Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int) inode_get_atime_sec(inode),
 241	       (unsigned int) inode_get_atime_nsec(inode));
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int) inode_get_mtime_sec(inode),
 244	       (unsigned int) inode_get_mtime_nsec(inode));
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int) inode_get_ctime_sec(inode),
 247	       (unsigned int) inode_get_ctime_nsec(inode));
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 950	level = znode->level;
 951	pr_err("== Level %d ==\n", level);
 952	while (znode) {
 953		if (level != znode->level) {
 954			level = znode->level;
 955			pr_err("== Level %d ==\n", level);
 956		}
 957		ubifs_dump_znode(c, znode);
 958		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 959	}
 960	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 961}
 962
 963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 964		      void *priv)
 965{
 966	ubifs_dump_znode(c, znode);
 967	return 0;
 968}
 969
 970/**
 971 * ubifs_dump_index - dump the on-flash index.
 972 * @c: UBIFS file-system description object
 973 *
 974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 975 * which dumps only in-memory znodes and does not read znodes which from flash.
 976 */
 977void ubifs_dump_index(struct ubifs_info *c)
 978{
 979	dbg_walk_index(c, NULL, dump_znode, NULL);
 980}
 981
 982/**
 983 * dbg_save_space_info - save information about flash space.
 984 * @c: UBIFS file-system description object
 985 *
 986 * This function saves information about UBIFS free space, dirty space, etc, in
 987 * order to check it later.
 988 */
 989void dbg_save_space_info(struct ubifs_info *c)
 990{
 991	struct ubifs_debug_info *d = c->dbg;
 992	int freeable_cnt;
 993
 994	spin_lock(&c->space_lock);
 995	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 996	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 997	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 998
 999	/*
1000	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001	 * affects the free space calculations, and UBIFS might not know about
1002	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003	 * only when we read their lprops, and we do this only lazily, upon the
1004	 * need. So at any given point of time @c->freeable_cnt might be not
1005	 * exactly accurate.
1006	 *
1007	 * Just one example about the issue we hit when we did not zero
1008	 * @c->freeable_cnt.
1009	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010	 *    amount of free space in @d->saved_free
1011	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012	 *    information from flash, where we cache LEBs from various
1013	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016	 *    -> 'ubifs_add_to_cat()').
1017	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018	 *    becomes %1.
1019	 * 4. We calculate the amount of free space when the re-mount is
1020	 *    finished in 'dbg_check_space_info()' and it does not match
1021	 *    @d->saved_free.
1022	 */
1023	freeable_cnt = c->freeable_cnt;
1024	c->freeable_cnt = 0;
1025	d->saved_free = ubifs_get_free_space_nolock(c);
1026	c->freeable_cnt = freeable_cnt;
1027	spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041	struct ubifs_debug_info *d = c->dbg;
1042	struct ubifs_lp_stats lst;
1043	long long free;
1044	int freeable_cnt;
1045
1046	spin_lock(&c->space_lock);
1047	freeable_cnt = c->freeable_cnt;
1048	c->freeable_cnt = 0;
1049	free = ubifs_get_free_space_nolock(c);
1050	c->freeable_cnt = freeable_cnt;
1051	spin_unlock(&c->space_lock);
1052
1053	if (free != d->saved_free) {
1054		ubifs_err(c, "free space changed from %lld to %lld",
1055			  d->saved_free, free);
1056		goto out;
1057	}
1058
1059	return 0;
1060
1061out:
1062	ubifs_msg(c, "saved lprops statistics dump");
1063	ubifs_dump_lstats(&d->saved_lst);
1064	ubifs_msg(c, "saved budgeting info dump");
1065	ubifs_dump_budg(c, &d->saved_bi);
1066	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067	ubifs_msg(c, "current lprops statistics dump");
1068	ubifs_get_lp_stats(c, &lst);
1069	ubifs_dump_lstats(&lst);
1070	ubifs_msg(c, "current budgeting info dump");
1071	ubifs_dump_budg(c, &c->bi);
1072	dump_stack();
1073	return -EINVAL;
1074}
1075
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
1086int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087{
1088	int err = 0;
1089	struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091	if (!dbg_is_chk_gen(c))
1092		return 0;
1093	if (!S_ISREG(inode->i_mode))
1094		return 0;
1095
1096	mutex_lock(&ui->ui_mutex);
1097	spin_lock(&ui->ui_lock);
1098	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100			  ui->ui_size, ui->synced_i_size);
1101		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102			  inode->i_mode, i_size_read(inode));
1103		dump_stack();
1104		err = -EINVAL;
1105	}
1106	spin_unlock(&ui->ui_lock);
1107	mutex_unlock(&ui->ui_mutex);
1108	return err;
1109}
1110
1111/*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
1124int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125{
1126	unsigned int nlink = 2;
1127	union ubifs_key key;
1128	struct ubifs_dent_node *dent, *pdent = NULL;
1129	struct fscrypt_name nm = {0};
1130	loff_t size = UBIFS_INO_NODE_SZ;
1131
1132	if (!dbg_is_chk_gen(c))
1133		return 0;
1134
1135	if (!S_ISDIR(dir->i_mode))
1136		return 0;
1137
1138	lowest_dent_key(c, &key, dir->i_ino);
1139	while (1) {
1140		int err;
1141
1142		dent = ubifs_tnc_next_ent(c, &key, &nm);
1143		if (IS_ERR(dent)) {
1144			err = PTR_ERR(dent);
1145			if (err == -ENOENT)
1146				break;
1147			kfree(pdent);
1148			return err;
1149		}
1150
1151		fname_name(&nm) = dent->name;
1152		fname_len(&nm) = le16_to_cpu(dent->nlen);
1153		size += CALC_DENT_SIZE(fname_len(&nm));
1154		if (dent->type == UBIFS_ITYPE_DIR)
1155			nlink += 1;
1156		kfree(pdent);
1157		pdent = dent;
1158		key_read(c, &dent->key, &key);
1159	}
1160	kfree(pdent);
1161
1162	if (i_size_read(dir) != size) {
1163		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164			  dir->i_ino, (unsigned long long)i_size_read(dir),
1165			  (unsigned long long)size);
1166		ubifs_dump_inode(c, dir);
1167		dump_stack();
1168		return -EINVAL;
1169	}
1170	if (dir->i_nlink != nlink) {
1171		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172			  dir->i_ino, dir->i_nlink, nlink);
1173		ubifs_dump_inode(c, dir);
1174		dump_stack();
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181/**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
1194static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195			       struct ubifs_zbranch *zbr2)
1196{
1197	int err, nlen1, nlen2, cmp;
1198	struct ubifs_dent_node *dent1, *dent2;
1199	union ubifs_key key;
1200	char key_buf[DBG_KEY_BUF_LEN];
1201
1202	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204	if (!dent1)
1205		return -ENOMEM;
1206	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207	if (!dent2) {
1208		err = -ENOMEM;
1209		goto out_free;
1210	}
1211
1212	err = ubifs_tnc_read_node(c, zbr1, dent1);
1213	if (err)
1214		goto out_free;
1215	err = ubifs_validate_entry(c, dent1);
1216	if (err)
1217		goto out_free;
1218
1219	err = ubifs_tnc_read_node(c, zbr2, dent2);
1220	if (err)
1221		goto out_free;
1222	err = ubifs_validate_entry(c, dent2);
1223	if (err)
1224		goto out_free;
1225
1226	/* Make sure node keys are the same as in zbranch */
1227	err = 1;
1228	key_read(c, &dent1->key, &key);
1229	if (keys_cmp(c, &zbr1->key, &key)) {
1230		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232						       DBG_KEY_BUF_LEN));
1233		ubifs_err(c, "but it should have key %s according to tnc",
1234			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1235					   DBG_KEY_BUF_LEN));
1236		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237		goto out_free;
1238	}
1239
1240	key_read(c, &dent2->key, &key);
1241	if (keys_cmp(c, &zbr2->key, &key)) {
1242		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244						       DBG_KEY_BUF_LEN));
1245		ubifs_err(c, "but it should have key %s according to tnc",
1246			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1247					   DBG_KEY_BUF_LEN));
1248		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249		goto out_free;
1250	}
1251
1252	nlen1 = le16_to_cpu(dent1->nlen);
1253	nlen2 = le16_to_cpu(dent2->nlen);
1254
1255	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257		err = 0;
1258		goto out_free;
1259	}
1260	if (cmp == 0 && nlen1 == nlen2)
1261		ubifs_err(c, "2 xent/dent nodes with the same name");
1262	else
1263		ubifs_err(c, "bad order of colliding key %s",
1264			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271out_free:
1272	kfree(dent2);
1273	kfree(dent1);
1274	return err;
1275}
1276
1277/**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
1285static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286{
1287	struct ubifs_znode *znode = zbr->znode;
1288	struct ubifs_znode *zp = znode->parent;
1289	int n, err, cmp;
1290
1291	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292		err = 1;
1293		goto out;
1294	}
1295	if (znode->level < 0) {
1296		err = 2;
1297		goto out;
1298	}
1299	if (znode->iip < 0 || znode->iip >= c->fanout) {
1300		err = 3;
1301		goto out;
1302	}
1303
1304	if (zbr->len == 0)
1305		/* Only dirty zbranch may have no on-flash nodes */
1306		if (!ubifs_zn_dirty(znode)) {
1307			err = 4;
1308			goto out;
1309		}
1310
1311	if (ubifs_zn_dirty(znode)) {
1312		/*
1313		 * If znode is dirty, its parent has to be dirty as well. The
1314		 * order of the operation is important, so we have to have
1315		 * memory barriers.
1316		 */
1317		smp_mb();
1318		if (zp && !ubifs_zn_dirty(zp)) {
1319			/*
1320			 * The dirty flag is atomic and is cleared outside the
1321			 * TNC mutex, so znode's dirty flag may now have
1322			 * been cleared. The child is always cleared before the
1323			 * parent, so we just need to check again.
1324			 */
1325			smp_mb();
1326			if (ubifs_zn_dirty(znode)) {
1327				err = 5;
1328				goto out;
1329			}
1330		}
1331	}
1332
1333	if (zp) {
1334		const union ubifs_key *min, *max;
1335
1336		if (znode->level != zp->level - 1) {
1337			err = 6;
1338			goto out;
1339		}
1340
1341		/* Make sure the 'parent' pointer in our znode is correct */
1342		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343		if (!err) {
1344			/* This zbranch does not exist in the parent */
1345			err = 7;
1346			goto out;
1347		}
1348
1349		if (znode->iip >= zp->child_cnt) {
1350			err = 8;
1351			goto out;
1352		}
1353
1354		if (znode->iip != n) {
1355			/* This may happen only in case of collisions */
1356			if (keys_cmp(c, &zp->zbranch[n].key,
1357				     &zp->zbranch[znode->iip].key)) {
1358				err = 9;
1359				goto out;
1360			}
1361			n = znode->iip;
1362		}
1363
1364		/*
1365		 * Make sure that the first key in our znode is greater than or
1366		 * equal to the key in the pointing zbranch.
1367		 */
1368		min = &zbr->key;
1369		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370		if (cmp == 1) {
1371			err = 10;
1372			goto out;
1373		}
1374
1375		if (n + 1 < zp->child_cnt) {
1376			max = &zp->zbranch[n + 1].key;
1377
1378			/*
1379			 * Make sure the last key in our znode is less or
1380			 * equivalent than the key in the zbranch which goes
1381			 * after our pointing zbranch.
1382			 */
1383			cmp = keys_cmp(c, max,
1384				&znode->zbranch[znode->child_cnt - 1].key);
1385			if (cmp == -1) {
1386				err = 11;
1387				goto out;
1388			}
1389		}
1390	} else {
1391		/* This may only be root znode */
1392		if (zbr != &c->zroot) {
1393			err = 12;
1394			goto out;
1395		}
1396	}
1397
1398	/*
1399	 * Make sure that next key is greater or equivalent then the previous
1400	 * one.
1401	 */
1402	for (n = 1; n < znode->child_cnt; n++) {
1403		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404			       &znode->zbranch[n].key);
1405		if (cmp > 0) {
1406			err = 13;
1407			goto out;
1408		}
1409		if (cmp == 0) {
1410			/* This can only be keys with colliding hash */
1411			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412				err = 14;
1413				goto out;
1414			}
1415
1416			if (znode->level != 0 || c->replaying)
1417				continue;
1418
1419			/*
1420			 * Colliding keys should follow binary order of
1421			 * corresponding xentry/dentry names.
1422			 */
1423			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424						  &znode->zbranch[n]);
1425			if (err < 0)
1426				return err;
1427			if (err) {
1428				err = 15;
1429				goto out;
1430			}
1431		}
1432	}
1433
1434	for (n = 0; n < znode->child_cnt; n++) {
1435		if (!znode->zbranch[n].znode &&
1436		    (znode->zbranch[n].lnum == 0 ||
1437		     znode->zbranch[n].len == 0)) {
1438			err = 16;
1439			goto out;
1440		}
1441
1442		if (znode->zbranch[n].lnum != 0 &&
1443		    znode->zbranch[n].len == 0) {
1444			err = 17;
1445			goto out;
1446		}
1447
1448		if (znode->zbranch[n].lnum == 0 &&
1449		    znode->zbranch[n].len != 0) {
1450			err = 18;
1451			goto out;
1452		}
1453
1454		if (znode->zbranch[n].lnum == 0 &&
1455		    znode->zbranch[n].offs != 0) {
1456			err = 19;
1457			goto out;
1458		}
1459
1460		if (znode->level != 0 && znode->zbranch[n].znode)
1461			if (znode->zbranch[n].znode->parent != znode) {
1462				err = 20;
1463				goto out;
1464			}
1465	}
1466
1467	return 0;
1468
1469out:
1470	ubifs_err(c, "failed, error %d", err);
1471	ubifs_msg(c, "dump of the znode");
1472	ubifs_dump_znode(c, znode);
1473	if (zp) {
1474		ubifs_msg(c, "dump of the parent znode");
1475		ubifs_dump_znode(c, zp);
1476	}
1477	dump_stack();
1478	return -EINVAL;
1479}
1480
1481/**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
1489int dbg_check_tnc(struct ubifs_info *c, int extra)
1490{
1491	struct ubifs_znode *znode;
1492	long clean_cnt = 0, dirty_cnt = 0;
1493	int err, last;
1494
1495	if (!dbg_is_chk_index(c))
1496		return 0;
1497
1498	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499	if (!c->zroot.znode)
1500		return 0;
1501
1502	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503	while (1) {
1504		struct ubifs_znode *prev;
1505		struct ubifs_zbranch *zbr;
1506
1507		if (!znode->parent)
1508			zbr = &c->zroot;
1509		else
1510			zbr = &znode->parent->zbranch[znode->iip];
1511
1512		err = dbg_check_znode(c, zbr);
1513		if (err)
1514			return err;
1515
1516		if (extra) {
1517			if (ubifs_zn_dirty(znode))
1518				dirty_cnt += 1;
1519			else
1520				clean_cnt += 1;
1521		}
1522
1523		prev = znode;
1524		znode = ubifs_tnc_postorder_next(c, znode);
1525		if (!znode)
1526			break;
1527
1528		/*
1529		 * If the last key of this znode is equivalent to the first key
1530		 * of the next znode (collision), then check order of the keys.
1531		 */
1532		last = prev->child_cnt - 1;
1533		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534		    !keys_cmp(c, &prev->zbranch[last].key,
1535			      &znode->zbranch[0].key)) {
1536			err = dbg_check_key_order(c, &prev->zbranch[last],
1537						  &znode->zbranch[0]);
1538			if (err < 0)
1539				return err;
1540			if (err) {
1541				ubifs_msg(c, "first znode");
1542				ubifs_dump_znode(c, prev);
1543				ubifs_msg(c, "second znode");
1544				ubifs_dump_znode(c, znode);
1545				return -EINVAL;
1546			}
1547		}
1548	}
1549
1550	if (extra) {
1551		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553				  atomic_long_read(&c->clean_zn_cnt),
1554				  clean_cnt);
1555			return -EINVAL;
1556		}
1557		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559				  atomic_long_read(&c->dirty_zn_cnt),
1560				  dirty_cnt);
1561			return -EINVAL;
1562		}
1563	}
1564
1565	return 0;
1566}
1567
1568/**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
1583int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584		   dbg_znode_callback znode_cb, void *priv)
1585{
1586	int err;
1587	struct ubifs_zbranch *zbr;
1588	struct ubifs_znode *znode, *child;
1589
1590	mutex_lock(&c->tnc_mutex);
1591	/* If the root indexing node is not in TNC - pull it */
1592	if (!c->zroot.znode) {
1593		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594		if (IS_ERR(c->zroot.znode)) {
1595			err = PTR_ERR(c->zroot.znode);
1596			c->zroot.znode = NULL;
1597			goto out_unlock;
1598		}
1599	}
1600
1601	/*
1602	 * We are going to traverse the indexing tree in the postorder manner.
1603	 * Go down and find the leftmost indexing node where we are going to
1604	 * start from.
1605	 */
1606	znode = c->zroot.znode;
1607	while (znode->level > 0) {
1608		zbr = &znode->zbranch[0];
1609		child = zbr->znode;
1610		if (!child) {
1611			child = ubifs_load_znode(c, zbr, znode, 0);
1612			if (IS_ERR(child)) {
1613				err = PTR_ERR(child);
1614				goto out_unlock;
1615			}
1616		}
1617
1618		znode = child;
1619	}
1620
1621	/* Iterate over all indexing nodes */
1622	while (1) {
1623		int idx;
1624
1625		cond_resched();
1626
1627		if (znode_cb) {
1628			err = znode_cb(c, znode, priv);
1629			if (err) {
1630				ubifs_err(c, "znode checking function returned error %d",
1631					  err);
1632				ubifs_dump_znode(c, znode);
1633				goto out_dump;
1634			}
1635		}
1636		if (leaf_cb && znode->level == 0) {
1637			for (idx = 0; idx < znode->child_cnt; idx++) {
1638				zbr = &znode->zbranch[idx];
1639				err = leaf_cb(c, zbr, priv);
1640				if (err) {
1641					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642						  err, zbr->lnum, zbr->offs);
1643					goto out_dump;
1644				}
1645			}
1646		}
1647
1648		if (!znode->parent)
1649			break;
1650
1651		idx = znode->iip + 1;
1652		znode = znode->parent;
1653		if (idx < znode->child_cnt) {
1654			/* Switch to the next index in the parent */
1655			zbr = &znode->zbranch[idx];
1656			child = zbr->znode;
1657			if (!child) {
1658				child = ubifs_load_znode(c, zbr, znode, idx);
1659				if (IS_ERR(child)) {
1660					err = PTR_ERR(child);
1661					goto out_unlock;
1662				}
1663				zbr->znode = child;
1664			}
1665			znode = child;
1666		} else
1667			/*
1668			 * This is the last child, switch to the parent and
1669			 * continue.
1670			 */
1671			continue;
1672
1673		/* Go to the lowest leftmost znode in the new sub-tree */
1674		while (znode->level > 0) {
1675			zbr = &znode->zbranch[0];
1676			child = zbr->znode;
1677			if (!child) {
1678				child = ubifs_load_znode(c, zbr, znode, 0);
1679				if (IS_ERR(child)) {
1680					err = PTR_ERR(child);
1681					goto out_unlock;
1682				}
1683				zbr->znode = child;
1684			}
1685			znode = child;
1686		}
1687	}
1688
1689	mutex_unlock(&c->tnc_mutex);
1690	return 0;
1691
1692out_dump:
1693	if (znode->parent)
1694		zbr = &znode->parent->zbranch[znode->iip];
1695	else
1696		zbr = &c->zroot;
1697	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698	ubifs_dump_znode(c, znode);
1699out_unlock:
1700	mutex_unlock(&c->tnc_mutex);
1701	return err;
1702}
1703
1704/**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
1714static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715{
1716	long long *idx_size = priv;
1717	int add;
1718
1719	add = ubifs_idx_node_sz(c, znode->child_cnt);
1720	add = ALIGN(add, 8);
1721	*idx_size += add;
1722	return 0;
1723}
1724
1725/**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
1734int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735{
1736	int err;
1737	long long calc = 0;
1738
1739	if (!dbg_is_chk_index(c))
1740		return 0;
1741
1742	err = dbg_walk_index(c, NULL, add_size, &calc);
1743	if (err) {
1744		ubifs_err(c, "error %d while walking the index", err);
1745		return err;
1746	}
1747
1748	if (calc != idx_size) {
1749		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750			  calc, idx_size);
1751		dump_stack();
1752		return -EINVAL;
 
1753	}
1754
1755	return 0;
 
 
 
 
1756}
1757
1758/**
1759 * struct fsck_inode - information about an inode used when checking the file-system.
1760 * @rb: link in the RB-tree of inodes
1761 * @inum: inode number
1762 * @mode: inode type, permissions, etc
1763 * @nlink: inode link count
1764 * @xattr_cnt: count of extended attributes
1765 * @references: how many directory/xattr entries refer this inode (calculated
1766 *              while walking the index)
1767 * @calc_cnt: for directory inode count of child directories
1768 * @size: inode size (read from on-flash inode)
1769 * @xattr_sz: summary size of all extended attributes (read from on-flash
1770 *            inode)
1771 * @calc_sz: for directories calculated directory size
1772 * @calc_xcnt: count of extended attributes
1773 * @calc_xsz: calculated summary size of all extended attributes
1774 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775 *             inode (read from on-flash inode)
1776 * @calc_xnms: calculated sum of lengths of all extended attribute names
1777 */
1778struct fsck_inode {
1779	struct rb_node rb;
1780	ino_t inum;
1781	umode_t mode;
1782	unsigned int nlink;
1783	unsigned int xattr_cnt;
1784	int references;
1785	int calc_cnt;
1786	long long size;
1787	unsigned int xattr_sz;
1788	long long calc_sz;
1789	long long calc_xcnt;
1790	long long calc_xsz;
1791	unsigned int xattr_nms;
1792	long long calc_xnms;
1793};
1794
1795/**
1796 * struct fsck_data - private FS checking information.
1797 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798 */
1799struct fsck_data {
1800	struct rb_root inodes;
1801};
1802
1803/**
1804 * add_inode - add inode information to RB-tree of inodes.
1805 * @c: UBIFS file-system description object
1806 * @fsckd: FS checking information
1807 * @ino: raw UBIFS inode to add
1808 *
1809 * This is a helper function for 'check_leaf()' which adds information about
1810 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811 * case of success and a negative error code in case of failure.
1812 */
1813static struct fsck_inode *add_inode(struct ubifs_info *c,
1814				    struct fsck_data *fsckd,
1815				    struct ubifs_ino_node *ino)
1816{
1817	struct rb_node **p, *parent = NULL;
1818	struct fsck_inode *fscki;
1819	ino_t inum = key_inum_flash(c, &ino->key);
1820	struct inode *inode;
1821	struct ubifs_inode *ui;
1822
1823	p = &fsckd->inodes.rb_node;
1824	while (*p) {
1825		parent = *p;
1826		fscki = rb_entry(parent, struct fsck_inode, rb);
1827		if (inum < fscki->inum)
1828			p = &(*p)->rb_left;
1829		else if (inum > fscki->inum)
1830			p = &(*p)->rb_right;
1831		else
1832			return fscki;
1833	}
1834
1835	if (inum > c->highest_inum) {
1836		ubifs_err(c, "too high inode number, max. is %lu",
1837			  (unsigned long)c->highest_inum);
1838		return ERR_PTR(-EINVAL);
1839	}
1840
1841	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842	if (!fscki)
1843		return ERR_PTR(-ENOMEM);
1844
1845	inode = ilookup(c->vfs_sb, inum);
1846
1847	fscki->inum = inum;
1848	/*
1849	 * If the inode is present in the VFS inode cache, use it instead of
1850	 * the on-flash inode which might be out-of-date. E.g., the size might
1851	 * be out-of-date. If we do not do this, the following may happen, for
1852	 * example:
1853	 *   1. A power cut happens
1854	 *   2. We mount the file-system R/O, the replay process fixes up the
1855	 *      inode size in the VFS cache, but on on-flash.
1856	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857	 *      size.
1858	 */
1859	if (!inode) {
1860		fscki->nlink = le32_to_cpu(ino->nlink);
1861		fscki->size = le64_to_cpu(ino->size);
1862		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865		fscki->mode = le32_to_cpu(ino->mode);
1866	} else {
1867		ui = ubifs_inode(inode);
1868		fscki->nlink = inode->i_nlink;
1869		fscki->size = inode->i_size;
1870		fscki->xattr_cnt = ui->xattr_cnt;
1871		fscki->xattr_sz = ui->xattr_size;
1872		fscki->xattr_nms = ui->xattr_names;
1873		fscki->mode = inode->i_mode;
1874		iput(inode);
1875	}
1876
1877	if (S_ISDIR(fscki->mode)) {
1878		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879		fscki->calc_cnt = 2;
1880	}
1881
1882	rb_link_node(&fscki->rb, parent, p);
1883	rb_insert_color(&fscki->rb, &fsckd->inodes);
1884
1885	return fscki;
1886}
1887
1888/**
1889 * search_inode - search inode in the RB-tree of inodes.
1890 * @fsckd: FS checking information
1891 * @inum: inode number to search
1892 *
1893 * This is a helper function for 'check_leaf()' which searches inode @inum in
1894 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895 * the inode was not found.
1896 */
1897static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898{
1899	struct rb_node *p;
1900	struct fsck_inode *fscki;
1901
1902	p = fsckd->inodes.rb_node;
1903	while (p) {
1904		fscki = rb_entry(p, struct fsck_inode, rb);
1905		if (inum < fscki->inum)
1906			p = p->rb_left;
1907		else if (inum > fscki->inum)
1908			p = p->rb_right;
1909		else
1910			return fscki;
1911	}
1912	return NULL;
1913}
1914
1915/**
1916 * read_add_inode - read inode node and add it to RB-tree of inodes.
1917 * @c: UBIFS file-system description object
1918 * @fsckd: FS checking information
1919 * @inum: inode number to read
1920 *
1921 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923 * information pointer in case of success and a negative error code in case of
1924 * failure.
1925 */
1926static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927					 struct fsck_data *fsckd, ino_t inum)
1928{
1929	int n, err;
1930	union ubifs_key key;
1931	struct ubifs_znode *znode;
1932	struct ubifs_zbranch *zbr;
1933	struct ubifs_ino_node *ino;
1934	struct fsck_inode *fscki;
1935
1936	fscki = search_inode(fsckd, inum);
1937	if (fscki)
1938		return fscki;
1939
1940	ino_key_init(c, &key, inum);
1941	err = ubifs_lookup_level0(c, &key, &znode, &n);
1942	if (!err) {
1943		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944		return ERR_PTR(-ENOENT);
1945	} else if (err < 0) {
1946		ubifs_err(c, "error %d while looking up inode %lu",
1947			  err, (unsigned long)inum);
1948		return ERR_PTR(err);
1949	}
1950
1951	zbr = &znode->zbranch[n];
1952	if (zbr->len < UBIFS_INO_NODE_SZ) {
1953		ubifs_err(c, "bad node %lu node length %d",
1954			  (unsigned long)inum, zbr->len);
1955		return ERR_PTR(-EINVAL);
1956	}
1957
1958	ino = kmalloc(zbr->len, GFP_NOFS);
1959	if (!ino)
1960		return ERR_PTR(-ENOMEM);
1961
1962	err = ubifs_tnc_read_node(c, zbr, ino);
1963	if (err) {
1964		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965			  zbr->lnum, zbr->offs, err);
1966		kfree(ino);
1967		return ERR_PTR(err);
1968	}
1969
1970	fscki = add_inode(c, fsckd, ino);
1971	kfree(ino);
1972	if (IS_ERR(fscki)) {
1973		ubifs_err(c, "error %ld while adding inode %lu node",
1974			  PTR_ERR(fscki), (unsigned long)inum);
1975		return fscki;
1976	}
1977
1978	return fscki;
1979}
1980
1981/**
1982 * check_leaf - check leaf node.
1983 * @c: UBIFS file-system description object
1984 * @zbr: zbranch of the leaf node to check
1985 * @priv: FS checking information
1986 *
1987 * This is a helper function for 'dbg_check_filesystem()' which is called for
1988 * every single leaf node while walking the indexing tree. It checks that the
1989 * leaf node referred from the indexing tree exists, has correct CRC, and does
1990 * some other basic validation. This function is also responsible for building
1991 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992 * calculates reference count, size, etc for each inode in order to later
1993 * compare them to the information stored inside the inodes and detect possible
1994 * inconsistencies. Returns zero in case of success and a negative error code
1995 * in case of failure.
1996 */
1997static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998		      void *priv)
1999{
2000	ino_t inum;
2001	void *node;
2002	struct ubifs_ch *ch;
2003	int err, type = key_type(c, &zbr->key);
2004	struct fsck_inode *fscki;
2005
2006	if (zbr->len < UBIFS_CH_SZ) {
2007		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008			  zbr->len, zbr->lnum, zbr->offs);
2009		return -EINVAL;
2010	}
2011
2012	node = kmalloc(zbr->len, GFP_NOFS);
2013	if (!node)
2014		return -ENOMEM;
2015
2016	err = ubifs_tnc_read_node(c, zbr, node);
2017	if (err) {
2018		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019			  zbr->lnum, zbr->offs, err);
2020		goto out_free;
2021	}
2022
2023	/* If this is an inode node, add it to RB-tree of inodes */
2024	if (type == UBIFS_INO_KEY) {
2025		fscki = add_inode(c, priv, node);
2026		if (IS_ERR(fscki)) {
2027			err = PTR_ERR(fscki);
2028			ubifs_err(c, "error %d while adding inode node", err);
2029			goto out_dump;
2030		}
2031		goto out;
2032	}
2033
2034	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035	    type != UBIFS_DATA_KEY) {
2036		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037			  type, zbr->lnum, zbr->offs);
2038		err = -EINVAL;
2039		goto out_free;
2040	}
2041
2042	ch = node;
2043	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044		ubifs_err(c, "too high sequence number, max. is %llu",
2045			  c->max_sqnum);
2046		err = -EINVAL;
2047		goto out_dump;
2048	}
2049
2050	if (type == UBIFS_DATA_KEY) {
2051		long long blk_offs;
2052		struct ubifs_data_node *dn = node;
2053
2054		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055
2056		/*
2057		 * Search the inode node this data node belongs to and insert
2058		 * it to the RB-tree of inodes.
2059		 */
2060		inum = key_inum_flash(c, &dn->key);
2061		fscki = read_add_inode(c, priv, inum);
2062		if (IS_ERR(fscki)) {
2063			err = PTR_ERR(fscki);
2064			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065				  err, (unsigned long)inum);
2066			goto out_dump;
2067		}
2068
2069		/* Make sure the data node is within inode size */
2070		blk_offs = key_block_flash(c, &dn->key);
2071		blk_offs <<= UBIFS_BLOCK_SHIFT;
2072		blk_offs += le32_to_cpu(dn->size);
2073		if (blk_offs > fscki->size) {
2074			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075				  zbr->lnum, zbr->offs, fscki->size);
2076			err = -EINVAL;
2077			goto out_dump;
2078		}
2079	} else {
2080		int nlen;
2081		struct ubifs_dent_node *dent = node;
2082		struct fsck_inode *fscki1;
2083
2084		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085
2086		err = ubifs_validate_entry(c, dent);
2087		if (err)
2088			goto out_dump;
2089
2090		/*
2091		 * Search the inode node this entry refers to and the parent
2092		 * inode node and insert them to the RB-tree of inodes.
2093		 */
2094		inum = le64_to_cpu(dent->inum);
2095		fscki = read_add_inode(c, priv, inum);
2096		if (IS_ERR(fscki)) {
2097			err = PTR_ERR(fscki);
2098			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099				  err, (unsigned long)inum);
2100			goto out_dump;
2101		}
2102
2103		/* Count how many direntries or xentries refers this inode */
2104		fscki->references += 1;
2105
2106		inum = key_inum_flash(c, &dent->key);
2107		fscki1 = read_add_inode(c, priv, inum);
2108		if (IS_ERR(fscki1)) {
2109			err = PTR_ERR(fscki1);
2110			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111				  err, (unsigned long)inum);
2112			goto out_dump;
2113		}
2114
2115		nlen = le16_to_cpu(dent->nlen);
2116		if (type == UBIFS_XENT_KEY) {
2117			fscki1->calc_xcnt += 1;
2118			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120			fscki1->calc_xnms += nlen;
2121		} else {
2122			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123			if (dent->type == UBIFS_ITYPE_DIR)
2124				fscki1->calc_cnt += 1;
2125		}
2126	}
2127
2128out:
2129	kfree(node);
2130	return 0;
2131
2132out_dump:
2133	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134	ubifs_dump_node(c, node, zbr->len);
2135out_free:
2136	kfree(node);
2137	return err;
2138}
2139
2140/**
2141 * free_inodes - free RB-tree of inodes.
2142 * @fsckd: FS checking information
2143 */
2144static void free_inodes(struct fsck_data *fsckd)
2145{
2146	struct fsck_inode *fscki, *n;
2147
2148	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149		kfree(fscki);
2150}
2151
2152/**
2153 * check_inodes - checks all inodes.
2154 * @c: UBIFS file-system description object
2155 * @fsckd: FS checking information
2156 *
2157 * This is a helper function for 'dbg_check_filesystem()' which walks the
2158 * RB-tree of inodes after the index scan has been finished, and checks that
2159 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160 * %-EINVAL if not, and a negative error code in case of failure.
2161 */
2162static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163{
2164	int n, err;
2165	union ubifs_key key;
2166	struct ubifs_znode *znode;
2167	struct ubifs_zbranch *zbr;
2168	struct ubifs_ino_node *ino;
2169	struct fsck_inode *fscki;
2170	struct rb_node *this = rb_first(&fsckd->inodes);
2171
2172	while (this) {
2173		fscki = rb_entry(this, struct fsck_inode, rb);
2174		this = rb_next(this);
2175
2176		if (S_ISDIR(fscki->mode)) {
2177			/*
2178			 * Directories have to have exactly one reference (they
2179			 * cannot have hardlinks), although root inode is an
2180			 * exception.
2181			 */
2182			if (fscki->inum != UBIFS_ROOT_INO &&
2183			    fscki->references != 1) {
2184				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185					  (unsigned long)fscki->inum,
2186					  fscki->references);
2187				goto out_dump;
2188			}
2189			if (fscki->inum == UBIFS_ROOT_INO &&
2190			    fscki->references != 0) {
2191				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192					  (unsigned long)fscki->inum,
2193					  fscki->references);
2194				goto out_dump;
2195			}
2196			if (fscki->calc_sz != fscki->size) {
2197				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198					  (unsigned long)fscki->inum,
2199					  fscki->size, fscki->calc_sz);
2200				goto out_dump;
2201			}
2202			if (fscki->calc_cnt != fscki->nlink) {
2203				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204					  (unsigned long)fscki->inum,
2205					  fscki->nlink, fscki->calc_cnt);
2206				goto out_dump;
2207			}
2208		} else {
2209			if (fscki->references != fscki->nlink) {
2210				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211					  (unsigned long)fscki->inum,
2212					  fscki->nlink, fscki->references);
2213				goto out_dump;
2214			}
2215		}
2216		if (fscki->xattr_sz != fscki->calc_xsz) {
2217			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218				  (unsigned long)fscki->inum, fscki->xattr_sz,
2219				  fscki->calc_xsz);
2220			goto out_dump;
2221		}
2222		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224				  (unsigned long)fscki->inum,
2225				  fscki->xattr_cnt, fscki->calc_xcnt);
2226			goto out_dump;
2227		}
2228		if (fscki->xattr_nms != fscki->calc_xnms) {
2229			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230				  (unsigned long)fscki->inum, fscki->xattr_nms,
2231				  fscki->calc_xnms);
2232			goto out_dump;
2233		}
2234	}
2235
2236	return 0;
2237
2238out_dump:
2239	/* Read the bad inode and dump it */
2240	ino_key_init(c, &key, fscki->inum);
2241	err = ubifs_lookup_level0(c, &key, &znode, &n);
2242	if (!err) {
2243		ubifs_err(c, "inode %lu not found in index",
2244			  (unsigned long)fscki->inum);
2245		return -ENOENT;
2246	} else if (err < 0) {
2247		ubifs_err(c, "error %d while looking up inode %lu",
2248			  err, (unsigned long)fscki->inum);
2249		return err;
2250	}
2251
2252	zbr = &znode->zbranch[n];
2253	ino = kmalloc(zbr->len, GFP_NOFS);
2254	if (!ino)
2255		return -ENOMEM;
2256
2257	err = ubifs_tnc_read_node(c, zbr, ino);
2258	if (err) {
2259		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260			  zbr->lnum, zbr->offs, err);
2261		kfree(ino);
2262		return err;
2263	}
2264
2265	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267	ubifs_dump_node(c, ino, zbr->len);
2268	kfree(ino);
2269	return -EINVAL;
2270}
2271
2272/**
2273 * dbg_check_filesystem - check the file-system.
2274 * @c: UBIFS file-system description object
2275 *
2276 * This function checks the file system, namely:
2277 * o makes sure that all leaf nodes exist and their CRCs are correct;
2278 * o makes sure inode nlink, size, xattr size/count are correct (for all
2279 *   inodes).
2280 *
2281 * The function reads whole indexing tree and all nodes, so it is pretty
2282 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283 * not, and a negative error code in case of failure.
2284 */
2285int dbg_check_filesystem(struct ubifs_info *c)
2286{
2287	int err;
2288	struct fsck_data fsckd;
2289
2290	if (!dbg_is_chk_fs(c))
2291		return 0;
2292
2293	fsckd.inodes = RB_ROOT;
2294	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295	if (err)
2296		goto out_free;
2297
2298	err = check_inodes(c, &fsckd);
2299	if (err)
2300		goto out_free;
2301
2302	free_inodes(&fsckd);
2303	return 0;
2304
2305out_free:
2306	ubifs_err(c, "file-system check failed with error %d", err);
2307	dump_stack();
2308	free_inodes(&fsckd);
2309	return err;
2310}
2311
2312/**
2313 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314 * @c: UBIFS file-system description object
2315 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316 *
2317 * This function returns zero if the list of data nodes is sorted correctly,
2318 * and %-EINVAL if not.
2319 */
2320int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321{
2322	struct list_head *cur;
2323	struct ubifs_scan_node *sa, *sb;
2324
2325	if (!dbg_is_chk_gen(c))
2326		return 0;
2327
2328	for (cur = head->next; cur->next != head; cur = cur->next) {
2329		ino_t inuma, inumb;
2330		uint32_t blka, blkb;
2331
2332		cond_resched();
2333		sa = container_of(cur, struct ubifs_scan_node, list);
2334		sb = container_of(cur->next, struct ubifs_scan_node, list);
2335
2336		if (sa->type != UBIFS_DATA_NODE) {
2337			ubifs_err(c, "bad node type %d", sa->type);
2338			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339			return -EINVAL;
2340		}
2341		if (sb->type != UBIFS_DATA_NODE) {
2342			ubifs_err(c, "bad node type %d", sb->type);
2343			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344			return -EINVAL;
2345		}
2346
2347		inuma = key_inum(c, &sa->key);
2348		inumb = key_inum(c, &sb->key);
2349
2350		if (inuma < inumb)
2351			continue;
2352		if (inuma > inumb) {
2353			ubifs_err(c, "larger inum %lu goes before inum %lu",
2354				  (unsigned long)inuma, (unsigned long)inumb);
2355			goto error_dump;
2356		}
2357
2358		blka = key_block(c, &sa->key);
2359		blkb = key_block(c, &sb->key);
2360
2361		if (blka > blkb) {
2362			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363			goto error_dump;
2364		}
2365		if (blka == blkb) {
2366			ubifs_err(c, "two data nodes for the same block");
2367			goto error_dump;
2368		}
2369	}
2370
2371	return 0;
2372
2373error_dump:
2374	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376	return -EINVAL;
2377}
2378
2379/**
2380 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381 * @c: UBIFS file-system description object
2382 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383 *
2384 * This function returns zero if the list of non-data nodes is sorted correctly,
2385 * and %-EINVAL if not.
2386 */
2387int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388{
2389	struct list_head *cur;
2390	struct ubifs_scan_node *sa, *sb;
2391
2392	if (!dbg_is_chk_gen(c))
2393		return 0;
2394
2395	for (cur = head->next; cur->next != head; cur = cur->next) {
2396		ino_t inuma, inumb;
2397		uint32_t hasha, hashb;
2398
2399		cond_resched();
2400		sa = container_of(cur, struct ubifs_scan_node, list);
2401		sb = container_of(cur->next, struct ubifs_scan_node, list);
2402
2403		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404		    sa->type != UBIFS_XENT_NODE) {
2405			ubifs_err(c, "bad node type %d", sa->type);
2406			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407			return -EINVAL;
2408		}
2409		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410		    sb->type != UBIFS_XENT_NODE) {
2411			ubifs_err(c, "bad node type %d", sb->type);
2412			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413			return -EINVAL;
2414		}
2415
2416		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417			ubifs_err(c, "non-inode node goes before inode node");
2418			goto error_dump;
2419		}
2420
2421		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422			continue;
2423
2424		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425			/* Inode nodes are sorted in descending size order */
2426			if (sa->len < sb->len) {
2427				ubifs_err(c, "smaller inode node goes first");
2428				goto error_dump;
2429			}
2430			continue;
2431		}
2432
2433		/*
2434		 * This is either a dentry or xentry, which should be sorted in
2435		 * ascending (parent ino, hash) order.
2436		 */
2437		inuma = key_inum(c, &sa->key);
2438		inumb = key_inum(c, &sb->key);
2439
2440		if (inuma < inumb)
2441			continue;
2442		if (inuma > inumb) {
2443			ubifs_err(c, "larger inum %lu goes before inum %lu",
2444				  (unsigned long)inuma, (unsigned long)inumb);
2445			goto error_dump;
2446		}
2447
2448		hasha = key_block(c, &sa->key);
2449		hashb = key_block(c, &sb->key);
2450
2451		if (hasha > hashb) {
2452			ubifs_err(c, "larger hash %u goes before %u",
2453				  hasha, hashb);
2454			goto error_dump;
2455		}
2456	}
2457
2458	return 0;
2459
2460error_dump:
2461	ubifs_msg(c, "dumping first node");
2462	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463	ubifs_msg(c, "dumping second node");
2464	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465	return -EINVAL;
2466}
2467
2468static inline int chance(unsigned int n, unsigned int out_of)
2469{
2470	return !!(get_random_u32_below(out_of) + 1 <= n);
2471
2472}
2473
2474static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475{
2476	struct ubifs_debug_info *d = c->dbg;
2477
2478	ubifs_assert(c, dbg_is_tst_rcvry(c));
2479
2480	if (!d->pc_cnt) {
2481		/* First call - decide delay to the power cut */
2482		if (chance(1, 2)) {
2483			unsigned long delay;
2484
2485			if (chance(1, 2)) {
2486				d->pc_delay = 1;
2487				/* Fail within 1 minute */
2488				delay = get_random_u32_below(60000);
2489				d->pc_timeout = jiffies;
2490				d->pc_timeout += msecs_to_jiffies(delay);
2491				ubifs_warn(c, "failing after %lums", delay);
2492			} else {
2493				d->pc_delay = 2;
2494				delay = get_random_u32_below(10000);
2495				/* Fail within 10000 operations */
2496				d->pc_cnt_max = delay;
2497				ubifs_warn(c, "failing after %lu calls", delay);
2498			}
2499		}
2500
2501		d->pc_cnt += 1;
2502	}
2503
2504	/* Determine if failure delay has expired */
2505	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506			return 0;
2507	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508			return 0;
2509
2510	if (lnum == UBIFS_SB_LNUM) {
2511		if (write && chance(1, 2))
2512			return 0;
2513		if (chance(19, 20))
2514			return 0;
2515		ubifs_warn(c, "failing in super block LEB %d", lnum);
2516	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517		if (chance(19, 20))
2518			return 0;
2519		ubifs_warn(c, "failing in master LEB %d", lnum);
2520	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521		if (write && chance(99, 100))
2522			return 0;
2523		if (chance(399, 400))
2524			return 0;
2525		ubifs_warn(c, "failing in log LEB %d", lnum);
2526	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527		if (write && chance(7, 8))
2528			return 0;
2529		if (chance(19, 20))
2530			return 0;
2531		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533		if (write && chance(1, 2))
2534			return 0;
2535		if (chance(9, 10))
2536			return 0;
2537		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538	} else if (lnum == c->ihead_lnum) {
2539		if (chance(99, 100))
2540			return 0;
2541		ubifs_warn(c, "failing in index head LEB %d", lnum);
2542	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543		if (chance(9, 10))
2544			return 0;
2545		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547		   !ubifs_search_bud(c, lnum)) {
2548		if (chance(19, 20))
2549			return 0;
2550		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553		if (chance(999, 1000))
2554			return 0;
2555		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556	} else {
2557		if (chance(9999, 10000))
2558			return 0;
2559		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560	}
2561
2562	d->pc_happened = 1;
2563	ubifs_warn(c, "========== Power cut emulated ==========");
2564	dump_stack();
2565	return 1;
2566}
2567
2568static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569			unsigned int len)
2570{
2571	unsigned int from, to, ffs = chance(1, 2);
2572	unsigned char *p = (void *)buf;
2573
2574	from = get_random_u32_below(len);
2575	/* Corruption span max to end of write unit */
2576	to = min(len, ALIGN(from + 1, c->max_write_size));
2577
2578	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579		   ffs ? "0xFFs" : "random data");
2580
2581	if (ffs)
2582		memset(p + from, 0xFF, to - from);
2583	else
2584		get_random_bytes(p + from, to - from);
2585
2586	return to;
2587}
2588
2589int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590		  int offs, int len)
2591{
2592	int err, failing;
2593
2594	if (dbg_is_power_cut(c))
2595		return -EROFS;
2596
2597	failing = power_cut_emulated(c, lnum, 1);
2598	if (failing) {
2599		len = corrupt_data(c, buf, len);
2600		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601			   len, lnum, offs);
2602	}
2603	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604	if (err)
2605		return err;
2606	if (failing)
2607		return -EROFS;
2608	return 0;
2609}
2610
2611int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612		   int len)
2613{
2614	int err;
2615
2616	if (dbg_is_power_cut(c))
2617		return -EROFS;
2618	if (power_cut_emulated(c, lnum, 1))
2619		return -EROFS;
2620	err = ubi_leb_change(c->ubi, lnum, buf, len);
2621	if (err)
2622		return err;
2623	if (power_cut_emulated(c, lnum, 1))
2624		return -EROFS;
2625	return 0;
2626}
2627
2628int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629{
2630	int err;
2631
2632	if (dbg_is_power_cut(c))
2633		return -EROFS;
2634	if (power_cut_emulated(c, lnum, 0))
2635		return -EROFS;
2636	err = ubi_leb_unmap(c->ubi, lnum);
2637	if (err)
2638		return err;
2639	if (power_cut_emulated(c, lnum, 0))
2640		return -EROFS;
2641	return 0;
2642}
2643
2644int dbg_leb_map(struct ubifs_info *c, int lnum)
2645{
2646	int err;
2647
2648	if (dbg_is_power_cut(c))
2649		return -EROFS;
2650	if (power_cut_emulated(c, lnum, 0))
2651		return -EROFS;
2652	err = ubi_leb_map(c->ubi, lnum);
2653	if (err)
2654		return err;
2655	if (power_cut_emulated(c, lnum, 0))
2656		return -EROFS;
2657	return 0;
2658}
2659
2660/*
2661 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662 * contain the stuff specific to particular file-system mounts.
2663 */
2664static struct dentry *dfs_rootdir;
2665
2666static int dfs_file_open(struct inode *inode, struct file *file)
2667{
2668	file->private_data = inode->i_private;
2669	return nonseekable_open(inode, file);
2670}
2671
2672/**
2673 * provide_user_output - provide output to the user reading a debugfs file.
2674 * @val: boolean value for the answer
2675 * @u: the buffer to store the answer at
2676 * @count: size of the buffer
2677 * @ppos: position in the @u output buffer
2678 *
2679 * This is a simple helper function which stores @val boolean value in the user
2680 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681 * bytes written to @u in case of success and a negative error code in case of
2682 * failure.
2683 */
2684static int provide_user_output(int val, char __user *u, size_t count,
2685			       loff_t *ppos)
2686{
2687	char buf[3];
2688
2689	if (val)
2690		buf[0] = '1';
2691	else
2692		buf[0] = '0';
2693	buf[1] = '\n';
2694	buf[2] = 0x00;
2695
2696	return simple_read_from_buffer(u, count, ppos, buf, 2);
2697}
2698
2699static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700			     loff_t *ppos)
2701{
2702	struct dentry *dent = file->f_path.dentry;
2703	struct ubifs_info *c = file->private_data;
2704	struct ubifs_debug_info *d = c->dbg;
2705	int val;
2706
2707	if (dent == d->dfs_chk_gen)
2708		val = d->chk_gen;
2709	else if (dent == d->dfs_chk_index)
2710		val = d->chk_index;
2711	else if (dent == d->dfs_chk_orph)
2712		val = d->chk_orph;
2713	else if (dent == d->dfs_chk_lprops)
2714		val = d->chk_lprops;
2715	else if (dent == d->dfs_chk_fs)
2716		val = d->chk_fs;
2717	else if (dent == d->dfs_tst_rcvry)
2718		val = d->tst_rcvry;
2719	else if (dent == d->dfs_ro_error)
2720		val = c->ro_error;
2721	else
2722		return -EINVAL;
2723
2724	return provide_user_output(val, u, count, ppos);
2725}
2726
2727/**
2728 * interpret_user_input - interpret user debugfs file input.
2729 * @u: user-provided buffer with the input
2730 * @count: buffer size
2731 *
2732 * This is a helper function which interpret user input to a boolean UBIFS
2733 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734 * in case of failure.
2735 */
2736static int interpret_user_input(const char __user *u, size_t count)
2737{
2738	size_t buf_size;
2739	char buf[8];
2740
2741	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742	if (copy_from_user(buf, u, buf_size))
2743		return -EFAULT;
2744
2745	if (buf[0] == '1')
2746		return 1;
2747	else if (buf[0] == '0')
2748		return 0;
2749
2750	return -EINVAL;
2751}
2752
2753static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754			      size_t count, loff_t *ppos)
2755{
2756	struct ubifs_info *c = file->private_data;
2757	struct ubifs_debug_info *d = c->dbg;
2758	struct dentry *dent = file->f_path.dentry;
2759	int val;
2760
2761	if (file->f_path.dentry == d->dfs_dump_lprops) {
2762		ubifs_dump_lprops(c);
2763		return count;
2764	}
2765	if (file->f_path.dentry == d->dfs_dump_budg) {
2766		ubifs_dump_budg(c, &c->bi);
2767		return count;
2768	}
2769	if (file->f_path.dentry == d->dfs_dump_tnc) {
2770		mutex_lock(&c->tnc_mutex);
2771		ubifs_dump_tnc(c);
2772		mutex_unlock(&c->tnc_mutex);
2773		return count;
2774	}
2775
2776	val = interpret_user_input(u, count);
2777	if (val < 0)
2778		return val;
2779
2780	if (dent == d->dfs_chk_gen)
2781		d->chk_gen = val;
2782	else if (dent == d->dfs_chk_index)
2783		d->chk_index = val;
2784	else if (dent == d->dfs_chk_orph)
2785		d->chk_orph = val;
2786	else if (dent == d->dfs_chk_lprops)
2787		d->chk_lprops = val;
2788	else if (dent == d->dfs_chk_fs)
2789		d->chk_fs = val;
2790	else if (dent == d->dfs_tst_rcvry)
2791		d->tst_rcvry = val;
2792	else if (dent == d->dfs_ro_error)
2793		c->ro_error = !!val;
2794	else
2795		return -EINVAL;
2796
2797	return count;
2798}
2799
2800static const struct file_operations dfs_fops = {
2801	.open = dfs_file_open,
2802	.read = dfs_file_read,
2803	.write = dfs_file_write,
2804	.owner = THIS_MODULE,
2805	.llseek = no_llseek,
2806};
2807
2808/**
2809 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810 * @c: UBIFS file-system description object
2811 *
2812 * This function creates all debugfs files for this instance of UBIFS.
2813 *
2814 * Note, the only reason we have not merged this function with the
2815 * 'ubifs_debugging_init()' function is because it is better to initialize
2816 * debugfs interfaces at the very end of the mount process, and remove them at
2817 * the very beginning of the mount process.
2818 */
2819void dbg_debugfs_init_fs(struct ubifs_info *c)
2820{
2821	int n;
2822	const char *fname;
2823	struct ubifs_debug_info *d = c->dbg;
2824
2825	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826		     c->vi.ubi_num, c->vi.vol_id);
2827	if (n > UBIFS_DFS_DIR_LEN) {
2828		/* The array size is too small */
2829		return;
2830	}
2831
2832	fname = d->dfs_dir_name;
2833	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2834
2835	fname = "dump_lprops";
2836	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837						 &dfs_fops);
2838
2839	fname = "dump_budg";
2840	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841					       &dfs_fops);
2842
2843	fname = "dump_tnc";
2844	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845					      &dfs_fops);
2846
2847	fname = "chk_general";
2848	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849					     d->dfs_dir, c, &dfs_fops);
2850
2851	fname = "chk_index";
2852	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853					       d->dfs_dir, c, &dfs_fops);
2854
2855	fname = "chk_orphans";
2856	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857					      d->dfs_dir, c, &dfs_fops);
2858
2859	fname = "chk_lprops";
2860	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861						d->dfs_dir, c, &dfs_fops);
2862
2863	fname = "chk_fs";
2864	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865					    d->dfs_dir, c, &dfs_fops);
2866
2867	fname = "tst_recovery";
2868	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869					       d->dfs_dir, c, &dfs_fops);
2870
2871	fname = "ro_error";
2872	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873					      d->dfs_dir, c, &dfs_fops);
2874}
2875
2876/**
2877 * dbg_debugfs_exit_fs - remove all debugfs files.
2878 * @c: UBIFS file-system description object
2879 */
2880void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881{
2882	debugfs_remove_recursive(c->dbg->dfs_dir);
2883}
2884
2885struct ubifs_global_debug_info ubifs_dbg;
2886
2887static struct dentry *dfs_chk_gen;
2888static struct dentry *dfs_chk_index;
2889static struct dentry *dfs_chk_orph;
2890static struct dentry *dfs_chk_lprops;
2891static struct dentry *dfs_chk_fs;
2892static struct dentry *dfs_tst_rcvry;
2893
2894static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895				    size_t count, loff_t *ppos)
2896{
2897	struct dentry *dent = file->f_path.dentry;
2898	int val;
2899
2900	if (dent == dfs_chk_gen)
2901		val = ubifs_dbg.chk_gen;
2902	else if (dent == dfs_chk_index)
2903		val = ubifs_dbg.chk_index;
2904	else if (dent == dfs_chk_orph)
2905		val = ubifs_dbg.chk_orph;
2906	else if (dent == dfs_chk_lprops)
2907		val = ubifs_dbg.chk_lprops;
2908	else if (dent == dfs_chk_fs)
2909		val = ubifs_dbg.chk_fs;
2910	else if (dent == dfs_tst_rcvry)
2911		val = ubifs_dbg.tst_rcvry;
2912	else
2913		return -EINVAL;
2914
2915	return provide_user_output(val, u, count, ppos);
2916}
2917
2918static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919				     size_t count, loff_t *ppos)
2920{
2921	struct dentry *dent = file->f_path.dentry;
2922	int val;
2923
2924	val = interpret_user_input(u, count);
2925	if (val < 0)
2926		return val;
2927
2928	if (dent == dfs_chk_gen)
2929		ubifs_dbg.chk_gen = val;
2930	else if (dent == dfs_chk_index)
2931		ubifs_dbg.chk_index = val;
2932	else if (dent == dfs_chk_orph)
2933		ubifs_dbg.chk_orph = val;
2934	else if (dent == dfs_chk_lprops)
2935		ubifs_dbg.chk_lprops = val;
2936	else if (dent == dfs_chk_fs)
2937		ubifs_dbg.chk_fs = val;
2938	else if (dent == dfs_tst_rcvry)
2939		ubifs_dbg.tst_rcvry = val;
2940	else
2941		return -EINVAL;
2942
2943	return count;
2944}
2945
2946static const struct file_operations dfs_global_fops = {
2947	.read = dfs_global_file_read,
2948	.write = dfs_global_file_write,
2949	.owner = THIS_MODULE,
2950	.llseek = no_llseek,
2951};
2952
2953/**
2954 * dbg_debugfs_init - initialize debugfs file-system.
2955 *
2956 * UBIFS uses debugfs file-system to expose various debugging knobs to
2957 * user-space. This function creates "ubifs" directory in the debugfs
2958 * file-system.
2959 */
2960void dbg_debugfs_init(void)
2961{
2962	const char *fname;
2963
2964	fname = "ubifs";
2965	dfs_rootdir = debugfs_create_dir(fname, NULL);
2966
2967	fname = "chk_general";
2968	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969					  NULL, &dfs_global_fops);
2970
2971	fname = "chk_index";
2972	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973					    dfs_rootdir, NULL, &dfs_global_fops);
2974
2975	fname = "chk_orphans";
2976	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977					   dfs_rootdir, NULL, &dfs_global_fops);
2978
2979	fname = "chk_lprops";
2980	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981					     dfs_rootdir, NULL, &dfs_global_fops);
2982
2983	fname = "chk_fs";
2984	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985					 NULL, &dfs_global_fops);
2986
2987	fname = "tst_recovery";
2988	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989					    dfs_rootdir, NULL, &dfs_global_fops);
2990}
2991
2992/**
2993 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994 */
2995void dbg_debugfs_exit(void)
2996{
2997	debugfs_remove_recursive(dfs_rootdir);
2998}
2999
3000void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001			 const char *file, int line)
3002{
3003	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004
3005	switch (c->assert_action) {
3006		case ASSACT_PANIC:
3007		BUG();
3008		break;
3009
3010		case ASSACT_RO:
3011		ubifs_ro_mode(c, -EINVAL);
3012		break;
3013
3014		case ASSACT_REPORT:
3015		default:
3016		dump_stack();
3017		break;
3018
3019	}
3020}
3021
3022/**
3023 * ubifs_debugging_init - initialize UBIFS debugging.
3024 * @c: UBIFS file-system description object
3025 *
3026 * This function initializes debugging-related data for the file system.
3027 * Returns zero in case of success and a negative error code in case of
3028 * failure.
3029 */
3030int ubifs_debugging_init(struct ubifs_info *c)
3031{
3032	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033	if (!c->dbg)
3034		return -ENOMEM;
3035
3036	return 0;
3037}
3038
3039/**
3040 * ubifs_debugging_exit - free debugging data.
3041 * @c: UBIFS file-system description object
3042 */
3043void ubifs_debugging_exit(struct ubifs_info *c)
3044{
3045	kfree(c->dbg);
3046}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int) inode_get_atime_sec(inode),
 241	       (unsigned int) inode_get_atime_nsec(inode));
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int) inode_get_mtime_sec(inode),
 244	       (unsigned int) inode_get_mtime_nsec(inode));
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int) inode_get_ctime_sec(inode),
 247	       (unsigned int) inode_get_ctime_nsec(inode));
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 950	level = znode->level;
 951	pr_err("== Level %d ==\n", level);
 952	while (znode) {
 953		if (level != znode->level) {
 954			level = znode->level;
 955			pr_err("== Level %d ==\n", level);
 956		}
 957		ubifs_dump_znode(c, znode);
 958		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 959	}
 960	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 961}
 962
 963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 964		      void *priv)
 965{
 966	ubifs_dump_znode(c, znode);
 967	return 0;
 968}
 969
 970/**
 971 * ubifs_dump_index - dump the on-flash index.
 972 * @c: UBIFS file-system description object
 973 *
 974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 975 * which dumps only in-memory znodes and does not read znodes which from flash.
 976 */
 977void ubifs_dump_index(struct ubifs_info *c)
 978{
 979	dbg_walk_index(c, NULL, dump_znode, NULL);
 980}
 981
 982/**
 983 * dbg_save_space_info - save information about flash space.
 984 * @c: UBIFS file-system description object
 985 *
 986 * This function saves information about UBIFS free space, dirty space, etc, in
 987 * order to check it later.
 988 */
 989void dbg_save_space_info(struct ubifs_info *c)
 990{
 991	struct ubifs_debug_info *d = c->dbg;
 992	int freeable_cnt;
 993
 994	spin_lock(&c->space_lock);
 995	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 996	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 997	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 998
 999	/*
1000	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001	 * affects the free space calculations, and UBIFS might not know about
1002	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003	 * only when we read their lprops, and we do this only lazily, upon the
1004	 * need. So at any given point of time @c->freeable_cnt might be not
1005	 * exactly accurate.
1006	 *
1007	 * Just one example about the issue we hit when we did not zero
1008	 * @c->freeable_cnt.
1009	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010	 *    amount of free space in @d->saved_free
1011	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012	 *    information from flash, where we cache LEBs from various
1013	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016	 *    -> 'ubifs_add_to_cat()').
1017	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018	 *    becomes %1.
1019	 * 4. We calculate the amount of free space when the re-mount is
1020	 *    finished in 'dbg_check_space_info()' and it does not match
1021	 *    @d->saved_free.
1022	 */
1023	freeable_cnt = c->freeable_cnt;
1024	c->freeable_cnt = 0;
1025	d->saved_free = ubifs_get_free_space_nolock(c);
1026	c->freeable_cnt = freeable_cnt;
1027	spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041	struct ubifs_debug_info *d = c->dbg;
1042	struct ubifs_lp_stats lst;
1043	long long free;
1044	int freeable_cnt;
1045
1046	spin_lock(&c->space_lock);
1047	freeable_cnt = c->freeable_cnt;
1048	c->freeable_cnt = 0;
1049	free = ubifs_get_free_space_nolock(c);
1050	c->freeable_cnt = freeable_cnt;
1051	spin_unlock(&c->space_lock);
1052
1053	if (free != d->saved_free) {
1054		ubifs_err(c, "free space changed from %lld to %lld",
1055			  d->saved_free, free);
1056		goto out;
1057	}
1058
1059	return 0;
1060
1061out:
1062	ubifs_msg(c, "saved lprops statistics dump");
1063	ubifs_dump_lstats(&d->saved_lst);
1064	ubifs_msg(c, "saved budgeting info dump");
1065	ubifs_dump_budg(c, &d->saved_bi);
1066	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067	ubifs_msg(c, "current lprops statistics dump");
1068	ubifs_get_lp_stats(c, &lst);
1069	ubifs_dump_lstats(&lst);
1070	ubifs_msg(c, "current budgeting info dump");
1071	ubifs_dump_budg(c, &c->bi);
1072	dump_stack();
1073	return -EINVAL;
1074}
1075
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
1086int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087{
1088	int err = 0;
1089	struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091	if (!dbg_is_chk_gen(c))
1092		return 0;
1093	if (!S_ISREG(inode->i_mode))
1094		return 0;
1095
1096	mutex_lock(&ui->ui_mutex);
1097	spin_lock(&ui->ui_lock);
1098	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100			  ui->ui_size, ui->synced_i_size);
1101		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102			  inode->i_mode, i_size_read(inode));
1103		dump_stack();
1104		err = -EINVAL;
1105	}
1106	spin_unlock(&ui->ui_lock);
1107	mutex_unlock(&ui->ui_mutex);
1108	return err;
1109}
1110
1111/*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
1124int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125{
1126	unsigned int nlink = 2;
1127	union ubifs_key key;
1128	struct ubifs_dent_node *dent, *pdent = NULL;
1129	struct fscrypt_name nm = {0};
1130	loff_t size = UBIFS_INO_NODE_SZ;
1131
1132	if (!dbg_is_chk_gen(c))
1133		return 0;
1134
1135	if (!S_ISDIR(dir->i_mode))
1136		return 0;
1137
1138	lowest_dent_key(c, &key, dir->i_ino);
1139	while (1) {
1140		int err;
1141
1142		dent = ubifs_tnc_next_ent(c, &key, &nm);
1143		if (IS_ERR(dent)) {
1144			err = PTR_ERR(dent);
1145			if (err == -ENOENT)
1146				break;
1147			kfree(pdent);
1148			return err;
1149		}
1150
1151		fname_name(&nm) = dent->name;
1152		fname_len(&nm) = le16_to_cpu(dent->nlen);
1153		size += CALC_DENT_SIZE(fname_len(&nm));
1154		if (dent->type == UBIFS_ITYPE_DIR)
1155			nlink += 1;
1156		kfree(pdent);
1157		pdent = dent;
1158		key_read(c, &dent->key, &key);
1159	}
1160	kfree(pdent);
1161
1162	if (i_size_read(dir) != size) {
1163		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164			  dir->i_ino, (unsigned long long)i_size_read(dir),
1165			  (unsigned long long)size);
1166		ubifs_dump_inode(c, dir);
1167		dump_stack();
1168		return -EINVAL;
1169	}
1170	if (dir->i_nlink != nlink) {
1171		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172			  dir->i_ino, dir->i_nlink, nlink);
1173		ubifs_dump_inode(c, dir);
1174		dump_stack();
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181/**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
1194static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195			       struct ubifs_zbranch *zbr2)
1196{
1197	int err, nlen1, nlen2, cmp;
1198	struct ubifs_dent_node *dent1, *dent2;
1199	union ubifs_key key;
1200	char key_buf[DBG_KEY_BUF_LEN];
1201
1202	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204	if (!dent1)
1205		return -ENOMEM;
1206	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207	if (!dent2) {
1208		err = -ENOMEM;
1209		goto out_free;
1210	}
1211
1212	err = ubifs_tnc_read_node(c, zbr1, dent1);
1213	if (err)
1214		goto out_free;
1215	err = ubifs_validate_entry(c, dent1);
1216	if (err)
1217		goto out_free;
1218
1219	err = ubifs_tnc_read_node(c, zbr2, dent2);
1220	if (err)
1221		goto out_free;
1222	err = ubifs_validate_entry(c, dent2);
1223	if (err)
1224		goto out_free;
1225
1226	/* Make sure node keys are the same as in zbranch */
1227	err = 1;
1228	key_read(c, &dent1->key, &key);
1229	if (keys_cmp(c, &zbr1->key, &key)) {
1230		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232						       DBG_KEY_BUF_LEN));
1233		ubifs_err(c, "but it should have key %s according to tnc",
1234			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1235					   DBG_KEY_BUF_LEN));
1236		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237		goto out_free;
1238	}
1239
1240	key_read(c, &dent2->key, &key);
1241	if (keys_cmp(c, &zbr2->key, &key)) {
1242		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244						       DBG_KEY_BUF_LEN));
1245		ubifs_err(c, "but it should have key %s according to tnc",
1246			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1247					   DBG_KEY_BUF_LEN));
1248		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249		goto out_free;
1250	}
1251
1252	nlen1 = le16_to_cpu(dent1->nlen);
1253	nlen2 = le16_to_cpu(dent2->nlen);
1254
1255	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257		err = 0;
1258		goto out_free;
1259	}
1260	if (cmp == 0 && nlen1 == nlen2)
1261		ubifs_err(c, "2 xent/dent nodes with the same name");
1262	else
1263		ubifs_err(c, "bad order of colliding key %s",
1264			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271out_free:
1272	kfree(dent2);
1273	kfree(dent1);
1274	return err;
1275}
1276
1277/**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
1285static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286{
1287	struct ubifs_znode *znode = zbr->znode;
1288	struct ubifs_znode *zp = znode->parent;
1289	int n, err, cmp;
1290
1291	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292		err = 1;
1293		goto out;
1294	}
1295	if (znode->level < 0) {
1296		err = 2;
1297		goto out;
1298	}
1299	if (znode->iip < 0 || znode->iip >= c->fanout) {
1300		err = 3;
1301		goto out;
1302	}
1303
1304	if (zbr->len == 0)
1305		/* Only dirty zbranch may have no on-flash nodes */
1306		if (!ubifs_zn_dirty(znode)) {
1307			err = 4;
1308			goto out;
1309		}
1310
1311	if (ubifs_zn_dirty(znode)) {
1312		/*
1313		 * If znode is dirty, its parent has to be dirty as well. The
1314		 * order of the operation is important, so we have to have
1315		 * memory barriers.
1316		 */
1317		smp_mb();
1318		if (zp && !ubifs_zn_dirty(zp)) {
1319			/*
1320			 * The dirty flag is atomic and is cleared outside the
1321			 * TNC mutex, so znode's dirty flag may now have
1322			 * been cleared. The child is always cleared before the
1323			 * parent, so we just need to check again.
1324			 */
1325			smp_mb();
1326			if (ubifs_zn_dirty(znode)) {
1327				err = 5;
1328				goto out;
1329			}
1330		}
1331	}
1332
1333	if (zp) {
1334		const union ubifs_key *min, *max;
1335
1336		if (znode->level != zp->level - 1) {
1337			err = 6;
1338			goto out;
1339		}
1340
1341		/* Make sure the 'parent' pointer in our znode is correct */
1342		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343		if (!err) {
1344			/* This zbranch does not exist in the parent */
1345			err = 7;
1346			goto out;
1347		}
1348
1349		if (znode->iip >= zp->child_cnt) {
1350			err = 8;
1351			goto out;
1352		}
1353
1354		if (znode->iip != n) {
1355			/* This may happen only in case of collisions */
1356			if (keys_cmp(c, &zp->zbranch[n].key,
1357				     &zp->zbranch[znode->iip].key)) {
1358				err = 9;
1359				goto out;
1360			}
1361			n = znode->iip;
1362		}
1363
1364		/*
1365		 * Make sure that the first key in our znode is greater than or
1366		 * equal to the key in the pointing zbranch.
1367		 */
1368		min = &zbr->key;
1369		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370		if (cmp == 1) {
1371			err = 10;
1372			goto out;
1373		}
1374
1375		if (n + 1 < zp->child_cnt) {
1376			max = &zp->zbranch[n + 1].key;
1377
1378			/*
1379			 * Make sure the last key in our znode is less or
1380			 * equivalent than the key in the zbranch which goes
1381			 * after our pointing zbranch.
1382			 */
1383			cmp = keys_cmp(c, max,
1384				&znode->zbranch[znode->child_cnt - 1].key);
1385			if (cmp == -1) {
1386				err = 11;
1387				goto out;
1388			}
1389		}
1390	} else {
1391		/* This may only be root znode */
1392		if (zbr != &c->zroot) {
1393			err = 12;
1394			goto out;
1395		}
1396	}
1397
1398	/*
1399	 * Make sure that next key is greater or equivalent then the previous
1400	 * one.
1401	 */
1402	for (n = 1; n < znode->child_cnt; n++) {
1403		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404			       &znode->zbranch[n].key);
1405		if (cmp > 0) {
1406			err = 13;
1407			goto out;
1408		}
1409		if (cmp == 0) {
1410			/* This can only be keys with colliding hash */
1411			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412				err = 14;
1413				goto out;
1414			}
1415
1416			if (znode->level != 0 || c->replaying)
1417				continue;
1418
1419			/*
1420			 * Colliding keys should follow binary order of
1421			 * corresponding xentry/dentry names.
1422			 */
1423			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424						  &znode->zbranch[n]);
1425			if (err < 0)
1426				return err;
1427			if (err) {
1428				err = 15;
1429				goto out;
1430			}
1431		}
1432	}
1433
1434	for (n = 0; n < znode->child_cnt; n++) {
1435		if (!znode->zbranch[n].znode &&
1436		    (znode->zbranch[n].lnum == 0 ||
1437		     znode->zbranch[n].len == 0)) {
1438			err = 16;
1439			goto out;
1440		}
1441
1442		if (znode->zbranch[n].lnum != 0 &&
1443		    znode->zbranch[n].len == 0) {
1444			err = 17;
1445			goto out;
1446		}
1447
1448		if (znode->zbranch[n].lnum == 0 &&
1449		    znode->zbranch[n].len != 0) {
1450			err = 18;
1451			goto out;
1452		}
1453
1454		if (znode->zbranch[n].lnum == 0 &&
1455		    znode->zbranch[n].offs != 0) {
1456			err = 19;
1457			goto out;
1458		}
1459
1460		if (znode->level != 0 && znode->zbranch[n].znode)
1461			if (znode->zbranch[n].znode->parent != znode) {
1462				err = 20;
1463				goto out;
1464			}
1465	}
1466
1467	return 0;
1468
1469out:
1470	ubifs_err(c, "failed, error %d", err);
1471	ubifs_msg(c, "dump of the znode");
1472	ubifs_dump_znode(c, znode);
1473	if (zp) {
1474		ubifs_msg(c, "dump of the parent znode");
1475		ubifs_dump_znode(c, zp);
1476	}
1477	dump_stack();
1478	return -EINVAL;
1479}
1480
1481/**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
1489int dbg_check_tnc(struct ubifs_info *c, int extra)
1490{
1491	struct ubifs_znode *znode;
1492	long clean_cnt = 0, dirty_cnt = 0;
1493	int err, last;
1494
1495	if (!dbg_is_chk_index(c))
1496		return 0;
1497
1498	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499	if (!c->zroot.znode)
1500		return 0;
1501
1502	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503	while (1) {
1504		struct ubifs_znode *prev;
1505		struct ubifs_zbranch *zbr;
1506
1507		if (!znode->parent)
1508			zbr = &c->zroot;
1509		else
1510			zbr = &znode->parent->zbranch[znode->iip];
1511
1512		err = dbg_check_znode(c, zbr);
1513		if (err)
1514			return err;
1515
1516		if (extra) {
1517			if (ubifs_zn_dirty(znode))
1518				dirty_cnt += 1;
1519			else
1520				clean_cnt += 1;
1521		}
1522
1523		prev = znode;
1524		znode = ubifs_tnc_postorder_next(c, znode);
1525		if (!znode)
1526			break;
1527
1528		/*
1529		 * If the last key of this znode is equivalent to the first key
1530		 * of the next znode (collision), then check order of the keys.
1531		 */
1532		last = prev->child_cnt - 1;
1533		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534		    !keys_cmp(c, &prev->zbranch[last].key,
1535			      &znode->zbranch[0].key)) {
1536			err = dbg_check_key_order(c, &prev->zbranch[last],
1537						  &znode->zbranch[0]);
1538			if (err < 0)
1539				return err;
1540			if (err) {
1541				ubifs_msg(c, "first znode");
1542				ubifs_dump_znode(c, prev);
1543				ubifs_msg(c, "second znode");
1544				ubifs_dump_znode(c, znode);
1545				return -EINVAL;
1546			}
1547		}
1548	}
1549
1550	if (extra) {
1551		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553				  atomic_long_read(&c->clean_zn_cnt),
1554				  clean_cnt);
1555			return -EINVAL;
1556		}
1557		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559				  atomic_long_read(&c->dirty_zn_cnt),
1560				  dirty_cnt);
1561			return -EINVAL;
1562		}
1563	}
1564
1565	return 0;
1566}
1567
1568/**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
1583int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584		   dbg_znode_callback znode_cb, void *priv)
1585{
1586	int err;
1587	struct ubifs_zbranch *zbr;
1588	struct ubifs_znode *znode, *child;
1589
1590	mutex_lock(&c->tnc_mutex);
1591	/* If the root indexing node is not in TNC - pull it */
1592	if (!c->zroot.znode) {
1593		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594		if (IS_ERR(c->zroot.znode)) {
1595			err = PTR_ERR(c->zroot.znode);
1596			c->zroot.znode = NULL;
1597			goto out_unlock;
1598		}
1599	}
1600
1601	/*
1602	 * We are going to traverse the indexing tree in the postorder manner.
1603	 * Go down and find the leftmost indexing node where we are going to
1604	 * start from.
1605	 */
1606	znode = c->zroot.znode;
1607	while (znode->level > 0) {
1608		zbr = &znode->zbranch[0];
1609		child = zbr->znode;
1610		if (!child) {
1611			child = ubifs_load_znode(c, zbr, znode, 0);
1612			if (IS_ERR(child)) {
1613				err = PTR_ERR(child);
1614				goto out_unlock;
1615			}
1616		}
1617
1618		znode = child;
1619	}
1620
1621	/* Iterate over all indexing nodes */
1622	while (1) {
1623		int idx;
1624
1625		cond_resched();
1626
1627		if (znode_cb) {
1628			err = znode_cb(c, znode, priv);
1629			if (err) {
1630				ubifs_err(c, "znode checking function returned error %d",
1631					  err);
1632				ubifs_dump_znode(c, znode);
1633				goto out_dump;
1634			}
1635		}
1636		if (leaf_cb && znode->level == 0) {
1637			for (idx = 0; idx < znode->child_cnt; idx++) {
1638				zbr = &znode->zbranch[idx];
1639				err = leaf_cb(c, zbr, priv);
1640				if (err) {
1641					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642						  err, zbr->lnum, zbr->offs);
1643					goto out_dump;
1644				}
1645			}
1646		}
1647
1648		if (!znode->parent)
1649			break;
1650
1651		idx = znode->iip + 1;
1652		znode = znode->parent;
1653		if (idx < znode->child_cnt) {
1654			/* Switch to the next index in the parent */
1655			zbr = &znode->zbranch[idx];
1656			child = zbr->znode;
1657			if (!child) {
1658				child = ubifs_load_znode(c, zbr, znode, idx);
1659				if (IS_ERR(child)) {
1660					err = PTR_ERR(child);
1661					goto out_unlock;
1662				}
1663				zbr->znode = child;
1664			}
1665			znode = child;
1666		} else
1667			/*
1668			 * This is the last child, switch to the parent and
1669			 * continue.
1670			 */
1671			continue;
1672
1673		/* Go to the lowest leftmost znode in the new sub-tree */
1674		while (znode->level > 0) {
1675			zbr = &znode->zbranch[0];
1676			child = zbr->znode;
1677			if (!child) {
1678				child = ubifs_load_znode(c, zbr, znode, 0);
1679				if (IS_ERR(child)) {
1680					err = PTR_ERR(child);
1681					goto out_unlock;
1682				}
1683				zbr->znode = child;
1684			}
1685			znode = child;
1686		}
1687	}
1688
1689	mutex_unlock(&c->tnc_mutex);
1690	return 0;
1691
1692out_dump:
1693	if (znode->parent)
1694		zbr = &znode->parent->zbranch[znode->iip];
1695	else
1696		zbr = &c->zroot;
1697	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698	ubifs_dump_znode(c, znode);
1699out_unlock:
1700	mutex_unlock(&c->tnc_mutex);
1701	return err;
1702}
1703
1704/**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
1714static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715{
1716	long long *idx_size = priv;
1717	int add;
1718
1719	add = ubifs_idx_node_sz(c, znode->child_cnt);
1720	add = ALIGN(add, 8);
1721	*idx_size += add;
1722	return 0;
1723}
1724
1725/**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
1734int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735{
1736	int err;
1737	long long calc = 0;
1738
1739	if (!dbg_is_chk_index(c))
1740		return 0;
1741
1742	err = dbg_walk_index(c, NULL, add_size, &calc);
1743	if (err) {
1744		ubifs_err(c, "error %d while walking the index", err);
1745		goto out_err;
1746	}
1747
1748	if (calc != idx_size) {
1749		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750			  calc, idx_size);
1751		dump_stack();
1752		err = -EINVAL;
1753		goto out_err;
1754	}
1755
1756	return 0;
1757
1758out_err:
1759	ubifs_destroy_tnc_tree(c);
1760	return err;
1761}
1762
1763/**
1764 * struct fsck_inode - information about an inode used when checking the file-system.
1765 * @rb: link in the RB-tree of inodes
1766 * @inum: inode number
1767 * @mode: inode type, permissions, etc
1768 * @nlink: inode link count
1769 * @xattr_cnt: count of extended attributes
1770 * @references: how many directory/xattr entries refer this inode (calculated
1771 *              while walking the index)
1772 * @calc_cnt: for directory inode count of child directories
1773 * @size: inode size (read from on-flash inode)
1774 * @xattr_sz: summary size of all extended attributes (read from on-flash
1775 *            inode)
1776 * @calc_sz: for directories calculated directory size
1777 * @calc_xcnt: count of extended attributes
1778 * @calc_xsz: calculated summary size of all extended attributes
1779 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1780 *             inode (read from on-flash inode)
1781 * @calc_xnms: calculated sum of lengths of all extended attribute names
1782 */
1783struct fsck_inode {
1784	struct rb_node rb;
1785	ino_t inum;
1786	umode_t mode;
1787	unsigned int nlink;
1788	unsigned int xattr_cnt;
1789	int references;
1790	int calc_cnt;
1791	long long size;
1792	unsigned int xattr_sz;
1793	long long calc_sz;
1794	long long calc_xcnt;
1795	long long calc_xsz;
1796	unsigned int xattr_nms;
1797	long long calc_xnms;
1798};
1799
1800/**
1801 * struct fsck_data - private FS checking information.
1802 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1803 */
1804struct fsck_data {
1805	struct rb_root inodes;
1806};
1807
1808/**
1809 * add_inode - add inode information to RB-tree of inodes.
1810 * @c: UBIFS file-system description object
1811 * @fsckd: FS checking information
1812 * @ino: raw UBIFS inode to add
1813 *
1814 * This is a helper function for 'check_leaf()' which adds information about
1815 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1816 * case of success and a negative error code in case of failure.
1817 */
1818static struct fsck_inode *add_inode(struct ubifs_info *c,
1819				    struct fsck_data *fsckd,
1820				    struct ubifs_ino_node *ino)
1821{
1822	struct rb_node **p, *parent = NULL;
1823	struct fsck_inode *fscki;
1824	ino_t inum = key_inum_flash(c, &ino->key);
1825	struct inode *inode;
1826	struct ubifs_inode *ui;
1827
1828	p = &fsckd->inodes.rb_node;
1829	while (*p) {
1830		parent = *p;
1831		fscki = rb_entry(parent, struct fsck_inode, rb);
1832		if (inum < fscki->inum)
1833			p = &(*p)->rb_left;
1834		else if (inum > fscki->inum)
1835			p = &(*p)->rb_right;
1836		else
1837			return fscki;
1838	}
1839
1840	if (inum > c->highest_inum) {
1841		ubifs_err(c, "too high inode number, max. is %lu",
1842			  (unsigned long)c->highest_inum);
1843		return ERR_PTR(-EINVAL);
1844	}
1845
1846	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1847	if (!fscki)
1848		return ERR_PTR(-ENOMEM);
1849
1850	inode = ilookup(c->vfs_sb, inum);
1851
1852	fscki->inum = inum;
1853	/*
1854	 * If the inode is present in the VFS inode cache, use it instead of
1855	 * the on-flash inode which might be out-of-date. E.g., the size might
1856	 * be out-of-date. If we do not do this, the following may happen, for
1857	 * example:
1858	 *   1. A power cut happens
1859	 *   2. We mount the file-system R/O, the replay process fixes up the
1860	 *      inode size in the VFS cache, but on on-flash.
1861	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1862	 *      size.
1863	 */
1864	if (!inode) {
1865		fscki->nlink = le32_to_cpu(ino->nlink);
1866		fscki->size = le64_to_cpu(ino->size);
1867		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1868		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1869		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1870		fscki->mode = le32_to_cpu(ino->mode);
1871	} else {
1872		ui = ubifs_inode(inode);
1873		fscki->nlink = inode->i_nlink;
1874		fscki->size = inode->i_size;
1875		fscki->xattr_cnt = ui->xattr_cnt;
1876		fscki->xattr_sz = ui->xattr_size;
1877		fscki->xattr_nms = ui->xattr_names;
1878		fscki->mode = inode->i_mode;
1879		iput(inode);
1880	}
1881
1882	if (S_ISDIR(fscki->mode)) {
1883		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1884		fscki->calc_cnt = 2;
1885	}
1886
1887	rb_link_node(&fscki->rb, parent, p);
1888	rb_insert_color(&fscki->rb, &fsckd->inodes);
1889
1890	return fscki;
1891}
1892
1893/**
1894 * search_inode - search inode in the RB-tree of inodes.
1895 * @fsckd: FS checking information
1896 * @inum: inode number to search
1897 *
1898 * This is a helper function for 'check_leaf()' which searches inode @inum in
1899 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1900 * the inode was not found.
1901 */
1902static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1903{
1904	struct rb_node *p;
1905	struct fsck_inode *fscki;
1906
1907	p = fsckd->inodes.rb_node;
1908	while (p) {
1909		fscki = rb_entry(p, struct fsck_inode, rb);
1910		if (inum < fscki->inum)
1911			p = p->rb_left;
1912		else if (inum > fscki->inum)
1913			p = p->rb_right;
1914		else
1915			return fscki;
1916	}
1917	return NULL;
1918}
1919
1920/**
1921 * read_add_inode - read inode node and add it to RB-tree of inodes.
1922 * @c: UBIFS file-system description object
1923 * @fsckd: FS checking information
1924 * @inum: inode number to read
1925 *
1926 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1927 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1928 * information pointer in case of success and a negative error code in case of
1929 * failure.
1930 */
1931static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1932					 struct fsck_data *fsckd, ino_t inum)
1933{
1934	int n, err;
1935	union ubifs_key key;
1936	struct ubifs_znode *znode;
1937	struct ubifs_zbranch *zbr;
1938	struct ubifs_ino_node *ino;
1939	struct fsck_inode *fscki;
1940
1941	fscki = search_inode(fsckd, inum);
1942	if (fscki)
1943		return fscki;
1944
1945	ino_key_init(c, &key, inum);
1946	err = ubifs_lookup_level0(c, &key, &znode, &n);
1947	if (!err) {
1948		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1949		return ERR_PTR(-ENOENT);
1950	} else if (err < 0) {
1951		ubifs_err(c, "error %d while looking up inode %lu",
1952			  err, (unsigned long)inum);
1953		return ERR_PTR(err);
1954	}
1955
1956	zbr = &znode->zbranch[n];
1957	if (zbr->len < UBIFS_INO_NODE_SZ) {
1958		ubifs_err(c, "bad node %lu node length %d",
1959			  (unsigned long)inum, zbr->len);
1960		return ERR_PTR(-EINVAL);
1961	}
1962
1963	ino = kmalloc(zbr->len, GFP_NOFS);
1964	if (!ino)
1965		return ERR_PTR(-ENOMEM);
1966
1967	err = ubifs_tnc_read_node(c, zbr, ino);
1968	if (err) {
1969		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1970			  zbr->lnum, zbr->offs, err);
1971		kfree(ino);
1972		return ERR_PTR(err);
1973	}
1974
1975	fscki = add_inode(c, fsckd, ino);
1976	kfree(ino);
1977	if (IS_ERR(fscki)) {
1978		ubifs_err(c, "error %ld while adding inode %lu node",
1979			  PTR_ERR(fscki), (unsigned long)inum);
1980		return fscki;
1981	}
1982
1983	return fscki;
1984}
1985
1986/**
1987 * check_leaf - check leaf node.
1988 * @c: UBIFS file-system description object
1989 * @zbr: zbranch of the leaf node to check
1990 * @priv: FS checking information
1991 *
1992 * This is a helper function for 'dbg_check_filesystem()' which is called for
1993 * every single leaf node while walking the indexing tree. It checks that the
1994 * leaf node referred from the indexing tree exists, has correct CRC, and does
1995 * some other basic validation. This function is also responsible for building
1996 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1997 * calculates reference count, size, etc for each inode in order to later
1998 * compare them to the information stored inside the inodes and detect possible
1999 * inconsistencies. Returns zero in case of success and a negative error code
2000 * in case of failure.
2001 */
2002static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2003		      void *priv)
2004{
2005	ino_t inum;
2006	void *node;
2007	struct ubifs_ch *ch;
2008	int err, type = key_type(c, &zbr->key);
2009	struct fsck_inode *fscki;
2010
2011	if (zbr->len < UBIFS_CH_SZ) {
2012		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2013			  zbr->len, zbr->lnum, zbr->offs);
2014		return -EINVAL;
2015	}
2016
2017	node = kmalloc(zbr->len, GFP_NOFS);
2018	if (!node)
2019		return -ENOMEM;
2020
2021	err = ubifs_tnc_read_node(c, zbr, node);
2022	if (err) {
2023		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2024			  zbr->lnum, zbr->offs, err);
2025		goto out_free;
2026	}
2027
2028	/* If this is an inode node, add it to RB-tree of inodes */
2029	if (type == UBIFS_INO_KEY) {
2030		fscki = add_inode(c, priv, node);
2031		if (IS_ERR(fscki)) {
2032			err = PTR_ERR(fscki);
2033			ubifs_err(c, "error %d while adding inode node", err);
2034			goto out_dump;
2035		}
2036		goto out;
2037	}
2038
2039	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2040	    type != UBIFS_DATA_KEY) {
2041		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2042			  type, zbr->lnum, zbr->offs);
2043		err = -EINVAL;
2044		goto out_free;
2045	}
2046
2047	ch = node;
2048	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2049		ubifs_err(c, "too high sequence number, max. is %llu",
2050			  c->max_sqnum);
2051		err = -EINVAL;
2052		goto out_dump;
2053	}
2054
2055	if (type == UBIFS_DATA_KEY) {
2056		long long blk_offs;
2057		struct ubifs_data_node *dn = node;
2058
2059		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2060
2061		/*
2062		 * Search the inode node this data node belongs to and insert
2063		 * it to the RB-tree of inodes.
2064		 */
2065		inum = key_inum_flash(c, &dn->key);
2066		fscki = read_add_inode(c, priv, inum);
2067		if (IS_ERR(fscki)) {
2068			err = PTR_ERR(fscki);
2069			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2070				  err, (unsigned long)inum);
2071			goto out_dump;
2072		}
2073
2074		/* Make sure the data node is within inode size */
2075		blk_offs = key_block_flash(c, &dn->key);
2076		blk_offs <<= UBIFS_BLOCK_SHIFT;
2077		blk_offs += le32_to_cpu(dn->size);
2078		if (blk_offs > fscki->size) {
2079			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2080				  zbr->lnum, zbr->offs, fscki->size);
2081			err = -EINVAL;
2082			goto out_dump;
2083		}
2084	} else {
2085		int nlen;
2086		struct ubifs_dent_node *dent = node;
2087		struct fsck_inode *fscki1;
2088
2089		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2090
2091		err = ubifs_validate_entry(c, dent);
2092		if (err)
2093			goto out_dump;
2094
2095		/*
2096		 * Search the inode node this entry refers to and the parent
2097		 * inode node and insert them to the RB-tree of inodes.
2098		 */
2099		inum = le64_to_cpu(dent->inum);
2100		fscki = read_add_inode(c, priv, inum);
2101		if (IS_ERR(fscki)) {
2102			err = PTR_ERR(fscki);
2103			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2104				  err, (unsigned long)inum);
2105			goto out_dump;
2106		}
2107
2108		/* Count how many direntries or xentries refers this inode */
2109		fscki->references += 1;
2110
2111		inum = key_inum_flash(c, &dent->key);
2112		fscki1 = read_add_inode(c, priv, inum);
2113		if (IS_ERR(fscki1)) {
2114			err = PTR_ERR(fscki1);
2115			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2116				  err, (unsigned long)inum);
2117			goto out_dump;
2118		}
2119
2120		nlen = le16_to_cpu(dent->nlen);
2121		if (type == UBIFS_XENT_KEY) {
2122			fscki1->calc_xcnt += 1;
2123			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2124			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2125			fscki1->calc_xnms += nlen;
2126		} else {
2127			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2128			if (dent->type == UBIFS_ITYPE_DIR)
2129				fscki1->calc_cnt += 1;
2130		}
2131	}
2132
2133out:
2134	kfree(node);
2135	return 0;
2136
2137out_dump:
2138	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2139	ubifs_dump_node(c, node, zbr->len);
2140out_free:
2141	kfree(node);
2142	return err;
2143}
2144
2145/**
2146 * free_inodes - free RB-tree of inodes.
2147 * @fsckd: FS checking information
2148 */
2149static void free_inodes(struct fsck_data *fsckd)
2150{
2151	struct fsck_inode *fscki, *n;
2152
2153	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2154		kfree(fscki);
2155}
2156
2157/**
2158 * check_inodes - checks all inodes.
2159 * @c: UBIFS file-system description object
2160 * @fsckd: FS checking information
2161 *
2162 * This is a helper function for 'dbg_check_filesystem()' which walks the
2163 * RB-tree of inodes after the index scan has been finished, and checks that
2164 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2165 * %-EINVAL if not, and a negative error code in case of failure.
2166 */
2167static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2168{
2169	int n, err;
2170	union ubifs_key key;
2171	struct ubifs_znode *znode;
2172	struct ubifs_zbranch *zbr;
2173	struct ubifs_ino_node *ino;
2174	struct fsck_inode *fscki;
2175	struct rb_node *this = rb_first(&fsckd->inodes);
2176
2177	while (this) {
2178		fscki = rb_entry(this, struct fsck_inode, rb);
2179		this = rb_next(this);
2180
2181		if (S_ISDIR(fscki->mode)) {
2182			/*
2183			 * Directories have to have exactly one reference (they
2184			 * cannot have hardlinks), although root inode is an
2185			 * exception.
2186			 */
2187			if (fscki->inum != UBIFS_ROOT_INO &&
2188			    fscki->references != 1) {
2189				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2190					  (unsigned long)fscki->inum,
2191					  fscki->references);
2192				goto out_dump;
2193			}
2194			if (fscki->inum == UBIFS_ROOT_INO &&
2195			    fscki->references != 0) {
2196				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2197					  (unsigned long)fscki->inum,
2198					  fscki->references);
2199				goto out_dump;
2200			}
2201			if (fscki->calc_sz != fscki->size) {
2202				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2203					  (unsigned long)fscki->inum,
2204					  fscki->size, fscki->calc_sz);
2205				goto out_dump;
2206			}
2207			if (fscki->calc_cnt != fscki->nlink) {
2208				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2209					  (unsigned long)fscki->inum,
2210					  fscki->nlink, fscki->calc_cnt);
2211				goto out_dump;
2212			}
2213		} else {
2214			if (fscki->references != fscki->nlink) {
2215				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2216					  (unsigned long)fscki->inum,
2217					  fscki->nlink, fscki->references);
2218				goto out_dump;
2219			}
2220		}
2221		if (fscki->xattr_sz != fscki->calc_xsz) {
2222			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2223				  (unsigned long)fscki->inum, fscki->xattr_sz,
2224				  fscki->calc_xsz);
2225			goto out_dump;
2226		}
2227		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2228			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2229				  (unsigned long)fscki->inum,
2230				  fscki->xattr_cnt, fscki->calc_xcnt);
2231			goto out_dump;
2232		}
2233		if (fscki->xattr_nms != fscki->calc_xnms) {
2234			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2235				  (unsigned long)fscki->inum, fscki->xattr_nms,
2236				  fscki->calc_xnms);
2237			goto out_dump;
2238		}
2239	}
2240
2241	return 0;
2242
2243out_dump:
2244	/* Read the bad inode and dump it */
2245	ino_key_init(c, &key, fscki->inum);
2246	err = ubifs_lookup_level0(c, &key, &znode, &n);
2247	if (!err) {
2248		ubifs_err(c, "inode %lu not found in index",
2249			  (unsigned long)fscki->inum);
2250		return -ENOENT;
2251	} else if (err < 0) {
2252		ubifs_err(c, "error %d while looking up inode %lu",
2253			  err, (unsigned long)fscki->inum);
2254		return err;
2255	}
2256
2257	zbr = &znode->zbranch[n];
2258	ino = kmalloc(zbr->len, GFP_NOFS);
2259	if (!ino)
2260		return -ENOMEM;
2261
2262	err = ubifs_tnc_read_node(c, zbr, ino);
2263	if (err) {
2264		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2265			  zbr->lnum, zbr->offs, err);
2266		kfree(ino);
2267		return err;
2268	}
2269
2270	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2271		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2272	ubifs_dump_node(c, ino, zbr->len);
2273	kfree(ino);
2274	return -EINVAL;
2275}
2276
2277/**
2278 * dbg_check_filesystem - check the file-system.
2279 * @c: UBIFS file-system description object
2280 *
2281 * This function checks the file system, namely:
2282 * o makes sure that all leaf nodes exist and their CRCs are correct;
2283 * o makes sure inode nlink, size, xattr size/count are correct (for all
2284 *   inodes).
2285 *
2286 * The function reads whole indexing tree and all nodes, so it is pretty
2287 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2288 * not, and a negative error code in case of failure.
2289 */
2290int dbg_check_filesystem(struct ubifs_info *c)
2291{
2292	int err;
2293	struct fsck_data fsckd;
2294
2295	if (!dbg_is_chk_fs(c))
2296		return 0;
2297
2298	fsckd.inodes = RB_ROOT;
2299	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2300	if (err)
2301		goto out_free;
2302
2303	err = check_inodes(c, &fsckd);
2304	if (err)
2305		goto out_free;
2306
2307	free_inodes(&fsckd);
2308	return 0;
2309
2310out_free:
2311	ubifs_err(c, "file-system check failed with error %d", err);
2312	dump_stack();
2313	free_inodes(&fsckd);
2314	return err;
2315}
2316
2317/**
2318 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2319 * @c: UBIFS file-system description object
2320 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2321 *
2322 * This function returns zero if the list of data nodes is sorted correctly,
2323 * and %-EINVAL if not.
2324 */
2325int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2326{
2327	struct list_head *cur;
2328	struct ubifs_scan_node *sa, *sb;
2329
2330	if (!dbg_is_chk_gen(c))
2331		return 0;
2332
2333	for (cur = head->next; cur->next != head; cur = cur->next) {
2334		ino_t inuma, inumb;
2335		uint32_t blka, blkb;
2336
2337		cond_resched();
2338		sa = container_of(cur, struct ubifs_scan_node, list);
2339		sb = container_of(cur->next, struct ubifs_scan_node, list);
2340
2341		if (sa->type != UBIFS_DATA_NODE) {
2342			ubifs_err(c, "bad node type %d", sa->type);
2343			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2344			return -EINVAL;
2345		}
2346		if (sb->type != UBIFS_DATA_NODE) {
2347			ubifs_err(c, "bad node type %d", sb->type);
2348			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2349			return -EINVAL;
2350		}
2351
2352		inuma = key_inum(c, &sa->key);
2353		inumb = key_inum(c, &sb->key);
2354
2355		if (inuma < inumb)
2356			continue;
2357		if (inuma > inumb) {
2358			ubifs_err(c, "larger inum %lu goes before inum %lu",
2359				  (unsigned long)inuma, (unsigned long)inumb);
2360			goto error_dump;
2361		}
2362
2363		blka = key_block(c, &sa->key);
2364		blkb = key_block(c, &sb->key);
2365
2366		if (blka > blkb) {
2367			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2368			goto error_dump;
2369		}
2370		if (blka == blkb) {
2371			ubifs_err(c, "two data nodes for the same block");
2372			goto error_dump;
2373		}
2374	}
2375
2376	return 0;
2377
2378error_dump:
2379	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2380	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2381	return -EINVAL;
2382}
2383
2384/**
2385 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2386 * @c: UBIFS file-system description object
2387 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2388 *
2389 * This function returns zero if the list of non-data nodes is sorted correctly,
2390 * and %-EINVAL if not.
2391 */
2392int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2393{
2394	struct list_head *cur;
2395	struct ubifs_scan_node *sa, *sb;
2396
2397	if (!dbg_is_chk_gen(c))
2398		return 0;
2399
2400	for (cur = head->next; cur->next != head; cur = cur->next) {
2401		ino_t inuma, inumb;
2402		uint32_t hasha, hashb;
2403
2404		cond_resched();
2405		sa = container_of(cur, struct ubifs_scan_node, list);
2406		sb = container_of(cur->next, struct ubifs_scan_node, list);
2407
2408		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2409		    sa->type != UBIFS_XENT_NODE) {
2410			ubifs_err(c, "bad node type %d", sa->type);
2411			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2412			return -EINVAL;
2413		}
2414		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2415		    sb->type != UBIFS_XENT_NODE) {
2416			ubifs_err(c, "bad node type %d", sb->type);
2417			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2418			return -EINVAL;
2419		}
2420
2421		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2422			ubifs_err(c, "non-inode node goes before inode node");
2423			goto error_dump;
2424		}
2425
2426		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2427			continue;
2428
2429		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2430			/* Inode nodes are sorted in descending size order */
2431			if (sa->len < sb->len) {
2432				ubifs_err(c, "smaller inode node goes first");
2433				goto error_dump;
2434			}
2435			continue;
2436		}
2437
2438		/*
2439		 * This is either a dentry or xentry, which should be sorted in
2440		 * ascending (parent ino, hash) order.
2441		 */
2442		inuma = key_inum(c, &sa->key);
2443		inumb = key_inum(c, &sb->key);
2444
2445		if (inuma < inumb)
2446			continue;
2447		if (inuma > inumb) {
2448			ubifs_err(c, "larger inum %lu goes before inum %lu",
2449				  (unsigned long)inuma, (unsigned long)inumb);
2450			goto error_dump;
2451		}
2452
2453		hasha = key_block(c, &sa->key);
2454		hashb = key_block(c, &sb->key);
2455
2456		if (hasha > hashb) {
2457			ubifs_err(c, "larger hash %u goes before %u",
2458				  hasha, hashb);
2459			goto error_dump;
2460		}
2461	}
2462
2463	return 0;
2464
2465error_dump:
2466	ubifs_msg(c, "dumping first node");
2467	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2468	ubifs_msg(c, "dumping second node");
2469	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2470	return -EINVAL;
2471}
2472
2473static inline int chance(unsigned int n, unsigned int out_of)
2474{
2475	return !!(get_random_u32_below(out_of) + 1 <= n);
2476
2477}
2478
2479static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2480{
2481	struct ubifs_debug_info *d = c->dbg;
2482
2483	ubifs_assert(c, dbg_is_tst_rcvry(c));
2484
2485	if (!d->pc_cnt) {
2486		/* First call - decide delay to the power cut */
2487		if (chance(1, 2)) {
2488			unsigned long delay;
2489
2490			if (chance(1, 2)) {
2491				d->pc_delay = 1;
2492				/* Fail within 1 minute */
2493				delay = get_random_u32_below(60000);
2494				d->pc_timeout = jiffies;
2495				d->pc_timeout += msecs_to_jiffies(delay);
2496				ubifs_warn(c, "failing after %lums", delay);
2497			} else {
2498				d->pc_delay = 2;
2499				delay = get_random_u32_below(10000);
2500				/* Fail within 10000 operations */
2501				d->pc_cnt_max = delay;
2502				ubifs_warn(c, "failing after %lu calls", delay);
2503			}
2504		}
2505
2506		d->pc_cnt += 1;
2507	}
2508
2509	/* Determine if failure delay has expired */
2510	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2511			return 0;
2512	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2513			return 0;
2514
2515	if (lnum == UBIFS_SB_LNUM) {
2516		if (write && chance(1, 2))
2517			return 0;
2518		if (chance(19, 20))
2519			return 0;
2520		ubifs_warn(c, "failing in super block LEB %d", lnum);
2521	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2522		if (chance(19, 20))
2523			return 0;
2524		ubifs_warn(c, "failing in master LEB %d", lnum);
2525	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2526		if (write && chance(99, 100))
2527			return 0;
2528		if (chance(399, 400))
2529			return 0;
2530		ubifs_warn(c, "failing in log LEB %d", lnum);
2531	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2532		if (write && chance(7, 8))
2533			return 0;
2534		if (chance(19, 20))
2535			return 0;
2536		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2537	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2538		if (write && chance(1, 2))
2539			return 0;
2540		if (chance(9, 10))
2541			return 0;
2542		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2543	} else if (lnum == c->ihead_lnum) {
2544		if (chance(99, 100))
2545			return 0;
2546		ubifs_warn(c, "failing in index head LEB %d", lnum);
2547	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2548		if (chance(9, 10))
2549			return 0;
2550		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2551	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2552		   !ubifs_search_bud(c, lnum)) {
2553		if (chance(19, 20))
2554			return 0;
2555		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2556	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2557		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2558		if (chance(999, 1000))
2559			return 0;
2560		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2561	} else {
2562		if (chance(9999, 10000))
2563			return 0;
2564		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2565	}
2566
2567	d->pc_happened = 1;
2568	ubifs_warn(c, "========== Power cut emulated ==========");
2569	dump_stack();
2570	return 1;
2571}
2572
2573static int corrupt_data(const struct ubifs_info *c, const void *buf,
2574			unsigned int len)
2575{
2576	unsigned int from, to, ffs = chance(1, 2);
2577	unsigned char *p = (void *)buf;
2578
2579	from = get_random_u32_below(len);
2580	/* Corruption span max to end of write unit */
2581	to = min(len, ALIGN(from + 1, c->max_write_size));
2582
2583	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2584		   ffs ? "0xFFs" : "random data");
2585
2586	if (ffs)
2587		memset(p + from, 0xFF, to - from);
2588	else
2589		get_random_bytes(p + from, to - from);
2590
2591	return to;
2592}
2593
2594int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2595		  int offs, int len)
2596{
2597	int err, failing;
2598
2599	if (dbg_is_power_cut(c))
2600		return -EROFS;
2601
2602	failing = power_cut_emulated(c, lnum, 1);
2603	if (failing) {
2604		len = corrupt_data(c, buf, len);
2605		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2606			   len, lnum, offs);
2607	}
2608	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2609	if (err)
2610		return err;
2611	if (failing)
2612		return -EROFS;
2613	return 0;
2614}
2615
2616int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2617		   int len)
2618{
2619	int err;
2620
2621	if (dbg_is_power_cut(c))
2622		return -EROFS;
2623	if (power_cut_emulated(c, lnum, 1))
2624		return -EROFS;
2625	err = ubi_leb_change(c->ubi, lnum, buf, len);
2626	if (err)
2627		return err;
2628	if (power_cut_emulated(c, lnum, 1))
2629		return -EROFS;
2630	return 0;
2631}
2632
2633int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2634{
2635	int err;
2636
2637	if (dbg_is_power_cut(c))
2638		return -EROFS;
2639	if (power_cut_emulated(c, lnum, 0))
2640		return -EROFS;
2641	err = ubi_leb_unmap(c->ubi, lnum);
2642	if (err)
2643		return err;
2644	if (power_cut_emulated(c, lnum, 0))
2645		return -EROFS;
2646	return 0;
2647}
2648
2649int dbg_leb_map(struct ubifs_info *c, int lnum)
2650{
2651	int err;
2652
2653	if (dbg_is_power_cut(c))
2654		return -EROFS;
2655	if (power_cut_emulated(c, lnum, 0))
2656		return -EROFS;
2657	err = ubi_leb_map(c->ubi, lnum);
2658	if (err)
2659		return err;
2660	if (power_cut_emulated(c, lnum, 0))
2661		return -EROFS;
2662	return 0;
2663}
2664
2665/*
2666 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2667 * contain the stuff specific to particular file-system mounts.
2668 */
2669static struct dentry *dfs_rootdir;
2670
2671static int dfs_file_open(struct inode *inode, struct file *file)
2672{
2673	file->private_data = inode->i_private;
2674	return nonseekable_open(inode, file);
2675}
2676
2677/**
2678 * provide_user_output - provide output to the user reading a debugfs file.
2679 * @val: boolean value for the answer
2680 * @u: the buffer to store the answer at
2681 * @count: size of the buffer
2682 * @ppos: position in the @u output buffer
2683 *
2684 * This is a simple helper function which stores @val boolean value in the user
2685 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2686 * bytes written to @u in case of success and a negative error code in case of
2687 * failure.
2688 */
2689static int provide_user_output(int val, char __user *u, size_t count,
2690			       loff_t *ppos)
2691{
2692	char buf[3];
2693
2694	if (val)
2695		buf[0] = '1';
2696	else
2697		buf[0] = '0';
2698	buf[1] = '\n';
2699	buf[2] = 0x00;
2700
2701	return simple_read_from_buffer(u, count, ppos, buf, 2);
2702}
2703
2704static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2705			     loff_t *ppos)
2706{
2707	struct dentry *dent = file->f_path.dentry;
2708	struct ubifs_info *c = file->private_data;
2709	struct ubifs_debug_info *d = c->dbg;
2710	int val;
2711
2712	if (dent == d->dfs_chk_gen)
2713		val = d->chk_gen;
2714	else if (dent == d->dfs_chk_index)
2715		val = d->chk_index;
2716	else if (dent == d->dfs_chk_orph)
2717		val = d->chk_orph;
2718	else if (dent == d->dfs_chk_lprops)
2719		val = d->chk_lprops;
2720	else if (dent == d->dfs_chk_fs)
2721		val = d->chk_fs;
2722	else if (dent == d->dfs_tst_rcvry)
2723		val = d->tst_rcvry;
2724	else if (dent == d->dfs_ro_error)
2725		val = c->ro_error;
2726	else
2727		return -EINVAL;
2728
2729	return provide_user_output(val, u, count, ppos);
2730}
2731
2732/**
2733 * interpret_user_input - interpret user debugfs file input.
2734 * @u: user-provided buffer with the input
2735 * @count: buffer size
2736 *
2737 * This is a helper function which interpret user input to a boolean UBIFS
2738 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2739 * in case of failure.
2740 */
2741static int interpret_user_input(const char __user *u, size_t count)
2742{
2743	size_t buf_size;
2744	char buf[8];
2745
2746	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2747	if (copy_from_user(buf, u, buf_size))
2748		return -EFAULT;
2749
2750	if (buf[0] == '1')
2751		return 1;
2752	else if (buf[0] == '0')
2753		return 0;
2754
2755	return -EINVAL;
2756}
2757
2758static ssize_t dfs_file_write(struct file *file, const char __user *u,
2759			      size_t count, loff_t *ppos)
2760{
2761	struct ubifs_info *c = file->private_data;
2762	struct ubifs_debug_info *d = c->dbg;
2763	struct dentry *dent = file->f_path.dentry;
2764	int val;
2765
2766	if (file->f_path.dentry == d->dfs_dump_lprops) {
2767		ubifs_dump_lprops(c);
2768		return count;
2769	}
2770	if (file->f_path.dentry == d->dfs_dump_budg) {
2771		ubifs_dump_budg(c, &c->bi);
2772		return count;
2773	}
2774	if (file->f_path.dentry == d->dfs_dump_tnc) {
2775		mutex_lock(&c->tnc_mutex);
2776		ubifs_dump_tnc(c);
2777		mutex_unlock(&c->tnc_mutex);
2778		return count;
2779	}
2780
2781	val = interpret_user_input(u, count);
2782	if (val < 0)
2783		return val;
2784
2785	if (dent == d->dfs_chk_gen)
2786		d->chk_gen = val;
2787	else if (dent == d->dfs_chk_index)
2788		d->chk_index = val;
2789	else if (dent == d->dfs_chk_orph)
2790		d->chk_orph = val;
2791	else if (dent == d->dfs_chk_lprops)
2792		d->chk_lprops = val;
2793	else if (dent == d->dfs_chk_fs)
2794		d->chk_fs = val;
2795	else if (dent == d->dfs_tst_rcvry)
2796		d->tst_rcvry = val;
2797	else if (dent == d->dfs_ro_error)
2798		c->ro_error = !!val;
2799	else
2800		return -EINVAL;
2801
2802	return count;
2803}
2804
2805static const struct file_operations dfs_fops = {
2806	.open = dfs_file_open,
2807	.read = dfs_file_read,
2808	.write = dfs_file_write,
2809	.owner = THIS_MODULE,
2810	.llseek = no_llseek,
2811};
2812
2813/**
2814 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2815 * @c: UBIFS file-system description object
2816 *
2817 * This function creates all debugfs files for this instance of UBIFS.
2818 *
2819 * Note, the only reason we have not merged this function with the
2820 * 'ubifs_debugging_init()' function is because it is better to initialize
2821 * debugfs interfaces at the very end of the mount process, and remove them at
2822 * the very beginning of the mount process.
2823 */
2824void dbg_debugfs_init_fs(struct ubifs_info *c)
2825{
2826	int n;
2827	const char *fname;
2828	struct ubifs_debug_info *d = c->dbg;
2829
2830	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2831		     c->vi.ubi_num, c->vi.vol_id);
2832	if (n > UBIFS_DFS_DIR_LEN) {
2833		/* The array size is too small */
2834		return;
2835	}
2836
2837	fname = d->dfs_dir_name;
2838	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2839
2840	fname = "dump_lprops";
2841	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2842						 &dfs_fops);
2843
2844	fname = "dump_budg";
2845	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2846					       &dfs_fops);
2847
2848	fname = "dump_tnc";
2849	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2850					      &dfs_fops);
2851
2852	fname = "chk_general";
2853	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2854					     d->dfs_dir, c, &dfs_fops);
2855
2856	fname = "chk_index";
2857	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2858					       d->dfs_dir, c, &dfs_fops);
2859
2860	fname = "chk_orphans";
2861	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2862					      d->dfs_dir, c, &dfs_fops);
2863
2864	fname = "chk_lprops";
2865	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2866						d->dfs_dir, c, &dfs_fops);
2867
2868	fname = "chk_fs";
2869	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2870					    d->dfs_dir, c, &dfs_fops);
2871
2872	fname = "tst_recovery";
2873	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2874					       d->dfs_dir, c, &dfs_fops);
2875
2876	fname = "ro_error";
2877	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2878					      d->dfs_dir, c, &dfs_fops);
2879}
2880
2881/**
2882 * dbg_debugfs_exit_fs - remove all debugfs files.
2883 * @c: UBIFS file-system description object
2884 */
2885void dbg_debugfs_exit_fs(struct ubifs_info *c)
2886{
2887	debugfs_remove_recursive(c->dbg->dfs_dir);
2888}
2889
2890struct ubifs_global_debug_info ubifs_dbg;
2891
2892static struct dentry *dfs_chk_gen;
2893static struct dentry *dfs_chk_index;
2894static struct dentry *dfs_chk_orph;
2895static struct dentry *dfs_chk_lprops;
2896static struct dentry *dfs_chk_fs;
2897static struct dentry *dfs_tst_rcvry;
2898
2899static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2900				    size_t count, loff_t *ppos)
2901{
2902	struct dentry *dent = file->f_path.dentry;
2903	int val;
2904
2905	if (dent == dfs_chk_gen)
2906		val = ubifs_dbg.chk_gen;
2907	else if (dent == dfs_chk_index)
2908		val = ubifs_dbg.chk_index;
2909	else if (dent == dfs_chk_orph)
2910		val = ubifs_dbg.chk_orph;
2911	else if (dent == dfs_chk_lprops)
2912		val = ubifs_dbg.chk_lprops;
2913	else if (dent == dfs_chk_fs)
2914		val = ubifs_dbg.chk_fs;
2915	else if (dent == dfs_tst_rcvry)
2916		val = ubifs_dbg.tst_rcvry;
2917	else
2918		return -EINVAL;
2919
2920	return provide_user_output(val, u, count, ppos);
2921}
2922
2923static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2924				     size_t count, loff_t *ppos)
2925{
2926	struct dentry *dent = file->f_path.dentry;
2927	int val;
2928
2929	val = interpret_user_input(u, count);
2930	if (val < 0)
2931		return val;
2932
2933	if (dent == dfs_chk_gen)
2934		ubifs_dbg.chk_gen = val;
2935	else if (dent == dfs_chk_index)
2936		ubifs_dbg.chk_index = val;
2937	else if (dent == dfs_chk_orph)
2938		ubifs_dbg.chk_orph = val;
2939	else if (dent == dfs_chk_lprops)
2940		ubifs_dbg.chk_lprops = val;
2941	else if (dent == dfs_chk_fs)
2942		ubifs_dbg.chk_fs = val;
2943	else if (dent == dfs_tst_rcvry)
2944		ubifs_dbg.tst_rcvry = val;
2945	else
2946		return -EINVAL;
2947
2948	return count;
2949}
2950
2951static const struct file_operations dfs_global_fops = {
2952	.read = dfs_global_file_read,
2953	.write = dfs_global_file_write,
2954	.owner = THIS_MODULE,
2955	.llseek = no_llseek,
2956};
2957
2958/**
2959 * dbg_debugfs_init - initialize debugfs file-system.
2960 *
2961 * UBIFS uses debugfs file-system to expose various debugging knobs to
2962 * user-space. This function creates "ubifs" directory in the debugfs
2963 * file-system.
2964 */
2965void dbg_debugfs_init(void)
2966{
2967	const char *fname;
2968
2969	fname = "ubifs";
2970	dfs_rootdir = debugfs_create_dir(fname, NULL);
2971
2972	fname = "chk_general";
2973	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2974					  NULL, &dfs_global_fops);
2975
2976	fname = "chk_index";
2977	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2978					    dfs_rootdir, NULL, &dfs_global_fops);
2979
2980	fname = "chk_orphans";
2981	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2982					   dfs_rootdir, NULL, &dfs_global_fops);
2983
2984	fname = "chk_lprops";
2985	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2986					     dfs_rootdir, NULL, &dfs_global_fops);
2987
2988	fname = "chk_fs";
2989	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2990					 NULL, &dfs_global_fops);
2991
2992	fname = "tst_recovery";
2993	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2994					    dfs_rootdir, NULL, &dfs_global_fops);
2995}
2996
2997/**
2998 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2999 */
3000void dbg_debugfs_exit(void)
3001{
3002	debugfs_remove_recursive(dfs_rootdir);
3003}
3004
3005void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3006			 const char *file, int line)
3007{
3008	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3009
3010	switch (c->assert_action) {
3011		case ASSACT_PANIC:
3012		BUG();
3013		break;
3014
3015		case ASSACT_RO:
3016		ubifs_ro_mode(c, -EINVAL);
3017		break;
3018
3019		case ASSACT_REPORT:
3020		default:
3021		dump_stack();
3022		break;
3023
3024	}
3025}
3026
3027/**
3028 * ubifs_debugging_init - initialize UBIFS debugging.
3029 * @c: UBIFS file-system description object
3030 *
3031 * This function initializes debugging-related data for the file system.
3032 * Returns zero in case of success and a negative error code in case of
3033 * failure.
3034 */
3035int ubifs_debugging_init(struct ubifs_info *c)
3036{
3037	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3038	if (!c->dbg)
3039		return -ENOMEM;
3040
3041	return 0;
3042}
3043
3044/**
3045 * ubifs_debugging_exit - free debugging data.
3046 * @c: UBIFS file-system description object
3047 */
3048void ubifs_debugging_exit(struct ubifs_info *c)
3049{
3050	kfree(c->dbg);
3051}