704 searchnode = numa_mem_id();
2705
2706 slab = get_partial_node(s, get_node(s, searchnode), pc);
2707 if (slab || node != NUMA_NO_NODE)
2708 return slab;
2709
2710 return get_any_partial(s, pc);
2711}
2712
2713#ifndef CONFIG_SLUB_TINY
2714
2715#ifdef CONFIG_PREEMPTION
2716/*
2717 * Calculate the next globally unique transaction for disambiguation
2718 * during cmpxchg. The transactions start with the cpu number and are then
2719 * incremented by CONFIG_NR_CPUS.
2720 */
2721#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2722#else
2723/*
2724 * No preemption supported therefore also no need to check for
2725 * different cpus.
2726 */
2727#define TID_STEP 1
2728#endif /* CONFIG_PREEMPTION */
2729
2730static inline unsigned long next_tid(unsigned long tid)
2731{
2732 return tid + TID_STEP;
2733}
2734
2735#ifdef SLUB_DEBUG_CMPXCHG
2736static inline unsigned int tid_to_cpu(unsigned long tid)
2737{
2738 return tid % TID_STEP;
2739}
2740
2741static inline unsigned long tid_to_event(unsigned long tid)
2742{
2743 return tid / TID_STEP;
2744}
2745#endif
2746
2747static inline unsigned int init_tid(int cpu)
2748{
2749 return cpu;
2750}
2751
2752static inline void note_cmpxchg_failure(const char *n,
2753 const struct kmem_cache *s, unsigned long tid)
2754{
2755#ifdef SLUB_DEBUG_CMPXCHG
2756 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2757
2758 pr_info("%s %s: cmpxchg redo ", n, s->name);
2759
2760#ifdef CONFIG_PREEMPTION
2761 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2762 pr_warn("due to cpu change %d -> %d\n",
2763 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2764 else
2765#endif
2766 if (tid_to_event(tid) != tid_to_event(actual_tid))
2767 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2768 tid_to_event(tid), tid_to_event(actual_tid));
2769 else
2770 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2771 actual_tid, tid, next_tid(tid));
2772#endif
2773 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2774}
2775
2776static void init_kmem_cache_cpus(struct kmem_cache *s)
2777{
2778 int cpu;
2779 struct kmem_cache_cpu *c;
2780
2781 for_each_possible_cpu(cpu) {
2782 c = per_cpu_ptr(s->cpu_slab, cpu);
2783 local_lock_init(&c->lock);
2784 c->tid = init_tid(cpu);
2785 }
2786}
2787
2788/*
2789 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2790 * unfreezes the slabs and puts it on the proper list.
2791 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2792 * by the caller.
2793 */
2794static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2795 void *freelist)
2796{
2797 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2798 int free_delta = 0;
2799 void *nextfree, *freelist_iter, *freelist_tail;
2800 int tail = DEACTIVATE_TO_HEAD;
2801 unsigned long flags = 0;
2802 struct slab new;
2803 struct slab old;
2804
2805 if (slab->freelist) {
2806 stat(s, DEACTIVATE_REMOTE_FREES);
2807 tail = DEACTIVATE_TO_TAIL;
2808 }
2809
2810 /*
2811 * Stage one: Count the objects on cpu's freelist as free_delta and
2812 * remember the last object in freelist_tail for later splicing.
2813 */
2814 freelist_tail = NULL;
2815 freelist_iter = freelist;
2816 while (freelist_iter) {
2817 nextfree = get_freepointer(s, freelist_iter);
2818
2819 /*
2820 * If 'nextfree' is invalid, it is possible that the object at
2821 * 'freelist_iter' is already corrupted. So isolate all objects
2822 * starting at 'freelist_iter' by skipping them.
2823 */
2824 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2825 break;
2826
2827 freelist_tail = freelist_iter;
2828 free_delta++;
2829
2830 freelist_iter = nextfree;
2831 }
2832
2833 /*
2834 * Stage two: Unfreeze the slab while splicing the per-cpu
2835 * freelist to the head of slab's freelist.
2836 */
2837 do {
2838 old.freelist = READ_ONCE(slab->freelist);
2839 old.counters = READ_ONCE(slab->counters);
2840 VM_BUG_ON(!old.frozen);
2841
2842 /* Determine target state of the slab */
2843 new.counters = old.counters;
2844 new.frozen = 0;
2845 if (freelist_tail) {
2846 new.inuse -= free_delta;
2847 set_freepointer(s, freelist_tail, old.freelist);
2848 new.freelist = freelist;
2849 } else {
2850 new.freelist = old.freelist;
2851 }
2852 } while (!slab_update_freelist(s, slab,
2853 old.freelist, old.counters,
2854 new.freelist, new.counters,
2855 "unfreezing slab"));
2856
2857 /*
2858 * Stage three: Manipulate the slab list based on the updated state.
2859 */
2860 if (!new.inuse && n->nr_partial >= s->min_partial) {
2861 stat(s, DEACTIVATE_EMPTY);
2862 discard_slab(s, slab);
2863 stat(s, FREE_SLAB);
2864 } else if (new.freelist) {
2865 spin_lock_irqsave(&n->list_lock, flags);
2866 add_partial(n, slab, tail);
2867 spin_unlock_irqrestore(&n->list_lock, flags);
2868 stat(s, tail);
2869 } else {
2870 stat(s, DEACTIVATE_FULL);
2871 }
2872}
2873
2874#ifdef CONFIG_SLUB_CPU_PARTIAL
2875static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2876{
2877 struct kmem_cache_node *n = NULL, *n2 = NULL;
2878 struct slab *slab, *slab_to_discard = NULL;
2879 unsigned long flags = 0;
2880
2881 while (partial_slab) {
2882 slab = partial_slab;
2883 partial_slab = slab->next;
2884
2885 n2 = get_node(s, slab_nid(slab));
2886 if (n != n2) {
2887 if (n)
2888 spin_unlock_irqrestore(&n->list_lock, flags);
2889
2890 n = n2;
2891 spin_lock_irqsave(&n->list_lock, flags);
2892 }
2893
2894 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2895 slab->next = slab_to_discard;
2896 slab_to_discard = slab;
2897 } else {
2898 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2899 stat(s, FREE_ADD_PARTIAL);
2900 }
2901 }
2902
2903 if (n)
2904 spin_unlock_irqrestore(&n->list_lock, flags);
2905
2906 while (slab_to_discard) {
2907 slab = slab_to_discard;
2908 slab_to_discard = slab_to_discard->next;
2909
2910 stat(s, DEACTIVATE_EMPTY);
2911 discard_slab(s, slab);
2912 stat(s, FREE_SLAB);
2913 }
2914}
2915
2916/*
2917 * Put all the cpu partial slabs to the node partial list.
2918 */
2919static void put_partials(struct kmem_cache *s)
2920{
2921 struct slab *partial_slab;
2922 unsigned long flags;
2923
2924 local_lock_irqsave(&s->cpu_slab->lock, flags);
2925 partial_slab = this_cpu_read(s->cpu_slab->partial);
2926 this_cpu_write(s->cpu_slab->partial, NULL);
2927 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2928
2929 if (partial_slab)
2930 __put_partials(s, partial_slab);
2931}
2932
2933static void put_partials_cpu(struct kmem_cache *s,
2934 struct kmem_cache_cpu *c)
2935{
2936 struct slab *partial_slab;
2937
2938 partial_slab = slub_percpu_partial(c);
2939 c->partial = NULL;
2940
2941 if (partial_slab)
2942 __put_partials(s, partial_slab);
2943}
2944
2945/*
2946 * Put a slab into a partial slab slot if available.
2947 *
2948 * If we did not find a slot then simply move all the partials to the
2949 * per node partial list.
2950 */
2951static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2952{
2953 struct slab *oldslab;
2954 struct slab *slab_to_put = NULL;
2955 unsigned long flags;
2956 int slabs = 0;
2957
2958 local_lock_irqsave(&s->cpu_slab->lock, flags);
2959
2960 oldslab = this_cpu_read(s->cpu_slab->partial);
2961
2962 if (oldslab) {
2963 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2964 /*
2965 * Partial array is full. Move the existing set to the
2966 * per node partial list. Postpone the actual unfreezing
2967 * outside of the critical section.
2968 */
2969 slab_to_put = oldslab;
2970 oldslab = NULL;
2971 } else {
2972 slabs = oldslab->slabs;
2973 }
2974 }
2975
2976 slabs++;
2977
2978 slab->slabs = slabs;
2979 slab->next = oldslab;
2980
2981 this_cpu_write(s->cpu_slab->partial, slab);
2982
2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2984
2985 if (slab_to_put) {
2986 __put_partials(s, slab_to_put);
2987 stat(s, CPU_PARTIAL_DRAIN);
2988 }
2989}
2990
2991#else /* CONFIG_SLUB_CPU_PARTIAL */
2992
2993static inline void put_partials(struct kmem_cache *s) { }
2994static inline void put_partials_cpu(struct kmem_cache *s,
2995 struct kmem_cache_cpu *c) { }
2996
2997#endif /* CONFIG_SLUB_CPU_PARTIAL */
2998
2999static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3000{
3001 unsigned long flags;
3002 struct slab *slab;
3003 void *freelist;
3004
3005 local_lock_irqsave(&s->cpu_slab->lock, flags);
3006
3007 slab = c->slab;
3008 freelist = c->freelist;
3009
3010 c->slab = NULL;
3011 c->freelist = NULL;
3012 c->tid = next_tid(c->tid);
3013
3014 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3015
3016 if (slab) {
3017 deactivate_slab(s, slab, freelist);
3018 stat(s, CPUSLAB_FLUSH);
3019 }
3020}
3021
3022static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3023{
3024 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3025 void *freelist = c->freelist;
3026 struct slab *slab = c->slab;
3027
3028 c->slab = NULL;
3029 c->freelist = NULL;
3030 c->tid = next_tid(c->tid);
3031
3032 if (slab) {
3033 deactivate_slab(s, slab, freelist);
3034 stat(s, CPUSLAB_FLUSH);
3035 }
3036
3037 put_partials_cpu(s, c);
3038}
3039
3040struct slub_flush_work {
3041 struct work_struct work;
3042 struct kmem_cache *s;
3043 bool skip;
3044};
3045
3046/*
3047 * Flush cpu slab.
3048 *
3049 * Called from CPU work handler with migration disabled.
3050 */
3051static void flush_cpu_slab(struct work_struct *w)
3052{
3053 struct kmem_cache *s;
3054 struct kmem_cache_cpu *c;
3055 struct slub_flush_work *sfw;
3056
3057 sfw = container_of(w, struct slub_flush_work, work);
3058
3059 s = sfw->s;
3060 c = this_cpu_ptr(s->cpu_slab);
3061
3062 if (c->slab)
3063 flush_slab(s, c);
3064
3065 put_partials(s);
3066}
3067
3068static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3069{
3070 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3071
3072 return c->slab || slub_percpu_partial(c);
3073}
3074
3075static DEFINE_MUTEX(flush_lock);
3076static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3077
3078static void flush_all_cpus_locked(struct kmem_cache *s)
3079{
3080 struct slub_flush_work *sfw;
3081 unsigned int cpu;
3082
3083 lockdep_assert_cpus_held();
3084 mutex_lock(&flush_lock);
3085
3086 for_each_online_cpu(cpu) {
3087 sfw = &per_cpu(slub_flush, cpu);
3088 if (!has_cpu_slab(cpu, s)) {
3089 sfw->skip = true;
3090 continue;
3091 }
3092 INIT_WORK(&sfw->work, flush_cpu_slab);
3093 sfw->skip = false;
3094 sfw->s = s;
3095 queue_work_on(cpu, flushwq, &sfw->work);
3096 }
3097
3098 for_each_online_cpu(cpu) {
3099 sfw = &per_cpu(slub_flush, cpu);
3100 if (sfw->skip)
3101 continue;
3102 flush_work(&sfw->work);
3103 }
3104
3105 mutex_unlock(&flush_lock);
3106}
3107
3108static void flush_all(struct kmem_cache *s)
3109{
3110 cpus_read_lock();
3111 flush_all_cpus_locked(s);
3112 cpus_read_unlock();
3113}
3114
3115/*
3116 * Use the cpu notifier to insure that the cpu slabs are flushed when
3117 * necessary.
3118 */
3119static int slub_cpu_dead(unsigned int cpu)
3120{
3121 struct kmem_cache *s;
3122
3123 mutex_lock(&slab_mutex);
3124 list_for_each_entry(s, &slab_caches, list)
3125 __flush_cpu_slab(s, cpu);
3126 mutex_unlock(&slab_mutex);
3127 return 0;
3128}
3129
3130#else /* CONFIG_SLUB_TINY */
3131static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3132static inline void flush_all(struct kmem_cache *s) { }
3133static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3134static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3135#endif /* CONFIG_SLUB_TINY */
3136
3137/*
3138 * Check if the objects in a per cpu structure fit numa
3139 * locality expectations.
3140 */
3141static inline int node_match(struct slab *slab, int node)
3142{
3143#ifdef CONFIG_NUMA
3144 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3145 return 0;
3146#endif
3147 return 1;
3148}
3149
3150#ifdef CONFIG_SLUB_DEBUG
3151static int count_free(struct slab *slab)
3152{
3153 return slab->objects - slab->inuse;
3154}
3155
3156static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3157{
3158 return atomic_long_read(&n->total_objects);
3159}
3160
3161/* Supports checking bulk free of a constructed freelist */
3162static inline bool free_debug_processing(struct kmem_cache *s,
3163 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3164 unsigned long addr, depot_stack_handle_t handle)
3165{
3166 bool checks_ok = false;
3167 void *object = head;
3168 int cnt = 0;
3169
3170 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3171 if (!check_slab(s, slab))
3172 goto out;
3173 }
3174
3175 if (slab->inuse < *bulk_cnt) {
3176 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3177 slab->inuse, *bulk_cnt);
3178 goto out;
3179 }
3180
3181next_object:
3182
3183 if (++cnt > *bulk_cnt)
3184 goto out_cnt;
3185
3186 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3187 if (!free_consistency_checks(s, slab, object, addr))
3188 goto out;
3189 }
3190
3191 if (s->flags & SLAB_STORE_USER)
3192 set_track_update(s, object, TRACK_FREE, addr, handle);
3193 trace(s, slab, object, 0);
3194 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3195 init_object(s, object, SLUB_RED_INACTIVE);
3196
3197 /* Reached end of constructed freelist yet? */
3198 if (object != tail) {
3199 object = get_freepointer(s, object);
3200 goto next_object;
3201 }
3202 checks_ok = true;
3203
3204out_cnt:
3205 if (cnt != *bulk_cnt) {
3206 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3207 *bulk_cnt, cnt);
3208 *bulk_cnt = cnt;
3209 }
3210
3211out:
3212
3213 if (!checks_ok)
3214 slab_fix(s, "Object at 0x%p not freed", object);
3215
3216 return checks_ok;
3217}
3218#endif /* CONFIG_SLUB_DEBUG */
3219
3220#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3221static unsigned long count_partial(struct kmem_cache_node *n,
3222 int (*get_count)(struct slab *))
3223{
3224 unsigned long flags;
3225 unsigned long x = 0;
3226 struct slab *slab;
3227
3228 spin_lock_irqsave(&n->list_lock, flags);
3229 list_for_each_entry(slab, &n->partial, slab_list)
3230 x += get_count(slab);
3231 spin_unlock_irqrestore(&n->list_lock, flags);
3232 return x;
3233}
3234#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3235
3236#ifdef CONFIG_SLUB_DEBUG
3237static noinline void
3238slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3239{
3240 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3241 DEFAULT_RATELIMIT_BURST);
3242 int node;
3243 struct kmem_cache_node *n;
3244
3245 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3246 return;
3247
3248 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3249 nid, gfpflags, &gfpflags);
3250 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3251 s->name, s->object_size, s->size, oo_order(s->oo),
3252 oo_order(s->min));
3253
3254 if (oo_order(s->min) > get_order(s->object_size))
3255 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3256 s->name);
3257
3258 for_each_kmem_cache_node(s, node, n) {
3259 unsigned long nr_slabs;
3260 unsigned long nr_objs;
3261 unsigned long nr_free;
3262
3263 nr_free = count_partial(n, count_free);
3264 nr_slabs = node_nr_slabs(n);
3265 nr_objs = node_nr_objs(n);
3266
3267 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3268 node, nr_slabs, nr_objs, nr_free);
3269 }
3270}
3271#else /* CONFIG_SLUB_DEBUG */
3272static inline void
3273slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3274#endif
3275
3276static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3277{
3278 if (unlikely(slab_test_pfmemalloc(slab)))
3279 return gfp_pfmemalloc_allowed(gfpflags);
3280
3281 return true;
3282}
3283
3284#ifndef CONFIG_SLUB_TINY
3285static inline bool
3286__update_cpu_freelist_fast(struct kmem_cache *s,
3287 void *freelist_old, void *freelist_new,
3288 unsigned long tid)
3289{
3290 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3291 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3292
3293 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3294 &old.full, new.full);
3295}
3296
3297/*
3298 * Check the slab->freelist and either transfer the freelist to the
3299 * per cpu freelist or deactivate the slab.
3300 *
3301 * The slab is still frozen if the return value is not NULL.
3302 *
3303 * If this function returns NULL then the slab has been unfrozen.
3304 */
3305static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3306{
3307 struct slab new;
3308 unsigned long counters;
3309 void *freelist;
3310
3311 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3312
3313 do {
3314 freelist = slab->freelist;
3315 counters = slab->counters;
3316
3317 new.counters = counters;
3318
3319 new.inuse = slab->objects;
3320 new.frozen = freelist != NULL;
3321
3322 } while (!__slab_update_freelist(s, slab,
3323 freelist, counters,
3324 NULL, new.counters,
3325 "get_freelist"));
3326
3327 return freelist;
3328}
3329
3330/*
3331 * Freeze the partial slab and return the pointer to the freelist.
3332 */
3333static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3334{
3335 struct slab new;
3336 unsigned long counters;
3337 void *freelist;
3338
3339 do {
3340 freelist = slab->freelist;
3341 counters = slab->counters;
3342
3343 new.counters = counters;
3344 VM_BUG_ON(new.frozen);
3345
3346 new.inuse = slab->objects;
3347 new.frozen = 1;
3348
3349 } while (!slab_update_freelist(s, slab,
3350 freelist, counters,
3351 NULL, new.counters,
3352 "freeze_slab"));
3353
3354 return freelist;
3355}
3356
3357/*
3358 * Slow path. The lockless freelist is empty or we need to perform
3359 * debugging duties.
3360 *
3361 * Processing is still very fast if new objects have been freed to the
3362 * regular freelist. In that case we simply take over the regular freelist
3363 * as the lockless freelist and zap the regular freelist.
3364 *
3365 * If that is not working then we fall back to the partial lists. We take the
3366 * first element of the freelist as the object to allocate now and move the
3367 * rest of the freelist to the lockless freelist.
3368 *
3369 * And if we were unable to get a new slab from the partial slab lists then
3370 * we need to allocate a new slab. This is the slowest path since it involves
3371 * a call to the page allocator and the setup of a new slab.
3372 *
3373 * Version of __slab_alloc to use when we know that preemption is
3374 * already disabled (which is the case for bulk allocation).
3375 */
3376static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3377 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3378{
3379 void *freelist;
3380 struct slab *slab;
3381 unsigned long flags;
3382 struct partial_context pc;
3383
3384 stat(s, ALLOC_SLOWPATH);
3385
3386reread_slab:
3387
3388 slab = READ_ONCE(c->slab);
3389 if (!slab) {
3390 /*
3391 * if the node is not online or has no normal memory, just
3392 * ignore the node constraint
3393 */
3394 if (unlikely(node != NUMA_NO_NODE &&
3395 !node_isset(node, slab_nodes)))
3396 node = NUMA_NO_NODE;
3397 goto new_slab;
3398 }
3399
3400 if (unlikely(!node_match(slab, node))) {
3401 /*
3402 * same as above but node_match() being false already
3403 * implies node != NUMA_NO_NODE
3404 */
3405 if (!node_isset(node, slab_nodes)) {
3406 node = NUMA_NO_NODE;
3407 } else {
3408 stat(s, ALLOC_NODE_MISMATCH);
3409 goto deactivate_slab;
3410 }
3411 }
3412
3413 /*
3414 * By rights, we should be searching for a slab page that was
3415 * PFMEMALLOC but right now, we are losing the pfmemalloc
3416 * information when the page leaves the per-cpu allocator
3417 */
3418 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3419 goto deactivate_slab;
3420
3421 /* must check again c->slab in case we got preempted and it changed */
3422 local_lock_irqsave(&s->cpu_slab->lock, flags);
3423 if (unlikely(slab != c->slab)) {
3424 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3425 goto reread_slab;
3426 }
3427 freelist = c->freelist;
3428 if (freelist)
3429 goto load_freelist;
3430
3431 freelist = get_freelist(s, slab);
3432
3433 if (!freelist) {
3434 c->slab = NULL;
3435 c->tid = next_tid(c->tid);
3436 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3437 stat(s, DEACTIVATE_BYPASS);
3438 goto new_slab;
3439 }
3440
3441 stat(s, ALLOC_REFILL);
3442
3443load_freelist:
3444
3445 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3446
3447 /*
3448 * freelist is pointing to the list of objects to be used.
3449 * slab is pointing to the slab from which the objects are obtained.
3450 * That slab must be frozen for per cpu allocations to work.
3451 */
3452 VM_BUG_ON(!c->slab->frozen);
3453 c->freelist = get_freepointer(s, freelist);
3454 c->tid = next_tid(c->tid);
3455 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3456 return freelist;
3457
3458deactivate_slab:
3459
3460 local_lock_irqsave(&s->cpu_slab->lock, flags);
3461 if (slab != c->slab) {
3462 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3463 goto reread_slab;
3464 }
3465 freelist = c->freelist;
3466 c->slab = NULL;
3467 c->freelist = NULL;
3468 c->tid = next_tid(c->tid);
3469 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3470 deactivate_slab(s, slab, freelist);
3471
3472new_slab:
3473
3474#ifdef CONFIG_SLUB_CPU_PARTIAL
3475 while (slub_percpu_partial(c)) {
3476 local_lock_irqsave(&s->cpu_slab->lock, flags);
3477 if (unlikely(c->slab)) {
3478 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3479 goto reread_slab;
3480 }
3481 if (unlikely(!slub_percpu_partial(c))) {
3482 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3483 /* we were preempted and partial list got empty */
3484 goto new_objects;
3485 }
3486
3487 slab = slub_percpu_partial(c);
3488 slub_set_percpu_partial(c, slab);
3489
3490 if (likely(node_match(slab, node) &&
3491 pfmemalloc_match(slab, gfpflags))) {
3492 c->slab = slab;
3493 freelist = get_freelist(s, slab);
3494 VM_BUG_ON(!freelist);
3495 stat(s, CPU_PARTIAL_ALLOC);
3496 goto load_freelist;
3497 }
3498
3499 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3500
3501 slab->next = NULL;
3502 __put_partials(s, slab);
3503 }
3504#endif
3505
3506new_objects:
3507
3508 pc.flags = gfpflags;
3509 pc.orig_size = orig_size;
3510 slab = get_partial(s, node, &pc);
3511 if (slab) {
3512 if (kmem_cache_debug(s)) {
3513 freelist = pc.object;
3514 /*
3515 * For debug caches here we had to go through
3516 * alloc_single_from_partial() so just store the
3517 * tracking info and return the object.
3518 */
3519 if (s->flags & SLAB_STORE_USER)
3520 set_track(s, freelist, TRACK_ALLOC, addr);
3521
3522 return freelist;
3523 }
3524
3525 freelist = freeze_slab(s, slab);
3526 goto retry_load_slab;
3527 }
3528
3529 slub_put_cpu_ptr(s->cpu_slab);
3530 slab = new_slab(s, gfpflags, node);
3531 c = slub_get_cpu_ptr(s->cpu_slab);
3532
3533 if (unlikely(!slab)) {
3534 slab_out_of_memory(s, gfpflags, node);
3535 return NULL;
3536 }
3537
3538 stat(s, ALLOC_SLAB);
3539
3540 if (kmem_cache_debug(s)) {
3541 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3542
3543 if (unlikely(!freelist))
3544 goto new_objects;
3545
3546 if (s->flags & SLAB_STORE_USER)
3547 set_track(s, freelist, TRACK_ALLOC, addr);
3548
3549 return freelist;
3550 }
3551
3552 /*
3553 * No other reference to the slab yet so we can
3554 * muck around with it freely without cmpxchg
3555 */
3556 freelist = slab->freelist;
3557 slab->freelist = NULL;
3558 slab->inuse = slab->objects;
3559 slab->frozen = 1;
3560
3561 inc_slabs_node(s, slab_nid(slab), slab->objects);
3562
3563 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3564 /*
3565 * For !pfmemalloc_match() case we don't load freelist so that
3566 * we don't make further mismatched allocations easier.
3567 */
3568 deactivate_slab(s, slab, get_freepointer(s, freelist));
3569 return freelist;
3570 }
3571
3572retry_load_slab:
3573
3574 local_lock_irqsave(&s->cpu_slab->lock, flags);
3575 if (unlikely(c->slab)) {
3576 void *flush_freelist = c->freelist;
3577 struct slab *flush_slab = c->slab;
3578
3579 c->slab = NULL;
3580 c->freelist = NULL;
3581 c->tid = next_tid(c->tid);
3582
3583 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3584
3585 deactivate_slab(s, flush_slab, flush_freelist);
3586
3587 stat(s, CPUSLAB_FLUSH);
3588
3589 goto retry_load_slab;
3590 }
3591 c->slab = slab;
3592
3593 goto load_freelist;
3594}
3595
3596/*
3597 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3598 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3599 * pointer.
3600 */
3601static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3602 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3603{
3604 void *p;
3605
3606#ifdef CONFIG_PREEMPT_COUNT
3607 /*
3608 * We may have been preempted and rescheduled on a different
3609 * cpu before disabling preemption. Need to reload cpu area
3610 * pointer.
3611 */
3612 c = slub_get_cpu_ptr(s->cpu_slab);
3613#endif
3614
3615 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3616#ifdef CONFIG_PREEMPT_COUNT
3617 slub_put_cpu_ptr(s->cpu_slab);
3618#endif
3619 return p;
3620}
3621
3622static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3623 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3624{
3625 struct kmem_cache_cpu *c;
3626 struct slab *slab;
3627 unsigned long tid;
3628 void *object;
3629
3630redo:
3631 /*
3632 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3633 * enabled. We may switch back and forth between cpus while
3634 * reading from one cpu area. That does not matter as long
3635 * as we end up on the original cpu again when doing the cmpxchg.
3636 *
3637 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3638 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3639 * the tid. If we are preempted and switched to another cpu between the
3640 * two reads, it's OK as the two are still associated with the same cpu
3641 * and cmpxchg later will validate the cpu.
3642 */
3643 c = raw_cpu_ptr(s->cpu_slab);
3644 tid = READ_ONCE(c->tid);
3645
3646 /*
3647 * Irqless object alloc/free algorithm used here depends on sequence
3648 * of fetching cpu_slab's data. tid should be fetched before anything
3649 * on c to guarantee that object and slab associated with previous tid
3650 * won't be used with current tid. If we fetch tid first, object and
3651 * slab could be one associated with next tid and our alloc/free
3652 * request will be failed. In this case, we will retry. So, no problem.
3653 */
3654 barrier();
3655
3656 /*
3657 * The transaction ids are globally unique per cpu and per operation on
3658 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3659 * occurs on the right processor and that there was no operation on the
3660 * linked list in between.
3661 */
3662
3663 object = c->freelist;
3664 slab = c->slab;
3665
3666 if (!USE_LOCKLESS_FAST_PATH() ||
3667 unlikely(!object || !slab || !node_match(slab, node))) {
3668 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3669 } else {
3670 void *next_object = get_freepointer_safe(s, object);
3671
3672 /*
3673 * The cmpxchg will only match if there was no additional
3674 * operation and if we are on the right processor.
3675 *
3676 * The cmpxchg does the following atomically (without lock
3677 * semantics!)
3678 * 1. Relocate first pointer to the current per cpu area.
3679 * 2. Verify that tid and freelist have not been changed
3680 * 3. If they were not changed replace tid and freelist
3681 *
3682 * Since this is without lock semantics the protection is only
3683 * against code executing on this cpu *not* from access by
3684 * other cpus.
3685 */
3686 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3687 note_cmpxchg_failure("slab_alloc", s, tid);
3688 goto redo;
3689 }
3690 prefetch_freepointer(s, next_object);
3691 stat(s, ALLOC_FASTPATH);
3692 }
3693
3694 return object;
3695}
3696#else /* CONFIG_SLUB_TINY */
3697static void *__slab_alloc_node(struct kmem_cache *s,
3698 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3699{
3700 struct partial_context pc;
3701 struct slab *slab;
3702 void *object;
3703
3704 pc.flags = gfpflags;
3705 pc.orig_size = orig_size;
3706 slab = get_partial(s, node, &pc);
3707
3708 if (slab)
3709 return pc.object;
3710
3711 slab = new_slab(s, gfpflags, node);
3712 if (unlikely(!slab)) {
3713 slab_out_of_memory(s, gfpflags, node);
3714 return NULL;
3715 }
3716
3717 object = alloc_single_from_new_slab(s, slab, orig_size);
3718
3719 return object;
3720}
3721#endif /* CONFIG_SLUB_TINY */
3722
3723/*
3724 * If the object has been wiped upon free, make sure it's fully initialized by
3725 * zeroing out freelist pointer.
3726 */
3727static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3728 void *obj)
3729{
3730 if (unlikely(slab_want_init_on_free(s)) && obj &&
3731 !freeptr_outside_object(s))
3732 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3733 0, sizeof(void *));
3734}
3735
3736noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3737{
3738 if (__should_failslab(s, gfpflags))
3739 return -ENOMEM;
3740 return 0;
3741}
3742ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3743
3744static __fastpath_inline
3745struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3746 struct list_lru *lru,
3747 struct obj_cgroup **objcgp,
3748 size_t size, gfp_t flags)
3749{
3750 flags &= gfp_allowed_mask;
3751
3752 might_alloc(flags);
3753
3754 if (unlikely(should_failslab(s, flags)))
3755 return NULL;
3756
3757 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3758 return NULL;
3759
3760 return s;
3761}
3762
3763static __fastpath_inline
3764void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
3765 gfp_t flags, size_t size, void **p, bool init,
3766 unsigned int orig_size)
3767{
3768 unsigned int zero_size = s->object_size;
3769 bool kasan_init = init;
3770 size_t i;
3771 gfp_t init_flags = flags & gfp_allowed_mask;
3772
3773 /*
3774 * For kmalloc object, the allocated memory size(object_size) is likely
3775 * larger than the requested size(orig_size). If redzone check is
3776 * enabled for the extra space, don't zero it, as it will be redzoned
3777 * soon. The redzone operation for this extra space could be seen as a
3778 * replacement of current poisoning under certain debug option, and
3779 * won't break other sanity checks.
3780 */
3781 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3782 (s->flags & SLAB_KMALLOC))
3783 zero_size = orig_size;
3784
3785 /*
3786 * When slab_debug is enabled, avoid memory initialization integrated
3787 * into KASAN and instead zero out the memory via the memset below with
3788 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3789 * cause false-positive reports. This does not lead to a performance
3790 * penalty on production builds, as slab_debug is not intended to be
3791 * enabled there.
3792 */
3793 if (__slub_debug_enabled())
3794 kasan_init = false;
3795
3796 /*
3797 * As memory initialization might be integrated into KASAN,
3798 * kasan_slab_alloc and initialization memset must be
3799 * kept together to avoid discrepancies in behavior.
3800 *
3801 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3802 */
3803 for (i = 0; i < size; i++) {
3804 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3805 if (p[i] && init && (!kasan_init ||
3806 !kasan_has_integrated_init()))
3807 memset(p[i], 0, zero_size);
3808 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3809 s->flags, init_flags);
3810 kmsan_slab_alloc(s, p[i], init_flags);
3811 }
3812
3813 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3814}
3815
3816/*
3817 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3818 * have the fastpath folded into their functions. So no function call
3819 * overhead for requests that can be satisfied on the fastpath.
3820 *
3821 * The fastpath works by first checking if the lockless freelist can be used.
3822 * If not then __slab_alloc is called for slow processing.
3823 *
3824 * Otherwise we can simply pick the next object from the lockless free list.
3825 */
3826static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3827 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3828{
3829 void *object;
3830 struct obj_cgroup *objcg = NULL;
3831 bool init = false;
3832
3833 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3834 if (unlikely(!s))
3835 return NULL;
3836
3837 object = kfence_alloc(s, orig_size, gfpflags);
3838 if (unlikely(object))
3839 goto out;
3840
3841 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3842
3843 maybe_wipe_obj_freeptr(s, object);
3844 init = slab_want_init_on_alloc(gfpflags, s);
3845
3846out:
3847 /*
3848 * When init equals 'true', like for kzalloc() family, only
3849 * @orig_size bytes might be zeroed instead of s->object_size
3850 */
3851 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3852
3853 return object;
3854}
3855
3856void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3857{
3858 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3859 s->object_size);
3860
3861 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3862
3863 return ret;
3864}
3865EXPORT_SYMBOL(kmem_cache_alloc);
3866
3867void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3868 gfp_t gfpflags)
3869{
3870 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3871 s->object_size);
3872
3873 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3874
3875 return ret;
3876}
3877EXPORT_SYMBOL(kmem_cache_alloc_lru);
3878
3879/**
3880 * kmem_cache_alloc_node - Allocate an object on the specified node
3881 * @s: The cache to allocate from.
3882 * @gfpflags: See kmalloc().
3883 * @node: node number of the target node.
3884 *
3885 * Identical to kmem_cache_alloc but it will allocate memory on the given
3886 * node, which can improve the performance for cpu bound structures.
3887 *
3888 * Fallback to other node is possible if __GFP_THISNODE is not set.
3889 *
3890 * Return: pointer to the new object or %NULL in case of error
3891 */
3892void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3893{
3894 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3895
3896 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3897
3898 return ret;
3899}
3900EXPORT_SYMBOL(kmem_cache_alloc_node);
3901
3902/*
3903 * To avoid unnecessary overhead, we pass through large allocation requests
3904 * directly to the page allocator. We use __GFP_COMP, because we will need to
3905 * know the allocation order to free the pages properly in kfree.
3906 */
3907static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3908{
3909 struct folio *folio;
3910 void *ptr = NULL;
3911 unsigned int order = get_order(size);
3912
3913 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3914 flags = kmalloc_fix_flags(flags);
3915
3916 flags |= __GFP_COMP;
3917 folio = (struct folio *)alloc_pages_node(node, flags, order);
3918 if (folio) {
3919 ptr = folio_address(folio);
3920 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3921 PAGE_SIZE << order);
3922 }
3923
3924 ptr = kasan_kmalloc_large(ptr, size, flags);
3925 /* As ptr might get tagged, call kmemleak hook after KASAN. */
3926 kmemleak_alloc(ptr, size, 1, flags);
3927 kmsan_kmalloc_large(ptr, size, flags);
3928
3929 return ptr;
3930}
3931
3932void *kmalloc_large(size_t size, gfp_t flags)
3933{
3934 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3935
3936 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3937 flags, NUMA_NO_NODE);
3938 return ret;
3939}
3940EXPORT_SYMBOL(kmalloc_large);
3941
3942void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3943{
3944 void *ret = __kmalloc_large_node(size, flags, node);
3945
3946 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3947 flags, node);
3948 return ret;
3949}
3950EXPORT_SYMBOL(kmalloc_large_node);
3951
3952static __always_inline
3953void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3954 unsigned long caller)
3955{
3956 struct kmem_cache *s;
3957 void *ret;
3958
3959 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3960 ret = __kmalloc_large_node(size, flags, node);
3961 trace_kmalloc(caller, ret, size,
3962 PAGE_SIZE << get_order(size), flags, node);
3963 return ret;
3964 }
3965
3966 if (unlikely(!size))
3967 return ZERO_SIZE_PTR;
3968
3969 s = kmalloc_slab(size, flags, caller);
3970
3971 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3972 ret = kasan_kmalloc(s, ret, size, flags);
3973 trace_kmalloc(caller, ret, size, s->size, flags, node);
3974 return ret;
3975}
3976
3977void *__kmalloc_node(size_t size, gfp_t flags, int node)
3978{
3979 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3980}
3981EXPORT_SYMBOL(__kmalloc_node);
3982
3983void *__kmalloc(size_t size, gfp_t flags)
3984{
3985 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3986}
3987EXPORT_SYMBOL(__kmalloc);
3988
3989void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3990 int node, unsigned long caller)
3991{
3992 return __do_kmalloc_node(size, flags, node, caller);
3993}
3994EXPORT_SYMBOL(__kmalloc_node_track_caller);
3995
3996void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3997{
3998 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
3999 _RET_IP_, size);
4000
4001 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4002
4003 ret = kasan_kmalloc(s, ret, size, gfpflags);
4004 return ret;
4005}
4006EXPORT_SYMBOL(kmalloc_trace);
4007
4008void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4009 int node, size_t size)
4010{
4011 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4012
4013 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4014
4015 ret = kasan_kmalloc(s, ret, size, gfpflags);
4016 return ret;
4017}
4018EXPORT_SYMBOL(kmalloc_node_trace);
4019
4020static noinline void free_to_partial_list(
4021 struct kmem_cache *s, struct slab *slab,
4022 void *head, void *tail, int bulk_cnt,
4023 unsigned long addr)
4024{
4025 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4026 struct slab *slab_free = NULL;
4027 int cnt = bulk_cnt;
4028 unsigned long flags;
4029 depot_stack_handle_t handle = 0;
4030
4031 if (s->flags & SLAB_STORE_USER)
4032 handle = set_track_prepare();
4033
4034 spin_lock_irqsave(&n->list_lock, flags);
4035
4036 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4037 void *prior = slab->freelist;
4038
4039 /* Perform the actual freeing while we still hold the locks */
4040 slab->inuse -= cnt;
4041 set_freepointer(s, tail, prior);
4042 slab->freelist = head;
4043
4044 /*
4045 * If the slab is empty, and node's partial list is full,
4046 * it should be discarded anyway no matter it's on full or
4047 * partial list.
4048 */
4049 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4050 slab_free = slab;
4051
4052 if (!prior) {
4053 /* was on full list */
4054 remove_full(s, n, slab);
4055 if (!slab_free) {
4056 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4057 stat(s, FREE_ADD_PARTIAL);
4058 }
4059 } else if (slab_free) {
4060 remove_partial(n, slab);
4061 stat(s, FREE_REMOVE_PARTIAL);
4062 }
4063 }
4064
4065 if (slab_free) {
4066 /*
4067 * Update the counters while still holding n->list_lock to
4068 * prevent spurious validation warnings
4069 */
4070 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4071 }
4072
4073 spin_unlock_irqrestore(&n->list_lock, flags);
4074
4075 if (slab_free) {
4076 stat(s, FREE_SLAB);
4077 free_slab(s, slab_free);
4078 }
4079}
4080
4081/*
4082 * Slow path handling. This may still be called frequently since objects
4083 * have a longer lifetime than the cpu slabs in most processing loads.
4084 *
4085 * So we still attempt to reduce cache line usage. Just take the slab
4086 * lock and free the item. If there is no additional partial slab
4087 * handling required then we can return immediately.
4088 */
4089static void __slab_free(struct kmem_cache *s, struct slab *slab,
4090 void *head, void *tail, int cnt,
4091 unsigned long addr)
4092
4093{
4094 void *prior;
4095 int was_frozen;
4096 struct slab new;
4097 unsigned long counters;
4098 struct kmem_cache_node *n = NULL;
4099 unsigned long flags;
4100 bool on_node_partial;
4101
4102 stat(s, FREE_SLOWPATH);
4103
4104 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4105 free_to_partial_list(s, slab, head, tail, cnt, addr);
4106 return;
4107 }
4108
4109 do {
4110 if (unlikely(n)) {
4111 spin_unlock_irqrestore(&n->list_lock, flags);
4112 n = NULL;
4113 }
4114 prior = slab->freelist;
4115 counters = slab->counters;
4116 set_freepointer(s, tail, prior);
4117 new.counters = counters;
4118 was_frozen = new.frozen;
4119 new.inuse -= cnt;
4120 if ((!new.inuse || !prior) && !was_frozen) {
4121 /* Needs to be taken off a list */
4122 if (!kmem_cache_has_cpu_partial(s) || prior) {
4123
4124 n = get_node(s, slab_nid(slab));
4125 /*
4126 * Speculatively acquire the list_lock.
4127 * If the cmpxchg does not succeed then we may
4128 * drop the list_lock without any processing.
4129 *
4130 * Otherwise the list_lock will synchronize with
4131 * other processors updating the list of slabs.
4132 */
4133 spin_lock_irqsave(&n->list_lock, flags);
4134
4135 on_node_partial = slab_test_node_partial(slab);
4136 }
4137 }
4138
4139 } while (!slab_update_freelist(s, slab,
4140 prior, counters,
4141 head, new.counters,
4142 "__slab_free"));
4143
4144 if (likely(!n)) {
4145
4146 if (likely(was_frozen)) {
4147 /*
4148 * The list lock was not taken therefore no list
4149 * activity can be necessary.
4150 */
4151 stat(s, FREE_FROZEN);
4152 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4153 /*
4154 * If we started with a full slab then put it onto the
4155 * per cpu partial list.
4156 */
4157 put_cpu_partial(s, slab, 1);
4158 stat(s, CPU_PARTIAL_FREE);
4159 }
4160
4161 return;
4162 }
4163
4164 /*
4165 * This slab was partially empty but not on the per-node partial list,
4166 * in which case we shouldn't manipulate its list, just return.
4167 */
4168 if (prior && !on_node_partial) {
4169 spin_unlock_irqrestore(&n->list_lock, flags);
4170 return;
4171 }
4172
4173 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4174 goto slab_empty;
4175
4176 /*
4177 * Objects left in the slab. If it was not on the partial list before
4178 * then add it.
4179 */
4180 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4181 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4182 stat(s, FREE_ADD_PARTIAL);
4183 }
4184 spin_unlock_irqrestore(&n->list_lock, flags);
4185 return;
4186
4187slab_empty:
4188 if (prior) {
4189 /*
4190 * Slab on the partial list.
4191 */
4192 remove_partial(n, slab);
4193 stat(s, FREE_REMOVE_PARTIAL);
4194 }
4195
4196 spin_unlock_irqrestore(&n->list_lock, flags);
4197 stat(s, FREE_SLAB);
4198 discard_slab(s, slab);
4199}
4200
4201#ifndef CONFIG_SLUB_TINY
4202/*
4203 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4204 * can perform fastpath freeing without additional function calls.
4205 *
4206 * The fastpath is only possible if we are freeing to the current cpu slab
4207 * of this processor. This typically the case if we have just allocated
4208 * the item before.
4209 *
4210 * If fastpath is not possible then fall back to __slab_free where we deal
4211 * with all sorts of special processing.
4212 *
4213 * Bulk free of a freelist with several objects (all pointing to the
4214 * same slab) possible by specifying head and tail ptr, plus objects
4215 * count (cnt). Bulk free indicated by tail pointer being set.
4216 */
4217static __always_inline void do_slab_free(struct kmem_cache *s,
4218 struct slab *slab, void *head, void *tail,
4219 int cnt, unsigned long addr)
4220{
4221 struct kmem_cache_cpu *c;
4222 unsigned long tid;
4223 void **freelist;
4224
4225redo:
4226 /*
4227 * Determine the currently cpus per cpu slab.
4228 * The cpu may change afterward. However that does not matter since
4229 * data is retrieved via this pointer. If we are on the same cpu
4230 * during the cmpxchg then the free will succeed.
4231 */
4232 c = raw_cpu_ptr(s->cpu_slab);
4233 tid = READ_ONCE(c->tid);
4234
4235 /* Same with comment on barrier() in slab_alloc_node() */
4236 barrier();
4237
4238 if (unlikely(slab != c->slab)) {
4239 __slab_free(s, slab, head, tail, cnt, addr);
4240 return;
4241 }
4242
4243 if (USE_LOCKLESS_FAST_PATH()) {
4244 freelist = READ_ONCE(c->freelist);
4245
4246 set_freepointer(s, tail, freelist);
4247
4248 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4249 note_cmpxchg_failure("slab_free", s, tid);
4250 goto redo;
4251 }
4252 } else {
4253 /* Update the free list under the local lock */
4254 local_lock(&s->cpu_slab->lock);
4255 c = this_cpu_ptr(s->cpu_slab);
4256 if (unlikely(slab != c->slab)) {
4257 local_unlock(&s->cpu_slab->lock);
4258 goto redo;
4259 }
4260 tid = c->tid;
4261 freelist = c->freelist;
4262
4263 set_freepointer(s, tail, freelist);
4264 c->freelist = head;
4265 c->tid = next_tid(tid);
4266
4267 local_unlock(&s->cpu_slab->lock);
4268 }
4269 stat_add(s, FREE_FASTPATH, cnt);
4270}
4271#else /* CONFIG_SLUB_TINY */
4272static void do_slab_free(struct kmem_cache *s,
4273 struct slab *slab, void *head, void *tail,
4274 int cnt, unsigned long addr)
4275{
4276 __slab_free(s, slab, head, tail, cnt, addr);
4277}
4278#endif /* CONFIG_SLUB_TINY */
4279
4280static __fastpath_inline
4281void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4282 unsigned long addr)
4283{
4284 memcg_slab_free_hook(s, slab, &object, 1);
4285
4286 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4287 do_slab_free(s, slab, object, object, 1, addr);
4288}
4289
4290static __fastpath_inline
4291void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4292 void *tail, void **p, int cnt, unsigned long addr)
4293{
4294 memcg_slab_free_hook(s, slab, p, cnt);
4295 /*
4296 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4297 * to remove objects, whose reuse must be delayed.
4298 */
4299 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4300 do_slab_free(s, slab, head, tail, cnt, addr);
4301}
4302
4303#ifdef CONFIG_KASAN_GENERIC
4304void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4305{
4306 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4307}
4308#endif
4309
4310static inline struct kmem_cache *virt_to_cache(const void *obj)
4311{
4312 struct slab *slab;
4313
4314 slab = virt_to_slab(obj);
4315 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4316 return NULL;
4317 return slab->slab_cache;
4318}
4319
4320static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4321{
4322 struct kmem_cache *cachep;
4323
4324 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4325 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4326 return s;
4327
4328 cachep = virt_to_cache(x);
4329 if (WARN(cachep && cachep != s,
4330 "%s: Wrong slab cache. %s but object is from %s\n",
4331 __func__, s->name, cachep->name))
4332 print_tracking(cachep, x);
4333 return cachep;
4334}
4335
4336/**
4337 * kmem_cache_free - Deallocate an object
4338 * @s: The cache the allocation was from.
4339 * @x: The previously allocated object.
4340 *
4341 * Free an object which was previously allocated from this
4342 * cache.
4343 */
4344void kmem_cache_free(struct kmem_cache *s, void *x)
4345{
4346 s = cache_from_obj(s, x);
4347 if (!s)
4348 return;
4349 trace_kmem_cache_free(_RET_IP_, x, s);
4350 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4351}
4352EXPORT_SYMBOL(kmem_cache_free);
4353
4354static void free_large_kmalloc(struct folio *folio, void *object)
4355{
4356 unsigned int order = folio_order(folio);
4357
4358 if (WARN_ON_ONCE(order == 0))
4359 pr_warn_once("object pointer: 0x%p\n", object);
4360
4361 kmemleak_free(object);
4362 kasan_kfree_large(object);
4363 kmsan_kfree_large(object);
4364
4365 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4366 -(PAGE_SIZE << order));
4367 folio_put(folio);
4368}
4369
4370/**
4371 * kfree - free previously allocated memory
4372 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4373 *
4374 * If @object is NULL, no operation is performed.
4375 */
4376void kfree(const void *object)
4377{
4378 struct folio *folio;
4379 struct slab *slab;
4380 struct kmem_cache *s;
4381 void *x = (void *)object;
4382
4383 trace_kfree(_RET_IP_, object);
4384
4385 if (unlikely(ZERO_OR_NULL_PTR(object)))
4386 return;
4387
4388 folio = virt_to_folio(object);
4389 if (unlikely(!folio_test_slab(folio))) {
4390 free_large_kmalloc(folio, (void *)object);
4391 return;
4392 }
4393
4394 slab = folio_slab(folio);
4395 s = slab->slab_cache;
4396 slab_free(s, slab, x, _RET_IP_);
4397}
4398EXPORT_SYMBOL(kfree);
4399
4400struct detached_freelist {
4401 struct slab *slab;
4402 void *tail;
4403 void *freelist;
4404 int cnt;
4405 struct kmem_cache *s;
4406};
4407
4408/*
4409 * This function progressively scans the array with free objects (with
4410 * a limited look ahead) and extract objects belonging to the same
4411 * slab. It builds a detached freelist directly within the given
4412 * slab/objects. This can happen without any need for
4413 * synchronization, because the objects are owned by running process.
4414 * The freelist is build up as a single linked list in the objects.
4415 * The idea is, that this detached freelist can then be bulk
4416 * transferred to the real freelist(s), but only requiring a single
4417 * synchronization primitive. Look ahead in the array is limited due
4418 * to performance reasons.
4419 */
4420static inline
4421int build_detached_freelist(struct kmem_cache *s, size_t size,
4422 void **p, struct detached_freelist *df)
4423{
4424 int lookahead = 3;
4425 void *object;
4426 struct folio *folio;
4427 size_t same;
4428
4429 object = p[--size];
4430 folio = virt_to_folio(object);
4431 if (!s) {
4432 /* Handle kalloc'ed objects */
4433 if (unlikely(!folio_test_slab(folio))) {
4434 free_large_kmalloc(folio, object);
4435 df->slab = NULL;
4436 return size;
4437 }
4438 /* Derive kmem_cache from object */
4439 df->slab = folio_slab(folio);
4440 df->s = df->slab->slab_cache;
4441 } else {
4442 df->slab = folio_slab(folio);
4443 df->s = cache_from_obj(s, object); /* Support for memcg */
4444 }
4445
4446 /* Start new detached freelist */
4447 df->tail = object;
4448 df->freelist = object;
4449 df->cnt = 1;
4450
4451 if (is_kfence_address(object))
4452 return size;
4453
4454 set_freepointer(df->s, object, NULL);
4455
4456 same = size;
4457 while (size) {
4458 object = p[--size];
4459 /* df->slab is always set at this point */
4460 if (df->slab == virt_to_slab(object)) {
4461 /* Opportunity build freelist */
4462 set_freepointer(df->s, object, df->freelist);
4463 df->freelist = object;
4464 df->cnt++;
4465 same--;
4466 if (size != same)
4467 swap(p[size], p[same]);
4468 continue;
4469 }
4470
4471 /* Limit look ahead search */
4472 if (!--lookahead)
4473 break;
4474 }
4475
4476 return same;
4477}
4478
4479/*
4480 * Internal bulk free of objects that were not initialised by the post alloc
4481 * hooks and thus should not be processed by the free hooks
4482 */
4483static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4484{
4485 if (!size)
4486 return;
4487
4488 do {
4489 struct detached_freelist df;
4490
4491 size = build_detached_freelist(s, size, p, &df);
4492 if (!df.slab)
4493 continue;
4494
4495 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4496 _RET_IP_);
4497 } while (likely(size));
4498}
4499
4500/* Note that interrupts must be enabled when calling this function. */
4501void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4502{
4503 if (!size)
4504 return;
4505
4506 do {
4507 struct detached_freelist df;
4508
4509 size = build_detached_freelist(s, size, p, &df);
4510 if (!df.slab)
4511 continue;
4512
4513 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4514 df.cnt, _RET_IP_);
4515 } while (likely(size));
4516}
4517EXPORT_SYMBOL(kmem_cache_free_bulk);
4518
4519#ifndef CONFIG_SLUB_TINY
4520static inline
4521int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4522 void **p)
4523{
4524 struct kmem_cache_cpu *c;
4525 unsigned long irqflags;
4526 int i;
4527
4528 /*
4529 * Drain objects in the per cpu slab, while disabling local
4530 * IRQs, which protects against PREEMPT and interrupts
4531 * handlers invoking normal fastpath.
4532 */
4533 c = slub_get_cpu_ptr(s->cpu_slab);
4534 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4535
4536 for (i = 0; i < size; i++) {
4537 void *object = kfence_alloc(s, s->object_size, flags);
4538
4539 if (unlikely(object)) {
4540 p[i] = object;
4541 continue;
4542 }
4543
4544 object = c->freelist;
4545 if (unlikely(!object)) {
4546 /*
4547 * We may have removed an object from c->freelist using
4548 * the fastpath in the previous iteration; in that case,
4549 * c->tid has not been bumped yet.
4550 * Since ___slab_alloc() may reenable interrupts while
4551 * allocating memory, we should bump c->tid now.
4552 */
4553 c->tid = next_tid(c->tid);
4554
4555 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4556
4557 /*
4558 * Invoking slow path likely have side-effect
4559 * of re-populating per CPU c->freelist
4560 */
4561 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4562 _RET_IP_, c, s->object_size);
4563 if (unlikely(!p[i]))
4564 goto error;
4565
4566 c = this_cpu_ptr(s->cpu_slab);
4567 maybe_wipe_obj_freeptr(s, p[i]);
4568
4569 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4570
4571 continue; /* goto for-loop */
4572 }
4573 c->freelist = get_freepointer(s, object);
4574 p[i] = object;
4575 maybe_wipe_obj_freeptr(s, p[i]);
4576 stat(s, ALLOC_FASTPATH);
4577 }
4578 c->tid = next_tid(c->tid);
4579 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4580 slub_put_cpu_ptr(s->cpu_slab);
4581
4582 return i;
4583
4584error:
4585 slub_put_cpu_ptr(s->cpu_slab);
4586 __kmem_cache_free_bulk(s, i, p);
4587 return 0;
4588
4589}
4590#else /* CONFIG_SLUB_TINY */
4591static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4592 size_t size, void **p)
4593{
4594 int i;
4595
4596 for (i = 0; i < size; i++) {
4597 void *object = kfence_alloc(s, s->object_size, flags);
4598
4599 if (unlikely(object)) {
4600 p[i] = object;
4601 continue;
4602 }
4603
4604 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4605 _RET_IP_, s->object_size);
4606 if (unlikely(!p[i]))
4607 goto error;
4608
4609 maybe_wipe_obj_freeptr(s, p[i]);
4610 }
4611
4612 return i;
4613
4614error:
4615 __kmem_cache_free_bulk(s, i, p);
4616 return 0;
4617}
4618#endif /* CONFIG_SLUB_TINY */
4619
4620/* Note that interrupts must be enabled when calling this function. */
4621int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4622 void **p)
4623{
4624 int i;
4625 struct obj_cgroup *objcg = NULL;
4626
4627 if (!size)
4628 return 0;
4629
4630 /* memcg and kmem_cache debug support */
4631 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4632 if (unlikely(!s))
4633 return 0;
4634
4635 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4636
4637 /*
4638 * memcg and kmem_cache debug support and memory initialization.
4639 * Done outside of the IRQ disabled fastpath loop.
4640 */
4641 if (likely(i != 0)) {
4642 slab_post_alloc_hook(s, objcg, flags, size, p,
4643 slab_want_init_on_alloc(flags, s), s->object_size);
4644 } else {
4645 memcg_slab_alloc_error_hook(s, size, objcg);
4646 }
4647
4648 return i;
4649}
4650EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4651
4652
4653/*
4654 * Object placement in a slab is made very easy because we always start at
4655 * offset 0. If we tune the size of the object to the alignment then we can
4656 * get the required alignment by putting one properly sized object after
4657 * another.
4658 *
4659 * Notice that the allocation order determines the sizes of the per cpu
4660 * caches. Each processor has always one slab available for allocations.
4661 * Increasing the allocation order reduces the number of times that slabs
4662 * must be moved on and off the partial lists and is therefore a factor in
4663 * locking overhead.
4664 */
4665
4666/*
4667 * Minimum / Maximum order of slab pages. This influences locking overhead
4668 * and slab fragmentation. A higher order reduces the number of partial slabs
4669 * and increases the number of allocations possible without having to
4670 * take the list_lock.
4671 */
4672static unsigned int slub_min_order;
4673static unsigned int slub_max_order =
4674 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4675static unsigned int slub_min_objects;
4676
4677/*
4678 * Calculate the order of allocation given an slab object size.
4679 *
4680 * The order of allocation has significant impact on performance and other
4681 * system components. Generally order 0 allocations should be preferred since
4682 * order 0 does not cause fragmentation in the page allocator. Larger objects
4683 * be problematic to put into order 0 slabs because there may be too much
4684 * unused space left. We go to a higher order if more than 1/16th of the slab
4685 * would be wasted.
4686 *
4687 * In order to reach satisfactory performance we must ensure that a minimum
4688 * number of objects is in one slab. Otherwise we may generate too much
4689 * activity on the partial lists which requires taking the list_lock. This is
4690 * less a concern for large slabs though which are rarely used.
4691 *
4692 * slab_max_order specifies the order where we begin to stop considering the
4693 * number of objects in a slab as critical. If we reach slab_max_order then
4694 * we try to keep the page order as low as possible. So we accept more waste
4695 * of space in favor of a small page order.
4696 *
4697 * Higher order allocations also allow the placement of more objects in a
4698 * slab and thereby reduce object handling overhead. If the user has
4699 * requested a higher minimum order then we start with that one instead of
4700 * the smallest order which will fit the object.
4701 */
4702static inline unsigned int calc_slab_order(unsigned int size,
4703 unsigned int min_order, unsigned int max_order,
4704 unsigned int fract_leftover)
4705{
4706 unsigned int order;
4707
4708 for (order = min_order; order <= max_order; order++) {
4709
4710 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4711 unsigned int rem;
4712
4713 rem = slab_size % size;
4714
4715 if (rem <= slab_size / fract_leftover)
4716 break;
4717 }
4718
4719 return order;
4720}
4721
4722static inline int calculate_order(unsigned int size)
4723{
4724 unsigned int order;
4725 unsigned int min_objects;
4726 unsigned int max_objects;
4727 unsigned int min_order;
4728
4729 min_objects = slub_min_objects;
4730 if (!min_objects) {
4731 /*
4732 * Some architectures will only update present cpus when
4733 * onlining them, so don't trust the number if it's just 1. But
4734 * we also don't want to use nr_cpu_ids always, as on some other
4735 * architectures, there can be many possible cpus, but never
4736 * onlined. Here we compromise between trying to avoid too high
4737 * order on systems that appear larger than they are, and too
4738 * low order on systems that appear smaller than they are.
4739 */
4740 unsigned int nr_cpus = num_present_cpus();
4741 if (nr_cpus <= 1)
4742 nr_cpus = nr_cpu_ids;
4743 min_objects = 4 * (fls(nr_cpus) + 1);
4744 }
4745 /* min_objects can't be 0 because get_order(0) is undefined */
4746 max_objects = max(order_objects(slub_max_order, size), 1U);
4747 min_objects = min(min_objects, max_objects);
4748
4749 min_order = max_t(unsigned int, slub_min_order,
4750 get_order(min_objects * size));
4751 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4752 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4753
4754 /*
4755 * Attempt to find best configuration for a slab. This works by first
4756 * attempting to generate a layout with the best possible configuration
4757 * and backing off gradually.
4758 *
4759 * We start with accepting at most 1/16 waste and try to find the
4760 * smallest order from min_objects-derived/slab_min_order up to
4761 * slab_max_order that will satisfy the constraint. Note that increasing
4762 * the order can only result in same or less fractional waste, not more.
4763 *
4764 * If that fails, we increase the acceptable fraction of waste and try
4765 * again. The last iteration with fraction of 1/2 would effectively
4766 * accept any waste and give us the order determined by min_objects, as
4767 * long as at least single object fits within slab_max_order.
4768 */
4769 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4770 order = calc_slab_order(size, min_order, slub_max_order,
4771 fraction);
4772 if (order <= slub_max_order)
4773 return order;
4774 }
4775
4776 /*
4777 * Doh this slab cannot be placed using slab_max_order.
4778 */
4779 order = get_order(size);
4780 if (order <= MAX_PAGE_ORDER)
4781 return order;
4782 return -ENOSYS;
4783}
4784
4785static void
4786init_kmem_cache_node(struct kmem_cache_node *n)
4787{
4788 n->nr_partial = 0;
4789 spin_lock_init(&n->list_lock);
4790 INIT_LIST_HEAD(&n->partial);
4791#ifdef CONFIG_SLUB_DEBUG
4792 atomic_long_set(&n->nr_slabs, 0);
4793 atomic_long_set(&n->total_objects, 0);
4794 INIT_LIST_HEAD(&n->full);
4795#endif
4796}
4797
4798#ifndef CONFIG_SLUB_TINY
4799static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4800{
4801 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4802 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4803 sizeof(struct kmem_cache_cpu));
4804
4805 /*
4806 * Must align to double word boundary for the double cmpxchg
4807 * instructions to work; see __pcpu_double_call_return_bool().
4808 */
4809 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4810 2 * sizeof(void *));
4811
4812 if (!s->cpu_slab)
4813 return 0;
4814
4815 init_kmem_cache_cpus(s);
4816
4817 return 1;
4818}
4819#else
4820static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4821{
4822 return 1;
4823}
4824#endif /* CONFIG_SLUB_TINY */
4825
4826static struct kmem_cache *kmem_cache_node;
4827
4828/*
4829 * No kmalloc_node yet so do it by hand. We know that this is the first
4830 * slab on the node for this slabcache. There are no concurrent accesses
4831 * possible.
4832 *
4833 * Note that this function only works on the kmem_cache_node
4834 * when allocating for the kmem_cache_node. This is used for bootstrapping
4835 * memory on a fresh node that has no slab structures yet.
4836 */
4837static void early_kmem_cache_node_alloc(int node)
4838{
4839 struct slab *slab;
4840 struct kmem_cache_node *n;
4841
4842 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4843
4844 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4845
4846 BUG_ON(!slab);
4847 if (slab_nid(slab) != node) {
4848 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4849 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4850 }
4851
4852 n = slab->freelist;
4853 BUG_ON(!n);
4854#ifdef CONFIG_SLUB_DEBUG
4855 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4856 init_tracking(kmem_cache_node, n);
4857#endif
4858 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4859 slab->freelist = get_freepointer(kmem_cache_node, n);
4860 slab->inuse = 1;
4861 kmem_cache_node->node[node] = n;
4862 init_kmem_cache_node(n);
4863 inc_slabs_node(kmem_cache_node, node, slab->objects);
4864
4865 /*
4866 * No locks need to be taken here as it has just been
4867 * initialized and there is no concurrent access.
4868 */
4869 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4870}
4871
4872static void free_kmem_cache_nodes(struct kmem_cache *s)
4873{
4874 int node;
4875 struct kmem_cache_node *n;
4876
4877 for_each_kmem_cache_node(s, node, n) {
4878 s->node[node] = NULL;
4879 kmem_cache_free(kmem_cache_node, n);
4880 }
4881}
4882
4883void __kmem_cache_release(struct kmem_cache *s)
4884{
4885 cache_random_seq_destroy(s);
4886#ifndef CONFIG_SLUB_TINY
4887 free_percpu(s->cpu_slab);
4888#endif
4889 free_kmem_cache_nodes(s);
4890}
4891
4892static int init_kmem_cache_nodes(struct kmem_cache *s)
4893{
4894 int node;
4895
4896 for_each_node_mask(node, slab_nodes) {
4897 struct kmem_cache_node *n;
4898
4899 if (slab_state == DOWN) {
4900 early_kmem_cache_node_alloc(node);
4901 continue;
4902 }
4903 n = kmem_cache_alloc_node(kmem_cache_node,
4904 GFP_KERNEL, node);
4905
4906 if (!n) {
4907 free_kmem_cache_nodes(s);
4908 return 0;
4909 }
4910
4911 init_kmem_cache_node(n);
4912 s->node[node] = n;
4913 }
4914 return 1;
4915}
4916
4917static void set_cpu_partial(struct kmem_cache *s)
4918{
4919#ifdef CONFIG_SLUB_CPU_PARTIAL
4920 unsigned int nr_objects;
4921
4922 /*
4923 * cpu_partial determined the maximum number of objects kept in the
4924 * per cpu partial lists of a processor.
4925 *
4926 * Per cpu partial lists mainly contain slabs that just have one
4927 * object freed. If they are used for allocation then they can be
4928 * filled up again with minimal effort. The slab will never hit the
4929 * per node partial lists and therefore no locking will be required.
4930 *
4931 * For backwards compatibility reasons, this is determined as number
4932 * of objects, even though we now limit maximum number of pages, see
4933 * slub_set_cpu_partial()
4934 */
4935 if (!kmem_cache_has_cpu_partial(s))
4936 nr_objects = 0;
4937 else if (s->size >= PAGE_SIZE)
4938 nr_objects = 6;
4939 else if (s->size >= 1024)
4940 nr_objects = 24;
4941 else if (s->size >= 256)
4942 nr_objects = 52;
4943 else
4944 nr_objects = 120;
4945
4946 slub_set_cpu_partial(s, nr_objects);
4947#endif
4948}
4949
4950/*
4951 * calculate_sizes() determines the order and the distribution of data within
4952 * a slab object.
4953 */
4954static int calculate_sizes(struct kmem_cache *s)
4955{
4956 slab_flags_t flags = s->flags;
4957 unsigned int size = s->object_size;
4958 unsigned int order;
4959
4960 /*
4961 * Round up object size to the next word boundary. We can only
4962 * place the free pointer at word boundaries and this determines
4963 * the possible location of the free pointer.
4964 */
4965 size = ALIGN(size, sizeof(void *));
4966
4967#ifdef CONFIG_SLUB_DEBUG
4968 /*
4969 * Determine if we can poison the object itself. If the user of
4970 * the slab may touch the object after free or before allocation
4971 * then we should never poison the object itself.
4972 */
4973 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4974 !s->ctor)
4975 s->flags |= __OBJECT_POISON;
4976 else
4977 s->flags &= ~__OBJECT_POISON;
4978
4979
4980 /*
4981 * If we are Redzoning then check if there is some space between the
4982 * end of the object and the free pointer. If not then add an
4983 * additional word to have some bytes to store Redzone information.
4984 */
4985 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4986 size += sizeof(void *);
4987#endif
4988
4989 /*
4990 * With that we have determined the number of bytes in actual use
4991 * by the object and redzoning.
4992 */
4993 s->inuse = size;
4994
4995 if (slub_debug_orig_size(s) ||
4996 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4997 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4998 s->ctor) {
4999 /*
5000 * Relocate free pointer after the object if it is not
5001 * permitted to overwrite the first word of the object on
5002 * kmem_cache_free.
5003 *
5004 * This is the case if we do RCU, have a constructor or
5005 * destructor, are poisoning the objects, or are
5006 * redzoning an object smaller than sizeof(void *).
5007 *
5008 * The assumption that s->offset >= s->inuse means free
5009 * pointer is outside of the object is used in the
5010 * freeptr_outside_object() function. If that is no
5011 * longer true, the function needs to be modified.
5012 */
5013 s->offset = size;
5014 size += sizeof(void *);
5015 } else {
5016 /*
5017 * Store freelist pointer near middle of object to keep
5018 * it away from the edges of the object to avoid small
5019 * sized over/underflows from neighboring allocations.
5020 */
5021 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5022 }
5023
5024#ifdef CONFIG_SLUB_DEBUG
5025 if (flags & SLAB_STORE_USER) {
5026 /*
5027 * Need to store information about allocs and frees after
5028 * the object.
5029 */
5030 size += 2 * sizeof(struct track);
5031
5032 /* Save the original kmalloc request size */
5033 if (flags & SLAB_KMALLOC)
5034 size += sizeof(unsigned int);
5035 }
5036#endif
5037
5038 kasan_cache_create(s, &size, &s->flags);
5039#ifdef CONFIG_SLUB_DEBUG
5040 if (flags & SLAB_RED_ZONE) {
5041 /*
5042 * Add some empty padding so that we can catch
5043 * overwrites from earlier objects rather than let
5044 * tracking information or the free pointer be
5045 * corrupted if a user writes before the start
5046 * of the object.
5047 */
5048 size += sizeof(void *);
5049
5050 s->red_left_pad = sizeof(void *);
5051 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5052 size += s->red_left_pad;
5053 }
5054#endif
5055
5056 /*
5057 * SLUB stores one object immediately after another beginning from
5058 * offset 0. In order to align the objects we have to simply size
5059 * each object to conform to the alignment.
5060 */
5061 size = ALIGN(size, s->align);
5062 s->size = size;
5063 s->reciprocal_size = reciprocal_value(size);
5064 order = calculate_order(size);
5065
5066 if ((int)order < 0)
5067 return 0;
5068
5069 s->allocflags = 0;
5070 if (order)
5071 s->allocflags |= __GFP_COMP;
5072
5073 if (s->flags & SLAB_CACHE_DMA)
5074 s->allocflags |= GFP_DMA;
5075
5076 if (s->flags & SLAB_CACHE_DMA32)
5077 s->allocflags |= GFP_DMA32;
5078
5079 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5080 s->allocflags |= __GFP_RECLAIMABLE;
5081
5082 /*
5083 * Determine the number of objects per slab
5084 */
5085 s->oo = oo_make(order, size);
5086 s->min = oo_make(get_order(size), size);
5087
5088 return !!oo_objects(s->oo);
5089}
5090
5091static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5092{
5093 s->flags = kmem_cache_flags(flags, s->name);
5094#ifdef CONFIG_SLAB_FREELIST_HARDENED
5095 s->random = get_random_long();
5096#endif
5097
5098 if (!calculate_sizes(s))
5099 goto error;
5100 if (disable_higher_order_debug) {
5101 /*
5102 * Disable debugging flags that store metadata if the min slab
5103 * order increased.
5104 */
5105 if (get_order(s->size) > get_order(s->object_size)) {
5106 s->flags &= ~DEBUG_METADATA_FLAGS;
5107 s->offset = 0;
5108 if (!calculate_sizes(s))
5109 goto error;
5110 }
5111 }
5112
5113#ifdef system_has_freelist_aba
5114 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5115 /* Enable fast mode */
5116 s->flags |= __CMPXCHG_DOUBLE;
5117 }
5118#endif
5119
5120 /*
5121 * The larger the object size is, the more slabs we want on the partial
5122 * list to avoid pounding the page allocator excessively.
5123 */
5124 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5125 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5126
5127 set_cpu_partial(s);
5128
5129#ifdef CONFIG_NUMA
5130 s->remote_node_defrag_ratio = 1000;
5131#endif
5132
5133 /* Initialize the pre-computed randomized freelist if slab is up */
5134 if (slab_state >= UP) {
5135 if (init_cache_random_seq(s))
5136 goto error;
5137 }
5138
5139 if (!init_kmem_cache_nodes(s))
5140 goto error;
5141
5142 if (alloc_kmem_cache_cpus(s))
5143 return 0;
5144
5145error:
5146 __kmem_cache_release(s);
5147 return -EINVAL;
5148}
5149
5150static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5151 const char *text)
5152{
5153#ifdef CONFIG_SLUB_DEBUG
5154 void *addr = slab_address(slab);
5155 void *p;
5156
5157 slab_err(s, slab, text, s->name);
5158
5159 spin_lock(&object_map_lock);
5160 __fill_map(object_map, s, slab);
5161
5162 for_each_object(p, s, addr, slab->objects) {
5163
5164 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5165 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5166 print_tracking(s, p);
5167 }
5168 }
5169 spin_unlock(&object_map_lock);
5170#endif
5171}
5172
5173/*
5174 * Attempt to free all partial slabs on a node.
5175 * This is called from __kmem_cache_shutdown(). We must take list_lock
5176 * because sysfs file might still access partial list after the shutdowning.
5177 */
5178static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5179{
5180 LIST_HEAD(discard);
5181 struct slab *slab, *h;
5182
5183 BUG_ON(irqs_disabled());
5184 spin_lock_irq(&n->list_lock);
5185 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5186 if (!slab->inuse) {
5187 remove_partial(n, slab);
5188 list_add(&slab->slab_list, &discard);
5189 } else {
5190 list_slab_objects(s, slab,
5191 "Objects remaining in %s on __kmem_cache_shutdown()");
5192 }
5193 }
5194 spin_unlock_irq(&n->list_lock);
5195
5196 list_for_each_entry_safe(slab, h, &discard, slab_list)
5197 discard_slab(s, slab);
5198}
5199
5200bool __kmem_cache_empty(struct kmem_cache *s)
5201{
5202 int node;
5203 struct kmem_cache_node *n;
5204
5205 for_each_kmem_cache_node(s, node, n)
5206 if (n->nr_partial || node_nr_slabs(n))
5207 return false;
5208 return true;
5209}
5210
5211/*
5212 * Release all resources used by a slab cache.
5213 */
5214int __kmem_cache_shutdown(struct kmem_cache *s)
5215{
5216 int node;
5217 struct kmem_cache_node *n;
5218
5219 flush_all_cpus_locked(s);
5220 /* Attempt to free all objects */
5221 for_each_kmem_cache_node(s, node, n) {
5222 free_partial(s, n);
5223 if (n->nr_partial || node_nr_slabs(n))
5224 return 1;
5225 }
5226 return 0;
5227}
5228
5229#ifdef CONFIG_PRINTK
5230void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5231{
5232 void *base;
5233 int __maybe_unused i;
5234 unsigned int objnr;
5235 void *objp;
5236 void *objp0;
5237 struct kmem_cache *s = slab->slab_cache;
5238 struct track __maybe_unused *trackp;
5239
5240 kpp->kp_ptr = object;
5241 kpp->kp_slab = slab;
5242 kpp->kp_slab_cache = s;
5243 base = slab_address(slab);
5244 objp0 = kasan_reset_tag(object);
5245#ifdef CONFIG_SLUB_DEBUG
5246 objp = restore_red_left(s, objp0);
5247#else
5248 objp = objp0;
5249#endif
5250 objnr = obj_to_index(s, slab, objp);
5251 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5252 objp = base + s->size * objnr;
5253 kpp->kp_objp = objp;
5254 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5255 || (objp - base) % s->size) ||
5256 !(s->flags & SLAB_STORE_USER))
5257 return;
5258#ifdef CONFIG_SLUB_DEBUG
5259 objp = fixup_red_left(s, objp);
5260 trackp = get_track(s, objp, TRACK_ALLOC);
5261 kpp->kp_ret = (void *)trackp->addr;
5262#ifdef CONFIG_STACKDEPOT
5263 {
5264 depot_stack_handle_t handle;
5265 unsigned long *entries;
5266 unsigned int nr_entries;
5267
5268 handle = READ_ONCE(trackp->handle);
5269 if (handle) {
5270 nr_entries = stack_depot_fetch(handle, &entries);
5271 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5272 kpp->kp_stack[i] = (void *)entries[i];
5273 }
5274
5275 trackp = get_track(s, objp, TRACK_FREE);
5276 handle = READ_ONCE(trackp->handle);
5277 if (handle) {
5278 nr_entries = stack_depot_fetch(handle, &entries);
5279 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5280 kpp->kp_free_stack[i] = (void *)entries[i];
5281 }
5282 }
5283#endif
5284#endif
5285}
5286#endif
5287
5288/********************************************************************
5289 * Kmalloc subsystem
5290 *******************************************************************/
5291
5292static int __init setup_slub_min_order(char *str)
5293{
5294 get_option(&str, (int *)&slub_min_order);
5295
5296 if (slub_min_order > slub_max_order)
5297 slub_max_order = slub_min_order;
5298
5299 return 1;
5300}
5301
5302__setup("slab_min_order=", setup_slub_min_order);
5303__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5304
5305
5306static int __init setup_slub_max_order(char *str)
5307{
5308 get_option(&str, (int *)&slub_max_order);
5309 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5310
5311 if (slub_min_order > slub_max_order)
5312 slub_min_order = slub_max_order;
5313
5314 return 1;
5315}
5316
5317__setup("slab_max_order=", setup_slub_max_order);
5318__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5319
5320static int __init setup_slub_min_objects(char *str)
5321{
5322 get_option(&str, (int *)&slub_min_objects);
5323
5324 return 1;
5325}
5326
5327__setup("slab_min_objects=", setup_slub_min_objects);
5328__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5329
5330#ifdef CONFIG_HARDENED_USERCOPY
5331/*
5332 * Rejects incorrectly sized objects and objects that are to be copied
5333 * to/from userspace but do not fall entirely within the containing slab
5334 * cache's usercopy region.
5335 *
5336 * Returns NULL if check passes, otherwise const char * to name of cache
5337 * to indicate an error.
5338 */
5339void __check_heap_object(const void *ptr, unsigned long n,
5340 const struct slab *slab, bool to_user)
5341{
5342 struct kmem_cache *s;
5343 unsigned int offset;
5344 bool is_kfence = is_kfence_address(ptr);
5345
5346 ptr = kasan_reset_tag(ptr);
5347
5348 /* Find object and usable object size. */
5349 s = slab->slab_cache;
5350
5351 /* Reject impossible pointers. */
5352 if (ptr < slab_address(slab))
5353 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5354 to_user, 0, n);
5355
5356 /* Find offset within object. */
5357 if (is_kfence)
5358 offset = ptr - kfence_object_start(ptr);
5359 else
5360 offset = (ptr - slab_address(slab)) % s->size;
5361
5362 /* Adjust for redzone and reject if within the redzone. */
5363 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5364 if (offset < s->red_left_pad)
5365 usercopy_abort("SLUB object in left red zone",
5366 s->name, to_user, offset, n);
5367 offset -= s->red_left_pad;
5368 }
5369
5370 /* Allow address range falling entirely within usercopy region. */
5371 if (offset >= s->useroffset &&
5372 offset - s->useroffset <= s->usersize &&
5373 n <= s->useroffset - offset + s->usersize)
5374 return;
5375
5376 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5377}
5378#endif /* CONFIG_HARDENED_USERCOPY */
5379
5380#define SHRINK_PROMOTE_MAX 32
5381
5382/*
5383 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5384 * up most to the head of the partial lists. New allocations will then
5385 * fill those up and thus they can be removed from the partial lists.
5386 *
5387 * The slabs with the least items are placed last. This results in them
5388 * being allocated from last increasing the chance that the last objects
5389 * are freed in them.
5390 */
5391static int __kmem_cache_do_shrink(struct kmem_cache *s)
5392{
5393 int node;
5394 int i;
5395 struct kmem_cache_node *n;
5396 struct slab *slab;
5397 struct slab *t;
5398 struct list_head discard;
5399 struct list_head promote[SHRINK_PROMOTE_MAX];
5400 unsigned long flags;
5401 int ret = 0;
5402
5403 for_each_kmem_cache_node(s, node, n) {
5404 INIT_LIST_HEAD(&discard);
5405 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5406 INIT_LIST_HEAD(promote + i);
5407
5408 spin_lock_irqsave(&n->list_lock, flags);
5409
5410 /*
5411 * Build lists of slabs to discard or promote.
5412 *
5413 * Note that concurrent frees may occur while we hold the
5414 * list_lock. slab->inuse here is the upper limit.
5415 */
5416 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5417 int free = slab->objects - slab->inuse;
5418
5419 /* Do not reread slab->inuse */
5420 barrier();
5421
5422 /* We do not keep full slabs on the list */
5423 BUG_ON(free <= 0);
5424
5425 if (free == slab->objects) {
5426 list_move(&slab->slab_list, &discard);
5427 slab_clear_node_partial(slab);
5428 n->nr_partial--;
5429 dec_slabs_node(s, node, slab->objects);
5430 } else if (free <= SHRINK_PROMOTE_MAX)
5431 list_move(&slab->slab_list, promote + free - 1);
5432 }
5433
5434 /*
5435 * Promote the slabs filled up most to the head of the
5436 * partial list.
5437 */
5438 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5439 list_splice(promote + i, &n->partial);
5440
5441 spin_unlock_irqrestore(&n->list_lock, flags);
5442
5443 /* Release empty slabs */
5444 list_for_each_entry_safe(slab, t, &discard, slab_list)
5445 free_slab(s, slab);
5446
5447 if (node_nr_slabs(n))
5448 ret = 1;
5449 }
5450
5451 return ret;
5452}
5453
5454int __kmem_cache_shrink(struct kmem_cache *s)
5455{
5456 flush_all(s);
5457 return __kmem_cache_do_shrink(s);
5458}
5459
5460static int slab_mem_going_offline_callback(void *arg)
5461{
5462 struct kmem_cache *s;
5463
5464 mutex_lock(&slab_mutex);
5465 list_for_each_entry(s, &slab_caches, list) {
5466 flush_all_cpus_locked(s);
5467 __kmem_cache_do_shrink(s);
5468 }
5469 mutex_unlock(&slab_mutex);
5470
5471 return 0;
5472}
5473
5474static void slab_mem_offline_callback(void *arg)
5475{
5476 struct memory_notify *marg = arg;
5477 int offline_node;
5478
5479 offline_node = marg->status_change_nid_normal;
5480
5481 /*
5482 * If the node still has available memory. we need kmem_cache_node
5483 * for it yet.
5484 */
5485 if (offline_node < 0)
5486 return;
5487
5488 mutex_lock(&slab_mutex);
5489 node_clear(offline_node, slab_nodes);
5490 /*
5491 * We no longer free kmem_cache_node structures here, as it would be
5492 * racy with all get_node() users, and infeasible to protect them with
5493 * slab_mutex.
5494 */
5495 mutex_unlock(&slab_mutex);
5496}
5497
5498static int slab_mem_going_online_callback(void *arg)
5499{
5500 struct kmem_cache_node *n;
5501 struct kmem_cache *s;
5502 struct memory_notify *marg = arg;
5503 int nid = marg->status_change_nid_normal;
5504 int ret = 0;
5505
5506 /*
5507 * If the node's memory is already available, then kmem_cache_node is
5508 * already created. Nothing to do.
5509 */
5510 if (nid < 0)
5511 return 0;
5512
5513 /*
5514 * We are bringing a node online. No memory is available yet. We must
5515 * allocate a kmem_cache_node structure in order to bring the node
5516 * online.
5517 */
5518 mutex_lock(&slab_mutex);
5519 list_for_each_entry(s, &slab_caches, list) {
5520 /*
5521 * The structure may already exist if the node was previously
5522 * onlined and offlined.
5523 */
5524 if (get_node(s, nid))
5525 continue;
5526 /*
5527 * XXX: kmem_cache_alloc_node will fallback to other nodes
5528 * since memory is not yet available from the node that
5529 * is brought up.
5530 */
5531 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5532 if (!n) {
5533 ret = -ENOMEM;
5534 goto out;
5535 }
5536 init_kmem_cache_node(n);
5537 s->node[nid] = n;
5538 }
5539 /*
5540 * Any cache created after this point will also have kmem_cache_node
5541 * initialized for the new node.
5542 */
5543 node_set(nid, slab_nodes);
5544out:
5545 mutex_unlock(&slab_mutex);
5546 return ret;
5547}
5548
5549static int slab_memory_callback(struct notifier_block *self,
5550 unsigned long action, void *arg)
5551{
5552 int ret = 0;
5553
5554 switch (action) {
5555 case MEM_GOING_ONLINE:
5556 ret = slab_mem_going_online_callback(arg);
5557 break;
5558 case MEM_GOING_OFFLINE:
5559 ret = slab_mem_going_offline_callback(arg);
5560 break;
5561 case MEM_OFFLINE:
5562 case MEM_CANCEL_ONLINE:
5563 slab_mem_offline_callback(arg);
5564 break;
5565 case MEM_ONLINE:
5566 case MEM_CANCEL_OFFLINE:
5567 break;
5568 }
5569 if (ret)
5570 ret = notifier_from_errno(ret);
5571 else
5572 ret = NOTIFY_OK;
5573 return ret;
5574}
5575
5576/********************************************************************
5577 * Basic setup of slabs
5578 *******************************************************************/
5579
5580/*
5581 * Used for early kmem_cache structures that were allocated using
5582 * the page allocator. Allocate them properly then fix up the pointers
5583 * that may be pointing to the wrong kmem_cache structure.
5584 */
5585
5586static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5587{
5588 int node;
5589 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5590 struct kmem_cache_node *n;
5591
5592 memcpy(s, static_cache, kmem_cache->object_size);
5593
5594 /*
5595 * This runs very early, and only the boot processor is supposed to be
5596 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5597 * IPIs around.
5598 */
5599 __flush_cpu_slab(s, smp_processor_id());
5600 for_each_kmem_cache_node(s, node, n) {
5601 struct slab *p;
5602
5603 list_for_each_entry(p, &n->partial, slab_list)
5604 p->slab_cache = s;
5605
5606#ifdef CONFIG_SLUB_DEBUG
5607 list_for_each_entry(p, &n->full, slab_list)
5608 p->slab_cache = s;
5609#endif
5610 }
5611 list_add(&s->list, &slab_caches);
5612 return s;
5613}
5614
5615void __init kmem_cache_init(void)
5616{
5617 static __initdata struct kmem_cache boot_kmem_cache,
5618 boot_kmem_cache_node;
5619 int node;
5620
5621 if (debug_guardpage_minorder())
5622 slub_max_order = 0;
5623
5624 /* Print slub debugging pointers without hashing */
5625 if (__slub_debug_enabled())
5626 no_hash_pointers_enable(NULL);
5627
5628 kmem_cache_node = &boot_kmem_cache_node;
5629 kmem_cache = &boot_kmem_cache;
5630
5631 /*
5632 * Initialize the nodemask for which we will allocate per node
5633 * structures. Here we don't need taking slab_mutex yet.
5634 */
5635 for_each_node_state(node, N_NORMAL_MEMORY)
5636 node_set(node, slab_nodes);
5637
5638 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5639 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5640
5641 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5642
5643 /* Able to allocate the per node structures */
5644 slab_state = PARTIAL;
5645
5646 create_boot_cache(kmem_cache, "kmem_cache",
5647 offsetof(struct kmem_cache, node) +
5648 nr_node_ids * sizeof(struct kmem_cache_node *),
5649 SLAB_HWCACHE_ALIGN, 0, 0);
5650
5651 kmem_cache = bootstrap(&boot_kmem_cache);
5652 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5653
5654 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5655 setup_kmalloc_cache_index_table();
5656 create_kmalloc_caches();
5657
5658 /* Setup random freelists for each cache */
5659 init_freelist_randomization();
5660
5661 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5662 slub_cpu_dead);
5663
5664 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5665 cache_line_size(),
5666 slub_min_order, slub_max_order, slub_min_objects,
5667 nr_cpu_ids, nr_node_ids);
5668}
5669
5670void __init kmem_cache_init_late(void)
5671{
5672#ifndef CONFIG_SLUB_TINY
5673 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5674 WARN_ON(!flushwq);
5675#endif
5676}
5677
5678struct kmem_cache *
5679__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5680 slab_flags_t flags, void (*ctor)(void *))
5681{
5682 struct kmem_cache *s;
5683
5684 s = find_mergeable(size, align, flags, name, ctor);
5685 if (s) {
5686 if (sysfs_slab_alias(s, name))
5687 return NULL;
5688
5689 s->refcount++;
5690
5691 /*
5692 * Adjust the object sizes so that we clear
5693 * the complete object on kzalloc.
5694 */
5695 s->object_size = max(s->object_size, size);
5696 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5697 }
5698
5699 return s;
5700}
5701
5702int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5703{
5704 int err;
5705
5706 err = kmem_cache_open(s, flags);
5707 if (err)
5708 return err;
5709
5710 /* Mutex is not taken during early boot */
5711 if (slab_state <= UP)
5712 return 0;
5713
5714 err = sysfs_slab_add(s);
5715 if (err) {
5716 __kmem_cache_release(s);
5717 return err;
5718 }
5719
5720 if (s->flags & SLAB_STORE_USER)
5721 debugfs_slab_add(s);
5722
5723 return 0;
5724}
5725
5726#ifdef SLAB_SUPPORTS_SYSFS
5727static int count_inuse(struct slab *slab)
5728{
5729 return slab->inuse;
5730}
5731
5732static int count_total(struct slab *slab)
5733{
5734 return slab->objects;
5735}
5736#endif
5737
5738#ifdef CONFIG_SLUB_DEBUG
5739static void validate_slab(struct kmem_cache *s, struct slab *slab,
5740 unsigned long *obj_map)
5741{
5742 void *p;
5743 void *addr = slab_address(slab);
5744
5745 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5746 return;
5747
5748 /* Now we know that a valid freelist exists */
5749 __fill_map(obj_map, s, slab);
5750 for_each_object(p, s, addr, slab->objects) {
5751 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5752 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5753
5754 if (!check_object(s, slab, p, val))
5755 break;
5756 }
5757}
5758
5759static int validate_slab_node(struct kmem_cache *s,
5760 struct kmem_cache_node *n, unsigned long *obj_map)
5761{
5762 unsigned long count = 0;
5763 struct slab *slab;
5764 unsigned long flags;
5765
5766 spin_lock_irqsave(&n->list_lock, flags);
5767
5768 list_for_each_entry(slab, &n->partial, slab_list) {
5769 validate_slab(s, slab, obj_map);
5770 count++;
5771 }
5772 if (count != n->nr_partial) {
5773 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5774 s->name, count, n->nr_partial);
5775 slab_add_kunit_errors();
5776 }
5777
5778 if (!(s->flags & SLAB_STORE_USER))
5779 goto out;
5780
5781 list_for_each_entry(slab, &n->full, slab_list) {
5782 validate_slab(s, slab, obj_map);
5783 count++;
5784 }
5785 if (count != node_nr_slabs(n)) {
5786 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5787 s->name, count, node_nr_slabs(n));
5788 slab_add_kunit_errors();
5789 }
5790
5791out:
5792 spin_unlock_irqrestore(&n->list_lock, flags);
5793 return count;
5794}
5795
5796long validate_slab_cache(struct kmem_cache *s)
5797{
5798 int node;
5799 unsigned long count = 0;
5800 struct kmem_cache_node *n;
5801 unsigned long *obj_map;
5802
5803 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5804 if (!obj_map)
5805 return -ENOMEM;
5806
5807 flush_all(s);
5808 for_each_kmem_cache_node(s, node, n)
5809 count += validate_slab_node(s, n, obj_map);
5810
5811 bitmap_free(obj_map);
5812
5813 return count;
5814}
5815EXPORT_SYMBOL(validate_slab_cache);
5816
5817#ifdef CONFIG_DEBUG_FS
5818/*
5819 * Generate lists of code addresses where slabcache objects are allocated
5820 * and freed.
5821 */
5822
5823struct location {
5824 depot_stack_handle_t handle;
5825 unsigned long count;
5826 unsigned long addr;
5827 unsigned long waste;
5828 long long sum_time;
5829 long min_time;
5830 long max_time;
5831 long min_pid;
5832 long max_pid;
5833 DECLARE_BITMAP(cpus, NR_CPUS);
5834 nodemask_t nodes;
5835};
5836
5837struct loc_track {
5838 unsigned long max;
5839 unsigned long count;
5840 struct location *loc;
5841 loff_t idx;
5842};
5843
5844static struct dentry *slab_debugfs_root;
5845
5846static void free_loc_track(struct loc_track *t)
5847{
5848 if (t->max)
5849 free_pages((unsigned long)t->loc,
5850 get_order(sizeof(struct location) * t->max));
5851}
5852
5853static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5854{
5855 struct location *l;
5856 int order;
5857
5858 order = get_order(sizeof(struct location) * max);
5859
5860 l = (void *)__get_free_pages(flags, order);
5861 if (!l)
5862 return 0;
5863
5864 if (t->count) {
5865 memcpy(l, t->loc, sizeof(struct location) * t->count);
5866 free_loc_track(t);
5867 }
5868 t->max = max;
5869 t->loc = l;
5870 return 1;
5871}
5872
5873static int add_location(struct loc_track *t, struct kmem_cache *s,
5874 const struct track *track,
5875 unsigned int orig_size)
5876{
5877 long start, end, pos;
5878 struct location *l;
5879 unsigned long caddr, chandle, cwaste;
5880 unsigned long age = jiffies - track->when;
5881 depot_stack_handle_t handle = 0;
5882 unsigned int waste = s->object_size - orig_size;
5883
5884#ifdef CONFIG_STACKDEPOT
5885 handle = READ_ONCE(track->handle);
5886#endif
5887 start = -1;
5888 end = t->count;
5889
5890 for ( ; ; ) {
5891 pos = start + (end - start + 1) / 2;
5892
5893 /*
5894 * There is nothing at "end". If we end up there
5895 * we need to add something to before end.
5896 */
5897 if (pos == end)
5898 break;
5899
5900 l = &t->loc[pos];
5901 caddr = l->addr;
5902 chandle = l->handle;
5903 cwaste = l->waste;
5904 if ((track->addr == caddr) && (handle == chandle) &&
5905 (waste == cwaste)) {
5906
5907 l->count++;
5908 if (track->when) {
5909 l->sum_time += age;
5910 if (age < l->min_time)
5911 l->min_time = age;
5912 if (age > l->max_time)
5913 l->max_time = age;
5914
5915 if (track->pid < l->min_pid)
5916 l->min_pid = track->pid;
5917 if (track->pid > l->max_pid)
5918 l->max_pid = track->pid;
5919
5920 cpumask_set_cpu(track->cpu,
5921 to_cpumask(l->cpus));
5922 }
5923 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5924 return 1;
5925 }
5926
5927 if (track->addr < caddr)
5928 end = pos;
5929 else if (track->addr == caddr && handle < chandle)
5930 end = pos;
5931 else if (track->addr == caddr && handle == chandle &&
5932 waste < cwaste)
5933 end = pos;
5934 else
5935 start = pos;
5936 }
5937
5938 /*
5939 * Not found. Insert new tracking element.
5940 */
5941 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5942 return 0;
5943
5944 l = t->loc + pos;
5945 if (pos < t->count)
5946 memmove(l + 1, l,
5947 (t->count - pos) * sizeof(struct location));
5948 t->count++;
5949 l->count = 1;
5950 l->addr = track->addr;
5951 l->sum_time = age;
5952 l->min_time = age;
5953 l->max_time = age;
5954 l->min_pid = track->pid;
5955 l->max_pid = track->pid;
5956 l->handle = handle;
5957 l->waste = waste;
5958 cpumask_clear(to_cpumask(l->cpus));
5959 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5960 nodes_clear(l->nodes);
5961 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5962 return 1;
5963}
5964
5965static void process_slab(struct loc_track *t, struct kmem_cache *s,
5966 struct slab *slab, enum track_item alloc,
5967 unsigned long *obj_map)
5968{
5969 void *addr = slab_address(slab);
5970 bool is_alloc = (alloc == TRACK_ALLOC);
5971 void *p;
5972
5973 __fill_map(obj_map, s, slab);
5974
5975 for_each_object(p, s, addr, slab->objects)
5976 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5977 add_location(t, s, get_track(s, p, alloc),
5978 is_alloc ? get_orig_size(s, p) :
5979 s->object_size);
5980}
5981#endif /* CONFIG_DEBUG_FS */
5982#endif /* CONFIG_SLUB_DEBUG */
5983
5984#ifdef SLAB_SUPPORTS_SYSFS
5985enum slab_stat_type {
5986 SL_ALL, /* All slabs */
5987 SL_PARTIAL, /* Only partially allocated slabs */
5988 SL_CPU, /* Only slabs used for cpu caches */
5989 SL_OBJECTS, /* Determine allocated objects not slabs */
5990 SL_TOTAL /* Determine object capacity not slabs */
5991};
5992
5993#define SO_ALL (1 << SL_ALL)
5994#define SO_PARTIAL (1 << SL_PARTIAL)
5995#define SO_CPU (1 << SL_CPU)
5996#define SO_OBJECTS (1 << SL_OBJECTS)
5997#define SO_TOTAL (1 << SL_TOTAL)
5998
5999static ssize_t show_slab_objects(struct kmem_cache *s,
6000 char *buf, unsigned long flags)
6001{
6002 unsigned long total = 0;
6003 int node;
6004 int x;
6005 unsigned long *nodes;
6006 int len = 0;
6007
6008 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6009 if (!nodes)
6010 return -ENOMEM;
6011
6012 if (flags & SO_CPU) {
6013 int cpu;
6014
6015 for_each_possible_cpu(cpu) {
6016 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6017 cpu);
6018 int node;
6019 struct slab *slab;
6020
6021 slab = READ_ONCE(c->slab);
6022 if (!slab)
6023 continue;
6024
6025 node = slab_nid(slab);
6026 if (flags & SO_TOTAL)
6027 x = slab->objects;
6028 else if (flags & SO_OBJECTS)
6029 x = slab->inuse;
6030 else
6031 x = 1;
6032
6033 total += x;
6034 nodes[node] += x;
6035
6036#ifdef CONFIG_SLUB_CPU_PARTIAL
6037 slab = slub_percpu_partial_read_once(c);
6038 if (slab) {
6039 node = slab_nid(slab);
6040 if (flags & SO_TOTAL)
6041 WARN_ON_ONCE(1);
6042 else if (flags & SO_OBJECTS)
6043 WARN_ON_ONCE(1);
6044 else
6045 x = slab->slabs;
6046 total += x;
6047 nodes[node] += x;
6048 }
6049#endif
6050 }
6051 }
6052
6053 /*
6054 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6055 * already held which will conflict with an existing lock order:
6056 *
6057 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6058 *
6059 * We don't really need mem_hotplug_lock (to hold off
6060 * slab_mem_going_offline_callback) here because slab's memory hot
6061 * unplug code doesn't destroy the kmem_cache->node[] data.
6062 */
6063
6064#ifdef CONFIG_SLUB_DEBUG
6065 if (flags & SO_ALL) {
6066 struct kmem_cache_node *n;
6067
6068 for_each_kmem_cache_node(s, node, n) {
6069
6070 if (flags & SO_TOTAL)
6071 x = node_nr_objs(n);
6072 else if (flags & SO_OBJECTS)
6073 x = node_nr_objs(n) - count_partial(n, count_free);
6074 else
6075 x = node_nr_slabs(n);
6076 total += x;
6077 nodes[node] += x;
6078 }
6079
6080 } else
6081#endif
6082 if (flags & SO_PARTIAL) {
6083 struct kmem_cache_node *n;
6084
6085 for_each_kmem_cache_node(s, node, n) {
6086 if (flags & SO_TOTAL)
6087 x = count_partial(n, count_total);
6088 else if (flags & SO_OBJECTS)
6089 x = count_partial(n, count_inuse);
6090 else
6091 x = n->nr_partial;
6092 total += x;
6093 nodes[node] += x;
6094 }
6095 }
6096
6097 len += sysfs_emit_at(buf, len, "%lu", total);
6098#ifdef CONFIG_NUMA
6099 for (node = 0; node < nr_node_ids; node++) {
6100 if (nodes[node])
6101 len += sysfs_emit_at(buf, len, " N%d=%lu",
6102 node, nodes[node]);
6103 }
6104#endif
6105 len += sysfs_emit_at(buf, len, "\n");
6106 kfree(nodes);
6107
6108 return len;
6109}
6110
6111#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6112#define to_slab(n) container_of(n, struct kmem_cache, kobj)
6113
6114struct slab_attribute {
6115 struct attribute attr;
6116 ssize_t (*show)(struct kmem_cache *s, char *buf);
6117 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6118};
6119
6120#define SLAB_ATTR_RO(_name) \
6121 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6122
6123#define SLAB_ATTR(_name) \
6124 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6125
6126static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6127{
6128 return sysfs_emit(buf, "%u\n", s->size);
6129}
6130SLAB_ATTR_RO(slab_size);
6131
6132static ssize_t align_show(struct kmem_cache *s, char *buf)
6133{
6134 return sysfs_emit(buf, "%u\n", s->align);
6135}
6136SLAB_ATTR_RO(align);
6137
6138static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6139{
6140 return sysfs_emit(buf, "%u\n", s->object_size);
6141}
6142SLAB_ATTR_RO(object_size);
6143
6144static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6145{
6146 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6147}
6148SLAB_ATTR_RO(objs_per_slab);
6149
6150static ssize_t order_show(struct kmem_cache *s, char *buf)
6151{
6152 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6153}
6154SLAB_ATTR_RO(order);
6155
6156static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6157{
6158 return sysfs_emit(buf, "%lu\n", s->min_partial);
6159}
6160
6161static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6162 size_t length)
6163{
6164 unsigned long min;
6165 int err;
6166
6167 err = kstrtoul(buf, 10, &min);
6168 if (err)
6169 return err;
6170
6171 s->min_partial = min;
6172 return length;
6173}
6174SLAB_ATTR(min_partial);
6175
6176static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6177{
6178 unsigned int nr_partial = 0;
6179#ifdef CONFIG_SLUB_CPU_PARTIAL
6180 nr_partial = s->cpu_partial;
6181#endif
6182
6183 return sysfs_emit(buf, "%u\n", nr_partial);
6184}
6185
6186static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6187 size_t length)
6188{
6189 unsigned int objects;
6190 int err;
6191
6192 err = kstrtouint(buf, 10, &objects);
6193 if (err)
6194 return err;
6195 if (objects && !kmem_cache_has_cpu_partial(s))
6196 return -EINVAL;
6197
6198 slub_set_cpu_partial(s, objects);
6199 flush_all(s);
6200 return length;
6201}
6202SLAB_ATTR(cpu_partial);
6203
6204static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6205{
6206 if (!s->ctor)
6207 return 0;
6208 return sysfs_emit(buf, "%pS\n", s->ctor);
6209}
6210SLAB_ATTR_RO(ctor);
6211
6212static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6213{
6214 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6215}
6216SLAB_ATTR_RO(aliases);
6217
6218static ssize_t partial_show(struct kmem_cache *s, char *buf)
6219{
6220 return show_slab_objects(s, buf, SO_PARTIAL);
6221}
6222SLAB_ATTR_RO(partial);
6223
6224static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6225{
6226 return show_slab_objects(s, buf, SO_CPU);
6227}
6228SLAB_ATTR_RO(cpu_slabs);
6229
6230static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6231{
6232 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6233}
6234SLAB_ATTR_RO(objects_partial);
6235
6236static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6237{
6238 int objects = 0;
6239 int slabs = 0;
6240 int cpu __maybe_unused;
6241 int len = 0;
6242
6243#ifdef CONFIG_SLUB_CPU_PARTIAL
6244 for_each_online_cpu(cpu) {
6245 struct slab *slab;
6246
6247 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6248
6249 if (slab)
6250 slabs += slab->slabs;
6251 }
6252#endif
6253
6254 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6255 objects = (slabs * oo_objects(s->oo)) / 2;
6256 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6257
6258#ifdef CONFIG_SLUB_CPU_PARTIAL
6259 for_each_online_cpu(cpu) {
6260 struct slab *slab;
6261
6262 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6263 if (slab) {
6264 slabs = READ_ONCE(slab->slabs);
6265 objects = (slabs * oo_objects(s->oo)) / 2;
6266 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6267 cpu, objects, slabs);
6268 }
6269 }
6270#endif
6271 len += sysfs_emit_at(buf, len, "\n");
6272
6273 return len;
6274}
6275SLAB_ATTR_RO(slabs_cpu_partial);
6276
6277static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6278{
6279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6280}
6281SLAB_ATTR_RO(reclaim_account);
6282
6283static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6284{
6285 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6286}
6287SLAB_ATTR_RO(hwcache_align);
6288
6289#ifdef CONFIG_ZONE_DMA
6290static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6291{
6292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6293}
6294SLAB_ATTR_RO(cache_dma);
6295#endif
6296
6297#ifdef CONFIG_HARDENED_USERCOPY
6298static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6299{
6300 return sysfs_emit(buf, "%u\n", s->usersize);
6301}
6302SLAB_ATTR_RO(usersize);
6303#endif
6304
6305static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6306{
6307 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6308}
6309SLAB_ATTR_RO(destroy_by_rcu);
6310
6311#ifdef CONFIG_SLUB_DEBUG
6312static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6313{
6314 return show_slab_objects(s, buf, SO_ALL);
6315}
6316SLAB_ATTR_RO(slabs);
6317
6318static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6319{
6320 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6321}
6322SLAB_ATTR_RO(total_objects);
6323
6324static ssize_t objects_show(struct kmem_cache *s, char *buf)
6325{
6326 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6327}
6328SLAB_ATTR_RO(objects);
6329
6330static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6331{
6332 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6333}
6334SLAB_ATTR_RO(sanity_checks);
6335
6336static ssize_t trace_show(struct kmem_cache *s, char *buf)
6337{
6338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6339}
6340SLAB_ATTR_RO(trace);
6341
6342static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6343{
6344 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6345}
6346
6347SLAB_ATTR_RO(red_zone);
6348
6349static ssize_t poison_show(struct kmem_cache *s, char *buf)
6350{
6351 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6352}
6353
6354SLAB_ATTR_RO(poison);
6355
6356static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6357{
6358 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6359}
6360
6361SLAB_ATTR_RO(store_user);
6362
6363static ssize_t validate_show(struct kmem_cache *s, char *buf)
6364{
6365 return 0;
6366}
6367
6368static ssize_t validate_store(struct kmem_cache *s,
6369 const char *buf, size_t length)
6370{
6371 int ret = -EINVAL;
6372
6373 if (buf[0] == '1' && kmem_cache_debug(s)) {
6374 ret = validate_slab_cache(s);
6375 if (ret >= 0)
6376 ret = length;
6377 }
6378 return ret;
6379}
6380SLAB_ATTR(validate);
6381
6382#endif /* CONFIG_SLUB_DEBUG */
6383
6384#ifdef CONFIG_FAILSLAB
6385static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6386{
6387 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6388}
6389
6390static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6391 size_t length)
6392{
6393 if (s->refcount > 1)
6394 return -EINVAL;
6395
6396 if (buf[0] == '1')
6397 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6398 else
6399 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6400
6401 return length;
6402}
6403SLAB_ATTR(failslab);
6404#endif
6405
6406static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6407{
6408 return 0;
6409}
6410
6411static ssize_t shrink_store(struct kmem_cache *s,
6412 const char *buf, size_t length)
6413{
6414 if (buf[0] == '1')
6415 kmem_cache_shrink(s);
6416 else
6417 return -EINVAL;
6418 return length;
6419}
6420SLAB_ATTR(shrink);
6421
6422#ifdef CONFIG_NUMA
6423static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6424{
6425 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6426}
6427
6428static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6429 const char *buf, size_t length)
6430{
6431 unsigned int ratio;
6432 int err;
6433
6434 err = kstrtouint(buf, 10, &ratio);
6435 if (err)
6436 return err;
6437 if (ratio > 100)
6438 return -ERANGE;
6439
6440 s->remote_node_defrag_ratio = ratio * 10;
6441
6442 return length;
6443}
6444SLAB_ATTR(remote_node_defrag_ratio);
6445#endif
6446
6447#ifdef CONFIG_SLUB_STATS
6448static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6449{
6450 unsigned long sum = 0;
6451 int cpu;
6452 int len = 0;
6453 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6454
6455 if (!data)
6456 return -ENOMEM;
6457
6458 for_each_online_cpu(cpu) {
6459 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6460
6461 data[cpu] = x;
6462 sum += x;
6463 }
6464
6465 len += sysfs_emit_at(buf, len, "%lu", sum);
6466
6467#ifdef CONFIG_SMP
6468 for_each_online_cpu(cpu) {
6469 if (data[cpu])
6470 len += sysfs_emit_at(buf, len, " C%d=%u",
6471 cpu, data[cpu]);
6472 }
6473#endif
6474 kfree(data);
6475 len += sysfs_emit_at(buf, len, "\n");
6476
6477 return len;
6478}
6479
6480static void clear_stat(struct kmem_cache *s, enum stat_item si)
6481{
6482 int cpu;
6483
6484 for_each_online_cpu(cpu)
6485 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6486}
6487
6488#define STAT_ATTR(si, text) \
6489static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6490{ \
6491 return show_stat(s, buf, si); \
6492} \
6493static ssize_t text##_store(struct kmem_cache *s, \
6494 const char *buf, size_t length) \
6495{ \
6496 if (buf[0] != '0') \
6497 return -EINVAL; \
6498 clear_stat(s, si); \
6499 return length; \
6500} \
6501SLAB_ATTR(text); \
6502
6503STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6504STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6505STAT_ATTR(FREE_FASTPATH, free_fastpath);
6506STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6507STAT_ATTR(FREE_FROZEN, free_frozen);
6508STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6509STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6510STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6511STAT_ATTR(ALLOC_SLAB, alloc_slab);
6512STAT_ATTR(ALLOC_REFILL, alloc_refill);
6513STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6514STAT_ATTR(FREE_SLAB, free_slab);
6515STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6516STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6517STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6518STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6519STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6520STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6521STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6522STAT_ATTR(ORDER_FALLBACK, order_fallback);
6523STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6524STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6525STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6526STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6527STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6528STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6529#endif /* CONFIG_SLUB_STATS */
6530
6531#ifdef CONFIG_KFENCE
6532static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6533{
6534 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6535}
6536
6537static ssize_t skip_kfence_store(struct kmem_cache *s,
6538 const char *buf, size_t length)
6539{
6540 int ret = length;
6541
6542 if (buf[0] == '0')
6543 s->flags &= ~SLAB_SKIP_KFENCE;
6544 else if (buf[0] == '1')
6545 s->flags |= SLAB_SKIP_KFENCE;
6546 else
6547 ret = -EINVAL;
6548
6549 return ret;
6550}
6551SLAB_ATTR(skip_kfence);
6552#endif
6553
6554static struct attribute *slab_attrs[] = {
6555 &slab_size_attr.attr,
6556 &object_size_attr.attr,
6557 &objs_per_slab_attr.attr,
6558 &order_attr.attr,
6559 &min_partial_attr.attr,
6560 &cpu_partial_attr.attr,
6561 &objects_partial_attr.attr,
6562 &partial_attr.attr,
6563 &cpu_slabs_attr.attr,
6564 &ctor_attr.attr,
6565 &aliases_attr.attr,
6566 &align_attr.attr,
6567 &hwcache_align_attr.attr,
6568 &reclaim_account_attr.attr,
6569 &destroy_by_rcu_attr.attr,
6570 &shrink_attr.attr,
6571 &slabs_cpu_partial_attr.attr,
6572#ifdef CONFIG_SLUB_DEBUG
6573 &total_objects_attr.attr,
6574 &objects_attr.attr,
6575 &slabs_attr.attr,
6576 &sanity_checks_attr.attr,
6577 &trace_attr.attr,
6578 &red_zone_attr.attr,
6579 &poison_attr.attr,
6580 &store_user_attr.attr,
6581 &validate_attr.attr,
6582#endif
6583#ifdef CONFIG_ZONE_DMA
6584 &cache_dma_attr.attr,
6585#endif
6586#ifdef CONFIG_NUMA
6587 &remote_node_defrag_ratio_attr.attr,
6588#endif
6589#ifdef CONFIG_SLUB_STATS
6590 &alloc_fastpath_attr.attr,
6591 &alloc_slowpath_attr.attr,
6592 &free_fastpath_attr.attr,
6593 &free_slowpath_attr.attr,
6594 &free_frozen_attr.attr,
6595 &free_add_partial_attr.attr,
6596 &free_remove_partial_attr.attr,
6597 &alloc_from_partial_attr.attr,
6598 &alloc_slab_attr.attr,
6599 &alloc_refill_attr.attr,
6600 &alloc_node_mismatch_attr.attr,
6601 &free_slab_attr.attr,
6602 &cpuslab_flush_attr.attr,
6603 &deactivate_full_attr.attr,
6604 &deactivate_empty_attr.attr,
6605 &deactivate_to_head_attr.attr,
6606 &deactivate_to_tail_attr.attr,
6607 &deactivate_remote_frees_attr.attr,
6608 &deactivate_bypass_attr.attr,
6609 &order_fallback_attr.attr,
6610 &cmpxchg_double_fail_attr.attr,
6611 &cmpxchg_double_cpu_fail_attr.attr,
6612 &cpu_partial_alloc_attr.attr,
6613 &cpu_partial_free_attr.attr,
6614 &cpu_partial_node_attr.attr,
6615 &cpu_partial_drain_attr.attr,
6616#endif
6617#ifdef CONFIG_FAILSLAB
6618 &failslab_attr.attr,
6619#endif
6620#ifdef CONFIG_HARDENED_USERCOPY
6621 &usersize_attr.attr,
6622#endif
6623#ifdef CONFIG_KFENCE
6624 &skip_kfence_attr.attr,
6625#endif
6626
6627 NULL
6628};
6629
6630static const struct attribute_group slab_attr_group = {
6631 .attrs = slab_attrs,
6632};
6633
6634static ssize_t slab_attr_show(struct kobject *kobj,
6635 struct attribute *attr,
6636 char *buf)
6637{
6638 struct slab_attribute *attribute;
6639 struct kmem_cache *s;
6640
6641 attribute = to_slab_attr(attr);
6642 s = to_slab(kobj);
6643
6644 if (!attribute->show)
6645 return -EIO;
6646
6647 return attribute->show(s, buf);
6648}
6649
6650static ssize_t slab_attr_store(struct kobject *kobj,
6651 struct attribute *attr,
6652 const char *buf, size_t len)
6653{
6654 struct slab_attribute *attribute;
6655 struct kmem_cache *s;
6656
6657 attribute = to_slab_attr(attr);
6658 s = to_slab(kobj);
6659
6660 if (!attribute->store)
6661 return -EIO;
6662
6663 return attribute->store(s, buf, len);
6664}
6665
6666static void kmem_cache_release(struct kobject *k)
6667{
6668 slab_kmem_cache_release(to_slab(k));
6669}
6670
6671static const struct sysfs_ops slab_sysfs_ops = {
6672 .show = slab_attr_show,
6673 .store = slab_attr_store,
6674};
6675
6676static const struct kobj_type slab_ktype = {
6677 .sysfs_ops = &slab_sysfs_ops,
6678 .release = kmem_cache_release,
6679};
6680
6681static struct kset *slab_kset;
6682
6683static inline struct kset *cache_kset(struct kmem_cache *s)
6684{
6685 return slab_kset;
6686}
6687
6688#define ID_STR_LENGTH 32
6689
6690/* Create a unique string id for a slab cache:
6691 *
6692 * Format :[flags-]size
6693 */
6694static char *create_unique_id(struct kmem_cache *s)
6695{
6696 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6697 char *p = name;
6698
6699 if (!name)
6700 return ERR_PTR(-ENOMEM);
6701
6702 *p++ = ':';
6703 /*
6704 * First flags affecting slabcache operations. We will only
6705 * get here for aliasable slabs so we do not need to support
6706 * too many flags. The flags here must cover all flags that
6707 * are matched during merging to guarantee that the id is
6708 * unique.
6709 */
6710 if (s->flags & SLAB_CACHE_DMA)
6711 *p++ = 'd';
6712 if (s->flags & SLAB_CACHE_DMA32)
6713 *p++ = 'D';
6714 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6715 *p++ = 'a';
6716 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6717 *p++ = 'F';
6718 if (s->flags & SLAB_ACCOUNT)
6719 *p++ = 'A';
6720 if (p != name + 1)
6721 *p++ = '-';
6722 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6723
6724 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6725 kfree(name);
6726 return ERR_PTR(-EINVAL);
6727 }
6728 kmsan_unpoison_memory(name, p - name);
6729 return name;
6730}
6731
6732static int sysfs_slab_add(struct kmem_cache *s)
6733{
6734 int err;
6735 const char *name;
6736 struct kset *kset = cache_kset(s);
6737 int unmergeable = slab_unmergeable(s);
6738
6739 if (!unmergeable && disable_higher_order_debug &&
6740 (slub_debug & DEBUG_METADATA_FLAGS))
6741 unmergeable = 1;
6742
6743 if (unmergeable) {
6744 /*
6745 * Slabcache can never be merged so we can use the name proper.
6746 * This is typically the case for debug situations. In that
6747 * case we can catch duplicate names easily.
6748 */
6749 sysfs_remove_link(&slab_kset->kobj, s->name);
6750 name = s->name;
6751 } else {
6752 /*
6753 * Create a unique name for the slab as a target
6754 * for the symlinks.
6755 */
6756 name = create_unique_id(s);
6757 if (IS_ERR(name))
6758 return PTR_ERR(name);
6759 }
6760
6761 s->kobj.kset = kset;
6762 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6763 if (err)
6764 goto out;
6765
6766 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6767 if (err)
6768 goto out_del_kobj;
6769
6770 if (!unmergeable) {
6771 /* Setup first alias */
6772 sysfs_slab_alias(s, s->name);
6773 }
6774out:
6775 if (!unmergeable)
6776 kfree(name);
6777 return err;
6778out_del_kobj:
6779 kobject_del(&s->kobj);
6780 goto out;
6781}
6782
6783void sysfs_slab_unlink(struct kmem_cache *s)
6784{
6785 kobject_del(&s->kobj);
6786}
6787
6788void sysfs_slab_release(struct kmem_cache *s)
6789{
6790 kobject_put(&s->kobj);
6791}
6792
6793/*
6794 * Need to buffer aliases during bootup until sysfs becomes
6795 * available lest we lose that information.
6796 */
6797struct saved_alias {
6798 struct kmem_cache *s;
6799 const char *name;
6800 struct saved_alias *next;
6801};
6802
6803static struct saved_alias *alias_list;
6804
6805static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6806{
6807 struct saved_alias *al;
6808
6809 if (slab_state == FULL) {
6810 /*
6811 * If we have a leftover link then remove it.
6812 */
6813 sysfs_remove_link(&slab_kset->kobj, name);
6814 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6815 }
6816
6817 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6818 if (!al)
6819 return -ENOMEM;
6820
6821 al->s = s;
6822 al->name = name;
6823 al->next = alias_list;
6824 alias_list = al;
6825 kmsan_unpoison_memory(al, sizeof(*al));
6826 return 0;
6827}
6828
6829static int __init slab_sysfs_init(void)
6830{
6831 struct kmem_cache *s;
6832 int err;
6833
6834 mutex_lock(&slab_mutex);
6835
6836 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6837 if (!slab_kset) {
6838 mutex_unlock(&slab_mutex);
6839 pr_err("Cannot register slab subsystem.\n");
6840 return -ENOMEM;
6841 }
6842
6843 slab_state = FULL;
6844
6845 list_for_each_entry(s, &slab_caches, list) {
6846 err = sysfs_slab_add(s);
6847 if (err)
6848 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6849 s->name);
6850 }
6851
6852 while (alias_list) {
6853 struct saved_alias *al = alias_list;
6854
6855 alias_list = alias_list->next;
6856 err = sysfs_slab_alias(al->s, al->name);
6857 if (err)
6858 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6859 al->name);
6860 kfree(al);
6861 }
6862
6863 mutex_unlock(&slab_mutex);
6864 return 0;
6865}
6866late_initcall(slab_sysfs_init);
6867#endif /* SLAB_SUPPORTS_SYSFS */
6868
6869#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6870static int slab_debugfs_show(struct seq_file *seq, void *v)
6871{
6872 struct loc_track *t = seq->private;
6873 struct location *l;
6874 unsigned long idx;
6875
6876 idx = (unsigned long) t->idx;
6877 if (idx < t->count) {
6878 l = &t->loc[idx];
6879
6880 seq_printf(seq, "%7ld ", l->count);
6881
6882 if (l->addr)
6883 seq_printf(seq, "%pS", (void *)l->addr);
6884 else
6885 seq_puts(seq, "<not-available>");
6886
6887 if (l->waste)
6888 seq_printf(seq, " waste=%lu/%lu",
6889 l->count * l->waste, l->waste);
6890
6891 if (l->sum_time != l->min_time) {
6892 seq_printf(seq, " age=%ld/%llu/%ld",
6893 l->min_time, div_u64(l->sum_time, l->count),
6894 l->max_time);
6895 } else
6896 seq_printf(seq, " age=%ld", l->min_time);
6897
6898 if (l->min_pid != l->max_pid)
6899 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6900 else
6901 seq_printf(seq, " pid=%ld",
6902 l->min_pid);
6903
6904 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6905 seq_printf(seq, " cpus=%*pbl",
6906 cpumask_pr_args(to_cpumask(l->cpus)));
6907
6908 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6909 seq_printf(seq, " nodes=%*pbl",
6910 nodemask_pr_args(&l->nodes));
6911
6912#ifdef CONFIG_STACKDEPOT
6913 {
6914 depot_stack_handle_t handle;
6915 unsigned long *entries;
6916 unsigned int nr_entries, j;
6917
6918 handle = READ_ONCE(l->handle);
6919 if (handle) {
6920 nr_entries = stack_depot_fetch(handle, &entries);
6921 seq_puts(seq, "\n");
6922 for (j = 0; j < nr_entries; j++)
6923 seq_printf(seq, " %pS\n", (void *)entries[j]);
6924 }
6925 }
6926#endif
6927 seq_puts(seq, "\n");
6928 }
6929
6930 if (!idx && !t->count)
6931 seq_puts(seq, "No data\n");
6932
6933 return 0;
6934}
6935
6936static void slab_debugfs_stop(struct seq_file *seq, void *v)
6937{
6938}
6939
6940static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6941{
6942 struct loc_track *t = seq->private;
6943
6944 t->idx = ++(*ppos);
6945 if (*ppos <= t->count)
6946 return ppos;
6947
6948 return NULL;
6949}
6950
6951static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6952{
6953 struct location *loc1 = (struct location *)a;
6954 struct location *loc2 = (struct location *)b;
6955
6956 if (loc1->count > loc2->count)
6957 return -1;
6958 else
6959 return 1;
6960}
6961
6962static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6963{
6964 struct loc_track *t = seq->private;
6965
6966 t->idx = *ppos;
6967 return ppos;
6968}
6969
6970static const struct seq_operations slab_debugfs_sops = {
6971 .start = slab_debugfs_start,
6972 .next = slab_debugfs_next,
6973 .stop = slab_debugfs_stop,
6974 .show = slab_debugfs_show,
6975};
6976
6977static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6978{
6979
6980 struct kmem_cache_node *n;
6981 enum track_item alloc;
6982 int node;
6983 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6984 sizeof(struct loc_track));
6985 struct kmem_cache *s = file_inode(filep)->i_private;
6986 unsigned long *obj_map;
6987
6988 if (!t)
6989 return -ENOMEM;
6990
6991 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6992 if (!obj_map) {
6993 seq_release_private(inode, filep);
6994 return -ENOMEM;
6995 }
6996
6997 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6998 alloc = TRACK_ALLOC;
6999 else
7000 alloc = TRACK_FREE;
7001
7002 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7003 bitmap_free(obj_map);
7004 seq_release_private(inode, filep);
7005 return -ENOMEM;
7006 }
7007
7008 for_each_kmem_cache_node(s, node, n) {
7009 unsigned long flags;
7010 struct slab *slab;
7011
7012 if (!node_nr_slabs(n))
7013 continue;
7014
7015 spin_lock_irqsave(&n->list_lock, flags);
7016 list_for_each_entry(slab, &n->partial, slab_list)
7017 process_slab(t, s, slab, alloc, obj_map);
7018 list_for_each_entry(slab, &n->full, slab_list)
7019 process_slab(t, s, slab, alloc, obj_map);
7020 spin_unlock_irqrestore(&n->list_lock, flags);
7021 }
7022
7023 /* Sort locations by count */
7024 sort_r(t->loc, t->count, sizeof(struct location),
7025 cmp_loc_by_count, NULL, NULL);
7026
7027 bitmap_free(obj_map);
7028 return 0;
7029}
7030
7031static int slab_debug_trace_release(struct inode *inode, struct file *file)
7032{
7033 struct seq_file *seq = file->private_data;
7034 struct loc_track *t = seq->private;
7035
7036 free_loc_track(t);
7037 return seq_release_private(inode, file);
7038}
7039
7040static const struct file_operations slab_debugfs_fops = {
7041 .open = slab_debug_trace_open,
7042 .read = seq_read,
7043 .llseek = seq_lseek,
7044 .release = slab_debug_trace_release,
7045};
7046
7047static void debugfs_slab_add(struct kmem_cache *s)
7048{
7049 struct dentry *slab_cache_dir;
7050
7051 if (unlikely(!slab_debugfs_root))
7052 return;
7053
7054 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7055
7056 debugfs_create_file("alloc_traces", 0400,
7057 slab_cache_dir, s, &slab_debugfs_fops);
7058
7059 debugfs_create_file("free_traces", 0400,
7060 slab_cache_dir, s, &slab_debugfs_fops);
7061}
7062
7063void debugfs_slab_release(struct kmem_cache *s)
7064{
7065 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7066}
7067
7068static int __init slab_debugfs_init(void)
7069{
7070 struct kmem_cache *s;
7071
7072 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7073
7074 list_for_each_entry(s, &slab_caches, list)
7075 if (s->flags & SLAB_STORE_USER)
7076 debugfs_slab_add(s);
7077
7078 return 0;
7079
7080}
7081__initcall(slab_debugfs_init);
7082#endif
7083/*
7084 * The /proc/slabinfo ABI
7085 */
7086#ifdef CONFIG_SLUB_DEBUG
7087void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7088{
7089 unsigned long nr_slabs = 0;
7090 unsigned long nr_objs = 0;
7091 unsigned long nr_free = 0;
7092 int node;
7093 struct kmem_cache_node *n;
7094
7095 for_each_kmem_cache_node(s, node, n) {
7096 nr_slabs += node_nr_slabs(n);
7097 nr_objs += node_nr_objs(n);
7098 nr_free += count_partial(n, count_free);
7099 }
7100
7101 sinfo->active_objs = nr_objs - nr_free;
7102 sinfo->num_objs = nr_objs;
7103 sinfo->active_slabs = nr_slabs;
7104 sinfo->num_slabs = nr_slabs;
7105 sinfo->objects_per_slab = oo_objects(s->oo);
7106 sinfo->cache_order = oo_order(s->oo);
7107}
7108
7109void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7110{
7111}
7112
7113ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7114 size_t count, loff_t *ppos)
7115{
7116 return -EIO;
7117}
7118#endif /* CONFIG_SLUB_DEBUG */