Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38#include "raid-stripe-tree.h"
39
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
44struct btrfs_io_geometry {
45 u32 stripe_index;
46 u32 stripe_nr;
47 int mirror_num;
48 int num_stripes;
49 u64 stripe_offset;
50 u64 raid56_full_stripe_start;
51 int max_errors;
52 enum btrfs_map_op op;
53};
54
55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
57 .sub_stripes = 2,
58 .dev_stripes = 1,
59 .devs_max = 0, /* 0 == as many as possible */
60 .devs_min = 2,
61 .tolerated_failures = 1,
62 .devs_increment = 2,
63 .ncopies = 2,
64 .nparity = 0,
65 .raid_name = "raid10",
66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
68 },
69 [BTRFS_RAID_RAID1] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 2,
73 .devs_min = 2,
74 .tolerated_failures = 1,
75 .devs_increment = 2,
76 .ncopies = 2,
77 .nparity = 0,
78 .raid_name = "raid1",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
81 },
82 [BTRFS_RAID_RAID1C3] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 3,
86 .devs_min = 3,
87 .tolerated_failures = 2,
88 .devs_increment = 3,
89 .ncopies = 3,
90 .nparity = 0,
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 },
95 [BTRFS_RAID_RAID1C4] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 4,
99 .devs_min = 4,
100 .tolerated_failures = 3,
101 .devs_increment = 4,
102 .ncopies = 4,
103 .nparity = 0,
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 },
108 [BTRFS_RAID_DUP] = {
109 .sub_stripes = 1,
110 .dev_stripes = 2,
111 .devs_max = 1,
112 .devs_min = 1,
113 .tolerated_failures = 0,
114 .devs_increment = 1,
115 .ncopies = 2,
116 .nparity = 0,
117 .raid_name = "dup",
118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
119 .mindev_error = 0,
120 },
121 [BTRFS_RAID_RAID0] = {
122 .sub_stripes = 1,
123 .dev_stripes = 1,
124 .devs_max = 0,
125 .devs_min = 1,
126 .tolerated_failures = 0,
127 .devs_increment = 1,
128 .ncopies = 1,
129 .nparity = 0,
130 .raid_name = "raid0",
131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
132 .mindev_error = 0,
133 },
134 [BTRFS_RAID_SINGLE] = {
135 .sub_stripes = 1,
136 .dev_stripes = 1,
137 .devs_max = 1,
138 .devs_min = 1,
139 .tolerated_failures = 0,
140 .devs_increment = 1,
141 .ncopies = 1,
142 .nparity = 0,
143 .raid_name = "single",
144 .bg_flag = 0,
145 .mindev_error = 0,
146 },
147 [BTRFS_RAID_RAID5] = {
148 .sub_stripes = 1,
149 .dev_stripes = 1,
150 .devs_max = 0,
151 .devs_min = 2,
152 .tolerated_failures = 1,
153 .devs_increment = 1,
154 .ncopies = 1,
155 .nparity = 1,
156 .raid_name = "raid5",
157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
159 },
160 [BTRFS_RAID_RAID6] = {
161 .sub_stripes = 1,
162 .dev_stripes = 1,
163 .devs_max = 0,
164 .devs_min = 3,
165 .tolerated_failures = 2,
166 .devs_increment = 1,
167 .ncopies = 1,
168 .nparity = 2,
169 .raid_name = "raid6",
170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
172 },
173};
174
175/*
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
178 */
179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180{
181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
182
183 if (!profile)
184 return BTRFS_RAID_SINGLE;
185
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
187}
188
189const char *btrfs_bg_type_to_raid_name(u64 flags)
190{
191 const int index = btrfs_bg_flags_to_raid_index(flags);
192
193 if (index >= BTRFS_NR_RAID_TYPES)
194 return NULL;
195
196 return btrfs_raid_array[index].raid_name;
197}
198
199int btrfs_nr_parity_stripes(u64 type)
200{
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202
203 return btrfs_raid_array[index].nparity;
204}
205
206/*
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
209 */
210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211{
212 int i;
213 int ret;
214 char *bp = buf;
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
217
218 if (!flags) {
219 strcpy(bp, "NONE");
220 return;
221 }
222
223#define DESCRIBE_FLAG(flag, desc) \
224 do { \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
228 goto out_overflow; \
229 size_bp -= ret; \
230 bp += ret; \
231 flags &= ~(flag); \
232 } \
233 } while (0)
234
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
243#undef DESCRIBE_FLAG
244
245 if (flags) {
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 size_bp -= ret;
248 }
249
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252
253 /*
254 * The text is trimmed, it's up to the caller to provide sufficiently
255 * large buffer
256 */
257out_overflow:;
258}
259
260static int init_first_rw_device(struct btrfs_trans_handle *trans);
261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263
264/*
265 * Device locking
266 * ==============
267 *
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
270 *
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
276 *
277 * the mutex can be very coarse and can cover long-running operations
278 *
279 * protects: updates to fs_devices counters like missing devices, rw devices,
280 * seeding, structure cloning, opening/closing devices at mount/umount time
281 *
282 * global::fs_devs - add, remove, updates to the global list
283 *
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
286 * scan ioctl
287 *
288 * btrfs_device::name - renames (write side), read is RCU
289 *
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
293 *
294 * simple list traversal with read-only actions can be done with RCU protection
295 *
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
298 *
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
301 *
302 * balance_mutex
303 * -------------
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
306 *
307 * chunk_mutex
308 * -----------
309 * protects chunks, adding or removing during allocation, trim or when a new
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
313 *
314 * cleaner_mutex
315 * -------------
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
318 *
319 *
320 * Lock nesting
321 * ============
322 *
323 * uuid_mutex
324 * device_list_mutex
325 * chunk_mutex
326 * balance_mutex
327 *
328 *
329 * Exclusive operations
330 * ====================
331 *
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
334 *
335 * - Balance (*)
336 * - Device add
337 * - Device remove
338 * - Device replace (*)
339 * - Resize
340 *
341 * The device operations (as above) can be in one of the following states:
342 *
343 * - Running state
344 * - Paused state
345 * - Completed state
346 *
347 * Only device operations marked with (*) can go into the Paused state for the
348 * following reasons:
349 *
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
355 *
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
360 * The exclusive status is cleared when the device operation is canceled or
361 * completed.
362 */
363
364DEFINE_MUTEX(uuid_mutex);
365static LIST_HEAD(fs_uuids);
366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
367{
368 return &fs_uuids;
369}
370
371/*
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
373 *
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
376 *
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
380 */
381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
382{
383 struct btrfs_fs_devices *fs_devs;
384
385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
386 if (!fs_devs)
387 return ERR_PTR(-ENOMEM);
388
389 mutex_init(&fs_devs->device_list_mutex);
390
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
393 INIT_LIST_HEAD(&fs_devs->fs_list);
394 INIT_LIST_HEAD(&fs_devs->seed_list);
395
396 if (fsid) {
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 }
400
401 return fs_devs;
402}
403
404static void btrfs_free_device(struct btrfs_device *device)
405{
406 WARN_ON(!list_empty(&device->post_commit_list));
407 rcu_string_free(device->name);
408 extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411}
412
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
422 btrfs_free_device(device);
423 }
424 kfree(fs_devices);
425}
426
427void __exit btrfs_cleanup_fs_uuids(void)
428{
429 struct btrfs_fs_devices *fs_devices;
430
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
435 free_fs_devices(fs_devices);
436 }
437}
438
439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
441{
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 return false;
444
445 if (!metadata_fsid)
446 return true;
447
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 return false;
450
451 return true;
452}
453
454static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
456{
457 struct btrfs_fs_devices *fs_devices;
458
459 ASSERT(fsid);
460
461 /* Handle non-split brain cases */
462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 return fs_devices;
465 }
466 return NULL;
467}
468
469static int
470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 int flush, struct bdev_handle **bdev_handle,
472 struct btrfs_super_block **disk_super)
473{
474 struct block_device *bdev;
475 int ret;
476
477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
478
479 if (IS_ERR(*bdev_handle)) {
480 ret = PTR_ERR(*bdev_handle);
481 goto error;
482 }
483 bdev = (*bdev_handle)->bdev;
484
485 if (flush)
486 sync_blockdev(bdev);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
488 if (ret) {
489 bdev_release(*bdev_handle);
490 goto error;
491 }
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
496 bdev_release(*bdev_handle);
497 goto error;
498 }
499
500 return 0;
501
502error:
503 *bdev_handle = NULL;
504 return ret;
505}
506
507/*
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
510 *
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
513 * @skip_device: Optional. Will skip this device when searching for the stale
514 * devices.
515 *
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
519 */
520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
521{
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
524 int ret;
525 bool freed = false;
526
527 lockdep_assert_held(&uuid_mutex);
528
529 /* Return good status if there is no instance of devt. */
530 ret = 0;
531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
532
533 mutex_lock(&fs_devices->device_list_mutex);
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
536 if (skip_device && skip_device == device)
537 continue;
538 if (devt && devt != device->devt)
539 continue;
540 if (fs_devices->opened) {
541 if (devt)
542 ret = -EBUSY;
543 break;
544 }
545
546 /* delete the stale device */
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
550
551 freed = true;
552 }
553 mutex_unlock(&fs_devices->device_list_mutex);
554
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
559 }
560 }
561
562 /* If there is at least one freed device return 0. */
563 if (freed)
564 return 0;
565
566 return ret;
567}
568
569static struct btrfs_fs_devices *find_fsid_by_device(
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
572{
573 struct btrfs_fs_devices *fsid_fs_devices;
574 struct btrfs_fs_devices *devt_fs_devices;
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 bool found_by_devt = false;
578
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
586
587 /*
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
590 * not supported.
591 */
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
594
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
598
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
602 break;
603 }
604 }
605 if (found_by_devt)
606 break;
607 }
608
609 if (found_by_devt) {
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
613 /* Stale device. */
614 return NULL;
615 } else {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
618 }
619 } else {
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* New device. */
625 if (fsid_fs_devices == NULL) {
626 return NULL;
627 } else {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
630 return NULL;
631 }
632 }
633
634 /* Not reached. */
635}
636
637/*
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
641 */
642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 struct btrfs_device *device, blk_mode_t flags,
644 void *holder)
645{
646 struct bdev_handle *bdev_handle;
647 struct btrfs_super_block *disk_super;
648 u64 devid;
649 int ret;
650
651 if (device->bdev)
652 return -EINVAL;
653 if (!device->name)
654 return -EINVAL;
655
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 &bdev_handle, &disk_super);
658 if (ret)
659 return ret;
660
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
663 goto error_free_page;
664
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 goto error_free_page;
667
668 device->generation = btrfs_super_generation(disk_super);
669
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 pr_err(
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
675 goto error_free_page;
676 }
677
678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 fs_devices->seeding = true;
680 } else {
681 if (bdev_read_only(bdev_handle->bdev))
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 else
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 }
686
687 if (!bdev_nonrot(bdev_handle->bdev))
688 fs_devices->rotating = true;
689
690 if (bdev_max_discard_sectors(bdev_handle->bdev))
691 fs_devices->discardable = true;
692
693 device->bdev_handle = bdev_handle;
694 device->bdev = bdev_handle->bdev;
695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
696
697 fs_devices->open_devices++;
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 fs_devices->rw_devices++;
701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
702 }
703 btrfs_release_disk_super(disk_super);
704
705 return 0;
706
707error_free_page:
708 btrfs_release_disk_super(disk_super);
709 bdev_release(bdev_handle);
710
711 return -EINVAL;
712}
713
714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715{
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720}
721
722/*
723 * Add new device to list of registered devices
724 *
725 * Returns:
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
728 */
729static noinline struct btrfs_device *device_list_add(const char *path,
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
732{
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = NULL;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738 dev_t path_devt;
739 int error;
740 bool same_fsid_diff_dev = false;
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743
744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
745 btrfs_err(NULL,
746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 path);
748 return ERR_PTR(-EAGAIN);
749 }
750
751 error = lookup_bdev(path, &path_devt);
752 if (error) {
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 path, error);
755 return ERR_PTR(error);
756 }
757
758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
759
760 if (!fs_devices) {
761 fs_devices = alloc_fs_devices(disk_super->fsid);
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
764
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
774 }
775
776 mutex_lock(&fs_devices->device_list_mutex);
777 list_add(&fs_devices->fs_list, &fs_uuids);
778
779 device = NULL;
780 } else {
781 struct btrfs_dev_lookup_args args = {
782 .devid = devid,
783 .uuid = disk_super->dev_item.uuid,
784 };
785
786 mutex_lock(&fs_devices->device_list_mutex);
787 device = btrfs_find_device(fs_devices, &args);
788
789 if (found_transid > fs_devices->latest_generation) {
790 memcpy(fs_devices->fsid, disk_super->fsid,
791 BTRFS_FSID_SIZE);
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
794 }
795 }
796
797 if (!device) {
798 unsigned int nofs_flag;
799
800 if (fs_devices->opened) {
801 btrfs_err(NULL,
802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
805 mutex_unlock(&fs_devices->device_list_mutex);
806 return ERR_PTR(-EBUSY);
807 }
808
809 nofs_flag = memalloc_nofs_save();
810 device = btrfs_alloc_device(NULL, &devid,
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
813 if (IS_ERR(device)) {
814 mutex_unlock(&fs_devices->device_list_mutex);
815 /* we can safely leave the fs_devices entry around */
816 return device;
817 }
818
819 device->devt = path_devt;
820
821 list_add_rcu(&device->dev_list, &fs_devices->devices);
822 fs_devices->num_devices++;
823
824 device->fs_devices = fs_devices;
825 *new_device_added = true;
826
827 if (disk_super->label[0])
828 pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
832 else
833 pr_info(
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
837
838 } else if (!device->name || strcmp(device->name->str, path)) {
839 /*
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
846 * different name. or
847 * b. The missing-disk-which-was-replaced, has
848 * reappeared now.
849 *
850 * We must allow 1 and 2a above. But 2b would be a spurious
851 * and unintentional.
852 *
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
857 */
858
859 /*
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
864 */
865 if (!fs_devices->opened && found_transid < device->generation) {
866 /*
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
872 */
873 mutex_unlock(&fs_devices->device_list_mutex);
874 btrfs_err(NULL,
875"device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
877 return ERR_PTR(-EEXIST);
878 }
879
880 /*
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
883 *
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
887 * torn down.
888 */
889 if (device->bdev) {
890 if (device->devt != path_devt) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(NULL,
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
895 current->comm,
896 task_pid_nr(current));
897 return ERR_PTR(-EEXIST);
898 }
899 btrfs_info_in_rcu(NULL,
900 "devid %llu device path %s changed to %s scanned by %s (%d)",
901 devid, btrfs_dev_name(device),
902 path, current->comm,
903 task_pid_nr(current));
904 }
905
906 name = rcu_string_strdup(path, GFP_NOFS);
907 if (!name) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 return ERR_PTR(-ENOMEM);
910 }
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 fs_devices->missing_devices--;
915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
916 }
917 device->devt = path_devt;
918 }
919
920 /*
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
924 * (as above).
925 */
926 if (!fs_devices->opened) {
927 device->generation = found_transid;
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
930 }
931
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return device;
936}
937
938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939{
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
943 int ret = 0;
944
945 lockdep_assert_held(&uuid_mutex);
946
947 fs_devices = alloc_fs_devices(orig->fsid);
948 if (IS_ERR(fs_devices))
949 return fs_devices;
950
951 fs_devices->total_devices = orig->total_devices;
952
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 const char *dev_path = NULL;
955
956 /*
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
959 */
960 if (orig_dev->name)
961 dev_path = orig_dev->name->str;
962
963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 orig_dev->uuid, dev_path);
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
967 goto error;
968 }
969
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
972
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 if (!zone_info) {
975 btrfs_free_device(device);
976 ret = -ENOMEM;
977 goto error;
978 }
979 device->zone_info = zone_info;
980 }
981
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
985 }
986 return fs_devices;
987error:
988 free_fs_devices(fs_devices);
989 return ERR_PTR(ret);
990}
991
992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 struct btrfs_device **latest_dev)
994{
995 struct btrfs_device *device, *next;
996
997 /* This is the initialized path, it is safe to release the devices. */
998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state) &&
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
1004 (!*latest_dev ||
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
1007 }
1008 continue;
1009 }
1010
1011 /*
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1014 */
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 continue;
1017
1018 if (device->bdev_handle) {
1019 bdev_release(device->bdev_handle);
1020 device->bdev = NULL;
1021 device->bdev_handle = NULL;
1022 fs_devices->open_devices--;
1023 }
1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 list_del_init(&device->dev_alloc_list);
1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 fs_devices->rw_devices--;
1028 }
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
1031 btrfs_free_device(device);
1032 }
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042 struct btrfs_device *latest_dev = NULL;
1043 struct btrfs_fs_devices *seed_dev;
1044
1045 mutex_lock(&uuid_mutex);
1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051 fs_devices->latest_dev = latest_dev;
1052
1053 mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058 if (!device->bdev)
1059 return;
1060
1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1064 }
1065
1066 bdev_release(device->bdev_handle);
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1077 }
1078
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 fs_devices->missing_devices--;
1085 }
1086
1087 btrfs_close_bdev(device);
1088 if (device->bdev) {
1089 fs_devices->open_devices--;
1090 device->bdev = NULL;
1091 }
1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 btrfs_destroy_dev_zone_info(device);
1094
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
1098
1099 /*
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1109 */
1110 device->last_flush_error = 0;
1111
1112 /* Verify the device is back in a pristine state */
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121 struct btrfs_device *device, *tmp;
1122
1123 lockdep_assert_held(&uuid_mutex);
1124
1125 if (--fs_devices->opened > 0)
1126 return;
1127
1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 btrfs_close_one_device(device);
1130
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
1133 fs_devices->opened = 0;
1134 fs_devices->seeding = false;
1135 fs_devices->fs_info = NULL;
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140 LIST_HEAD(list);
1141 struct btrfs_fs_devices *tmp;
1142
1143 mutex_lock(&uuid_mutex);
1144 close_fs_devices(fs_devices);
1145 if (!fs_devices->opened) {
1146 list_splice_init(&fs_devices->seed_list, &list);
1147
1148 /*
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1152 * fully freed.
1153 */
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1157 }
1158 }
1159
1160
1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 close_fs_devices(fs_devices);
1163 list_del(&fs_devices->seed_list);
1164 free_fs_devices(fs_devices);
1165 }
1166 mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 blk_mode_t flags, void *holder)
1171{
1172 struct btrfs_device *device;
1173 struct btrfs_device *latest_dev = NULL;
1174 struct btrfs_device *tmp_device;
1175
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 dev_list) {
1178 int ret;
1179
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 if (ret == 0 &&
1182 (!latest_dev || device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1188 }
1189 }
1190 if (fs_devices->open_devices == 0)
1191 return -EINVAL;
1192
1193 fs_devices->opened = 1;
1194 fs_devices->latest_dev = latest_dev;
1195 fs_devices->total_rw_bytes = 0;
1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198
1199 return 0;
1200}
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
1204{
1205 const struct btrfs_device *dev1, *dev2;
1206
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210 if (dev1->devid < dev2->devid)
1211 return -1;
1212 else if (dev1->devid > dev2->devid)
1213 return 1;
1214 return 0;
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 blk_mode_t flags, void *holder)
1219{
1220 int ret;
1221
1222 lockdep_assert_held(&uuid_mutex);
1223 /*
1224 * The device_list_mutex cannot be taken here in case opening the
1225 * underlying device takes further locks like open_mutex.
1226 *
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1229 */
1230
1231 if (fs_devices->opened) {
1232 fs_devices->opened++;
1233 ret = 0;
1234 } else {
1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 ret = open_fs_devices(fs_devices, flags, holder);
1237 }
1238
1239 return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244 struct page *page = virt_to_page(super);
1245
1246 put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 u64 bytenr, u64 bytenr_orig)
1251{
1252 struct btrfs_super_block *disk_super;
1253 struct page *page;
1254 void *p;
1255 pgoff_t index;
1256
1257 /* make sure our super fits in the device */
1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 return ERR_PTR(-EINVAL);
1260
1261 /* make sure our super fits in the page */
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
1264
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
1269
1270 /* pull in the page with our super */
1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273 if (IS_ERR(page))
1274 return ERR_CAST(page);
1275
1276 p = page_address(page);
1277
1278 /* align our pointer to the offset of the super block */
1279 disk_super = p + offset_in_page(bytenr);
1280
1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 btrfs_release_disk_super(p);
1284 return ERR_PTR(-EINVAL);
1285 }
1286
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290 return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295 int ret;
1296
1297 mutex_lock(&uuid_mutex);
1298 ret = btrfs_free_stale_devices(devt, NULL);
1299 mutex_unlock(&uuid_mutex);
1300
1301 return ret;
1302}
1303
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 bool mount_arg_dev)
1315{
1316 struct btrfs_super_block *disk_super;
1317 bool new_device_added = false;
1318 struct btrfs_device *device = NULL;
1319 struct bdev_handle *bdev_handle;
1320 u64 bytenr, bytenr_orig;
1321 int ret;
1322
1323 lockdep_assert_held(&uuid_mutex);
1324
1325 /*
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 */
1331
1332 /*
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1341 */
1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_handle))
1344 return ERR_CAST(bdev_handle);
1345
1346 bytenr_orig = btrfs_sb_offset(0);
1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348 if (ret) {
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1351 }
1352
1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354 bytenr_orig);
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1358 }
1359
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 dev_t devt;
1363
1364 ret = lookup_bdev(path, &devt);
1365 if (ret)
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 path, ret);
1368 else
1369 btrfs_free_stale_devices(devt, NULL);
1370
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 device = NULL;
1373 goto free_disk_super;
1374 }
1375
1376 device = device_list_add(path, disk_super, &new_device_added);
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381 btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384 bdev_release(bdev_handle);
1385
1386 return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
1395{
1396 u64 physical_start, physical_end;
1397
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1403
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
1409 }
1410 }
1411 return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 return BTRFS_DEVICE_RANGE_RESERVED;
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1420 /*
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1424 */
1425 return 0;
1426 default:
1427 BUG();
1428 }
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1433 u64 num_bytes)
1434{
1435 u64 zone_size = device->zone_info->zone_size;
1436 u64 pos;
1437 int ret;
1438 bool changed = false;
1439
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1445 num_bytes);
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1448 *hole_start = pos;
1449 changed = true;
1450 if (*hole_size < num_bytes)
1451 break;
1452 }
1453
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456 /* Range is ensured to be empty */
1457 if (!ret)
1458 return changed;
1459
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1463 *hole_size = 0;
1464 return true;
1465 }
1466
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1469 changed = true;
1470 }
1471
1472 return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488{
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
1523
1524 break;
1525 }
1526
1527 return changed;
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
1559{
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1565 u64 search_start;
1566 u64 hole_size;
1567 u64 max_hole_start;
1568 u64 max_hole_size = 0;
1569 u64 extent_end;
1570 u64 search_end = device->total_bytes;
1571 int ret;
1572 int slot;
1573 struct extent_buffer *l;
1574
1575 search_start = dev_extent_search_start(device);
1576 max_hole_start = search_start;
1577
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto out;
1585 }
1586again:
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 ret = -ENOSPC;
1590 goto out;
1591 }
1592
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1596
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601 ret = btrfs_search_backwards(root, &key, path);
1602 if (ret < 0)
1603 goto out;
1604
1605 while (search_start < search_end) {
1606 l = path->nodes[0];
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret == 0)
1611 continue;
1612 if (ret < 0)
1613 goto out;
1614
1615 break;
1616 }
1617 btrfs_item_key_to_cpu(l, &key, slot);
1618
1619 if (key.objectid < device->devid)
1620 goto next;
1621
1622 if (key.objectid > device->devid)
1623 break;
1624
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 goto next;
1627
1628 if (key.offset > search_end)
1629 break;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1634 num_bytes);
1635
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1639 }
1640
1641 /*
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1648 * caller.
1649 */
1650 if (hole_size >= num_bytes) {
1651 ret = 0;
1652 goto out;
1653 }
1654 }
1655
1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1658 dev_extent);
1659 if (extent_end > search_start)
1660 search_start = extent_end;
1661next:
1662 path->slots[0]++;
1663 cond_resched();
1664 }
1665
1666 /*
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1670 */
1671 if (search_end > search_start) {
1672 hole_size = search_end - search_start;
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 num_bytes)) {
1675 btrfs_release_path(path);
1676 goto again;
1677 }
1678
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1682 }
1683 }
1684
1685 /* See above. */
1686 if (max_hole_size < num_bytes)
1687 ret = -ENOSPC;
1688 else
1689 ret = 0;
1690
1691 ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1695 if (len)
1696 *len = max_hole_size;
1697 return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 start, u64 *dev_extent_len)
1703{
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
1706 int ret;
1707 struct btrfs_path *path;
1708 struct btrfs_key key;
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
1712
1713 path = btrfs_alloc_path();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 key.objectid = device->devid;
1718 key.offset = start;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722 if (ret > 0) {
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
1725 if (ret)
1726 goto out;
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
1733 key = found_key;
1734 btrfs_release_path(path);
1735 goto again;
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
1740 } else {
1741 goto out;
1742 }
1743
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
1746 ret = btrfs_del_item(trans, root, path);
1747 if (ret == 0)
1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755{
1756 struct rb_node *n;
1757 u64 ret = 0;
1758
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
1761 if (n) {
1762 struct btrfs_chunk_map *map;
1763
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
1766 }
1767 read_unlock(&fs_info->mapping_tree_lock);
1768
1769 return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 u64 *devid_ret)
1774{
1775 int ret;
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
1778 struct btrfs_path *path;
1779
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
1783
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1787
1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789 if (ret < 0)
1790 goto error;
1791
1792 if (ret == 0) {
1793 /* Corruption */
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = -EUCLEAN;
1796 goto error;
1797 }
1798
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
1801 BTRFS_DEV_ITEM_KEY);
1802 if (ret) {
1803 *devid_ret = 1;
1804 } else {
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 path->slots[0]);
1807 *devid_ret = found_key.offset + 1;
1808 }
1809 ret = 0;
1810error:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_device *device)
1821{
1822 int ret;
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1827 unsigned long ptr;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
1835 key.offset = device->devid;
1836
1837 btrfs_reserve_chunk_metadata(trans, true);
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
1840 btrfs_trans_release_chunk_metadata(trans);
1841 if (ret)
1842 goto out;
1843
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
1848 btrfs_set_device_generation(leaf, dev_item, 0);
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862 ptr = btrfs_device_uuid(dev_item);
1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 ptr = btrfs_device_fsid(dev_item);
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
1867 btrfs_mark_buffer_dirty(trans, leaf);
1868
1869 ret = 0;
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883 struct path path;
1884 int ret;
1885
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 if (ret)
1888 return;
1889
1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891 path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
1896{
1897 struct btrfs_root *root = device->fs_info->chunk_root;
1898 int ret;
1899 struct btrfs_path *path;
1900 struct btrfs_key key;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
1910 btrfs_reserve_chunk_metadata(trans, false);
1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 btrfs_trans_release_chunk_metadata(trans);
1913 if (ret) {
1914 if (ret > 0)
1915 ret = -ENOENT;
1916 goto out;
1917 }
1918
1919 ret = btrfs_del_item(trans, root, path);
1920out:
1921 btrfs_free_path(path);
1922 return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 u64 num_devices)
1932{
1933 u64 all_avail;
1934 unsigned seq;
1935 int i;
1936
1937 do {
1938 seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947 continue;
1948
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
1951 }
1952
1953 return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
1959 struct btrfs_device *next_device;
1960
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
1965 return next_device;
1966 }
1967
1968 return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 struct btrfs_device *next_device)
1979{
1980 struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982 if (!next_device)
1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984 device);
1985 ASSERT(next_device);
1986
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1990
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003 down_read(&fs_info->dev_replace.rwsem);
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2006 num_devices--;
2007 }
2008 up_read(&fs_info->dev_replace.rwsem);
2009
2010 return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2015{
2016 struct btrfs_super_block *disk_super;
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
2019 int ret;
2020
2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 if (IS_ERR(disk_super))
2023 return;
2024
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2028
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030 if (ret)
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
2038{
2039 int copy_num;
2040
2041 if (!bdev)
2042 return;
2043
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 if (bdev_is_zoned(bdev))
2046 btrfs_reset_sb_log_zones(bdev, copy_num);
2047 else
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049 }
2050
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054 /* Update ctime/mtime for device path for libblkid */
2055 update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
2060 struct bdev_handle **bdev_handle)
2061{
2062 struct btrfs_trans_handle *trans;
2063 struct btrfs_device *device;
2064 struct btrfs_fs_devices *cur_devices;
2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066 u64 num_devices;
2067 int ret = 0;
2068
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 return -EINVAL;
2072 }
2073
2074 /*
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2078 */
2079 num_devices = btrfs_num_devices(fs_info);
2080
2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082 if (ret)
2083 return ret;
2084
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2086 if (!device) {
2087 if (args->missing)
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 else
2090 ret = -ENOENT;
2091 return ret;
2092 }
2093
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
2097 btrfs_dev_name(device), device->devid);
2098 return -ETXTBSY;
2099 }
2100
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2113 }
2114
2115 ret = btrfs_shrink_device(device, 0);
2116 if (ret)
2117 goto error_undo;
2118
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
2122 goto error_undo;
2123 }
2124
2125 ret = btrfs_rm_dev_item(trans, device);
2126 if (ret) {
2127 /* Any error in dev item removal is critical */
2128 btrfs_crit(fs_info,
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2133 return ret;
2134 }
2135
2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 btrfs_scrub_cancel_dev(device);
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
2147 */
2148
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed_list.
2153 */
2154 cur_devices = device->fs_devices;
2155 mutex_lock(&fs_devices->device_list_mutex);
2156 list_del_rcu(&device->dev_list);
2157
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2163
2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 cur_devices->missing_devices--;
2166
2167 btrfs_assign_next_active_device(device, NULL);
2168
2169 if (device->bdev_handle) {
2170 cur_devices->open_devices--;
2171 /* remove sysfs entry */
2172 btrfs_sysfs_remove_device(device);
2173 }
2174
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 mutex_unlock(&fs_devices->device_list_mutex);
2178
2179 /*
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2182 * free the device.
2183 *
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 * write lock, and bdev_release() will pull in the ->open_mutex on
2186 * the block device and it's dependencies. Instead just flush the
2187 * device and let the caller do the final bdev_release.
2188 */
2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2191 device->name->str);
2192 if (device->bdev) {
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2195 }
2196 }
2197
2198 *bdev_handle = device->bdev_handle;
2199 synchronize_rcu();
2200 btrfs_free_device(device);
2201
2202 /*
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2208 */
2209 if (cur_devices->num_devices == 0) {
2210 list_del_init(&cur_devices->seed_list);
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
2213 free_fs_devices(cur_devices);
2214 }
2215
2216 ret = btrfs_commit_transaction(trans);
2217
2218 return ret;
2219
2220error_undo:
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 mutex_lock(&fs_info->chunk_mutex);
2223 list_add(&device->dev_alloc_list,
2224 &fs_devices->alloc_list);
2225 device->fs_devices->rw_devices++;
2226 mutex_unlock(&fs_info->chunk_mutex);
2227 }
2228 return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233 struct btrfs_fs_devices *fs_devices;
2234
2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237 /*
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2242 */
2243 fs_devices = srcdev->fs_devices;
2244
2245 list_del_rcu(&srcdev->dev_list);
2246 list_del(&srcdev->dev_alloc_list);
2247 fs_devices->num_devices--;
2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 fs_devices->missing_devices--;
2250
2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 fs_devices->rw_devices--;
2253
2254 if (srcdev->bdev)
2255 fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262 mutex_lock(&uuid_mutex);
2263
2264 btrfs_close_bdev(srcdev);
2265 synchronize_rcu();
2266 btrfs_free_device(srcdev);
2267
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
2270 /*
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2275 */
2276 ASSERT(fs_devices->seeding);
2277
2278 list_del_init(&fs_devices->seed_list);
2279 close_fs_devices(fs_devices);
2280 free_fs_devices(fs_devices);
2281 }
2282 mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289 mutex_lock(&fs_devices->device_list_mutex);
2290
2291 btrfs_sysfs_remove_device(tgtdev);
2292
2293 if (tgtdev->bdev)
2294 fs_devices->open_devices--;
2295
2296 fs_devices->num_devices--;
2297
2298 btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300 list_del_rcu(&tgtdev->dev_list);
2301
2302 mutex_unlock(&fs_devices->device_list_mutex);
2303
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 tgtdev->name->str);
2306
2307 btrfs_close_bdev(tgtdev);
2308 synchronize_rcu();
2309 btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2332 const char *path)
2333{
2334 struct btrfs_super_block *disk_super;
2335 struct bdev_handle *bdev_handle;
2336 int ret;
2337
2338 if (!path || !path[0])
2339 return -EINVAL;
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2342 return 0;
2343 }
2344
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2349 return -ENOMEM;
2350 }
2351
2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 &bdev_handle, &disk_super);
2354 if (ret) {
2355 btrfs_put_dev_args_from_path(args);
2356 return ret;
2357 }
2358
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 else
2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 btrfs_release_disk_super(disk_super);
2366 bdev_release(bdev_handle);
2367 return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377 kfree(args->uuid);
2378 kfree(args->fsid);
2379 args->uuid = NULL;
2380 args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
2386{
2387 BTRFS_DEV_LOOKUP_ARGS(args);
2388 struct btrfs_device *device;
2389 int ret;
2390
2391 if (devid) {
2392 args.devid = devid;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
2394 if (!device)
2395 return ERR_PTR(-ENOENT);
2396 return device;
2397 }
2398
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 if (ret)
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2404 if (!device)
2405 return ERR_PTR(-ENOENT);
2406 return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2414
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2417 return ERR_PTR(-EINVAL);
2418
2419 /*
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2422 */
2423 seed_devices = alloc_fs_devices(NULL);
2424 if (IS_ERR(seed_devices))
2425 return seed_devices;
2426
2427 /*
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2431 * multiple fs seed.
2432 */
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
2436 return old_devices;
2437 }
2438
2439 list_add(&old_devices->fs_list, &fs_uuids);
2440
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 mutex_init(&seed_devices->device_list_mutex);
2446
2447 return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2456{
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2460 u64 super_flags;
2461
2462 /*
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2465 */
2466 lockdep_assert_held(&uuid_mutex);
2467
2468 /*
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2474 *
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2479 */
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 synchronize_rcu);
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2486
2487 fs_devices->seeding = false;
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
2490 fs_devices->missing_devices = 0;
2491 fs_devices->rotating = false;
2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494 generate_random_uuid(fs_devices->fsid);
2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507{
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 BTRFS_UUID_SIZE);
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 BTRFS_FSID_SIZE);
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(trans, leaf);
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576error:
2577 btrfs_free_path(path);
2578 return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
2586 struct bdev_handle *bdev_handle;
2587 struct super_block *sb = fs_info->sb;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 struct btrfs_fs_devices *seed_devices = NULL;
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
2592 int ret = 0;
2593 bool seeding_dev = false;
2594 bool locked = false;
2595
2596 if (sb_rdonly(sb) && !fs_devices->seeding)
2597 return -EROFS;
2598
2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600 fs_info->bdev_holder, NULL);
2601 if (IS_ERR(bdev_handle))
2602 return PTR_ERR(bdev_handle);
2603
2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605 ret = -EINVAL;
2606 goto error;
2607 }
2608
2609 if (fs_devices->seeding) {
2610 seeding_dev = true;
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
2613 locked = true;
2614 }
2615
2616 sync_blockdev(bdev_handle->bdev);
2617
2618 rcu_read_lock();
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 if (device->bdev == bdev_handle->bdev) {
2621 ret = -EEXIST;
2622 rcu_read_unlock();
2623 goto error;
2624 }
2625 }
2626 rcu_read_unlock();
2627
2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 if (IS_ERR(device)) {
2630 /* we can safely leave the fs_devices entry around */
2631 ret = PTR_ERR(device);
2632 goto error;
2633 }
2634
2635 device->fs_info = fs_info;
2636 device->bdev_handle = bdev_handle;
2637 device->bdev = bdev_handle->bdev;
2638 ret = lookup_bdev(device_path, &device->devt);
2639 if (ret)
2640 goto error_free_device;
2641
2642 ret = btrfs_get_dev_zone_info(device, false);
2643 if (ret)
2644 goto error_free_device;
2645
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 goto error_free_zone;
2650 }
2651
2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 device->generation = trans->transid;
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
2657 device->total_bytes =
2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 device->disk_total_bytes = device->total_bytes;
2660 device->commit_total_bytes = device->total_bytes;
2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 device->dev_stats_valid = 1;
2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666 if (seeding_dev) {
2667 btrfs_clear_sb_rdonly(sb);
2668
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
2673 btrfs_abort_transaction(trans, ret);
2674 goto error_trans;
2675 }
2676 }
2677
2678 mutex_lock(&fs_devices->device_list_mutex);
2679 if (seeding_dev) {
2680 btrfs_setup_sprout(fs_info, seed_devices);
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 device);
2683 }
2684
2685 device->fs_devices = fs_devices;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
2695
2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698 if (!bdev_nonrot(device->bdev))
2699 fs_devices->rotating = true;
2700
2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
2705
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
2709
2710 /*
2711 * we've got more storage, clear any full flags on the space
2712 * infos
2713 */
2714 btrfs_clear_space_info_full(fs_info);
2715
2716 mutex_unlock(&fs_info->chunk_mutex);
2717
2718 /* Add sysfs device entry */
2719 btrfs_sysfs_add_device(device);
2720
2721 mutex_unlock(&fs_devices->device_list_mutex);
2722
2723 if (seeding_dev) {
2724 mutex_lock(&fs_info->chunk_mutex);
2725 ret = init_first_rw_device(trans);
2726 mutex_unlock(&fs_info->chunk_mutex);
2727 if (ret) {
2728 btrfs_abort_transaction(trans, ret);
2729 goto error_sysfs;
2730 }
2731 }
2732
2733 ret = btrfs_add_dev_item(trans, device);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto error_sysfs;
2737 }
2738
2739 if (seeding_dev) {
2740 ret = btrfs_finish_sprout(trans);
2741 if (ret) {
2742 btrfs_abort_transaction(trans, ret);
2743 goto error_sysfs;
2744 }
2745
2746 /*
2747 * fs_devices now represents the newly sprouted filesystem and
2748 * its fsid has been changed by btrfs_sprout_splice().
2749 */
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 }
2752
2753 ret = btrfs_commit_transaction(trans);
2754
2755 if (seeding_dev) {
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
2758 locked = false;
2759
2760 if (ret) /* transaction commit */
2761 return ret;
2762
2763 ret = btrfs_relocate_sys_chunks(fs_info);
2764 if (ret < 0)
2765 btrfs_handle_fs_error(fs_info, ret,
2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2770 return 0;
2771 ret = PTR_ERR(trans);
2772 trans = NULL;
2773 goto error_sysfs;
2774 }
2775 ret = btrfs_commit_transaction(trans);
2776 }
2777
2778 /*
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2781 * device.
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2784 */
2785 btrfs_forget_devices(device->devt);
2786
2787 /* Update ctime/mtime for blkid or udev */
2788 update_dev_time(device_path);
2789
2790 return ret;
2791
2792error_sysfs:
2793 btrfs_sysfs_remove_device(device);
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811 if (seeding_dev)
2812 btrfs_set_sb_rdonly(sb);
2813 if (trans)
2814 btrfs_end_transaction(trans);
2815error_free_zone:
2816 btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818 btrfs_free_device(device);
2819error:
2820 bdev_release(bdev_handle);
2821 if (locked) {
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2824 }
2825 return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
2830{
2831 int ret;
2832 struct btrfs_path *path;
2833 struct btrfs_root *root = device->fs_info->chunk_root;
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2837
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 if (ret < 0)
2848 goto out;
2849
2850 if (ret > 0) {
2851 ret = -ENOENT;
2852 goto out;
2853 }
2854
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
2867 btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870 btrfs_free_path(path);
2871 return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 struct btrfs_device *device, u64 new_size)
2876{
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 u64 old_total;
2880 u64 diff;
2881 int ret;
2882
2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 return -EACCES;
2885
2886 new_size = round_down(new_size, fs_info->sectorsize);
2887
2888 mutex_lock(&fs_info->chunk_mutex);
2889 old_total = btrfs_super_total_bytes(super_copy);
2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892 if (new_size <= device->total_bytes ||
2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 mutex_unlock(&fs_info->chunk_mutex);
2895 return -EINVAL;
2896 }
2897
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2900 device->fs_devices->total_rw_bytes += diff;
2901 atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
2905 btrfs_clear_space_info_full(device->fs_info);
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
2909 mutex_unlock(&fs_info->chunk_mutex);
2910
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2914
2915 return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919{
2920 struct btrfs_fs_info *fs_info = trans->fs_info;
2921 struct btrfs_root *root = fs_info->chunk_root;
2922 int ret;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2925
2926 path = btrfs_alloc_path();
2927 if (!path)
2928 return -ENOMEM;
2929
2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 if (ret < 0)
2936 goto out;
2937 else if (ret > 0) { /* Logic error or corruption */
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
2940 ret = -ENOENT;
2941 goto out;
2942 }
2943
2944 ret = btrfs_del_item(trans, root, path);
2945 if (ret < 0)
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
2948out:
2949 btrfs_free_path(path);
2950 return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954{
2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2958 u8 *ptr;
2959 int ret = 0;
2960 u32 num_stripes;
2961 u32 array_size;
2962 u32 len = 0;
2963 u32 cur;
2964 struct btrfs_key key;
2965
2966 lockdep_assert_held(&fs_info->chunk_mutex);
2967 array_size = btrfs_super_sys_array_size(super_copy);
2968
2969 ptr = super_copy->sys_chunk_array;
2970 cur = 0;
2971
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976 len = sizeof(*disk_key);
2977
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2982 } else {
2983 ret = -EIO;
2984 break;
2985 }
2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2989 array_size -= len;
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2991 } else {
2992 ptr += len;
2993 cur += len;
2994 }
2995 }
2996 return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3001{
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3007
3008 while (node) {
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 prev = node;
3011 prev_map = map;
3012
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3017 } else {
3018 refcount_inc(&map->refs);
3019 return map;
3020 }
3021 }
3022
3023 if (!prev)
3024 return NULL;
3025
3026 orig_prev = prev;
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 }
3031
3032 if (!prev) {
3033 prev = orig_prev;
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 }
3039 }
3040
3041 if (prev) {
3042 u64 end = logical + length;
3043
3044 /*
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3048 */
3049 if (end < logical)
3050 end = U64_MAX;
3051
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3055 return prev_map;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3064{
3065 struct btrfs_chunk_map *map;
3066
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3070
3071 return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
3084{
3085 struct btrfs_chunk_map *map;
3086
3087 map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089 if (unlikely(!map)) {
3090 btrfs_crit(fs_info,
3091 "unable to find chunk map for logical %llu length %llu",
3092 logical, length);
3093 return ERR_PTR(-EINVAL);
3094 }
3095
3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097 btrfs_crit(fs_info,
3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 logical, logical + length, map->start,
3100 map->start + map->chunk_len);
3101 btrfs_free_chunk_map(map);
3102 return ERR_PTR(-EINVAL);
3103 }
3104
3105 /* Callers are responsible for dropping the reference. */
3106 return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
3112 int i;
3113
3114 /*
3115 * Removing chunk items and updating the device items in the chunks btree
3116 * requires holding the chunk_mutex.
3117 * See the comment at btrfs_chunk_alloc() for the details.
3118 */
3119 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121 for (i = 0; i < map->num_stripes; i++) {
3122 int ret;
3123
3124 ret = btrfs_update_device(trans, map->stripes[i].dev);
3125 if (ret)
3126 return ret;
3127 }
3128
3129 return btrfs_free_chunk(trans, chunk_offset);
3130}
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134 struct btrfs_fs_info *fs_info = trans->fs_info;
3135 struct btrfs_chunk_map *map;
3136 u64 dev_extent_len = 0;
3137 int i, ret = 0;
3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141 if (IS_ERR(map)) {
3142 /*
3143 * This is a logic error, but we don't want to just rely on the
3144 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 * do anything we still error out.
3146 */
3147 ASSERT(0);
3148 return PTR_ERR(map);
3149 }
3150
3151 /*
3152 * First delete the device extent items from the devices btree.
3153 * We take the device_list_mutex to avoid racing with the finishing phase
3154 * of a device replace operation. See the comment below before acquiring
3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 * because that can result in a deadlock when deleting the device extent
3157 * items from the devices btree - COWing an extent buffer from the btree
3158 * may result in allocating a new metadata chunk, which would attempt to
3159 * lock again fs_info->chunk_mutex.
3160 */
3161 mutex_lock(&fs_devices->device_list_mutex);
3162 for (i = 0; i < map->num_stripes; i++) {
3163 struct btrfs_device *device = map->stripes[i].dev;
3164 ret = btrfs_free_dev_extent(trans, device,
3165 map->stripes[i].physical,
3166 &dev_extent_len);
3167 if (ret) {
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172
3173 if (device->bytes_used > 0) {
3174 mutex_lock(&fs_info->chunk_mutex);
3175 btrfs_device_set_bytes_used(device,
3176 device->bytes_used - dev_extent_len);
3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 btrfs_clear_space_info_full(fs_info);
3179 mutex_unlock(&fs_info->chunk_mutex);
3180 }
3181 }
3182 mutex_unlock(&fs_devices->device_list_mutex);
3183
3184 /*
3185 * We acquire fs_info->chunk_mutex for 2 reasons:
3186 *
3187 * 1) Just like with the first phase of the chunk allocation, we must
3188 * reserve system space, do all chunk btree updates and deletions, and
3189 * update the system chunk array in the superblock while holding this
3190 * mutex. This is for similar reasons as explained on the comment at
3191 * the top of btrfs_chunk_alloc();
3192 *
3193 * 2) Prevent races with the final phase of a device replace operation
3194 * that replaces the device object associated with the map's stripes,
3195 * because the device object's id can change at any time during that
3196 * final phase of the device replace operation
3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 * replaced device and then see it with an ID of
3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 * the device item, which does not exists on the chunk btree.
3201 * The finishing phase of device replace acquires both the
3202 * device_list_mutex and the chunk_mutex, in that order, so we are
3203 * safe by just acquiring the chunk_mutex.
3204 */
3205 trans->removing_chunk = true;
3206 mutex_lock(&fs_info->chunk_mutex);
3207
3208 check_system_chunk(trans, map->type);
3209
3210 ret = remove_chunk_item(trans, map, chunk_offset);
3211 /*
3212 * Normally we should not get -ENOSPC since we reserved space before
3213 * through the call to check_system_chunk().
3214 *
3215 * Despite our system space_info having enough free space, we may not
3216 * be able to allocate extents from its block groups, because all have
3217 * an incompatible profile, which will force us to allocate a new system
3218 * block group with the right profile, or right after we called
3219 * check_system_space() above, a scrub turned the only system block group
3220 * with enough free space into RO mode.
3221 * This is explained with more detail at do_chunk_alloc().
3222 *
3223 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224 */
3225 if (ret == -ENOSPC) {
3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 struct btrfs_block_group *sys_bg;
3228
3229 sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 if (IS_ERR(sys_bg)) {
3231 ret = PTR_ERR(sys_bg);
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237 if (ret) {
3238 btrfs_abort_transaction(trans, ret);
3239 goto out;
3240 }
3241
3242 ret = remove_chunk_item(trans, map, chunk_offset);
3243 if (ret) {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247 } else if (ret) {
3248 btrfs_abort_transaction(trans, ret);
3249 goto out;
3250 }
3251
3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256 if (ret) {
3257 btrfs_abort_transaction(trans, ret);
3258 goto out;
3259 }
3260 }
3261
3262 mutex_unlock(&fs_info->chunk_mutex);
3263 trans->removing_chunk = false;
3264
3265 /*
3266 * We are done with chunk btree updates and deletions, so release the
3267 * system space we previously reserved (with check_system_chunk()).
3268 */
3269 btrfs_trans_release_chunk_metadata(trans);
3270
3271 ret = btrfs_remove_block_group(trans, map);
3272 if (ret) {
3273 btrfs_abort_transaction(trans, ret);
3274 goto out;
3275 }
3276
3277out:
3278 if (trans->removing_chunk) {
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 trans->removing_chunk = false;
3281 }
3282 /* once for us */
3283 btrfs_free_chunk_map(map);
3284 return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289 struct btrfs_root *root = fs_info->chunk_root;
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_block_group *block_group;
3292 u64 length;
3293 int ret;
3294
3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296 btrfs_err(fs_info,
3297 "relocate: not supported on extent tree v2 yet");
3298 return -EINVAL;
3299 }
3300
3301 /*
3302 * Prevent races with automatic removal of unused block groups.
3303 * After we relocate and before we remove the chunk with offset
3304 * chunk_offset, automatic removal of the block group can kick in,
3305 * resulting in a failure when calling btrfs_remove_chunk() below.
3306 *
3307 * Make sure to acquire this mutex before doing a tree search (dev
3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 * we release the path used to search the chunk/dev tree and before
3311 * the current task acquires this mutex and calls us.
3312 */
3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315 /* step one, relocate all the extents inside this chunk */
3316 btrfs_scrub_pause(fs_info);
3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 btrfs_scrub_continue(fs_info);
3319 if (ret) {
3320 /*
3321 * If we had a transaction abort, stop all running scrubs.
3322 * See transaction.c:cleanup_transaction() why we do it here.
3323 */
3324 if (BTRFS_FS_ERROR(fs_info))
3325 btrfs_scrub_cancel(fs_info);
3326 return ret;
3327 }
3328
3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 if (!block_group)
3331 return -ENOENT;
3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 length = block_group->length;
3334 btrfs_put_block_group(block_group);
3335
3336 /*
3337 * On a zoned file system, discard the whole block group, this will
3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 * resetting the zone fails, don't treat it as a fatal problem from the
3340 * filesystem's point of view.
3341 */
3342 if (btrfs_is_zoned(fs_info)) {
3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344 if (ret)
3345 btrfs_info(fs_info,
3346 "failed to reset zone %llu after relocation",
3347 chunk_offset);
3348 }
3349
3350 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351 chunk_offset);
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355 return ret;
3356 }
3357
3358 /*
3359 * step two, delete the device extents and the
3360 * chunk tree entries
3361 */
3362 ret = btrfs_remove_chunk(trans, chunk_offset);
3363 btrfs_end_transaction(trans);
3364 return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369 struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 struct btrfs_path *path;
3371 struct extent_buffer *leaf;
3372 struct btrfs_chunk *chunk;
3373 struct btrfs_key key;
3374 struct btrfs_key found_key;
3375 u64 chunk_type;
3376 bool retried = false;
3377 int failed = 0;
3378 int ret;
3379
3380 path = btrfs_alloc_path();
3381 if (!path)
3382 return -ENOMEM;
3383
3384again:
3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 key.offset = (u64)-1;
3387 key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389 while (1) {
3390 mutex_lock(&fs_info->reclaim_bgs_lock);
3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392 if (ret < 0) {
3393 mutex_unlock(&fs_info->reclaim_bgs_lock);
3394 goto error;
3395 }
3396 BUG_ON(ret == 0); /* Corruption */
3397
3398 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399 key.type);
3400 if (ret)
3401 mutex_unlock(&fs_info->reclaim_bgs_lock);
3402 if (ret < 0)
3403 goto error;
3404 if (ret > 0)
3405 break;
3406
3407 leaf = path->nodes[0];
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 chunk = btrfs_item_ptr(leaf, path->slots[0],
3411 struct btrfs_chunk);
3412 chunk_type = btrfs_chunk_type(leaf, chunk);
3413 btrfs_release_path(path);
3414
3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3417 if (ret == -ENOSPC)
3418 failed++;
3419 else
3420 BUG_ON(ret);
3421 }
3422 mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424 if (found_key.offset == 0)
3425 break;
3426 key.offset = found_key.offset - 1;
3427 }
3428 ret = 0;
3429 if (failed && !retried) {
3430 failed = 0;
3431 retried = true;
3432 goto again;
3433 } else if (WARN_ON(failed && retried)) {
3434 ret = -ENOSPC;
3435 }
3436error:
3437 btrfs_free_path(path);
3438 return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447 u64 chunk_offset)
3448{
3449 struct btrfs_block_group *cache;
3450 u64 bytes_used;
3451 u64 chunk_type;
3452
3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454 ASSERT(cache);
3455 chunk_type = cache->flags;
3456 btrfs_put_block_group(cache);
3457
3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459 return 0;
3460
3461 spin_lock(&fs_info->data_sinfo->lock);
3462 bytes_used = fs_info->data_sinfo->bytes_used;
3463 spin_unlock(&fs_info->data_sinfo->lock);
3464
3465 if (!bytes_used) {
3466 struct btrfs_trans_handle *trans;
3467 int ret;
3468
3469 trans = btrfs_join_transaction(fs_info->tree_root);
3470 if (IS_ERR(trans))
3471 return PTR_ERR(trans);
3472
3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474 btrfs_end_transaction(trans);
3475 if (ret < 0)
3476 return ret;
3477 return 1;
3478 }
3479
3480 return 0;
3481}
3482
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484 struct btrfs_balance_control *bctl)
3485{
3486 struct btrfs_root *root = fs_info->tree_root;
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_balance_item *item;
3489 struct btrfs_disk_balance_args disk_bargs;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_key key;
3493 int ret, err;
3494
3495 path = btrfs_alloc_path();
3496 if (!path)
3497 return -ENOMEM;
3498
3499 trans = btrfs_start_transaction(root, 0);
3500 if (IS_ERR(trans)) {
3501 btrfs_free_path(path);
3502 return PTR_ERR(trans);
3503 }
3504
3505 key.objectid = BTRFS_BALANCE_OBJECTID;
3506 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507 key.offset = 0;
3508
3509 ret = btrfs_insert_empty_item(trans, root, path, &key,
3510 sizeof(*item));
3511 if (ret)
3512 goto out;
3513
3514 leaf = path->nodes[0];
3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520 btrfs_set_balance_data(leaf, item, &disk_bargs);
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526 btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528 btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530 btrfs_free_path(path);
3531 err = btrfs_commit_transaction(trans);
3532 if (err && !ret)
3533 ret = err;
3534 return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539 struct btrfs_root *root = fs_info->tree_root;
3540 struct btrfs_trans_handle *trans;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3543 int ret, err;
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550 if (IS_ERR(trans)) {
3551 btrfs_free_path(path);
3552 return PTR_ERR(trans);
3553 }
3554
3555 key.objectid = BTRFS_BALANCE_OBJECTID;
3556 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557 key.offset = 0;
3558
3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560 if (ret < 0)
3561 goto out;
3562 if (ret > 0) {
3563 ret = -ENOENT;
3564 goto out;
3565 }
3566
3567 ret = btrfs_del_item(trans, root, path);
3568out:
3569 btrfs_free_path(path);
3570 err = btrfs_commit_transaction(trans);
3571 if (err && !ret)
3572 ret = err;
3573 return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582 /*
3583 * Turn on soft mode for chunk types that were being converted.
3584 */
3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592 /*
3593 * Turn on usage filter if is not already used. The idea is
3594 * that chunks that we have already balanced should be
3595 * reasonably full. Don't do it for chunks that are being
3596 * converted - that will keep us from relocating unconverted
3597 * (albeit full) chunks.
3598 */
3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603 bctl->data.usage = 90;
3604 }
3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609 bctl->sys.usage = 90;
3610 }
3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615 bctl->meta.usage = 90;
3616 }
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
3623{
3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625 int ret;
3626
3627 BUG_ON(!fs_info->balance_ctl);
3628
3629 spin_lock(&fs_info->balance_lock);
3630 fs_info->balance_ctl = NULL;
3631 spin_unlock(&fs_info->balance_lock);
3632
3633 kfree(bctl);
3634 ret = del_balance_item(fs_info);
3635 if (ret)
3636 btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters. Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644 struct btrfs_balance_args *bargs)
3645{
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
3648
3649 if (bargs->profiles & chunk_type)
3650 return 0;
3651
3652 return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656 struct btrfs_balance_args *bargs)
3657{
3658 struct btrfs_block_group *cache;
3659 u64 chunk_used;
3660 u64 user_thresh_min;
3661 u64 user_thresh_max;
3662 int ret = 1;
3663
3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665 chunk_used = cache->used;
3666
3667 if (bargs->usage_min == 0)
3668 user_thresh_min = 0;
3669 else
3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672 if (bargs->usage_max == 0)
3673 user_thresh_max = 1;
3674 else if (bargs->usage_max > 100)
3675 user_thresh_max = cache->length;
3676 else
3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680 ret = 0;
3681
3682 btrfs_put_block_group(cache);
3683 return ret;
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687 u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689 struct btrfs_block_group *cache;
3690 u64 chunk_used, user_thresh;
3691 int ret = 1;
3692
3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694 chunk_used = cache->used;
3695
3696 if (bargs->usage_min == 0)
3697 user_thresh = 1;
3698 else if (bargs->usage > 100)
3699 user_thresh = cache->length;
3700 else
3701 user_thresh = mult_perc(cache->length, bargs->usage);
3702
3703 if (chunk_used < user_thresh)
3704 ret = 0;
3705
3706 btrfs_put_block_group(cache);
3707 return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711 struct btrfs_chunk *chunk,
3712 struct btrfs_balance_args *bargs)
3713{
3714 struct btrfs_stripe *stripe;
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716 int i;
3717
3718 for (i = 0; i < num_stripes; i++) {
3719 stripe = btrfs_stripe_nr(chunk, i);
3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721 return 0;
3722 }
3723
3724 return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729 const int index = btrfs_bg_flags_to_raid_index(type);
3730 const int ncopies = btrfs_raid_array[index].ncopies;
3731 const int nparity = btrfs_raid_array[index].nparity;
3732
3733 return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738 struct btrfs_chunk *chunk,
3739 struct btrfs_balance_args *bargs)
3740{
3741 struct btrfs_stripe *stripe;
3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743 u64 stripe_offset;
3744 u64 stripe_length;
3745 u64 type;
3746 int factor;
3747 int i;
3748
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750 return 0;
3751
3752 type = btrfs_chunk_type(leaf, chunk);
3753 factor = calc_data_stripes(type, num_stripes);
3754
3755 for (i = 0; i < num_stripes; i++) {
3756 stripe = btrfs_stripe_nr(chunk, i);
3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758 continue;
3759
3760 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761 stripe_length = btrfs_chunk_length(leaf, chunk);
3762 stripe_length = div_u64(stripe_length, factor);
3763
3764 if (stripe_offset < bargs->pend &&
3765 stripe_offset + stripe_length > bargs->pstart)
3766 return 0;
3767 }
3768
3769 return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk,
3775 u64 chunk_offset,
3776 struct btrfs_balance_args *bargs)
3777{
3778 if (chunk_offset < bargs->vend &&
3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780 /* at least part of the chunk is inside this vrange */
3781 return 0;
3782
3783 return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787 struct btrfs_chunk *chunk,
3788 struct btrfs_balance_args *bargs)
3789{
3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792 if (bargs->stripes_min <= num_stripes
3793 && num_stripes <= bargs->stripes_max)
3794 return 0;
3795
3796 return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800 struct btrfs_balance_args *bargs)
3801{
3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803 return 0;
3804
3805 chunk_type = chunk_to_extended(chunk_type) &
3806 BTRFS_EXTENDED_PROFILE_MASK;
3807
3808 if (bargs->target == chunk_type)
3809 return 1;
3810
3811 return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
3815 struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817 struct btrfs_fs_info *fs_info = leaf->fs_info;
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_balance_args *bargs = NULL;
3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822 /* type filter */
3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825 return 0;
3826 }
3827
3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829 bargs = &bctl->data;
3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831 bargs = &bctl->sys;
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833 bargs = &bctl->meta;
3834
3835 /* profiles filter */
3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837 chunk_profiles_filter(chunk_type, bargs)) {
3838 return 0;
3839 }
3840
3841 /* usage filter */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844 return 0;
3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847 return 0;
3848 }
3849
3850 /* devid filter */
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852 chunk_devid_filter(leaf, chunk, bargs)) {
3853 return 0;
3854 }
3855
3856 /* drange filter, makes sense only with devid filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858 chunk_drange_filter(leaf, chunk, bargs)) {
3859 return 0;
3860 }
3861
3862 /* vrange filter */
3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865 return 0;
3866 }
3867
3868 /* stripes filter */
3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871 return 0;
3872 }
3873
3874 /* soft profile changing mode */
3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876 chunk_soft_convert_filter(chunk_type, bargs)) {
3877 return 0;
3878 }
3879
3880 /*
3881 * limited by count, must be the last filter
3882 */
3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884 if (bargs->limit == 0)
3885 return 0;
3886 else
3887 bargs->limit--;
3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889 /*
3890 * Same logic as the 'limit' filter; the minimum cannot be
3891 * determined here because we do not have the global information
3892 * about the count of all chunks that satisfy the filters.
3893 */
3894 if (bargs->limit_max == 0)
3895 return 0;
3896 else
3897 bargs->limit_max--;
3898 }
3899
3900 return 1;
3901}
3902
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906 struct btrfs_root *chunk_root = fs_info->chunk_root;
3907 u64 chunk_type;
3908 struct btrfs_chunk *chunk;
3909 struct btrfs_path *path = NULL;
3910 struct btrfs_key key;
3911 struct btrfs_key found_key;
3912 struct extent_buffer *leaf;
3913 int slot;
3914 int ret;
3915 int enospc_errors = 0;
3916 bool counting = true;
3917 /* The single value limit and min/max limits use the same bytes in the */
3918 u64 limit_data = bctl->data.limit;
3919 u64 limit_meta = bctl->meta.limit;
3920 u64 limit_sys = bctl->sys.limit;
3921 u32 count_data = 0;
3922 u32 count_meta = 0;
3923 u32 count_sys = 0;
3924 int chunk_reserved = 0;
3925
3926 path = btrfs_alloc_path();
3927 if (!path) {
3928 ret = -ENOMEM;
3929 goto error;
3930 }
3931
3932 /* zero out stat counters */
3933 spin_lock(&fs_info->balance_lock);
3934 memset(&bctl->stat, 0, sizeof(bctl->stat));
3935 spin_unlock(&fs_info->balance_lock);
3936again:
3937 if (!counting) {
3938 /*
3939 * The single value limit and min/max limits use the same bytes
3940 * in the
3941 */
3942 bctl->data.limit = limit_data;
3943 bctl->meta.limit = limit_meta;
3944 bctl->sys.limit = limit_sys;
3945 }
3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947 key.offset = (u64)-1;
3948 key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950 while (1) {
3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952 atomic_read(&fs_info->balance_cancel_req)) {
3953 ret = -ECANCELED;
3954 goto error;
3955 }
3956
3957 mutex_lock(&fs_info->reclaim_bgs_lock);
3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959 if (ret < 0) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto error;
3962 }
3963
3964 /*
3965 * this shouldn't happen, it means the last relocate
3966 * failed
3967 */
3968 if (ret == 0)
3969 BUG(); /* FIXME break ? */
3970
3971 ret = btrfs_previous_item(chunk_root, path, 0,
3972 BTRFS_CHUNK_ITEM_KEY);
3973 if (ret) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 ret = 0;
3976 break;
3977 }
3978
3979 leaf = path->nodes[0];
3980 slot = path->slots[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983 if (found_key.objectid != key.objectid) {
3984 mutex_unlock(&fs_info->reclaim_bgs_lock);
3985 break;
3986 }
3987
3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989 chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991 if (!counting) {
3992 spin_lock(&fs_info->balance_lock);
3993 bctl->stat.considered++;
3994 spin_unlock(&fs_info->balance_lock);
3995 }
3996
3997 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999 btrfs_release_path(path);
4000 if (!ret) {
4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 goto loop;
4003 }
4004
4005 if (counting) {
4006 mutex_unlock(&fs_info->reclaim_bgs_lock);
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.expected++;
4009 spin_unlock(&fs_info->balance_lock);
4010
4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012 count_data++;
4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014 count_sys++;
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016 count_meta++;
4017
4018 goto loop;
4019 }
4020
4021 /*
4022 * Apply limit_min filter, no need to check if the LIMITS
4023 * filter is used, limit_min is 0 by default
4024 */
4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026 count_data < bctl->data.limit_min)
4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028 count_meta < bctl->meta.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030 count_sys < bctl->sys.limit_min)) {
4031 mutex_unlock(&fs_info->reclaim_bgs_lock);
4032 goto loop;
4033 }
4034
4035 if (!chunk_reserved) {
4036 /*
4037 * We may be relocating the only data chunk we have,
4038 * which could potentially end up with losing data's
4039 * raid profile, so lets allocate an empty one in
4040 * advance.
4041 */
4042 ret = btrfs_may_alloc_data_chunk(fs_info,
4043 found_key.offset);
4044 if (ret < 0) {
4045 mutex_unlock(&fs_info->reclaim_bgs_lock);
4046 goto error;
4047 } else if (ret == 1) {
4048 chunk_reserved = 1;
4049 }
4050 }
4051
4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053 mutex_unlock(&fs_info->reclaim_bgs_lock);
4054 if (ret == -ENOSPC) {
4055 enospc_errors++;
4056 } else if (ret == -ETXTBSY) {
4057 btrfs_info(fs_info,
4058 "skipping relocation of block group %llu due to active swapfile",
4059 found_key.offset);
4060 ret = 0;
4061 } else if (ret) {
4062 goto error;
4063 } else {
4064 spin_lock(&fs_info->balance_lock);
4065 bctl->stat.completed++;
4066 spin_unlock(&fs_info->balance_lock);
4067 }
4068loop:
4069 if (found_key.offset == 0)
4070 break;
4071 key.offset = found_key.offset - 1;
4072 }
4073
4074 if (counting) {
4075 btrfs_release_path(path);
4076 counting = false;
4077 goto again;
4078 }
4079error:
4080 btrfs_free_path(path);
4081 if (enospc_errors) {
4082 btrfs_info(fs_info, "%d enospc errors during balance",
4083 enospc_errors);
4084 if (!ret)
4085 ret = -ENOSPC;
4086 }
4087
4088 return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags: profile to validate
4095 * @extended: if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104 /* 1) check that all other bits are zeroed */
4105 if (flags & ~mask)
4106 return 0;
4107
4108 /* 2) see if profile is reduced */
4109 if (flags == 0)
4110 return !extended; /* "0" is valid for usual profiles */
4111
4112 return has_single_bit_set(flags);
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120 const struct btrfs_balance_args *bargs,
4121 u64 allowed, const char *type)
4122{
4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124 return true;
4125
4126 /* Profile is valid and does not have bits outside of the allowed set */
4127 if (alloc_profile_is_valid(bargs->target, 1) &&
4128 (bargs->target & ~allowed) == 0)
4129 return true;
4130
4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132 type, btrfs_bg_type_to_raid_name(bargs->target));
4133 return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142 u32 size_buf)
4143{
4144 int ret;
4145 u32 size_bp = size_buf;
4146 char *bp = buf;
4147 u64 flags = bargs->flags;
4148 char tmp_buf[128] = {'\0'};
4149
4150 if (!flags)
4151 return;
4152
4153#define CHECK_APPEND_NOARG(a) \
4154 do { \
4155 ret = snprintf(bp, size_bp, (a)); \
4156 if (ret < 0 || ret >= size_bp) \
4157 goto out_overflow; \
4158 size_bp -= ret; \
4159 bp += ret; \
4160 } while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1) \
4163 do { \
4164 ret = snprintf(bp, size_bp, (a), (v1)); \
4165 if (ret < 0 || ret >= size_bp) \
4166 goto out_overflow; \
4167 size_bp -= ret; \
4168 bp += ret; \
4169 } while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2) \
4172 do { \
4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4174 if (ret < 0 || ret >= size_bp) \
4175 goto out_overflow; \
4176 size_bp -= ret; \
4177 bp += ret; \
4178 } while (0)
4179
4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181 CHECK_APPEND_1ARG("convert=%s,",
4182 btrfs_bg_type_to_raid_name(bargs->target));
4183
4184 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185 CHECK_APPEND_NOARG("soft,");
4186
4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189 sizeof(tmp_buf));
4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191 }
4192
4193 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197 CHECK_APPEND_2ARG("usage=%u..%u,",
4198 bargs->usage_min, bargs->usage_max);
4199
4200 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205 bargs->pstart, bargs->pend);
4206
4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209 bargs->vstart, bargs->vend);
4210
4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215 CHECK_APPEND_2ARG("limit=%u..%u,",
4216 bargs->limit_min, bargs->limit_max);
4217
4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219 CHECK_APPEND_2ARG("stripes=%u..%u,",
4220 bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228 if (size_bp < size_buf)
4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230 else
4231 buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236 u32 size_buf = 1024;
4237 char tmp_buf[192] = {'\0'};
4238 char *buf;
4239 char *bp;
4240 u32 size_bp = size_buf;
4241 int ret;
4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244 buf = kzalloc(size_buf, GFP_KERNEL);
4245 if (!buf)
4246 return;
4247
4248 bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1) \
4251 do { \
4252 ret = snprintf(bp, size_bp, (a), (v1)); \
4253 if (ret < 0 || ret >= size_bp) \
4254 goto out_overflow; \
4255 size_bp -= ret; \
4256 bp += ret; \
4257 } while (0)
4258
4259 if (bctl->flags & BTRFS_BALANCE_FORCE)
4260 CHECK_APPEND_1ARG("%s", "-f ");
4261
4262 if (bctl->flags & BTRFS_BALANCE_DATA) {
4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265 }
4266
4267 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270 }
4271
4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275 }
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281 if (size_bp < size_buf)
4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283 btrfs_info(fs_info, "balance: %s %s",
4284 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285 "resume" : "start", buf);
4286
4287 kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294 struct btrfs_balance_control *bctl,
4295 struct btrfs_ioctl_balance_args *bargs)
4296{
4297 u64 meta_target, data_target;
4298 u64 allowed;
4299 int mixed = 0;
4300 int ret;
4301 u64 num_devices;
4302 unsigned seq;
4303 bool reducing_redundancy;
4304 bool paused = false;
4305 int i;
4306
4307 if (btrfs_fs_closing(fs_info) ||
4308 atomic_read(&fs_info->balance_pause_req) ||
4309 btrfs_should_cancel_balance(fs_info)) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316 mixed = 1;
4317
4318 /*
4319 * In case of mixed groups both data and meta should be picked,
4320 * and identical options should be given for both of them.
4321 */
4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323 if (mixed && (bctl->flags & allowed)) {
4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327 btrfs_err(fs_info,
4328 "balance: mixed groups data and metadata options must be the same");
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 }
4333
4334 /*
4335 * rw_devices will not change at the moment, device add/delete/replace
4336 * are exclusive
4337 */
4338 num_devices = fs_info->fs_devices->rw_devices;
4339
4340 /*
4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342 * special bit for it, to make it easier to distinguish. Thus we need
4343 * to set it manually, or balance would refuse the profile.
4344 */
4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347 if (num_devices >= btrfs_raid_array[i].devs_min)
4348 allowed |= btrfs_raid_array[i].bg_flag;
4349
4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356
4357 /*
4358 * Allow to reduce metadata or system integrity only if force set for
4359 * profiles with redundancy (copies, parity)
4360 */
4361 allowed = 0;
4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363 if (btrfs_raid_array[i].ncopies >= 2 ||
4364 btrfs_raid_array[i].tolerated_failures >= 1)
4365 allowed |= btrfs_raid_array[i].bg_flag;
4366 }
4367 do {
4368 seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371 (fs_info->avail_system_alloc_bits & allowed) &&
4372 !(bctl->sys.target & allowed)) ||
4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374 (fs_info->avail_metadata_alloc_bits & allowed) &&
4375 !(bctl->meta.target & allowed)))
4376 reducing_redundancy = true;
4377 else
4378 reducing_redundancy = false;
4379
4380 /* if we're not converting, the target field is uninitialized */
4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->data.target : fs_info->avail_data_alloc_bits;
4385 } while (read_seqretry(&fs_info->profiles_lock, seq));
4386
4387 if (reducing_redundancy) {
4388 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389 btrfs_info(fs_info,
4390 "balance: force reducing metadata redundancy");
4391 } else {
4392 btrfs_err(fs_info,
4393 "balance: reduces metadata redundancy, use --force if you want this");
4394 ret = -EINVAL;
4395 goto out;
4396 }
4397 }
4398
4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401 btrfs_warn(fs_info,
4402 "balance: metadata profile %s has lower redundancy than data profile %s",
4403 btrfs_bg_type_to_raid_name(meta_target),
4404 btrfs_bg_type_to_raid_name(data_target));
4405 }
4406
4407 ret = insert_balance_item(fs_info, bctl);
4408 if (ret && ret != -EEXIST)
4409 goto out;
4410
4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412 BUG_ON(ret == -EEXIST);
4413 BUG_ON(fs_info->balance_ctl);
4414 spin_lock(&fs_info->balance_lock);
4415 fs_info->balance_ctl = bctl;
4416 spin_unlock(&fs_info->balance_lock);
4417 } else {
4418 BUG_ON(ret != -EEXIST);
4419 spin_lock(&fs_info->balance_lock);
4420 update_balance_args(bctl);
4421 spin_unlock(&fs_info->balance_lock);
4422 }
4423
4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 describe_balance_start_or_resume(fs_info);
4427 mutex_unlock(&fs_info->balance_mutex);
4428
4429 ret = __btrfs_balance(fs_info);
4430
4431 mutex_lock(&fs_info->balance_mutex);
4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433 btrfs_info(fs_info, "balance: paused");
4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435 paused = true;
4436 }
4437 /*
4438 * Balance can be canceled by:
4439 *
4440 * - Regular cancel request
4441 * Then ret == -ECANCELED and balance_cancel_req > 0
4442 *
4443 * - Fatal signal to "btrfs" process
4444 * Either the signal caught by wait_reserve_ticket() and callers
4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4446 * got -ECANCELED.
4447 * Either way, in this case balance_cancel_req = 0, and
4448 * ret == -EINTR or ret == -ECANCELED.
4449 *
4450 * So here we only check the return value to catch canceled balance.
4451 */
4452 else if (ret == -ECANCELED || ret == -EINTR)
4453 btrfs_info(fs_info, "balance: canceled");
4454 else
4455 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459 if (bargs) {
4460 memset(bargs, 0, sizeof(*bargs));
4461 btrfs_update_ioctl_balance_args(fs_info, bargs);
4462 }
4463
4464 /* We didn't pause, we can clean everything up. */
4465 if (!paused) {
4466 reset_balance_state(fs_info);
4467 btrfs_exclop_finish(fs_info);
4468 }
4469
4470 wake_up(&fs_info->balance_wait_q);
4471
4472 return ret;
4473out:
4474 if (bctl->flags & BTRFS_BALANCE_RESUME)
4475 reset_balance_state(fs_info);
4476 else
4477 kfree(bctl);
4478 btrfs_exclop_finish(fs_info);
4479
4480 return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485 struct btrfs_fs_info *fs_info = data;
4486 int ret = 0;
4487
4488 sb_start_write(fs_info->sb);
4489 mutex_lock(&fs_info->balance_mutex);
4490 if (fs_info->balance_ctl)
4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492 mutex_unlock(&fs_info->balance_mutex);
4493 sb_end_write(fs_info->sb);
4494
4495 return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500 struct task_struct *tsk;
4501
4502 mutex_lock(&fs_info->balance_mutex);
4503 if (!fs_info->balance_ctl) {
4504 mutex_unlock(&fs_info->balance_mutex);
4505 return 0;
4506 }
4507 mutex_unlock(&fs_info->balance_mutex);
4508
4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510 btrfs_info(fs_info, "balance: resume skipped");
4511 return 0;
4512 }
4513
4514 spin_lock(&fs_info->super_lock);
4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517 spin_unlock(&fs_info->super_lock);
4518 /*
4519 * A ro->rw remount sequence should continue with the paused balance
4520 * regardless of who pauses it, system or the user as of now, so set
4521 * the resume flag.
4522 */
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525 spin_unlock(&fs_info->balance_lock);
4526
4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528 return PTR_ERR_OR_ZERO(tsk);
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533 struct btrfs_balance_control *bctl;
4534 struct btrfs_balance_item *item;
4535 struct btrfs_disk_balance_args disk_bargs;
4536 struct btrfs_path *path;
4537 struct extent_buffer *leaf;
4538 struct btrfs_key key;
4539 int ret;
4540
4541 path = btrfs_alloc_path();
4542 if (!path)
4543 return -ENOMEM;
4544
4545 key.objectid = BTRFS_BALANCE_OBJECTID;
4546 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547 key.offset = 0;
4548
4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550 if (ret < 0)
4551 goto out;
4552 if (ret > 0) { /* ret = -ENOENT; */
4553 ret = 0;
4554 goto out;
4555 }
4556
4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558 if (!bctl) {
4559 ret = -ENOMEM;
4560 goto out;
4561 }
4562
4563 leaf = path->nodes[0];
4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
4566 bctl->flags = btrfs_balance_flags(leaf, item);
4567 bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569 btrfs_balance_data(leaf, item, &disk_bargs);
4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571 btrfs_balance_meta(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573 btrfs_balance_sys(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576 /*
4577 * This should never happen, as the paused balance state is recovered
4578 * during mount without any chance of other exclusive ops to collide.
4579 *
4580 * This gives the exclusive op status to balance and keeps in paused
4581 * state until user intervention (cancel or umount). If the ownership
4582 * cannot be assigned, show a message but do not fail. The balance
4583 * is in a paused state and must have fs_info::balance_ctl properly
4584 * set up.
4585 */
4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587 btrfs_warn(fs_info,
4588 "balance: cannot set exclusive op status, resume manually");
4589
4590 btrfs_release_path(path);
4591
4592 mutex_lock(&fs_info->balance_mutex);
4593 BUG_ON(fs_info->balance_ctl);
4594 spin_lock(&fs_info->balance_lock);
4595 fs_info->balance_ctl = bctl;
4596 spin_unlock(&fs_info->balance_lock);
4597 mutex_unlock(&fs_info->balance_mutex);
4598out:
4599 btrfs_free_path(path);
4600 return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605 int ret = 0;
4606
4607 mutex_lock(&fs_info->balance_mutex);
4608 if (!fs_info->balance_ctl) {
4609 mutex_unlock(&fs_info->balance_mutex);
4610 return -ENOTCONN;
4611 }
4612
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 atomic_inc(&fs_info->balance_pause_req);
4615 mutex_unlock(&fs_info->balance_mutex);
4616
4617 wait_event(fs_info->balance_wait_q,
4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620 mutex_lock(&fs_info->balance_mutex);
4621 /* we are good with balance_ctl ripped off from under us */
4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 atomic_dec(&fs_info->balance_pause_req);
4624 } else {
4625 ret = -ENOTCONN;
4626 }
4627
4628 mutex_unlock(&fs_info->balance_mutex);
4629 return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (!fs_info->balance_ctl) {
4636 mutex_unlock(&fs_info->balance_mutex);
4637 return -ENOTCONN;
4638 }
4639
4640 /*
4641 * A paused balance with the item stored on disk can be resumed at
4642 * mount time if the mount is read-write. Otherwise it's still paused
4643 * and we must not allow cancelling as it deletes the item.
4644 */
4645 if (sb_rdonly(fs_info->sb)) {
4646 mutex_unlock(&fs_info->balance_mutex);
4647 return -EROFS;
4648 }
4649
4650 atomic_inc(&fs_info->balance_cancel_req);
4651 /*
4652 * if we are running just wait and return, balance item is
4653 * deleted in btrfs_balance in this case
4654 */
4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 wait_event(fs_info->balance_wait_q,
4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659 mutex_lock(&fs_info->balance_mutex);
4660 } else {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 /*
4663 * Lock released to allow other waiters to continue, we'll
4664 * reexamine the status again.
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667
4668 if (fs_info->balance_ctl) {
4669 reset_balance_state(fs_info);
4670 btrfs_exclop_finish(fs_info);
4671 btrfs_info(fs_info, "balance: canceled");
4672 }
4673 }
4674
4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676 atomic_dec(&fs_info->balance_cancel_req);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683 struct btrfs_fs_info *fs_info = data;
4684 struct btrfs_root *root = fs_info->tree_root;
4685 struct btrfs_key key;
4686 struct btrfs_path *path = NULL;
4687 int ret = 0;
4688 struct extent_buffer *eb;
4689 int slot;
4690 struct btrfs_root_item root_item;
4691 u32 item_size;
4692 struct btrfs_trans_handle *trans = NULL;
4693 bool closing = false;
4694
4695 path = btrfs_alloc_path();
4696 if (!path) {
4697 ret = -ENOMEM;
4698 goto out;
4699 }
4700
4701 key.objectid = 0;
4702 key.type = BTRFS_ROOT_ITEM_KEY;
4703 key.offset = 0;
4704
4705 while (1) {
4706 if (btrfs_fs_closing(fs_info)) {
4707 closing = true;
4708 break;
4709 }
4710 ret = btrfs_search_forward(root, &key, path,
4711 BTRFS_OLDEST_GENERATION);
4712 if (ret) {
4713 if (ret > 0)
4714 ret = 0;
4715 break;
4716 }
4717
4718 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722 goto skip;
4723
4724 eb = path->nodes[0];
4725 slot = path->slots[0];
4726 item_size = btrfs_item_size(eb, slot);
4727 if (item_size < sizeof(root_item))
4728 goto skip;
4729
4730 read_extent_buffer(eb, &root_item,
4731 btrfs_item_ptr_offset(eb, slot),
4732 (int)sizeof(root_item));
4733 if (btrfs_root_refs(&root_item) == 0)
4734 goto skip;
4735
4736 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738 if (trans)
4739 goto update_tree;
4740
4741 btrfs_release_path(path);
4742 /*
4743 * 1 - subvol uuid item
4744 * 1 - received_subvol uuid item
4745 */
4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747 if (IS_ERR(trans)) {
4748 ret = PTR_ERR(trans);
4749 break;
4750 }
4751 continue;
4752 } else {
4753 goto skip;
4754 }
4755update_tree:
4756 btrfs_release_path(path);
4757 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759 BTRFS_UUID_KEY_SUBVOL,
4760 key.objectid);
4761 if (ret < 0) {
4762 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763 ret);
4764 break;
4765 }
4766 }
4767
4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769 ret = btrfs_uuid_tree_add(trans,
4770 root_item.received_uuid,
4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772 key.objectid);
4773 if (ret < 0) {
4774 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775 ret);
4776 break;
4777 }
4778 }
4779
4780skip:
4781 btrfs_release_path(path);
4782 if (trans) {
4783 ret = btrfs_end_transaction(trans);
4784 trans = NULL;
4785 if (ret)
4786 break;
4787 }
4788
4789 if (key.offset < (u64)-1) {
4790 key.offset++;
4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792 key.offset = 0;
4793 key.type = BTRFS_ROOT_ITEM_KEY;
4794 } else if (key.objectid < (u64)-1) {
4795 key.offset = 0;
4796 key.type = BTRFS_ROOT_ITEM_KEY;
4797 key.objectid++;
4798 } else {
4799 break;
4800 }
4801 cond_resched();
4802 }
4803
4804out:
4805 btrfs_free_path(path);
4806 if (trans && !IS_ERR(trans))
4807 btrfs_end_transaction(trans);
4808 if (ret)
4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810 else if (!closing)
4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812 up(&fs_info->uuid_tree_rescan_sem);
4813 return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_trans_handle *trans;
4819 struct btrfs_root *tree_root = fs_info->tree_root;
4820 struct btrfs_root *uuid_root;
4821 struct task_struct *task;
4822 int ret;
4823
4824 /*
4825 * 1 - root node
4826 * 1 - root item
4827 */
4828 trans = btrfs_start_transaction(tree_root, 2);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833 if (IS_ERR(uuid_root)) {
4834 ret = PTR_ERR(uuid_root);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4837 return ret;
4838 }
4839
4840 fs_info->uuid_root = uuid_root;
4841
4842 ret = btrfs_commit_transaction(trans);
4843 if (ret)
4844 return ret;
4845
4846 down(&fs_info->uuid_tree_rescan_sem);
4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848 if (IS_ERR(task)) {
4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850 btrfs_warn(fs_info, "failed to start uuid_scan task");
4851 up(&fs_info->uuid_tree_rescan_sem);
4852 return PTR_ERR(task);
4853 }
4854
4855 return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865 struct btrfs_fs_info *fs_info = device->fs_info;
4866 struct btrfs_root *root = fs_info->dev_root;
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_dev_extent *dev_extent = NULL;
4869 struct btrfs_path *path;
4870 u64 length;
4871 u64 chunk_offset;
4872 int ret;
4873 int slot;
4874 int failed = 0;
4875 bool retried = false;
4876 struct extent_buffer *l;
4877 struct btrfs_key key;
4878 struct btrfs_super_block *super_copy = fs_info->super_copy;
4879 u64 old_total = btrfs_super_total_bytes(super_copy);
4880 u64 old_size = btrfs_device_get_total_bytes(device);
4881 u64 diff;
4882 u64 start;
4883 u64 free_diff = 0;
4884
4885 new_size = round_down(new_size, fs_info->sectorsize);
4886 start = new_size;
4887 diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890 return -EINVAL;
4891
4892 path = btrfs_alloc_path();
4893 if (!path)
4894 return -ENOMEM;
4895
4896 path->reada = READA_BACK;
4897
4898 trans = btrfs_start_transaction(root, 0);
4899 if (IS_ERR(trans)) {
4900 btrfs_free_path(path);
4901 return PTR_ERR(trans);
4902 }
4903
4904 mutex_lock(&fs_info->chunk_mutex);
4905
4906 btrfs_device_set_total_bytes(device, new_size);
4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908 device->fs_devices->total_rw_bytes -= diff;
4909
4910 /*
4911 * The new free_chunk_space is new_size - used, so we have to
4912 * subtract the delta of the old free_chunk_space which included
4913 * old_size - used. If used > new_size then just subtract this
4914 * entire device's free space.
4915 */
4916 if (device->bytes_used < new_size)
4917 free_diff = (old_size - device->bytes_used) -
4918 (new_size - device->bytes_used);
4919 else
4920 free_diff = old_size - device->bytes_used;
4921 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922 }
4923
4924 /*
4925 * Once the device's size has been set to the new size, ensure all
4926 * in-memory chunks are synced to disk so that the loop below sees them
4927 * and relocates them accordingly.
4928 */
4929 if (contains_pending_extent(device, &start, diff)) {
4930 mutex_unlock(&fs_info->chunk_mutex);
4931 ret = btrfs_commit_transaction(trans);
4932 if (ret)
4933 goto done;
4934 } else {
4935 mutex_unlock(&fs_info->chunk_mutex);
4936 btrfs_end_transaction(trans);
4937 }
4938
4939again:
4940 key.objectid = device->devid;
4941 key.offset = (u64)-1;
4942 key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944 do {
4945 mutex_lock(&fs_info->reclaim_bgs_lock);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947 if (ret < 0) {
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 goto done;
4950 }
4951
4952 ret = btrfs_previous_item(root, path, 0, key.type);
4953 if (ret) {
4954 mutex_unlock(&fs_info->reclaim_bgs_lock);
4955 if (ret < 0)
4956 goto done;
4957 ret = 0;
4958 btrfs_release_path(path);
4959 break;
4960 }
4961
4962 l = path->nodes[0];
4963 slot = path->slots[0];
4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966 if (key.objectid != device->devid) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 btrfs_release_path(path);
4969 break;
4970 }
4971
4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973 length = btrfs_dev_extent_length(l, dev_extent);
4974
4975 if (key.offset + length <= new_size) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 btrfs_release_path(path);
4978 break;
4979 }
4980
4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982 btrfs_release_path(path);
4983
4984 /*
4985 * We may be relocating the only data chunk we have,
4986 * which could potentially end up with losing data's
4987 * raid profile, so lets allocate an empty one in
4988 * advance.
4989 */
4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991 if (ret < 0) {
4992 mutex_unlock(&fs_info->reclaim_bgs_lock);
4993 goto done;
4994 }
4995
4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 if (ret == -ENOSPC) {
4999 failed++;
5000 } else if (ret) {
5001 if (ret == -ETXTBSY) {
5002 btrfs_warn(fs_info,
5003 "could not shrink block group %llu due to active swapfile",
5004 chunk_offset);
5005 }
5006 goto done;
5007 }
5008 } while (key.offset-- > 0);
5009
5010 if (failed && !retried) {
5011 failed = 0;
5012 retried = true;
5013 goto again;
5014 } else if (failed && retried) {
5015 ret = -ENOSPC;
5016 goto done;
5017 }
5018
5019 /* Shrinking succeeded, else we would be at "done". */
5020 trans = btrfs_start_transaction(root, 0);
5021 if (IS_ERR(trans)) {
5022 ret = PTR_ERR(trans);
5023 goto done;
5024 }
5025
5026 mutex_lock(&fs_info->chunk_mutex);
5027 /* Clear all state bits beyond the shrunk device size */
5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029 CHUNK_STATE_MASK);
5030
5031 btrfs_device_set_disk_total_bytes(device, new_size);
5032 if (list_empty(&device->post_commit_list))
5033 list_add_tail(&device->post_commit_list,
5034 &trans->transaction->dev_update_list);
5035
5036 WARN_ON(diff > old_total);
5037 btrfs_set_super_total_bytes(super_copy,
5038 round_down(old_total - diff, fs_info->sectorsize));
5039 mutex_unlock(&fs_info->chunk_mutex);
5040
5041 btrfs_reserve_chunk_metadata(trans, false);
5042 /* Now btrfs_update_device() will change the on-disk size. */
5043 ret = btrfs_update_device(trans, device);
5044 btrfs_trans_release_chunk_metadata(trans);
5045 if (ret < 0) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 } else {
5049 ret = btrfs_commit_transaction(trans);
5050 }
5051done:
5052 btrfs_free_path(path);
5053 if (ret) {
5054 mutex_lock(&fs_info->chunk_mutex);
5055 btrfs_device_set_total_bytes(device, old_size);
5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057 device->fs_devices->total_rw_bytes += diff;
5058 atomic64_add(free_diff, &fs_info->free_chunk_space);
5059 }
5060 mutex_unlock(&fs_info->chunk_mutex);
5061 }
5062 return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066 struct btrfs_key *key,
5067 struct btrfs_chunk *chunk, int item_size)
5068{
5069 struct btrfs_super_block *super_copy = fs_info->super_copy;
5070 struct btrfs_disk_key disk_key;
5071 u32 array_size;
5072 u8 *ptr;
5073
5074 lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076 array_size = btrfs_super_sys_array_size(super_copy);
5077 if (array_size + item_size + sizeof(disk_key)
5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079 return -EFBIG;
5080
5081 ptr = super_copy->sys_chunk_array + array_size;
5082 btrfs_cpu_key_to_disk(&disk_key, key);
5083 memcpy(ptr, &disk_key, sizeof(disk_key));
5084 ptr += sizeof(disk_key);
5085 memcpy(ptr, chunk, item_size);
5086 item_size += sizeof(disk_key);
5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089 return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097 const struct btrfs_device_info *di_a = a;
5098 const struct btrfs_device_info *di_b = b;
5099
5100 if (di_a->max_avail > di_b->max_avail)
5101 return -1;
5102 if (di_a->max_avail < di_b->max_avail)
5103 return 1;
5104 if (di_a->total_avail > di_b->total_avail)
5105 return -1;
5106 if (di_a->total_avail < di_b->total_avail)
5107 return 1;
5108 return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114 return;
5115
5116 btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122 return;
5123
5124 btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132 u64 start;
5133 u64 type;
5134 /* Total number of stripes to allocate */
5135 int num_stripes;
5136 /* sub_stripes info for map */
5137 int sub_stripes;
5138 /* Stripes per device */
5139 int dev_stripes;
5140 /* Maximum number of devices to use */
5141 int devs_max;
5142 /* Minimum number of devices to use */
5143 int devs_min;
5144 /* ndevs has to be a multiple of this */
5145 int devs_increment;
5146 /* Number of copies */
5147 int ncopies;
5148 /* Number of stripes worth of bytes to store parity information */
5149 int nparity;
5150 u64 max_stripe_size;
5151 u64 max_chunk_size;
5152 u64 dev_extent_min;
5153 u64 stripe_size;
5154 u64 chunk_size;
5155 int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159 struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl)
5161{
5162 struct btrfs_space_info *space_info;
5163
5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165 ASSERT(space_info);
5166
5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173 /* We don't want a chunk larger than 10% of writable space */
5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175 ctl->max_chunk_size);
5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180 struct btrfs_fs_devices *fs_devices,
5181 struct alloc_chunk_ctl *ctl)
5182{
5183 u64 zone_size = fs_devices->fs_info->zone_size;
5184 u64 limit;
5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187 u64 min_chunk_size = min_data_stripes * zone_size;
5188 u64 type = ctl->type;
5189
5190 ctl->max_stripe_size = zone_size;
5191 if (type & BTRFS_BLOCK_GROUP_DATA) {
5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193 zone_size);
5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195 ctl->max_chunk_size = ctl->max_stripe_size;
5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198 ctl->devs_max = min_t(int, ctl->devs_max,
5199 BTRFS_MAX_DEVS_SYS_CHUNK);
5200 } else {
5201 BUG();
5202 }
5203
5204 /* We don't want a chunk larger than 10% of writable space */
5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206 zone_size),
5207 min_chunk_size);
5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219 ctl->devs_max = btrfs_raid_array[index].devs_max;
5220 if (!ctl->devs_max)
5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222 ctl->devs_min = btrfs_raid_array[index].devs_min;
5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224 ctl->ncopies = btrfs_raid_array[index].ncopies;
5225 ctl->nparity = btrfs_raid_array[index].nparity;
5226 ctl->ndevs = 0;
5227
5228 switch (fs_devices->chunk_alloc_policy) {
5229 case BTRFS_CHUNK_ALLOC_REGULAR:
5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231 break;
5232 case BTRFS_CHUNK_ALLOC_ZONED:
5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234 break;
5235 default:
5236 BUG();
5237 }
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241 struct alloc_chunk_ctl *ctl,
5242 struct btrfs_device_info *devices_info)
5243{
5244 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 struct btrfs_device *device;
5246 u64 total_avail;
5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248 int ret;
5249 int ndevs = 0;
5250 u64 max_avail;
5251 u64 dev_offset;
5252
5253 /*
5254 * in the first pass through the devices list, we gather information
5255 * about the available holes on each device.
5256 */
5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259 WARN(1, KERN_ERR
5260 "BTRFS: read-only device in alloc_list\n");
5261 continue;
5262 }
5263
5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265 &device->dev_state) ||
5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267 continue;
5268
5269 if (device->total_bytes > device->bytes_used)
5270 total_avail = device->total_bytes - device->bytes_used;
5271 else
5272 total_avail = 0;
5273
5274 /* If there is no space on this device, skip it. */
5275 if (total_avail < ctl->dev_extent_min)
5276 continue;
5277
5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279 &max_avail);
5280 if (ret && ret != -ENOSPC)
5281 return ret;
5282
5283 if (ret == 0)
5284 max_avail = dev_extent_want;
5285
5286 if (max_avail < ctl->dev_extent_min) {
5287 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288 btrfs_debug(info,
5289 "%s: devid %llu has no free space, have=%llu want=%llu",
5290 __func__, device->devid, max_avail,
5291 ctl->dev_extent_min);
5292 continue;
5293 }
5294
5295 if (ndevs == fs_devices->rw_devices) {
5296 WARN(1, "%s: found more than %llu devices\n",
5297 __func__, fs_devices->rw_devices);
5298 break;
5299 }
5300 devices_info[ndevs].dev_offset = dev_offset;
5301 devices_info[ndevs].max_avail = max_avail;
5302 devices_info[ndevs].total_avail = total_avail;
5303 devices_info[ndevs].dev = device;
5304 ++ndevs;
5305 }
5306 ctl->ndevs = ndevs;
5307
5308 /*
5309 * now sort the devices by hole size / available space
5310 */
5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312 btrfs_cmp_device_info, NULL);
5313
5314 return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318 struct btrfs_device_info *devices_info)
5319{
5320 /* Number of stripes that count for block group size */
5321 int data_stripes;
5322
5323 /*
5324 * The primary goal is to maximize the number of stripes, so use as
5325 * many devices as possible, even if the stripes are not maximum sized.
5326 *
5327 * The DUP profile stores more than one stripe per device, the
5328 * max_avail is the total size so we have to adjust.
5329 */
5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331 ctl->dev_stripes);
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337 /*
5338 * Use the number of data stripes to figure out how big this chunk is
5339 * really going to be in terms of logical address space, and compare
5340 * that answer with the max chunk size. If it's higher, we try to
5341 * reduce stripe_size.
5342 */
5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344 /*
5345 * Reduce stripe_size, round it up to a 16MB boundary again and
5346 * then use it, unless it ends up being even bigger than the
5347 * previous value we had already.
5348 */
5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350 data_stripes), SZ_16M),
5351 ctl->stripe_size);
5352 }
5353
5354 /* Stripe size should not go beyond 1G. */
5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357 /* Align to BTRFS_STRIPE_LEN */
5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359 ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361 return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365 struct btrfs_device_info *devices_info)
5366{
5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368 /* Number of stripes that count for block group size */
5369 int data_stripes;
5370
5371 /*
5372 * It should hold because:
5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374 */
5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377 ctl->stripe_size = zone_size;
5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384 ctl->stripe_size) + ctl->nparity,
5385 ctl->dev_stripes);
5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389 }
5390
5391 ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393 return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397 struct alloc_chunk_ctl *ctl,
5398 struct btrfs_device_info *devices_info)
5399{
5400 struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402 /*
5403 * Round down to number of usable stripes, devs_increment can be any
5404 * number so we can't use round_down() that requires power of 2, while
5405 * rounddown is safe.
5406 */
5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409 if (ctl->ndevs < ctl->devs_min) {
5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411 btrfs_debug(info,
5412 "%s: not enough devices with free space: have=%d minimum required=%d",
5413 __func__, ctl->ndevs, ctl->devs_min);
5414 }
5415 return -ENOSPC;
5416 }
5417
5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420 switch (fs_devices->chunk_alloc_policy) {
5421 case BTRFS_CHUNK_ALLOC_REGULAR:
5422 return decide_stripe_size_regular(ctl, devices_info);
5423 case BTRFS_CHUNK_ALLOC_ZONED:
5424 return decide_stripe_size_zoned(ctl, devices_info);
5425 default:
5426 BUG();
5427 }
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432 for (int i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_io_stripe *stripe = &map->stripes[i];
5434 struct btrfs_device *device = stripe->dev;
5435
5436 set_extent_bit(&device->alloc_state, stripe->physical,
5437 stripe->physical + map->stripe_size - 1,
5438 bits | EXTENT_NOWAIT, NULL);
5439 }
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444 for (int i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_io_stripe *stripe = &map->stripes[i];
5446 struct btrfs_device *device = stripe->dev;
5447
5448 __clear_extent_bit(&device->alloc_state, stripe->physical,
5449 stripe->physical + map->stripe_size - 1,
5450 bits | EXTENT_NOWAIT,
5451 NULL, NULL);
5452 }
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457 write_lock(&fs_info->mapping_tree_lock);
5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459 RB_CLEAR_NODE(&map->rb_node);
5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461 write_unlock(&fs_info->mapping_tree_lock);
5462
5463 /* Once for the tree reference. */
5464 btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470 struct rb_node **p;
5471 struct rb_node *parent = NULL;
5472 bool leftmost = true;
5473
5474 write_lock(&fs_info->mapping_tree_lock);
5475 p = &fs_info->mapping_tree.rb_root.rb_node;
5476 while (*p) {
5477 struct btrfs_chunk_map *entry;
5478
5479 parent = *p;
5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482 if (map->start < entry->start) {
5483 p = &(*p)->rb_left;
5484 } else if (map->start > entry->start) {
5485 p = &(*p)->rb_right;
5486 leftmost = false;
5487 } else {
5488 write_unlock(&fs_info->mapping_tree_lock);
5489 return -EEXIST;
5490 }
5491 }
5492 rb_link_node(&map->rb_node, parent, p);
5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496 write_unlock(&fs_info->mapping_tree_lock);
5497
5498 return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504 struct btrfs_chunk_map *map;
5505
5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507 if (!map)
5508 return NULL;
5509
5510 refcount_set(&map->refs, 1);
5511 RB_CLEAR_NODE(&map->rb_node);
5512
5513 return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518 const int size = btrfs_chunk_map_size(map->num_stripes);
5519 struct btrfs_chunk_map *clone;
5520
5521 clone = kmemdup(map, size, gfp);
5522 if (!clone)
5523 return NULL;
5524
5525 refcount_set(&clone->refs, 1);
5526 RB_CLEAR_NODE(&clone->rb_node);
5527
5528 return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532 struct alloc_chunk_ctl *ctl,
5533 struct btrfs_device_info *devices_info)
5534{
5535 struct btrfs_fs_info *info = trans->fs_info;
5536 struct btrfs_chunk_map *map;
5537 struct btrfs_block_group *block_group;
5538 u64 start = ctl->start;
5539 u64 type = ctl->type;
5540 int ret;
5541 int i;
5542 int j;
5543
5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545 if (!map)
5546 return ERR_PTR(-ENOMEM);
5547
5548 map->start = start;
5549 map->chunk_len = ctl->chunk_size;
5550 map->stripe_size = ctl->stripe_size;
5551 map->type = type;
5552 map->io_align = BTRFS_STRIPE_LEN;
5553 map->io_width = BTRFS_STRIPE_LEN;
5554 map->sub_stripes = ctl->sub_stripes;
5555 map->num_stripes = ctl->num_stripes;
5556
5557 for (i = 0; i < ctl->ndevs; ++i) {
5558 for (j = 0; j < ctl->dev_stripes; ++j) {
5559 int s = i * ctl->dev_stripes + j;
5560 map->stripes[s].dev = devices_info[i].dev;
5561 map->stripes[s].physical = devices_info[i].dev_offset +
5562 j * ctl->stripe_size;
5563 }
5564 }
5565
5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568 ret = btrfs_add_chunk_map(info, map);
5569 if (ret) {
5570 btrfs_free_chunk_map(map);
5571 return ERR_PTR(ret);
5572 }
5573
5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575 if (IS_ERR(block_group)) {
5576 btrfs_remove_chunk_map(info, map);
5577 return block_group;
5578 }
5579
5580 for (int i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *dev = map->stripes[i].dev;
5582
5583 btrfs_device_set_bytes_used(dev,
5584 dev->bytes_used + ctl->stripe_size);
5585 if (list_empty(&dev->post_commit_list))
5586 list_add_tail(&dev->post_commit_list,
5587 &trans->transaction->dev_update_list);
5588 }
5589
5590 atomic64_sub(ctl->stripe_size * map->num_stripes,
5591 &info->free_chunk_space);
5592
5593 check_raid56_incompat_flag(info, type);
5594 check_raid1c34_incompat_flag(info, type);
5595
5596 return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600 u64 type)
5601{
5602 struct btrfs_fs_info *info = trans->fs_info;
5603 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604 struct btrfs_device_info *devices_info = NULL;
5605 struct alloc_chunk_ctl ctl;
5606 struct btrfs_block_group *block_group;
5607 int ret;
5608
5609 lockdep_assert_held(&info->chunk_mutex);
5610
5611 if (!alloc_profile_is_valid(type, 0)) {
5612 ASSERT(0);
5613 return ERR_PTR(-EINVAL);
5614 }
5615
5616 if (list_empty(&fs_devices->alloc_list)) {
5617 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618 btrfs_debug(info, "%s: no writable device", __func__);
5619 return ERR_PTR(-ENOSPC);
5620 }
5621
5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624 ASSERT(0);
5625 return ERR_PTR(-EINVAL);
5626 }
5627
5628 ctl.start = find_next_chunk(info);
5629 ctl.type = type;
5630 init_alloc_chunk_ctl(fs_devices, &ctl);
5631
5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633 GFP_NOFS);
5634 if (!devices_info)
5635 return ERR_PTR(-ENOMEM);
5636
5637 ret = gather_device_info(fs_devices, &ctl, devices_info);
5638 if (ret < 0) {
5639 block_group = ERR_PTR(ret);
5640 goto out;
5641 }
5642
5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644 if (ret < 0) {
5645 block_group = ERR_PTR(ret);
5646 goto out;
5647 }
5648
5649 block_group = create_chunk(trans, &ctl, devices_info);
5650
5651out:
5652 kfree(devices_info);
5653 return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665 struct btrfs_block_group *bg)
5666{
5667 struct btrfs_fs_info *fs_info = trans->fs_info;
5668 struct btrfs_root *chunk_root = fs_info->chunk_root;
5669 struct btrfs_key key;
5670 struct btrfs_chunk *chunk;
5671 struct btrfs_stripe *stripe;
5672 struct btrfs_chunk_map *map;
5673 size_t item_size;
5674 int i;
5675 int ret;
5676
5677 /*
5678 * We take the chunk_mutex for 2 reasons:
5679 *
5680 * 1) Updates and insertions in the chunk btree must be done while holding
5681 * the chunk_mutex, as well as updating the system chunk array in the
5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5683 * details;
5684 *
5685 * 2) To prevent races with the final phase of a device replace operation
5686 * that replaces the device object associated with the map's stripes,
5687 * because the device object's id can change at any time during that
5688 * final phase of the device replace operation
5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691 * which would cause a failure when updating the device item, which does
5692 * not exists, or persisting a stripe of the chunk item with such ID.
5693 * Here we can't use the device_list_mutex because our caller already
5694 * has locked the chunk_mutex, and the final phase of device replace
5695 * acquires both mutexes - first the device_list_mutex and then the
5696 * chunk_mutex. Using any of those two mutexes protects us from a
5697 * concurrent device replace.
5698 */
5699 lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702 if (IS_ERR(map)) {
5703 ret = PTR_ERR(map);
5704 btrfs_abort_transaction(trans, ret);
5705 return ret;
5706 }
5707
5708 item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710 chunk = kzalloc(item_size, GFP_NOFS);
5711 if (!chunk) {
5712 ret = -ENOMEM;
5713 btrfs_abort_transaction(trans, ret);
5714 goto out;
5715 }
5716
5717 for (i = 0; i < map->num_stripes; i++) {
5718 struct btrfs_device *device = map->stripes[i].dev;
5719
5720 ret = btrfs_update_device(trans, device);
5721 if (ret)
5722 goto out;
5723 }
5724
5725 stripe = &chunk->stripe;
5726 for (i = 0; i < map->num_stripes; i++) {
5727 struct btrfs_device *device = map->stripes[i].dev;
5728 const u64 dev_offset = map->stripes[i].physical;
5729
5730 btrfs_set_stack_stripe_devid(stripe, device->devid);
5731 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733 stripe++;
5734 }
5735
5736 btrfs_set_stack_chunk_length(chunk, bg->length);
5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739 btrfs_set_stack_chunk_type(chunk, map->type);
5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747 key.type = BTRFS_CHUNK_ITEM_KEY;
5748 key.offset = bg->start;
5749
5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751 if (ret)
5752 goto out;
5753
5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758 if (ret)
5759 goto out;
5760 }
5761
5762out:
5763 kfree(chunk);
5764 btrfs_free_chunk_map(map);
5765 return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5769{
5770 struct btrfs_fs_info *fs_info = trans->fs_info;
5771 u64 alloc_profile;
5772 struct btrfs_block_group *meta_bg;
5773 struct btrfs_block_group *sys_bg;
5774
5775 /*
5776 * When adding a new device for sprouting, the seed device is read-only
5777 * so we must first allocate a metadata and a system chunk. But before
5778 * adding the block group items to the extent, device and chunk btrees,
5779 * we must first:
5780 *
5781 * 1) Create both chunks without doing any changes to the btrees, as
5782 * otherwise we would get -ENOSPC since the block groups from the
5783 * seed device are read-only;
5784 *
5785 * 2) Add the device item for the new sprout device - finishing the setup
5786 * of a new block group requires updating the device item in the chunk
5787 * btree, so it must exist when we attempt to do it. The previous step
5788 * ensures this does not fail with -ENOSPC.
5789 *
5790 * After that we can add the block group items to their btrees:
5791 * update existing device item in the chunk btree, add a new block group
5792 * item to the extent btree, add a new chunk item to the chunk btree and
5793 * finally add the new device extent items to the devices btree.
5794 */
5795
5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5800
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803 if (IS_ERR(sys_bg))
5804 return PTR_ERR(sys_bg);
5805
5806 return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810{
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813 return btrfs_raid_array[index].tolerated_failures;
5814}
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818 struct btrfs_chunk_map *map;
5819 int miss_ndevs = 0;
5820 int i;
5821 bool ret = true;
5822
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824 if (IS_ERR(map))
5825 return false;
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5830 miss_ndevs++;
5831 continue;
5832 }
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5835 ret = false;
5836 goto end;
5837 }
5838 }
5839
5840 /*
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5843 */
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5845 ret = false;
5846end:
5847 btrfs_free_chunk_map(map);
5848 return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5857
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866 }
5867 write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872 struct btrfs_chunk_map *map;
5873 enum btrfs_raid_types index;
5874 int ret = 1;
5875
5876 map = btrfs_get_chunk_map(fs_info, logical, len);
5877 if (IS_ERR(map))
5878 /*
5879 * We could return errors for these cases, but that could get
5880 * ugly and we'd probably do the same thing which is just not do
5881 * anything else and exit, so return 1 so the callers don't try
5882 * to use other copies.
5883 */
5884 return 1;
5885
5886 index = btrfs_bg_flags_to_raid_index(map->type);
5887
5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890 ret = btrfs_raid_array[index].ncopies;
5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892 ret = 2;
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894 /*
5895 * There could be two corrupted data stripes, we need
5896 * to loop retry in order to rebuild the correct data.
5897 *
5898 * Fail a stripe at a time on every retry except the
5899 * stripe under reconstruction.
5900 */
5901 ret = map->num_stripes;
5902 btrfs_free_chunk_map(map);
5903 return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907 u64 logical)
5908{
5909 struct btrfs_chunk_map *map;
5910 unsigned long len = fs_info->sectorsize;
5911
5912 if (!btrfs_fs_incompat(fs_info, RAID56))
5913 return len;
5914
5915 map = btrfs_get_chunk_map(fs_info, logical, len);
5916
5917 if (!WARN_ON(IS_ERR(map))) {
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920 btrfs_free_chunk_map(map);
5921 }
5922 return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927 struct btrfs_chunk_map *map;
5928 int ret = 0;
5929
5930 if (!btrfs_fs_incompat(fs_info, RAID56))
5931 return 0;
5932
5933 map = btrfs_get_chunk_map(fs_info, logical, len);
5934
5935 if (!WARN_ON(IS_ERR(map))) {
5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937 ret = 1;
5938 btrfs_free_chunk_map(map);
5939 }
5940 return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944 struct btrfs_chunk_map *map, int first,
5945 int dev_replace_is_ongoing)
5946{
5947 int i;
5948 int num_stripes;
5949 int preferred_mirror;
5950 int tolerance;
5951 struct btrfs_device *srcdev;
5952
5953 ASSERT((map->type &
5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957 num_stripes = map->sub_stripes;
5958 else
5959 num_stripes = map->num_stripes;
5960
5961 switch (fs_info->fs_devices->read_policy) {
5962 default:
5963 /* Shouldn't happen, just warn and use pid instead of failing */
5964 btrfs_warn_rl(fs_info,
5965 "unknown read_policy type %u, reset to pid",
5966 fs_info->fs_devices->read_policy);
5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968 fallthrough;
5969 case BTRFS_READ_POLICY_PID:
5970 preferred_mirror = first + (current->pid % num_stripes);
5971 break;
5972 }
5973
5974 if (dev_replace_is_ongoing &&
5975 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977 srcdev = fs_info->dev_replace.srcdev;
5978 else
5979 srcdev = NULL;
5980
5981 /*
5982 * try to avoid the drive that is the source drive for a
5983 * dev-replace procedure, only choose it if no other non-missing
5984 * mirror is available
5985 */
5986 for (tolerance = 0; tolerance < 2; tolerance++) {
5987 if (map->stripes[preferred_mirror].dev->bdev &&
5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989 return preferred_mirror;
5990 for (i = first; i < first + num_stripes; i++) {
5991 if (map->stripes[i].dev->bdev &&
5992 (tolerance || map->stripes[i].dev != srcdev))
5993 return i;
5994 }
5995 }
5996
5997 /* we couldn't find one that doesn't fail. Just return something
5998 * and the io error handling code will clean up eventually
5999 */
6000 return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004 u64 logical,
6005 u16 total_stripes)
6006{
6007 struct btrfs_io_context *bioc;
6008
6009 bioc = kzalloc(
6010 /* The size of btrfs_io_context */
6011 sizeof(struct btrfs_io_context) +
6012 /* Plus the variable array for the stripes */
6013 sizeof(struct btrfs_io_stripe) * (total_stripes),
6014 GFP_NOFS);
6015
6016 if (!bioc)
6017 return NULL;
6018
6019 refcount_set(&bioc->refs, 1);
6020
6021 bioc->fs_info = fs_info;
6022 bioc->replace_stripe_src = -1;
6023 bioc->full_stripe_logical = (u64)-1;
6024 bioc->logical = logical;
6025
6026 return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
6030{
6031 WARN_ON(!refcount_read(&bioc->refs));
6032 refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037 if (!bioc)
6038 return;
6039 if (refcount_dec_and_test(&bioc->refs))
6040 kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048 u64 logical, u64 *length_ret,
6049 u32 *num_stripes)
6050{
6051 struct btrfs_chunk_map *map;
6052 struct btrfs_discard_stripe *stripes;
6053 u64 length = *length_ret;
6054 u64 offset;
6055 u32 stripe_nr;
6056 u32 stripe_nr_end;
6057 u32 stripe_cnt;
6058 u64 stripe_end_offset;
6059 u64 stripe_offset;
6060 u32 stripe_index;
6061 u32 factor = 0;
6062 u32 sub_stripes = 0;
6063 u32 stripes_per_dev = 0;
6064 u32 remaining_stripes = 0;
6065 u32 last_stripe = 0;
6066 int ret;
6067 int i;
6068
6069 map = btrfs_get_chunk_map(fs_info, logical, length);
6070 if (IS_ERR(map))
6071 return ERR_CAST(map);
6072
6073 /* we don't discard raid56 yet */
6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075 ret = -EOPNOTSUPP;
6076 goto out_free_map;
6077 }
6078
6079 offset = logical - map->start;
6080 length = min_t(u64, map->start + map->chunk_len - logical, length);
6081 *length_ret = length;
6082
6083 /*
6084 * stripe_nr counts the total number of stripes we have to stride
6085 * to get to this block
6086 */
6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089 /* stripe_offset is the offset of this block in its stripe */
6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093 BTRFS_STRIPE_LEN_SHIFT;
6094 stripe_cnt = stripe_nr_end - stripe_nr;
6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096 (offset + length);
6097 /*
6098 * after this, stripe_nr is the number of stripes on this
6099 * device we have to walk to find the data, and stripe_index is
6100 * the number of our device in the stripe array
6101 */
6102 *num_stripes = 1;
6103 stripe_index = 0;
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107 sub_stripes = 1;
6108 else
6109 sub_stripes = map->sub_stripes;
6110
6111 factor = map->num_stripes / sub_stripes;
6112 *num_stripes = min_t(u64, map->num_stripes,
6113 sub_stripes * stripe_cnt);
6114 stripe_index = stripe_nr % factor;
6115 stripe_nr /= factor;
6116 stripe_index *= sub_stripes;
6117
6118 remaining_stripes = stripe_cnt % factor;
6119 stripes_per_dev = stripe_cnt / factor;
6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122 BTRFS_BLOCK_GROUP_DUP)) {
6123 *num_stripes = map->num_stripes;
6124 } else {
6125 stripe_index = stripe_nr % map->num_stripes;
6126 stripe_nr /= map->num_stripes;
6127 }
6128
6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130 if (!stripes) {
6131 ret = -ENOMEM;
6132 goto out_free_map;
6133 }
6134
6135 for (i = 0; i < *num_stripes; i++) {
6136 stripes[i].physical =
6137 map->stripes[stripe_index].physical +
6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139 stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142 BTRFS_BLOCK_GROUP_RAID10)) {
6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6144
6145 if (i / sub_stripes < remaining_stripes)
6146 stripes[i].length += BTRFS_STRIPE_LEN;
6147
6148 /*
6149 * Special for the first stripe and
6150 * the last stripe:
6151 *
6152 * |-------|...|-------|
6153 * |----------|
6154 * off end_off
6155 */
6156 if (i < sub_stripes)
6157 stripes[i].length -= stripe_offset;
6158
6159 if (stripe_index >= last_stripe &&
6160 stripe_index <= (last_stripe +
6161 sub_stripes - 1))
6162 stripes[i].length -= stripe_end_offset;
6163
6164 if (i == sub_stripes - 1)
6165 stripe_offset = 0;
6166 } else {
6167 stripes[i].length = length;
6168 }
6169
6170 stripe_index++;
6171 if (stripe_index == map->num_stripes) {
6172 stripe_index = 0;
6173 stripe_nr++;
6174 }
6175 }
6176
6177 btrfs_free_chunk_map(map);
6178 return stripes;
6179out_free_map:
6180 btrfs_free_chunk_map(map);
6181 return ERR_PTR(ret);
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6185{
6186 struct btrfs_block_group *cache;
6187 bool ret;
6188
6189 /* Non zoned filesystem does not use "to_copy" flag */
6190 if (!btrfs_is_zoned(fs_info))
6191 return false;
6192
6193 cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197 btrfs_put_block_group(cache);
6198 return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202 struct btrfs_io_context *bioc,
6203 struct btrfs_dev_replace *dev_replace,
6204 u64 logical,
6205 int *num_stripes_ret, int *max_errors_ret)
6206{
6207 u64 srcdev_devid = dev_replace->srcdev->devid;
6208 /*
6209 * At this stage, num_stripes is still the real number of stripes,
6210 * excluding the duplicated stripes.
6211 */
6212 int num_stripes = *num_stripes_ret;
6213 int nr_extra_stripes = 0;
6214 int max_errors = *max_errors_ret;
6215 int i;
6216
6217 /*
6218 * A block group which has "to_copy" set will eventually be copied by
6219 * the dev-replace process. We can avoid cloning IO here.
6220 */
6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222 return;
6223
6224 /*
6225 * Duplicate the write operations while the dev-replace procedure is
6226 * running. Since the copying of the old disk to the new disk takes
6227 * place at run time while the filesystem is mounted writable, the
6228 * regular write operations to the old disk have to be duplicated to go
6229 * to the new disk as well.
6230 *
6231 * Note that device->missing is handled by the caller, and that the
6232 * write to the old disk is already set up in the stripes array.
6233 */
6234 for (i = 0; i < num_stripes; i++) {
6235 struct btrfs_io_stripe *old = &bioc->stripes[i];
6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238 if (old->dev->devid != srcdev_devid)
6239 continue;
6240
6241 new->physical = old->physical;
6242 new->dev = dev_replace->tgtdev;
6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244 bioc->replace_stripe_src = i;
6245 nr_extra_stripes++;
6246 }
6247
6248 /* We can only have at most 2 extra nr_stripes (for DUP). */
6249 ASSERT(nr_extra_stripes <= 2);
6250 /*
6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252 * replace.
6253 * If we have 2 extra stripes, only choose the one with smaller physical.
6254 */
6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259 /* Only DUP can have two extra stripes. */
6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262 /*
6263 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264 * The extra stripe would still be there, but won't be accessed.
6265 */
6266 if (first->physical > second->physical) {
6267 swap(second->physical, first->physical);
6268 swap(second->dev, first->dev);
6269 nr_extra_stripes--;
6270 }
6271 }
6272
6273 *num_stripes_ret = num_stripes + nr_extra_stripes;
6274 *max_errors_ret = max_errors + nr_extra_stripes;
6275 bioc->replace_nr_stripes = nr_extra_stripes;
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279 struct btrfs_io_geometry *io_geom)
6280{
6281 /*
6282 * Stripe_nr is the stripe where this block falls. stripe_offset is
6283 * the offset of this block in its stripe.
6284 */
6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287 ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290 unsigned long full_stripe_len =
6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293 /*
6294 * For full stripe start, we use previously calculated
6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296 * STRIPE_LEN.
6297 *
6298 * By this we can avoid u64 division completely. And we have
6299 * to go rounddown(), not round_down(), as nr_data_stripes is
6300 * not ensured to be power of 2.
6301 */
6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307 /*
6308 * For writes to RAID56, allow to write a full stripe set, but
6309 * no straddling of stripe sets.
6310 */
6311 if (io_geom->op == BTRFS_MAP_WRITE)
6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313 }
6314
6315 /*
6316 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317 * a single disk).
6318 */
6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321 return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325 u64 *length, struct btrfs_io_stripe *dst,
6326 struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6328{
6329 dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331 if (io_geom->op == BTRFS_MAP_READ &&
6332 btrfs_need_stripe_tree_update(fs_info, map->type))
6333 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334 map->type,
6335 io_geom->stripe_index, dst);
6336
6337 dst->physical = map->stripes[io_geom->stripe_index].physical +
6338 io_geom->stripe_offset +
6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340 return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344 const struct btrfs_io_stripe *smap,
6345 const struct btrfs_chunk_map *map,
6346 int num_alloc_stripes,
6347 enum btrfs_map_op op, int mirror_num)
6348{
6349 if (!smap)
6350 return false;
6351
6352 if (num_alloc_stripes != 1)
6353 return false;
6354
6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356 return false;
6357
6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359 return false;
6360
6361 return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365 struct btrfs_io_geometry *io_geom)
6366{
6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368 io_geom->stripe_nr /= map->num_stripes;
6369 if (io_geom->op == BTRFS_MAP_READ)
6370 io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374 struct btrfs_chunk_map *map,
6375 struct btrfs_io_geometry *io_geom,
6376 bool dev_replace_is_ongoing)
6377{
6378 if (io_geom->op != BTRFS_MAP_READ) {
6379 io_geom->num_stripes = map->num_stripes;
6380 return;
6381 }
6382
6383 if (io_geom->mirror_num) {
6384 io_geom->stripe_index = io_geom->mirror_num - 1;
6385 return;
6386 }
6387
6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389 dev_replace_is_ongoing);
6390 io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394 struct btrfs_io_geometry *io_geom)
6395{
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6398 return;
6399 }
6400
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6403 return;
6404 }
6405
6406 io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410 struct btrfs_chunk_map *map,
6411 struct btrfs_io_geometry *io_geom,
6412 bool dev_replace_is_ongoing)
6413{
6414 u32 factor = map->num_stripes / map->sub_stripes;
6415 int old_stripe_index;
6416
6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418 io_geom->stripe_nr /= factor;
6419
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->sub_stripes;
6422 return;
6423 }
6424
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index += io_geom->mirror_num - 1;
6427 return;
6428 }
6429
6430 old_stripe_index = io_geom->stripe_index;
6431 io_geom->stripe_index = find_live_mirror(fs_info, map,
6432 io_geom->stripe_index,
6433 dev_replace_is_ongoing);
6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438 struct btrfs_io_geometry *io_geom,
6439 u64 logical, u64 *length)
6440{
6441 int data_stripes = nr_data_stripes(map);
6442
6443 /*
6444 * Needs full stripe mapping.
6445 *
6446 * Push stripe_nr back to the start of the full stripe For those cases
6447 * needing a full stripe, @stripe_nr is the full stripe number.
6448 *
6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450 * that can be expensive. Here we just divide @stripe_nr with
6451 * @data_stripes.
6452 */
6453 io_geom->stripe_nr /= data_stripes;
6454
6455 /* RAID[56] write or recovery. Return all stripes */
6456 io_geom->num_stripes = map->num_stripes;
6457 io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459 /* Return the length to the full stripe end. */
6460 *length = min(logical + *length,
6461 io_geom->raid56_full_stripe_start + map->start +
6462 btrfs_stripe_nr_to_offset(data_stripes)) -
6463 logical;
6464 io_geom->stripe_index = 0;
6465 io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469 struct btrfs_io_geometry *io_geom)
6470{
6471 int data_stripes = nr_data_stripes(map);
6472
6473 ASSERT(io_geom->mirror_num <= 1);
6474 /* Just grab the data stripe directly. */
6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476 io_geom->stripe_nr /= data_stripes;
6477
6478 /* We distribute the parity blocks across stripes. */
6479 io_geom->stripe_index =
6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483 io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6488{
6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490 io_geom->stripe_nr /= map->num_stripes;
6491 io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length: (Mandatory) mapped length of this run.
6498 * One logical range can be split into different segments
6499 * due to factors like zones and RAID0/5/6/10 stripe
6500 * boundaries.
6501 *
6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6503 * which has one or more physical ranges (btrfs_io_stripe)
6504 * recorded inside.
6505 * Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap: (Optional) single physical range optimization.
6508 * If the map request can be fulfilled by one single
6509 * physical range, and this is parameter is not NULL,
6510 * then @bioc_ret would be NULL, and @smap would be
6511 * updated.
6512 *
6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6514 * value is 0.
6515 *
6516 * Mirror number 0 means to choose any live mirrors.
6517 *
6518 * For non-RAID56 profiles, non-zero mirror_num means
6519 * the Nth mirror. (e.g. mirror_num 1 means the first
6520 * copy).
6521 *
6522 * For RAID56 profile, mirror 1 means rebuild from P and
6523 * the remaining data stripes.
6524 *
6525 * For RAID6 profile, mirror > 2 means mark another
6526 * data/P stripe error and rebuild from the remaining
6527 * stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530 u64 logical, u64 *length,
6531 struct btrfs_io_context **bioc_ret,
6532 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534 struct btrfs_chunk_map *map;
6535 struct btrfs_io_geometry io_geom = { 0 };
6536 u64 map_offset;
6537 int i;
6538 int ret = 0;
6539 int num_copies;
6540 struct btrfs_io_context *bioc = NULL;
6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542 int dev_replace_is_ongoing = 0;
6543 u16 num_alloc_stripes;
6544 u64 max_len;
6545
6546 ASSERT(bioc_ret);
6547
6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549 io_geom.num_stripes = 1;
6550 io_geom.stripe_index = 0;
6551 io_geom.op = op;
6552
6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554 if (io_geom.mirror_num > num_copies)
6555 return -EINVAL;
6556
6557 map = btrfs_get_chunk_map(fs_info, logical, *length);
6558 if (IS_ERR(map))
6559 return PTR_ERR(map);
6560
6561 map_offset = logical - map->start;
6562 io_geom.raid56_full_stripe_start = (u64)-1;
6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566 down_read(&dev_replace->rwsem);
6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568 /*
6569 * Hold the semaphore for read during the whole operation, write is
6570 * requested at commit time but must wait.
6571 */
6572 if (!dev_replace_is_ongoing)
6573 up_read(&dev_replace->rwsem);
6574
6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576 case BTRFS_BLOCK_GROUP_RAID0:
6577 map_blocks_raid0(map, &io_geom);
6578 break;
6579 case BTRFS_BLOCK_GROUP_RAID1:
6580 case BTRFS_BLOCK_GROUP_RAID1C3:
6581 case BTRFS_BLOCK_GROUP_RAID1C4:
6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583 break;
6584 case BTRFS_BLOCK_GROUP_DUP:
6585 map_blocks_dup(map, &io_geom);
6586 break;
6587 case BTRFS_BLOCK_GROUP_RAID10:
6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589 break;
6590 case BTRFS_BLOCK_GROUP_RAID5:
6591 case BTRFS_BLOCK_GROUP_RAID6:
6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593 map_blocks_raid56_write(map, &io_geom, logical, length);
6594 else
6595 map_blocks_raid56_read(map, &io_geom);
6596 break;
6597 default:
6598 /*
6599 * After this, stripe_nr is the number of stripes on this
6600 * device we have to walk to find the data, and stripe_index is
6601 * the number of our device in the stripe array
6602 */
6603 map_blocks_single(map, &io_geom);
6604 break;
6605 }
6606 if (io_geom.stripe_index >= map->num_stripes) {
6607 btrfs_crit(fs_info,
6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609 io_geom.stripe_index, map->num_stripes);
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 num_alloc_stripes = io_geom.num_stripes;
6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616 op != BTRFS_MAP_READ)
6617 /*
6618 * For replace case, we need to add extra stripes for extra
6619 * duplicated stripes.
6620 *
6621 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622 * 2 more stripes (DUP types, otherwise 1).
6623 */
6624 num_alloc_stripes += 2;
6625
6626 /*
6627 * If this I/O maps to a single device, try to return the device and
6628 * physical block information on the stack instead of allocating an
6629 * I/O context structure.
6630 */
6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632 io_geom.mirror_num)) {
6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634 if (mirror_num_ret)
6635 *mirror_num_ret = io_geom.mirror_num;
6636 *bioc_ret = NULL;
6637 goto out;
6638 }
6639
6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641 if (!bioc) {
6642 ret = -ENOMEM;
6643 goto out;
6644 }
6645 bioc->map_type = map->type;
6646
6647 /*
6648 * For RAID56 full map, we need to make sure the stripes[] follows the
6649 * rule that data stripes are all ordered, then followed with P and Q
6650 * (if we have).
6651 *
6652 * It's still mostly the same as other profiles, just with extra rotation.
6653 */
6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656 /*
6657 * For RAID56 @stripe_nr is already the number of full stripes
6658 * before us, which is also the rotation value (needs to modulo
6659 * with num_stripes).
6660 *
6661 * In this case, we just add @stripe_nr with @i, then do the
6662 * modulo, to reduce one modulo call.
6663 */
6664 bioc->full_stripe_logical = map->start +
6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666 nr_data_stripes(map));
6667 for (int i = 0; i < io_geom.num_stripes; i++) {
6668 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669 u32 stripe_index;
6670
6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672 dst->dev = map->stripes[stripe_index].dev;
6673 dst->physical =
6674 map->stripes[stripe_index].physical +
6675 io_geom.stripe_offset +
6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677 }
6678 } else {
6679 /*
6680 * For all other non-RAID56 profiles, just copy the target
6681 * stripe into the bioc.
6682 */
6683 for (i = 0; i < io_geom.num_stripes; i++) {
6684 ret = set_io_stripe(fs_info, logical, length,
6685 &bioc->stripes[i], map, &io_geom);
6686 if (ret < 0)
6687 break;
6688 io_geom.stripe_index++;
6689 }
6690 }
6691
6692 if (ret) {
6693 *bioc_ret = NULL;
6694 btrfs_put_bioc(bioc);
6695 goto out;
6696 }
6697
6698 if (op != BTRFS_MAP_READ)
6699 io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702 op != BTRFS_MAP_READ) {
6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704 &io_geom.num_stripes, &io_geom.max_errors);
6705 }
6706
6707 *bioc_ret = bioc;
6708 bioc->num_stripes = io_geom.num_stripes;
6709 bioc->max_errors = io_geom.max_errors;
6710 bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713 if (dev_replace_is_ongoing) {
6714 lockdep_assert_held(&dev_replace->rwsem);
6715 /* Unlock and let waiting writers proceed */
6716 up_read(&dev_replace->rwsem);
6717 }
6718 btrfs_free_chunk_map(map);
6719 return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723 const struct btrfs_fs_devices *fs_devices)
6724{
6725 if (args->fsid == NULL)
6726 return true;
6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728 return true;
6729 return false;
6730}
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733 const struct btrfs_device *device)
6734{
6735 if (args->missing) {
6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737 !device->bdev)
6738 return true;
6739 return false;
6740 }
6741
6742 if (device->devid != args->devid)
6743 return false;
6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745 return false;
6746 return true;
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757 const struct btrfs_dev_lookup_args *args)
6758{
6759 struct btrfs_device *device;
6760 struct btrfs_fs_devices *seed_devs;
6761
6762 if (dev_args_match_fs_devices(args, fs_devices)) {
6763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764 if (dev_args_match_device(args, device))
6765 return device;
6766 }
6767 }
6768
6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770 if (!dev_args_match_fs_devices(args, seed_devs))
6771 continue;
6772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773 if (dev_args_match_device(args, device))
6774 return device;
6775 }
6776 }
6777
6778 return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782 u64 devid, u8 *dev_uuid)
6783{
6784 struct btrfs_device *device;
6785 unsigned int nofs_flag;
6786
6787 /*
6788 * We call this under the chunk_mutex, so we want to use NOFS for this
6789 * allocation, however we don't want to change btrfs_alloc_device() to
6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791 * places.
6792 */
6793
6794 nofs_flag = memalloc_nofs_save();
6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796 memalloc_nofs_restore(nofs_flag);
6797 if (IS_ERR(device))
6798 return device;
6799
6800 list_add(&device->dev_list, &fs_devices->devices);
6801 device->fs_devices = fs_devices;
6802 fs_devices->num_devices++;
6803
6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805 fs_devices->missing_devices++;
6806
6807 return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6816 * is generated.
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6818 * is generated.
6819 * @path: a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error. Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826 const u64 *devid, const u8 *uuid,
6827 const char *path)
6828{
6829 struct btrfs_device *dev;
6830 u64 tmp;
6831
6832 if (WARN_ON(!devid && !fs_info))
6833 return ERR_PTR(-EINVAL);
6834
6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836 if (!dev)
6837 return ERR_PTR(-ENOMEM);
6838
6839 INIT_LIST_HEAD(&dev->dev_list);
6840 INIT_LIST_HEAD(&dev->dev_alloc_list);
6841 INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843 atomic_set(&dev->dev_stats_ccnt, 0);
6844 btrfs_device_data_ordered_init(dev);
6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847 if (devid)
6848 tmp = *devid;
6849 else {
6850 int ret;
6851
6852 ret = find_next_devid(fs_info, &tmp);
6853 if (ret) {
6854 btrfs_free_device(dev);
6855 return ERR_PTR(ret);
6856 }
6857 }
6858 dev->devid = tmp;
6859
6860 if (uuid)
6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862 else
6863 generate_random_uuid(dev->uuid);
6864
6865 if (path) {
6866 struct rcu_string *name;
6867
6868 name = rcu_string_strdup(path, GFP_KERNEL);
6869 if (!name) {
6870 btrfs_free_device(dev);
6871 return ERR_PTR(-ENOMEM);
6872 }
6873 rcu_assign_pointer(dev->name, name);
6874 }
6875
6876 return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880 u64 devid, u8 *uuid, bool error)
6881{
6882 if (error)
6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884 devid, uuid);
6885 else
6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887 devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894 return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906 u64 logical, u64 length, u64 type)
6907{
6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909 return 0;
6910
6911 if (logical + length < MAX_LFS_FILESIZE)
6912 return 0;
6913
6914 btrfs_err_32bit_limit(fs_info);
6915 return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925 u64 logical, u64 length, u64 type)
6926{
6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928 return;
6929
6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931 return;
6932
6933 btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938 u64 devid, u8 *uuid)
6939{
6940 struct btrfs_device *dev;
6941
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid, uuid, true);
6944 return ERR_PTR(-ENOENT);
6945 }
6946
6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948 if (IS_ERR(dev)) {
6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950 devid, PTR_ERR(dev));
6951 return dev;
6952 }
6953 btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955 return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959 struct btrfs_chunk *chunk)
6960{
6961 BTRFS_DEV_LOOKUP_ARGS(args);
6962 struct btrfs_fs_info *fs_info = leaf->fs_info;
6963 struct btrfs_chunk_map *map;
6964 u64 logical;
6965 u64 length;
6966 u64 devid;
6967 u64 type;
6968 u8 uuid[BTRFS_UUID_SIZE];
6969 int index;
6970 int num_stripes;
6971 int ret;
6972 int i;
6973
6974 logical = key->offset;
6975 length = btrfs_chunk_length(leaf, chunk);
6976 type = btrfs_chunk_type(leaf, chunk);
6977 index = btrfs_bg_flags_to_raid_index(type);
6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982 if (ret < 0)
6983 return ret;
6984 warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987 /*
6988 * Only need to verify chunk item if we're reading from sys chunk array,
6989 * as chunk item in tree block is already verified by tree-checker.
6990 */
6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993 if (ret)
6994 return ret;
6995 }
6996
6997 map = btrfs_find_chunk_map(fs_info, logical, 1);
6998
6999 /* already mapped? */
7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001 btrfs_free_chunk_map(map);
7002 return 0;
7003 } else if (map) {
7004 btrfs_free_chunk_map(map);
7005 }
7006
7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008 if (!map)
7009 return -ENOMEM;
7010
7011 map->start = logical;
7012 map->chunk_len = length;
7013 map->num_stripes = num_stripes;
7014 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016 map->type = type;
7017 /*
7018 * We can't use the sub_stripes value, as for profiles other than
7019 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020 * older mkfs (<v5.4).
7021 * In that case, it can cause divide-by-zero errors later.
7022 * Since currently sub_stripes is fixed for each profile, let's
7023 * use the trusted value instead.
7024 */
7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026 map->verified_stripes = 0;
7027 map->stripe_size = btrfs_calc_stripe_length(map);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 args.devid = devid;
7033 read_extent_buffer(leaf, uuid, (unsigned long)
7034 btrfs_stripe_dev_uuid_nr(chunk, i),
7035 BTRFS_UUID_SIZE);
7036 args.uuid = uuid;
7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038 if (!map->stripes[i].dev) {
7039 map->stripes[i].dev = handle_missing_device(fs_info,
7040 devid, uuid);
7041 if (IS_ERR(map->stripes[i].dev)) {
7042 ret = PTR_ERR(map->stripes[i].dev);
7043 btrfs_free_chunk_map(map);
7044 return ret;
7045 }
7046 }
7047
7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049 &(map->stripes[i].dev->dev_state));
7050 }
7051
7052 ret = btrfs_add_chunk_map(fs_info, map);
7053 if (ret < 0) {
7054 btrfs_err(fs_info,
7055 "failed to add chunk map, start=%llu len=%llu: %d",
7056 map->start, map->chunk_len, ret);
7057 }
7058
7059 return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063 struct btrfs_dev_item *dev_item,
7064 struct btrfs_device *device)
7065{
7066 unsigned long ptr;
7067
7068 device->devid = btrfs_device_id(leaf, dev_item);
7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070 device->total_bytes = device->disk_total_bytes;
7071 device->commit_total_bytes = device->disk_total_bytes;
7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073 device->commit_bytes_used = device->bytes_used;
7074 device->type = btrfs_device_type(leaf, dev_item);
7075 device->io_align = btrfs_device_io_align(leaf, dev_item);
7076 device->io_width = btrfs_device_io_width(leaf, dev_item);
7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081 ptr = btrfs_device_uuid(dev_item);
7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086 u8 *fsid)
7087{
7088 struct btrfs_fs_devices *fs_devices;
7089 int ret;
7090
7091 lockdep_assert_held(&uuid_mutex);
7092 ASSERT(fsid);
7093
7094 /* This will match only for multi-device seed fs */
7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097 return fs_devices;
7098
7099
7100 fs_devices = find_fsid(fsid, NULL);
7101 if (!fs_devices) {
7102 if (!btrfs_test_opt(fs_info, DEGRADED))
7103 return ERR_PTR(-ENOENT);
7104
7105 fs_devices = alloc_fs_devices(fsid);
7106 if (IS_ERR(fs_devices))
7107 return fs_devices;
7108
7109 fs_devices->seeding = true;
7110 fs_devices->opened = 1;
7111 return fs_devices;
7112 }
7113
7114 /*
7115 * Upon first call for a seed fs fsid, just create a private copy of the
7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117 */
7118 fs_devices = clone_fs_devices(fs_devices);
7119 if (IS_ERR(fs_devices))
7120 return fs_devices;
7121
7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7123 if (ret) {
7124 free_fs_devices(fs_devices);
7125 return ERR_PTR(ret);
7126 }
7127
7128 if (!fs_devices->seeding) {
7129 close_fs_devices(fs_devices);
7130 free_fs_devices(fs_devices);
7131 return ERR_PTR(-EINVAL);
7132 }
7133
7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136 return fs_devices;
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item)
7141{
7142 BTRFS_DEV_LOOKUP_ARGS(args);
7143 struct btrfs_fs_info *fs_info = leaf->fs_info;
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *device;
7146 u64 devid;
7147 int ret;
7148 u8 fs_uuid[BTRFS_FSID_SIZE];
7149 u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151 devid = btrfs_device_id(leaf, dev_item);
7152 args.devid = devid;
7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7154 BTRFS_UUID_SIZE);
7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156 BTRFS_FSID_SIZE);
7157 args.uuid = dev_uuid;
7158 args.fsid = fs_uuid;
7159
7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161 fs_devices = open_seed_devices(fs_info, fs_uuid);
7162 if (IS_ERR(fs_devices))
7163 return PTR_ERR(fs_devices);
7164 }
7165
7166 device = btrfs_find_device(fs_info->fs_devices, &args);
7167 if (!device) {
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_report_missing_device(fs_info, devid,
7170 dev_uuid, true);
7171 return -ENOENT;
7172 }
7173
7174 device = add_missing_dev(fs_devices, devid, dev_uuid);
7175 if (IS_ERR(device)) {
7176 btrfs_err(fs_info,
7177 "failed to add missing dev %llu: %ld",
7178 devid, PTR_ERR(device));
7179 return PTR_ERR(device);
7180 }
7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182 } else {
7183 if (!device->bdev) {
7184 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185 btrfs_report_missing_device(fs_info,
7186 devid, dev_uuid, true);
7187 return -ENOENT;
7188 }
7189 btrfs_report_missing_device(fs_info, devid,
7190 dev_uuid, false);
7191 }
7192
7193 if (!device->bdev &&
7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7195 /*
7196 * this happens when a device that was properly setup
7197 * in the device info lists suddenly goes bad.
7198 * device->bdev is NULL, and so we have to set
7199 * device->missing to one here
7200 */
7201 device->fs_devices->missing_devices++;
7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203 }
7204
7205 /* Move the device to its own fs_devices */
7206 if (device->fs_devices != fs_devices) {
7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208 &device->dev_state));
7209
7210 list_move(&device->dev_list, &fs_devices->devices);
7211 device->fs_devices->num_devices--;
7212 fs_devices->num_devices++;
7213
7214 device->fs_devices->missing_devices--;
7215 fs_devices->missing_devices++;
7216
7217 device->fs_devices = fs_devices;
7218 }
7219 }
7220
7221 if (device->fs_devices != fs_info->fs_devices) {
7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223 if (device->generation !=
7224 btrfs_device_generation(leaf, dev_item))
7225 return -EINVAL;
7226 }
7227
7228 fill_device_from_item(leaf, dev_item, device);
7229 if (device->bdev) {
7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232 if (device->total_bytes > max_total_bytes) {
7233 btrfs_err(fs_info,
7234 "device total_bytes should be at most %llu but found %llu",
7235 max_total_bytes, device->total_bytes);
7236 return -EINVAL;
7237 }
7238 }
7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242 device->fs_devices->total_rw_bytes += device->total_bytes;
7243 atomic64_add(device->total_bytes - device->bytes_used,
7244 &fs_info->free_chunk_space);
7245 }
7246 ret = 0;
7247 return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252 struct btrfs_super_block *super_copy = fs_info->super_copy;
7253 struct extent_buffer *sb;
7254 struct btrfs_disk_key *disk_key;
7255 struct btrfs_chunk *chunk;
7256 u8 *array_ptr;
7257 unsigned long sb_array_offset;
7258 int ret = 0;
7259 u32 num_stripes;
7260 u32 array_size;
7261 u32 len = 0;
7262 u32 cur_offset;
7263 u64 type;
7264 struct btrfs_key key;
7265
7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268 /*
7269 * We allocated a dummy extent, just to use extent buffer accessors.
7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271 * that's fine, we will not go beyond system chunk array anyway.
7272 */
7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274 if (!sb)
7275 return -ENOMEM;
7276 set_extent_buffer_uptodate(sb);
7277
7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279 array_size = btrfs_super_sys_array_size(super_copy);
7280
7281 array_ptr = super_copy->sys_chunk_array;
7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283 cur_offset = 0;
7284
7285 while (cur_offset < array_size) {
7286 disk_key = (struct btrfs_disk_key *)array_ptr;
7287 len = sizeof(*disk_key);
7288 if (cur_offset + len > array_size)
7289 goto out_short_read;
7290
7291 btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293 array_ptr += len;
7294 sb_array_offset += len;
7295 cur_offset += len;
7296
7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298 btrfs_err(fs_info,
7299 "unexpected item type %u in sys_array at offset %u",
7300 (u32)key.type, cur_offset);
7301 ret = -EIO;
7302 break;
7303 }
7304
7305 chunk = (struct btrfs_chunk *)sb_array_offset;
7306 /*
7307 * At least one btrfs_chunk with one stripe must be present,
7308 * exact stripe count check comes afterwards
7309 */
7310 len = btrfs_chunk_item_size(1);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315 if (!num_stripes) {
7316 btrfs_err(fs_info,
7317 "invalid number of stripes %u in sys_array at offset %u",
7318 num_stripes, cur_offset);
7319 ret = -EIO;
7320 break;
7321 }
7322
7323 type = btrfs_chunk_type(sb, chunk);
7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325 btrfs_err(fs_info,
7326 "invalid chunk type %llu in sys_array at offset %u",
7327 type, cur_offset);
7328 ret = -EIO;
7329 break;
7330 }
7331
7332 len = btrfs_chunk_item_size(num_stripes);
7333 if (cur_offset + len > array_size)
7334 goto out_short_read;
7335
7336 ret = read_one_chunk(&key, sb, chunk);
7337 if (ret)
7338 break;
7339
7340 array_ptr += len;
7341 sb_array_offset += len;
7342 cur_offset += len;
7343 }
7344 clear_extent_buffer_uptodate(sb);
7345 free_extent_buffer_stale(sb);
7346 return ret;
7347
7348out_short_read:
7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350 len, cur_offset);
7351 clear_extent_buffer_uptodate(sb);
7352 free_extent_buffer_stale(sb);
7353 return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365 struct btrfs_device *failing_dev)
7366{
7367 struct btrfs_chunk_map *map;
7368 u64 next_start;
7369 bool ret = true;
7370
7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372 /* No chunk at all? Return false anyway */
7373 if (!map) {
7374 ret = false;
7375 goto out;
7376 }
7377 while (map) {
7378 int missing = 0;
7379 int max_tolerated;
7380 int i;
7381
7382 max_tolerated =
7383 btrfs_get_num_tolerated_disk_barrier_failures(
7384 map->type);
7385 for (i = 0; i < map->num_stripes; i++) {
7386 struct btrfs_device *dev = map->stripes[i].dev;
7387
7388 if (!dev || !dev->bdev ||
7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390 dev->last_flush_error)
7391 missing++;
7392 else if (failing_dev && failing_dev == dev)
7393 missing++;
7394 }
7395 if (missing > max_tolerated) {
7396 if (!failing_dev)
7397 btrfs_warn(fs_info,
7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399 map->start, missing, max_tolerated);
7400 btrfs_free_chunk_map(map);
7401 ret = false;
7402 goto out;
7403 }
7404 next_start = map->start + map->chunk_len;
7405 btrfs_free_chunk_map(map);
7406
7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408 }
7409out:
7410 return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415 int i;
7416 const int nr_items = btrfs_header_nritems(node);
7417
7418 for (i = 0; i < nr_items; i++)
7419 btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424 struct btrfs_root *root = fs_info->chunk_root;
7425 struct btrfs_path *path;
7426 struct extent_buffer *leaf;
7427 struct btrfs_key key;
7428 struct btrfs_key found_key;
7429 int ret;
7430 int slot;
7431 int iter_ret = 0;
7432 u64 total_dev = 0;
7433 u64 last_ra_node = 0;
7434
7435 path = btrfs_alloc_path();
7436 if (!path)
7437 return -ENOMEM;
7438
7439 /*
7440 * uuid_mutex is needed only if we are mounting a sprout FS
7441 * otherwise we don't need it.
7442 */
7443 mutex_lock(&uuid_mutex);
7444
7445 /*
7446 * It is possible for mount and umount to race in such a way that
7447 * we execute this code path, but open_fs_devices failed to clear
7448 * total_rw_bytes. We certainly want it cleared before reading the
7449 * device items, so clear it here.
7450 */
7451 fs_info->fs_devices->total_rw_bytes = 0;
7452
7453 /*
7454 * Lockdep complains about possible circular locking dependency between
7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456 * used for freeze procection of a fs (struct super_block.s_writers),
7457 * which we take when starting a transaction, and extent buffers of the
7458 * chunk tree if we call read_one_dev() while holding a lock on an
7459 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460 * and at this point there can't be any concurrent task modifying the
7461 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462 */
7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464 path->skip_locking = 1;
7465
7466 /*
7467 * Read all device items, and then all the chunk items. All
7468 * device items are found before any chunk item (their object id
7469 * is smaller than the lowest possible object id for a chunk
7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471 */
7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473 key.offset = 0;
7474 key.type = 0;
7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476 struct extent_buffer *node = path->nodes[1];
7477
7478 leaf = path->nodes[0];
7479 slot = path->slots[0];
7480
7481 if (node) {
7482 if (last_ra_node != node->start) {
7483 readahead_tree_node_children(node);
7484 last_ra_node = node->start;
7485 }
7486 }
7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488 struct btrfs_dev_item *dev_item;
7489 dev_item = btrfs_item_ptr(leaf, slot,
7490 struct btrfs_dev_item);
7491 ret = read_one_dev(leaf, dev_item);
7492 if (ret)
7493 goto error;
7494 total_dev++;
7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496 struct btrfs_chunk *chunk;
7497
7498 /*
7499 * We are only called at mount time, so no need to take
7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501 * we always lock first fs_info->chunk_mutex before
7502 * acquiring any locks on the chunk tree. This is a
7503 * requirement for chunk allocation, see the comment on
7504 * top of btrfs_chunk_alloc() for details.
7505 */
7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507 ret = read_one_chunk(&found_key, leaf, chunk);
7508 if (ret)
7509 goto error;
7510 }
7511 }
7512 /* Catch error found during iteration */
7513 if (iter_ret < 0) {
7514 ret = iter_ret;
7515 goto error;
7516 }
7517
7518 /*
7519 * After loading chunk tree, we've got all device information,
7520 * do another round of validation checks.
7521 */
7522 if (total_dev != fs_info->fs_devices->total_devices) {
7523 btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525 btrfs_super_num_devices(fs_info->super_copy),
7526 total_dev);
7527 fs_info->fs_devices->total_devices = total_dev;
7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529 }
7530 if (btrfs_super_total_bytes(fs_info->super_copy) <
7531 fs_info->fs_devices->total_rw_bytes) {
7532 btrfs_err(fs_info,
7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534 btrfs_super_total_bytes(fs_info->super_copy),
7535 fs_info->fs_devices->total_rw_bytes);
7536 ret = -EINVAL;
7537 goto error;
7538 }
7539 ret = 0;
7540error:
7541 mutex_unlock(&uuid_mutex);
7542
7543 btrfs_free_path(path);
7544 return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550 struct btrfs_device *device;
7551 int ret = 0;
7552
7553 fs_devices->fs_info = fs_info;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
7558
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561 device->fs_info = fs_info;
7562 ret = btrfs_get_dev_zone_info(device, false);
7563 if (ret)
7564 break;
7565 }
7566
7567 seed_devs->fs_info = fs_info;
7568 }
7569 mutex_unlock(&fs_devices->device_list_mutex);
7570
7571 return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575 const struct btrfs_dev_stats_item *ptr,
7576 int index)
7577{
7578 u64 val;
7579
7580 read_extent_buffer(eb, &val,
7581 offsetof(struct btrfs_dev_stats_item, values) +
7582 ((unsigned long)ptr) + (index * sizeof(u64)),
7583 sizeof(val));
7584 return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588 struct btrfs_dev_stats_item *ptr,
7589 int index, u64 val)
7590{
7591 write_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7594 sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598 struct btrfs_path *path)
7599{
7600 struct btrfs_dev_stats_item *ptr;
7601 struct extent_buffer *eb;
7602 struct btrfs_key key;
7603 int item_size;
7604 int i, ret, slot;
7605
7606 if (!device->fs_info->dev_root)
7607 return 0;
7608
7609 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611 key.offset = device->devid;
7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613 if (ret) {
7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615 btrfs_dev_stat_set(device, i, 0);
7616 device->dev_stats_valid = 1;
7617 btrfs_release_path(path);
7618 return ret < 0 ? ret : 0;
7619 }
7620 slot = path->slots[0];
7621 eb = path->nodes[0];
7622 item_size = btrfs_item_size(eb, slot);
7623
7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627 if (item_size >= (1 + i) * sizeof(__le64))
7628 btrfs_dev_stat_set(device, i,
7629 btrfs_dev_stats_value(eb, ptr, i));
7630 else
7631 btrfs_dev_stat_set(device, i, 0);
7632 }
7633
7634 device->dev_stats_valid = 1;
7635 btrfs_dev_stat_print_on_load(device);
7636 btrfs_release_path(path);
7637
7638 return 0;
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644 struct btrfs_device *device;
7645 struct btrfs_path *path = NULL;
7646 int ret = 0;
7647
7648 path = btrfs_alloc_path();
7649 if (!path)
7650 return -ENOMEM;
7651
7652 mutex_lock(&fs_devices->device_list_mutex);
7653 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7655 if (ret)
7656 goto out;
7657 }
7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660 ret = btrfs_device_init_dev_stats(device, path);
7661 if (ret)
7662 goto out;
7663 }
7664 }
7665out:
7666 mutex_unlock(&fs_devices->device_list_mutex);
7667
7668 btrfs_free_path(path);
7669 return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673 struct btrfs_device *device)
7674{
7675 struct btrfs_fs_info *fs_info = trans->fs_info;
7676 struct btrfs_root *dev_root = fs_info->dev_root;
7677 struct btrfs_path *path;
7678 struct btrfs_key key;
7679 struct extent_buffer *eb;
7680 struct btrfs_dev_stats_item *ptr;
7681 int ret;
7682 int i;
7683
7684 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686 key.offset = device->devid;
7687
7688 path = btrfs_alloc_path();
7689 if (!path)
7690 return -ENOMEM;
7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "error %d while searching for dev_stats item for device %s",
7695 ret, btrfs_dev_name(device));
7696 goto out;
7697 }
7698
7699 if (ret == 0 &&
7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701 /* need to delete old one and insert a new one */
7702 ret = btrfs_del_item(trans, dev_root, path);
7703 if (ret != 0) {
7704 btrfs_warn_in_rcu(fs_info,
7705 "delete too small dev_stats item for device %s failed %d",
7706 btrfs_dev_name(device), ret);
7707 goto out;
7708 }
7709 ret = 1;
7710 }
7711
7712 if (ret == 1) {
7713 /* need to insert a new item */
7714 btrfs_release_path(path);
7715 ret = btrfs_insert_empty_item(trans, dev_root, path,
7716 &key, sizeof(*ptr));
7717 if (ret < 0) {
7718 btrfs_warn_in_rcu(fs_info,
7719 "insert dev_stats item for device %s failed %d",
7720 btrfs_dev_name(device), ret);
7721 goto out;
7722 }
7723 }
7724
7725 eb = path->nodes[0];
7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728 btrfs_set_dev_stats_value(eb, ptr, i,
7729 btrfs_dev_stat_read(device, i));
7730 btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733 btrfs_free_path(path);
7734 return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7741{
7742 struct btrfs_fs_info *fs_info = trans->fs_info;
7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744 struct btrfs_device *device;
7745 int stats_cnt;
7746 int ret = 0;
7747
7748 mutex_lock(&fs_devices->device_list_mutex);
7749 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751 if (!device->dev_stats_valid || stats_cnt == 0)
7752 continue;
7753
7754
7755 /*
7756 * There is a LOAD-LOAD control dependency between the value of
7757 * dev_stats_ccnt and updating the on-disk values which requires
7758 * reading the in-memory counters. Such control dependencies
7759 * require explicit read memory barriers.
7760 *
7761 * This memory barriers pairs with smp_mb__before_atomic in
7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763 * barrier implied by atomic_xchg in
7764 * btrfs_dev_stats_read_and_reset
7765 */
7766 smp_rmb();
7767
7768 ret = update_dev_stat_item(trans, device);
7769 if (!ret)
7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771 }
7772 mutex_unlock(&fs_devices->device_list_mutex);
7773
7774 return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779 btrfs_dev_stat_inc(dev, index);
7780
7781 if (!dev->dev_stats_valid)
7782 return;
7783 btrfs_err_rl_in_rcu(dev->fs_info,
7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785 btrfs_dev_name(dev),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795 int i;
7796
7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798 if (btrfs_dev_stat_read(dev, i) != 0)
7799 break;
7800 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801 return; /* all values == 0, suppress message */
7802
7803 btrfs_info_in_rcu(dev->fs_info,
7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805 btrfs_dev_name(dev),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814 struct btrfs_ioctl_get_dev_stats *stats)
7815{
7816 BTRFS_DEV_LOOKUP_ARGS(args);
7817 struct btrfs_device *dev;
7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819 int i;
7820
7821 mutex_lock(&fs_devices->device_list_mutex);
7822 args.devid = stats->devid;
7823 dev = btrfs_find_device(fs_info->fs_devices, &args);
7824 mutex_unlock(&fs_devices->device_list_mutex);
7825
7826 if (!dev) {
7827 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7828 return -ENODEV;
7829 } else if (!dev->dev_stats_valid) {
7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7831 return -ENODEV;
7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834 if (stats->nr_items > i)
7835 stats->values[i] =
7836 btrfs_dev_stat_read_and_reset(dev, i);
7837 else
7838 btrfs_dev_stat_set(dev, i, 0);
7839 }
7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841 current->comm, task_pid_nr(current));
7842 } else {
7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844 if (stats->nr_items > i)
7845 stats->values[i] = btrfs_dev_stat_read(dev, i);
7846 }
7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849 return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed. This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861 struct btrfs_device *curr, *next;
7862
7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865 if (list_empty(&trans->dev_update_list))
7866 return;
7867
7868 /*
7869 * We don't need the device_list_mutex here. This list is owned by the
7870 * transaction and the transaction must complete before the device is
7871 * released.
7872 */
7873 mutex_lock(&trans->fs_info->chunk_mutex);
7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875 post_commit_list) {
7876 list_del_init(&curr->post_commit_list);
7877 curr->commit_total_bytes = curr->disk_total_bytes;
7878 curr->commit_bytes_used = curr->bytes_used;
7879 }
7880 mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888 const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890 return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896 u64 chunk_offset, u64 devid,
7897 u64 physical_offset, u64 physical_len)
7898{
7899 struct btrfs_dev_lookup_args args = { .devid = devid };
7900 struct btrfs_chunk_map *map;
7901 struct btrfs_device *dev;
7902 u64 stripe_len;
7903 bool found = false;
7904 int ret = 0;
7905 int i;
7906
7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908 if (!map) {
7909 btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7912 ret = -EUCLEAN;
7913 goto out;
7914 }
7915
7916 stripe_len = btrfs_calc_stripe_length(map);
7917 if (physical_len != stripe_len) {
7918 btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920 physical_offset, devid, map->start, physical_len,
7921 stripe_len);
7922 ret = -EUCLEAN;
7923 goto out;
7924 }
7925
7926 /*
7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928 * space. Although kernel can handle it without problem, better to warn
7929 * the users.
7930 */
7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932 btrfs_warn(fs_info,
7933 "devid %llu physical %llu len %llu inside the reserved space",
7934 devid, physical_offset, physical_len);
7935
7936 for (i = 0; i < map->num_stripes; i++) {
7937 if (map->stripes[i].dev->devid == devid &&
7938 map->stripes[i].physical == physical_offset) {
7939 found = true;
7940 if (map->verified_stripes >= map->num_stripes) {
7941 btrfs_err(fs_info,
7942 "too many dev extents for chunk %llu found",
7943 map->start);
7944 ret = -EUCLEAN;
7945 goto out;
7946 }
7947 map->verified_stripes++;
7948 break;
7949 }
7950 }
7951 if (!found) {
7952 btrfs_err(fs_info,
7953 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7954 physical_offset, devid);
7955 ret = -EUCLEAN;
7956 }
7957
7958 /* Make sure no dev extent is beyond device boundary */
7959 dev = btrfs_find_device(fs_info->fs_devices, &args);
7960 if (!dev) {
7961 btrfs_err(fs_info, "failed to find devid %llu", devid);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
7965
7966 if (physical_offset + physical_len > dev->disk_total_bytes) {
7967 btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969 devid, physical_offset, physical_len,
7970 dev->disk_total_bytes);
7971 ret = -EUCLEAN;
7972 goto out;
7973 }
7974
7975 if (dev->zone_info) {
7976 u64 zone_size = dev->zone_info->zone_size;
7977
7978 if (!IS_ALIGNED(physical_offset, zone_size) ||
7979 !IS_ALIGNED(physical_len, zone_size)) {
7980 btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982 devid, physical_offset, physical_len);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
7986 }
7987
7988out:
7989 btrfs_free_chunk_map(map);
7990 return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995 struct rb_node *node;
7996 int ret = 0;
7997
7998 read_lock(&fs_info->mapping_tree_lock);
7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000 struct btrfs_chunk_map *map;
8001
8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003 if (map->num_stripes != map->verified_stripes) {
8004 btrfs_err(fs_info,
8005 "chunk %llu has missing dev extent, have %d expect %d",
8006 map->start, map->verified_stripes, map->num_stripes);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011out:
8012 read_unlock(&fs_info->mapping_tree_lock);
8013 return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree. This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025 struct btrfs_path *path;
8026 struct btrfs_root *root = fs_info->dev_root;
8027 struct btrfs_key key;
8028 u64 prev_devid = 0;
8029 u64 prev_dev_ext_end = 0;
8030 int ret = 0;
8031
8032 /*
8033 * We don't have a dev_root because we mounted with ignorebadroots and
8034 * failed to load the root, so we want to skip the verification in this
8035 * case for sure.
8036 *
8037 * However if the dev root is fine, but the tree itself is corrupted
8038 * we'd still fail to mount. This verification is only to make sure
8039 * writes can happen safely, so instead just bypass this check
8040 * completely in the case of IGNOREBADROOTS.
8041 */
8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043 return 0;
8044
8045 key.objectid = 1;
8046 key.type = BTRFS_DEV_EXTENT_KEY;
8047 key.offset = 0;
8048
8049 path = btrfs_alloc_path();
8050 if (!path)
8051 return -ENOMEM;
8052
8053 path->reada = READA_FORWARD;
8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055 if (ret < 0)
8056 goto out;
8057
8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059 ret = btrfs_next_leaf(root, path);
8060 if (ret < 0)
8061 goto out;
8062 /* No dev extents at all? Not good */
8063 if (ret > 0) {
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067 }
8068 while (1) {
8069 struct extent_buffer *leaf = path->nodes[0];
8070 struct btrfs_dev_extent *dext;
8071 int slot = path->slots[0];
8072 u64 chunk_offset;
8073 u64 physical_offset;
8074 u64 physical_len;
8075 u64 devid;
8076
8077 btrfs_item_key_to_cpu(leaf, &key, slot);
8078 if (key.type != BTRFS_DEV_EXTENT_KEY)
8079 break;
8080 devid = key.objectid;
8081 physical_offset = key.offset;
8082
8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085 physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087 /* Check if this dev extent overlaps with the previous one */
8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089 btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091 devid, physical_offset, prev_dev_ext_end);
8092 ret = -EUCLEAN;
8093 goto out;
8094 }
8095
8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097 physical_offset, physical_len);
8098 if (ret < 0)
8099 goto out;
8100 prev_devid = devid;
8101 prev_dev_ext_end = physical_offset + physical_len;
8102
8103 ret = btrfs_next_item(root, path);
8104 if (ret < 0)
8105 goto out;
8106 if (ret > 0) {
8107 ret = 0;
8108 break;
8109 }
8110 }
8111
8112 /* Ensure all chunks have corresponding dev extents */
8113 ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115 btrfs_free_path(path);
8116 return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125 struct btrfs_swapfile_pin *sp;
8126 struct rb_node *node;
8127
8128 spin_lock(&fs_info->swapfile_pins_lock);
8129 node = fs_info->swapfile_pins.rb_node;
8130 while (node) {
8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132 if (ptr < sp->ptr)
8133 node = node->rb_left;
8134 else if (ptr > sp->ptr)
8135 node = node->rb_right;
8136 else
8137 break;
8138 }
8139 spin_unlock(&fs_info->swapfile_pins_lock);
8140 return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145 struct btrfs_block_group *cache = data;
8146 struct btrfs_fs_info *fs_info = cache->fs_info;
8147 u64 target;
8148 int ret = 0;
8149
8150 target = cache->start;
8151 btrfs_put_block_group(cache);
8152
8153 sb_start_write(fs_info->sb);
8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155 btrfs_info(fs_info,
8156 "zoned: skip relocating block group %llu to repair: EBUSY",
8157 target);
8158 sb_end_write(fs_info->sb);
8159 return -EBUSY;
8160 }
8161
8162 mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164 /* Ensure block group still exists */
8165 cache = btrfs_lookup_block_group(fs_info, target);
8166 if (!cache)
8167 goto out;
8168
8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170 goto out;
8171
8172 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173 if (ret < 0)
8174 goto out;
8175
8176 btrfs_info(fs_info,
8177 "zoned: relocating block group %llu to repair IO failure",
8178 target);
8179 ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182 if (cache)
8183 btrfs_put_block_group(cache);
8184 mutex_unlock(&fs_info->reclaim_bgs_lock);
8185 btrfs_exclop_finish(fs_info);
8186 sb_end_write(fs_info->sb);
8187
8188 return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193 struct btrfs_block_group *cache;
8194
8195 if (!btrfs_is_zoned(fs_info))
8196 return false;
8197
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8200 return true;
8201
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8203 if (!cache)
8204 return true;
8205
8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207 btrfs_put_block_group(cache);
8208 return true;
8209 }
8210
8211 kthread_run(relocating_repair_kthread, cache,
8212 "btrfs-relocating-repair");
8213
8214 return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218 struct btrfs_io_stripe *smap,
8219 u64 logical)
8220{
8221 int data_stripes = nr_bioc_data_stripes(bioc);
8222 int i;
8223
8224 for (i = 0; i < data_stripes; i++) {
8225 u64 stripe_start = bioc->full_stripe_logical +
8226 btrfs_stripe_nr_to_offset(i);
8227
8228 if (logical >= stripe_start &&
8229 logical < stripe_start + BTRFS_STRIPE_LEN)
8230 break;
8231 }
8232 ASSERT(i < data_stripes);
8233 smap->dev = bioc->stripes[i].dev;
8234 smap->physical = bioc->stripes[i].physical +
8235 ((logical - bioc->full_stripe_logical) &
8236 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253 struct btrfs_io_stripe *smap, u64 logical,
8254 u32 length, int mirror_num)
8255{
8256 struct btrfs_io_context *bioc = NULL;
8257 u64 map_length = length;
8258 int mirror_ret = mirror_num;
8259 int ret;
8260
8261 ASSERT(mirror_num > 0);
8262
8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264 &bioc, smap, &mirror_ret);
8265 if (ret < 0)
8266 return ret;
8267
8268 /* The map range should not cross stripe boundary. */
8269 ASSERT(map_length >= length);
8270
8271 /* Already mapped to single stripe. */
8272 if (!bioc)
8273 goto out;
8274
8275 /* Map the RAID56 multi-stripe writes to a single one. */
8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277 map_raid56_repair_block(bioc, smap, logical);
8278 goto out;
8279 }
8280
8281 ASSERT(mirror_num <= bioc->num_stripes);
8282 smap->dev = bioc->stripes[mirror_num - 1].dev;
8283 smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285 btrfs_put_bioc(bioc);
8286 ASSERT(smap->dev);
8287 return 0;
8288}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221#define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366 return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439{
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454{
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471{
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 goto error;
480 }
481 bdev = file_bdev(*bdev_file);
482
483 if (flush)
484 sync_blockdev(bdev);
485 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 if (ret) {
487 fput(*bdev_file);
488 goto error;
489 }
490 invalidate_bdev(bdev);
491 *disk_super = btrfs_read_dev_super(bdev);
492 if (IS_ERR(*disk_super)) {
493 ret = PTR_ERR(*disk_super);
494 fput(*bdev_file);
495 goto error;
496 }
497
498 return 0;
499
500error:
501 *bdev_file = NULL;
502 return ret;
503}
504
505/*
506 * Search and remove all stale devices (which are not mounted). When both
507 * inputs are NULL, it will search and release all stale devices.
508 *
509 * @devt: Optional. When provided will it release all unmounted devices
510 * matching this devt only.
511 * @skip_device: Optional. Will skip this device when searching for the stale
512 * devices.
513 *
514 * Return: 0 for success or if @devt is 0.
515 * -EBUSY if @devt is a mounted device.
516 * -ENOENT if @devt does not match any device in the list.
517 */
518static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519{
520 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 struct btrfs_device *device, *tmp_device;
522 int ret;
523 bool freed = false;
524
525 lockdep_assert_held(&uuid_mutex);
526
527 /* Return good status if there is no instance of devt. */
528 ret = 0;
529 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530
531 mutex_lock(&fs_devices->device_list_mutex);
532 list_for_each_entry_safe(device, tmp_device,
533 &fs_devices->devices, dev_list) {
534 if (skip_device && skip_device == device)
535 continue;
536 if (devt && devt != device->devt)
537 continue;
538 if (fs_devices->opened) {
539 if (devt)
540 ret = -EBUSY;
541 break;
542 }
543
544 /* delete the stale device */
545 fs_devices->num_devices--;
546 list_del(&device->dev_list);
547 btrfs_free_device(device);
548
549 freed = true;
550 }
551 mutex_unlock(&fs_devices->device_list_mutex);
552
553 if (fs_devices->num_devices == 0) {
554 btrfs_sysfs_remove_fsid(fs_devices);
555 list_del(&fs_devices->fs_list);
556 free_fs_devices(fs_devices);
557 }
558 }
559
560 /* If there is at least one freed device return 0. */
561 if (freed)
562 return 0;
563
564 return ret;
565}
566
567static struct btrfs_fs_devices *find_fsid_by_device(
568 struct btrfs_super_block *disk_super,
569 dev_t devt, bool *same_fsid_diff_dev)
570{
571 struct btrfs_fs_devices *fsid_fs_devices;
572 struct btrfs_fs_devices *devt_fs_devices;
573 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 bool found_by_devt = false;
576
577 /* Find the fs_device by the usual method, if found use it. */
578 fsid_fs_devices = find_fsid(disk_super->fsid,
579 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580
581 /* The temp_fsid feature is supported only with single device filesystem. */
582 if (btrfs_super_num_devices(disk_super) != 1)
583 return fsid_fs_devices;
584
585 /*
586 * A seed device is an integral component of the sprout device, which
587 * functions as a multi-device filesystem. So, temp-fsid feature is
588 * not supported.
589 */
590 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 return fsid_fs_devices;
592
593 /* Try to find a fs_devices by matching devt. */
594 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 struct btrfs_device *device;
596
597 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 if (device->devt == devt) {
599 found_by_devt = true;
600 break;
601 }
602 }
603 if (found_by_devt)
604 break;
605 }
606
607 if (found_by_devt) {
608 /* Existing device. */
609 if (fsid_fs_devices == NULL) {
610 if (devt_fs_devices->opened == 0) {
611 /* Stale device. */
612 return NULL;
613 } else {
614 /* temp_fsid is mounting a subvol. */
615 return devt_fs_devices;
616 }
617 } else {
618 /* Regular or temp_fsid device mounting a subvol. */
619 return devt_fs_devices;
620 }
621 } else {
622 /* New device. */
623 if (fsid_fs_devices == NULL) {
624 return NULL;
625 } else {
626 /* sb::fsid is already used create a new temp_fsid. */
627 *same_fsid_diff_dev = true;
628 return NULL;
629 }
630 }
631
632 /* Not reached. */
633}
634
635/*
636 * This is only used on mount, and we are protected from competing things
637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
638 * fs_devices->device_list_mutex here.
639 */
640static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 struct btrfs_device *device, blk_mode_t flags,
642 void *holder)
643{
644 struct file *bdev_file;
645 struct btrfs_super_block *disk_super;
646 u64 devid;
647 int ret;
648
649 if (device->bdev)
650 return -EINVAL;
651 if (!device->name)
652 return -EINVAL;
653
654 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 &bdev_file, &disk_super);
656 if (ret)
657 return ret;
658
659 devid = btrfs_stack_device_id(&disk_super->dev_item);
660 if (devid != device->devid)
661 goto error_free_page;
662
663 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 goto error_free_page;
665
666 device->generation = btrfs_super_generation(disk_super);
667
668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 if (btrfs_super_incompat_flags(disk_super) &
670 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 pr_err(
672 "BTRFS: Invalid seeding and uuid-changed device detected\n");
673 goto error_free_page;
674 }
675
676 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 fs_devices->seeding = true;
678 } else {
679 if (bdev_read_only(file_bdev(bdev_file)))
680 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 else
682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 }
684
685 if (!bdev_nonrot(file_bdev(bdev_file)))
686 fs_devices->rotating = true;
687
688 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 fs_devices->discardable = true;
690
691 device->bdev_file = bdev_file;
692 device->bdev = file_bdev(bdev_file);
693 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694
695 if (device->devt != device->bdev->bd_dev) {
696 btrfs_warn(NULL,
697 "device %s maj:min changed from %d:%d to %d:%d",
698 device->name->str, MAJOR(device->devt),
699 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700 MINOR(device->bdev->bd_dev));
701
702 device->devt = device->bdev->bd_dev;
703 }
704
705 fs_devices->open_devices++;
706 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707 device->devid != BTRFS_DEV_REPLACE_DEVID) {
708 fs_devices->rw_devices++;
709 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710 }
711 btrfs_release_disk_super(disk_super);
712
713 return 0;
714
715error_free_page:
716 btrfs_release_disk_super(disk_super);
717 fput(bdev_file);
718
719 return -EINVAL;
720}
721
722u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723{
724 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726
727 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728}
729
730/*
731 * Add new device to list of registered devices
732 *
733 * Returns:
734 * device pointer which was just added or updated when successful
735 * error pointer when failed
736 */
737static noinline struct btrfs_device *device_list_add(const char *path,
738 struct btrfs_super_block *disk_super,
739 bool *new_device_added)
740{
741 struct btrfs_device *device;
742 struct btrfs_fs_devices *fs_devices = NULL;
743 struct rcu_string *name;
744 u64 found_transid = btrfs_super_generation(disk_super);
745 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746 dev_t path_devt;
747 int error;
748 bool same_fsid_diff_dev = false;
749 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751
752 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753 btrfs_err(NULL,
754"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755 path);
756 return ERR_PTR(-EAGAIN);
757 }
758
759 error = lookup_bdev(path, &path_devt);
760 if (error) {
761 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762 path, error);
763 return ERR_PTR(error);
764 }
765
766 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767
768 if (!fs_devices) {
769 fs_devices = alloc_fs_devices(disk_super->fsid);
770 if (IS_ERR(fs_devices))
771 return ERR_CAST(fs_devices);
772
773 if (has_metadata_uuid)
774 memcpy(fs_devices->metadata_uuid,
775 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776
777 if (same_fsid_diff_dev) {
778 generate_random_uuid(fs_devices->fsid);
779 fs_devices->temp_fsid = true;
780 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781 path, MAJOR(path_devt), MINOR(path_devt),
782 fs_devices->fsid);
783 }
784
785 mutex_lock(&fs_devices->device_list_mutex);
786 list_add(&fs_devices->fs_list, &fs_uuids);
787
788 device = NULL;
789 } else {
790 struct btrfs_dev_lookup_args args = {
791 .devid = devid,
792 .uuid = disk_super->dev_item.uuid,
793 };
794
795 mutex_lock(&fs_devices->device_list_mutex);
796 device = btrfs_find_device(fs_devices, &args);
797
798 if (found_transid > fs_devices->latest_generation) {
799 memcpy(fs_devices->fsid, disk_super->fsid,
800 BTRFS_FSID_SIZE);
801 memcpy(fs_devices->metadata_uuid,
802 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803 }
804 }
805
806 if (!device) {
807 unsigned int nofs_flag;
808
809 if (fs_devices->opened) {
810 btrfs_err(NULL,
811"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812 path, MAJOR(path_devt), MINOR(path_devt),
813 fs_devices->fsid, current->comm,
814 task_pid_nr(current));
815 mutex_unlock(&fs_devices->device_list_mutex);
816 return ERR_PTR(-EBUSY);
817 }
818
819 nofs_flag = memalloc_nofs_save();
820 device = btrfs_alloc_device(NULL, &devid,
821 disk_super->dev_item.uuid, path);
822 memalloc_nofs_restore(nofs_flag);
823 if (IS_ERR(device)) {
824 mutex_unlock(&fs_devices->device_list_mutex);
825 /* we can safely leave the fs_devices entry around */
826 return device;
827 }
828
829 device->devt = path_devt;
830
831 list_add_rcu(&device->dev_list, &fs_devices->devices);
832 fs_devices->num_devices++;
833
834 device->fs_devices = fs_devices;
835 *new_device_added = true;
836
837 if (disk_super->label[0])
838 pr_info(
839"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840 disk_super->label, devid, found_transid, path,
841 MAJOR(path_devt), MINOR(path_devt),
842 current->comm, task_pid_nr(current));
843 else
844 pr_info(
845"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846 disk_super->fsid, devid, found_transid, path,
847 MAJOR(path_devt), MINOR(path_devt),
848 current->comm, task_pid_nr(current));
849
850 } else if (!device->name || strcmp(device->name->str, path)) {
851 /*
852 * When FS is already mounted.
853 * 1. If you are here and if the device->name is NULL that
854 * means this device was missing at time of FS mount.
855 * 2. If you are here and if the device->name is different
856 * from 'path' that means either
857 * a. The same device disappeared and reappeared with
858 * different name. or
859 * b. The missing-disk-which-was-replaced, has
860 * reappeared now.
861 *
862 * We must allow 1 and 2a above. But 2b would be a spurious
863 * and unintentional.
864 *
865 * Further in case of 1 and 2a above, the disk at 'path'
866 * would have missed some transaction when it was away and
867 * in case of 2a the stale bdev has to be updated as well.
868 * 2b must not be allowed at all time.
869 */
870
871 /*
872 * For now, we do allow update to btrfs_fs_device through the
873 * btrfs dev scan cli after FS has been mounted. We're still
874 * tracking a problem where systems fail mount by subvolume id
875 * when we reject replacement on a mounted FS.
876 */
877 if (!fs_devices->opened && found_transid < device->generation) {
878 /*
879 * That is if the FS is _not_ mounted and if you
880 * are here, that means there is more than one
881 * disk with same uuid and devid.We keep the one
882 * with larger generation number or the last-in if
883 * generation are equal.
884 */
885 mutex_unlock(&fs_devices->device_list_mutex);
886 btrfs_err(NULL,
887"device %s already registered with a higher generation, found %llu expect %llu",
888 path, found_transid, device->generation);
889 return ERR_PTR(-EEXIST);
890 }
891
892 /*
893 * We are going to replace the device path for a given devid,
894 * make sure it's the same device if the device is mounted
895 *
896 * NOTE: the device->fs_info may not be reliable here so pass
897 * in a NULL to message helpers instead. This avoids a possible
898 * use-after-free when the fs_info and fs_info->sb are already
899 * torn down.
900 */
901 if (device->bdev) {
902 if (device->devt != path_devt) {
903 mutex_unlock(&fs_devices->device_list_mutex);
904 btrfs_warn_in_rcu(NULL,
905 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906 path, devid, found_transid,
907 current->comm,
908 task_pid_nr(current));
909 return ERR_PTR(-EEXIST);
910 }
911 btrfs_info_in_rcu(NULL,
912 "devid %llu device path %s changed to %s scanned by %s (%d)",
913 devid, btrfs_dev_name(device),
914 path, current->comm,
915 task_pid_nr(current));
916 }
917
918 name = rcu_string_strdup(path, GFP_NOFS);
919 if (!name) {
920 mutex_unlock(&fs_devices->device_list_mutex);
921 return ERR_PTR(-ENOMEM);
922 }
923 rcu_string_free(device->name);
924 rcu_assign_pointer(device->name, name);
925 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926 fs_devices->missing_devices--;
927 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928 }
929 device->devt = path_devt;
930 }
931
932 /*
933 * Unmount does not free the btrfs_device struct but would zero
934 * generation along with most of the other members. So just update
935 * it back. We need it to pick the disk with largest generation
936 * (as above).
937 */
938 if (!fs_devices->opened) {
939 device->generation = found_transid;
940 fs_devices->latest_generation = max_t(u64, found_transid,
941 fs_devices->latest_generation);
942 }
943
944 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945
946 mutex_unlock(&fs_devices->device_list_mutex);
947 return device;
948}
949
950static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951{
952 struct btrfs_fs_devices *fs_devices;
953 struct btrfs_device *device;
954 struct btrfs_device *orig_dev;
955 int ret = 0;
956
957 lockdep_assert_held(&uuid_mutex);
958
959 fs_devices = alloc_fs_devices(orig->fsid);
960 if (IS_ERR(fs_devices))
961 return fs_devices;
962
963 fs_devices->total_devices = orig->total_devices;
964
965 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966 const char *dev_path = NULL;
967
968 /*
969 * This is ok to do without RCU read locked because we hold the
970 * uuid mutex so nothing we touch in here is going to disappear.
971 */
972 if (orig_dev->name)
973 dev_path = orig_dev->name->str;
974
975 device = btrfs_alloc_device(NULL, &orig_dev->devid,
976 orig_dev->uuid, dev_path);
977 if (IS_ERR(device)) {
978 ret = PTR_ERR(device);
979 goto error;
980 }
981
982 if (orig_dev->zone_info) {
983 struct btrfs_zoned_device_info *zone_info;
984
985 zone_info = btrfs_clone_dev_zone_info(orig_dev);
986 if (!zone_info) {
987 btrfs_free_device(device);
988 ret = -ENOMEM;
989 goto error;
990 }
991 device->zone_info = zone_info;
992 }
993
994 list_add(&device->dev_list, &fs_devices->devices);
995 device->fs_devices = fs_devices;
996 fs_devices->num_devices++;
997 }
998 return fs_devices;
999error:
1000 free_fs_devices(fs_devices);
1001 return ERR_PTR(ret);
1002}
1003
1004static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005 struct btrfs_device **latest_dev)
1006{
1007 struct btrfs_device *device, *next;
1008
1009 /* This is the initialized path, it is safe to release the devices. */
1010 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013 &device->dev_state) &&
1014 !test_bit(BTRFS_DEV_STATE_MISSING,
1015 &device->dev_state) &&
1016 (!*latest_dev ||
1017 device->generation > (*latest_dev)->generation)) {
1018 *latest_dev = device;
1019 }
1020 continue;
1021 }
1022
1023 /*
1024 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025 * in btrfs_init_dev_replace() so just continue.
1026 */
1027 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028 continue;
1029
1030 if (device->bdev_file) {
1031 fput(device->bdev_file);
1032 device->bdev = NULL;
1033 device->bdev_file = NULL;
1034 fs_devices->open_devices--;
1035 }
1036 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037 list_del_init(&device->dev_alloc_list);
1038 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039 fs_devices->rw_devices--;
1040 }
1041 list_del_init(&device->dev_list);
1042 fs_devices->num_devices--;
1043 btrfs_free_device(device);
1044 }
1045
1046}
1047
1048/*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053{
1054 struct btrfs_device *latest_dev = NULL;
1055 struct btrfs_fs_devices *seed_dev;
1056
1057 mutex_lock(&uuid_mutex);
1058 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063 fs_devices->latest_dev = latest_dev;
1064
1065 mutex_unlock(&uuid_mutex);
1066}
1067
1068static void btrfs_close_bdev(struct btrfs_device *device)
1069{
1070 if (!device->bdev)
1071 return;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 sync_blockdev(device->bdev);
1075 invalidate_bdev(device->bdev);
1076 }
1077
1078 fput(device->bdev_file);
1079}
1080
1081static void btrfs_close_one_device(struct btrfs_device *device)
1082{
1083 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087 list_del_init(&device->dev_alloc_list);
1088 fs_devices->rw_devices--;
1089 }
1090
1091 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096 fs_devices->missing_devices--;
1097 }
1098
1099 btrfs_close_bdev(device);
1100 if (device->bdev) {
1101 fs_devices->open_devices--;
1102 device->bdev = NULL;
1103 }
1104 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105 btrfs_destroy_dev_zone_info(device);
1106
1107 device->fs_info = NULL;
1108 atomic_set(&device->dev_stats_ccnt, 0);
1109 extent_io_tree_release(&device->alloc_state);
1110
1111 /*
1112 * Reset the flush error record. We might have a transient flush error
1113 * in this mount, and if so we aborted the current transaction and set
1114 * the fs to an error state, guaranteeing no super blocks can be further
1115 * committed. However that error might be transient and if we unmount the
1116 * filesystem and mount it again, we should allow the mount to succeed
1117 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118 * filesystem again we still get flush errors, then we will again abort
1119 * any transaction and set the error state, guaranteeing no commits of
1120 * unsafe super blocks.
1121 */
1122 device->last_flush_error = 0;
1123
1124 /* Verify the device is back in a pristine state */
1125 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127 WARN_ON(!list_empty(&device->dev_alloc_list));
1128 WARN_ON(!list_empty(&device->post_commit_list));
1129}
1130
1131static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132{
1133 struct btrfs_device *device, *tmp;
1134
1135 lockdep_assert_held(&uuid_mutex);
1136
1137 if (--fs_devices->opened > 0)
1138 return;
1139
1140 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141 btrfs_close_one_device(device);
1142
1143 WARN_ON(fs_devices->open_devices);
1144 WARN_ON(fs_devices->rw_devices);
1145 fs_devices->opened = 0;
1146 fs_devices->seeding = false;
1147 fs_devices->fs_info = NULL;
1148}
1149
1150void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151{
1152 LIST_HEAD(list);
1153 struct btrfs_fs_devices *tmp;
1154
1155 mutex_lock(&uuid_mutex);
1156 close_fs_devices(fs_devices);
1157 if (!fs_devices->opened) {
1158 list_splice_init(&fs_devices->seed_list, &list);
1159
1160 /*
1161 * If the struct btrfs_fs_devices is not assembled with any
1162 * other device, it can be re-initialized during the next mount
1163 * without the needing device-scan step. Therefore, it can be
1164 * fully freed.
1165 */
1166 if (fs_devices->num_devices == 1) {
1167 list_del(&fs_devices->fs_list);
1168 free_fs_devices(fs_devices);
1169 }
1170 }
1171
1172
1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174 close_fs_devices(fs_devices);
1175 list_del(&fs_devices->seed_list);
1176 free_fs_devices(fs_devices);
1177 }
1178 mutex_unlock(&uuid_mutex);
1179}
1180
1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182 blk_mode_t flags, void *holder)
1183{
1184 struct btrfs_device *device;
1185 struct btrfs_device *latest_dev = NULL;
1186 struct btrfs_device *tmp_device;
1187 int ret = 0;
1188
1189 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190 dev_list) {
1191 int ret2;
1192
1193 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194 if (ret2 == 0 &&
1195 (!latest_dev || device->generation > latest_dev->generation)) {
1196 latest_dev = device;
1197 } else if (ret2 == -ENODATA) {
1198 fs_devices->num_devices--;
1199 list_del(&device->dev_list);
1200 btrfs_free_device(device);
1201 }
1202 if (ret == 0 && ret2 != 0)
1203 ret = ret2;
1204 }
1205
1206 if (fs_devices->open_devices == 0) {
1207 if (ret)
1208 return ret;
1209 return -EINVAL;
1210 }
1211
1212 fs_devices->opened = 1;
1213 fs_devices->latest_dev = latest_dev;
1214 fs_devices->total_rw_bytes = 0;
1215 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218 return 0;
1219}
1220
1221static int devid_cmp(void *priv, const struct list_head *a,
1222 const struct list_head *b)
1223{
1224 const struct btrfs_device *dev1, *dev2;
1225
1226 dev1 = list_entry(a, struct btrfs_device, dev_list);
1227 dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229 if (dev1->devid < dev2->devid)
1230 return -1;
1231 else if (dev1->devid > dev2->devid)
1232 return 1;
1233 return 0;
1234}
1235
1236int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237 blk_mode_t flags, void *holder)
1238{
1239 int ret;
1240
1241 lockdep_assert_held(&uuid_mutex);
1242 /*
1243 * The device_list_mutex cannot be taken here in case opening the
1244 * underlying device takes further locks like open_mutex.
1245 *
1246 * We also don't need the lock here as this is called during mount and
1247 * exclusion is provided by uuid_mutex
1248 */
1249
1250 if (fs_devices->opened) {
1251 fs_devices->opened++;
1252 ret = 0;
1253 } else {
1254 list_sort(NULL, &fs_devices->devices, devid_cmp);
1255 ret = open_fs_devices(fs_devices, flags, holder);
1256 }
1257
1258 return ret;
1259}
1260
1261void btrfs_release_disk_super(struct btrfs_super_block *super)
1262{
1263 struct page *page = virt_to_page(super);
1264
1265 put_page(page);
1266}
1267
1268static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269 u64 bytenr, u64 bytenr_orig)
1270{
1271 struct btrfs_super_block *disk_super;
1272 struct page *page;
1273 void *p;
1274 pgoff_t index;
1275
1276 /* make sure our super fits in the device */
1277 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278 return ERR_PTR(-EINVAL);
1279
1280 /* make sure our super fits in the page */
1281 if (sizeof(*disk_super) > PAGE_SIZE)
1282 return ERR_PTR(-EINVAL);
1283
1284 /* make sure our super doesn't straddle pages on disk */
1285 index = bytenr >> PAGE_SHIFT;
1286 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287 return ERR_PTR(-EINVAL);
1288
1289 /* pull in the page with our super */
1290 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292 if (IS_ERR(page))
1293 return ERR_CAST(page);
1294
1295 p = page_address(page);
1296
1297 /* align our pointer to the offset of the super block */
1298 disk_super = p + offset_in_page(bytenr);
1299
1300 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302 btrfs_release_disk_super(p);
1303 return ERR_PTR(-EINVAL);
1304 }
1305
1306 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309 return disk_super;
1310}
1311
1312int btrfs_forget_devices(dev_t devt)
1313{
1314 int ret;
1315
1316 mutex_lock(&uuid_mutex);
1317 ret = btrfs_free_stale_devices(devt, NULL);
1318 mutex_unlock(&uuid_mutex);
1319
1320 return ret;
1321}
1322
1323static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324 const char *path, dev_t devt,
1325 bool mount_arg_dev)
1326{
1327 struct btrfs_fs_devices *fs_devices;
1328
1329 /*
1330 * Do not skip device registration for mounted devices with matching
1331 * maj:min but different paths. Booting without initrd relies on
1332 * /dev/root initially, later replaced with the actual root device.
1333 * A successful scan ensures grub2-probe selects the correct device.
1334 */
1335 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336 struct btrfs_device *device;
1337
1338 mutex_lock(&fs_devices->device_list_mutex);
1339
1340 if (!fs_devices->opened) {
1341 mutex_unlock(&fs_devices->device_list_mutex);
1342 continue;
1343 }
1344
1345 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346 if (device->bdev && (device->bdev->bd_dev == devt) &&
1347 strcmp(device->name->str, path) != 0) {
1348 mutex_unlock(&fs_devices->device_list_mutex);
1349
1350 /* Do not skip registration. */
1351 return false;
1352 }
1353 }
1354 mutex_unlock(&fs_devices->device_list_mutex);
1355 }
1356
1357 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359 return true;
1360
1361 return false;
1362}
1363
1364/*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374 bool mount_arg_dev)
1375{
1376 struct btrfs_super_block *disk_super;
1377 bool new_device_added = false;
1378 struct btrfs_device *device = NULL;
1379 struct file *bdev_file;
1380 u64 bytenr, bytenr_orig;
1381 dev_t devt;
1382 int ret;
1383
1384 lockdep_assert_held(&uuid_mutex);
1385
1386 /*
1387 * we would like to check all the supers, but that would make
1388 * a btrfs mount succeed after a mkfs from a different FS.
1389 * So, we need to add a special mount option to scan for
1390 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391 */
1392
1393 /*
1394 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395 * device scan which may race with the user's mount or mkfs command,
1396 * resulting in failure.
1397 * Since the device scan is solely for reading purposes, there is no
1398 * need for an exclusive open. Additionally, the devices are read again
1399 * during the mount process. It is ok to get some inconsistent
1400 * values temporarily, as the device paths of the fsid are the only
1401 * required information for assembling the volume.
1402 */
1403 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404 if (IS_ERR(bdev_file))
1405 return ERR_CAST(bdev_file);
1406
1407 bytenr_orig = btrfs_sb_offset(0);
1408 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409 if (ret) {
1410 device = ERR_PTR(ret);
1411 goto error_bdev_put;
1412 }
1413
1414 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415 bytenr_orig);
1416 if (IS_ERR(disk_super)) {
1417 device = ERR_CAST(disk_super);
1418 goto error_bdev_put;
1419 }
1420
1421 devt = file_bdev(bdev_file)->bd_dev;
1422 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424 path, MAJOR(devt), MINOR(devt));
1425
1426 btrfs_free_stale_devices(devt, NULL);
1427
1428 device = NULL;
1429 goto free_disk_super;
1430 }
1431
1432 device = device_list_add(path, disk_super, &new_device_added);
1433 if (!IS_ERR(device) && new_device_added)
1434 btrfs_free_stale_devices(device->devt, device);
1435
1436free_disk_super:
1437 btrfs_release_disk_super(disk_super);
1438
1439error_bdev_put:
1440 fput(bdev_file);
1441
1442 return device;
1443}
1444
1445/*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450 u64 len)
1451{
1452 u64 physical_start, physical_end;
1453
1454 lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456 if (find_first_extent_bit(&device->alloc_state, *start,
1457 &physical_start, &physical_end,
1458 CHUNK_ALLOCATED, NULL)) {
1459
1460 if (in_range(physical_start, *start, len) ||
1461 in_range(*start, physical_start,
1462 physical_end + 1 - physical_start)) {
1463 *start = physical_end + 1;
1464 return true;
1465 }
1466 }
1467 return false;
1468}
1469
1470static u64 dev_extent_search_start(struct btrfs_device *device)
1471{
1472 switch (device->fs_devices->chunk_alloc_policy) {
1473 case BTRFS_CHUNK_ALLOC_REGULAR:
1474 return BTRFS_DEVICE_RANGE_RESERVED;
1475 case BTRFS_CHUNK_ALLOC_ZONED:
1476 /*
1477 * We don't care about the starting region like regular
1478 * allocator, because we anyway use/reserve the first two zones
1479 * for superblock logging.
1480 */
1481 return 0;
1482 default:
1483 BUG();
1484 }
1485}
1486
1487static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488 u64 *hole_start, u64 *hole_size,
1489 u64 num_bytes)
1490{
1491 u64 zone_size = device->zone_info->zone_size;
1492 u64 pos;
1493 int ret;
1494 bool changed = false;
1495
1496 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498 while (*hole_size > 0) {
1499 pos = btrfs_find_allocatable_zones(device, *hole_start,
1500 *hole_start + *hole_size,
1501 num_bytes);
1502 if (pos != *hole_start) {
1503 *hole_size = *hole_start + *hole_size - pos;
1504 *hole_start = pos;
1505 changed = true;
1506 if (*hole_size < num_bytes)
1507 break;
1508 }
1509
1510 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512 /* Range is ensured to be empty */
1513 if (!ret)
1514 return changed;
1515
1516 /* Given hole range was invalid (outside of device) */
1517 if (ret == -ERANGE) {
1518 *hole_start += *hole_size;
1519 *hole_size = 0;
1520 return true;
1521 }
1522
1523 *hole_start += zone_size;
1524 *hole_size -= zone_size;
1525 changed = true;
1526 }
1527
1528 return changed;
1529}
1530
1531/*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device: the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size: the size of the hole
1537 * @num_bytes: the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543 u64 *hole_size, u64 num_bytes)
1544{
1545 bool changed = false;
1546 u64 hole_end = *hole_start + *hole_size;
1547
1548 for (;;) {
1549 /*
1550 * Check before we set max_hole_start, otherwise we could end up
1551 * sending back this offset anyway.
1552 */
1553 if (contains_pending_extent(device, hole_start, *hole_size)) {
1554 if (hole_end >= *hole_start)
1555 *hole_size = hole_end - *hole_start;
1556 else
1557 *hole_size = 0;
1558 changed = true;
1559 }
1560
1561 switch (device->fs_devices->chunk_alloc_policy) {
1562 case BTRFS_CHUNK_ALLOC_REGULAR:
1563 /* No extra check */
1564 break;
1565 case BTRFS_CHUNK_ALLOC_ZONED:
1566 if (dev_extent_hole_check_zoned(device, hole_start,
1567 hole_size, num_bytes)) {
1568 changed = true;
1569 /*
1570 * The changed hole can contain pending extent.
1571 * Loop again to check that.
1572 */
1573 continue;
1574 }
1575 break;
1576 default:
1577 BUG();
1578 }
1579
1580 break;
1581 }
1582
1583 return changed;
1584}
1585
1586/*
1587 * Find free space in the specified device.
1588 *
1589 * @device: the device which we search the free space in
1590 * @num_bytes: the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start: store the start of the free space.
1593 * @len: the size of the free space. that we find, or the size
1594 * of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614 u64 *start, u64 *len)
1615{
1616 struct btrfs_fs_info *fs_info = device->fs_info;
1617 struct btrfs_root *root = fs_info->dev_root;
1618 struct btrfs_key key;
1619 struct btrfs_dev_extent *dev_extent;
1620 struct btrfs_path *path;
1621 u64 search_start;
1622 u64 hole_size;
1623 u64 max_hole_start;
1624 u64 max_hole_size = 0;
1625 u64 extent_end;
1626 u64 search_end = device->total_bytes;
1627 int ret;
1628 int slot;
1629 struct extent_buffer *l;
1630
1631 search_start = dev_extent_search_start(device);
1632 max_hole_start = search_start;
1633
1634 WARN_ON(device->zone_info &&
1635 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637 path = btrfs_alloc_path();
1638 if (!path) {
1639 ret = -ENOMEM;
1640 goto out;
1641 }
1642again:
1643 if (search_start >= search_end ||
1644 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645 ret = -ENOSPC;
1646 goto out;
1647 }
1648
1649 path->reada = READA_FORWARD;
1650 path->search_commit_root = 1;
1651 path->skip_locking = 1;
1652
1653 key.objectid = device->devid;
1654 key.offset = search_start;
1655 key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657 ret = btrfs_search_backwards(root, &key, path);
1658 if (ret < 0)
1659 goto out;
1660
1661 while (search_start < search_end) {
1662 l = path->nodes[0];
1663 slot = path->slots[0];
1664 if (slot >= btrfs_header_nritems(l)) {
1665 ret = btrfs_next_leaf(root, path);
1666 if (ret == 0)
1667 continue;
1668 if (ret < 0)
1669 goto out;
1670
1671 break;
1672 }
1673 btrfs_item_key_to_cpu(l, &key, slot);
1674
1675 if (key.objectid < device->devid)
1676 goto next;
1677
1678 if (key.objectid > device->devid)
1679 break;
1680
1681 if (key.type != BTRFS_DEV_EXTENT_KEY)
1682 goto next;
1683
1684 if (key.offset > search_end)
1685 break;
1686
1687 if (key.offset > search_start) {
1688 hole_size = key.offset - search_start;
1689 dev_extent_hole_check(device, &search_start, &hole_size,
1690 num_bytes);
1691
1692 if (hole_size > max_hole_size) {
1693 max_hole_start = search_start;
1694 max_hole_size = hole_size;
1695 }
1696
1697 /*
1698 * If this free space is greater than which we need,
1699 * it must be the max free space that we have found
1700 * until now, so max_hole_start must point to the start
1701 * of this free space and the length of this free space
1702 * is stored in max_hole_size. Thus, we return
1703 * max_hole_start and max_hole_size and go back to the
1704 * caller.
1705 */
1706 if (hole_size >= num_bytes) {
1707 ret = 0;
1708 goto out;
1709 }
1710 }
1711
1712 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713 extent_end = key.offset + btrfs_dev_extent_length(l,
1714 dev_extent);
1715 if (extent_end > search_start)
1716 search_start = extent_end;
1717next:
1718 path->slots[0]++;
1719 cond_resched();
1720 }
1721
1722 /*
1723 * At this point, search_start should be the end of
1724 * allocated dev extents, and when shrinking the device,
1725 * search_end may be smaller than search_start.
1726 */
1727 if (search_end > search_start) {
1728 hole_size = search_end - search_start;
1729 if (dev_extent_hole_check(device, &search_start, &hole_size,
1730 num_bytes)) {
1731 btrfs_release_path(path);
1732 goto again;
1733 }
1734
1735 if (hole_size > max_hole_size) {
1736 max_hole_start = search_start;
1737 max_hole_size = hole_size;
1738 }
1739 }
1740
1741 /* See above. */
1742 if (max_hole_size < num_bytes)
1743 ret = -ENOSPC;
1744 else
1745 ret = 0;
1746
1747 ASSERT(max_hole_start + max_hole_size <= search_end);
1748out:
1749 btrfs_free_path(path);
1750 *start = max_hole_start;
1751 if (len)
1752 *len = max_hole_size;
1753 return ret;
1754}
1755
1756static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757 struct btrfs_device *device,
1758 u64 start, u64 *dev_extent_len)
1759{
1760 struct btrfs_fs_info *fs_info = device->fs_info;
1761 struct btrfs_root *root = fs_info->dev_root;
1762 int ret;
1763 struct btrfs_path *path;
1764 struct btrfs_key key;
1765 struct btrfs_key found_key;
1766 struct extent_buffer *leaf = NULL;
1767 struct btrfs_dev_extent *extent = NULL;
1768
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
1773 key.objectid = device->devid;
1774 key.offset = start;
1775 key.type = BTRFS_DEV_EXTENT_KEY;
1776again:
1777 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778 if (ret > 0) {
1779 ret = btrfs_previous_item(root, path, key.objectid,
1780 BTRFS_DEV_EXTENT_KEY);
1781 if (ret)
1782 goto out;
1783 leaf = path->nodes[0];
1784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785 extent = btrfs_item_ptr(leaf, path->slots[0],
1786 struct btrfs_dev_extent);
1787 BUG_ON(found_key.offset > start || found_key.offset +
1788 btrfs_dev_extent_length(leaf, extent) < start);
1789 key = found_key;
1790 btrfs_release_path(path);
1791 goto again;
1792 } else if (ret == 0) {
1793 leaf = path->nodes[0];
1794 extent = btrfs_item_ptr(leaf, path->slots[0],
1795 struct btrfs_dev_extent);
1796 } else {
1797 goto out;
1798 }
1799
1800 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802 ret = btrfs_del_item(trans, root, path);
1803 if (ret == 0)
1804 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805out:
1806 btrfs_free_path(path);
1807 return ret;
1808}
1809
1810static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811{
1812 struct rb_node *n;
1813 u64 ret = 0;
1814
1815 read_lock(&fs_info->mapping_tree_lock);
1816 n = rb_last(&fs_info->mapping_tree.rb_root);
1817 if (n) {
1818 struct btrfs_chunk_map *map;
1819
1820 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821 ret = map->start + map->chunk_len;
1822 }
1823 read_unlock(&fs_info->mapping_tree_lock);
1824
1825 return ret;
1826}
1827
1828static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829 u64 *devid_ret)
1830{
1831 int ret;
1832 struct btrfs_key key;
1833 struct btrfs_key found_key;
1834 struct btrfs_path *path;
1835
1836 path = btrfs_alloc_path();
1837 if (!path)
1838 return -ENOMEM;
1839
1840 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841 key.type = BTRFS_DEV_ITEM_KEY;
1842 key.offset = (u64)-1;
1843
1844 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 if (ret < 0)
1846 goto error;
1847
1848 if (ret == 0) {
1849 /* Corruption */
1850 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851 ret = -EUCLEAN;
1852 goto error;
1853 }
1854
1855 ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 BTRFS_DEV_ITEMS_OBJECTID,
1857 BTRFS_DEV_ITEM_KEY);
1858 if (ret) {
1859 *devid_ret = 1;
1860 } else {
1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 path->slots[0]);
1863 *devid_ret = found_key.offset + 1;
1864 }
1865 ret = 0;
1866error:
1867 btrfs_free_path(path);
1868 return ret;
1869}
1870
1871/*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 struct btrfs_device *device)
1877{
1878 int ret;
1879 struct btrfs_path *path;
1880 struct btrfs_dev_item *dev_item;
1881 struct extent_buffer *leaf;
1882 struct btrfs_key key;
1883 unsigned long ptr;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 key.type = BTRFS_DEV_ITEM_KEY;
1891 key.offset = device->devid;
1892
1893 btrfs_reserve_chunk_metadata(trans, true);
1894 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895 &key, sizeof(*dev_item));
1896 btrfs_trans_release_chunk_metadata(trans);
1897 if (ret)
1898 goto out;
1899
1900 leaf = path->nodes[0];
1901 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903 btrfs_set_device_id(leaf, dev_item, device->devid);
1904 btrfs_set_device_generation(leaf, dev_item, 0);
1905 btrfs_set_device_type(leaf, dev_item, device->type);
1906 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 btrfs_set_device_total_bytes(leaf, dev_item,
1910 btrfs_device_get_disk_total_bytes(device));
1911 btrfs_set_device_bytes_used(leaf, dev_item,
1912 btrfs_device_get_bytes_used(device));
1913 btrfs_set_device_group(leaf, dev_item, 0);
1914 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918 ptr = btrfs_device_uuid(dev_item);
1919 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 ptr = btrfs_device_fsid(dev_item);
1921 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 ptr, BTRFS_FSID_SIZE);
1923 btrfs_mark_buffer_dirty(trans, leaf);
1924
1925 ret = 0;
1926out:
1927 btrfs_free_path(path);
1928 return ret;
1929}
1930
1931/*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937static void update_dev_time(const char *device_path)
1938{
1939 struct path path;
1940 int ret;
1941
1942 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943 if (ret)
1944 return;
1945
1946 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947 path_put(&path);
1948}
1949
1950static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951 struct btrfs_device *device)
1952{
1953 struct btrfs_root *root = device->fs_info->chunk_root;
1954 int ret;
1955 struct btrfs_path *path;
1956 struct btrfs_key key;
1957
1958 path = btrfs_alloc_path();
1959 if (!path)
1960 return -ENOMEM;
1961
1962 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963 key.type = BTRFS_DEV_ITEM_KEY;
1964 key.offset = device->devid;
1965
1966 btrfs_reserve_chunk_metadata(trans, false);
1967 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968 btrfs_trans_release_chunk_metadata(trans);
1969 if (ret) {
1970 if (ret > 0)
1971 ret = -ENOENT;
1972 goto out;
1973 }
1974
1975 ret = btrfs_del_item(trans, root, path);
1976out:
1977 btrfs_free_path(path);
1978 return ret;
1979}
1980
1981/*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987 u64 num_devices)
1988{
1989 u64 all_avail;
1990 unsigned seq;
1991 int i;
1992
1993 do {
1994 seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996 all_avail = fs_info->avail_data_alloc_bits |
1997 fs_info->avail_system_alloc_bits |
1998 fs_info->avail_metadata_alloc_bits;
1999 } while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003 continue;
2004
2005 if (num_devices < btrfs_raid_array[i].devs_min)
2006 return btrfs_raid_array[i].mindev_error;
2007 }
2008
2009 return 0;
2010}
2011
2012static struct btrfs_device * btrfs_find_next_active_device(
2013 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014{
2015 struct btrfs_device *next_device;
2016
2017 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018 if (next_device != device &&
2019 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020 && next_device->bdev)
2021 return next_device;
2022 }
2023
2024 return NULL;
2025}
2026
2027/*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034 struct btrfs_device *next_device)
2035{
2036 struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038 if (!next_device)
2039 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040 device);
2041 ASSERT(next_device);
2042
2043 if (fs_info->sb->s_bdev &&
2044 (fs_info->sb->s_bdev == device->bdev))
2045 fs_info->sb->s_bdev = next_device->bdev;
2046
2047 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048 fs_info->fs_devices->latest_dev = next_device;
2049}
2050
2051/*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056{
2057 u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059 down_read(&fs_info->dev_replace.rwsem);
2060 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061 ASSERT(num_devices > 1);
2062 num_devices--;
2063 }
2064 up_read(&fs_info->dev_replace.rwsem);
2065
2066 return num_devices;
2067}
2068
2069static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070 struct block_device *bdev, int copy_num)
2071{
2072 struct btrfs_super_block *disk_super;
2073 const size_t len = sizeof(disk_super->magic);
2074 const u64 bytenr = btrfs_sb_offset(copy_num);
2075 int ret;
2076
2077 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078 if (IS_ERR(disk_super))
2079 return;
2080
2081 memset(&disk_super->magic, 0, len);
2082 folio_mark_dirty(virt_to_folio(disk_super));
2083 btrfs_release_disk_super(disk_super);
2084
2085 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086 if (ret)
2087 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088 copy_num, ret);
2089}
2090
2091void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092{
2093 int copy_num;
2094 struct block_device *bdev = device->bdev;
2095
2096 if (!bdev)
2097 return;
2098
2099 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100 if (bdev_is_zoned(bdev))
2101 btrfs_reset_sb_log_zones(bdev, copy_num);
2102 else
2103 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104 }
2105
2106 /* Notify udev that device has changed */
2107 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109 /* Update ctime/mtime for device path for libblkid */
2110 update_dev_time(device->name->str);
2111}
2112
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 struct btrfs_dev_lookup_args *args,
2115 struct file **bdev_file)
2116{
2117 struct btrfs_trans_handle *trans;
2118 struct btrfs_device *device;
2119 struct btrfs_fs_devices *cur_devices;
2120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121 u64 num_devices;
2122 int ret = 0;
2123
2124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 return -EINVAL;
2127 }
2128
2129 /*
2130 * The device list in fs_devices is accessed without locks (neither
2131 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 * filesystem and another device rm cannot run.
2133 */
2134 num_devices = btrfs_num_devices(fs_info);
2135
2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 if (ret)
2138 return ret;
2139
2140 device = btrfs_find_device(fs_info->fs_devices, args);
2141 if (!device) {
2142 if (args->missing)
2143 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 else
2145 ret = -ENOENT;
2146 return ret;
2147 }
2148
2149 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 btrfs_warn_in_rcu(fs_info,
2151 "cannot remove device %s (devid %llu) due to active swapfile",
2152 btrfs_dev_name(device), device->devid);
2153 return -ETXTBSY;
2154 }
2155
2156 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160 fs_info->fs_devices->rw_devices == 1)
2161 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164 mutex_lock(&fs_info->chunk_mutex);
2165 list_del_init(&device->dev_alloc_list);
2166 device->fs_devices->rw_devices--;
2167 mutex_unlock(&fs_info->chunk_mutex);
2168 }
2169
2170 ret = btrfs_shrink_device(device, 0);
2171 if (ret)
2172 goto error_undo;
2173
2174 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 if (IS_ERR(trans)) {
2176 ret = PTR_ERR(trans);
2177 goto error_undo;
2178 }
2179
2180 ret = btrfs_rm_dev_item(trans, device);
2181 if (ret) {
2182 /* Any error in dev item removal is critical */
2183 btrfs_crit(fs_info,
2184 "failed to remove device item for devid %llu: %d",
2185 device->devid, ret);
2186 btrfs_abort_transaction(trans, ret);
2187 btrfs_end_transaction(trans);
2188 return ret;
2189 }
2190
2191 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192 btrfs_scrub_cancel_dev(device);
2193
2194 /*
2195 * the device list mutex makes sure that we don't change
2196 * the device list while someone else is writing out all
2197 * the device supers. Whoever is writing all supers, should
2198 * lock the device list mutex before getting the number of
2199 * devices in the super block (super_copy). Conversely,
2200 * whoever updates the number of devices in the super block
2201 * (super_copy) should hold the device list mutex.
2202 */
2203
2204 /*
2205 * In normal cases the cur_devices == fs_devices. But in case
2206 * of deleting a seed device, the cur_devices should point to
2207 * its own fs_devices listed under the fs_devices->seed_list.
2208 */
2209 cur_devices = device->fs_devices;
2210 mutex_lock(&fs_devices->device_list_mutex);
2211 list_del_rcu(&device->dev_list);
2212
2213 cur_devices->num_devices--;
2214 cur_devices->total_devices--;
2215 /* Update total_devices of the parent fs_devices if it's seed */
2216 if (cur_devices != fs_devices)
2217 fs_devices->total_devices--;
2218
2219 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220 cur_devices->missing_devices--;
2221
2222 btrfs_assign_next_active_device(device, NULL);
2223
2224 if (device->bdev_file) {
2225 cur_devices->open_devices--;
2226 /* remove sysfs entry */
2227 btrfs_sysfs_remove_device(device);
2228 }
2229
2230 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232 mutex_unlock(&fs_devices->device_list_mutex);
2233
2234 /*
2235 * At this point, the device is zero sized and detached from the
2236 * devices list. All that's left is to zero out the old supers and
2237 * free the device.
2238 *
2239 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 * write lock, and fput() on the block device will pull in the
2241 * ->open_mutex on the block device and it's dependencies. Instead
2242 * just flush the device and let the caller do the final bdev_release.
2243 */
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 btrfs_scratch_superblocks(fs_info, device);
2246 if (device->bdev) {
2247 sync_blockdev(device->bdev);
2248 invalidate_bdev(device->bdev);
2249 }
2250 }
2251
2252 *bdev_file = device->bdev_file;
2253 synchronize_rcu();
2254 btrfs_free_device(device);
2255
2256 /*
2257 * This can happen if cur_devices is the private seed devices list. We
2258 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259 * to be held, but in fact we don't need that for the private
2260 * seed_devices, we can simply decrement cur_devices->opened and then
2261 * remove it from our list and free the fs_devices.
2262 */
2263 if (cur_devices->num_devices == 0) {
2264 list_del_init(&cur_devices->seed_list);
2265 ASSERT(cur_devices->opened == 1);
2266 cur_devices->opened--;
2267 free_fs_devices(cur_devices);
2268 }
2269
2270 ret = btrfs_commit_transaction(trans);
2271
2272 return ret;
2273
2274error_undo:
2275 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276 mutex_lock(&fs_info->chunk_mutex);
2277 list_add(&device->dev_alloc_list,
2278 &fs_devices->alloc_list);
2279 device->fs_devices->rw_devices++;
2280 mutex_unlock(&fs_info->chunk_mutex);
2281 }
2282 return ret;
2283}
2284
2285void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286{
2287 struct btrfs_fs_devices *fs_devices;
2288
2289 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291 /*
2292 * in case of fs with no seed, srcdev->fs_devices will point
2293 * to fs_devices of fs_info. However when the dev being replaced is
2294 * a seed dev it will point to the seed's local fs_devices. In short
2295 * srcdev will have its correct fs_devices in both the cases.
2296 */
2297 fs_devices = srcdev->fs_devices;
2298
2299 list_del_rcu(&srcdev->dev_list);
2300 list_del(&srcdev->dev_alloc_list);
2301 fs_devices->num_devices--;
2302 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303 fs_devices->missing_devices--;
2304
2305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306 fs_devices->rw_devices--;
2307
2308 if (srcdev->bdev)
2309 fs_devices->open_devices--;
2310}
2311
2312void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313{
2314 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316 mutex_lock(&uuid_mutex);
2317
2318 btrfs_close_bdev(srcdev);
2319 synchronize_rcu();
2320 btrfs_free_device(srcdev);
2321
2322 /* if this is no devs we rather delete the fs_devices */
2323 if (!fs_devices->num_devices) {
2324 /*
2325 * On a mounted FS, num_devices can't be zero unless it's a
2326 * seed. In case of a seed device being replaced, the replace
2327 * target added to the sprout FS, so there will be no more
2328 * device left under the seed FS.
2329 */
2330 ASSERT(fs_devices->seeding);
2331
2332 list_del_init(&fs_devices->seed_list);
2333 close_fs_devices(fs_devices);
2334 free_fs_devices(fs_devices);
2335 }
2336 mutex_unlock(&uuid_mutex);
2337}
2338
2339void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340{
2341 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343 mutex_lock(&fs_devices->device_list_mutex);
2344
2345 btrfs_sysfs_remove_device(tgtdev);
2346
2347 if (tgtdev->bdev)
2348 fs_devices->open_devices--;
2349
2350 fs_devices->num_devices--;
2351
2352 btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354 list_del_rcu(&tgtdev->dev_list);
2355
2356 mutex_unlock(&fs_devices->device_list_mutex);
2357
2358 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359
2360 btrfs_close_bdev(tgtdev);
2361 synchronize_rcu();
2362 btrfs_free_device(tgtdev);
2363}
2364
2365/*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info: the filesystem
2369 * @args: the args to populate
2370 * @path: the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks. The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384 struct btrfs_dev_lookup_args *args,
2385 const char *path)
2386{
2387 struct btrfs_super_block *disk_super;
2388 struct file *bdev_file;
2389 int ret;
2390
2391 if (!path || !path[0])
2392 return -EINVAL;
2393 if (!strcmp(path, "missing")) {
2394 args->missing = true;
2395 return 0;
2396 }
2397
2398 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400 if (!args->uuid || !args->fsid) {
2401 btrfs_put_dev_args_from_path(args);
2402 return -ENOMEM;
2403 }
2404
2405 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406 &bdev_file, &disk_super);
2407 if (ret) {
2408 btrfs_put_dev_args_from_path(args);
2409 return ret;
2410 }
2411
2412 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416 else
2417 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418 btrfs_release_disk_super(disk_super);
2419 fput(bdev_file);
2420 return 0;
2421}
2422
2423/*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429{
2430 kfree(args->uuid);
2431 kfree(args->fsid);
2432 args->uuid = NULL;
2433 args->fsid = NULL;
2434}
2435
2436struct btrfs_device *btrfs_find_device_by_devspec(
2437 struct btrfs_fs_info *fs_info, u64 devid,
2438 const char *device_path)
2439{
2440 BTRFS_DEV_LOOKUP_ARGS(args);
2441 struct btrfs_device *device;
2442 int ret;
2443
2444 if (devid) {
2445 args.devid = devid;
2446 device = btrfs_find_device(fs_info->fs_devices, &args);
2447 if (!device)
2448 return ERR_PTR(-ENOENT);
2449 return device;
2450 }
2451
2452 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453 if (ret)
2454 return ERR_PTR(ret);
2455 device = btrfs_find_device(fs_info->fs_devices, &args);
2456 btrfs_put_dev_args_from_path(&args);
2457 if (!device)
2458 return ERR_PTR(-ENOENT);
2459 return device;
2460}
2461
2462static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463{
2464 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465 struct btrfs_fs_devices *old_devices;
2466 struct btrfs_fs_devices *seed_devices;
2467
2468 lockdep_assert_held(&uuid_mutex);
2469 if (!fs_devices->seeding)
2470 return ERR_PTR(-EINVAL);
2471
2472 /*
2473 * Private copy of the seed devices, anchored at
2474 * fs_info->fs_devices->seed_list
2475 */
2476 seed_devices = alloc_fs_devices(NULL);
2477 if (IS_ERR(seed_devices))
2478 return seed_devices;
2479
2480 /*
2481 * It's necessary to retain a copy of the original seed fs_devices in
2482 * fs_uuids so that filesystems which have been seeded can successfully
2483 * reference the seed device from open_seed_devices. This also supports
2484 * multiple fs seed.
2485 */
2486 old_devices = clone_fs_devices(fs_devices);
2487 if (IS_ERR(old_devices)) {
2488 kfree(seed_devices);
2489 return old_devices;
2490 }
2491
2492 list_add(&old_devices->fs_list, &fs_uuids);
2493
2494 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495 seed_devices->opened = 1;
2496 INIT_LIST_HEAD(&seed_devices->devices);
2497 INIT_LIST_HEAD(&seed_devices->alloc_list);
2498 mutex_init(&seed_devices->device_list_mutex);
2499
2500 return seed_devices;
2501}
2502
2503/*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508 struct btrfs_fs_devices *seed_devices)
2509{
2510 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511 struct btrfs_super_block *disk_super = fs_info->super_copy;
2512 struct btrfs_device *device;
2513 u64 super_flags;
2514
2515 /*
2516 * We are updating the fsid, the thread leading to device_list_add()
2517 * could race, so uuid_mutex is needed.
2518 */
2519 lockdep_assert_held(&uuid_mutex);
2520
2521 /*
2522 * The threads listed below may traverse dev_list but can do that without
2523 * device_list_mutex:
2524 * - All device ops and balance - as we are in btrfs_exclop_start.
2525 * - Various dev_list readers - are using RCU.
2526 * - btrfs_ioctl_fitrim() - is using RCU.
2527 *
2528 * For-read threads as below are using device_list_mutex:
2529 * - Readonly scrub btrfs_scrub_dev()
2530 * - Readonly scrub btrfs_scrub_progress()
2531 * - btrfs_get_dev_stats()
2532 */
2533 lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536 synchronize_rcu);
2537 list_for_each_entry(device, &seed_devices->devices, dev_list)
2538 device->fs_devices = seed_devices;
2539
2540 fs_devices->seeding = false;
2541 fs_devices->num_devices = 0;
2542 fs_devices->open_devices = 0;
2543 fs_devices->missing_devices = 0;
2544 fs_devices->rotating = false;
2545 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547 generate_random_uuid(fs_devices->fsid);
2548 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551 super_flags = btrfs_super_flags(disk_super) &
2552 ~BTRFS_SUPER_FLAG_SEEDING;
2553 btrfs_set_super_flags(disk_super, super_flags);
2554}
2555
2556/*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560{
2561 BTRFS_DEV_LOOKUP_ARGS(args);
2562 struct btrfs_fs_info *fs_info = trans->fs_info;
2563 struct btrfs_root *root = fs_info->chunk_root;
2564 struct btrfs_path *path;
2565 struct extent_buffer *leaf;
2566 struct btrfs_dev_item *dev_item;
2567 struct btrfs_device *device;
2568 struct btrfs_key key;
2569 u8 fs_uuid[BTRFS_FSID_SIZE];
2570 u8 dev_uuid[BTRFS_UUID_SIZE];
2571 int ret;
2572
2573 path = btrfs_alloc_path();
2574 if (!path)
2575 return -ENOMEM;
2576
2577 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578 key.offset = 0;
2579 key.type = BTRFS_DEV_ITEM_KEY;
2580
2581 while (1) {
2582 btrfs_reserve_chunk_metadata(trans, false);
2583 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584 btrfs_trans_release_chunk_metadata(trans);
2585 if (ret < 0)
2586 goto error;
2587
2588 leaf = path->nodes[0];
2589next_slot:
2590 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591 ret = btrfs_next_leaf(root, path);
2592 if (ret > 0)
2593 break;
2594 if (ret < 0)
2595 goto error;
2596 leaf = path->nodes[0];
2597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598 btrfs_release_path(path);
2599 continue;
2600 }
2601
2602 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604 key.type != BTRFS_DEV_ITEM_KEY)
2605 break;
2606
2607 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608 struct btrfs_dev_item);
2609 args.devid = btrfs_device_id(leaf, dev_item);
2610 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611 BTRFS_UUID_SIZE);
2612 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613 BTRFS_FSID_SIZE);
2614 args.uuid = dev_uuid;
2615 args.fsid = fs_uuid;
2616 device = btrfs_find_device(fs_info->fs_devices, &args);
2617 BUG_ON(!device); /* Logic error */
2618
2619 if (device->fs_devices->seeding) {
2620 btrfs_set_device_generation(leaf, dev_item,
2621 device->generation);
2622 btrfs_mark_buffer_dirty(trans, leaf);
2623 }
2624
2625 path->slots[0]++;
2626 goto next_slot;
2627 }
2628 ret = 0;
2629error:
2630 btrfs_free_path(path);
2631 return ret;
2632}
2633
2634int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635{
2636 struct btrfs_root *root = fs_info->dev_root;
2637 struct btrfs_trans_handle *trans;
2638 struct btrfs_device *device;
2639 struct file *bdev_file;
2640 struct super_block *sb = fs_info->sb;
2641 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642 struct btrfs_fs_devices *seed_devices = NULL;
2643 u64 orig_super_total_bytes;
2644 u64 orig_super_num_devices;
2645 int ret = 0;
2646 bool seeding_dev = false;
2647 bool locked = false;
2648
2649 if (sb_rdonly(sb) && !fs_devices->seeding)
2650 return -EROFS;
2651
2652 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653 fs_info->bdev_holder, NULL);
2654 if (IS_ERR(bdev_file))
2655 return PTR_ERR(bdev_file);
2656
2657 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658 ret = -EINVAL;
2659 goto error;
2660 }
2661
2662 if (fs_devices->seeding) {
2663 seeding_dev = true;
2664 down_write(&sb->s_umount);
2665 mutex_lock(&uuid_mutex);
2666 locked = true;
2667 }
2668
2669 sync_blockdev(file_bdev(bdev_file));
2670
2671 rcu_read_lock();
2672 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673 if (device->bdev == file_bdev(bdev_file)) {
2674 ret = -EEXIST;
2675 rcu_read_unlock();
2676 goto error;
2677 }
2678 }
2679 rcu_read_unlock();
2680
2681 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682 if (IS_ERR(device)) {
2683 /* we can safely leave the fs_devices entry around */
2684 ret = PTR_ERR(device);
2685 goto error;
2686 }
2687
2688 device->fs_info = fs_info;
2689 device->bdev_file = bdev_file;
2690 device->bdev = file_bdev(bdev_file);
2691 ret = lookup_bdev(device_path, &device->devt);
2692 if (ret)
2693 goto error_free_device;
2694
2695 ret = btrfs_get_dev_zone_info(device, false);
2696 if (ret)
2697 goto error_free_device;
2698
2699 trans = btrfs_start_transaction(root, 0);
2700 if (IS_ERR(trans)) {
2701 ret = PTR_ERR(trans);
2702 goto error_free_zone;
2703 }
2704
2705 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706 device->generation = trans->transid;
2707 device->io_width = fs_info->sectorsize;
2708 device->io_align = fs_info->sectorsize;
2709 device->sector_size = fs_info->sectorsize;
2710 device->total_bytes =
2711 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712 device->disk_total_bytes = device->total_bytes;
2713 device->commit_total_bytes = device->total_bytes;
2714 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716 device->dev_stats_valid = 1;
2717 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719 if (seeding_dev) {
2720 btrfs_clear_sb_rdonly(sb);
2721
2722 /* GFP_KERNEL allocation must not be under device_list_mutex */
2723 seed_devices = btrfs_init_sprout(fs_info);
2724 if (IS_ERR(seed_devices)) {
2725 ret = PTR_ERR(seed_devices);
2726 btrfs_abort_transaction(trans, ret);
2727 goto error_trans;
2728 }
2729 }
2730
2731 mutex_lock(&fs_devices->device_list_mutex);
2732 if (seeding_dev) {
2733 btrfs_setup_sprout(fs_info, seed_devices);
2734 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735 device);
2736 }
2737
2738 device->fs_devices = fs_devices;
2739
2740 mutex_lock(&fs_info->chunk_mutex);
2741 list_add_rcu(&device->dev_list, &fs_devices->devices);
2742 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743 fs_devices->num_devices++;
2744 fs_devices->open_devices++;
2745 fs_devices->rw_devices++;
2746 fs_devices->total_devices++;
2747 fs_devices->total_rw_bytes += device->total_bytes;
2748
2749 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751 if (!bdev_nonrot(device->bdev))
2752 fs_devices->rotating = true;
2753
2754 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755 btrfs_set_super_total_bytes(fs_info->super_copy,
2756 round_down(orig_super_total_bytes + device->total_bytes,
2757 fs_info->sectorsize));
2758
2759 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760 btrfs_set_super_num_devices(fs_info->super_copy,
2761 orig_super_num_devices + 1);
2762
2763 /*
2764 * we've got more storage, clear any full flags on the space
2765 * infos
2766 */
2767 btrfs_clear_space_info_full(fs_info);
2768
2769 mutex_unlock(&fs_info->chunk_mutex);
2770
2771 /* Add sysfs device entry */
2772 btrfs_sysfs_add_device(device);
2773
2774 mutex_unlock(&fs_devices->device_list_mutex);
2775
2776 if (seeding_dev) {
2777 mutex_lock(&fs_info->chunk_mutex);
2778 ret = init_first_rw_device(trans);
2779 mutex_unlock(&fs_info->chunk_mutex);
2780 if (ret) {
2781 btrfs_abort_transaction(trans, ret);
2782 goto error_sysfs;
2783 }
2784 }
2785
2786 ret = btrfs_add_dev_item(trans, device);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, ret);
2789 goto error_sysfs;
2790 }
2791
2792 if (seeding_dev) {
2793 ret = btrfs_finish_sprout(trans);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, ret);
2796 goto error_sysfs;
2797 }
2798
2799 /*
2800 * fs_devices now represents the newly sprouted filesystem and
2801 * its fsid has been changed by btrfs_sprout_splice().
2802 */
2803 btrfs_sysfs_update_sprout_fsid(fs_devices);
2804 }
2805
2806 ret = btrfs_commit_transaction(trans);
2807
2808 if (seeding_dev) {
2809 mutex_unlock(&uuid_mutex);
2810 up_write(&sb->s_umount);
2811 locked = false;
2812
2813 if (ret) /* transaction commit */
2814 return ret;
2815
2816 ret = btrfs_relocate_sys_chunks(fs_info);
2817 if (ret < 0)
2818 btrfs_handle_fs_error(fs_info, ret,
2819 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820 trans = btrfs_attach_transaction(root);
2821 if (IS_ERR(trans)) {
2822 if (PTR_ERR(trans) == -ENOENT)
2823 return 0;
2824 ret = PTR_ERR(trans);
2825 trans = NULL;
2826 goto error_sysfs;
2827 }
2828 ret = btrfs_commit_transaction(trans);
2829 }
2830
2831 /*
2832 * Now that we have written a new super block to this device, check all
2833 * other fs_devices list if device_path alienates any other scanned
2834 * device.
2835 * We can ignore the return value as it typically returns -EINVAL and
2836 * only succeeds if the device was an alien.
2837 */
2838 btrfs_forget_devices(device->devt);
2839
2840 /* Update ctime/mtime for blkid or udev */
2841 update_dev_time(device_path);
2842
2843 return ret;
2844
2845error_sysfs:
2846 btrfs_sysfs_remove_device(device);
2847 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848 mutex_lock(&fs_info->chunk_mutex);
2849 list_del_rcu(&device->dev_list);
2850 list_del(&device->dev_alloc_list);
2851 fs_info->fs_devices->num_devices--;
2852 fs_info->fs_devices->open_devices--;
2853 fs_info->fs_devices->rw_devices--;
2854 fs_info->fs_devices->total_devices--;
2855 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857 btrfs_set_super_total_bytes(fs_info->super_copy,
2858 orig_super_total_bytes);
2859 btrfs_set_super_num_devices(fs_info->super_copy,
2860 orig_super_num_devices);
2861 mutex_unlock(&fs_info->chunk_mutex);
2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863error_trans:
2864 if (seeding_dev)
2865 btrfs_set_sb_rdonly(sb);
2866 if (trans)
2867 btrfs_end_transaction(trans);
2868error_free_zone:
2869 btrfs_destroy_dev_zone_info(device);
2870error_free_device:
2871 btrfs_free_device(device);
2872error:
2873 fput(bdev_file);
2874 if (locked) {
2875 mutex_unlock(&uuid_mutex);
2876 up_write(&sb->s_umount);
2877 }
2878 return ret;
2879}
2880
2881static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882 struct btrfs_device *device)
2883{
2884 int ret;
2885 struct btrfs_path *path;
2886 struct btrfs_root *root = device->fs_info->chunk_root;
2887 struct btrfs_dev_item *dev_item;
2888 struct extent_buffer *leaf;
2889 struct btrfs_key key;
2890
2891 path = btrfs_alloc_path();
2892 if (!path)
2893 return -ENOMEM;
2894
2895 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896 key.type = BTRFS_DEV_ITEM_KEY;
2897 key.offset = device->devid;
2898
2899 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900 if (ret < 0)
2901 goto out;
2902
2903 if (ret > 0) {
2904 ret = -ENOENT;
2905 goto out;
2906 }
2907
2908 leaf = path->nodes[0];
2909 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911 btrfs_set_device_id(leaf, dev_item, device->devid);
2912 btrfs_set_device_type(leaf, dev_item, device->type);
2913 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916 btrfs_set_device_total_bytes(leaf, dev_item,
2917 btrfs_device_get_disk_total_bytes(device));
2918 btrfs_set_device_bytes_used(leaf, dev_item,
2919 btrfs_device_get_bytes_used(device));
2920 btrfs_mark_buffer_dirty(trans, leaf);
2921
2922out:
2923 btrfs_free_path(path);
2924 return ret;
2925}
2926
2927int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928 struct btrfs_device *device, u64 new_size)
2929{
2930 struct btrfs_fs_info *fs_info = device->fs_info;
2931 struct btrfs_super_block *super_copy = fs_info->super_copy;
2932 u64 old_total;
2933 u64 diff;
2934 int ret;
2935
2936 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937 return -EACCES;
2938
2939 new_size = round_down(new_size, fs_info->sectorsize);
2940
2941 mutex_lock(&fs_info->chunk_mutex);
2942 old_total = btrfs_super_total_bytes(super_copy);
2943 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945 if (new_size <= device->total_bytes ||
2946 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947 mutex_unlock(&fs_info->chunk_mutex);
2948 return -EINVAL;
2949 }
2950
2951 btrfs_set_super_total_bytes(super_copy,
2952 round_down(old_total + diff, fs_info->sectorsize));
2953 device->fs_devices->total_rw_bytes += diff;
2954 atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956 btrfs_device_set_total_bytes(device, new_size);
2957 btrfs_device_set_disk_total_bytes(device, new_size);
2958 btrfs_clear_space_info_full(device->fs_info);
2959 if (list_empty(&device->post_commit_list))
2960 list_add_tail(&device->post_commit_list,
2961 &trans->transaction->dev_update_list);
2962 mutex_unlock(&fs_info->chunk_mutex);
2963
2964 btrfs_reserve_chunk_metadata(trans, false);
2965 ret = btrfs_update_device(trans, device);
2966 btrfs_trans_release_chunk_metadata(trans);
2967
2968 return ret;
2969}
2970
2971static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972{
2973 struct btrfs_fs_info *fs_info = trans->fs_info;
2974 struct btrfs_root *root = fs_info->chunk_root;
2975 int ret;
2976 struct btrfs_path *path;
2977 struct btrfs_key key;
2978
2979 path = btrfs_alloc_path();
2980 if (!path)
2981 return -ENOMEM;
2982
2983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984 key.offset = chunk_offset;
2985 key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988 if (ret < 0)
2989 goto out;
2990 else if (ret > 0) { /* Logic error or corruption */
2991 btrfs_handle_fs_error(fs_info, -ENOENT,
2992 "Failed lookup while freeing chunk.");
2993 ret = -ENOENT;
2994 goto out;
2995 }
2996
2997 ret = btrfs_del_item(trans, root, path);
2998 if (ret < 0)
2999 btrfs_handle_fs_error(fs_info, ret,
3000 "Failed to delete chunk item.");
3001out:
3002 btrfs_free_path(path);
3003 return ret;
3004}
3005
3006static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007{
3008 struct btrfs_super_block *super_copy = fs_info->super_copy;
3009 struct btrfs_disk_key *disk_key;
3010 struct btrfs_chunk *chunk;
3011 u8 *ptr;
3012 int ret = 0;
3013 u32 num_stripes;
3014 u32 array_size;
3015 u32 len = 0;
3016 u32 cur;
3017 struct btrfs_key key;
3018
3019 lockdep_assert_held(&fs_info->chunk_mutex);
3020 array_size = btrfs_super_sys_array_size(super_copy);
3021
3022 ptr = super_copy->sys_chunk_array;
3023 cur = 0;
3024
3025 while (cur < array_size) {
3026 disk_key = (struct btrfs_disk_key *)ptr;
3027 btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029 len = sizeof(*disk_key);
3030
3031 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032 chunk = (struct btrfs_chunk *)(ptr + len);
3033 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034 len += btrfs_chunk_item_size(num_stripes);
3035 } else {
3036 ret = -EIO;
3037 break;
3038 }
3039 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040 key.offset == chunk_offset) {
3041 memmove(ptr, ptr + len, array_size - (cur + len));
3042 array_size -= len;
3043 btrfs_set_super_sys_array_size(super_copy, array_size);
3044 } else {
3045 ptr += len;
3046 cur += len;
3047 }
3048 }
3049 return ret;
3050}
3051
3052struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053 u64 logical, u64 length)
3054{
3055 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056 struct rb_node *prev = NULL;
3057 struct rb_node *orig_prev;
3058 struct btrfs_chunk_map *map;
3059 struct btrfs_chunk_map *prev_map = NULL;
3060
3061 while (node) {
3062 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063 prev = node;
3064 prev_map = map;
3065
3066 if (logical < map->start) {
3067 node = node->rb_left;
3068 } else if (logical >= map->start + map->chunk_len) {
3069 node = node->rb_right;
3070 } else {
3071 refcount_inc(&map->refs);
3072 return map;
3073 }
3074 }
3075
3076 if (!prev)
3077 return NULL;
3078
3079 orig_prev = prev;
3080 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081 prev = rb_next(prev);
3082 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083 }
3084
3085 if (!prev) {
3086 prev = orig_prev;
3087 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088 while (prev && logical < prev_map->start) {
3089 prev = rb_prev(prev);
3090 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 }
3092 }
3093
3094 if (prev) {
3095 u64 end = logical + length;
3096
3097 /*
3098 * Caller can pass a U64_MAX length when it wants to get any
3099 * chunk starting at an offset of 'logical' or higher, so deal
3100 * with underflow by resetting the end offset to U64_MAX.
3101 */
3102 if (end < logical)
3103 end = U64_MAX;
3104
3105 if (end > prev_map->start &&
3106 logical < prev_map->start + prev_map->chunk_len) {
3107 refcount_inc(&prev_map->refs);
3108 return prev_map;
3109 }
3110 }
3111
3112 return NULL;
3113}
3114
3115struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116 u64 logical, u64 length)
3117{
3118 struct btrfs_chunk_map *map;
3119
3120 read_lock(&fs_info->mapping_tree_lock);
3121 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122 read_unlock(&fs_info->mapping_tree_lock);
3123
3124 return map;
3125}
3126
3127/*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136 u64 logical, u64 length)
3137{
3138 struct btrfs_chunk_map *map;
3139
3140 map = btrfs_find_chunk_map(fs_info, logical, length);
3141
3142 if (unlikely(!map)) {
3143 btrfs_crit(fs_info,
3144 "unable to find chunk map for logical %llu length %llu",
3145 logical, length);
3146 return ERR_PTR(-EINVAL);
3147 }
3148
3149 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150 btrfs_crit(fs_info,
3151 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152 logical, logical + length, map->start,
3153 map->start + map->chunk_len);
3154 btrfs_free_chunk_map(map);
3155 return ERR_PTR(-EINVAL);
3156 }
3157
3158 /* Callers are responsible for dropping the reference. */
3159 return map;
3160}
3161
3162static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163 struct btrfs_chunk_map *map, u64 chunk_offset)
3164{
3165 int i;
3166
3167 /*
3168 * Removing chunk items and updating the device items in the chunks btree
3169 * requires holding the chunk_mutex.
3170 * See the comment at btrfs_chunk_alloc() for the details.
3171 */
3172 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174 for (i = 0; i < map->num_stripes; i++) {
3175 int ret;
3176
3177 ret = btrfs_update_device(trans, map->stripes[i].dev);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 return btrfs_free_chunk(trans, chunk_offset);
3183}
3184
3185int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186{
3187 struct btrfs_fs_info *fs_info = trans->fs_info;
3188 struct btrfs_chunk_map *map;
3189 u64 dev_extent_len = 0;
3190 int i, ret = 0;
3191 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194 if (IS_ERR(map)) {
3195 /*
3196 * This is a logic error, but we don't want to just rely on the
3197 * user having built with ASSERT enabled, so if ASSERT doesn't
3198 * do anything we still error out.
3199 */
3200 ASSERT(0);
3201 return PTR_ERR(map);
3202 }
3203
3204 /*
3205 * First delete the device extent items from the devices btree.
3206 * We take the device_list_mutex to avoid racing with the finishing phase
3207 * of a device replace operation. See the comment below before acquiring
3208 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209 * because that can result in a deadlock when deleting the device extent
3210 * items from the devices btree - COWing an extent buffer from the btree
3211 * may result in allocating a new metadata chunk, which would attempt to
3212 * lock again fs_info->chunk_mutex.
3213 */
3214 mutex_lock(&fs_devices->device_list_mutex);
3215 for (i = 0; i < map->num_stripes; i++) {
3216 struct btrfs_device *device = map->stripes[i].dev;
3217 ret = btrfs_free_dev_extent(trans, device,
3218 map->stripes[i].physical,
3219 &dev_extent_len);
3220 if (ret) {
3221 mutex_unlock(&fs_devices->device_list_mutex);
3222 btrfs_abort_transaction(trans, ret);
3223 goto out;
3224 }
3225
3226 if (device->bytes_used > 0) {
3227 mutex_lock(&fs_info->chunk_mutex);
3228 btrfs_device_set_bytes_used(device,
3229 device->bytes_used - dev_extent_len);
3230 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231 btrfs_clear_space_info_full(fs_info);
3232 mutex_unlock(&fs_info->chunk_mutex);
3233 }
3234 }
3235 mutex_unlock(&fs_devices->device_list_mutex);
3236
3237 /*
3238 * We acquire fs_info->chunk_mutex for 2 reasons:
3239 *
3240 * 1) Just like with the first phase of the chunk allocation, we must
3241 * reserve system space, do all chunk btree updates and deletions, and
3242 * update the system chunk array in the superblock while holding this
3243 * mutex. This is for similar reasons as explained on the comment at
3244 * the top of btrfs_chunk_alloc();
3245 *
3246 * 2) Prevent races with the final phase of a device replace operation
3247 * that replaces the device object associated with the map's stripes,
3248 * because the device object's id can change at any time during that
3249 * final phase of the device replace operation
3250 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251 * replaced device and then see it with an ID of
3252 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253 * the device item, which does not exists on the chunk btree.
3254 * The finishing phase of device replace acquires both the
3255 * device_list_mutex and the chunk_mutex, in that order, so we are
3256 * safe by just acquiring the chunk_mutex.
3257 */
3258 trans->removing_chunk = true;
3259 mutex_lock(&fs_info->chunk_mutex);
3260
3261 check_system_chunk(trans, map->type);
3262
3263 ret = remove_chunk_item(trans, map, chunk_offset);
3264 /*
3265 * Normally we should not get -ENOSPC since we reserved space before
3266 * through the call to check_system_chunk().
3267 *
3268 * Despite our system space_info having enough free space, we may not
3269 * be able to allocate extents from its block groups, because all have
3270 * an incompatible profile, which will force us to allocate a new system
3271 * block group with the right profile, or right after we called
3272 * check_system_space() above, a scrub turned the only system block group
3273 * with enough free space into RO mode.
3274 * This is explained with more detail at do_chunk_alloc().
3275 *
3276 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277 */
3278 if (ret == -ENOSPC) {
3279 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280 struct btrfs_block_group *sys_bg;
3281
3282 sys_bg = btrfs_create_chunk(trans, sys_flags);
3283 if (IS_ERR(sys_bg)) {
3284 ret = PTR_ERR(sys_bg);
3285 btrfs_abort_transaction(trans, ret);
3286 goto out;
3287 }
3288
3289 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290 if (ret) {
3291 btrfs_abort_transaction(trans, ret);
3292 goto out;
3293 }
3294
3295 ret = remove_chunk_item(trans, map, chunk_offset);
3296 if (ret) {
3297 btrfs_abort_transaction(trans, ret);
3298 goto out;
3299 }
3300 } else if (ret) {
3301 btrfs_abort_transaction(trans, ret);
3302 goto out;
3303 }
3304
3305 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309 if (ret) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313 }
3314
3315 mutex_unlock(&fs_info->chunk_mutex);
3316 trans->removing_chunk = false;
3317
3318 /*
3319 * We are done with chunk btree updates and deletions, so release the
3320 * system space we previously reserved (with check_system_chunk()).
3321 */
3322 btrfs_trans_release_chunk_metadata(trans);
3323
3324 ret = btrfs_remove_block_group(trans, map);
3325 if (ret) {
3326 btrfs_abort_transaction(trans, ret);
3327 goto out;
3328 }
3329
3330out:
3331 if (trans->removing_chunk) {
3332 mutex_unlock(&fs_info->chunk_mutex);
3333 trans->removing_chunk = false;
3334 }
3335 /* once for us */
3336 btrfs_free_chunk_map(map);
3337 return ret;
3338}
3339
3340int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341{
3342 struct btrfs_root *root = fs_info->chunk_root;
3343 struct btrfs_trans_handle *trans;
3344 struct btrfs_block_group *block_group;
3345 u64 length;
3346 int ret;
3347
3348 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349 btrfs_err(fs_info,
3350 "relocate: not supported on extent tree v2 yet");
3351 return -EINVAL;
3352 }
3353
3354 /*
3355 * Prevent races with automatic removal of unused block groups.
3356 * After we relocate and before we remove the chunk with offset
3357 * chunk_offset, automatic removal of the block group can kick in,
3358 * resulting in a failure when calling btrfs_remove_chunk() below.
3359 *
3360 * Make sure to acquire this mutex before doing a tree search (dev
3361 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363 * we release the path used to search the chunk/dev tree and before
3364 * the current task acquires this mutex and calls us.
3365 */
3366 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368 /* step one, relocate all the extents inside this chunk */
3369 btrfs_scrub_pause(fs_info);
3370 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371 btrfs_scrub_continue(fs_info);
3372 if (ret) {
3373 /*
3374 * If we had a transaction abort, stop all running scrubs.
3375 * See transaction.c:cleanup_transaction() why we do it here.
3376 */
3377 if (BTRFS_FS_ERROR(fs_info))
3378 btrfs_scrub_cancel(fs_info);
3379 return ret;
3380 }
3381
3382 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383 if (!block_group)
3384 return -ENOENT;
3385 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386 length = block_group->length;
3387 btrfs_put_block_group(block_group);
3388
3389 /*
3390 * On a zoned file system, discard the whole block group, this will
3391 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392 * resetting the zone fails, don't treat it as a fatal problem from the
3393 * filesystem's point of view.
3394 */
3395 if (btrfs_is_zoned(fs_info)) {
3396 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397 if (ret)
3398 btrfs_info(fs_info,
3399 "failed to reset zone %llu after relocation",
3400 chunk_offset);
3401 }
3402
3403 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404 chunk_offset);
3405 if (IS_ERR(trans)) {
3406 ret = PTR_ERR(trans);
3407 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408 return ret;
3409 }
3410
3411 /*
3412 * step two, delete the device extents and the
3413 * chunk tree entries
3414 */
3415 ret = btrfs_remove_chunk(trans, chunk_offset);
3416 btrfs_end_transaction(trans);
3417 return ret;
3418}
3419
3420static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421{
3422 struct btrfs_root *chunk_root = fs_info->chunk_root;
3423 struct btrfs_path *path;
3424 struct extent_buffer *leaf;
3425 struct btrfs_chunk *chunk;
3426 struct btrfs_key key;
3427 struct btrfs_key found_key;
3428 u64 chunk_type;
3429 bool retried = false;
3430 int failed = 0;
3431 int ret;
3432
3433 path = btrfs_alloc_path();
3434 if (!path)
3435 return -ENOMEM;
3436
3437again:
3438 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439 key.offset = (u64)-1;
3440 key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442 while (1) {
3443 mutex_lock(&fs_info->reclaim_bgs_lock);
3444 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445 if (ret < 0) {
3446 mutex_unlock(&fs_info->reclaim_bgs_lock);
3447 goto error;
3448 }
3449 if (ret == 0) {
3450 /*
3451 * On the first search we would find chunk tree with
3452 * offset -1, which is not possible. On subsequent
3453 * loops this would find an existing item on an invalid
3454 * offset (one less than the previous one, wrong
3455 * alignment and size).
3456 */
3457 ret = -EUCLEAN;
3458 mutex_unlock(&fs_info->reclaim_bgs_lock);
3459 goto error;
3460 }
3461
3462 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463 key.type);
3464 if (ret)
3465 mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 if (ret < 0)
3467 goto error;
3468 if (ret > 0)
3469 break;
3470
3471 leaf = path->nodes[0];
3472 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473
3474 chunk = btrfs_item_ptr(leaf, path->slots[0],
3475 struct btrfs_chunk);
3476 chunk_type = btrfs_chunk_type(leaf, chunk);
3477 btrfs_release_path(path);
3478
3479 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481 if (ret == -ENOSPC)
3482 failed++;
3483 else
3484 BUG_ON(ret);
3485 }
3486 mutex_unlock(&fs_info->reclaim_bgs_lock);
3487
3488 if (found_key.offset == 0)
3489 break;
3490 key.offset = found_key.offset - 1;
3491 }
3492 ret = 0;
3493 if (failed && !retried) {
3494 failed = 0;
3495 retried = true;
3496 goto again;
3497 } else if (WARN_ON(failed && retried)) {
3498 ret = -ENOSPC;
3499 }
3500error:
3501 btrfs_free_path(path);
3502 return ret;
3503}
3504
3505/*
3506 * return 1 : allocate a data chunk successfully,
3507 * return <0: errors during allocating a data chunk,
3508 * return 0 : no need to allocate a data chunk.
3509 */
3510static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511 u64 chunk_offset)
3512{
3513 struct btrfs_block_group *cache;
3514 u64 bytes_used;
3515 u64 chunk_type;
3516
3517 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518 ASSERT(cache);
3519 chunk_type = cache->flags;
3520 btrfs_put_block_group(cache);
3521
3522 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523 return 0;
3524
3525 spin_lock(&fs_info->data_sinfo->lock);
3526 bytes_used = fs_info->data_sinfo->bytes_used;
3527 spin_unlock(&fs_info->data_sinfo->lock);
3528
3529 if (!bytes_used) {
3530 struct btrfs_trans_handle *trans;
3531 int ret;
3532
3533 trans = btrfs_join_transaction(fs_info->tree_root);
3534 if (IS_ERR(trans))
3535 return PTR_ERR(trans);
3536
3537 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538 btrfs_end_transaction(trans);
3539 if (ret < 0)
3540 return ret;
3541 return 1;
3542 }
3543
3544 return 0;
3545}
3546
3547static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548 const struct btrfs_disk_balance_args *disk)
3549{
3550 memset(cpu, 0, sizeof(*cpu));
3551
3552 cpu->profiles = le64_to_cpu(disk->profiles);
3553 cpu->usage = le64_to_cpu(disk->usage);
3554 cpu->devid = le64_to_cpu(disk->devid);
3555 cpu->pstart = le64_to_cpu(disk->pstart);
3556 cpu->pend = le64_to_cpu(disk->pend);
3557 cpu->vstart = le64_to_cpu(disk->vstart);
3558 cpu->vend = le64_to_cpu(disk->vend);
3559 cpu->target = le64_to_cpu(disk->target);
3560 cpu->flags = le64_to_cpu(disk->flags);
3561 cpu->limit = le64_to_cpu(disk->limit);
3562 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564}
3565
3566static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567 const struct btrfs_balance_args *cpu)
3568{
3569 memset(disk, 0, sizeof(*disk));
3570
3571 disk->profiles = cpu_to_le64(cpu->profiles);
3572 disk->usage = cpu_to_le64(cpu->usage);
3573 disk->devid = cpu_to_le64(cpu->devid);
3574 disk->pstart = cpu_to_le64(cpu->pstart);
3575 disk->pend = cpu_to_le64(cpu->pend);
3576 disk->vstart = cpu_to_le64(cpu->vstart);
3577 disk->vend = cpu_to_le64(cpu->vend);
3578 disk->target = cpu_to_le64(cpu->target);
3579 disk->flags = cpu_to_le64(cpu->flags);
3580 disk->limit = cpu_to_le64(cpu->limit);
3581 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583}
3584
3585static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586 struct btrfs_balance_control *bctl)
3587{
3588 struct btrfs_root *root = fs_info->tree_root;
3589 struct btrfs_trans_handle *trans;
3590 struct btrfs_balance_item *item;
3591 struct btrfs_disk_balance_args disk_bargs;
3592 struct btrfs_path *path;
3593 struct extent_buffer *leaf;
3594 struct btrfs_key key;
3595 int ret, err;
3596
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600
3601 trans = btrfs_start_transaction(root, 0);
3602 if (IS_ERR(trans)) {
3603 btrfs_free_path(path);
3604 return PTR_ERR(trans);
3605 }
3606
3607 key.objectid = BTRFS_BALANCE_OBJECTID;
3608 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609 key.offset = 0;
3610
3611 ret = btrfs_insert_empty_item(trans, root, path, &key,
3612 sizeof(*item));
3613 if (ret)
3614 goto out;
3615
3616 leaf = path->nodes[0];
3617 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618
3619 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620
3621 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622 btrfs_set_balance_data(leaf, item, &disk_bargs);
3623 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627
3628 btrfs_set_balance_flags(leaf, item, bctl->flags);
3629
3630 btrfs_mark_buffer_dirty(trans, leaf);
3631out:
3632 btrfs_free_path(path);
3633 err = btrfs_commit_transaction(trans);
3634 if (err && !ret)
3635 ret = err;
3636 return ret;
3637}
3638
3639static int del_balance_item(struct btrfs_fs_info *fs_info)
3640{
3641 struct btrfs_root *root = fs_info->tree_root;
3642 struct btrfs_trans_handle *trans;
3643 struct btrfs_path *path;
3644 struct btrfs_key key;
3645 int ret, err;
3646
3647 path = btrfs_alloc_path();
3648 if (!path)
3649 return -ENOMEM;
3650
3651 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652 if (IS_ERR(trans)) {
3653 btrfs_free_path(path);
3654 return PTR_ERR(trans);
3655 }
3656
3657 key.objectid = BTRFS_BALANCE_OBJECTID;
3658 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659 key.offset = 0;
3660
3661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662 if (ret < 0)
3663 goto out;
3664 if (ret > 0) {
3665 ret = -ENOENT;
3666 goto out;
3667 }
3668
3669 ret = btrfs_del_item(trans, root, path);
3670out:
3671 btrfs_free_path(path);
3672 err = btrfs_commit_transaction(trans);
3673 if (err && !ret)
3674 ret = err;
3675 return ret;
3676}
3677
3678/*
3679 * This is a heuristic used to reduce the number of chunks balanced on
3680 * resume after balance was interrupted.
3681 */
3682static void update_balance_args(struct btrfs_balance_control *bctl)
3683{
3684 /*
3685 * Turn on soft mode for chunk types that were being converted.
3686 */
3687 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693
3694 /*
3695 * Turn on usage filter if is not already used. The idea is
3696 * that chunks that we have already balanced should be
3697 * reasonably full. Don't do it for chunks that are being
3698 * converted - that will keep us from relocating unconverted
3699 * (albeit full) chunks.
3700 */
3701 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705 bctl->data.usage = 90;
3706 }
3707 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 bctl->sys.usage = 90;
3712 }
3713 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 bctl->meta.usage = 90;
3718 }
3719}
3720
3721/*
3722 * Clear the balance status in fs_info and delete the balance item from disk.
3723 */
3724static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725{
3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 int ret;
3728
3729 ASSERT(fs_info->balance_ctl);
3730
3731 spin_lock(&fs_info->balance_lock);
3732 fs_info->balance_ctl = NULL;
3733 spin_unlock(&fs_info->balance_lock);
3734
3735 kfree(bctl);
3736 ret = del_balance_item(fs_info);
3737 if (ret)
3738 btrfs_handle_fs_error(fs_info, ret, NULL);
3739}
3740
3741/*
3742 * Balance filters. Return 1 if chunk should be filtered out
3743 * (should not be balanced).
3744 */
3745static int chunk_profiles_filter(u64 chunk_type,
3746 struct btrfs_balance_args *bargs)
3747{
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->profiles & chunk_type)
3752 return 0;
3753
3754 return 1;
3755}
3756
3757static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758 struct btrfs_balance_args *bargs)
3759{
3760 struct btrfs_block_group *cache;
3761 u64 chunk_used;
3762 u64 user_thresh_min;
3763 u64 user_thresh_max;
3764 int ret = 1;
3765
3766 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767 chunk_used = cache->used;
3768
3769 if (bargs->usage_min == 0)
3770 user_thresh_min = 0;
3771 else
3772 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773
3774 if (bargs->usage_max == 0)
3775 user_thresh_max = 1;
3776 else if (bargs->usage_max > 100)
3777 user_thresh_max = cache->length;
3778 else
3779 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780
3781 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782 ret = 0;
3783
3784 btrfs_put_block_group(cache);
3785 return ret;
3786}
3787
3788static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789 u64 chunk_offset, struct btrfs_balance_args *bargs)
3790{
3791 struct btrfs_block_group *cache;
3792 u64 chunk_used, user_thresh;
3793 int ret = 1;
3794
3795 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796 chunk_used = cache->used;
3797
3798 if (bargs->usage_min == 0)
3799 user_thresh = 1;
3800 else if (bargs->usage > 100)
3801 user_thresh = cache->length;
3802 else
3803 user_thresh = mult_perc(cache->length, bargs->usage);
3804
3805 if (chunk_used < user_thresh)
3806 ret = 0;
3807
3808 btrfs_put_block_group(cache);
3809 return ret;
3810}
3811
3812static int chunk_devid_filter(struct extent_buffer *leaf,
3813 struct btrfs_chunk *chunk,
3814 struct btrfs_balance_args *bargs)
3815{
3816 struct btrfs_stripe *stripe;
3817 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818 int i;
3819
3820 for (i = 0; i < num_stripes; i++) {
3821 stripe = btrfs_stripe_nr(chunk, i);
3822 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823 return 0;
3824 }
3825
3826 return 1;
3827}
3828
3829static u64 calc_data_stripes(u64 type, int num_stripes)
3830{
3831 const int index = btrfs_bg_flags_to_raid_index(type);
3832 const int ncopies = btrfs_raid_array[index].ncopies;
3833 const int nparity = btrfs_raid_array[index].nparity;
3834
3835 return (num_stripes - nparity) / ncopies;
3836}
3837
3838/* [pstart, pend) */
3839static int chunk_drange_filter(struct extent_buffer *leaf,
3840 struct btrfs_chunk *chunk,
3841 struct btrfs_balance_args *bargs)
3842{
3843 struct btrfs_stripe *stripe;
3844 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845 u64 stripe_offset;
3846 u64 stripe_length;
3847 u64 type;
3848 int factor;
3849 int i;
3850
3851 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852 return 0;
3853
3854 type = btrfs_chunk_type(leaf, chunk);
3855 factor = calc_data_stripes(type, num_stripes);
3856
3857 for (i = 0; i < num_stripes; i++) {
3858 stripe = btrfs_stripe_nr(chunk, i);
3859 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860 continue;
3861
3862 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863 stripe_length = btrfs_chunk_length(leaf, chunk);
3864 stripe_length = div_u64(stripe_length, factor);
3865
3866 if (stripe_offset < bargs->pend &&
3867 stripe_offset + stripe_length > bargs->pstart)
3868 return 0;
3869 }
3870
3871 return 1;
3872}
3873
3874/* [vstart, vend) */
3875static int chunk_vrange_filter(struct extent_buffer *leaf,
3876 struct btrfs_chunk *chunk,
3877 u64 chunk_offset,
3878 struct btrfs_balance_args *bargs)
3879{
3880 if (chunk_offset < bargs->vend &&
3881 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882 /* at least part of the chunk is inside this vrange */
3883 return 0;
3884
3885 return 1;
3886}
3887
3888static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889 struct btrfs_chunk *chunk,
3890 struct btrfs_balance_args *bargs)
3891{
3892 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893
3894 if (bargs->stripes_min <= num_stripes
3895 && num_stripes <= bargs->stripes_max)
3896 return 0;
3897
3898 return 1;
3899}
3900
3901static int chunk_soft_convert_filter(u64 chunk_type,
3902 struct btrfs_balance_args *bargs)
3903{
3904 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905 return 0;
3906
3907 chunk_type = chunk_to_extended(chunk_type) &
3908 BTRFS_EXTENDED_PROFILE_MASK;
3909
3910 if (bargs->target == chunk_type)
3911 return 1;
3912
3913 return 0;
3914}
3915
3916static int should_balance_chunk(struct extent_buffer *leaf,
3917 struct btrfs_chunk *chunk, u64 chunk_offset)
3918{
3919 struct btrfs_fs_info *fs_info = leaf->fs_info;
3920 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921 struct btrfs_balance_args *bargs = NULL;
3922 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923
3924 /* type filter */
3925 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927 return 0;
3928 }
3929
3930 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 bargs = &bctl->data;
3932 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 bargs = &bctl->sys;
3934 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 bargs = &bctl->meta;
3936
3937 /* profiles filter */
3938 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939 chunk_profiles_filter(chunk_type, bargs)) {
3940 return 0;
3941 }
3942
3943 /* usage filter */
3944 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946 return 0;
3947 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949 return 0;
3950 }
3951
3952 /* devid filter */
3953 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954 chunk_devid_filter(leaf, chunk, bargs)) {
3955 return 0;
3956 }
3957
3958 /* drange filter, makes sense only with devid filter */
3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960 chunk_drange_filter(leaf, chunk, bargs)) {
3961 return 0;
3962 }
3963
3964 /* vrange filter */
3965 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967 return 0;
3968 }
3969
3970 /* stripes filter */
3971 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973 return 0;
3974 }
3975
3976 /* soft profile changing mode */
3977 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978 chunk_soft_convert_filter(chunk_type, bargs)) {
3979 return 0;
3980 }
3981
3982 /*
3983 * limited by count, must be the last filter
3984 */
3985 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986 if (bargs->limit == 0)
3987 return 0;
3988 else
3989 bargs->limit--;
3990 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991 /*
3992 * Same logic as the 'limit' filter; the minimum cannot be
3993 * determined here because we do not have the global information
3994 * about the count of all chunks that satisfy the filters.
3995 */
3996 if (bargs->limit_max == 0)
3997 return 0;
3998 else
3999 bargs->limit_max--;
4000 }
4001
4002 return 1;
4003}
4004
4005static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006{
4007 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008 struct btrfs_root *chunk_root = fs_info->chunk_root;
4009 u64 chunk_type;
4010 struct btrfs_chunk *chunk;
4011 struct btrfs_path *path = NULL;
4012 struct btrfs_key key;
4013 struct btrfs_key found_key;
4014 struct extent_buffer *leaf;
4015 int slot;
4016 int ret;
4017 int enospc_errors = 0;
4018 bool counting = true;
4019 /* The single value limit and min/max limits use the same bytes in the */
4020 u64 limit_data = bctl->data.limit;
4021 u64 limit_meta = bctl->meta.limit;
4022 u64 limit_sys = bctl->sys.limit;
4023 u32 count_data = 0;
4024 u32 count_meta = 0;
4025 u32 count_sys = 0;
4026 int chunk_reserved = 0;
4027
4028 path = btrfs_alloc_path();
4029 if (!path) {
4030 ret = -ENOMEM;
4031 goto error;
4032 }
4033
4034 /* zero out stat counters */
4035 spin_lock(&fs_info->balance_lock);
4036 memset(&bctl->stat, 0, sizeof(bctl->stat));
4037 spin_unlock(&fs_info->balance_lock);
4038again:
4039 if (!counting) {
4040 /*
4041 * The single value limit and min/max limits use the same bytes
4042 * in the
4043 */
4044 bctl->data.limit = limit_data;
4045 bctl->meta.limit = limit_meta;
4046 bctl->sys.limit = limit_sys;
4047 }
4048 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049 key.offset = (u64)-1;
4050 key.type = BTRFS_CHUNK_ITEM_KEY;
4051
4052 while (1) {
4053 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054 atomic_read(&fs_info->balance_cancel_req)) {
4055 ret = -ECANCELED;
4056 goto error;
4057 }
4058
4059 mutex_lock(&fs_info->reclaim_bgs_lock);
4060 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061 if (ret < 0) {
4062 mutex_unlock(&fs_info->reclaim_bgs_lock);
4063 goto error;
4064 }
4065
4066 /*
4067 * this shouldn't happen, it means the last relocate
4068 * failed
4069 */
4070 if (ret == 0)
4071 BUG(); /* FIXME break ? */
4072
4073 ret = btrfs_previous_item(chunk_root, path, 0,
4074 BTRFS_CHUNK_ITEM_KEY);
4075 if (ret) {
4076 mutex_unlock(&fs_info->reclaim_bgs_lock);
4077 ret = 0;
4078 break;
4079 }
4080
4081 leaf = path->nodes[0];
4082 slot = path->slots[0];
4083 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084
4085 if (found_key.objectid != key.objectid) {
4086 mutex_unlock(&fs_info->reclaim_bgs_lock);
4087 break;
4088 }
4089
4090 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091 chunk_type = btrfs_chunk_type(leaf, chunk);
4092
4093 if (!counting) {
4094 spin_lock(&fs_info->balance_lock);
4095 bctl->stat.considered++;
4096 spin_unlock(&fs_info->balance_lock);
4097 }
4098
4099 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100
4101 btrfs_release_path(path);
4102 if (!ret) {
4103 mutex_unlock(&fs_info->reclaim_bgs_lock);
4104 goto loop;
4105 }
4106
4107 if (counting) {
4108 mutex_unlock(&fs_info->reclaim_bgs_lock);
4109 spin_lock(&fs_info->balance_lock);
4110 bctl->stat.expected++;
4111 spin_unlock(&fs_info->balance_lock);
4112
4113 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114 count_data++;
4115 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116 count_sys++;
4117 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118 count_meta++;
4119
4120 goto loop;
4121 }
4122
4123 /*
4124 * Apply limit_min filter, no need to check if the LIMITS
4125 * filter is used, limit_min is 0 by default
4126 */
4127 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128 count_data < bctl->data.limit_min)
4129 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130 count_meta < bctl->meta.limit_min)
4131 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132 count_sys < bctl->sys.limit_min)) {
4133 mutex_unlock(&fs_info->reclaim_bgs_lock);
4134 goto loop;
4135 }
4136
4137 if (!chunk_reserved) {
4138 /*
4139 * We may be relocating the only data chunk we have,
4140 * which could potentially end up with losing data's
4141 * raid profile, so lets allocate an empty one in
4142 * advance.
4143 */
4144 ret = btrfs_may_alloc_data_chunk(fs_info,
4145 found_key.offset);
4146 if (ret < 0) {
4147 mutex_unlock(&fs_info->reclaim_bgs_lock);
4148 goto error;
4149 } else if (ret == 1) {
4150 chunk_reserved = 1;
4151 }
4152 }
4153
4154 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155 mutex_unlock(&fs_info->reclaim_bgs_lock);
4156 if (ret == -ENOSPC) {
4157 enospc_errors++;
4158 } else if (ret == -ETXTBSY) {
4159 btrfs_info(fs_info,
4160 "skipping relocation of block group %llu due to active swapfile",
4161 found_key.offset);
4162 ret = 0;
4163 } else if (ret) {
4164 goto error;
4165 } else {
4166 spin_lock(&fs_info->balance_lock);
4167 bctl->stat.completed++;
4168 spin_unlock(&fs_info->balance_lock);
4169 }
4170loop:
4171 if (found_key.offset == 0)
4172 break;
4173 key.offset = found_key.offset - 1;
4174 }
4175
4176 if (counting) {
4177 btrfs_release_path(path);
4178 counting = false;
4179 goto again;
4180 }
4181error:
4182 btrfs_free_path(path);
4183 if (enospc_errors) {
4184 btrfs_info(fs_info, "%d enospc errors during balance",
4185 enospc_errors);
4186 if (!ret)
4187 ret = -ENOSPC;
4188 }
4189
4190 return ret;
4191}
4192
4193/*
4194 * See if a given profile is valid and reduced.
4195 *
4196 * @flags: profile to validate
4197 * @extended: if true @flags is treated as an extended profile
4198 */
4199static int alloc_profile_is_valid(u64 flags, int extended)
4200{
4201 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203
4204 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205
4206 /* 1) check that all other bits are zeroed */
4207 if (flags & ~mask)
4208 return 0;
4209
4210 /* 2) see if profile is reduced */
4211 if (flags == 0)
4212 return !extended; /* "0" is valid for usual profiles */
4213
4214 return has_single_bit_set(flags);
4215}
4216
4217/*
4218 * Validate target profile against allowed profiles and return true if it's OK.
4219 * Otherwise print the error message and return false.
4220 */
4221static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222 const struct btrfs_balance_args *bargs,
4223 u64 allowed, const char *type)
4224{
4225 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226 return true;
4227
4228 /* Profile is valid and does not have bits outside of the allowed set */
4229 if (alloc_profile_is_valid(bargs->target, 1) &&
4230 (bargs->target & ~allowed) == 0)
4231 return true;
4232
4233 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234 type, btrfs_bg_type_to_raid_name(bargs->target));
4235 return false;
4236}
4237
4238/*
4239 * Fill @buf with textual description of balance filter flags @bargs, up to
4240 * @size_buf including the terminating null. The output may be trimmed if it
4241 * does not fit into the provided buffer.
4242 */
4243static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244 u32 size_buf)
4245{
4246 int ret;
4247 u32 size_bp = size_buf;
4248 char *bp = buf;
4249 u64 flags = bargs->flags;
4250 char tmp_buf[128] = {'\0'};
4251
4252 if (!flags)
4253 return;
4254
4255#define CHECK_APPEND_NOARG(a) \
4256 do { \
4257 ret = snprintf(bp, size_bp, (a)); \
4258 if (ret < 0 || ret >= size_bp) \
4259 goto out_overflow; \
4260 size_bp -= ret; \
4261 bp += ret; \
4262 } while (0)
4263
4264#define CHECK_APPEND_1ARG(a, v1) \
4265 do { \
4266 ret = snprintf(bp, size_bp, (a), (v1)); \
4267 if (ret < 0 || ret >= size_bp) \
4268 goto out_overflow; \
4269 size_bp -= ret; \
4270 bp += ret; \
4271 } while (0)
4272
4273#define CHECK_APPEND_2ARG(a, v1, v2) \
4274 do { \
4275 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4276 if (ret < 0 || ret >= size_bp) \
4277 goto out_overflow; \
4278 size_bp -= ret; \
4279 bp += ret; \
4280 } while (0)
4281
4282 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283 CHECK_APPEND_1ARG("convert=%s,",
4284 btrfs_bg_type_to_raid_name(bargs->target));
4285
4286 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287 CHECK_APPEND_NOARG("soft,");
4288
4289 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291 sizeof(tmp_buf));
4292 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293 }
4294
4295 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297
4298 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299 CHECK_APPEND_2ARG("usage=%u..%u,",
4300 bargs->usage_min, bargs->usage_max);
4301
4302 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304
4305 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307 bargs->pstart, bargs->pend);
4308
4309 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311 bargs->vstart, bargs->vend);
4312
4313 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315
4316 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317 CHECK_APPEND_2ARG("limit=%u..%u,",
4318 bargs->limit_min, bargs->limit_max);
4319
4320 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321 CHECK_APPEND_2ARG("stripes=%u..%u,",
4322 bargs->stripes_min, bargs->stripes_max);
4323
4324#undef CHECK_APPEND_2ARG
4325#undef CHECK_APPEND_1ARG
4326#undef CHECK_APPEND_NOARG
4327
4328out_overflow:
4329
4330 if (size_bp < size_buf)
4331 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332 else
4333 buf[0] = '\0';
4334}
4335
4336static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337{
4338 u32 size_buf = 1024;
4339 char tmp_buf[192] = {'\0'};
4340 char *buf;
4341 char *bp;
4342 u32 size_bp = size_buf;
4343 int ret;
4344 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345
4346 buf = kzalloc(size_buf, GFP_KERNEL);
4347 if (!buf)
4348 return;
4349
4350 bp = buf;
4351
4352#define CHECK_APPEND_1ARG(a, v1) \
4353 do { \
4354 ret = snprintf(bp, size_bp, (a), (v1)); \
4355 if (ret < 0 || ret >= size_bp) \
4356 goto out_overflow; \
4357 size_bp -= ret; \
4358 bp += ret; \
4359 } while (0)
4360
4361 if (bctl->flags & BTRFS_BALANCE_FORCE)
4362 CHECK_APPEND_1ARG("%s", "-f ");
4363
4364 if (bctl->flags & BTRFS_BALANCE_DATA) {
4365 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367 }
4368
4369 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372 }
4373
4374 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377 }
4378
4379#undef CHECK_APPEND_1ARG
4380
4381out_overflow:
4382
4383 if (size_bp < size_buf)
4384 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385 btrfs_info(fs_info, "balance: %s %s",
4386 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387 "resume" : "start", buf);
4388
4389 kfree(buf);
4390}
4391
4392/*
4393 * Should be called with balance mutexe held
4394 */
4395int btrfs_balance(struct btrfs_fs_info *fs_info,
4396 struct btrfs_balance_control *bctl,
4397 struct btrfs_ioctl_balance_args *bargs)
4398{
4399 u64 meta_target, data_target;
4400 u64 allowed;
4401 int mixed = 0;
4402 int ret;
4403 u64 num_devices;
4404 unsigned seq;
4405 bool reducing_redundancy;
4406 bool paused = false;
4407 int i;
4408
4409 if (btrfs_fs_closing(fs_info) ||
4410 atomic_read(&fs_info->balance_pause_req) ||
4411 btrfs_should_cancel_balance(fs_info)) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418 mixed = 1;
4419
4420 /*
4421 * In case of mixed groups both data and meta should be picked,
4422 * and identical options should be given for both of them.
4423 */
4424 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425 if (mixed && (bctl->flags & allowed)) {
4426 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429 btrfs_err(fs_info,
4430 "balance: mixed groups data and metadata options must be the same");
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434 }
4435
4436 /*
4437 * rw_devices will not change at the moment, device add/delete/replace
4438 * are exclusive
4439 */
4440 num_devices = fs_info->fs_devices->rw_devices;
4441
4442 /*
4443 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444 * special bit for it, to make it easier to distinguish. Thus we need
4445 * to set it manually, or balance would refuse the profile.
4446 */
4447 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449 if (num_devices >= btrfs_raid_array[i].devs_min)
4450 allowed |= btrfs_raid_array[i].bg_flag;
4451
4452 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /*
4460 * Allow to reduce metadata or system integrity only if force set for
4461 * profiles with redundancy (copies, parity)
4462 */
4463 allowed = 0;
4464 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465 if (btrfs_raid_array[i].ncopies >= 2 ||
4466 btrfs_raid_array[i].tolerated_failures >= 1)
4467 allowed |= btrfs_raid_array[i].bg_flag;
4468 }
4469 do {
4470 seq = read_seqbegin(&fs_info->profiles_lock);
4471
4472 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473 (fs_info->avail_system_alloc_bits & allowed) &&
4474 !(bctl->sys.target & allowed)) ||
4475 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476 (fs_info->avail_metadata_alloc_bits & allowed) &&
4477 !(bctl->meta.target & allowed)))
4478 reducing_redundancy = true;
4479 else
4480 reducing_redundancy = false;
4481
4482 /* if we're not converting, the target field is uninitialized */
4483 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486 bctl->data.target : fs_info->avail_data_alloc_bits;
4487 } while (read_seqretry(&fs_info->profiles_lock, seq));
4488
4489 if (reducing_redundancy) {
4490 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491 btrfs_info(fs_info,
4492 "balance: force reducing metadata redundancy");
4493 } else {
4494 btrfs_err(fs_info,
4495 "balance: reduces metadata redundancy, use --force if you want this");
4496 ret = -EINVAL;
4497 goto out;
4498 }
4499 }
4500
4501 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503 btrfs_warn(fs_info,
4504 "balance: metadata profile %s has lower redundancy than data profile %s",
4505 btrfs_bg_type_to_raid_name(meta_target),
4506 btrfs_bg_type_to_raid_name(data_target));
4507 }
4508
4509 ret = insert_balance_item(fs_info, bctl);
4510 if (ret && ret != -EEXIST)
4511 goto out;
4512
4513 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514 BUG_ON(ret == -EEXIST);
4515 BUG_ON(fs_info->balance_ctl);
4516 spin_lock(&fs_info->balance_lock);
4517 fs_info->balance_ctl = bctl;
4518 spin_unlock(&fs_info->balance_lock);
4519 } else {
4520 BUG_ON(ret != -EEXIST);
4521 spin_lock(&fs_info->balance_lock);
4522 update_balance_args(bctl);
4523 spin_unlock(&fs_info->balance_lock);
4524 }
4525
4526 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528 describe_balance_start_or_resume(fs_info);
4529 mutex_unlock(&fs_info->balance_mutex);
4530
4531 ret = __btrfs_balance(fs_info);
4532
4533 mutex_lock(&fs_info->balance_mutex);
4534 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535 btrfs_info(fs_info, "balance: paused");
4536 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537 paused = true;
4538 }
4539 /*
4540 * Balance can be canceled by:
4541 *
4542 * - Regular cancel request
4543 * Then ret == -ECANCELED and balance_cancel_req > 0
4544 *
4545 * - Fatal signal to "btrfs" process
4546 * Either the signal caught by wait_reserve_ticket() and callers
4547 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4548 * got -ECANCELED.
4549 * Either way, in this case balance_cancel_req = 0, and
4550 * ret == -EINTR or ret == -ECANCELED.
4551 *
4552 * So here we only check the return value to catch canceled balance.
4553 */
4554 else if (ret == -ECANCELED || ret == -EINTR)
4555 btrfs_info(fs_info, "balance: canceled");
4556 else
4557 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558
4559 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560
4561 if (bargs) {
4562 memset(bargs, 0, sizeof(*bargs));
4563 btrfs_update_ioctl_balance_args(fs_info, bargs);
4564 }
4565
4566 /* We didn't pause, we can clean everything up. */
4567 if (!paused) {
4568 reset_balance_state(fs_info);
4569 btrfs_exclop_finish(fs_info);
4570 }
4571
4572 wake_up(&fs_info->balance_wait_q);
4573
4574 return ret;
4575out:
4576 if (bctl->flags & BTRFS_BALANCE_RESUME)
4577 reset_balance_state(fs_info);
4578 else
4579 kfree(bctl);
4580 btrfs_exclop_finish(fs_info);
4581
4582 return ret;
4583}
4584
4585static int balance_kthread(void *data)
4586{
4587 struct btrfs_fs_info *fs_info = data;
4588 int ret = 0;
4589
4590 sb_start_write(fs_info->sb);
4591 mutex_lock(&fs_info->balance_mutex);
4592 if (fs_info->balance_ctl)
4593 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594 mutex_unlock(&fs_info->balance_mutex);
4595 sb_end_write(fs_info->sb);
4596
4597 return ret;
4598}
4599
4600int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601{
4602 struct task_struct *tsk;
4603
4604 mutex_lock(&fs_info->balance_mutex);
4605 if (!fs_info->balance_ctl) {
4606 mutex_unlock(&fs_info->balance_mutex);
4607 return 0;
4608 }
4609 mutex_unlock(&fs_info->balance_mutex);
4610
4611 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612 btrfs_info(fs_info, "balance: resume skipped");
4613 return 0;
4614 }
4615
4616 spin_lock(&fs_info->super_lock);
4617 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619 spin_unlock(&fs_info->super_lock);
4620 /*
4621 * A ro->rw remount sequence should continue with the paused balance
4622 * regardless of who pauses it, system or the user as of now, so set
4623 * the resume flag.
4624 */
4625 spin_lock(&fs_info->balance_lock);
4626 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627 spin_unlock(&fs_info->balance_lock);
4628
4629 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630 return PTR_ERR_OR_ZERO(tsk);
4631}
4632
4633int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634{
4635 struct btrfs_balance_control *bctl;
4636 struct btrfs_balance_item *item;
4637 struct btrfs_disk_balance_args disk_bargs;
4638 struct btrfs_path *path;
4639 struct extent_buffer *leaf;
4640 struct btrfs_key key;
4641 int ret;
4642
4643 path = btrfs_alloc_path();
4644 if (!path)
4645 return -ENOMEM;
4646
4647 key.objectid = BTRFS_BALANCE_OBJECTID;
4648 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649 key.offset = 0;
4650
4651 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652 if (ret < 0)
4653 goto out;
4654 if (ret > 0) { /* ret = -ENOENT; */
4655 ret = 0;
4656 goto out;
4657 }
4658
4659 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660 if (!bctl) {
4661 ret = -ENOMEM;
4662 goto out;
4663 }
4664
4665 leaf = path->nodes[0];
4666 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667
4668 bctl->flags = btrfs_balance_flags(leaf, item);
4669 bctl->flags |= BTRFS_BALANCE_RESUME;
4670
4671 btrfs_balance_data(leaf, item, &disk_bargs);
4672 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673 btrfs_balance_meta(leaf, item, &disk_bargs);
4674 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675 btrfs_balance_sys(leaf, item, &disk_bargs);
4676 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677
4678 /*
4679 * This should never happen, as the paused balance state is recovered
4680 * during mount without any chance of other exclusive ops to collide.
4681 *
4682 * This gives the exclusive op status to balance and keeps in paused
4683 * state until user intervention (cancel or umount). If the ownership
4684 * cannot be assigned, show a message but do not fail. The balance
4685 * is in a paused state and must have fs_info::balance_ctl properly
4686 * set up.
4687 */
4688 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689 btrfs_warn(fs_info,
4690 "balance: cannot set exclusive op status, resume manually");
4691
4692 btrfs_release_path(path);
4693
4694 mutex_lock(&fs_info->balance_mutex);
4695 BUG_ON(fs_info->balance_ctl);
4696 spin_lock(&fs_info->balance_lock);
4697 fs_info->balance_ctl = bctl;
4698 spin_unlock(&fs_info->balance_lock);
4699 mutex_unlock(&fs_info->balance_mutex);
4700out:
4701 btrfs_free_path(path);
4702 return ret;
4703}
4704
4705int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706{
4707 int ret = 0;
4708
4709 mutex_lock(&fs_info->balance_mutex);
4710 if (!fs_info->balance_ctl) {
4711 mutex_unlock(&fs_info->balance_mutex);
4712 return -ENOTCONN;
4713 }
4714
4715 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716 atomic_inc(&fs_info->balance_pause_req);
4717 mutex_unlock(&fs_info->balance_mutex);
4718
4719 wait_event(fs_info->balance_wait_q,
4720 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721
4722 mutex_lock(&fs_info->balance_mutex);
4723 /* we are good with balance_ctl ripped off from under us */
4724 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 atomic_dec(&fs_info->balance_pause_req);
4726 } else {
4727 ret = -ENOTCONN;
4728 }
4729
4730 mutex_unlock(&fs_info->balance_mutex);
4731 return ret;
4732}
4733
4734int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735{
4736 mutex_lock(&fs_info->balance_mutex);
4737 if (!fs_info->balance_ctl) {
4738 mutex_unlock(&fs_info->balance_mutex);
4739 return -ENOTCONN;
4740 }
4741
4742 /*
4743 * A paused balance with the item stored on disk can be resumed at
4744 * mount time if the mount is read-write. Otherwise it's still paused
4745 * and we must not allow cancelling as it deletes the item.
4746 */
4747 if (sb_rdonly(fs_info->sb)) {
4748 mutex_unlock(&fs_info->balance_mutex);
4749 return -EROFS;
4750 }
4751
4752 atomic_inc(&fs_info->balance_cancel_req);
4753 /*
4754 * if we are running just wait and return, balance item is
4755 * deleted in btrfs_balance in this case
4756 */
4757 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758 mutex_unlock(&fs_info->balance_mutex);
4759 wait_event(fs_info->balance_wait_q,
4760 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761 mutex_lock(&fs_info->balance_mutex);
4762 } else {
4763 mutex_unlock(&fs_info->balance_mutex);
4764 /*
4765 * Lock released to allow other waiters to continue, we'll
4766 * reexamine the status again.
4767 */
4768 mutex_lock(&fs_info->balance_mutex);
4769
4770 if (fs_info->balance_ctl) {
4771 reset_balance_state(fs_info);
4772 btrfs_exclop_finish(fs_info);
4773 btrfs_info(fs_info, "balance: canceled");
4774 }
4775 }
4776
4777 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4778 atomic_dec(&fs_info->balance_cancel_req);
4779 mutex_unlock(&fs_info->balance_mutex);
4780 return 0;
4781}
4782
4783int btrfs_uuid_scan_kthread(void *data)
4784{
4785 struct btrfs_fs_info *fs_info = data;
4786 struct btrfs_root *root = fs_info->tree_root;
4787 struct btrfs_key key;
4788 struct btrfs_path *path = NULL;
4789 int ret = 0;
4790 struct extent_buffer *eb;
4791 int slot;
4792 struct btrfs_root_item root_item;
4793 u32 item_size;
4794 struct btrfs_trans_handle *trans = NULL;
4795 bool closing = false;
4796
4797 path = btrfs_alloc_path();
4798 if (!path) {
4799 ret = -ENOMEM;
4800 goto out;
4801 }
4802
4803 key.objectid = 0;
4804 key.type = BTRFS_ROOT_ITEM_KEY;
4805 key.offset = 0;
4806
4807 while (1) {
4808 if (btrfs_fs_closing(fs_info)) {
4809 closing = true;
4810 break;
4811 }
4812 ret = btrfs_search_forward(root, &key, path,
4813 BTRFS_OLDEST_GENERATION);
4814 if (ret) {
4815 if (ret > 0)
4816 ret = 0;
4817 break;
4818 }
4819
4820 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824 goto skip;
4825
4826 eb = path->nodes[0];
4827 slot = path->slots[0];
4828 item_size = btrfs_item_size(eb, slot);
4829 if (item_size < sizeof(root_item))
4830 goto skip;
4831
4832 read_extent_buffer(eb, &root_item,
4833 btrfs_item_ptr_offset(eb, slot),
4834 (int)sizeof(root_item));
4835 if (btrfs_root_refs(&root_item) == 0)
4836 goto skip;
4837
4838 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840 if (trans)
4841 goto update_tree;
4842
4843 btrfs_release_path(path);
4844 /*
4845 * 1 - subvol uuid item
4846 * 1 - received_subvol uuid item
4847 */
4848 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 break;
4852 }
4853 continue;
4854 } else {
4855 goto skip;
4856 }
4857update_tree:
4858 btrfs_release_path(path);
4859 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861 BTRFS_UUID_KEY_SUBVOL,
4862 key.objectid);
4863 if (ret < 0) {
4864 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865 ret);
4866 break;
4867 }
4868 }
4869
4870 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871 ret = btrfs_uuid_tree_add(trans,
4872 root_item.received_uuid,
4873 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874 key.objectid);
4875 if (ret < 0) {
4876 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877 ret);
4878 break;
4879 }
4880 }
4881
4882skip:
4883 btrfs_release_path(path);
4884 if (trans) {
4885 ret = btrfs_end_transaction(trans);
4886 trans = NULL;
4887 if (ret)
4888 break;
4889 }
4890
4891 if (key.offset < (u64)-1) {
4892 key.offset++;
4893 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894 key.offset = 0;
4895 key.type = BTRFS_ROOT_ITEM_KEY;
4896 } else if (key.objectid < (u64)-1) {
4897 key.offset = 0;
4898 key.type = BTRFS_ROOT_ITEM_KEY;
4899 key.objectid++;
4900 } else {
4901 break;
4902 }
4903 cond_resched();
4904 }
4905
4906out:
4907 btrfs_free_path(path);
4908 if (trans && !IS_ERR(trans))
4909 btrfs_end_transaction(trans);
4910 if (ret)
4911 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912 else if (!closing)
4913 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914 up(&fs_info->uuid_tree_rescan_sem);
4915 return 0;
4916}
4917
4918int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919{
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_root *tree_root = fs_info->tree_root;
4922 struct btrfs_root *uuid_root;
4923 struct task_struct *task;
4924 int ret;
4925
4926 /*
4927 * 1 - root node
4928 * 1 - root item
4929 */
4930 trans = btrfs_start_transaction(tree_root, 2);
4931 if (IS_ERR(trans))
4932 return PTR_ERR(trans);
4933
4934 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935 if (IS_ERR(uuid_root)) {
4936 ret = PTR_ERR(uuid_root);
4937 btrfs_abort_transaction(trans, ret);
4938 btrfs_end_transaction(trans);
4939 return ret;
4940 }
4941
4942 fs_info->uuid_root = uuid_root;
4943
4944 ret = btrfs_commit_transaction(trans);
4945 if (ret)
4946 return ret;
4947
4948 down(&fs_info->uuid_tree_rescan_sem);
4949 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950 if (IS_ERR(task)) {
4951 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952 btrfs_warn(fs_info, "failed to start uuid_scan task");
4953 up(&fs_info->uuid_tree_rescan_sem);
4954 return PTR_ERR(task);
4955 }
4956
4957 return 0;
4958}
4959
4960/*
4961 * shrinking a device means finding all of the device extents past
4962 * the new size, and then following the back refs to the chunks.
4963 * The chunk relocation code actually frees the device extent
4964 */
4965int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966{
4967 struct btrfs_fs_info *fs_info = device->fs_info;
4968 struct btrfs_root *root = fs_info->dev_root;
4969 struct btrfs_trans_handle *trans;
4970 struct btrfs_dev_extent *dev_extent = NULL;
4971 struct btrfs_path *path;
4972 u64 length;
4973 u64 chunk_offset;
4974 int ret;
4975 int slot;
4976 int failed = 0;
4977 bool retried = false;
4978 struct extent_buffer *l;
4979 struct btrfs_key key;
4980 struct btrfs_super_block *super_copy = fs_info->super_copy;
4981 u64 old_total = btrfs_super_total_bytes(super_copy);
4982 u64 old_size = btrfs_device_get_total_bytes(device);
4983 u64 diff;
4984 u64 start;
4985 u64 free_diff = 0;
4986
4987 new_size = round_down(new_size, fs_info->sectorsize);
4988 start = new_size;
4989 diff = round_down(old_size - new_size, fs_info->sectorsize);
4990
4991 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992 return -EINVAL;
4993
4994 path = btrfs_alloc_path();
4995 if (!path)
4996 return -ENOMEM;
4997
4998 path->reada = READA_BACK;
4999
5000 trans = btrfs_start_transaction(root, 0);
5001 if (IS_ERR(trans)) {
5002 btrfs_free_path(path);
5003 return PTR_ERR(trans);
5004 }
5005
5006 mutex_lock(&fs_info->chunk_mutex);
5007
5008 btrfs_device_set_total_bytes(device, new_size);
5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010 device->fs_devices->total_rw_bytes -= diff;
5011
5012 /*
5013 * The new free_chunk_space is new_size - used, so we have to
5014 * subtract the delta of the old free_chunk_space which included
5015 * old_size - used. If used > new_size then just subtract this
5016 * entire device's free space.
5017 */
5018 if (device->bytes_used < new_size)
5019 free_diff = (old_size - device->bytes_used) -
5020 (new_size - device->bytes_used);
5021 else
5022 free_diff = old_size - device->bytes_used;
5023 atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024 }
5025
5026 /*
5027 * Once the device's size has been set to the new size, ensure all
5028 * in-memory chunks are synced to disk so that the loop below sees them
5029 * and relocates them accordingly.
5030 */
5031 if (contains_pending_extent(device, &start, diff)) {
5032 mutex_unlock(&fs_info->chunk_mutex);
5033 ret = btrfs_commit_transaction(trans);
5034 if (ret)
5035 goto done;
5036 } else {
5037 mutex_unlock(&fs_info->chunk_mutex);
5038 btrfs_end_transaction(trans);
5039 }
5040
5041again:
5042 key.objectid = device->devid;
5043 key.offset = (u64)-1;
5044 key.type = BTRFS_DEV_EXTENT_KEY;
5045
5046 do {
5047 mutex_lock(&fs_info->reclaim_bgs_lock);
5048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049 if (ret < 0) {
5050 mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 goto done;
5052 }
5053
5054 ret = btrfs_previous_item(root, path, 0, key.type);
5055 if (ret) {
5056 mutex_unlock(&fs_info->reclaim_bgs_lock);
5057 if (ret < 0)
5058 goto done;
5059 ret = 0;
5060 btrfs_release_path(path);
5061 break;
5062 }
5063
5064 l = path->nodes[0];
5065 slot = path->slots[0];
5066 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067
5068 if (key.objectid != device->devid) {
5069 mutex_unlock(&fs_info->reclaim_bgs_lock);
5070 btrfs_release_path(path);
5071 break;
5072 }
5073
5074 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075 length = btrfs_dev_extent_length(l, dev_extent);
5076
5077 if (key.offset + length <= new_size) {
5078 mutex_unlock(&fs_info->reclaim_bgs_lock);
5079 btrfs_release_path(path);
5080 break;
5081 }
5082
5083 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084 btrfs_release_path(path);
5085
5086 /*
5087 * We may be relocating the only data chunk we have,
5088 * which could potentially end up with losing data's
5089 * raid profile, so lets allocate an empty one in
5090 * advance.
5091 */
5092 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093 if (ret < 0) {
5094 mutex_unlock(&fs_info->reclaim_bgs_lock);
5095 goto done;
5096 }
5097
5098 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099 mutex_unlock(&fs_info->reclaim_bgs_lock);
5100 if (ret == -ENOSPC) {
5101 failed++;
5102 } else if (ret) {
5103 if (ret == -ETXTBSY) {
5104 btrfs_warn(fs_info,
5105 "could not shrink block group %llu due to active swapfile",
5106 chunk_offset);
5107 }
5108 goto done;
5109 }
5110 } while (key.offset-- > 0);
5111
5112 if (failed && !retried) {
5113 failed = 0;
5114 retried = true;
5115 goto again;
5116 } else if (failed && retried) {
5117 ret = -ENOSPC;
5118 goto done;
5119 }
5120
5121 /* Shrinking succeeded, else we would be at "done". */
5122 trans = btrfs_start_transaction(root, 0);
5123 if (IS_ERR(trans)) {
5124 ret = PTR_ERR(trans);
5125 goto done;
5126 }
5127
5128 mutex_lock(&fs_info->chunk_mutex);
5129 /* Clear all state bits beyond the shrunk device size */
5130 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131 CHUNK_STATE_MASK);
5132
5133 btrfs_device_set_disk_total_bytes(device, new_size);
5134 if (list_empty(&device->post_commit_list))
5135 list_add_tail(&device->post_commit_list,
5136 &trans->transaction->dev_update_list);
5137
5138 WARN_ON(diff > old_total);
5139 btrfs_set_super_total_bytes(super_copy,
5140 round_down(old_total - diff, fs_info->sectorsize));
5141 mutex_unlock(&fs_info->chunk_mutex);
5142
5143 btrfs_reserve_chunk_metadata(trans, false);
5144 /* Now btrfs_update_device() will change the on-disk size. */
5145 ret = btrfs_update_device(trans, device);
5146 btrfs_trans_release_chunk_metadata(trans);
5147 if (ret < 0) {
5148 btrfs_abort_transaction(trans, ret);
5149 btrfs_end_transaction(trans);
5150 } else {
5151 ret = btrfs_commit_transaction(trans);
5152 }
5153done:
5154 btrfs_free_path(path);
5155 if (ret) {
5156 mutex_lock(&fs_info->chunk_mutex);
5157 btrfs_device_set_total_bytes(device, old_size);
5158 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159 device->fs_devices->total_rw_bytes += diff;
5160 atomic64_add(free_diff, &fs_info->free_chunk_space);
5161 }
5162 mutex_unlock(&fs_info->chunk_mutex);
5163 }
5164 return ret;
5165}
5166
5167static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168 struct btrfs_key *key,
5169 struct btrfs_chunk *chunk, int item_size)
5170{
5171 struct btrfs_super_block *super_copy = fs_info->super_copy;
5172 struct btrfs_disk_key disk_key;
5173 u32 array_size;
5174 u8 *ptr;
5175
5176 lockdep_assert_held(&fs_info->chunk_mutex);
5177
5178 array_size = btrfs_super_sys_array_size(super_copy);
5179 if (array_size + item_size + sizeof(disk_key)
5180 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181 return -EFBIG;
5182
5183 ptr = super_copy->sys_chunk_array + array_size;
5184 btrfs_cpu_key_to_disk(&disk_key, key);
5185 memcpy(ptr, &disk_key, sizeof(disk_key));
5186 ptr += sizeof(disk_key);
5187 memcpy(ptr, chunk, item_size);
5188 item_size += sizeof(disk_key);
5189 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190
5191 return 0;
5192}
5193
5194/*
5195 * sort the devices in descending order by max_avail, total_avail
5196 */
5197static int btrfs_cmp_device_info(const void *a, const void *b)
5198{
5199 const struct btrfs_device_info *di_a = a;
5200 const struct btrfs_device_info *di_b = b;
5201
5202 if (di_a->max_avail > di_b->max_avail)
5203 return -1;
5204 if (di_a->max_avail < di_b->max_avail)
5205 return 1;
5206 if (di_a->total_avail > di_b->total_avail)
5207 return -1;
5208 if (di_a->total_avail < di_b->total_avail)
5209 return 1;
5210 return 0;
5211}
5212
5213static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214{
5215 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216 return;
5217
5218 btrfs_set_fs_incompat(info, RAID56);
5219}
5220
5221static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222{
5223 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224 return;
5225
5226 btrfs_set_fs_incompat(info, RAID1C34);
5227}
5228
5229/*
5230 * Structure used internally for btrfs_create_chunk() function.
5231 * Wraps needed parameters.
5232 */
5233struct alloc_chunk_ctl {
5234 u64 start;
5235 u64 type;
5236 /* Total number of stripes to allocate */
5237 int num_stripes;
5238 /* sub_stripes info for map */
5239 int sub_stripes;
5240 /* Stripes per device */
5241 int dev_stripes;
5242 /* Maximum number of devices to use */
5243 int devs_max;
5244 /* Minimum number of devices to use */
5245 int devs_min;
5246 /* ndevs has to be a multiple of this */
5247 int devs_increment;
5248 /* Number of copies */
5249 int ncopies;
5250 /* Number of stripes worth of bytes to store parity information */
5251 int nparity;
5252 u64 max_stripe_size;
5253 u64 max_chunk_size;
5254 u64 dev_extent_min;
5255 u64 stripe_size;
5256 u64 chunk_size;
5257 int ndevs;
5258};
5259
5260static void init_alloc_chunk_ctl_policy_regular(
5261 struct btrfs_fs_devices *fs_devices,
5262 struct alloc_chunk_ctl *ctl)
5263{
5264 struct btrfs_space_info *space_info;
5265
5266 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267 ASSERT(space_info);
5268
5269 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271
5272 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274
5275 /* We don't want a chunk larger than 10% of writable space */
5276 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277 ctl->max_chunk_size);
5278 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279}
5280
5281static void init_alloc_chunk_ctl_policy_zoned(
5282 struct btrfs_fs_devices *fs_devices,
5283 struct alloc_chunk_ctl *ctl)
5284{
5285 u64 zone_size = fs_devices->fs_info->zone_size;
5286 u64 limit;
5287 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289 u64 min_chunk_size = min_data_stripes * zone_size;
5290 u64 type = ctl->type;
5291
5292 ctl->max_stripe_size = zone_size;
5293 if (type & BTRFS_BLOCK_GROUP_DATA) {
5294 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295 zone_size);
5296 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297 ctl->max_chunk_size = ctl->max_stripe_size;
5298 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300 ctl->devs_max = min_t(int, ctl->devs_max,
5301 BTRFS_MAX_DEVS_SYS_CHUNK);
5302 } else {
5303 BUG();
5304 }
5305
5306 /* We don't want a chunk larger than 10% of writable space */
5307 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308 zone_size),
5309 min_chunk_size);
5310 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312}
5313
5314static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315 struct alloc_chunk_ctl *ctl)
5316{
5317 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318
5319 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321 ctl->devs_max = btrfs_raid_array[index].devs_max;
5322 if (!ctl->devs_max)
5323 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324 ctl->devs_min = btrfs_raid_array[index].devs_min;
5325 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326 ctl->ncopies = btrfs_raid_array[index].ncopies;
5327 ctl->nparity = btrfs_raid_array[index].nparity;
5328 ctl->ndevs = 0;
5329
5330 switch (fs_devices->chunk_alloc_policy) {
5331 case BTRFS_CHUNK_ALLOC_REGULAR:
5332 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333 break;
5334 case BTRFS_CHUNK_ALLOC_ZONED:
5335 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336 break;
5337 default:
5338 BUG();
5339 }
5340}
5341
5342static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343 struct alloc_chunk_ctl *ctl,
5344 struct btrfs_device_info *devices_info)
5345{
5346 struct btrfs_fs_info *info = fs_devices->fs_info;
5347 struct btrfs_device *device;
5348 u64 total_avail;
5349 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350 int ret;
5351 int ndevs = 0;
5352 u64 max_avail;
5353 u64 dev_offset;
5354
5355 /*
5356 * in the first pass through the devices list, we gather information
5357 * about the available holes on each device.
5358 */
5359 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361 WARN(1, KERN_ERR
5362 "BTRFS: read-only device in alloc_list\n");
5363 continue;
5364 }
5365
5366 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367 &device->dev_state) ||
5368 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369 continue;
5370
5371 if (device->total_bytes > device->bytes_used)
5372 total_avail = device->total_bytes - device->bytes_used;
5373 else
5374 total_avail = 0;
5375
5376 /* If there is no space on this device, skip it. */
5377 if (total_avail < ctl->dev_extent_min)
5378 continue;
5379
5380 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381 &max_avail);
5382 if (ret && ret != -ENOSPC)
5383 return ret;
5384
5385 if (ret == 0)
5386 max_avail = dev_extent_want;
5387
5388 if (max_avail < ctl->dev_extent_min) {
5389 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390 btrfs_debug(info,
5391 "%s: devid %llu has no free space, have=%llu want=%llu",
5392 __func__, device->devid, max_avail,
5393 ctl->dev_extent_min);
5394 continue;
5395 }
5396
5397 if (ndevs == fs_devices->rw_devices) {
5398 WARN(1, "%s: found more than %llu devices\n",
5399 __func__, fs_devices->rw_devices);
5400 break;
5401 }
5402 devices_info[ndevs].dev_offset = dev_offset;
5403 devices_info[ndevs].max_avail = max_avail;
5404 devices_info[ndevs].total_avail = total_avail;
5405 devices_info[ndevs].dev = device;
5406 ++ndevs;
5407 }
5408 ctl->ndevs = ndevs;
5409
5410 /*
5411 * now sort the devices by hole size / available space
5412 */
5413 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414 btrfs_cmp_device_info, NULL);
5415
5416 return 0;
5417}
5418
5419static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420 struct btrfs_device_info *devices_info)
5421{
5422 /* Number of stripes that count for block group size */
5423 int data_stripes;
5424
5425 /*
5426 * The primary goal is to maximize the number of stripes, so use as
5427 * many devices as possible, even if the stripes are not maximum sized.
5428 *
5429 * The DUP profile stores more than one stripe per device, the
5430 * max_avail is the total size so we have to adjust.
5431 */
5432 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433 ctl->dev_stripes);
5434 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435
5436 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5437 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438
5439 /*
5440 * Use the number of data stripes to figure out how big this chunk is
5441 * really going to be in terms of logical address space, and compare
5442 * that answer with the max chunk size. If it's higher, we try to
5443 * reduce stripe_size.
5444 */
5445 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446 /*
5447 * Reduce stripe_size, round it up to a 16MB boundary again and
5448 * then use it, unless it ends up being even bigger than the
5449 * previous value we had already.
5450 */
5451 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452 data_stripes), SZ_16M),
5453 ctl->stripe_size);
5454 }
5455
5456 /* Stripe size should not go beyond 1G. */
5457 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458
5459 /* Align to BTRFS_STRIPE_LEN */
5460 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461 ctl->chunk_size = ctl->stripe_size * data_stripes;
5462
5463 return 0;
5464}
5465
5466static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467 struct btrfs_device_info *devices_info)
5468{
5469 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470 /* Number of stripes that count for block group size */
5471 int data_stripes;
5472
5473 /*
5474 * It should hold because:
5475 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476 */
5477 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478
5479 ctl->stripe_size = zone_size;
5480 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482
5483 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486 ctl->stripe_size) + ctl->nparity,
5487 ctl->dev_stripes);
5488 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491 }
5492
5493 ctl->chunk_size = ctl->stripe_size * data_stripes;
5494
5495 return 0;
5496}
5497
5498static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499 struct alloc_chunk_ctl *ctl,
5500 struct btrfs_device_info *devices_info)
5501{
5502 struct btrfs_fs_info *info = fs_devices->fs_info;
5503
5504 /*
5505 * Round down to number of usable stripes, devs_increment can be any
5506 * number so we can't use round_down() that requires power of 2, while
5507 * rounddown is safe.
5508 */
5509 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510
5511 if (ctl->ndevs < ctl->devs_min) {
5512 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513 btrfs_debug(info,
5514 "%s: not enough devices with free space: have=%d minimum required=%d",
5515 __func__, ctl->ndevs, ctl->devs_min);
5516 }
5517 return -ENOSPC;
5518 }
5519
5520 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521
5522 switch (fs_devices->chunk_alloc_policy) {
5523 case BTRFS_CHUNK_ALLOC_REGULAR:
5524 return decide_stripe_size_regular(ctl, devices_info);
5525 case BTRFS_CHUNK_ALLOC_ZONED:
5526 return decide_stripe_size_zoned(ctl, devices_info);
5527 default:
5528 BUG();
5529 }
5530}
5531
5532static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533{
5534 for (int i = 0; i < map->num_stripes; i++) {
5535 struct btrfs_io_stripe *stripe = &map->stripes[i];
5536 struct btrfs_device *device = stripe->dev;
5537
5538 set_extent_bit(&device->alloc_state, stripe->physical,
5539 stripe->physical + map->stripe_size - 1,
5540 bits | EXTENT_NOWAIT, NULL);
5541 }
5542}
5543
5544static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545{
5546 for (int i = 0; i < map->num_stripes; i++) {
5547 struct btrfs_io_stripe *stripe = &map->stripes[i];
5548 struct btrfs_device *device = stripe->dev;
5549
5550 __clear_extent_bit(&device->alloc_state, stripe->physical,
5551 stripe->physical + map->stripe_size - 1,
5552 bits | EXTENT_NOWAIT,
5553 NULL, NULL);
5554 }
5555}
5556
5557void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558{
5559 write_lock(&fs_info->mapping_tree_lock);
5560 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561 RB_CLEAR_NODE(&map->rb_node);
5562 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563 write_unlock(&fs_info->mapping_tree_lock);
5564
5565 /* Once for the tree reference. */
5566 btrfs_free_chunk_map(map);
5567}
5568
5569EXPORT_FOR_TESTS
5570int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571{
5572 struct rb_node **p;
5573 struct rb_node *parent = NULL;
5574 bool leftmost = true;
5575
5576 write_lock(&fs_info->mapping_tree_lock);
5577 p = &fs_info->mapping_tree.rb_root.rb_node;
5578 while (*p) {
5579 struct btrfs_chunk_map *entry;
5580
5581 parent = *p;
5582 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583
5584 if (map->start < entry->start) {
5585 p = &(*p)->rb_left;
5586 } else if (map->start > entry->start) {
5587 p = &(*p)->rb_right;
5588 leftmost = false;
5589 } else {
5590 write_unlock(&fs_info->mapping_tree_lock);
5591 return -EEXIST;
5592 }
5593 }
5594 rb_link_node(&map->rb_node, parent, p);
5595 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598 write_unlock(&fs_info->mapping_tree_lock);
5599
5600 return 0;
5601}
5602
5603EXPORT_FOR_TESTS
5604struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605{
5606 struct btrfs_chunk_map *map;
5607
5608 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609 if (!map)
5610 return NULL;
5611
5612 refcount_set(&map->refs, 1);
5613 RB_CLEAR_NODE(&map->rb_node);
5614
5615 return map;
5616}
5617
5618struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5619{
5620 const int size = btrfs_chunk_map_size(map->num_stripes);
5621 struct btrfs_chunk_map *clone;
5622
5623 clone = kmemdup(map, size, gfp);
5624 if (!clone)
5625 return NULL;
5626
5627 refcount_set(&clone->refs, 1);
5628 RB_CLEAR_NODE(&clone->rb_node);
5629
5630 return clone;
5631}
5632
5633static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5634 struct alloc_chunk_ctl *ctl,
5635 struct btrfs_device_info *devices_info)
5636{
5637 struct btrfs_fs_info *info = trans->fs_info;
5638 struct btrfs_chunk_map *map;
5639 struct btrfs_block_group *block_group;
5640 u64 start = ctl->start;
5641 u64 type = ctl->type;
5642 int ret;
5643 int i;
5644 int j;
5645
5646 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5647 if (!map)
5648 return ERR_PTR(-ENOMEM);
5649
5650 map->start = start;
5651 map->chunk_len = ctl->chunk_size;
5652 map->stripe_size = ctl->stripe_size;
5653 map->type = type;
5654 map->io_align = BTRFS_STRIPE_LEN;
5655 map->io_width = BTRFS_STRIPE_LEN;
5656 map->sub_stripes = ctl->sub_stripes;
5657 map->num_stripes = ctl->num_stripes;
5658
5659 for (i = 0; i < ctl->ndevs; ++i) {
5660 for (j = 0; j < ctl->dev_stripes; ++j) {
5661 int s = i * ctl->dev_stripes + j;
5662 map->stripes[s].dev = devices_info[i].dev;
5663 map->stripes[s].physical = devices_info[i].dev_offset +
5664 j * ctl->stripe_size;
5665 }
5666 }
5667
5668 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5669
5670 ret = btrfs_add_chunk_map(info, map);
5671 if (ret) {
5672 btrfs_free_chunk_map(map);
5673 return ERR_PTR(ret);
5674 }
5675
5676 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5677 if (IS_ERR(block_group)) {
5678 btrfs_remove_chunk_map(info, map);
5679 return block_group;
5680 }
5681
5682 for (int i = 0; i < map->num_stripes; i++) {
5683 struct btrfs_device *dev = map->stripes[i].dev;
5684
5685 btrfs_device_set_bytes_used(dev,
5686 dev->bytes_used + ctl->stripe_size);
5687 if (list_empty(&dev->post_commit_list))
5688 list_add_tail(&dev->post_commit_list,
5689 &trans->transaction->dev_update_list);
5690 }
5691
5692 atomic64_sub(ctl->stripe_size * map->num_stripes,
5693 &info->free_chunk_space);
5694
5695 check_raid56_incompat_flag(info, type);
5696 check_raid1c34_incompat_flag(info, type);
5697
5698 return block_group;
5699}
5700
5701struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5702 u64 type)
5703{
5704 struct btrfs_fs_info *info = trans->fs_info;
5705 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5706 struct btrfs_device_info *devices_info = NULL;
5707 struct alloc_chunk_ctl ctl;
5708 struct btrfs_block_group *block_group;
5709 int ret;
5710
5711 lockdep_assert_held(&info->chunk_mutex);
5712
5713 if (!alloc_profile_is_valid(type, 0)) {
5714 ASSERT(0);
5715 return ERR_PTR(-EINVAL);
5716 }
5717
5718 if (list_empty(&fs_devices->alloc_list)) {
5719 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5720 btrfs_debug(info, "%s: no writable device", __func__);
5721 return ERR_PTR(-ENOSPC);
5722 }
5723
5724 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5725 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5726 ASSERT(0);
5727 return ERR_PTR(-EINVAL);
5728 }
5729
5730 ctl.start = find_next_chunk(info);
5731 ctl.type = type;
5732 init_alloc_chunk_ctl(fs_devices, &ctl);
5733
5734 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5735 GFP_NOFS);
5736 if (!devices_info)
5737 return ERR_PTR(-ENOMEM);
5738
5739 ret = gather_device_info(fs_devices, &ctl, devices_info);
5740 if (ret < 0) {
5741 block_group = ERR_PTR(ret);
5742 goto out;
5743 }
5744
5745 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5746 if (ret < 0) {
5747 block_group = ERR_PTR(ret);
5748 goto out;
5749 }
5750
5751 block_group = create_chunk(trans, &ctl, devices_info);
5752
5753out:
5754 kfree(devices_info);
5755 return block_group;
5756}
5757
5758/*
5759 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5760 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5761 * chunks.
5762 *
5763 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5764 * phases.
5765 */
5766int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5767 struct btrfs_block_group *bg)
5768{
5769 struct btrfs_fs_info *fs_info = trans->fs_info;
5770 struct btrfs_root *chunk_root = fs_info->chunk_root;
5771 struct btrfs_key key;
5772 struct btrfs_chunk *chunk;
5773 struct btrfs_stripe *stripe;
5774 struct btrfs_chunk_map *map;
5775 size_t item_size;
5776 int i;
5777 int ret;
5778
5779 /*
5780 * We take the chunk_mutex for 2 reasons:
5781 *
5782 * 1) Updates and insertions in the chunk btree must be done while holding
5783 * the chunk_mutex, as well as updating the system chunk array in the
5784 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5785 * details;
5786 *
5787 * 2) To prevent races with the final phase of a device replace operation
5788 * that replaces the device object associated with the map's stripes,
5789 * because the device object's id can change at any time during that
5790 * final phase of the device replace operation
5791 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5792 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5793 * which would cause a failure when updating the device item, which does
5794 * not exists, or persisting a stripe of the chunk item with such ID.
5795 * Here we can't use the device_list_mutex because our caller already
5796 * has locked the chunk_mutex, and the final phase of device replace
5797 * acquires both mutexes - first the device_list_mutex and then the
5798 * chunk_mutex. Using any of those two mutexes protects us from a
5799 * concurrent device replace.
5800 */
5801 lockdep_assert_held(&fs_info->chunk_mutex);
5802
5803 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5804 if (IS_ERR(map)) {
5805 ret = PTR_ERR(map);
5806 btrfs_abort_transaction(trans, ret);
5807 return ret;
5808 }
5809
5810 item_size = btrfs_chunk_item_size(map->num_stripes);
5811
5812 chunk = kzalloc(item_size, GFP_NOFS);
5813 if (!chunk) {
5814 ret = -ENOMEM;
5815 btrfs_abort_transaction(trans, ret);
5816 goto out;
5817 }
5818
5819 for (i = 0; i < map->num_stripes; i++) {
5820 struct btrfs_device *device = map->stripes[i].dev;
5821
5822 ret = btrfs_update_device(trans, device);
5823 if (ret)
5824 goto out;
5825 }
5826
5827 stripe = &chunk->stripe;
5828 for (i = 0; i < map->num_stripes; i++) {
5829 struct btrfs_device *device = map->stripes[i].dev;
5830 const u64 dev_offset = map->stripes[i].physical;
5831
5832 btrfs_set_stack_stripe_devid(stripe, device->devid);
5833 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5834 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5835 stripe++;
5836 }
5837
5838 btrfs_set_stack_chunk_length(chunk, bg->length);
5839 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5840 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5841 btrfs_set_stack_chunk_type(chunk, map->type);
5842 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5843 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5844 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5845 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5846 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5847
5848 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5849 key.type = BTRFS_CHUNK_ITEM_KEY;
5850 key.offset = bg->start;
5851
5852 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5853 if (ret)
5854 goto out;
5855
5856 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5857
5858 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5859 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5860 if (ret)
5861 goto out;
5862 }
5863
5864out:
5865 kfree(chunk);
5866 btrfs_free_chunk_map(map);
5867 return ret;
5868}
5869
5870static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5871{
5872 struct btrfs_fs_info *fs_info = trans->fs_info;
5873 u64 alloc_profile;
5874 struct btrfs_block_group *meta_bg;
5875 struct btrfs_block_group *sys_bg;
5876
5877 /*
5878 * When adding a new device for sprouting, the seed device is read-only
5879 * so we must first allocate a metadata and a system chunk. But before
5880 * adding the block group items to the extent, device and chunk btrees,
5881 * we must first:
5882 *
5883 * 1) Create both chunks without doing any changes to the btrees, as
5884 * otherwise we would get -ENOSPC since the block groups from the
5885 * seed device are read-only;
5886 *
5887 * 2) Add the device item for the new sprout device - finishing the setup
5888 * of a new block group requires updating the device item in the chunk
5889 * btree, so it must exist when we attempt to do it. The previous step
5890 * ensures this does not fail with -ENOSPC.
5891 *
5892 * After that we can add the block group items to their btrees:
5893 * update existing device item in the chunk btree, add a new block group
5894 * item to the extent btree, add a new chunk item to the chunk btree and
5895 * finally add the new device extent items to the devices btree.
5896 */
5897
5898 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5899 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5900 if (IS_ERR(meta_bg))
5901 return PTR_ERR(meta_bg);
5902
5903 alloc_profile = btrfs_system_alloc_profile(fs_info);
5904 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5905 if (IS_ERR(sys_bg))
5906 return PTR_ERR(sys_bg);
5907
5908 return 0;
5909}
5910
5911static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5912{
5913 const int index = btrfs_bg_flags_to_raid_index(map->type);
5914
5915 return btrfs_raid_array[index].tolerated_failures;
5916}
5917
5918bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5919{
5920 struct btrfs_chunk_map *map;
5921 int miss_ndevs = 0;
5922 int i;
5923 bool ret = true;
5924
5925 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5926 if (IS_ERR(map))
5927 return false;
5928
5929 for (i = 0; i < map->num_stripes; i++) {
5930 if (test_bit(BTRFS_DEV_STATE_MISSING,
5931 &map->stripes[i].dev->dev_state)) {
5932 miss_ndevs++;
5933 continue;
5934 }
5935 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5936 &map->stripes[i].dev->dev_state)) {
5937 ret = false;
5938 goto end;
5939 }
5940 }
5941
5942 /*
5943 * If the number of missing devices is larger than max errors, we can
5944 * not write the data into that chunk successfully.
5945 */
5946 if (miss_ndevs > btrfs_chunk_max_errors(map))
5947 ret = false;
5948end:
5949 btrfs_free_chunk_map(map);
5950 return ret;
5951}
5952
5953void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5954{
5955 write_lock(&fs_info->mapping_tree_lock);
5956 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5957 struct btrfs_chunk_map *map;
5958 struct rb_node *node;
5959
5960 node = rb_first_cached(&fs_info->mapping_tree);
5961 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5962 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5963 RB_CLEAR_NODE(&map->rb_node);
5964 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5965 /* Once for the tree ref. */
5966 btrfs_free_chunk_map(map);
5967 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5968 }
5969 write_unlock(&fs_info->mapping_tree_lock);
5970}
5971
5972int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5973{
5974 struct btrfs_chunk_map *map;
5975 enum btrfs_raid_types index;
5976 int ret = 1;
5977
5978 map = btrfs_get_chunk_map(fs_info, logical, len);
5979 if (IS_ERR(map))
5980 /*
5981 * We could return errors for these cases, but that could get
5982 * ugly and we'd probably do the same thing which is just not do
5983 * anything else and exit, so return 1 so the callers don't try
5984 * to use other copies.
5985 */
5986 return 1;
5987
5988 index = btrfs_bg_flags_to_raid_index(map->type);
5989
5990 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5991 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5992 ret = btrfs_raid_array[index].ncopies;
5993 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5994 ret = 2;
5995 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5996 /*
5997 * There could be two corrupted data stripes, we need
5998 * to loop retry in order to rebuild the correct data.
5999 *
6000 * Fail a stripe at a time on every retry except the
6001 * stripe under reconstruction.
6002 */
6003 ret = map->num_stripes;
6004 btrfs_free_chunk_map(map);
6005 return ret;
6006}
6007
6008unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6009 u64 logical)
6010{
6011 struct btrfs_chunk_map *map;
6012 unsigned long len = fs_info->sectorsize;
6013
6014 if (!btrfs_fs_incompat(fs_info, RAID56))
6015 return len;
6016
6017 map = btrfs_get_chunk_map(fs_info, logical, len);
6018
6019 if (!WARN_ON(IS_ERR(map))) {
6020 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6021 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6022 btrfs_free_chunk_map(map);
6023 }
6024 return len;
6025}
6026
6027int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6028{
6029 struct btrfs_chunk_map *map;
6030 int ret = 0;
6031
6032 if (!btrfs_fs_incompat(fs_info, RAID56))
6033 return 0;
6034
6035 map = btrfs_get_chunk_map(fs_info, logical, len);
6036
6037 if (!WARN_ON(IS_ERR(map))) {
6038 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6039 ret = 1;
6040 btrfs_free_chunk_map(map);
6041 }
6042 return ret;
6043}
6044
6045static int find_live_mirror(struct btrfs_fs_info *fs_info,
6046 struct btrfs_chunk_map *map, int first,
6047 int dev_replace_is_ongoing)
6048{
6049 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6050 int i;
6051 int num_stripes;
6052 int preferred_mirror;
6053 int tolerance;
6054 struct btrfs_device *srcdev;
6055
6056 ASSERT((map->type &
6057 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6058
6059 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6060 num_stripes = map->sub_stripes;
6061 else
6062 num_stripes = map->num_stripes;
6063
6064 switch (policy) {
6065 default:
6066 /* Shouldn't happen, just warn and use pid instead of failing */
6067 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6068 policy);
6069 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6070 fallthrough;
6071 case BTRFS_READ_POLICY_PID:
6072 preferred_mirror = first + (current->pid % num_stripes);
6073 break;
6074 }
6075
6076 if (dev_replace_is_ongoing &&
6077 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6078 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6079 srcdev = fs_info->dev_replace.srcdev;
6080 else
6081 srcdev = NULL;
6082
6083 /*
6084 * try to avoid the drive that is the source drive for a
6085 * dev-replace procedure, only choose it if no other non-missing
6086 * mirror is available
6087 */
6088 for (tolerance = 0; tolerance < 2; tolerance++) {
6089 if (map->stripes[preferred_mirror].dev->bdev &&
6090 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6091 return preferred_mirror;
6092 for (i = first; i < first + num_stripes; i++) {
6093 if (map->stripes[i].dev->bdev &&
6094 (tolerance || map->stripes[i].dev != srcdev))
6095 return i;
6096 }
6097 }
6098
6099 /* we couldn't find one that doesn't fail. Just return something
6100 * and the io error handling code will clean up eventually
6101 */
6102 return preferred_mirror;
6103}
6104
6105static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6106 u64 logical,
6107 u16 total_stripes)
6108{
6109 struct btrfs_io_context *bioc;
6110
6111 bioc = kzalloc(
6112 /* The size of btrfs_io_context */
6113 sizeof(struct btrfs_io_context) +
6114 /* Plus the variable array for the stripes */
6115 sizeof(struct btrfs_io_stripe) * (total_stripes),
6116 GFP_NOFS);
6117
6118 if (!bioc)
6119 return NULL;
6120
6121 refcount_set(&bioc->refs, 1);
6122
6123 bioc->fs_info = fs_info;
6124 bioc->replace_stripe_src = -1;
6125 bioc->full_stripe_logical = (u64)-1;
6126 bioc->logical = logical;
6127
6128 return bioc;
6129}
6130
6131void btrfs_get_bioc(struct btrfs_io_context *bioc)
6132{
6133 WARN_ON(!refcount_read(&bioc->refs));
6134 refcount_inc(&bioc->refs);
6135}
6136
6137void btrfs_put_bioc(struct btrfs_io_context *bioc)
6138{
6139 if (!bioc)
6140 return;
6141 if (refcount_dec_and_test(&bioc->refs))
6142 kfree(bioc);
6143}
6144
6145/*
6146 * Please note that, discard won't be sent to target device of device
6147 * replace.
6148 */
6149struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6150 u64 logical, u64 *length_ret,
6151 u32 *num_stripes)
6152{
6153 struct btrfs_chunk_map *map;
6154 struct btrfs_discard_stripe *stripes;
6155 u64 length = *length_ret;
6156 u64 offset;
6157 u32 stripe_nr;
6158 u32 stripe_nr_end;
6159 u32 stripe_cnt;
6160 u64 stripe_end_offset;
6161 u64 stripe_offset;
6162 u32 stripe_index;
6163 u32 factor = 0;
6164 u32 sub_stripes = 0;
6165 u32 stripes_per_dev = 0;
6166 u32 remaining_stripes = 0;
6167 u32 last_stripe = 0;
6168 int ret;
6169 int i;
6170
6171 map = btrfs_get_chunk_map(fs_info, logical, length);
6172 if (IS_ERR(map))
6173 return ERR_CAST(map);
6174
6175 /* we don't discard raid56 yet */
6176 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177 ret = -EOPNOTSUPP;
6178 goto out_free_map;
6179 }
6180
6181 offset = logical - map->start;
6182 length = min_t(u64, map->start + map->chunk_len - logical, length);
6183 *length_ret = length;
6184
6185 /*
6186 * stripe_nr counts the total number of stripes we have to stride
6187 * to get to this block
6188 */
6189 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6190
6191 /* stripe_offset is the offset of this block in its stripe */
6192 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6193
6194 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6195 BTRFS_STRIPE_LEN_SHIFT;
6196 stripe_cnt = stripe_nr_end - stripe_nr;
6197 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6198 (offset + length);
6199 /*
6200 * after this, stripe_nr is the number of stripes on this
6201 * device we have to walk to find the data, and stripe_index is
6202 * the number of our device in the stripe array
6203 */
6204 *num_stripes = 1;
6205 stripe_index = 0;
6206 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207 BTRFS_BLOCK_GROUP_RAID10)) {
6208 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6209 sub_stripes = 1;
6210 else
6211 sub_stripes = map->sub_stripes;
6212
6213 factor = map->num_stripes / sub_stripes;
6214 *num_stripes = min_t(u64, map->num_stripes,
6215 sub_stripes * stripe_cnt);
6216 stripe_index = stripe_nr % factor;
6217 stripe_nr /= factor;
6218 stripe_index *= sub_stripes;
6219
6220 remaining_stripes = stripe_cnt % factor;
6221 stripes_per_dev = stripe_cnt / factor;
6222 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6223 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6224 BTRFS_BLOCK_GROUP_DUP)) {
6225 *num_stripes = map->num_stripes;
6226 } else {
6227 stripe_index = stripe_nr % map->num_stripes;
6228 stripe_nr /= map->num_stripes;
6229 }
6230
6231 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6232 if (!stripes) {
6233 ret = -ENOMEM;
6234 goto out_free_map;
6235 }
6236
6237 for (i = 0; i < *num_stripes; i++) {
6238 stripes[i].physical =
6239 map->stripes[stripe_index].physical +
6240 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6241 stripes[i].dev = map->stripes[stripe_index].dev;
6242
6243 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6244 BTRFS_BLOCK_GROUP_RAID10)) {
6245 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6246
6247 if (i / sub_stripes < remaining_stripes)
6248 stripes[i].length += BTRFS_STRIPE_LEN;
6249
6250 /*
6251 * Special for the first stripe and
6252 * the last stripe:
6253 *
6254 * |-------|...|-------|
6255 * |----------|
6256 * off end_off
6257 */
6258 if (i < sub_stripes)
6259 stripes[i].length -= stripe_offset;
6260
6261 if (stripe_index >= last_stripe &&
6262 stripe_index <= (last_stripe +
6263 sub_stripes - 1))
6264 stripes[i].length -= stripe_end_offset;
6265
6266 if (i == sub_stripes - 1)
6267 stripe_offset = 0;
6268 } else {
6269 stripes[i].length = length;
6270 }
6271
6272 stripe_index++;
6273 if (stripe_index == map->num_stripes) {
6274 stripe_index = 0;
6275 stripe_nr++;
6276 }
6277 }
6278
6279 btrfs_free_chunk_map(map);
6280 return stripes;
6281out_free_map:
6282 btrfs_free_chunk_map(map);
6283 return ERR_PTR(ret);
6284}
6285
6286static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6287{
6288 struct btrfs_block_group *cache;
6289 bool ret;
6290
6291 /* Non zoned filesystem does not use "to_copy" flag */
6292 if (!btrfs_is_zoned(fs_info))
6293 return false;
6294
6295 cache = btrfs_lookup_block_group(fs_info, logical);
6296
6297 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6298
6299 btrfs_put_block_group(cache);
6300 return ret;
6301}
6302
6303static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6304 struct btrfs_io_context *bioc,
6305 struct btrfs_dev_replace *dev_replace,
6306 u64 logical,
6307 int *num_stripes_ret, int *max_errors_ret)
6308{
6309 u64 srcdev_devid = dev_replace->srcdev->devid;
6310 /*
6311 * At this stage, num_stripes is still the real number of stripes,
6312 * excluding the duplicated stripes.
6313 */
6314 int num_stripes = *num_stripes_ret;
6315 int nr_extra_stripes = 0;
6316 int max_errors = *max_errors_ret;
6317 int i;
6318
6319 /*
6320 * A block group which has "to_copy" set will eventually be copied by
6321 * the dev-replace process. We can avoid cloning IO here.
6322 */
6323 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6324 return;
6325
6326 /*
6327 * Duplicate the write operations while the dev-replace procedure is
6328 * running. Since the copying of the old disk to the new disk takes
6329 * place at run time while the filesystem is mounted writable, the
6330 * regular write operations to the old disk have to be duplicated to go
6331 * to the new disk as well.
6332 *
6333 * Note that device->missing is handled by the caller, and that the
6334 * write to the old disk is already set up in the stripes array.
6335 */
6336 for (i = 0; i < num_stripes; i++) {
6337 struct btrfs_io_stripe *old = &bioc->stripes[i];
6338 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6339
6340 if (old->dev->devid != srcdev_devid)
6341 continue;
6342
6343 new->physical = old->physical;
6344 new->dev = dev_replace->tgtdev;
6345 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6346 bioc->replace_stripe_src = i;
6347 nr_extra_stripes++;
6348 }
6349
6350 /* We can only have at most 2 extra nr_stripes (for DUP). */
6351 ASSERT(nr_extra_stripes <= 2);
6352 /*
6353 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6354 * replace.
6355 * If we have 2 extra stripes, only choose the one with smaller physical.
6356 */
6357 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6358 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6359 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6360
6361 /* Only DUP can have two extra stripes. */
6362 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6363
6364 /*
6365 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6366 * The extra stripe would still be there, but won't be accessed.
6367 */
6368 if (first->physical > second->physical) {
6369 swap(second->physical, first->physical);
6370 swap(second->dev, first->dev);
6371 nr_extra_stripes--;
6372 }
6373 }
6374
6375 *num_stripes_ret = num_stripes + nr_extra_stripes;
6376 *max_errors_ret = max_errors + nr_extra_stripes;
6377 bioc->replace_nr_stripes = nr_extra_stripes;
6378}
6379
6380static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6381 struct btrfs_io_geometry *io_geom)
6382{
6383 /*
6384 * Stripe_nr is the stripe where this block falls. stripe_offset is
6385 * the offset of this block in its stripe.
6386 */
6387 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6388 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6389 ASSERT(io_geom->stripe_offset < U32_MAX);
6390
6391 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392 unsigned long full_stripe_len =
6393 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6394
6395 /*
6396 * For full stripe start, we use previously calculated
6397 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6398 * STRIPE_LEN.
6399 *
6400 * By this we can avoid u64 division completely. And we have
6401 * to go rounddown(), not round_down(), as nr_data_stripes is
6402 * not ensured to be power of 2.
6403 */
6404 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6405 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6406
6407 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6408 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6409 /*
6410 * For writes to RAID56, allow to write a full stripe set, but
6411 * no straddling of stripe sets.
6412 */
6413 if (io_geom->op == BTRFS_MAP_WRITE)
6414 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6415 }
6416
6417 /*
6418 * For other RAID types and for RAID56 reads, allow a single stripe (on
6419 * a single disk).
6420 */
6421 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6422 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6423 return U64_MAX;
6424}
6425
6426static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6427 u64 *length, struct btrfs_io_stripe *dst,
6428 struct btrfs_chunk_map *map,
6429 struct btrfs_io_geometry *io_geom)
6430{
6431 dst->dev = map->stripes[io_geom->stripe_index].dev;
6432
6433 if (io_geom->op == BTRFS_MAP_READ &&
6434 btrfs_need_stripe_tree_update(fs_info, map->type))
6435 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6436 map->type,
6437 io_geom->stripe_index, dst);
6438
6439 dst->physical = map->stripes[io_geom->stripe_index].physical +
6440 io_geom->stripe_offset +
6441 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6442 return 0;
6443}
6444
6445static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6446 const struct btrfs_io_stripe *smap,
6447 const struct btrfs_chunk_map *map,
6448 int num_alloc_stripes,
6449 enum btrfs_map_op op, int mirror_num)
6450{
6451 if (!smap)
6452 return false;
6453
6454 if (num_alloc_stripes != 1)
6455 return false;
6456
6457 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6458 return false;
6459
6460 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6461 return false;
6462
6463 return true;
6464}
6465
6466static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6467 struct btrfs_io_geometry *io_geom)
6468{
6469 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6470 io_geom->stripe_nr /= map->num_stripes;
6471 if (io_geom->op == BTRFS_MAP_READ)
6472 io_geom->mirror_num = 1;
6473}
6474
6475static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6476 struct btrfs_chunk_map *map,
6477 struct btrfs_io_geometry *io_geom,
6478 bool dev_replace_is_ongoing)
6479{
6480 if (io_geom->op != BTRFS_MAP_READ) {
6481 io_geom->num_stripes = map->num_stripes;
6482 return;
6483 }
6484
6485 if (io_geom->mirror_num) {
6486 io_geom->stripe_index = io_geom->mirror_num - 1;
6487 return;
6488 }
6489
6490 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6491 dev_replace_is_ongoing);
6492 io_geom->mirror_num = io_geom->stripe_index + 1;
6493}
6494
6495static void map_blocks_dup(const struct btrfs_chunk_map *map,
6496 struct btrfs_io_geometry *io_geom)
6497{
6498 if (io_geom->op != BTRFS_MAP_READ) {
6499 io_geom->num_stripes = map->num_stripes;
6500 return;
6501 }
6502
6503 if (io_geom->mirror_num) {
6504 io_geom->stripe_index = io_geom->mirror_num - 1;
6505 return;
6506 }
6507
6508 io_geom->mirror_num = 1;
6509}
6510
6511static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6512 struct btrfs_chunk_map *map,
6513 struct btrfs_io_geometry *io_geom,
6514 bool dev_replace_is_ongoing)
6515{
6516 u32 factor = map->num_stripes / map->sub_stripes;
6517 int old_stripe_index;
6518
6519 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6520 io_geom->stripe_nr /= factor;
6521
6522 if (io_geom->op != BTRFS_MAP_READ) {
6523 io_geom->num_stripes = map->sub_stripes;
6524 return;
6525 }
6526
6527 if (io_geom->mirror_num) {
6528 io_geom->stripe_index += io_geom->mirror_num - 1;
6529 return;
6530 }
6531
6532 old_stripe_index = io_geom->stripe_index;
6533 io_geom->stripe_index = find_live_mirror(fs_info, map,
6534 io_geom->stripe_index,
6535 dev_replace_is_ongoing);
6536 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6537}
6538
6539static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6540 struct btrfs_io_geometry *io_geom,
6541 u64 logical, u64 *length)
6542{
6543 int data_stripes = nr_data_stripes(map);
6544
6545 /*
6546 * Needs full stripe mapping.
6547 *
6548 * Push stripe_nr back to the start of the full stripe For those cases
6549 * needing a full stripe, @stripe_nr is the full stripe number.
6550 *
6551 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6552 * that can be expensive. Here we just divide @stripe_nr with
6553 * @data_stripes.
6554 */
6555 io_geom->stripe_nr /= data_stripes;
6556
6557 /* RAID[56] write or recovery. Return all stripes */
6558 io_geom->num_stripes = map->num_stripes;
6559 io_geom->max_errors = btrfs_chunk_max_errors(map);
6560
6561 /* Return the length to the full stripe end. */
6562 *length = min(logical + *length,
6563 io_geom->raid56_full_stripe_start + map->start +
6564 btrfs_stripe_nr_to_offset(data_stripes)) -
6565 logical;
6566 io_geom->stripe_index = 0;
6567 io_geom->stripe_offset = 0;
6568}
6569
6570static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6571 struct btrfs_io_geometry *io_geom)
6572{
6573 int data_stripes = nr_data_stripes(map);
6574
6575 ASSERT(io_geom->mirror_num <= 1);
6576 /* Just grab the data stripe directly. */
6577 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6578 io_geom->stripe_nr /= data_stripes;
6579
6580 /* We distribute the parity blocks across stripes. */
6581 io_geom->stripe_index =
6582 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6583
6584 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6585 io_geom->mirror_num = 1;
6586}
6587
6588static void map_blocks_single(const struct btrfs_chunk_map *map,
6589 struct btrfs_io_geometry *io_geom)
6590{
6591 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6592 io_geom->stripe_nr /= map->num_stripes;
6593 io_geom->mirror_num = io_geom->stripe_index + 1;
6594}
6595
6596/*
6597 * Map one logical range to one or more physical ranges.
6598 *
6599 * @length: (Mandatory) mapped length of this run.
6600 * One logical range can be split into different segments
6601 * due to factors like zones and RAID0/5/6/10 stripe
6602 * boundaries.
6603 *
6604 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6605 * which has one or more physical ranges (btrfs_io_stripe)
6606 * recorded inside.
6607 * Caller should call btrfs_put_bioc() to free it after use.
6608 *
6609 * @smap: (Optional) single physical range optimization.
6610 * If the map request can be fulfilled by one single
6611 * physical range, and this is parameter is not NULL,
6612 * then @bioc_ret would be NULL, and @smap would be
6613 * updated.
6614 *
6615 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6616 * value is 0.
6617 *
6618 * Mirror number 0 means to choose any live mirrors.
6619 *
6620 * For non-RAID56 profiles, non-zero mirror_num means
6621 * the Nth mirror. (e.g. mirror_num 1 means the first
6622 * copy).
6623 *
6624 * For RAID56 profile, mirror 1 means rebuild from P and
6625 * the remaining data stripes.
6626 *
6627 * For RAID6 profile, mirror > 2 means mark another
6628 * data/P stripe error and rebuild from the remaining
6629 * stripes..
6630 */
6631int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6632 u64 logical, u64 *length,
6633 struct btrfs_io_context **bioc_ret,
6634 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6635{
6636 struct btrfs_chunk_map *map;
6637 struct btrfs_io_geometry io_geom = { 0 };
6638 u64 map_offset;
6639 int i;
6640 int ret = 0;
6641 int num_copies;
6642 struct btrfs_io_context *bioc = NULL;
6643 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6644 int dev_replace_is_ongoing = 0;
6645 u16 num_alloc_stripes;
6646 u64 max_len;
6647
6648 ASSERT(bioc_ret);
6649
6650 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6651 io_geom.num_stripes = 1;
6652 io_geom.stripe_index = 0;
6653 io_geom.op = op;
6654
6655 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6656 if (io_geom.mirror_num > num_copies)
6657 return -EINVAL;
6658
6659 map = btrfs_get_chunk_map(fs_info, logical, *length);
6660 if (IS_ERR(map))
6661 return PTR_ERR(map);
6662
6663 map_offset = logical - map->start;
6664 io_geom.raid56_full_stripe_start = (u64)-1;
6665 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6666 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6667
6668 down_read(&dev_replace->rwsem);
6669 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6670 /*
6671 * Hold the semaphore for read during the whole operation, write is
6672 * requested at commit time but must wait.
6673 */
6674 if (!dev_replace_is_ongoing)
6675 up_read(&dev_replace->rwsem);
6676
6677 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6678 case BTRFS_BLOCK_GROUP_RAID0:
6679 map_blocks_raid0(map, &io_geom);
6680 break;
6681 case BTRFS_BLOCK_GROUP_RAID1:
6682 case BTRFS_BLOCK_GROUP_RAID1C3:
6683 case BTRFS_BLOCK_GROUP_RAID1C4:
6684 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6685 break;
6686 case BTRFS_BLOCK_GROUP_DUP:
6687 map_blocks_dup(map, &io_geom);
6688 break;
6689 case BTRFS_BLOCK_GROUP_RAID10:
6690 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6691 break;
6692 case BTRFS_BLOCK_GROUP_RAID5:
6693 case BTRFS_BLOCK_GROUP_RAID6:
6694 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6695 map_blocks_raid56_write(map, &io_geom, logical, length);
6696 else
6697 map_blocks_raid56_read(map, &io_geom);
6698 break;
6699 default:
6700 /*
6701 * After this, stripe_nr is the number of stripes on this
6702 * device we have to walk to find the data, and stripe_index is
6703 * the number of our device in the stripe array
6704 */
6705 map_blocks_single(map, &io_geom);
6706 break;
6707 }
6708 if (io_geom.stripe_index >= map->num_stripes) {
6709 btrfs_crit(fs_info,
6710 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6711 io_geom.stripe_index, map->num_stripes);
6712 ret = -EINVAL;
6713 goto out;
6714 }
6715
6716 num_alloc_stripes = io_geom.num_stripes;
6717 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6718 op != BTRFS_MAP_READ)
6719 /*
6720 * For replace case, we need to add extra stripes for extra
6721 * duplicated stripes.
6722 *
6723 * For both WRITE and GET_READ_MIRRORS, we may have at most
6724 * 2 more stripes (DUP types, otherwise 1).
6725 */
6726 num_alloc_stripes += 2;
6727
6728 /*
6729 * If this I/O maps to a single device, try to return the device and
6730 * physical block information on the stack instead of allocating an
6731 * I/O context structure.
6732 */
6733 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6734 io_geom.mirror_num)) {
6735 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6736 if (mirror_num_ret)
6737 *mirror_num_ret = io_geom.mirror_num;
6738 *bioc_ret = NULL;
6739 goto out;
6740 }
6741
6742 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6743 if (!bioc) {
6744 ret = -ENOMEM;
6745 goto out;
6746 }
6747 bioc->map_type = map->type;
6748
6749 /*
6750 * For RAID56 full map, we need to make sure the stripes[] follows the
6751 * rule that data stripes are all ordered, then followed with P and Q
6752 * (if we have).
6753 *
6754 * It's still mostly the same as other profiles, just with extra rotation.
6755 */
6756 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6757 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6758 /*
6759 * For RAID56 @stripe_nr is already the number of full stripes
6760 * before us, which is also the rotation value (needs to modulo
6761 * with num_stripes).
6762 *
6763 * In this case, we just add @stripe_nr with @i, then do the
6764 * modulo, to reduce one modulo call.
6765 */
6766 bioc->full_stripe_logical = map->start +
6767 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6768 nr_data_stripes(map));
6769 for (int i = 0; i < io_geom.num_stripes; i++) {
6770 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6771 u32 stripe_index;
6772
6773 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6774 dst->dev = map->stripes[stripe_index].dev;
6775 dst->physical =
6776 map->stripes[stripe_index].physical +
6777 io_geom.stripe_offset +
6778 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6779 }
6780 } else {
6781 /*
6782 * For all other non-RAID56 profiles, just copy the target
6783 * stripe into the bioc.
6784 */
6785 for (i = 0; i < io_geom.num_stripes; i++) {
6786 ret = set_io_stripe(fs_info, logical, length,
6787 &bioc->stripes[i], map, &io_geom);
6788 if (ret < 0)
6789 break;
6790 io_geom.stripe_index++;
6791 }
6792 }
6793
6794 if (ret) {
6795 *bioc_ret = NULL;
6796 btrfs_put_bioc(bioc);
6797 goto out;
6798 }
6799
6800 if (op != BTRFS_MAP_READ)
6801 io_geom.max_errors = btrfs_chunk_max_errors(map);
6802
6803 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6804 op != BTRFS_MAP_READ) {
6805 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6806 &io_geom.num_stripes, &io_geom.max_errors);
6807 }
6808
6809 *bioc_ret = bioc;
6810 bioc->num_stripes = io_geom.num_stripes;
6811 bioc->max_errors = io_geom.max_errors;
6812 bioc->mirror_num = io_geom.mirror_num;
6813
6814out:
6815 if (dev_replace_is_ongoing) {
6816 lockdep_assert_held(&dev_replace->rwsem);
6817 /* Unlock and let waiting writers proceed */
6818 up_read(&dev_replace->rwsem);
6819 }
6820 btrfs_free_chunk_map(map);
6821 return ret;
6822}
6823
6824static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6825 const struct btrfs_fs_devices *fs_devices)
6826{
6827 if (args->fsid == NULL)
6828 return true;
6829 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6830 return true;
6831 return false;
6832}
6833
6834static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6835 const struct btrfs_device *device)
6836{
6837 if (args->missing) {
6838 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6839 !device->bdev)
6840 return true;
6841 return false;
6842 }
6843
6844 if (device->devid != args->devid)
6845 return false;
6846 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6847 return false;
6848 return true;
6849}
6850
6851/*
6852 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6853 * return NULL.
6854 *
6855 * If devid and uuid are both specified, the match must be exact, otherwise
6856 * only devid is used.
6857 */
6858struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6859 const struct btrfs_dev_lookup_args *args)
6860{
6861 struct btrfs_device *device;
6862 struct btrfs_fs_devices *seed_devs;
6863
6864 if (dev_args_match_fs_devices(args, fs_devices)) {
6865 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6866 if (dev_args_match_device(args, device))
6867 return device;
6868 }
6869 }
6870
6871 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6872 if (!dev_args_match_fs_devices(args, seed_devs))
6873 continue;
6874 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6875 if (dev_args_match_device(args, device))
6876 return device;
6877 }
6878 }
6879
6880 return NULL;
6881}
6882
6883static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6884 u64 devid, u8 *dev_uuid)
6885{
6886 struct btrfs_device *device;
6887 unsigned int nofs_flag;
6888
6889 /*
6890 * We call this under the chunk_mutex, so we want to use NOFS for this
6891 * allocation, however we don't want to change btrfs_alloc_device() to
6892 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6893 * places.
6894 */
6895
6896 nofs_flag = memalloc_nofs_save();
6897 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6898 memalloc_nofs_restore(nofs_flag);
6899 if (IS_ERR(device))
6900 return device;
6901
6902 list_add(&device->dev_list, &fs_devices->devices);
6903 device->fs_devices = fs_devices;
6904 fs_devices->num_devices++;
6905
6906 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6907 fs_devices->missing_devices++;
6908
6909 return device;
6910}
6911
6912/*
6913 * Allocate new device struct, set up devid and UUID.
6914 *
6915 * @fs_info: used only for generating a new devid, can be NULL if
6916 * devid is provided (i.e. @devid != NULL).
6917 * @devid: a pointer to devid for this device. If NULL a new devid
6918 * is generated.
6919 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6920 * is generated.
6921 * @path: a pointer to device path if available, NULL otherwise.
6922 *
6923 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924 * on error. Returned struct is not linked onto any lists and must be
6925 * destroyed with btrfs_free_device.
6926 */
6927struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928 const u64 *devid, const u8 *uuid,
6929 const char *path)
6930{
6931 struct btrfs_device *dev;
6932 u64 tmp;
6933
6934 if (WARN_ON(!devid && !fs_info))
6935 return ERR_PTR(-EINVAL);
6936
6937 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938 if (!dev)
6939 return ERR_PTR(-ENOMEM);
6940
6941 INIT_LIST_HEAD(&dev->dev_list);
6942 INIT_LIST_HEAD(&dev->dev_alloc_list);
6943 INIT_LIST_HEAD(&dev->post_commit_list);
6944
6945 atomic_set(&dev->dev_stats_ccnt, 0);
6946 btrfs_device_data_ordered_init(dev);
6947 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6948
6949 if (devid)
6950 tmp = *devid;
6951 else {
6952 int ret;
6953
6954 ret = find_next_devid(fs_info, &tmp);
6955 if (ret) {
6956 btrfs_free_device(dev);
6957 return ERR_PTR(ret);
6958 }
6959 }
6960 dev->devid = tmp;
6961
6962 if (uuid)
6963 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6964 else
6965 generate_random_uuid(dev->uuid);
6966
6967 if (path) {
6968 struct rcu_string *name;
6969
6970 name = rcu_string_strdup(path, GFP_KERNEL);
6971 if (!name) {
6972 btrfs_free_device(dev);
6973 return ERR_PTR(-ENOMEM);
6974 }
6975 rcu_assign_pointer(dev->name, name);
6976 }
6977
6978 return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982 u64 devid, u8 *uuid, bool error)
6983{
6984 if (error)
6985 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 devid, uuid);
6987 else
6988 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 devid, uuid);
6990}
6991
6992u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6993{
6994 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6995
6996 return div_u64(map->chunk_len, data_stripes);
6997}
6998
6999#if BITS_PER_LONG == 32
7000/*
7001 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002 * can't be accessed on 32bit systems.
7003 *
7004 * This function do mount time check to reject the fs if it already has
7005 * metadata chunk beyond that limit.
7006 */
7007static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008 u64 logical, u64 length, u64 type)
7009{
7010 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011 return 0;
7012
7013 if (logical + length < MAX_LFS_FILESIZE)
7014 return 0;
7015
7016 btrfs_err_32bit_limit(fs_info);
7017 return -EOVERFLOW;
7018}
7019
7020/*
7021 * This is to give early warning for any metadata chunk reaching
7022 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023 * Although we can still access the metadata, it's not going to be possible
7024 * once the limit is reached.
7025 */
7026static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027 u64 logical, u64 length, u64 type)
7028{
7029 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030 return;
7031
7032 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033 return;
7034
7035 btrfs_warn_32bit_limit(fs_info);
7036}
7037#endif
7038
7039static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040 u64 devid, u8 *uuid)
7041{
7042 struct btrfs_device *dev;
7043
7044 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045 btrfs_report_missing_device(fs_info, devid, uuid, true);
7046 return ERR_PTR(-ENOENT);
7047 }
7048
7049 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050 if (IS_ERR(dev)) {
7051 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052 devid, PTR_ERR(dev));
7053 return dev;
7054 }
7055 btrfs_report_missing_device(fs_info, devid, uuid, false);
7056
7057 return dev;
7058}
7059
7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061 struct btrfs_chunk *chunk)
7062{
7063 BTRFS_DEV_LOOKUP_ARGS(args);
7064 struct btrfs_fs_info *fs_info = leaf->fs_info;
7065 struct btrfs_chunk_map *map;
7066 u64 logical;
7067 u64 length;
7068 u64 devid;
7069 u64 type;
7070 u8 uuid[BTRFS_UUID_SIZE];
7071 int index;
7072 int num_stripes;
7073 int ret;
7074 int i;
7075
7076 logical = key->offset;
7077 length = btrfs_chunk_length(leaf, chunk);
7078 type = btrfs_chunk_type(leaf, chunk);
7079 index = btrfs_bg_flags_to_raid_index(type);
7080 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
7082#if BITS_PER_LONG == 32
7083 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 if (ret < 0)
7085 return ret;
7086 warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
7089 /*
7090 * Only need to verify chunk item if we're reading from sys chunk array,
7091 * as chunk item in tree block is already verified by tree-checker.
7092 */
7093 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095 if (ret)
7096 return ret;
7097 }
7098
7099 map = btrfs_find_chunk_map(fs_info, logical, 1);
7100
7101 /* already mapped? */
7102 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7103 btrfs_free_chunk_map(map);
7104 return 0;
7105 } else if (map) {
7106 btrfs_free_chunk_map(map);
7107 }
7108
7109 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7110 if (!map)
7111 return -ENOMEM;
7112
7113 map->start = logical;
7114 map->chunk_len = length;
7115 map->num_stripes = num_stripes;
7116 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7117 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7118 map->type = type;
7119 /*
7120 * We can't use the sub_stripes value, as for profiles other than
7121 * RAID10, they may have 0 as sub_stripes for filesystems created by
7122 * older mkfs (<v5.4).
7123 * In that case, it can cause divide-by-zero errors later.
7124 * Since currently sub_stripes is fixed for each profile, let's
7125 * use the trusted value instead.
7126 */
7127 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7128 map->verified_stripes = 0;
7129 map->stripe_size = btrfs_calc_stripe_length(map);
7130 for (i = 0; i < num_stripes; i++) {
7131 map->stripes[i].physical =
7132 btrfs_stripe_offset_nr(leaf, chunk, i);
7133 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7134 args.devid = devid;
7135 read_extent_buffer(leaf, uuid, (unsigned long)
7136 btrfs_stripe_dev_uuid_nr(chunk, i),
7137 BTRFS_UUID_SIZE);
7138 args.uuid = uuid;
7139 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7140 if (!map->stripes[i].dev) {
7141 map->stripes[i].dev = handle_missing_device(fs_info,
7142 devid, uuid);
7143 if (IS_ERR(map->stripes[i].dev)) {
7144 ret = PTR_ERR(map->stripes[i].dev);
7145 btrfs_free_chunk_map(map);
7146 return ret;
7147 }
7148 }
7149
7150 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7151 &(map->stripes[i].dev->dev_state));
7152 }
7153
7154 ret = btrfs_add_chunk_map(fs_info, map);
7155 if (ret < 0) {
7156 btrfs_err(fs_info,
7157 "failed to add chunk map, start=%llu len=%llu: %d",
7158 map->start, map->chunk_len, ret);
7159 }
7160
7161 return ret;
7162}
7163
7164static void fill_device_from_item(struct extent_buffer *leaf,
7165 struct btrfs_dev_item *dev_item,
7166 struct btrfs_device *device)
7167{
7168 unsigned long ptr;
7169
7170 device->devid = btrfs_device_id(leaf, dev_item);
7171 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7172 device->total_bytes = device->disk_total_bytes;
7173 device->commit_total_bytes = device->disk_total_bytes;
7174 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7175 device->commit_bytes_used = device->bytes_used;
7176 device->type = btrfs_device_type(leaf, dev_item);
7177 device->io_align = btrfs_device_io_align(leaf, dev_item);
7178 device->io_width = btrfs_device_io_width(leaf, dev_item);
7179 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7180 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7181 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7182
7183 ptr = btrfs_device_uuid(dev_item);
7184 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7185}
7186
7187static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7188 u8 *fsid)
7189{
7190 struct btrfs_fs_devices *fs_devices;
7191 int ret;
7192
7193 lockdep_assert_held(&uuid_mutex);
7194 ASSERT(fsid);
7195
7196 /* This will match only for multi-device seed fs */
7197 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7198 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7199 return fs_devices;
7200
7201
7202 fs_devices = find_fsid(fsid, NULL);
7203 if (!fs_devices) {
7204 if (!btrfs_test_opt(fs_info, DEGRADED))
7205 return ERR_PTR(-ENOENT);
7206
7207 fs_devices = alloc_fs_devices(fsid);
7208 if (IS_ERR(fs_devices))
7209 return fs_devices;
7210
7211 fs_devices->seeding = true;
7212 fs_devices->opened = 1;
7213 return fs_devices;
7214 }
7215
7216 /*
7217 * Upon first call for a seed fs fsid, just create a private copy of the
7218 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7219 */
7220 fs_devices = clone_fs_devices(fs_devices);
7221 if (IS_ERR(fs_devices))
7222 return fs_devices;
7223
7224 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7225 if (ret) {
7226 free_fs_devices(fs_devices);
7227 return ERR_PTR(ret);
7228 }
7229
7230 if (!fs_devices->seeding) {
7231 close_fs_devices(fs_devices);
7232 free_fs_devices(fs_devices);
7233 return ERR_PTR(-EINVAL);
7234 }
7235
7236 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7237
7238 return fs_devices;
7239}
7240
7241static int read_one_dev(struct extent_buffer *leaf,
7242 struct btrfs_dev_item *dev_item)
7243{
7244 BTRFS_DEV_LOOKUP_ARGS(args);
7245 struct btrfs_fs_info *fs_info = leaf->fs_info;
7246 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247 struct btrfs_device *device;
7248 u64 devid;
7249 int ret;
7250 u8 fs_uuid[BTRFS_FSID_SIZE];
7251 u8 dev_uuid[BTRFS_UUID_SIZE];
7252
7253 devid = btrfs_device_id(leaf, dev_item);
7254 args.devid = devid;
7255 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7256 BTRFS_UUID_SIZE);
7257 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7258 BTRFS_FSID_SIZE);
7259 args.uuid = dev_uuid;
7260 args.fsid = fs_uuid;
7261
7262 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7263 fs_devices = open_seed_devices(fs_info, fs_uuid);
7264 if (IS_ERR(fs_devices))
7265 return PTR_ERR(fs_devices);
7266 }
7267
7268 device = btrfs_find_device(fs_info->fs_devices, &args);
7269 if (!device) {
7270 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 btrfs_report_missing_device(fs_info, devid,
7272 dev_uuid, true);
7273 return -ENOENT;
7274 }
7275
7276 device = add_missing_dev(fs_devices, devid, dev_uuid);
7277 if (IS_ERR(device)) {
7278 btrfs_err(fs_info,
7279 "failed to add missing dev %llu: %ld",
7280 devid, PTR_ERR(device));
7281 return PTR_ERR(device);
7282 }
7283 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7284 } else {
7285 if (!device->bdev) {
7286 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7287 btrfs_report_missing_device(fs_info,
7288 devid, dev_uuid, true);
7289 return -ENOENT;
7290 }
7291 btrfs_report_missing_device(fs_info, devid,
7292 dev_uuid, false);
7293 }
7294
7295 if (!device->bdev &&
7296 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7297 /*
7298 * this happens when a device that was properly setup
7299 * in the device info lists suddenly goes bad.
7300 * device->bdev is NULL, and so we have to set
7301 * device->missing to one here
7302 */
7303 device->fs_devices->missing_devices++;
7304 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7305 }
7306
7307 /* Move the device to its own fs_devices */
7308 if (device->fs_devices != fs_devices) {
7309 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7310 &device->dev_state));
7311
7312 list_move(&device->dev_list, &fs_devices->devices);
7313 device->fs_devices->num_devices--;
7314 fs_devices->num_devices++;
7315
7316 device->fs_devices->missing_devices--;
7317 fs_devices->missing_devices++;
7318
7319 device->fs_devices = fs_devices;
7320 }
7321 }
7322
7323 if (device->fs_devices != fs_info->fs_devices) {
7324 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7325 if (device->generation !=
7326 btrfs_device_generation(leaf, dev_item))
7327 return -EINVAL;
7328 }
7329
7330 fill_device_from_item(leaf, dev_item, device);
7331 if (device->bdev) {
7332 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7333
7334 if (device->total_bytes > max_total_bytes) {
7335 btrfs_err(fs_info,
7336 "device total_bytes should be at most %llu but found %llu",
7337 max_total_bytes, device->total_bytes);
7338 return -EINVAL;
7339 }
7340 }
7341 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7342 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7343 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7344 device->fs_devices->total_rw_bytes += device->total_bytes;
7345 atomic64_add(device->total_bytes - device->bytes_used,
7346 &fs_info->free_chunk_space);
7347 }
7348 ret = 0;
7349 return ret;
7350}
7351
7352int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7353{
7354 struct btrfs_super_block *super_copy = fs_info->super_copy;
7355 struct extent_buffer *sb;
7356 struct btrfs_disk_key *disk_key;
7357 struct btrfs_chunk *chunk;
7358 u8 *array_ptr;
7359 unsigned long sb_array_offset;
7360 int ret = 0;
7361 u32 num_stripes;
7362 u32 array_size;
7363 u32 len = 0;
7364 u32 cur_offset;
7365 u64 type;
7366 struct btrfs_key key;
7367
7368 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7369
7370 /*
7371 * We allocated a dummy extent, just to use extent buffer accessors.
7372 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7373 * that's fine, we will not go beyond system chunk array anyway.
7374 */
7375 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7376 if (!sb)
7377 return -ENOMEM;
7378 set_extent_buffer_uptodate(sb);
7379
7380 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7381 array_size = btrfs_super_sys_array_size(super_copy);
7382
7383 array_ptr = super_copy->sys_chunk_array;
7384 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7385 cur_offset = 0;
7386
7387 while (cur_offset < array_size) {
7388 disk_key = (struct btrfs_disk_key *)array_ptr;
7389 len = sizeof(*disk_key);
7390 if (cur_offset + len > array_size)
7391 goto out_short_read;
7392
7393 btrfs_disk_key_to_cpu(&key, disk_key);
7394
7395 array_ptr += len;
7396 sb_array_offset += len;
7397 cur_offset += len;
7398
7399 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400 btrfs_err(fs_info,
7401 "unexpected item type %u in sys_array at offset %u",
7402 (u32)key.type, cur_offset);
7403 ret = -EIO;
7404 break;
7405 }
7406
7407 chunk = (struct btrfs_chunk *)sb_array_offset;
7408 /*
7409 * At least one btrfs_chunk with one stripe must be present,
7410 * exact stripe count check comes afterwards
7411 */
7412 len = btrfs_chunk_item_size(1);
7413 if (cur_offset + len > array_size)
7414 goto out_short_read;
7415
7416 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7417 if (!num_stripes) {
7418 btrfs_err(fs_info,
7419 "invalid number of stripes %u in sys_array at offset %u",
7420 num_stripes, cur_offset);
7421 ret = -EIO;
7422 break;
7423 }
7424
7425 type = btrfs_chunk_type(sb, chunk);
7426 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427 btrfs_err(fs_info,
7428 "invalid chunk type %llu in sys_array at offset %u",
7429 type, cur_offset);
7430 ret = -EIO;
7431 break;
7432 }
7433
7434 len = btrfs_chunk_item_size(num_stripes);
7435 if (cur_offset + len > array_size)
7436 goto out_short_read;
7437
7438 ret = read_one_chunk(&key, sb, chunk);
7439 if (ret)
7440 break;
7441
7442 array_ptr += len;
7443 sb_array_offset += len;
7444 cur_offset += len;
7445 }
7446 clear_extent_buffer_uptodate(sb);
7447 free_extent_buffer_stale(sb);
7448 return ret;
7449
7450out_short_read:
7451 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452 len, cur_offset);
7453 clear_extent_buffer_uptodate(sb);
7454 free_extent_buffer_stale(sb);
7455 return -EIO;
7456}
7457
7458/*
7459 * Check if all chunks in the fs are OK for read-write degraded mount
7460 *
7461 * If the @failing_dev is specified, it's accounted as missing.
7462 *
7463 * Return true if all chunks meet the minimal RW mount requirements.
7464 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465 */
7466bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7467 struct btrfs_device *failing_dev)
7468{
7469 struct btrfs_chunk_map *map;
7470 u64 next_start;
7471 bool ret = true;
7472
7473 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7474 /* No chunk at all? Return false anyway */
7475 if (!map) {
7476 ret = false;
7477 goto out;
7478 }
7479 while (map) {
7480 int missing = 0;
7481 int max_tolerated;
7482 int i;
7483
7484 max_tolerated =
7485 btrfs_get_num_tolerated_disk_barrier_failures(
7486 map->type);
7487 for (i = 0; i < map->num_stripes; i++) {
7488 struct btrfs_device *dev = map->stripes[i].dev;
7489
7490 if (!dev || !dev->bdev ||
7491 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7492 dev->last_flush_error)
7493 missing++;
7494 else if (failing_dev && failing_dev == dev)
7495 missing++;
7496 }
7497 if (missing > max_tolerated) {
7498 if (!failing_dev)
7499 btrfs_warn(fs_info,
7500 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7501 map->start, missing, max_tolerated);
7502 btrfs_free_chunk_map(map);
7503 ret = false;
7504 goto out;
7505 }
7506 next_start = map->start + map->chunk_len;
7507 btrfs_free_chunk_map(map);
7508
7509 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7510 }
7511out:
7512 return ret;
7513}
7514
7515static void readahead_tree_node_children(struct extent_buffer *node)
7516{
7517 int i;
7518 const int nr_items = btrfs_header_nritems(node);
7519
7520 for (i = 0; i < nr_items; i++)
7521 btrfs_readahead_node_child(node, i);
7522}
7523
7524int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7525{
7526 struct btrfs_root *root = fs_info->chunk_root;
7527 struct btrfs_path *path;
7528 struct extent_buffer *leaf;
7529 struct btrfs_key key;
7530 struct btrfs_key found_key;
7531 int ret;
7532 int slot;
7533 int iter_ret = 0;
7534 u64 total_dev = 0;
7535 u64 last_ra_node = 0;
7536
7537 path = btrfs_alloc_path();
7538 if (!path)
7539 return -ENOMEM;
7540
7541 /*
7542 * uuid_mutex is needed only if we are mounting a sprout FS
7543 * otherwise we don't need it.
7544 */
7545 mutex_lock(&uuid_mutex);
7546
7547 /*
7548 * It is possible for mount and umount to race in such a way that
7549 * we execute this code path, but open_fs_devices failed to clear
7550 * total_rw_bytes. We certainly want it cleared before reading the
7551 * device items, so clear it here.
7552 */
7553 fs_info->fs_devices->total_rw_bytes = 0;
7554
7555 /*
7556 * Lockdep complains about possible circular locking dependency between
7557 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7558 * used for freeze procection of a fs (struct super_block.s_writers),
7559 * which we take when starting a transaction, and extent buffers of the
7560 * chunk tree if we call read_one_dev() while holding a lock on an
7561 * extent buffer of the chunk tree. Since we are mounting the filesystem
7562 * and at this point there can't be any concurrent task modifying the
7563 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7564 */
7565 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7566 path->skip_locking = 1;
7567
7568 /*
7569 * Read all device items, and then all the chunk items. All
7570 * device items are found before any chunk item (their object id
7571 * is smaller than the lowest possible object id for a chunk
7572 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7573 */
7574 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7575 key.offset = 0;
7576 key.type = 0;
7577 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7578 struct extent_buffer *node = path->nodes[1];
7579
7580 leaf = path->nodes[0];
7581 slot = path->slots[0];
7582
7583 if (node) {
7584 if (last_ra_node != node->start) {
7585 readahead_tree_node_children(node);
7586 last_ra_node = node->start;
7587 }
7588 }
7589 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7590 struct btrfs_dev_item *dev_item;
7591 dev_item = btrfs_item_ptr(leaf, slot,
7592 struct btrfs_dev_item);
7593 ret = read_one_dev(leaf, dev_item);
7594 if (ret)
7595 goto error;
7596 total_dev++;
7597 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7598 struct btrfs_chunk *chunk;
7599
7600 /*
7601 * We are only called at mount time, so no need to take
7602 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7603 * we always lock first fs_info->chunk_mutex before
7604 * acquiring any locks on the chunk tree. This is a
7605 * requirement for chunk allocation, see the comment on
7606 * top of btrfs_chunk_alloc() for details.
7607 */
7608 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7609 ret = read_one_chunk(&found_key, leaf, chunk);
7610 if (ret)
7611 goto error;
7612 }
7613 }
7614 /* Catch error found during iteration */
7615 if (iter_ret < 0) {
7616 ret = iter_ret;
7617 goto error;
7618 }
7619
7620 /*
7621 * After loading chunk tree, we've got all device information,
7622 * do another round of validation checks.
7623 */
7624 if (total_dev != fs_info->fs_devices->total_devices) {
7625 btrfs_warn(fs_info,
7626"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7627 btrfs_super_num_devices(fs_info->super_copy),
7628 total_dev);
7629 fs_info->fs_devices->total_devices = total_dev;
7630 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7631 }
7632 if (btrfs_super_total_bytes(fs_info->super_copy) <
7633 fs_info->fs_devices->total_rw_bytes) {
7634 btrfs_err(fs_info,
7635 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7636 btrfs_super_total_bytes(fs_info->super_copy),
7637 fs_info->fs_devices->total_rw_bytes);
7638 ret = -EINVAL;
7639 goto error;
7640 }
7641 ret = 0;
7642error:
7643 mutex_unlock(&uuid_mutex);
7644
7645 btrfs_free_path(path);
7646 return ret;
7647}
7648
7649int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7650{
7651 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7652 struct btrfs_device *device;
7653 int ret = 0;
7654
7655 fs_devices->fs_info = fs_info;
7656
7657 mutex_lock(&fs_devices->device_list_mutex);
7658 list_for_each_entry(device, &fs_devices->devices, dev_list)
7659 device->fs_info = fs_info;
7660
7661 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7662 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7663 device->fs_info = fs_info;
7664 ret = btrfs_get_dev_zone_info(device, false);
7665 if (ret)
7666 break;
7667 }
7668
7669 seed_devs->fs_info = fs_info;
7670 }
7671 mutex_unlock(&fs_devices->device_list_mutex);
7672
7673 return ret;
7674}
7675
7676static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7677 const struct btrfs_dev_stats_item *ptr,
7678 int index)
7679{
7680 u64 val;
7681
7682 read_extent_buffer(eb, &val,
7683 offsetof(struct btrfs_dev_stats_item, values) +
7684 ((unsigned long)ptr) + (index * sizeof(u64)),
7685 sizeof(val));
7686 return val;
7687}
7688
7689static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7690 struct btrfs_dev_stats_item *ptr,
7691 int index, u64 val)
7692{
7693 write_extent_buffer(eb, &val,
7694 offsetof(struct btrfs_dev_stats_item, values) +
7695 ((unsigned long)ptr) + (index * sizeof(u64)),
7696 sizeof(val));
7697}
7698
7699static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7700 struct btrfs_path *path)
7701{
7702 struct btrfs_dev_stats_item *ptr;
7703 struct extent_buffer *eb;
7704 struct btrfs_key key;
7705 int item_size;
7706 int i, ret, slot;
7707
7708 if (!device->fs_info->dev_root)
7709 return 0;
7710
7711 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7712 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7713 key.offset = device->devid;
7714 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715 if (ret) {
7716 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7717 btrfs_dev_stat_set(device, i, 0);
7718 device->dev_stats_valid = 1;
7719 btrfs_release_path(path);
7720 return ret < 0 ? ret : 0;
7721 }
7722 slot = path->slots[0];
7723 eb = path->nodes[0];
7724 item_size = btrfs_item_size(eb, slot);
7725
7726 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727
7728 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7729 if (item_size >= (1 + i) * sizeof(__le64))
7730 btrfs_dev_stat_set(device, i,
7731 btrfs_dev_stats_value(eb, ptr, i));
7732 else
7733 btrfs_dev_stat_set(device, i, 0);
7734 }
7735
7736 device->dev_stats_valid = 1;
7737 btrfs_dev_stat_print_on_load(device);
7738 btrfs_release_path(path);
7739
7740 return 0;
7741}
7742
7743int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744{
7745 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7746 struct btrfs_device *device;
7747 struct btrfs_path *path = NULL;
7748 int ret = 0;
7749
7750 path = btrfs_alloc_path();
7751 if (!path)
7752 return -ENOMEM;
7753
7754 mutex_lock(&fs_devices->device_list_mutex);
7755 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7756 ret = btrfs_device_init_dev_stats(device, path);
7757 if (ret)
7758 goto out;
7759 }
7760 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7761 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7762 ret = btrfs_device_init_dev_stats(device, path);
7763 if (ret)
7764 goto out;
7765 }
7766 }
7767out:
7768 mutex_unlock(&fs_devices->device_list_mutex);
7769
7770 btrfs_free_path(path);
7771 return ret;
7772}
7773
7774static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7775 struct btrfs_device *device)
7776{
7777 struct btrfs_fs_info *fs_info = trans->fs_info;
7778 struct btrfs_root *dev_root = fs_info->dev_root;
7779 struct btrfs_path *path;
7780 struct btrfs_key key;
7781 struct extent_buffer *eb;
7782 struct btrfs_dev_stats_item *ptr;
7783 int ret;
7784 int i;
7785
7786 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7787 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7788 key.offset = device->devid;
7789
7790 path = btrfs_alloc_path();
7791 if (!path)
7792 return -ENOMEM;
7793 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794 if (ret < 0) {
7795 btrfs_warn_in_rcu(fs_info,
7796 "error %d while searching for dev_stats item for device %s",
7797 ret, btrfs_dev_name(device));
7798 goto out;
7799 }
7800
7801 if (ret == 0 &&
7802 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7803 /* need to delete old one and insert a new one */
7804 ret = btrfs_del_item(trans, dev_root, path);
7805 if (ret != 0) {
7806 btrfs_warn_in_rcu(fs_info,
7807 "delete too small dev_stats item for device %s failed %d",
7808 btrfs_dev_name(device), ret);
7809 goto out;
7810 }
7811 ret = 1;
7812 }
7813
7814 if (ret == 1) {
7815 /* need to insert a new item */
7816 btrfs_release_path(path);
7817 ret = btrfs_insert_empty_item(trans, dev_root, path,
7818 &key, sizeof(*ptr));
7819 if (ret < 0) {
7820 btrfs_warn_in_rcu(fs_info,
7821 "insert dev_stats item for device %s failed %d",
7822 btrfs_dev_name(device), ret);
7823 goto out;
7824 }
7825 }
7826
7827 eb = path->nodes[0];
7828 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7829 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7830 btrfs_set_dev_stats_value(eb, ptr, i,
7831 btrfs_dev_stat_read(device, i));
7832 btrfs_mark_buffer_dirty(trans, eb);
7833
7834out:
7835 btrfs_free_path(path);
7836 return ret;
7837}
7838
7839/*
7840 * called from commit_transaction. Writes all changed device stats to disk.
7841 */
7842int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843{
7844 struct btrfs_fs_info *fs_info = trans->fs_info;
7845 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846 struct btrfs_device *device;
7847 int stats_cnt;
7848 int ret = 0;
7849
7850 mutex_lock(&fs_devices->device_list_mutex);
7851 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7852 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7853 if (!device->dev_stats_valid || stats_cnt == 0)
7854 continue;
7855
7856
7857 /*
7858 * There is a LOAD-LOAD control dependency between the value of
7859 * dev_stats_ccnt and updating the on-disk values which requires
7860 * reading the in-memory counters. Such control dependencies
7861 * require explicit read memory barriers.
7862 *
7863 * This memory barriers pairs with smp_mb__before_atomic in
7864 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7865 * barrier implied by atomic_xchg in
7866 * btrfs_dev_stats_read_and_reset
7867 */
7868 smp_rmb();
7869
7870 ret = update_dev_stat_item(trans, device);
7871 if (!ret)
7872 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873 }
7874 mutex_unlock(&fs_devices->device_list_mutex);
7875
7876 return ret;
7877}
7878
7879void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880{
7881 btrfs_dev_stat_inc(dev, index);
7882
7883 if (!dev->dev_stats_valid)
7884 return;
7885 btrfs_err_rl_in_rcu(dev->fs_info,
7886 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7887 btrfs_dev_name(dev),
7888 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7889 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7893}
7894
7895static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7896{
7897 int i;
7898
7899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7900 if (btrfs_dev_stat_read(dev, i) != 0)
7901 break;
7902 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7903 return; /* all values == 0, suppress message */
7904
7905 btrfs_info_in_rcu(dev->fs_info,
7906 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7907 btrfs_dev_name(dev),
7908 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7909 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7910 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7913}
7914
7915int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7916 struct btrfs_ioctl_get_dev_stats *stats)
7917{
7918 BTRFS_DEV_LOOKUP_ARGS(args);
7919 struct btrfs_device *dev;
7920 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7921 int i;
7922
7923 mutex_lock(&fs_devices->device_list_mutex);
7924 args.devid = stats->devid;
7925 dev = btrfs_find_device(fs_info->fs_devices, &args);
7926 mutex_unlock(&fs_devices->device_list_mutex);
7927
7928 if (!dev) {
7929 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7930 return -ENODEV;
7931 } else if (!dev->dev_stats_valid) {
7932 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7933 return -ENODEV;
7934 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7935 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7936 if (stats->nr_items > i)
7937 stats->values[i] =
7938 btrfs_dev_stat_read_and_reset(dev, i);
7939 else
7940 btrfs_dev_stat_set(dev, i, 0);
7941 }
7942 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7943 current->comm, task_pid_nr(current));
7944 } else {
7945 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946 if (stats->nr_items > i)
7947 stats->values[i] = btrfs_dev_stat_read(dev, i);
7948 }
7949 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7950 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7951 return 0;
7952}
7953
7954/*
7955 * Update the size and bytes used for each device where it changed. This is
7956 * delayed since we would otherwise get errors while writing out the
7957 * superblocks.
7958 *
7959 * Must be invoked during transaction commit.
7960 */
7961void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7962{
7963 struct btrfs_device *curr, *next;
7964
7965 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7966
7967 if (list_empty(&trans->dev_update_list))
7968 return;
7969
7970 /*
7971 * We don't need the device_list_mutex here. This list is owned by the
7972 * transaction and the transaction must complete before the device is
7973 * released.
7974 */
7975 mutex_lock(&trans->fs_info->chunk_mutex);
7976 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7977 post_commit_list) {
7978 list_del_init(&curr->post_commit_list);
7979 curr->commit_total_bytes = curr->disk_total_bytes;
7980 curr->commit_bytes_used = curr->bytes_used;
7981 }
7982 mutex_unlock(&trans->fs_info->chunk_mutex);
7983}
7984
7985/*
7986 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7987 */
7988int btrfs_bg_type_to_factor(u64 flags)
7989{
7990 const int index = btrfs_bg_flags_to_raid_index(flags);
7991
7992 return btrfs_raid_array[index].ncopies;
7993}
7994
7995
7996
7997static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7998 u64 chunk_offset, u64 devid,
7999 u64 physical_offset, u64 physical_len)
8000{
8001 struct btrfs_dev_lookup_args args = { .devid = devid };
8002 struct btrfs_chunk_map *map;
8003 struct btrfs_device *dev;
8004 u64 stripe_len;
8005 bool found = false;
8006 int ret = 0;
8007 int i;
8008
8009 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8010 if (!map) {
8011 btrfs_err(fs_info,
8012"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8013 physical_offset, devid);
8014 ret = -EUCLEAN;
8015 goto out;
8016 }
8017
8018 stripe_len = btrfs_calc_stripe_length(map);
8019 if (physical_len != stripe_len) {
8020 btrfs_err(fs_info,
8021"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8022 physical_offset, devid, map->start, physical_len,
8023 stripe_len);
8024 ret = -EUCLEAN;
8025 goto out;
8026 }
8027
8028 /*
8029 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8030 * space. Although kernel can handle it without problem, better to warn
8031 * the users.
8032 */
8033 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8034 btrfs_warn(fs_info,
8035 "devid %llu physical %llu len %llu inside the reserved space",
8036 devid, physical_offset, physical_len);
8037
8038 for (i = 0; i < map->num_stripes; i++) {
8039 if (map->stripes[i].dev->devid == devid &&
8040 map->stripes[i].physical == physical_offset) {
8041 found = true;
8042 if (map->verified_stripes >= map->num_stripes) {
8043 btrfs_err(fs_info,
8044 "too many dev extents for chunk %llu found",
8045 map->start);
8046 ret = -EUCLEAN;
8047 goto out;
8048 }
8049 map->verified_stripes++;
8050 break;
8051 }
8052 }
8053 if (!found) {
8054 btrfs_err(fs_info,
8055 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8056 physical_offset, devid);
8057 ret = -EUCLEAN;
8058 }
8059
8060 /* Make sure no dev extent is beyond device boundary */
8061 dev = btrfs_find_device(fs_info->fs_devices, &args);
8062 if (!dev) {
8063 btrfs_err(fs_info, "failed to find devid %llu", devid);
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067
8068 if (physical_offset + physical_len > dev->disk_total_bytes) {
8069 btrfs_err(fs_info,
8070"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8071 devid, physical_offset, physical_len,
8072 dev->disk_total_bytes);
8073 ret = -EUCLEAN;
8074 goto out;
8075 }
8076
8077 if (dev->zone_info) {
8078 u64 zone_size = dev->zone_info->zone_size;
8079
8080 if (!IS_ALIGNED(physical_offset, zone_size) ||
8081 !IS_ALIGNED(physical_len, zone_size)) {
8082 btrfs_err(fs_info,
8083"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8084 devid, physical_offset, physical_len);
8085 ret = -EUCLEAN;
8086 goto out;
8087 }
8088 }
8089
8090out:
8091 btrfs_free_chunk_map(map);
8092 return ret;
8093}
8094
8095static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096{
8097 struct rb_node *node;
8098 int ret = 0;
8099
8100 read_lock(&fs_info->mapping_tree_lock);
8101 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8102 struct btrfs_chunk_map *map;
8103
8104 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8105 if (map->num_stripes != map->verified_stripes) {
8106 btrfs_err(fs_info,
8107 "chunk %llu has missing dev extent, have %d expect %d",
8108 map->start, map->verified_stripes, map->num_stripes);
8109 ret = -EUCLEAN;
8110 goto out;
8111 }
8112 }
8113out:
8114 read_unlock(&fs_info->mapping_tree_lock);
8115 return ret;
8116}
8117
8118/*
8119 * Ensure that all dev extents are mapped to correct chunk, otherwise
8120 * later chunk allocation/free would cause unexpected behavior.
8121 *
8122 * NOTE: This will iterate through the whole device tree, which should be of
8123 * the same size level as the chunk tree. This slightly increases mount time.
8124 */
8125int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8126{
8127 struct btrfs_path *path;
8128 struct btrfs_root *root = fs_info->dev_root;
8129 struct btrfs_key key;
8130 u64 prev_devid = 0;
8131 u64 prev_dev_ext_end = 0;
8132 int ret = 0;
8133
8134 /*
8135 * We don't have a dev_root because we mounted with ignorebadroots and
8136 * failed to load the root, so we want to skip the verification in this
8137 * case for sure.
8138 *
8139 * However if the dev root is fine, but the tree itself is corrupted
8140 * we'd still fail to mount. This verification is only to make sure
8141 * writes can happen safely, so instead just bypass this check
8142 * completely in the case of IGNOREBADROOTS.
8143 */
8144 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8145 return 0;
8146
8147 key.objectid = 1;
8148 key.type = BTRFS_DEV_EXTENT_KEY;
8149 key.offset = 0;
8150
8151 path = btrfs_alloc_path();
8152 if (!path)
8153 return -ENOMEM;
8154
8155 path->reada = READA_FORWARD;
8156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8157 if (ret < 0)
8158 goto out;
8159
8160 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8161 ret = btrfs_next_leaf(root, path);
8162 if (ret < 0)
8163 goto out;
8164 /* No dev extents at all? Not good */
8165 if (ret > 0) {
8166 ret = -EUCLEAN;
8167 goto out;
8168 }
8169 }
8170 while (1) {
8171 struct extent_buffer *leaf = path->nodes[0];
8172 struct btrfs_dev_extent *dext;
8173 int slot = path->slots[0];
8174 u64 chunk_offset;
8175 u64 physical_offset;
8176 u64 physical_len;
8177 u64 devid;
8178
8179 btrfs_item_key_to_cpu(leaf, &key, slot);
8180 if (key.type != BTRFS_DEV_EXTENT_KEY)
8181 break;
8182 devid = key.objectid;
8183 physical_offset = key.offset;
8184
8185 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8186 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8187 physical_len = btrfs_dev_extent_length(leaf, dext);
8188
8189 /* Check if this dev extent overlaps with the previous one */
8190 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8191 btrfs_err(fs_info,
8192"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8193 devid, physical_offset, prev_dev_ext_end);
8194 ret = -EUCLEAN;
8195 goto out;
8196 }
8197
8198 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8199 physical_offset, physical_len);
8200 if (ret < 0)
8201 goto out;
8202 prev_devid = devid;
8203 prev_dev_ext_end = physical_offset + physical_len;
8204
8205 ret = btrfs_next_item(root, path);
8206 if (ret < 0)
8207 goto out;
8208 if (ret > 0) {
8209 ret = 0;
8210 break;
8211 }
8212 }
8213
8214 /* Ensure all chunks have corresponding dev extents */
8215 ret = verify_chunk_dev_extent_mapping(fs_info);
8216out:
8217 btrfs_free_path(path);
8218 return ret;
8219}
8220
8221/*
8222 * Check whether the given block group or device is pinned by any inode being
8223 * used as a swapfile.
8224 */
8225bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8226{
8227 struct btrfs_swapfile_pin *sp;
8228 struct rb_node *node;
8229
8230 spin_lock(&fs_info->swapfile_pins_lock);
8231 node = fs_info->swapfile_pins.rb_node;
8232 while (node) {
8233 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8234 if (ptr < sp->ptr)
8235 node = node->rb_left;
8236 else if (ptr > sp->ptr)
8237 node = node->rb_right;
8238 else
8239 break;
8240 }
8241 spin_unlock(&fs_info->swapfile_pins_lock);
8242 return node != NULL;
8243}
8244
8245static int relocating_repair_kthread(void *data)
8246{
8247 struct btrfs_block_group *cache = data;
8248 struct btrfs_fs_info *fs_info = cache->fs_info;
8249 u64 target;
8250 int ret = 0;
8251
8252 target = cache->start;
8253 btrfs_put_block_group(cache);
8254
8255 sb_start_write(fs_info->sb);
8256 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257 btrfs_info(fs_info,
8258 "zoned: skip relocating block group %llu to repair: EBUSY",
8259 target);
8260 sb_end_write(fs_info->sb);
8261 return -EBUSY;
8262 }
8263
8264 mutex_lock(&fs_info->reclaim_bgs_lock);
8265
8266 /* Ensure block group still exists */
8267 cache = btrfs_lookup_block_group(fs_info, target);
8268 if (!cache)
8269 goto out;
8270
8271 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8272 goto out;
8273
8274 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8275 if (ret < 0)
8276 goto out;
8277
8278 btrfs_info(fs_info,
8279 "zoned: relocating block group %llu to repair IO failure",
8280 target);
8281 ret = btrfs_relocate_chunk(fs_info, target);
8282
8283out:
8284 if (cache)
8285 btrfs_put_block_group(cache);
8286 mutex_unlock(&fs_info->reclaim_bgs_lock);
8287 btrfs_exclop_finish(fs_info);
8288 sb_end_write(fs_info->sb);
8289
8290 return ret;
8291}
8292
8293bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8294{
8295 struct btrfs_block_group *cache;
8296
8297 if (!btrfs_is_zoned(fs_info))
8298 return false;
8299
8300 /* Do not attempt to repair in degraded state */
8301 if (btrfs_test_opt(fs_info, DEGRADED))
8302 return true;
8303
8304 cache = btrfs_lookup_block_group(fs_info, logical);
8305 if (!cache)
8306 return true;
8307
8308 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8309 btrfs_put_block_group(cache);
8310 return true;
8311 }
8312
8313 kthread_run(relocating_repair_kthread, cache,
8314 "btrfs-relocating-repair");
8315
8316 return true;
8317}
8318
8319static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8320 struct btrfs_io_stripe *smap,
8321 u64 logical)
8322{
8323 int data_stripes = nr_bioc_data_stripes(bioc);
8324 int i;
8325
8326 for (i = 0; i < data_stripes; i++) {
8327 u64 stripe_start = bioc->full_stripe_logical +
8328 btrfs_stripe_nr_to_offset(i);
8329
8330 if (logical >= stripe_start &&
8331 logical < stripe_start + BTRFS_STRIPE_LEN)
8332 break;
8333 }
8334 ASSERT(i < data_stripes);
8335 smap->dev = bioc->stripes[i].dev;
8336 smap->physical = bioc->stripes[i].physical +
8337 ((logical - bioc->full_stripe_logical) &
8338 BTRFS_STRIPE_LEN_MASK);
8339}
8340
8341/*
8342 * Map a repair write into a single device.
8343 *
8344 * A repair write is triggered by read time repair or scrub, which would only
8345 * update the contents of a single device.
8346 * Not update any other mirrors nor go through RMW path.
8347 *
8348 * Callers should ensure:
8349 *
8350 * - Call btrfs_bio_counter_inc_blocked() first
8351 * - The range does not cross stripe boundary
8352 * - Has a valid @mirror_num passed in.
8353 */
8354int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8355 struct btrfs_io_stripe *smap, u64 logical,
8356 u32 length, int mirror_num)
8357{
8358 struct btrfs_io_context *bioc = NULL;
8359 u64 map_length = length;
8360 int mirror_ret = mirror_num;
8361 int ret;
8362
8363 ASSERT(mirror_num > 0);
8364
8365 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8366 &bioc, smap, &mirror_ret);
8367 if (ret < 0)
8368 return ret;
8369
8370 /* The map range should not cross stripe boundary. */
8371 ASSERT(map_length >= length);
8372
8373 /* Already mapped to single stripe. */
8374 if (!bioc)
8375 goto out;
8376
8377 /* Map the RAID56 multi-stripe writes to a single one. */
8378 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8379 map_raid56_repair_block(bioc, smap, logical);
8380 goto out;
8381 }
8382
8383 ASSERT(mirror_num <= bioc->num_stripes);
8384 smap->dev = bioc->stripes[mirror_num - 1].dev;
8385 smap->physical = bioc->stripes[mirror_num - 1].physical;
8386out:
8387 btrfs_put_bioc(bioc);
8388 ASSERT(smap->dev);
8389 return 0;
8390}