Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
  38#include "raid-stripe-tree.h"
  39
  40#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  41					 BTRFS_BLOCK_GROUP_RAID10 | \
  42					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  43
  44struct btrfs_io_geometry {
  45	u32 stripe_index;
  46	u32 stripe_nr;
  47	int mirror_num;
  48	int num_stripes;
  49	u64 stripe_offset;
  50	u64 raid56_full_stripe_start;
  51	int max_errors;
  52	enum btrfs_map_op op;
  53};
  54
  55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  56	[BTRFS_RAID_RAID10] = {
  57		.sub_stripes	= 2,
  58		.dev_stripes	= 1,
  59		.devs_max	= 0,	/* 0 == as many as possible */
  60		.devs_min	= 2,
  61		.tolerated_failures = 1,
  62		.devs_increment	= 2,
  63		.ncopies	= 2,
  64		.nparity        = 0,
  65		.raid_name	= "raid10",
  66		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  67		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  68	},
  69	[BTRFS_RAID_RAID1] = {
  70		.sub_stripes	= 1,
  71		.dev_stripes	= 1,
  72		.devs_max	= 2,
  73		.devs_min	= 2,
  74		.tolerated_failures = 1,
  75		.devs_increment	= 2,
  76		.ncopies	= 2,
  77		.nparity        = 0,
  78		.raid_name	= "raid1",
  79		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  80		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  81	},
  82	[BTRFS_RAID_RAID1C3] = {
  83		.sub_stripes	= 1,
  84		.dev_stripes	= 1,
  85		.devs_max	= 3,
  86		.devs_min	= 3,
  87		.tolerated_failures = 2,
  88		.devs_increment	= 3,
  89		.ncopies	= 3,
  90		.nparity        = 0,
  91		.raid_name	= "raid1c3",
  92		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  93		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  94	},
  95	[BTRFS_RAID_RAID1C4] = {
  96		.sub_stripes	= 1,
  97		.dev_stripes	= 1,
  98		.devs_max	= 4,
  99		.devs_min	= 4,
 100		.tolerated_failures = 3,
 101		.devs_increment	= 4,
 102		.ncopies	= 4,
 103		.nparity        = 0,
 104		.raid_name	= "raid1c4",
 105		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 106		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 107	},
 108	[BTRFS_RAID_DUP] = {
 109		.sub_stripes	= 1,
 110		.dev_stripes	= 2,
 111		.devs_max	= 1,
 112		.devs_min	= 1,
 113		.tolerated_failures = 0,
 114		.devs_increment	= 1,
 115		.ncopies	= 2,
 116		.nparity        = 0,
 117		.raid_name	= "dup",
 118		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 119		.mindev_error	= 0,
 120	},
 121	[BTRFS_RAID_RAID0] = {
 122		.sub_stripes	= 1,
 123		.dev_stripes	= 1,
 124		.devs_max	= 0,
 125		.devs_min	= 1,
 126		.tolerated_failures = 0,
 127		.devs_increment	= 1,
 128		.ncopies	= 1,
 129		.nparity        = 0,
 130		.raid_name	= "raid0",
 131		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 132		.mindev_error	= 0,
 133	},
 134	[BTRFS_RAID_SINGLE] = {
 135		.sub_stripes	= 1,
 136		.dev_stripes	= 1,
 137		.devs_max	= 1,
 138		.devs_min	= 1,
 139		.tolerated_failures = 0,
 140		.devs_increment	= 1,
 141		.ncopies	= 1,
 142		.nparity        = 0,
 143		.raid_name	= "single",
 144		.bg_flag	= 0,
 145		.mindev_error	= 0,
 146	},
 147	[BTRFS_RAID_RAID5] = {
 148		.sub_stripes	= 1,
 149		.dev_stripes	= 1,
 150		.devs_max	= 0,
 151		.devs_min	= 2,
 152		.tolerated_failures = 1,
 153		.devs_increment	= 1,
 154		.ncopies	= 1,
 155		.nparity        = 1,
 156		.raid_name	= "raid5",
 157		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 158		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 159	},
 160	[BTRFS_RAID_RAID6] = {
 161		.sub_stripes	= 1,
 162		.dev_stripes	= 1,
 163		.devs_max	= 0,
 164		.devs_min	= 3,
 165		.tolerated_failures = 2,
 166		.devs_increment	= 1,
 167		.ncopies	= 1,
 168		.nparity        = 2,
 169		.raid_name	= "raid6",
 170		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 171		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 172	},
 173};
 174
 175/*
 176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 177 * can be used as index to access btrfs_raid_array[].
 178 */
 179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 180{
 181	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 182
 183	if (!profile)
 184		return BTRFS_RAID_SINGLE;
 185
 186	return BTRFS_BG_FLAG_TO_INDEX(profile);
 187}
 188
 189const char *btrfs_bg_type_to_raid_name(u64 flags)
 190{
 191	const int index = btrfs_bg_flags_to_raid_index(flags);
 192
 193	if (index >= BTRFS_NR_RAID_TYPES)
 194		return NULL;
 195
 196	return btrfs_raid_array[index].raid_name;
 197}
 198
 199int btrfs_nr_parity_stripes(u64 type)
 200{
 201	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 202
 203	return btrfs_raid_array[index].nparity;
 204}
 205
 206/*
 207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 208 * bytes including terminating null byte.
 209 */
 210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 211{
 212	int i;
 213	int ret;
 214	char *bp = buf;
 215	u64 flags = bg_flags;
 216	u32 size_bp = size_buf;
 217
 218	if (!flags) {
 219		strcpy(bp, "NONE");
 220		return;
 221	}
 222
 223#define DESCRIBE_FLAG(flag, desc)						\
 224	do {								\
 225		if (flags & (flag)) {					\
 226			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 227			if (ret < 0 || ret >= size_bp)			\
 228				goto out_overflow;			\
 229			size_bp -= ret;					\
 230			bp += ret;					\
 231			flags &= ~(flag);				\
 232		}							\
 233	} while (0)
 234
 235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 236	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 237	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 238
 239	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 240	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 241		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 242			      btrfs_raid_array[i].raid_name);
 243#undef DESCRIBE_FLAG
 244
 245	if (flags) {
 246		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 247		size_bp -= ret;
 248	}
 249
 250	if (size_bp < size_buf)
 251		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 252
 253	/*
 254	 * The text is trimmed, it's up to the caller to provide sufficiently
 255	 * large buffer
 256	 */
 257out_overflow:;
 258}
 259
 260static int init_first_rw_device(struct btrfs_trans_handle *trans);
 261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 263
 264/*
 265 * Device locking
 266 * ==============
 267 *
 268 * There are several mutexes that protect manipulation of devices and low-level
 269 * structures like chunks but not block groups, extents or files
 270 *
 271 * uuid_mutex (global lock)
 272 * ------------------------
 273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 275 * device) or requested by the device= mount option
 276 *
 277 * the mutex can be very coarse and can cover long-running operations
 278 *
 279 * protects: updates to fs_devices counters like missing devices, rw devices,
 280 * seeding, structure cloning, opening/closing devices at mount/umount time
 281 *
 282 * global::fs_devs - add, remove, updates to the global list
 283 *
 284 * does not protect: manipulation of the fs_devices::devices list in general
 285 * but in mount context it could be used to exclude list modifications by eg.
 286 * scan ioctl
 287 *
 288 * btrfs_device::name - renames (write side), read is RCU
 289 *
 290 * fs_devices::device_list_mutex (per-fs, with RCU)
 291 * ------------------------------------------------
 292 * protects updates to fs_devices::devices, ie. adding and deleting
 293 *
 294 * simple list traversal with read-only actions can be done with RCU protection
 295 *
 296 * may be used to exclude some operations from running concurrently without any
 297 * modifications to the list (see write_all_supers)
 298 *
 299 * Is not required at mount and close times, because our device list is
 300 * protected by the uuid_mutex at that point.
 301 *
 302 * balance_mutex
 303 * -------------
 304 * protects balance structures (status, state) and context accessed from
 305 * several places (internally, ioctl)
 306 *
 307 * chunk_mutex
 308 * -----------
 309 * protects chunks, adding or removing during allocation, trim or when a new
 310 * device is added/removed. Additionally it also protects post_commit_list of
 311 * individual devices, since they can be added to the transaction's
 312 * post_commit_list only with chunk_mutex held.
 313 *
 314 * cleaner_mutex
 315 * -------------
 316 * a big lock that is held by the cleaner thread and prevents running subvolume
 317 * cleaning together with relocation or delayed iputs
 318 *
 319 *
 320 * Lock nesting
 321 * ============
 322 *
 323 * uuid_mutex
 324 *   device_list_mutex
 325 *     chunk_mutex
 326 *   balance_mutex
 327 *
 328 *
 329 * Exclusive operations
 330 * ====================
 331 *
 332 * Maintains the exclusivity of the following operations that apply to the
 333 * whole filesystem and cannot run in parallel.
 334 *
 335 * - Balance (*)
 336 * - Device add
 337 * - Device remove
 338 * - Device replace (*)
 339 * - Resize
 340 *
 341 * The device operations (as above) can be in one of the following states:
 342 *
 343 * - Running state
 344 * - Paused state
 345 * - Completed state
 346 *
 347 * Only device operations marked with (*) can go into the Paused state for the
 348 * following reasons:
 349 *
 350 * - ioctl (only Balance can be Paused through ioctl)
 351 * - filesystem remounted as read-only
 352 * - filesystem unmounted and mounted as read-only
 353 * - system power-cycle and filesystem mounted as read-only
 354 * - filesystem or device errors leading to forced read-only
 355 *
 356 * The status of exclusive operation is set and cleared atomically.
 357 * During the course of Paused state, fs_info::exclusive_operation remains set.
 358 * A device operation in Paused or Running state can be canceled or resumed
 359 * either by ioctl (Balance only) or when remounted as read-write.
 360 * The exclusive status is cleared when the device operation is canceled or
 361 * completed.
 362 */
 363
 364DEFINE_MUTEX(uuid_mutex);
 365static LIST_HEAD(fs_uuids);
 366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 367{
 368	return &fs_uuids;
 369}
 370
 371/*
 372 * Allocate new btrfs_fs_devices structure identified by a fsid.
 373 *
 374 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
 375 *           fs_devices::metadata_fsid
 376 *
 377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 378 * The returned struct is not linked onto any lists and can be destroyed with
 379 * kfree() right away.
 380 */
 381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 382{
 383	struct btrfs_fs_devices *fs_devs;
 384
 385	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 386	if (!fs_devs)
 387		return ERR_PTR(-ENOMEM);
 388
 389	mutex_init(&fs_devs->device_list_mutex);
 390
 391	INIT_LIST_HEAD(&fs_devs->devices);
 392	INIT_LIST_HEAD(&fs_devs->alloc_list);
 393	INIT_LIST_HEAD(&fs_devs->fs_list);
 394	INIT_LIST_HEAD(&fs_devs->seed_list);
 395
 396	if (fsid) {
 397		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 398		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 399	}
 400
 401	return fs_devs;
 402}
 403
 404static void btrfs_free_device(struct btrfs_device *device)
 405{
 406	WARN_ON(!list_empty(&device->post_commit_list));
 407	rcu_string_free(device->name);
 408	extent_io_tree_release(&device->alloc_state);
 409	btrfs_destroy_dev_zone_info(device);
 410	kfree(device);
 411}
 412
 413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 414{
 415	struct btrfs_device *device;
 416
 417	WARN_ON(fs_devices->opened);
 418	while (!list_empty(&fs_devices->devices)) {
 419		device = list_entry(fs_devices->devices.next,
 420				    struct btrfs_device, dev_list);
 421		list_del(&device->dev_list);
 422		btrfs_free_device(device);
 423	}
 424	kfree(fs_devices);
 425}
 426
 427void __exit btrfs_cleanup_fs_uuids(void)
 428{
 429	struct btrfs_fs_devices *fs_devices;
 430
 431	while (!list_empty(&fs_uuids)) {
 432		fs_devices = list_entry(fs_uuids.next,
 433					struct btrfs_fs_devices, fs_list);
 434		list_del(&fs_devices->fs_list);
 435		free_fs_devices(fs_devices);
 436	}
 437}
 438
 439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
 440				  const u8 *fsid, const u8 *metadata_fsid)
 441{
 442	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
 443		return false;
 444
 445	if (!metadata_fsid)
 446		return true;
 447
 448	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
 449		return false;
 450
 451	return true;
 452}
 453
 454static noinline struct btrfs_fs_devices *find_fsid(
 455		const u8 *fsid, const u8 *metadata_fsid)
 456{
 457	struct btrfs_fs_devices *fs_devices;
 458
 459	ASSERT(fsid);
 460
 461	/* Handle non-split brain cases */
 462	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 463		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
 464			return fs_devices;
 465	}
 466	return NULL;
 467}
 468
 469static int
 470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
 471		      int flush, struct bdev_handle **bdev_handle,
 472		      struct btrfs_super_block **disk_super)
 473{
 474	struct block_device *bdev;
 475	int ret;
 476
 477	*bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
 478
 479	if (IS_ERR(*bdev_handle)) {
 480		ret = PTR_ERR(*bdev_handle);
 481		goto error;
 482	}
 483	bdev = (*bdev_handle)->bdev;
 484
 485	if (flush)
 486		sync_blockdev(bdev);
 487	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
 488	if (ret) {
 489		bdev_release(*bdev_handle);
 490		goto error;
 491	}
 492	invalidate_bdev(bdev);
 493	*disk_super = btrfs_read_dev_super(bdev);
 494	if (IS_ERR(*disk_super)) {
 495		ret = PTR_ERR(*disk_super);
 496		bdev_release(*bdev_handle);
 497		goto error;
 498	}
 499
 500	return 0;
 501
 502error:
 503	*bdev_handle = NULL;
 504	return ret;
 505}
 506
 507/*
 508 *  Search and remove all stale devices (which are not mounted).  When both
 509 *  inputs are NULL, it will search and release all stale devices.
 510 *
 511 *  @devt:         Optional. When provided will it release all unmounted devices
 512 *                 matching this devt only.
 513 *  @skip_device:  Optional. Will skip this device when searching for the stale
 514 *                 devices.
 515 *
 516 *  Return:	0 for success or if @devt is 0.
 517 *		-EBUSY if @devt is a mounted device.
 518 *		-ENOENT if @devt does not match any device in the list.
 519 */
 520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 521{
 522	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 523	struct btrfs_device *device, *tmp_device;
 524	int ret;
 525	bool freed = false;
 526
 527	lockdep_assert_held(&uuid_mutex);
 528
 529	/* Return good status if there is no instance of devt. */
 530	ret = 0;
 531	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 532
 533		mutex_lock(&fs_devices->device_list_mutex);
 534		list_for_each_entry_safe(device, tmp_device,
 535					 &fs_devices->devices, dev_list) {
 536			if (skip_device && skip_device == device)
 537				continue;
 538			if (devt && devt != device->devt)
 539				continue;
 540			if (fs_devices->opened) {
 541				if (devt)
 542					ret = -EBUSY;
 543				break;
 544			}
 545
 546			/* delete the stale device */
 547			fs_devices->num_devices--;
 548			list_del(&device->dev_list);
 549			btrfs_free_device(device);
 550
 551			freed = true;
 552		}
 553		mutex_unlock(&fs_devices->device_list_mutex);
 554
 555		if (fs_devices->num_devices == 0) {
 556			btrfs_sysfs_remove_fsid(fs_devices);
 557			list_del(&fs_devices->fs_list);
 558			free_fs_devices(fs_devices);
 559		}
 560	}
 561
 562	/* If there is at least one freed device return 0. */
 563	if (freed)
 564		return 0;
 565
 566	return ret;
 567}
 568
 569static struct btrfs_fs_devices *find_fsid_by_device(
 570					struct btrfs_super_block *disk_super,
 571					dev_t devt, bool *same_fsid_diff_dev)
 572{
 573	struct btrfs_fs_devices *fsid_fs_devices;
 574	struct btrfs_fs_devices *devt_fs_devices;
 575	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 576					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 577	bool found_by_devt = false;
 578
 579	/* Find the fs_device by the usual method, if found use it. */
 580	fsid_fs_devices = find_fsid(disk_super->fsid,
 581		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
 582
 583	/* The temp_fsid feature is supported only with single device filesystem. */
 584	if (btrfs_super_num_devices(disk_super) != 1)
 585		return fsid_fs_devices;
 586
 587	/*
 588	 * A seed device is an integral component of the sprout device, which
 589	 * functions as a multi-device filesystem. So, temp-fsid feature is
 590	 * not supported.
 591	 */
 592	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
 593		return fsid_fs_devices;
 594
 595	/* Try to find a fs_devices by matching devt. */
 596	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
 597		struct btrfs_device *device;
 598
 599		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
 600			if (device->devt == devt) {
 601				found_by_devt = true;
 602				break;
 603			}
 604		}
 605		if (found_by_devt)
 606			break;
 607	}
 608
 609	if (found_by_devt) {
 610		/* Existing device. */
 611		if (fsid_fs_devices == NULL) {
 612			if (devt_fs_devices->opened == 0) {
 613				/* Stale device. */
 614				return NULL;
 615			} else {
 616				/* temp_fsid is mounting a subvol. */
 617				return devt_fs_devices;
 618			}
 619		} else {
 620			/* Regular or temp_fsid device mounting a subvol. */
 621			return devt_fs_devices;
 622		}
 623	} else {
 624		/* New device. */
 625		if (fsid_fs_devices == NULL) {
 626			return NULL;
 627		} else {
 628			/* sb::fsid is already used create a new temp_fsid. */
 629			*same_fsid_diff_dev = true;
 630			return NULL;
 631		}
 632	}
 633
 634	/* Not reached. */
 635}
 636
 637/*
 638 * This is only used on mount, and we are protected from competing things
 639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 640 * fs_devices->device_list_mutex here.
 641 */
 642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 643			struct btrfs_device *device, blk_mode_t flags,
 644			void *holder)
 645{
 646	struct bdev_handle *bdev_handle;
 647	struct btrfs_super_block *disk_super;
 648	u64 devid;
 649	int ret;
 650
 651	if (device->bdev)
 652		return -EINVAL;
 653	if (!device->name)
 654		return -EINVAL;
 655
 656	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 657				    &bdev_handle, &disk_super);
 658	if (ret)
 659		return ret;
 660
 661	devid = btrfs_stack_device_id(&disk_super->dev_item);
 662	if (devid != device->devid)
 663		goto error_free_page;
 664
 665	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 666		goto error_free_page;
 667
 668	device->generation = btrfs_super_generation(disk_super);
 669
 670	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 671		if (btrfs_super_incompat_flags(disk_super) &
 672		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 673			pr_err(
 674		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 675			goto error_free_page;
 676		}
 677
 678		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 679		fs_devices->seeding = true;
 680	} else {
 681		if (bdev_read_only(bdev_handle->bdev))
 682			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 683		else
 684			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 685	}
 686
 687	if (!bdev_nonrot(bdev_handle->bdev))
 688		fs_devices->rotating = true;
 689
 690	if (bdev_max_discard_sectors(bdev_handle->bdev))
 691		fs_devices->discardable = true;
 692
 693	device->bdev_handle = bdev_handle;
 694	device->bdev = bdev_handle->bdev;
 695	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 696
 
 
 
 
 
 
 
 
 
 
 697	fs_devices->open_devices++;
 698	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 699	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 700		fs_devices->rw_devices++;
 701		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 702	}
 703	btrfs_release_disk_super(disk_super);
 704
 705	return 0;
 706
 707error_free_page:
 708	btrfs_release_disk_super(disk_super);
 709	bdev_release(bdev_handle);
 710
 711	return -EINVAL;
 712}
 713
 714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
 715{
 716	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
 717				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 718
 719	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
 720}
 721
 722/*
 723 * Add new device to list of registered devices
 724 *
 725 * Returns:
 726 * device pointer which was just added or updated when successful
 727 * error pointer when failed
 728 */
 729static noinline struct btrfs_device *device_list_add(const char *path,
 730			   struct btrfs_super_block *disk_super,
 731			   bool *new_device_added)
 732{
 733	struct btrfs_device *device;
 734	struct btrfs_fs_devices *fs_devices = NULL;
 735	struct rcu_string *name;
 736	u64 found_transid = btrfs_super_generation(disk_super);
 737	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 738	dev_t path_devt;
 739	int error;
 740	bool same_fsid_diff_dev = false;
 741	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 742		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 743
 744	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
 745		btrfs_err(NULL,
 746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
 747			  path);
 748		return ERR_PTR(-EAGAIN);
 749	}
 750
 751	error = lookup_bdev(path, &path_devt);
 752	if (error) {
 753		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 754			  path, error);
 755		return ERR_PTR(error);
 756	}
 757
 758	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
 759
 760	if (!fs_devices) {
 761		fs_devices = alloc_fs_devices(disk_super->fsid);
 762		if (IS_ERR(fs_devices))
 763			return ERR_CAST(fs_devices);
 764
 765		if (has_metadata_uuid)
 766			memcpy(fs_devices->metadata_uuid,
 767			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 768
 769		if (same_fsid_diff_dev) {
 770			generate_random_uuid(fs_devices->fsid);
 771			fs_devices->temp_fsid = true;
 772			pr_info("BTRFS: device %s using temp-fsid %pU\n",
 773				path, fs_devices->fsid);
 
 774		}
 775
 776		mutex_lock(&fs_devices->device_list_mutex);
 777		list_add(&fs_devices->fs_list, &fs_uuids);
 778
 779		device = NULL;
 780	} else {
 781		struct btrfs_dev_lookup_args args = {
 782			.devid = devid,
 783			.uuid = disk_super->dev_item.uuid,
 784		};
 785
 786		mutex_lock(&fs_devices->device_list_mutex);
 787		device = btrfs_find_device(fs_devices, &args);
 788
 789		if (found_transid > fs_devices->latest_generation) {
 790			memcpy(fs_devices->fsid, disk_super->fsid,
 791					BTRFS_FSID_SIZE);
 792			memcpy(fs_devices->metadata_uuid,
 793			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
 794		}
 795	}
 796
 797	if (!device) {
 798		unsigned int nofs_flag;
 799
 800		if (fs_devices->opened) {
 801			btrfs_err(NULL,
 802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
 803				  path, fs_devices->fsid, current->comm,
 
 804				  task_pid_nr(current));
 805			mutex_unlock(&fs_devices->device_list_mutex);
 806			return ERR_PTR(-EBUSY);
 807		}
 808
 809		nofs_flag = memalloc_nofs_save();
 810		device = btrfs_alloc_device(NULL, &devid,
 811					    disk_super->dev_item.uuid, path);
 812		memalloc_nofs_restore(nofs_flag);
 813		if (IS_ERR(device)) {
 814			mutex_unlock(&fs_devices->device_list_mutex);
 815			/* we can safely leave the fs_devices entry around */
 816			return device;
 817		}
 818
 819		device->devt = path_devt;
 820
 821		list_add_rcu(&device->dev_list, &fs_devices->devices);
 822		fs_devices->num_devices++;
 823
 824		device->fs_devices = fs_devices;
 825		*new_device_added = true;
 826
 827		if (disk_super->label[0])
 828			pr_info(
 829	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 830				disk_super->label, devid, found_transid, path,
 
 831				current->comm, task_pid_nr(current));
 832		else
 833			pr_info(
 834	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 835				disk_super->fsid, devid, found_transid, path,
 
 836				current->comm, task_pid_nr(current));
 837
 838	} else if (!device->name || strcmp(device->name->str, path)) {
 839		/*
 840		 * When FS is already mounted.
 841		 * 1. If you are here and if the device->name is NULL that
 842		 *    means this device was missing at time of FS mount.
 843		 * 2. If you are here and if the device->name is different
 844		 *    from 'path' that means either
 845		 *      a. The same device disappeared and reappeared with
 846		 *         different name. or
 847		 *      b. The missing-disk-which-was-replaced, has
 848		 *         reappeared now.
 849		 *
 850		 * We must allow 1 and 2a above. But 2b would be a spurious
 851		 * and unintentional.
 852		 *
 853		 * Further in case of 1 and 2a above, the disk at 'path'
 854		 * would have missed some transaction when it was away and
 855		 * in case of 2a the stale bdev has to be updated as well.
 856		 * 2b must not be allowed at all time.
 857		 */
 858
 859		/*
 860		 * For now, we do allow update to btrfs_fs_device through the
 861		 * btrfs dev scan cli after FS has been mounted.  We're still
 862		 * tracking a problem where systems fail mount by subvolume id
 863		 * when we reject replacement on a mounted FS.
 864		 */
 865		if (!fs_devices->opened && found_transid < device->generation) {
 866			/*
 867			 * That is if the FS is _not_ mounted and if you
 868			 * are here, that means there is more than one
 869			 * disk with same uuid and devid.We keep the one
 870			 * with larger generation number or the last-in if
 871			 * generation are equal.
 872			 */
 873			mutex_unlock(&fs_devices->device_list_mutex);
 874			btrfs_err(NULL,
 875"device %s already registered with a higher generation, found %llu expect %llu",
 876				  path, found_transid, device->generation);
 877			return ERR_PTR(-EEXIST);
 878		}
 879
 880		/*
 881		 * We are going to replace the device path for a given devid,
 882		 * make sure it's the same device if the device is mounted
 883		 *
 884		 * NOTE: the device->fs_info may not be reliable here so pass
 885		 * in a NULL to message helpers instead. This avoids a possible
 886		 * use-after-free when the fs_info and fs_info->sb are already
 887		 * torn down.
 888		 */
 889		if (device->bdev) {
 890			if (device->devt != path_devt) {
 891				mutex_unlock(&fs_devices->device_list_mutex);
 892				btrfs_warn_in_rcu(NULL,
 893	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 894						  path, devid, found_transid,
 895						  current->comm,
 896						  task_pid_nr(current));
 897				return ERR_PTR(-EEXIST);
 898			}
 899			btrfs_info_in_rcu(NULL,
 900	"devid %llu device path %s changed to %s scanned by %s (%d)",
 901					  devid, btrfs_dev_name(device),
 902					  path, current->comm,
 903					  task_pid_nr(current));
 904		}
 905
 906		name = rcu_string_strdup(path, GFP_NOFS);
 907		if (!name) {
 908			mutex_unlock(&fs_devices->device_list_mutex);
 909			return ERR_PTR(-ENOMEM);
 910		}
 911		rcu_string_free(device->name);
 912		rcu_assign_pointer(device->name, name);
 913		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 914			fs_devices->missing_devices--;
 915			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 916		}
 917		device->devt = path_devt;
 918	}
 919
 920	/*
 921	 * Unmount does not free the btrfs_device struct but would zero
 922	 * generation along with most of the other members. So just update
 923	 * it back. We need it to pick the disk with largest generation
 924	 * (as above).
 925	 */
 926	if (!fs_devices->opened) {
 927		device->generation = found_transid;
 928		fs_devices->latest_generation = max_t(u64, found_transid,
 929						fs_devices->latest_generation);
 930	}
 931
 932	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 933
 934	mutex_unlock(&fs_devices->device_list_mutex);
 935	return device;
 936}
 937
 938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 939{
 940	struct btrfs_fs_devices *fs_devices;
 941	struct btrfs_device *device;
 942	struct btrfs_device *orig_dev;
 943	int ret = 0;
 944
 945	lockdep_assert_held(&uuid_mutex);
 946
 947	fs_devices = alloc_fs_devices(orig->fsid);
 948	if (IS_ERR(fs_devices))
 949		return fs_devices;
 950
 951	fs_devices->total_devices = orig->total_devices;
 952
 953	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 954		const char *dev_path = NULL;
 955
 956		/*
 957		 * This is ok to do without RCU read locked because we hold the
 958		 * uuid mutex so nothing we touch in here is going to disappear.
 959		 */
 960		if (orig_dev->name)
 961			dev_path = orig_dev->name->str;
 962
 963		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 964					    orig_dev->uuid, dev_path);
 965		if (IS_ERR(device)) {
 966			ret = PTR_ERR(device);
 967			goto error;
 968		}
 969
 970		if (orig_dev->zone_info) {
 971			struct btrfs_zoned_device_info *zone_info;
 972
 973			zone_info = btrfs_clone_dev_zone_info(orig_dev);
 974			if (!zone_info) {
 975				btrfs_free_device(device);
 976				ret = -ENOMEM;
 977				goto error;
 978			}
 979			device->zone_info = zone_info;
 980		}
 981
 982		list_add(&device->dev_list, &fs_devices->devices);
 983		device->fs_devices = fs_devices;
 984		fs_devices->num_devices++;
 985	}
 986	return fs_devices;
 987error:
 988	free_fs_devices(fs_devices);
 989	return ERR_PTR(ret);
 990}
 991
 992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
 993				      struct btrfs_device **latest_dev)
 994{
 995	struct btrfs_device *device, *next;
 996
 997	/* This is the initialized path, it is safe to release the devices. */
 998	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 999		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001				      &device->dev_state) &&
1002			    !test_bit(BTRFS_DEV_STATE_MISSING,
1003				      &device->dev_state) &&
1004			    (!*latest_dev ||
1005			     device->generation > (*latest_dev)->generation)) {
1006				*latest_dev = device;
1007			}
1008			continue;
1009		}
1010
1011		/*
1012		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013		 * in btrfs_init_dev_replace() so just continue.
1014		 */
1015		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016			continue;
1017
1018		if (device->bdev_handle) {
1019			bdev_release(device->bdev_handle);
1020			device->bdev = NULL;
1021			device->bdev_handle = NULL;
1022			fs_devices->open_devices--;
1023		}
1024		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025			list_del_init(&device->dev_alloc_list);
1026			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027			fs_devices->rw_devices--;
1028		}
1029		list_del_init(&device->dev_list);
1030		fs_devices->num_devices--;
1031		btrfs_free_device(device);
1032	}
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042	struct btrfs_device *latest_dev = NULL;
1043	struct btrfs_fs_devices *seed_dev;
1044
1045	mutex_lock(&uuid_mutex);
1046	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051	fs_devices->latest_dev = latest_dev;
1052
1053	mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058	if (!device->bdev)
1059		return;
1060
1061	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062		sync_blockdev(device->bdev);
1063		invalidate_bdev(device->bdev);
1064	}
1065
1066	bdev_release(device->bdev_handle);
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075		list_del_init(&device->dev_alloc_list);
1076		fs_devices->rw_devices--;
1077	}
1078
1079	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084		fs_devices->missing_devices--;
1085	}
1086
1087	btrfs_close_bdev(device);
1088	if (device->bdev) {
1089		fs_devices->open_devices--;
1090		device->bdev = NULL;
1091	}
1092	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093	btrfs_destroy_dev_zone_info(device);
1094
1095	device->fs_info = NULL;
1096	atomic_set(&device->dev_stats_ccnt, 0);
1097	extent_io_tree_release(&device->alloc_state);
1098
1099	/*
1100	 * Reset the flush error record. We might have a transient flush error
1101	 * in this mount, and if so we aborted the current transaction and set
1102	 * the fs to an error state, guaranteeing no super blocks can be further
1103	 * committed. However that error might be transient and if we unmount the
1104	 * filesystem and mount it again, we should allow the mount to succeed
1105	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106	 * filesystem again we still get flush errors, then we will again abort
1107	 * any transaction and set the error state, guaranteeing no commits of
1108	 * unsafe super blocks.
1109	 */
1110	device->last_flush_error = 0;
1111
1112	/* Verify the device is back in a pristine state  */
1113	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115	WARN_ON(!list_empty(&device->dev_alloc_list));
1116	WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121	struct btrfs_device *device, *tmp;
1122
1123	lockdep_assert_held(&uuid_mutex);
1124
1125	if (--fs_devices->opened > 0)
1126		return;
1127
1128	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129		btrfs_close_one_device(device);
1130
1131	WARN_ON(fs_devices->open_devices);
1132	WARN_ON(fs_devices->rw_devices);
1133	fs_devices->opened = 0;
1134	fs_devices->seeding = false;
1135	fs_devices->fs_info = NULL;
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140	LIST_HEAD(list);
1141	struct btrfs_fs_devices *tmp;
1142
1143	mutex_lock(&uuid_mutex);
1144	close_fs_devices(fs_devices);
1145	if (!fs_devices->opened) {
1146		list_splice_init(&fs_devices->seed_list, &list);
1147
1148		/*
1149		 * If the struct btrfs_fs_devices is not assembled with any
1150		 * other device, it can be re-initialized during the next mount
1151		 * without the needing device-scan step. Therefore, it can be
1152		 * fully freed.
1153		 */
1154		if (fs_devices->num_devices == 1) {
1155			list_del(&fs_devices->fs_list);
1156			free_fs_devices(fs_devices);
1157		}
1158	}
1159
1160
1161	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162		close_fs_devices(fs_devices);
1163		list_del(&fs_devices->seed_list);
1164		free_fs_devices(fs_devices);
1165	}
1166	mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170				blk_mode_t flags, void *holder)
1171{
1172	struct btrfs_device *device;
1173	struct btrfs_device *latest_dev = NULL;
1174	struct btrfs_device *tmp_device;
 
1175
1176	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177				 dev_list) {
1178		int ret;
1179
1180		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181		if (ret == 0 &&
1182		    (!latest_dev || device->generation > latest_dev->generation)) {
1183			latest_dev = device;
1184		} else if (ret == -ENODATA) {
1185			fs_devices->num_devices--;
1186			list_del(&device->dev_list);
1187			btrfs_free_device(device);
1188		}
 
 
1189	}
1190	if (fs_devices->open_devices == 0)
 
 
 
1191		return -EINVAL;
 
1192
1193	fs_devices->opened = 1;
1194	fs_devices->latest_dev = latest_dev;
1195	fs_devices->total_rw_bytes = 0;
1196	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198
1199	return 0;
1200}
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203		     const struct list_head *b)
1204{
1205	const struct btrfs_device *dev1, *dev2;
1206
1207	dev1 = list_entry(a, struct btrfs_device, dev_list);
1208	dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210	if (dev1->devid < dev2->devid)
1211		return -1;
1212	else if (dev1->devid > dev2->devid)
1213		return 1;
1214	return 0;
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218		       blk_mode_t flags, void *holder)
1219{
1220	int ret;
1221
1222	lockdep_assert_held(&uuid_mutex);
1223	/*
1224	 * The device_list_mutex cannot be taken here in case opening the
1225	 * underlying device takes further locks like open_mutex.
1226	 *
1227	 * We also don't need the lock here as this is called during mount and
1228	 * exclusion is provided by uuid_mutex
1229	 */
1230
1231	if (fs_devices->opened) {
1232		fs_devices->opened++;
1233		ret = 0;
1234	} else {
1235		list_sort(NULL, &fs_devices->devices, devid_cmp);
1236		ret = open_fs_devices(fs_devices, flags, holder);
1237	}
1238
1239	return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244	struct page *page = virt_to_page(super);
1245
1246	put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250						       u64 bytenr, u64 bytenr_orig)
1251{
1252	struct btrfs_super_block *disk_super;
1253	struct page *page;
1254	void *p;
1255	pgoff_t index;
1256
1257	/* make sure our super fits in the device */
1258	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259		return ERR_PTR(-EINVAL);
1260
1261	/* make sure our super fits in the page */
1262	if (sizeof(*disk_super) > PAGE_SIZE)
1263		return ERR_PTR(-EINVAL);
1264
1265	/* make sure our super doesn't straddle pages on disk */
1266	index = bytenr >> PAGE_SHIFT;
1267	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268		return ERR_PTR(-EINVAL);
1269
1270	/* pull in the page with our super */
1271	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273	if (IS_ERR(page))
1274		return ERR_CAST(page);
1275
1276	p = page_address(page);
1277
1278	/* align our pointer to the offset of the super block */
1279	disk_super = p + offset_in_page(bytenr);
1280
1281	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283		btrfs_release_disk_super(p);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290	return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295	int ret;
1296
1297	mutex_lock(&uuid_mutex);
1298	ret = btrfs_free_stale_devices(devt, NULL);
1299	mutex_unlock(&uuid_mutex);
1300
1301	return ret;
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314					   bool mount_arg_dev)
1315{
1316	struct btrfs_super_block *disk_super;
1317	bool new_device_added = false;
1318	struct btrfs_device *device = NULL;
1319	struct bdev_handle *bdev_handle;
1320	u64 bytenr, bytenr_orig;
 
1321	int ret;
1322
1323	lockdep_assert_held(&uuid_mutex);
1324
1325	/*
1326	 * we would like to check all the supers, but that would make
1327	 * a btrfs mount succeed after a mkfs from a different FS.
1328	 * So, we need to add a special mount option to scan for
1329	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330	 */
1331
1332	/*
1333	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334	 * device scan which may race with the user's mount or mkfs command,
1335	 * resulting in failure.
1336	 * Since the device scan is solely for reading purposes, there is no
1337	 * need for an exclusive open. Additionally, the devices are read again
1338	 * during the mount process. It is ok to get some inconsistent
1339	 * values temporarily, as the device paths of the fsid are the only
1340	 * required information for assembling the volume.
1341	 */
1342	bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343	if (IS_ERR(bdev_handle))
1344		return ERR_CAST(bdev_handle);
1345
1346	bytenr_orig = btrfs_sb_offset(0);
1347	ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348	if (ret) {
1349		device = ERR_PTR(ret);
1350		goto error_bdev_put;
1351	}
1352
1353	disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354					   bytenr_orig);
1355	if (IS_ERR(disk_super)) {
1356		device = ERR_CAST(disk_super);
1357		goto error_bdev_put;
1358	}
1359
1360	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362		dev_t devt;
 
1363
1364		ret = lookup_bdev(path, &devt);
1365		if (ret)
1366			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367				   path, ret);
1368		else
1369			btrfs_free_stale_devices(devt, NULL);
1370
1371		pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372		device = NULL;
1373		goto free_disk_super;
1374	}
1375
1376	device = device_list_add(path, disk_super, &new_device_added);
1377	if (!IS_ERR(device) && new_device_added)
1378		btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381	btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384	bdev_release(bdev_handle);
1385
1386	return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394				    u64 len)
1395{
1396	u64 physical_start, physical_end;
1397
1398	lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400	if (find_first_extent_bit(&device->alloc_state, *start,
1401				  &physical_start, &physical_end,
1402				  CHUNK_ALLOCATED, NULL)) {
1403
1404		if (in_range(physical_start, *start, len) ||
1405		    in_range(*start, physical_start,
1406			     physical_end - physical_start)) {
1407			*start = physical_end + 1;
1408			return true;
1409		}
1410	}
1411	return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416	switch (device->fs_devices->chunk_alloc_policy) {
1417	case BTRFS_CHUNK_ALLOC_REGULAR:
1418		return BTRFS_DEVICE_RANGE_RESERVED;
1419	case BTRFS_CHUNK_ALLOC_ZONED:
1420		/*
1421		 * We don't care about the starting region like regular
1422		 * allocator, because we anyway use/reserve the first two zones
1423		 * for superblock logging.
1424		 */
1425		return 0;
1426	default:
1427		BUG();
1428	}
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432					u64 *hole_start, u64 *hole_size,
1433					u64 num_bytes)
1434{
1435	u64 zone_size = device->zone_info->zone_size;
1436	u64 pos;
1437	int ret;
1438	bool changed = false;
1439
1440	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442	while (*hole_size > 0) {
1443		pos = btrfs_find_allocatable_zones(device, *hole_start,
1444						   *hole_start + *hole_size,
1445						   num_bytes);
1446		if (pos != *hole_start) {
1447			*hole_size = *hole_start + *hole_size - pos;
1448			*hole_start = pos;
1449			changed = true;
1450			if (*hole_size < num_bytes)
1451				break;
1452		}
1453
1454		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456		/* Range is ensured to be empty */
1457		if (!ret)
1458			return changed;
1459
1460		/* Given hole range was invalid (outside of device) */
1461		if (ret == -ERANGE) {
1462			*hole_start += *hole_size;
1463			*hole_size = 0;
1464			return true;
1465		}
1466
1467		*hole_start += zone_size;
1468		*hole_size -= zone_size;
1469		changed = true;
1470	}
1471
1472	return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device:	the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size:	the size of the hole
1481 * @num_bytes:	the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487				  u64 *hole_size, u64 num_bytes)
1488{
1489	bool changed = false;
1490	u64 hole_end = *hole_start + *hole_size;
1491
1492	for (;;) {
1493		/*
1494		 * Check before we set max_hole_start, otherwise we could end up
1495		 * sending back this offset anyway.
1496		 */
1497		if (contains_pending_extent(device, hole_start, *hole_size)) {
1498			if (hole_end >= *hole_start)
1499				*hole_size = hole_end - *hole_start;
1500			else
1501				*hole_size = 0;
1502			changed = true;
1503		}
1504
1505		switch (device->fs_devices->chunk_alloc_policy) {
1506		case BTRFS_CHUNK_ALLOC_REGULAR:
1507			/* No extra check */
1508			break;
1509		case BTRFS_CHUNK_ALLOC_ZONED:
1510			if (dev_extent_hole_check_zoned(device, hole_start,
1511							hole_size, num_bytes)) {
1512				changed = true;
1513				/*
1514				 * The changed hole can contain pending extent.
1515				 * Loop again to check that.
1516				 */
1517				continue;
1518			}
1519			break;
1520		default:
1521			BUG();
1522		}
1523
1524		break;
1525	}
1526
1527	return changed;
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device:	  the device which we search the free space in
1534 * @num_bytes:	  the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start:	  store the start of the free space.
1537 * @len:	  the size of the free space. that we find, or the size
1538 *		  of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558				u64 *start, u64 *len)
1559{
1560	struct btrfs_fs_info *fs_info = device->fs_info;
1561	struct btrfs_root *root = fs_info->dev_root;
1562	struct btrfs_key key;
1563	struct btrfs_dev_extent *dev_extent;
1564	struct btrfs_path *path;
1565	u64 search_start;
1566	u64 hole_size;
1567	u64 max_hole_start;
1568	u64 max_hole_size = 0;
1569	u64 extent_end;
1570	u64 search_end = device->total_bytes;
1571	int ret;
1572	int slot;
1573	struct extent_buffer *l;
1574
1575	search_start = dev_extent_search_start(device);
1576	max_hole_start = search_start;
1577
1578	WARN_ON(device->zone_info &&
1579		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
1581	path = btrfs_alloc_path();
1582	if (!path) {
1583		ret = -ENOMEM;
1584		goto out;
1585	}
1586again:
1587	if (search_start >= search_end ||
1588		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589		ret = -ENOSPC;
1590		goto out;
1591	}
1592
1593	path->reada = READA_FORWARD;
1594	path->search_commit_root = 1;
1595	path->skip_locking = 1;
1596
1597	key.objectid = device->devid;
1598	key.offset = search_start;
1599	key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601	ret = btrfs_search_backwards(root, &key, path);
1602	if (ret < 0)
1603		goto out;
1604
1605	while (search_start < search_end) {
1606		l = path->nodes[0];
1607		slot = path->slots[0];
1608		if (slot >= btrfs_header_nritems(l)) {
1609			ret = btrfs_next_leaf(root, path);
1610			if (ret == 0)
1611				continue;
1612			if (ret < 0)
1613				goto out;
1614
1615			break;
1616		}
1617		btrfs_item_key_to_cpu(l, &key, slot);
1618
1619		if (key.objectid < device->devid)
1620			goto next;
1621
1622		if (key.objectid > device->devid)
1623			break;
1624
1625		if (key.type != BTRFS_DEV_EXTENT_KEY)
1626			goto next;
1627
1628		if (key.offset > search_end)
1629			break;
1630
1631		if (key.offset > search_start) {
1632			hole_size = key.offset - search_start;
1633			dev_extent_hole_check(device, &search_start, &hole_size,
1634					      num_bytes);
1635
1636			if (hole_size > max_hole_size) {
1637				max_hole_start = search_start;
1638				max_hole_size = hole_size;
1639			}
1640
1641			/*
1642			 * If this free space is greater than which we need,
1643			 * it must be the max free space that we have found
1644			 * until now, so max_hole_start must point to the start
1645			 * of this free space and the length of this free space
1646			 * is stored in max_hole_size. Thus, we return
1647			 * max_hole_start and max_hole_size and go back to the
1648			 * caller.
1649			 */
1650			if (hole_size >= num_bytes) {
1651				ret = 0;
1652				goto out;
1653			}
1654		}
1655
1656		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657		extent_end = key.offset + btrfs_dev_extent_length(l,
1658								  dev_extent);
1659		if (extent_end > search_start)
1660			search_start = extent_end;
1661next:
1662		path->slots[0]++;
1663		cond_resched();
1664	}
1665
1666	/*
1667	 * At this point, search_start should be the end of
1668	 * allocated dev extents, and when shrinking the device,
1669	 * search_end may be smaller than search_start.
1670	 */
1671	if (search_end > search_start) {
1672		hole_size = search_end - search_start;
1673		if (dev_extent_hole_check(device, &search_start, &hole_size,
1674					  num_bytes)) {
1675			btrfs_release_path(path);
1676			goto again;
1677		}
1678
1679		if (hole_size > max_hole_size) {
1680			max_hole_start = search_start;
1681			max_hole_size = hole_size;
1682		}
1683	}
1684
1685	/* See above. */
1686	if (max_hole_size < num_bytes)
1687		ret = -ENOSPC;
1688	else
1689		ret = 0;
1690
1691	ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693	btrfs_free_path(path);
1694	*start = max_hole_start;
1695	if (len)
1696		*len = max_hole_size;
1697	return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701			  struct btrfs_device *device,
1702			  u64 start, u64 *dev_extent_len)
1703{
1704	struct btrfs_fs_info *fs_info = device->fs_info;
1705	struct btrfs_root *root = fs_info->dev_root;
1706	int ret;
1707	struct btrfs_path *path;
1708	struct btrfs_key key;
1709	struct btrfs_key found_key;
1710	struct extent_buffer *leaf = NULL;
1711	struct btrfs_dev_extent *extent = NULL;
1712
1713	path = btrfs_alloc_path();
1714	if (!path)
1715		return -ENOMEM;
1716
1717	key.objectid = device->devid;
1718	key.offset = start;
1719	key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722	if (ret > 0) {
1723		ret = btrfs_previous_item(root, path, key.objectid,
1724					  BTRFS_DEV_EXTENT_KEY);
1725		if (ret)
1726			goto out;
1727		leaf = path->nodes[0];
1728		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729		extent = btrfs_item_ptr(leaf, path->slots[0],
1730					struct btrfs_dev_extent);
1731		BUG_ON(found_key.offset > start || found_key.offset +
1732		       btrfs_dev_extent_length(leaf, extent) < start);
1733		key = found_key;
1734		btrfs_release_path(path);
1735		goto again;
1736	} else if (ret == 0) {
1737		leaf = path->nodes[0];
1738		extent = btrfs_item_ptr(leaf, path->slots[0],
1739					struct btrfs_dev_extent);
1740	} else {
1741		goto out;
1742	}
1743
1744	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
1746	ret = btrfs_del_item(trans, root, path);
1747	if (ret == 0)
1748		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749out:
1750	btrfs_free_path(path);
1751	return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755{
1756	struct rb_node *n;
1757	u64 ret = 0;
1758
1759	read_lock(&fs_info->mapping_tree_lock);
1760	n = rb_last(&fs_info->mapping_tree.rb_root);
1761	if (n) {
1762		struct btrfs_chunk_map *map;
1763
1764		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765		ret = map->start + map->chunk_len;
1766	}
1767	read_unlock(&fs_info->mapping_tree_lock);
1768
1769	return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773				    u64 *devid_ret)
1774{
1775	int ret;
1776	struct btrfs_key key;
1777	struct btrfs_key found_key;
1778	struct btrfs_path *path;
1779
1780	path = btrfs_alloc_path();
1781	if (!path)
1782		return -ENOMEM;
1783
1784	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785	key.type = BTRFS_DEV_ITEM_KEY;
1786	key.offset = (u64)-1;
1787
1788	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789	if (ret < 0)
1790		goto error;
1791
1792	if (ret == 0) {
1793		/* Corruption */
1794		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795		ret = -EUCLEAN;
1796		goto error;
1797	}
1798
1799	ret = btrfs_previous_item(fs_info->chunk_root, path,
1800				  BTRFS_DEV_ITEMS_OBJECTID,
1801				  BTRFS_DEV_ITEM_KEY);
1802	if (ret) {
1803		*devid_ret = 1;
1804	} else {
1805		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806				      path->slots[0]);
1807		*devid_ret = found_key.offset + 1;
1808	}
1809	ret = 0;
1810error:
1811	btrfs_free_path(path);
1812	return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820			    struct btrfs_device *device)
1821{
1822	int ret;
1823	struct btrfs_path *path;
1824	struct btrfs_dev_item *dev_item;
1825	struct extent_buffer *leaf;
1826	struct btrfs_key key;
1827	unsigned long ptr;
1828
1829	path = btrfs_alloc_path();
1830	if (!path)
1831		return -ENOMEM;
1832
1833	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834	key.type = BTRFS_DEV_ITEM_KEY;
1835	key.offset = device->devid;
1836
1837	btrfs_reserve_chunk_metadata(trans, true);
1838	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839				      &key, sizeof(*dev_item));
1840	btrfs_trans_release_chunk_metadata(trans);
1841	if (ret)
1842		goto out;
1843
1844	leaf = path->nodes[0];
1845	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847	btrfs_set_device_id(leaf, dev_item, device->devid);
1848	btrfs_set_device_generation(leaf, dev_item, 0);
1849	btrfs_set_device_type(leaf, dev_item, device->type);
1850	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853	btrfs_set_device_total_bytes(leaf, dev_item,
1854				     btrfs_device_get_disk_total_bytes(device));
1855	btrfs_set_device_bytes_used(leaf, dev_item,
1856				    btrfs_device_get_bytes_used(device));
1857	btrfs_set_device_group(leaf, dev_item, 0);
1858	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860	btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862	ptr = btrfs_device_uuid(dev_item);
1863	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864	ptr = btrfs_device_fsid(dev_item);
1865	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866			    ptr, BTRFS_FSID_SIZE);
1867	btrfs_mark_buffer_dirty(trans, leaf);
1868
1869	ret = 0;
1870out:
1871	btrfs_free_path(path);
1872	return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883	struct path path;
1884	int ret;
1885
1886	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887	if (ret)
1888		return;
1889
1890	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891	path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895			     struct btrfs_device *device)
1896{
1897	struct btrfs_root *root = device->fs_info->chunk_root;
1898	int ret;
1899	struct btrfs_path *path;
1900	struct btrfs_key key;
1901
1902	path = btrfs_alloc_path();
1903	if (!path)
1904		return -ENOMEM;
1905
1906	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907	key.type = BTRFS_DEV_ITEM_KEY;
1908	key.offset = device->devid;
1909
1910	btrfs_reserve_chunk_metadata(trans, false);
1911	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912	btrfs_trans_release_chunk_metadata(trans);
1913	if (ret) {
1914		if (ret > 0)
1915			ret = -ENOENT;
1916		goto out;
1917	}
1918
1919	ret = btrfs_del_item(trans, root, path);
1920out:
1921	btrfs_free_path(path);
1922	return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931		u64 num_devices)
1932{
1933	u64 all_avail;
1934	unsigned seq;
1935	int i;
1936
1937	do {
1938		seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940		all_avail = fs_info->avail_data_alloc_bits |
1941			    fs_info->avail_system_alloc_bits |
1942			    fs_info->avail_metadata_alloc_bits;
1943	} while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947			continue;
1948
1949		if (num_devices < btrfs_raid_array[i].devs_min)
1950			return btrfs_raid_array[i].mindev_error;
1951	}
1952
1953	return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
1959	struct btrfs_device *next_device;
1960
1961	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962		if (next_device != device &&
1963		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964		    && next_device->bdev)
1965			return next_device;
1966	}
1967
1968	return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978					    struct btrfs_device *next_device)
1979{
1980	struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982	if (!next_device)
1983		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984							    device);
1985	ASSERT(next_device);
1986
1987	if (fs_info->sb->s_bdev &&
1988			(fs_info->sb->s_bdev == device->bdev))
1989		fs_info->sb->s_bdev = next_device->bdev;
1990
1991	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992		fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001	u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003	down_read(&fs_info->dev_replace.rwsem);
2004	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005		ASSERT(num_devices > 1);
2006		num_devices--;
2007	}
2008	up_read(&fs_info->dev_replace.rwsem);
2009
2010	return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014				     struct block_device *bdev, int copy_num)
2015{
2016	struct btrfs_super_block *disk_super;
2017	const size_t len = sizeof(disk_super->magic);
2018	const u64 bytenr = btrfs_sb_offset(copy_num);
2019	int ret;
2020
2021	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022	if (IS_ERR(disk_super))
2023		return;
2024
2025	memset(&disk_super->magic, 0, len);
2026	folio_mark_dirty(virt_to_folio(disk_super));
2027	btrfs_release_disk_super(disk_super);
2028
2029	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030	if (ret)
2031		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032			copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036			       struct block_device *bdev,
2037			       const char *device_path)
2038{
2039	int copy_num;
 
2040
2041	if (!bdev)
2042		return;
2043
2044	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045		if (bdev_is_zoned(bdev))
2046			btrfs_reset_sb_log_zones(bdev, copy_num);
2047		else
2048			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049	}
2050
2051	/* Notify udev that device has changed */
2052	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054	/* Update ctime/mtime for device path for libblkid */
2055	update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059		    struct btrfs_dev_lookup_args *args,
2060		    struct bdev_handle **bdev_handle)
2061{
2062	struct btrfs_trans_handle *trans;
2063	struct btrfs_device *device;
2064	struct btrfs_fs_devices *cur_devices;
2065	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066	u64 num_devices;
2067	int ret = 0;
2068
2069	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071		return -EINVAL;
2072	}
2073
2074	/*
2075	 * The device list in fs_devices is accessed without locks (neither
2076	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077	 * filesystem and another device rm cannot run.
2078	 */
2079	num_devices = btrfs_num_devices(fs_info);
2080
2081	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082	if (ret)
2083		return ret;
2084
2085	device = btrfs_find_device(fs_info->fs_devices, args);
2086	if (!device) {
2087		if (args->missing)
2088			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089		else
2090			ret = -ENOENT;
2091		return ret;
2092	}
2093
2094	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095		btrfs_warn_in_rcu(fs_info,
2096		  "cannot remove device %s (devid %llu) due to active swapfile",
2097				  btrfs_dev_name(device), device->devid);
2098		return -ETXTBSY;
2099	}
2100
2101	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102		return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105	    fs_info->fs_devices->rw_devices == 1)
2106		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109		mutex_lock(&fs_info->chunk_mutex);
2110		list_del_init(&device->dev_alloc_list);
2111		device->fs_devices->rw_devices--;
2112		mutex_unlock(&fs_info->chunk_mutex);
2113	}
2114
2115	ret = btrfs_shrink_device(device, 0);
2116	if (ret)
2117		goto error_undo;
2118
2119	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120	if (IS_ERR(trans)) {
2121		ret = PTR_ERR(trans);
2122		goto error_undo;
2123	}
2124
2125	ret = btrfs_rm_dev_item(trans, device);
2126	if (ret) {
2127		/* Any error in dev item removal is critical */
2128		btrfs_crit(fs_info,
2129			   "failed to remove device item for devid %llu: %d",
2130			   device->devid, ret);
2131		btrfs_abort_transaction(trans, ret);
2132		btrfs_end_transaction(trans);
2133		return ret;
2134	}
2135
2136	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137	btrfs_scrub_cancel_dev(device);
2138
2139	/*
2140	 * the device list mutex makes sure that we don't change
2141	 * the device list while someone else is writing out all
2142	 * the device supers. Whoever is writing all supers, should
2143	 * lock the device list mutex before getting the number of
2144	 * devices in the super block (super_copy). Conversely,
2145	 * whoever updates the number of devices in the super block
2146	 * (super_copy) should hold the device list mutex.
2147	 */
2148
2149	/*
2150	 * In normal cases the cur_devices == fs_devices. But in case
2151	 * of deleting a seed device, the cur_devices should point to
2152	 * its own fs_devices listed under the fs_devices->seed_list.
2153	 */
2154	cur_devices = device->fs_devices;
2155	mutex_lock(&fs_devices->device_list_mutex);
2156	list_del_rcu(&device->dev_list);
2157
2158	cur_devices->num_devices--;
2159	cur_devices->total_devices--;
2160	/* Update total_devices of the parent fs_devices if it's seed */
2161	if (cur_devices != fs_devices)
2162		fs_devices->total_devices--;
2163
2164	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165		cur_devices->missing_devices--;
2166
2167	btrfs_assign_next_active_device(device, NULL);
2168
2169	if (device->bdev_handle) {
2170		cur_devices->open_devices--;
2171		/* remove sysfs entry */
2172		btrfs_sysfs_remove_device(device);
2173	}
2174
2175	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177	mutex_unlock(&fs_devices->device_list_mutex);
2178
2179	/*
2180	 * At this point, the device is zero sized and detached from the
2181	 * devices list.  All that's left is to zero out the old supers and
2182	 * free the device.
2183	 *
2184	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185	 * write lock, and bdev_release() will pull in the ->open_mutex on
2186	 * the block device and it's dependencies.  Instead just flush the
2187	 * device and let the caller do the final bdev_release.
2188	 */
2189	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190		btrfs_scratch_superblocks(fs_info, device->bdev,
2191					  device->name->str);
2192		if (device->bdev) {
2193			sync_blockdev(device->bdev);
2194			invalidate_bdev(device->bdev);
2195		}
2196	}
2197
2198	*bdev_handle = device->bdev_handle;
2199	synchronize_rcu();
2200	btrfs_free_device(device);
2201
2202	/*
2203	 * This can happen if cur_devices is the private seed devices list.  We
2204	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205	 * to be held, but in fact we don't need that for the private
2206	 * seed_devices, we can simply decrement cur_devices->opened and then
2207	 * remove it from our list and free the fs_devices.
2208	 */
2209	if (cur_devices->num_devices == 0) {
2210		list_del_init(&cur_devices->seed_list);
2211		ASSERT(cur_devices->opened == 1);
2212		cur_devices->opened--;
2213		free_fs_devices(cur_devices);
2214	}
2215
2216	ret = btrfs_commit_transaction(trans);
2217
2218	return ret;
2219
2220error_undo:
2221	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222		mutex_lock(&fs_info->chunk_mutex);
2223		list_add(&device->dev_alloc_list,
2224			 &fs_devices->alloc_list);
2225		device->fs_devices->rw_devices++;
2226		mutex_unlock(&fs_info->chunk_mutex);
2227	}
2228	return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233	struct btrfs_fs_devices *fs_devices;
2234
2235	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237	/*
2238	 * in case of fs with no seed, srcdev->fs_devices will point
2239	 * to fs_devices of fs_info. However when the dev being replaced is
2240	 * a seed dev it will point to the seed's local fs_devices. In short
2241	 * srcdev will have its correct fs_devices in both the cases.
2242	 */
2243	fs_devices = srcdev->fs_devices;
2244
2245	list_del_rcu(&srcdev->dev_list);
2246	list_del(&srcdev->dev_alloc_list);
2247	fs_devices->num_devices--;
2248	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249		fs_devices->missing_devices--;
2250
2251	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252		fs_devices->rw_devices--;
2253
2254	if (srcdev->bdev)
2255		fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262	mutex_lock(&uuid_mutex);
2263
2264	btrfs_close_bdev(srcdev);
2265	synchronize_rcu();
2266	btrfs_free_device(srcdev);
2267
2268	/* if this is no devs we rather delete the fs_devices */
2269	if (!fs_devices->num_devices) {
2270		/*
2271		 * On a mounted FS, num_devices can't be zero unless it's a
2272		 * seed. In case of a seed device being replaced, the replace
2273		 * target added to the sprout FS, so there will be no more
2274		 * device left under the seed FS.
2275		 */
2276		ASSERT(fs_devices->seeding);
2277
2278		list_del_init(&fs_devices->seed_list);
2279		close_fs_devices(fs_devices);
2280		free_fs_devices(fs_devices);
2281	}
2282	mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289	mutex_lock(&fs_devices->device_list_mutex);
2290
2291	btrfs_sysfs_remove_device(tgtdev);
2292
2293	if (tgtdev->bdev)
2294		fs_devices->open_devices--;
2295
2296	fs_devices->num_devices--;
2297
2298	btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300	list_del_rcu(&tgtdev->dev_list);
2301
2302	mutex_unlock(&fs_devices->device_list_mutex);
2303
2304	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305				  tgtdev->name->str);
2306
2307	btrfs_close_bdev(tgtdev);
2308	synchronize_rcu();
2309	btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info:	the filesystem
2316 * @args:	the args to populate
2317 * @path:	the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks.  The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331				 struct btrfs_dev_lookup_args *args,
2332				 const char *path)
2333{
2334	struct btrfs_super_block *disk_super;
2335	struct bdev_handle *bdev_handle;
2336	int ret;
2337
2338	if (!path || !path[0])
2339		return -EINVAL;
2340	if (!strcmp(path, "missing")) {
2341		args->missing = true;
2342		return 0;
2343	}
2344
2345	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347	if (!args->uuid || !args->fsid) {
2348		btrfs_put_dev_args_from_path(args);
2349		return -ENOMEM;
2350	}
2351
2352	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353				    &bdev_handle, &disk_super);
2354	if (ret) {
2355		btrfs_put_dev_args_from_path(args);
2356		return ret;
2357	}
2358
2359	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363	else
2364		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365	btrfs_release_disk_super(disk_super);
2366	bdev_release(bdev_handle);
2367	return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377	kfree(args->uuid);
2378	kfree(args->fsid);
2379	args->uuid = NULL;
2380	args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384		struct btrfs_fs_info *fs_info, u64 devid,
2385		const char *device_path)
2386{
2387	BTRFS_DEV_LOOKUP_ARGS(args);
2388	struct btrfs_device *device;
2389	int ret;
2390
2391	if (devid) {
2392		args.devid = devid;
2393		device = btrfs_find_device(fs_info->fs_devices, &args);
2394		if (!device)
2395			return ERR_PTR(-ENOENT);
2396		return device;
2397	}
2398
2399	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400	if (ret)
2401		return ERR_PTR(ret);
2402	device = btrfs_find_device(fs_info->fs_devices, &args);
2403	btrfs_put_dev_args_from_path(&args);
2404	if (!device)
2405		return ERR_PTR(-ENOENT);
2406	return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412	struct btrfs_fs_devices *old_devices;
2413	struct btrfs_fs_devices *seed_devices;
2414
2415	lockdep_assert_held(&uuid_mutex);
2416	if (!fs_devices->seeding)
2417		return ERR_PTR(-EINVAL);
2418
2419	/*
2420	 * Private copy of the seed devices, anchored at
2421	 * fs_info->fs_devices->seed_list
2422	 */
2423	seed_devices = alloc_fs_devices(NULL);
2424	if (IS_ERR(seed_devices))
2425		return seed_devices;
2426
2427	/*
2428	 * It's necessary to retain a copy of the original seed fs_devices in
2429	 * fs_uuids so that filesystems which have been seeded can successfully
2430	 * reference the seed device from open_seed_devices. This also supports
2431	 * multiple fs seed.
2432	 */
2433	old_devices = clone_fs_devices(fs_devices);
2434	if (IS_ERR(old_devices)) {
2435		kfree(seed_devices);
2436		return old_devices;
2437	}
2438
2439	list_add(&old_devices->fs_list, &fs_uuids);
2440
2441	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442	seed_devices->opened = 1;
2443	INIT_LIST_HEAD(&seed_devices->devices);
2444	INIT_LIST_HEAD(&seed_devices->alloc_list);
2445	mutex_init(&seed_devices->device_list_mutex);
2446
2447	return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455			       struct btrfs_fs_devices *seed_devices)
2456{
2457	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458	struct btrfs_super_block *disk_super = fs_info->super_copy;
2459	struct btrfs_device *device;
2460	u64 super_flags;
2461
2462	/*
2463	 * We are updating the fsid, the thread leading to device_list_add()
2464	 * could race, so uuid_mutex is needed.
2465	 */
2466	lockdep_assert_held(&uuid_mutex);
2467
2468	/*
2469	 * The threads listed below may traverse dev_list but can do that without
2470	 * device_list_mutex:
2471	 * - All device ops and balance - as we are in btrfs_exclop_start.
2472	 * - Various dev_list readers - are using RCU.
2473	 * - btrfs_ioctl_fitrim() - is using RCU.
2474	 *
2475	 * For-read threads as below are using device_list_mutex:
2476	 * - Readonly scrub btrfs_scrub_dev()
2477	 * - Readonly scrub btrfs_scrub_progress()
2478	 * - btrfs_get_dev_stats()
2479	 */
2480	lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483			      synchronize_rcu);
2484	list_for_each_entry(device, &seed_devices->devices, dev_list)
2485		device->fs_devices = seed_devices;
2486
2487	fs_devices->seeding = false;
2488	fs_devices->num_devices = 0;
2489	fs_devices->open_devices = 0;
2490	fs_devices->missing_devices = 0;
2491	fs_devices->rotating = false;
2492	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494	generate_random_uuid(fs_devices->fsid);
2495	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498	super_flags = btrfs_super_flags(disk_super) &
2499		      ~BTRFS_SUPER_FLAG_SEEDING;
2500	btrfs_set_super_flags(disk_super, super_flags);
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507{
2508	BTRFS_DEV_LOOKUP_ARGS(args);
2509	struct btrfs_fs_info *fs_info = trans->fs_info;
2510	struct btrfs_root *root = fs_info->chunk_root;
2511	struct btrfs_path *path;
2512	struct extent_buffer *leaf;
2513	struct btrfs_dev_item *dev_item;
2514	struct btrfs_device *device;
2515	struct btrfs_key key;
2516	u8 fs_uuid[BTRFS_FSID_SIZE];
2517	u8 dev_uuid[BTRFS_UUID_SIZE];
2518	int ret;
2519
2520	path = btrfs_alloc_path();
2521	if (!path)
2522		return -ENOMEM;
2523
2524	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525	key.offset = 0;
2526	key.type = BTRFS_DEV_ITEM_KEY;
2527
2528	while (1) {
2529		btrfs_reserve_chunk_metadata(trans, false);
2530		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531		btrfs_trans_release_chunk_metadata(trans);
2532		if (ret < 0)
2533			goto error;
2534
2535		leaf = path->nodes[0];
2536next_slot:
2537		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538			ret = btrfs_next_leaf(root, path);
2539			if (ret > 0)
2540				break;
2541			if (ret < 0)
2542				goto error;
2543			leaf = path->nodes[0];
2544			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545			btrfs_release_path(path);
2546			continue;
2547		}
2548
2549		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551		    key.type != BTRFS_DEV_ITEM_KEY)
2552			break;
2553
2554		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555					  struct btrfs_dev_item);
2556		args.devid = btrfs_device_id(leaf, dev_item);
2557		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558				   BTRFS_UUID_SIZE);
2559		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560				   BTRFS_FSID_SIZE);
2561		args.uuid = dev_uuid;
2562		args.fsid = fs_uuid;
2563		device = btrfs_find_device(fs_info->fs_devices, &args);
2564		BUG_ON(!device); /* Logic error */
2565
2566		if (device->fs_devices->seeding) {
2567			btrfs_set_device_generation(leaf, dev_item,
2568						    device->generation);
2569			btrfs_mark_buffer_dirty(trans, leaf);
2570		}
2571
2572		path->slots[0]++;
2573		goto next_slot;
2574	}
2575	ret = 0;
2576error:
2577	btrfs_free_path(path);
2578	return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583	struct btrfs_root *root = fs_info->dev_root;
2584	struct btrfs_trans_handle *trans;
2585	struct btrfs_device *device;
2586	struct bdev_handle *bdev_handle;
2587	struct super_block *sb = fs_info->sb;
2588	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589	struct btrfs_fs_devices *seed_devices = NULL;
2590	u64 orig_super_total_bytes;
2591	u64 orig_super_num_devices;
2592	int ret = 0;
2593	bool seeding_dev = false;
2594	bool locked = false;
2595
2596	if (sb_rdonly(sb) && !fs_devices->seeding)
2597		return -EROFS;
2598
2599	bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600					fs_info->bdev_holder, NULL);
2601	if (IS_ERR(bdev_handle))
2602		return PTR_ERR(bdev_handle);
2603
2604	if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605		ret = -EINVAL;
2606		goto error;
2607	}
2608
2609	if (fs_devices->seeding) {
2610		seeding_dev = true;
2611		down_write(&sb->s_umount);
2612		mutex_lock(&uuid_mutex);
2613		locked = true;
2614	}
2615
2616	sync_blockdev(bdev_handle->bdev);
2617
2618	rcu_read_lock();
2619	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620		if (device->bdev == bdev_handle->bdev) {
2621			ret = -EEXIST;
2622			rcu_read_unlock();
2623			goto error;
2624		}
2625	}
2626	rcu_read_unlock();
2627
2628	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629	if (IS_ERR(device)) {
2630		/* we can safely leave the fs_devices entry around */
2631		ret = PTR_ERR(device);
2632		goto error;
2633	}
2634
2635	device->fs_info = fs_info;
2636	device->bdev_handle = bdev_handle;
2637	device->bdev = bdev_handle->bdev;
2638	ret = lookup_bdev(device_path, &device->devt);
2639	if (ret)
2640		goto error_free_device;
2641
2642	ret = btrfs_get_dev_zone_info(device, false);
2643	if (ret)
2644		goto error_free_device;
2645
2646	trans = btrfs_start_transaction(root, 0);
2647	if (IS_ERR(trans)) {
2648		ret = PTR_ERR(trans);
2649		goto error_free_zone;
2650	}
2651
2652	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653	device->generation = trans->transid;
2654	device->io_width = fs_info->sectorsize;
2655	device->io_align = fs_info->sectorsize;
2656	device->sector_size = fs_info->sectorsize;
2657	device->total_bytes =
2658		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659	device->disk_total_bytes = device->total_bytes;
2660	device->commit_total_bytes = device->total_bytes;
2661	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663	device->dev_stats_valid = 1;
2664	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666	if (seeding_dev) {
2667		btrfs_clear_sb_rdonly(sb);
2668
2669		/* GFP_KERNEL allocation must not be under device_list_mutex */
2670		seed_devices = btrfs_init_sprout(fs_info);
2671		if (IS_ERR(seed_devices)) {
2672			ret = PTR_ERR(seed_devices);
2673			btrfs_abort_transaction(trans, ret);
2674			goto error_trans;
2675		}
2676	}
2677
2678	mutex_lock(&fs_devices->device_list_mutex);
2679	if (seeding_dev) {
2680		btrfs_setup_sprout(fs_info, seed_devices);
2681		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682						device);
2683	}
2684
2685	device->fs_devices = fs_devices;
2686
2687	mutex_lock(&fs_info->chunk_mutex);
2688	list_add_rcu(&device->dev_list, &fs_devices->devices);
2689	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690	fs_devices->num_devices++;
2691	fs_devices->open_devices++;
2692	fs_devices->rw_devices++;
2693	fs_devices->total_devices++;
2694	fs_devices->total_rw_bytes += device->total_bytes;
2695
2696	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698	if (!bdev_nonrot(device->bdev))
2699		fs_devices->rotating = true;
2700
2701	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702	btrfs_set_super_total_bytes(fs_info->super_copy,
2703		round_down(orig_super_total_bytes + device->total_bytes,
2704			   fs_info->sectorsize));
2705
2706	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707	btrfs_set_super_num_devices(fs_info->super_copy,
2708				    orig_super_num_devices + 1);
2709
2710	/*
2711	 * we've got more storage, clear any full flags on the space
2712	 * infos
2713	 */
2714	btrfs_clear_space_info_full(fs_info);
2715
2716	mutex_unlock(&fs_info->chunk_mutex);
2717
2718	/* Add sysfs device entry */
2719	btrfs_sysfs_add_device(device);
2720
2721	mutex_unlock(&fs_devices->device_list_mutex);
2722
2723	if (seeding_dev) {
2724		mutex_lock(&fs_info->chunk_mutex);
2725		ret = init_first_rw_device(trans);
2726		mutex_unlock(&fs_info->chunk_mutex);
2727		if (ret) {
2728			btrfs_abort_transaction(trans, ret);
2729			goto error_sysfs;
2730		}
2731	}
2732
2733	ret = btrfs_add_dev_item(trans, device);
2734	if (ret) {
2735		btrfs_abort_transaction(trans, ret);
2736		goto error_sysfs;
2737	}
2738
2739	if (seeding_dev) {
2740		ret = btrfs_finish_sprout(trans);
2741		if (ret) {
2742			btrfs_abort_transaction(trans, ret);
2743			goto error_sysfs;
2744		}
2745
2746		/*
2747		 * fs_devices now represents the newly sprouted filesystem and
2748		 * its fsid has been changed by btrfs_sprout_splice().
2749		 */
2750		btrfs_sysfs_update_sprout_fsid(fs_devices);
2751	}
2752
2753	ret = btrfs_commit_transaction(trans);
2754
2755	if (seeding_dev) {
2756		mutex_unlock(&uuid_mutex);
2757		up_write(&sb->s_umount);
2758		locked = false;
2759
2760		if (ret) /* transaction commit */
2761			return ret;
2762
2763		ret = btrfs_relocate_sys_chunks(fs_info);
2764		if (ret < 0)
2765			btrfs_handle_fs_error(fs_info, ret,
2766				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767		trans = btrfs_attach_transaction(root);
2768		if (IS_ERR(trans)) {
2769			if (PTR_ERR(trans) == -ENOENT)
2770				return 0;
2771			ret = PTR_ERR(trans);
2772			trans = NULL;
2773			goto error_sysfs;
2774		}
2775		ret = btrfs_commit_transaction(trans);
2776	}
2777
2778	/*
2779	 * Now that we have written a new super block to this device, check all
2780	 * other fs_devices list if device_path alienates any other scanned
2781	 * device.
2782	 * We can ignore the return value as it typically returns -EINVAL and
2783	 * only succeeds if the device was an alien.
2784	 */
2785	btrfs_forget_devices(device->devt);
2786
2787	/* Update ctime/mtime for blkid or udev */
2788	update_dev_time(device_path);
2789
2790	return ret;
2791
2792error_sysfs:
2793	btrfs_sysfs_remove_device(device);
2794	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795	mutex_lock(&fs_info->chunk_mutex);
2796	list_del_rcu(&device->dev_list);
2797	list_del(&device->dev_alloc_list);
2798	fs_info->fs_devices->num_devices--;
2799	fs_info->fs_devices->open_devices--;
2800	fs_info->fs_devices->rw_devices--;
2801	fs_info->fs_devices->total_devices--;
2802	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804	btrfs_set_super_total_bytes(fs_info->super_copy,
2805				    orig_super_total_bytes);
2806	btrfs_set_super_num_devices(fs_info->super_copy,
2807				    orig_super_num_devices);
2808	mutex_unlock(&fs_info->chunk_mutex);
2809	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811	if (seeding_dev)
2812		btrfs_set_sb_rdonly(sb);
2813	if (trans)
2814		btrfs_end_transaction(trans);
2815error_free_zone:
2816	btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818	btrfs_free_device(device);
2819error:
2820	bdev_release(bdev_handle);
2821	if (locked) {
2822		mutex_unlock(&uuid_mutex);
2823		up_write(&sb->s_umount);
2824	}
2825	return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829					struct btrfs_device *device)
2830{
2831	int ret;
2832	struct btrfs_path *path;
2833	struct btrfs_root *root = device->fs_info->chunk_root;
2834	struct btrfs_dev_item *dev_item;
2835	struct extent_buffer *leaf;
2836	struct btrfs_key key;
2837
2838	path = btrfs_alloc_path();
2839	if (!path)
2840		return -ENOMEM;
2841
2842	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843	key.type = BTRFS_DEV_ITEM_KEY;
2844	key.offset = device->devid;
2845
2846	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847	if (ret < 0)
2848		goto out;
2849
2850	if (ret > 0) {
2851		ret = -ENOENT;
2852		goto out;
2853	}
2854
2855	leaf = path->nodes[0];
2856	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858	btrfs_set_device_id(leaf, dev_item, device->devid);
2859	btrfs_set_device_type(leaf, dev_item, device->type);
2860	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863	btrfs_set_device_total_bytes(leaf, dev_item,
2864				     btrfs_device_get_disk_total_bytes(device));
2865	btrfs_set_device_bytes_used(leaf, dev_item,
2866				    btrfs_device_get_bytes_used(device));
2867	btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870	btrfs_free_path(path);
2871	return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875		      struct btrfs_device *device, u64 new_size)
2876{
2877	struct btrfs_fs_info *fs_info = device->fs_info;
2878	struct btrfs_super_block *super_copy = fs_info->super_copy;
2879	u64 old_total;
2880	u64 diff;
2881	int ret;
2882
2883	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884		return -EACCES;
2885
2886	new_size = round_down(new_size, fs_info->sectorsize);
2887
2888	mutex_lock(&fs_info->chunk_mutex);
2889	old_total = btrfs_super_total_bytes(super_copy);
2890	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892	if (new_size <= device->total_bytes ||
2893	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894		mutex_unlock(&fs_info->chunk_mutex);
2895		return -EINVAL;
2896	}
2897
2898	btrfs_set_super_total_bytes(super_copy,
2899			round_down(old_total + diff, fs_info->sectorsize));
2900	device->fs_devices->total_rw_bytes += diff;
2901	atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903	btrfs_device_set_total_bytes(device, new_size);
2904	btrfs_device_set_disk_total_bytes(device, new_size);
2905	btrfs_clear_space_info_full(device->fs_info);
2906	if (list_empty(&device->post_commit_list))
2907		list_add_tail(&device->post_commit_list,
2908			      &trans->transaction->dev_update_list);
2909	mutex_unlock(&fs_info->chunk_mutex);
2910
2911	btrfs_reserve_chunk_metadata(trans, false);
2912	ret = btrfs_update_device(trans, device);
2913	btrfs_trans_release_chunk_metadata(trans);
2914
2915	return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919{
2920	struct btrfs_fs_info *fs_info = trans->fs_info;
2921	struct btrfs_root *root = fs_info->chunk_root;
2922	int ret;
2923	struct btrfs_path *path;
2924	struct btrfs_key key;
2925
2926	path = btrfs_alloc_path();
2927	if (!path)
2928		return -ENOMEM;
2929
2930	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931	key.offset = chunk_offset;
2932	key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935	if (ret < 0)
2936		goto out;
2937	else if (ret > 0) { /* Logic error or corruption */
2938		btrfs_handle_fs_error(fs_info, -ENOENT,
2939				      "Failed lookup while freeing chunk.");
2940		ret = -ENOENT;
2941		goto out;
2942	}
2943
2944	ret = btrfs_del_item(trans, root, path);
2945	if (ret < 0)
2946		btrfs_handle_fs_error(fs_info, ret,
2947				      "Failed to delete chunk item.");
2948out:
2949	btrfs_free_path(path);
2950	return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954{
2955	struct btrfs_super_block *super_copy = fs_info->super_copy;
2956	struct btrfs_disk_key *disk_key;
2957	struct btrfs_chunk *chunk;
2958	u8 *ptr;
2959	int ret = 0;
2960	u32 num_stripes;
2961	u32 array_size;
2962	u32 len = 0;
2963	u32 cur;
2964	struct btrfs_key key;
2965
2966	lockdep_assert_held(&fs_info->chunk_mutex);
2967	array_size = btrfs_super_sys_array_size(super_copy);
2968
2969	ptr = super_copy->sys_chunk_array;
2970	cur = 0;
2971
2972	while (cur < array_size) {
2973		disk_key = (struct btrfs_disk_key *)ptr;
2974		btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976		len = sizeof(*disk_key);
2977
2978		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979			chunk = (struct btrfs_chunk *)(ptr + len);
2980			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981			len += btrfs_chunk_item_size(num_stripes);
2982		} else {
2983			ret = -EIO;
2984			break;
2985		}
2986		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987		    key.offset == chunk_offset) {
2988			memmove(ptr, ptr + len, array_size - (cur + len));
2989			array_size -= len;
2990			btrfs_set_super_sys_array_size(super_copy, array_size);
2991		} else {
2992			ptr += len;
2993			cur += len;
2994		}
2995	}
2996	return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000						    u64 logical, u64 length)
3001{
3002	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003	struct rb_node *prev = NULL;
3004	struct rb_node *orig_prev;
3005	struct btrfs_chunk_map *map;
3006	struct btrfs_chunk_map *prev_map = NULL;
3007
3008	while (node) {
3009		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010		prev = node;
3011		prev_map = map;
3012
3013		if (logical < map->start) {
3014			node = node->rb_left;
3015		} else if (logical >= map->start + map->chunk_len) {
3016			node = node->rb_right;
3017		} else {
3018			refcount_inc(&map->refs);
3019			return map;
3020		}
3021	}
3022
3023	if (!prev)
3024		return NULL;
3025
3026	orig_prev = prev;
3027	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028		prev = rb_next(prev);
3029		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030	}
3031
3032	if (!prev) {
3033		prev = orig_prev;
3034		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035		while (prev && logical < prev_map->start) {
3036			prev = rb_prev(prev);
3037			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038		}
3039	}
3040
3041	if (prev) {
3042		u64 end = logical + length;
3043
3044		/*
3045		 * Caller can pass a U64_MAX length when it wants to get any
3046		 * chunk starting at an offset of 'logical' or higher, so deal
3047		 * with underflow by resetting the end offset to U64_MAX.
3048		 */
3049		if (end < logical)
3050			end = U64_MAX;
3051
3052		if (end > prev_map->start &&
3053		    logical < prev_map->start + prev_map->chunk_len) {
3054			refcount_inc(&prev_map->refs);
3055			return prev_map;
3056		}
3057	}
3058
3059	return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063					     u64 logical, u64 length)
3064{
3065	struct btrfs_chunk_map *map;
3066
3067	read_lock(&fs_info->mapping_tree_lock);
3068	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069	read_unlock(&fs_info->mapping_tree_lock);
3070
3071	return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083					    u64 logical, u64 length)
3084{
3085	struct btrfs_chunk_map *map;
3086
3087	map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089	if (unlikely(!map)) {
3090		btrfs_crit(fs_info,
3091			   "unable to find chunk map for logical %llu length %llu",
3092			   logical, length);
3093		return ERR_PTR(-EINVAL);
3094	}
3095
3096	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097		btrfs_crit(fs_info,
3098			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099			   logical, logical + length, map->start,
3100			   map->start + map->chunk_len);
3101		btrfs_free_chunk_map(map);
3102		return ERR_PTR(-EINVAL);
3103	}
3104
3105	/* Callers are responsible for dropping the reference. */
3106	return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110			     struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
3112	int i;
3113
3114	/*
3115	 * Removing chunk items and updating the device items in the chunks btree
3116	 * requires holding the chunk_mutex.
3117	 * See the comment at btrfs_chunk_alloc() for the details.
3118	 */
3119	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121	for (i = 0; i < map->num_stripes; i++) {
3122		int ret;
3123
3124		ret = btrfs_update_device(trans, map->stripes[i].dev);
3125		if (ret)
3126			return ret;
3127	}
3128
3129	return btrfs_free_chunk(trans, chunk_offset);
3130}
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134	struct btrfs_fs_info *fs_info = trans->fs_info;
3135	struct btrfs_chunk_map *map;
3136	u64 dev_extent_len = 0;
3137	int i, ret = 0;
3138	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141	if (IS_ERR(map)) {
3142		/*
3143		 * This is a logic error, but we don't want to just rely on the
3144		 * user having built with ASSERT enabled, so if ASSERT doesn't
3145		 * do anything we still error out.
3146		 */
3147		ASSERT(0);
3148		return PTR_ERR(map);
3149	}
3150
3151	/*
3152	 * First delete the device extent items from the devices btree.
3153	 * We take the device_list_mutex to avoid racing with the finishing phase
3154	 * of a device replace operation. See the comment below before acquiring
3155	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156	 * because that can result in a deadlock when deleting the device extent
3157	 * items from the devices btree - COWing an extent buffer from the btree
3158	 * may result in allocating a new metadata chunk, which would attempt to
3159	 * lock again fs_info->chunk_mutex.
3160	 */
3161	mutex_lock(&fs_devices->device_list_mutex);
3162	for (i = 0; i < map->num_stripes; i++) {
3163		struct btrfs_device *device = map->stripes[i].dev;
3164		ret = btrfs_free_dev_extent(trans, device,
3165					    map->stripes[i].physical,
3166					    &dev_extent_len);
3167		if (ret) {
3168			mutex_unlock(&fs_devices->device_list_mutex);
3169			btrfs_abort_transaction(trans, ret);
3170			goto out;
3171		}
3172
3173		if (device->bytes_used > 0) {
3174			mutex_lock(&fs_info->chunk_mutex);
3175			btrfs_device_set_bytes_used(device,
3176					device->bytes_used - dev_extent_len);
3177			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178			btrfs_clear_space_info_full(fs_info);
3179			mutex_unlock(&fs_info->chunk_mutex);
3180		}
3181	}
3182	mutex_unlock(&fs_devices->device_list_mutex);
3183
3184	/*
3185	 * We acquire fs_info->chunk_mutex for 2 reasons:
3186	 *
3187	 * 1) Just like with the first phase of the chunk allocation, we must
3188	 *    reserve system space, do all chunk btree updates and deletions, and
3189	 *    update the system chunk array in the superblock while holding this
3190	 *    mutex. This is for similar reasons as explained on the comment at
3191	 *    the top of btrfs_chunk_alloc();
3192	 *
3193	 * 2) Prevent races with the final phase of a device replace operation
3194	 *    that replaces the device object associated with the map's stripes,
3195	 *    because the device object's id can change at any time during that
3196	 *    final phase of the device replace operation
3197	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198	 *    replaced device and then see it with an ID of
3199	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200	 *    the device item, which does not exists on the chunk btree.
3201	 *    The finishing phase of device replace acquires both the
3202	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3203	 *    safe by just acquiring the chunk_mutex.
3204	 */
3205	trans->removing_chunk = true;
3206	mutex_lock(&fs_info->chunk_mutex);
3207
3208	check_system_chunk(trans, map->type);
3209
3210	ret = remove_chunk_item(trans, map, chunk_offset);
3211	/*
3212	 * Normally we should not get -ENOSPC since we reserved space before
3213	 * through the call to check_system_chunk().
3214	 *
3215	 * Despite our system space_info having enough free space, we may not
3216	 * be able to allocate extents from its block groups, because all have
3217	 * an incompatible profile, which will force us to allocate a new system
3218	 * block group with the right profile, or right after we called
3219	 * check_system_space() above, a scrub turned the only system block group
3220	 * with enough free space into RO mode.
3221	 * This is explained with more detail at do_chunk_alloc().
3222	 *
3223	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224	 */
3225	if (ret == -ENOSPC) {
3226		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227		struct btrfs_block_group *sys_bg;
3228
3229		sys_bg = btrfs_create_chunk(trans, sys_flags);
3230		if (IS_ERR(sys_bg)) {
3231			ret = PTR_ERR(sys_bg);
3232			btrfs_abort_transaction(trans, ret);
3233			goto out;
3234		}
3235
3236		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237		if (ret) {
3238			btrfs_abort_transaction(trans, ret);
3239			goto out;
3240		}
3241
3242		ret = remove_chunk_item(trans, map, chunk_offset);
3243		if (ret) {
3244			btrfs_abort_transaction(trans, ret);
3245			goto out;
3246		}
3247	} else if (ret) {
3248		btrfs_abort_transaction(trans, ret);
3249		goto out;
3250	}
3251
3252	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256		if (ret) {
3257			btrfs_abort_transaction(trans, ret);
3258			goto out;
3259		}
3260	}
3261
3262	mutex_unlock(&fs_info->chunk_mutex);
3263	trans->removing_chunk = false;
3264
3265	/*
3266	 * We are done with chunk btree updates and deletions, so release the
3267	 * system space we previously reserved (with check_system_chunk()).
3268	 */
3269	btrfs_trans_release_chunk_metadata(trans);
3270
3271	ret = btrfs_remove_block_group(trans, map);
3272	if (ret) {
3273		btrfs_abort_transaction(trans, ret);
3274		goto out;
3275	}
3276
3277out:
3278	if (trans->removing_chunk) {
3279		mutex_unlock(&fs_info->chunk_mutex);
3280		trans->removing_chunk = false;
3281	}
3282	/* once for us */
3283	btrfs_free_chunk_map(map);
3284	return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289	struct btrfs_root *root = fs_info->chunk_root;
3290	struct btrfs_trans_handle *trans;
3291	struct btrfs_block_group *block_group;
3292	u64 length;
3293	int ret;
3294
3295	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296		btrfs_err(fs_info,
3297			  "relocate: not supported on extent tree v2 yet");
3298		return -EINVAL;
3299	}
3300
3301	/*
3302	 * Prevent races with automatic removal of unused block groups.
3303	 * After we relocate and before we remove the chunk with offset
3304	 * chunk_offset, automatic removal of the block group can kick in,
3305	 * resulting in a failure when calling btrfs_remove_chunk() below.
3306	 *
3307	 * Make sure to acquire this mutex before doing a tree search (dev
3308	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310	 * we release the path used to search the chunk/dev tree and before
3311	 * the current task acquires this mutex and calls us.
3312	 */
3313	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315	/* step one, relocate all the extents inside this chunk */
3316	btrfs_scrub_pause(fs_info);
3317	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318	btrfs_scrub_continue(fs_info);
3319	if (ret) {
3320		/*
3321		 * If we had a transaction abort, stop all running scrubs.
3322		 * See transaction.c:cleanup_transaction() why we do it here.
3323		 */
3324		if (BTRFS_FS_ERROR(fs_info))
3325			btrfs_scrub_cancel(fs_info);
3326		return ret;
3327	}
3328
3329	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330	if (!block_group)
3331		return -ENOENT;
3332	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333	length = block_group->length;
3334	btrfs_put_block_group(block_group);
3335
3336	/*
3337	 * On a zoned file system, discard the whole block group, this will
3338	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339	 * resetting the zone fails, don't treat it as a fatal problem from the
3340	 * filesystem's point of view.
3341	 */
3342	if (btrfs_is_zoned(fs_info)) {
3343		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344		if (ret)
3345			btrfs_info(fs_info,
3346				"failed to reset zone %llu after relocation",
3347				chunk_offset);
3348	}
3349
3350	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351						     chunk_offset);
3352	if (IS_ERR(trans)) {
3353		ret = PTR_ERR(trans);
3354		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355		return ret;
3356	}
3357
3358	/*
3359	 * step two, delete the device extents and the
3360	 * chunk tree entries
3361	 */
3362	ret = btrfs_remove_chunk(trans, chunk_offset);
3363	btrfs_end_transaction(trans);
3364	return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369	struct btrfs_root *chunk_root = fs_info->chunk_root;
3370	struct btrfs_path *path;
3371	struct extent_buffer *leaf;
3372	struct btrfs_chunk *chunk;
3373	struct btrfs_key key;
3374	struct btrfs_key found_key;
3375	u64 chunk_type;
3376	bool retried = false;
3377	int failed = 0;
3378	int ret;
3379
3380	path = btrfs_alloc_path();
3381	if (!path)
3382		return -ENOMEM;
3383
3384again:
3385	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386	key.offset = (u64)-1;
3387	key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389	while (1) {
3390		mutex_lock(&fs_info->reclaim_bgs_lock);
3391		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392		if (ret < 0) {
3393			mutex_unlock(&fs_info->reclaim_bgs_lock);
3394			goto error;
3395		}
3396		BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
 
 
 
 
 
 
3397
3398		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399					  key.type);
3400		if (ret)
3401			mutex_unlock(&fs_info->reclaim_bgs_lock);
3402		if (ret < 0)
3403			goto error;
3404		if (ret > 0)
3405			break;
3406
3407		leaf = path->nodes[0];
3408		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410		chunk = btrfs_item_ptr(leaf, path->slots[0],
3411				       struct btrfs_chunk);
3412		chunk_type = btrfs_chunk_type(leaf, chunk);
3413		btrfs_release_path(path);
3414
3415		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3417			if (ret == -ENOSPC)
3418				failed++;
3419			else
3420				BUG_ON(ret);
3421		}
3422		mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424		if (found_key.offset == 0)
3425			break;
3426		key.offset = found_key.offset - 1;
3427	}
3428	ret = 0;
3429	if (failed && !retried) {
3430		failed = 0;
3431		retried = true;
3432		goto again;
3433	} else if (WARN_ON(failed && retried)) {
3434		ret = -ENOSPC;
3435	}
3436error:
3437	btrfs_free_path(path);
3438	return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447				      u64 chunk_offset)
3448{
3449	struct btrfs_block_group *cache;
3450	u64 bytes_used;
3451	u64 chunk_type;
3452
3453	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454	ASSERT(cache);
3455	chunk_type = cache->flags;
3456	btrfs_put_block_group(cache);
3457
3458	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459		return 0;
3460
3461	spin_lock(&fs_info->data_sinfo->lock);
3462	bytes_used = fs_info->data_sinfo->bytes_used;
3463	spin_unlock(&fs_info->data_sinfo->lock);
3464
3465	if (!bytes_used) {
3466		struct btrfs_trans_handle *trans;
3467		int ret;
3468
3469		trans =	btrfs_join_transaction(fs_info->tree_root);
3470		if (IS_ERR(trans))
3471			return PTR_ERR(trans);
3472
3473		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474		btrfs_end_transaction(trans);
3475		if (ret < 0)
3476			return ret;
3477		return 1;
3478	}
3479
3480	return 0;
3481}
3482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484			       struct btrfs_balance_control *bctl)
3485{
3486	struct btrfs_root *root = fs_info->tree_root;
3487	struct btrfs_trans_handle *trans;
3488	struct btrfs_balance_item *item;
3489	struct btrfs_disk_balance_args disk_bargs;
3490	struct btrfs_path *path;
3491	struct extent_buffer *leaf;
3492	struct btrfs_key key;
3493	int ret, err;
3494
3495	path = btrfs_alloc_path();
3496	if (!path)
3497		return -ENOMEM;
3498
3499	trans = btrfs_start_transaction(root, 0);
3500	if (IS_ERR(trans)) {
3501		btrfs_free_path(path);
3502		return PTR_ERR(trans);
3503	}
3504
3505	key.objectid = BTRFS_BALANCE_OBJECTID;
3506	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507	key.offset = 0;
3508
3509	ret = btrfs_insert_empty_item(trans, root, path, &key,
3510				      sizeof(*item));
3511	if (ret)
3512		goto out;
3513
3514	leaf = path->nodes[0];
3515	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520	btrfs_set_balance_data(leaf, item, &disk_bargs);
3521	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526	btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528	btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530	btrfs_free_path(path);
3531	err = btrfs_commit_transaction(trans);
3532	if (err && !ret)
3533		ret = err;
3534	return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539	struct btrfs_root *root = fs_info->tree_root;
3540	struct btrfs_trans_handle *trans;
3541	struct btrfs_path *path;
3542	struct btrfs_key key;
3543	int ret, err;
3544
3545	path = btrfs_alloc_path();
3546	if (!path)
3547		return -ENOMEM;
3548
3549	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550	if (IS_ERR(trans)) {
3551		btrfs_free_path(path);
3552		return PTR_ERR(trans);
3553	}
3554
3555	key.objectid = BTRFS_BALANCE_OBJECTID;
3556	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557	key.offset = 0;
3558
3559	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560	if (ret < 0)
3561		goto out;
3562	if (ret > 0) {
3563		ret = -ENOENT;
3564		goto out;
3565	}
3566
3567	ret = btrfs_del_item(trans, root, path);
3568out:
3569	btrfs_free_path(path);
3570	err = btrfs_commit_transaction(trans);
3571	if (err && !ret)
3572		ret = err;
3573	return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582	/*
3583	 * Turn on soft mode for chunk types that were being converted.
3584	 */
3585	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592	/*
3593	 * Turn on usage filter if is not already used.  The idea is
3594	 * that chunks that we have already balanced should be
3595	 * reasonably full.  Don't do it for chunks that are being
3596	 * converted - that will keep us from relocating unconverted
3597	 * (albeit full) chunks.
3598	 */
3599	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603		bctl->data.usage = 90;
3604	}
3605	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609		bctl->sys.usage = 90;
3610	}
3611	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615		bctl->meta.usage = 90;
3616	}
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
3623{
3624	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625	int ret;
3626
3627	BUG_ON(!fs_info->balance_ctl);
3628
3629	spin_lock(&fs_info->balance_lock);
3630	fs_info->balance_ctl = NULL;
3631	spin_unlock(&fs_info->balance_lock);
3632
3633	kfree(bctl);
3634	ret = del_balance_item(fs_info);
3635	if (ret)
3636		btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters.  Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644				 struct btrfs_balance_args *bargs)
3645{
3646	chunk_type = chunk_to_extended(chunk_type) &
3647				BTRFS_EXTENDED_PROFILE_MASK;
3648
3649	if (bargs->profiles & chunk_type)
3650		return 0;
3651
3652	return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656			      struct btrfs_balance_args *bargs)
3657{
3658	struct btrfs_block_group *cache;
3659	u64 chunk_used;
3660	u64 user_thresh_min;
3661	u64 user_thresh_max;
3662	int ret = 1;
3663
3664	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665	chunk_used = cache->used;
3666
3667	if (bargs->usage_min == 0)
3668		user_thresh_min = 0;
3669	else
3670		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672	if (bargs->usage_max == 0)
3673		user_thresh_max = 1;
3674	else if (bargs->usage_max > 100)
3675		user_thresh_max = cache->length;
3676	else
3677		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680		ret = 0;
3681
3682	btrfs_put_block_group(cache);
3683	return ret;
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687		u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689	struct btrfs_block_group *cache;
3690	u64 chunk_used, user_thresh;
3691	int ret = 1;
3692
3693	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694	chunk_used = cache->used;
3695
3696	if (bargs->usage_min == 0)
3697		user_thresh = 1;
3698	else if (bargs->usage > 100)
3699		user_thresh = cache->length;
3700	else
3701		user_thresh = mult_perc(cache->length, bargs->usage);
3702
3703	if (chunk_used < user_thresh)
3704		ret = 0;
3705
3706	btrfs_put_block_group(cache);
3707	return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711			      struct btrfs_chunk *chunk,
3712			      struct btrfs_balance_args *bargs)
3713{
3714	struct btrfs_stripe *stripe;
3715	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716	int i;
3717
3718	for (i = 0; i < num_stripes; i++) {
3719		stripe = btrfs_stripe_nr(chunk, i);
3720		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721			return 0;
3722	}
3723
3724	return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729	const int index = btrfs_bg_flags_to_raid_index(type);
3730	const int ncopies = btrfs_raid_array[index].ncopies;
3731	const int nparity = btrfs_raid_array[index].nparity;
3732
3733	return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738			       struct btrfs_chunk *chunk,
3739			       struct btrfs_balance_args *bargs)
3740{
3741	struct btrfs_stripe *stripe;
3742	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743	u64 stripe_offset;
3744	u64 stripe_length;
3745	u64 type;
3746	int factor;
3747	int i;
3748
3749	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750		return 0;
3751
3752	type = btrfs_chunk_type(leaf, chunk);
3753	factor = calc_data_stripes(type, num_stripes);
3754
3755	for (i = 0; i < num_stripes; i++) {
3756		stripe = btrfs_stripe_nr(chunk, i);
3757		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758			continue;
3759
3760		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761		stripe_length = btrfs_chunk_length(leaf, chunk);
3762		stripe_length = div_u64(stripe_length, factor);
3763
3764		if (stripe_offset < bargs->pend &&
3765		    stripe_offset + stripe_length > bargs->pstart)
3766			return 0;
3767	}
3768
3769	return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774			       struct btrfs_chunk *chunk,
3775			       u64 chunk_offset,
3776			       struct btrfs_balance_args *bargs)
3777{
3778	if (chunk_offset < bargs->vend &&
3779	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780		/* at least part of the chunk is inside this vrange */
3781		return 0;
3782
3783	return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787			       struct btrfs_chunk *chunk,
3788			       struct btrfs_balance_args *bargs)
3789{
3790	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792	if (bargs->stripes_min <= num_stripes
3793			&& num_stripes <= bargs->stripes_max)
3794		return 0;
3795
3796	return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800				     struct btrfs_balance_args *bargs)
3801{
3802	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803		return 0;
3804
3805	chunk_type = chunk_to_extended(chunk_type) &
3806				BTRFS_EXTENDED_PROFILE_MASK;
3807
3808	if (bargs->target == chunk_type)
3809		return 1;
3810
3811	return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
3815				struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817	struct btrfs_fs_info *fs_info = leaf->fs_info;
3818	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819	struct btrfs_balance_args *bargs = NULL;
3820	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822	/* type filter */
3823	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825		return 0;
3826	}
3827
3828	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829		bargs = &bctl->data;
3830	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831		bargs = &bctl->sys;
3832	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833		bargs = &bctl->meta;
3834
3835	/* profiles filter */
3836	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837	    chunk_profiles_filter(chunk_type, bargs)) {
3838		return 0;
3839	}
3840
3841	/* usage filter */
3842	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844		return 0;
3845	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847		return 0;
3848	}
3849
3850	/* devid filter */
3851	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852	    chunk_devid_filter(leaf, chunk, bargs)) {
3853		return 0;
3854	}
3855
3856	/* drange filter, makes sense only with devid filter */
3857	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858	    chunk_drange_filter(leaf, chunk, bargs)) {
3859		return 0;
3860	}
3861
3862	/* vrange filter */
3863	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865		return 0;
3866	}
3867
3868	/* stripes filter */
3869	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871		return 0;
3872	}
3873
3874	/* soft profile changing mode */
3875	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876	    chunk_soft_convert_filter(chunk_type, bargs)) {
3877		return 0;
3878	}
3879
3880	/*
3881	 * limited by count, must be the last filter
3882	 */
3883	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884		if (bargs->limit == 0)
3885			return 0;
3886		else
3887			bargs->limit--;
3888	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889		/*
3890		 * Same logic as the 'limit' filter; the minimum cannot be
3891		 * determined here because we do not have the global information
3892		 * about the count of all chunks that satisfy the filters.
3893		 */
3894		if (bargs->limit_max == 0)
3895			return 0;
3896		else
3897			bargs->limit_max--;
3898	}
3899
3900	return 1;
3901}
3902
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906	struct btrfs_root *chunk_root = fs_info->chunk_root;
3907	u64 chunk_type;
3908	struct btrfs_chunk *chunk;
3909	struct btrfs_path *path = NULL;
3910	struct btrfs_key key;
3911	struct btrfs_key found_key;
3912	struct extent_buffer *leaf;
3913	int slot;
3914	int ret;
3915	int enospc_errors = 0;
3916	bool counting = true;
3917	/* The single value limit and min/max limits use the same bytes in the */
3918	u64 limit_data = bctl->data.limit;
3919	u64 limit_meta = bctl->meta.limit;
3920	u64 limit_sys = bctl->sys.limit;
3921	u32 count_data = 0;
3922	u32 count_meta = 0;
3923	u32 count_sys = 0;
3924	int chunk_reserved = 0;
3925
3926	path = btrfs_alloc_path();
3927	if (!path) {
3928		ret = -ENOMEM;
3929		goto error;
3930	}
3931
3932	/* zero out stat counters */
3933	spin_lock(&fs_info->balance_lock);
3934	memset(&bctl->stat, 0, sizeof(bctl->stat));
3935	spin_unlock(&fs_info->balance_lock);
3936again:
3937	if (!counting) {
3938		/*
3939		 * The single value limit and min/max limits use the same bytes
3940		 * in the
3941		 */
3942		bctl->data.limit = limit_data;
3943		bctl->meta.limit = limit_meta;
3944		bctl->sys.limit = limit_sys;
3945	}
3946	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947	key.offset = (u64)-1;
3948	key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950	while (1) {
3951		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952		    atomic_read(&fs_info->balance_cancel_req)) {
3953			ret = -ECANCELED;
3954			goto error;
3955		}
3956
3957		mutex_lock(&fs_info->reclaim_bgs_lock);
3958		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959		if (ret < 0) {
3960			mutex_unlock(&fs_info->reclaim_bgs_lock);
3961			goto error;
3962		}
3963
3964		/*
3965		 * this shouldn't happen, it means the last relocate
3966		 * failed
3967		 */
3968		if (ret == 0)
3969			BUG(); /* FIXME break ? */
3970
3971		ret = btrfs_previous_item(chunk_root, path, 0,
3972					  BTRFS_CHUNK_ITEM_KEY);
3973		if (ret) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			ret = 0;
3976			break;
3977		}
3978
3979		leaf = path->nodes[0];
3980		slot = path->slots[0];
3981		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983		if (found_key.objectid != key.objectid) {
3984			mutex_unlock(&fs_info->reclaim_bgs_lock);
3985			break;
3986		}
3987
3988		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989		chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991		if (!counting) {
3992			spin_lock(&fs_info->balance_lock);
3993			bctl->stat.considered++;
3994			spin_unlock(&fs_info->balance_lock);
3995		}
3996
3997		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999		btrfs_release_path(path);
4000		if (!ret) {
4001			mutex_unlock(&fs_info->reclaim_bgs_lock);
4002			goto loop;
4003		}
4004
4005		if (counting) {
4006			mutex_unlock(&fs_info->reclaim_bgs_lock);
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.expected++;
4009			spin_unlock(&fs_info->balance_lock);
4010
4011			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012				count_data++;
4013			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014				count_sys++;
4015			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016				count_meta++;
4017
4018			goto loop;
4019		}
4020
4021		/*
4022		 * Apply limit_min filter, no need to check if the LIMITS
4023		 * filter is used, limit_min is 0 by default
4024		 */
4025		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026					count_data < bctl->data.limit_min)
4027				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028					count_meta < bctl->meta.limit_min)
4029				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030					count_sys < bctl->sys.limit_min)) {
4031			mutex_unlock(&fs_info->reclaim_bgs_lock);
4032			goto loop;
4033		}
4034
4035		if (!chunk_reserved) {
4036			/*
4037			 * We may be relocating the only data chunk we have,
4038			 * which could potentially end up with losing data's
4039			 * raid profile, so lets allocate an empty one in
4040			 * advance.
4041			 */
4042			ret = btrfs_may_alloc_data_chunk(fs_info,
4043							 found_key.offset);
4044			if (ret < 0) {
4045				mutex_unlock(&fs_info->reclaim_bgs_lock);
4046				goto error;
4047			} else if (ret == 1) {
4048				chunk_reserved = 1;
4049			}
4050		}
4051
4052		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053		mutex_unlock(&fs_info->reclaim_bgs_lock);
4054		if (ret == -ENOSPC) {
4055			enospc_errors++;
4056		} else if (ret == -ETXTBSY) {
4057			btrfs_info(fs_info,
4058	   "skipping relocation of block group %llu due to active swapfile",
4059				   found_key.offset);
4060			ret = 0;
4061		} else if (ret) {
4062			goto error;
4063		} else {
4064			spin_lock(&fs_info->balance_lock);
4065			bctl->stat.completed++;
4066			spin_unlock(&fs_info->balance_lock);
4067		}
4068loop:
4069		if (found_key.offset == 0)
4070			break;
4071		key.offset = found_key.offset - 1;
4072	}
4073
4074	if (counting) {
4075		btrfs_release_path(path);
4076		counting = false;
4077		goto again;
4078	}
4079error:
4080	btrfs_free_path(path);
4081	if (enospc_errors) {
4082		btrfs_info(fs_info, "%d enospc errors during balance",
4083			   enospc_errors);
4084		if (!ret)
4085			ret = -ENOSPC;
4086	}
4087
4088	return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags:     profile to validate
4095 * @extended:  if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104	/* 1) check that all other bits are zeroed */
4105	if (flags & ~mask)
4106		return 0;
4107
4108	/* 2) see if profile is reduced */
4109	if (flags == 0)
4110		return !extended; /* "0" is valid for usual profiles */
4111
4112	return has_single_bit_set(flags);
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120		const struct btrfs_balance_args *bargs,
4121		u64 allowed, const char *type)
4122{
4123	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124		return true;
4125
4126	/* Profile is valid and does not have bits outside of the allowed set */
4127	if (alloc_profile_is_valid(bargs->target, 1) &&
4128	    (bargs->target & ~allowed) == 0)
4129		return true;
4130
4131	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132			type, btrfs_bg_type_to_raid_name(bargs->target));
4133	return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142				 u32 size_buf)
4143{
4144	int ret;
4145	u32 size_bp = size_buf;
4146	char *bp = buf;
4147	u64 flags = bargs->flags;
4148	char tmp_buf[128] = {'\0'};
4149
4150	if (!flags)
4151		return;
4152
4153#define CHECK_APPEND_NOARG(a)						\
4154	do {								\
4155		ret = snprintf(bp, size_bp, (a));			\
4156		if (ret < 0 || ret >= size_bp)				\
4157			goto out_overflow;				\
4158		size_bp -= ret;						\
4159		bp += ret;						\
4160	} while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1)					\
4163	do {								\
4164		ret = snprintf(bp, size_bp, (a), (v1));			\
4165		if (ret < 0 || ret >= size_bp)				\
4166			goto out_overflow;				\
4167		size_bp -= ret;						\
4168		bp += ret;						\
4169	} while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2)					\
4172	do {								\
4173		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4174		if (ret < 0 || ret >= size_bp)				\
4175			goto out_overflow;				\
4176		size_bp -= ret;						\
4177		bp += ret;						\
4178	} while (0)
4179
4180	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181		CHECK_APPEND_1ARG("convert=%s,",
4182				  btrfs_bg_type_to_raid_name(bargs->target));
4183
4184	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185		CHECK_APPEND_NOARG("soft,");
4186
4187	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189					    sizeof(tmp_buf));
4190		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191	}
4192
4193	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197		CHECK_APPEND_2ARG("usage=%u..%u,",
4198				  bargs->usage_min, bargs->usage_max);
4199
4200	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205				  bargs->pstart, bargs->pend);
4206
4207	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209				  bargs->vstart, bargs->vend);
4210
4211	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215		CHECK_APPEND_2ARG("limit=%u..%u,",
4216				bargs->limit_min, bargs->limit_max);
4217
4218	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219		CHECK_APPEND_2ARG("stripes=%u..%u,",
4220				  bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228	if (size_bp < size_buf)
4229		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230	else
4231		buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236	u32 size_buf = 1024;
4237	char tmp_buf[192] = {'\0'};
4238	char *buf;
4239	char *bp;
4240	u32 size_bp = size_buf;
4241	int ret;
4242	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244	buf = kzalloc(size_buf, GFP_KERNEL);
4245	if (!buf)
4246		return;
4247
4248	bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1)					\
4251	do {								\
4252		ret = snprintf(bp, size_bp, (a), (v1));			\
4253		if (ret < 0 || ret >= size_bp)				\
4254			goto out_overflow;				\
4255		size_bp -= ret;						\
4256		bp += ret;						\
4257	} while (0)
4258
4259	if (bctl->flags & BTRFS_BALANCE_FORCE)
4260		CHECK_APPEND_1ARG("%s", "-f ");
4261
4262	if (bctl->flags & BTRFS_BALANCE_DATA) {
4263		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265	}
4266
4267	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270	}
4271
4272	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275	}
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281	if (size_bp < size_buf)
4282		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283	btrfs_info(fs_info, "balance: %s %s",
4284		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285		   "resume" : "start", buf);
4286
4287	kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294		  struct btrfs_balance_control *bctl,
4295		  struct btrfs_ioctl_balance_args *bargs)
4296{
4297	u64 meta_target, data_target;
4298	u64 allowed;
4299	int mixed = 0;
4300	int ret;
4301	u64 num_devices;
4302	unsigned seq;
4303	bool reducing_redundancy;
4304	bool paused = false;
4305	int i;
4306
4307	if (btrfs_fs_closing(fs_info) ||
4308	    atomic_read(&fs_info->balance_pause_req) ||
4309	    btrfs_should_cancel_balance(fs_info)) {
4310		ret = -EINVAL;
4311		goto out;
4312	}
4313
4314	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316		mixed = 1;
4317
4318	/*
4319	 * In case of mixed groups both data and meta should be picked,
4320	 * and identical options should be given for both of them.
4321	 */
4322	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323	if (mixed && (bctl->flags & allowed)) {
4324		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327			btrfs_err(fs_info,
4328	  "balance: mixed groups data and metadata options must be the same");
4329			ret = -EINVAL;
4330			goto out;
4331		}
4332	}
4333
4334	/*
4335	 * rw_devices will not change at the moment, device add/delete/replace
4336	 * are exclusive
4337	 */
4338	num_devices = fs_info->fs_devices->rw_devices;
4339
4340	/*
4341	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342	 * special bit for it, to make it easier to distinguish.  Thus we need
4343	 * to set it manually, or balance would refuse the profile.
4344	 */
4345	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347		if (num_devices >= btrfs_raid_array[i].devs_min)
4348			allowed |= btrfs_raid_array[i].bg_flag;
4349
4350	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4353		ret = -EINVAL;
4354		goto out;
4355	}
4356
4357	/*
4358	 * Allow to reduce metadata or system integrity only if force set for
4359	 * profiles with redundancy (copies, parity)
4360	 */
4361	allowed = 0;
4362	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363		if (btrfs_raid_array[i].ncopies >= 2 ||
4364		    btrfs_raid_array[i].tolerated_failures >= 1)
4365			allowed |= btrfs_raid_array[i].bg_flag;
4366	}
4367	do {
4368		seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371		     (fs_info->avail_system_alloc_bits & allowed) &&
4372		     !(bctl->sys.target & allowed)) ||
4373		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4375		     !(bctl->meta.target & allowed)))
4376			reducing_redundancy = true;
4377		else
4378			reducing_redundancy = false;
4379
4380		/* if we're not converting, the target field is uninitialized */
4381		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384			bctl->data.target : fs_info->avail_data_alloc_bits;
4385	} while (read_seqretry(&fs_info->profiles_lock, seq));
4386
4387	if (reducing_redundancy) {
4388		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389			btrfs_info(fs_info,
4390			   "balance: force reducing metadata redundancy");
4391		} else {
4392			btrfs_err(fs_info,
4393	"balance: reduces metadata redundancy, use --force if you want this");
4394			ret = -EINVAL;
4395			goto out;
4396		}
4397	}
4398
4399	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401		btrfs_warn(fs_info,
4402	"balance: metadata profile %s has lower redundancy than data profile %s",
4403				btrfs_bg_type_to_raid_name(meta_target),
4404				btrfs_bg_type_to_raid_name(data_target));
4405	}
4406
4407	ret = insert_balance_item(fs_info, bctl);
4408	if (ret && ret != -EEXIST)
4409		goto out;
4410
4411	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412		BUG_ON(ret == -EEXIST);
4413		BUG_ON(fs_info->balance_ctl);
4414		spin_lock(&fs_info->balance_lock);
4415		fs_info->balance_ctl = bctl;
4416		spin_unlock(&fs_info->balance_lock);
4417	} else {
4418		BUG_ON(ret != -EEXIST);
4419		spin_lock(&fs_info->balance_lock);
4420		update_balance_args(bctl);
4421		spin_unlock(&fs_info->balance_lock);
4422	}
4423
4424	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426	describe_balance_start_or_resume(fs_info);
4427	mutex_unlock(&fs_info->balance_mutex);
4428
4429	ret = __btrfs_balance(fs_info);
4430
4431	mutex_lock(&fs_info->balance_mutex);
4432	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433		btrfs_info(fs_info, "balance: paused");
4434		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435		paused = true;
4436	}
4437	/*
4438	 * Balance can be canceled by:
4439	 *
4440	 * - Regular cancel request
4441	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4442	 *
4443	 * - Fatal signal to "btrfs" process
4444	 *   Either the signal caught by wait_reserve_ticket() and callers
4445	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4446	 *   got -ECANCELED.
4447	 *   Either way, in this case balance_cancel_req = 0, and
4448	 *   ret == -EINTR or ret == -ECANCELED.
4449	 *
4450	 * So here we only check the return value to catch canceled balance.
4451	 */
4452	else if (ret == -ECANCELED || ret == -EINTR)
4453		btrfs_info(fs_info, "balance: canceled");
4454	else
4455		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459	if (bargs) {
4460		memset(bargs, 0, sizeof(*bargs));
4461		btrfs_update_ioctl_balance_args(fs_info, bargs);
4462	}
4463
4464	/* We didn't pause, we can clean everything up. */
4465	if (!paused) {
4466		reset_balance_state(fs_info);
4467		btrfs_exclop_finish(fs_info);
4468	}
4469
4470	wake_up(&fs_info->balance_wait_q);
4471
4472	return ret;
4473out:
4474	if (bctl->flags & BTRFS_BALANCE_RESUME)
4475		reset_balance_state(fs_info);
4476	else
4477		kfree(bctl);
4478	btrfs_exclop_finish(fs_info);
4479
4480	return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485	struct btrfs_fs_info *fs_info = data;
4486	int ret = 0;
4487
4488	sb_start_write(fs_info->sb);
4489	mutex_lock(&fs_info->balance_mutex);
4490	if (fs_info->balance_ctl)
4491		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492	mutex_unlock(&fs_info->balance_mutex);
4493	sb_end_write(fs_info->sb);
4494
4495	return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500	struct task_struct *tsk;
4501
4502	mutex_lock(&fs_info->balance_mutex);
4503	if (!fs_info->balance_ctl) {
4504		mutex_unlock(&fs_info->balance_mutex);
4505		return 0;
4506	}
4507	mutex_unlock(&fs_info->balance_mutex);
4508
4509	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510		btrfs_info(fs_info, "balance: resume skipped");
4511		return 0;
4512	}
4513
4514	spin_lock(&fs_info->super_lock);
4515	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517	spin_unlock(&fs_info->super_lock);
4518	/*
4519	 * A ro->rw remount sequence should continue with the paused balance
4520	 * regardless of who pauses it, system or the user as of now, so set
4521	 * the resume flag.
4522	 */
4523	spin_lock(&fs_info->balance_lock);
4524	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525	spin_unlock(&fs_info->balance_lock);
4526
4527	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528	return PTR_ERR_OR_ZERO(tsk);
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533	struct btrfs_balance_control *bctl;
4534	struct btrfs_balance_item *item;
4535	struct btrfs_disk_balance_args disk_bargs;
4536	struct btrfs_path *path;
4537	struct extent_buffer *leaf;
4538	struct btrfs_key key;
4539	int ret;
4540
4541	path = btrfs_alloc_path();
4542	if (!path)
4543		return -ENOMEM;
4544
4545	key.objectid = BTRFS_BALANCE_OBJECTID;
4546	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547	key.offset = 0;
4548
4549	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550	if (ret < 0)
4551		goto out;
4552	if (ret > 0) { /* ret = -ENOENT; */
4553		ret = 0;
4554		goto out;
4555	}
4556
4557	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558	if (!bctl) {
4559		ret = -ENOMEM;
4560		goto out;
4561	}
4562
4563	leaf = path->nodes[0];
4564	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
4566	bctl->flags = btrfs_balance_flags(leaf, item);
4567	bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569	btrfs_balance_data(leaf, item, &disk_bargs);
4570	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571	btrfs_balance_meta(leaf, item, &disk_bargs);
4572	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573	btrfs_balance_sys(leaf, item, &disk_bargs);
4574	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576	/*
4577	 * This should never happen, as the paused balance state is recovered
4578	 * during mount without any chance of other exclusive ops to collide.
4579	 *
4580	 * This gives the exclusive op status to balance and keeps in paused
4581	 * state until user intervention (cancel or umount). If the ownership
4582	 * cannot be assigned, show a message but do not fail. The balance
4583	 * is in a paused state and must have fs_info::balance_ctl properly
4584	 * set up.
4585	 */
4586	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587		btrfs_warn(fs_info,
4588	"balance: cannot set exclusive op status, resume manually");
4589
4590	btrfs_release_path(path);
4591
4592	mutex_lock(&fs_info->balance_mutex);
4593	BUG_ON(fs_info->balance_ctl);
4594	spin_lock(&fs_info->balance_lock);
4595	fs_info->balance_ctl = bctl;
4596	spin_unlock(&fs_info->balance_lock);
4597	mutex_unlock(&fs_info->balance_mutex);
4598out:
4599	btrfs_free_path(path);
4600	return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605	int ret = 0;
4606
4607	mutex_lock(&fs_info->balance_mutex);
4608	if (!fs_info->balance_ctl) {
4609		mutex_unlock(&fs_info->balance_mutex);
4610		return -ENOTCONN;
4611	}
4612
4613	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614		atomic_inc(&fs_info->balance_pause_req);
4615		mutex_unlock(&fs_info->balance_mutex);
4616
4617		wait_event(fs_info->balance_wait_q,
4618			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620		mutex_lock(&fs_info->balance_mutex);
4621		/* we are good with balance_ctl ripped off from under us */
4622		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623		atomic_dec(&fs_info->balance_pause_req);
4624	} else {
4625		ret = -ENOTCONN;
4626	}
4627
4628	mutex_unlock(&fs_info->balance_mutex);
4629	return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634	mutex_lock(&fs_info->balance_mutex);
4635	if (!fs_info->balance_ctl) {
4636		mutex_unlock(&fs_info->balance_mutex);
4637		return -ENOTCONN;
4638	}
4639
4640	/*
4641	 * A paused balance with the item stored on disk can be resumed at
4642	 * mount time if the mount is read-write. Otherwise it's still paused
4643	 * and we must not allow cancelling as it deletes the item.
4644	 */
4645	if (sb_rdonly(fs_info->sb)) {
4646		mutex_unlock(&fs_info->balance_mutex);
4647		return -EROFS;
4648	}
4649
4650	atomic_inc(&fs_info->balance_cancel_req);
4651	/*
4652	 * if we are running just wait and return, balance item is
4653	 * deleted in btrfs_balance in this case
4654	 */
4655	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656		mutex_unlock(&fs_info->balance_mutex);
4657		wait_event(fs_info->balance_wait_q,
4658			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659		mutex_lock(&fs_info->balance_mutex);
4660	} else {
4661		mutex_unlock(&fs_info->balance_mutex);
4662		/*
4663		 * Lock released to allow other waiters to continue, we'll
4664		 * reexamine the status again.
4665		 */
4666		mutex_lock(&fs_info->balance_mutex);
4667
4668		if (fs_info->balance_ctl) {
4669			reset_balance_state(fs_info);
4670			btrfs_exclop_finish(fs_info);
4671			btrfs_info(fs_info, "balance: canceled");
4672		}
4673	}
4674
4675	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676	atomic_dec(&fs_info->balance_cancel_req);
4677	mutex_unlock(&fs_info->balance_mutex);
4678	return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683	struct btrfs_fs_info *fs_info = data;
4684	struct btrfs_root *root = fs_info->tree_root;
4685	struct btrfs_key key;
4686	struct btrfs_path *path = NULL;
4687	int ret = 0;
4688	struct extent_buffer *eb;
4689	int slot;
4690	struct btrfs_root_item root_item;
4691	u32 item_size;
4692	struct btrfs_trans_handle *trans = NULL;
4693	bool closing = false;
4694
4695	path = btrfs_alloc_path();
4696	if (!path) {
4697		ret = -ENOMEM;
4698		goto out;
4699	}
4700
4701	key.objectid = 0;
4702	key.type = BTRFS_ROOT_ITEM_KEY;
4703	key.offset = 0;
4704
4705	while (1) {
4706		if (btrfs_fs_closing(fs_info)) {
4707			closing = true;
4708			break;
4709		}
4710		ret = btrfs_search_forward(root, &key, path,
4711				BTRFS_OLDEST_GENERATION);
4712		if (ret) {
4713			if (ret > 0)
4714				ret = 0;
4715			break;
4716		}
4717
4718		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722			goto skip;
4723
4724		eb = path->nodes[0];
4725		slot = path->slots[0];
4726		item_size = btrfs_item_size(eb, slot);
4727		if (item_size < sizeof(root_item))
4728			goto skip;
4729
4730		read_extent_buffer(eb, &root_item,
4731				   btrfs_item_ptr_offset(eb, slot),
4732				   (int)sizeof(root_item));
4733		if (btrfs_root_refs(&root_item) == 0)
4734			goto skip;
4735
4736		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738			if (trans)
4739				goto update_tree;
4740
4741			btrfs_release_path(path);
4742			/*
4743			 * 1 - subvol uuid item
4744			 * 1 - received_subvol uuid item
4745			 */
4746			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747			if (IS_ERR(trans)) {
4748				ret = PTR_ERR(trans);
4749				break;
4750			}
4751			continue;
4752		} else {
4753			goto skip;
4754		}
4755update_tree:
4756		btrfs_release_path(path);
4757		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759						  BTRFS_UUID_KEY_SUBVOL,
4760						  key.objectid);
4761			if (ret < 0) {
4762				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763					ret);
4764				break;
4765			}
4766		}
4767
4768		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769			ret = btrfs_uuid_tree_add(trans,
4770						  root_item.received_uuid,
4771						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772						  key.objectid);
4773			if (ret < 0) {
4774				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775					ret);
4776				break;
4777			}
4778		}
4779
4780skip:
4781		btrfs_release_path(path);
4782		if (trans) {
4783			ret = btrfs_end_transaction(trans);
4784			trans = NULL;
4785			if (ret)
4786				break;
4787		}
4788
4789		if (key.offset < (u64)-1) {
4790			key.offset++;
4791		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792			key.offset = 0;
4793			key.type = BTRFS_ROOT_ITEM_KEY;
4794		} else if (key.objectid < (u64)-1) {
4795			key.offset = 0;
4796			key.type = BTRFS_ROOT_ITEM_KEY;
4797			key.objectid++;
4798		} else {
4799			break;
4800		}
4801		cond_resched();
4802	}
4803
4804out:
4805	btrfs_free_path(path);
4806	if (trans && !IS_ERR(trans))
4807		btrfs_end_transaction(trans);
4808	if (ret)
4809		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810	else if (!closing)
4811		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812	up(&fs_info->uuid_tree_rescan_sem);
4813	return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818	struct btrfs_trans_handle *trans;
4819	struct btrfs_root *tree_root = fs_info->tree_root;
4820	struct btrfs_root *uuid_root;
4821	struct task_struct *task;
4822	int ret;
4823
4824	/*
4825	 * 1 - root node
4826	 * 1 - root item
4827	 */
4828	trans = btrfs_start_transaction(tree_root, 2);
4829	if (IS_ERR(trans))
4830		return PTR_ERR(trans);
4831
4832	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833	if (IS_ERR(uuid_root)) {
4834		ret = PTR_ERR(uuid_root);
4835		btrfs_abort_transaction(trans, ret);
4836		btrfs_end_transaction(trans);
4837		return ret;
4838	}
4839
4840	fs_info->uuid_root = uuid_root;
4841
4842	ret = btrfs_commit_transaction(trans);
4843	if (ret)
4844		return ret;
4845
4846	down(&fs_info->uuid_tree_rescan_sem);
4847	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848	if (IS_ERR(task)) {
4849		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850		btrfs_warn(fs_info, "failed to start uuid_scan task");
4851		up(&fs_info->uuid_tree_rescan_sem);
4852		return PTR_ERR(task);
4853	}
4854
4855	return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865	struct btrfs_fs_info *fs_info = device->fs_info;
4866	struct btrfs_root *root = fs_info->dev_root;
4867	struct btrfs_trans_handle *trans;
4868	struct btrfs_dev_extent *dev_extent = NULL;
4869	struct btrfs_path *path;
4870	u64 length;
4871	u64 chunk_offset;
4872	int ret;
4873	int slot;
4874	int failed = 0;
4875	bool retried = false;
4876	struct extent_buffer *l;
4877	struct btrfs_key key;
4878	struct btrfs_super_block *super_copy = fs_info->super_copy;
4879	u64 old_total = btrfs_super_total_bytes(super_copy);
4880	u64 old_size = btrfs_device_get_total_bytes(device);
4881	u64 diff;
4882	u64 start;
4883	u64 free_diff = 0;
4884
4885	new_size = round_down(new_size, fs_info->sectorsize);
4886	start = new_size;
4887	diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890		return -EINVAL;
4891
4892	path = btrfs_alloc_path();
4893	if (!path)
4894		return -ENOMEM;
4895
4896	path->reada = READA_BACK;
4897
4898	trans = btrfs_start_transaction(root, 0);
4899	if (IS_ERR(trans)) {
4900		btrfs_free_path(path);
4901		return PTR_ERR(trans);
4902	}
4903
4904	mutex_lock(&fs_info->chunk_mutex);
4905
4906	btrfs_device_set_total_bytes(device, new_size);
4907	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908		device->fs_devices->total_rw_bytes -= diff;
4909
4910		/*
4911		 * The new free_chunk_space is new_size - used, so we have to
4912		 * subtract the delta of the old free_chunk_space which included
4913		 * old_size - used.  If used > new_size then just subtract this
4914		 * entire device's free space.
4915		 */
4916		if (device->bytes_used < new_size)
4917			free_diff = (old_size - device->bytes_used) -
4918				    (new_size - device->bytes_used);
4919		else
4920			free_diff = old_size - device->bytes_used;
4921		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922	}
4923
4924	/*
4925	 * Once the device's size has been set to the new size, ensure all
4926	 * in-memory chunks are synced to disk so that the loop below sees them
4927	 * and relocates them accordingly.
4928	 */
4929	if (contains_pending_extent(device, &start, diff)) {
4930		mutex_unlock(&fs_info->chunk_mutex);
4931		ret = btrfs_commit_transaction(trans);
4932		if (ret)
4933			goto done;
4934	} else {
4935		mutex_unlock(&fs_info->chunk_mutex);
4936		btrfs_end_transaction(trans);
4937	}
4938
4939again:
4940	key.objectid = device->devid;
4941	key.offset = (u64)-1;
4942	key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944	do {
4945		mutex_lock(&fs_info->reclaim_bgs_lock);
4946		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947		if (ret < 0) {
4948			mutex_unlock(&fs_info->reclaim_bgs_lock);
4949			goto done;
4950		}
4951
4952		ret = btrfs_previous_item(root, path, 0, key.type);
4953		if (ret) {
4954			mutex_unlock(&fs_info->reclaim_bgs_lock);
4955			if (ret < 0)
4956				goto done;
4957			ret = 0;
4958			btrfs_release_path(path);
4959			break;
4960		}
4961
4962		l = path->nodes[0];
4963		slot = path->slots[0];
4964		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966		if (key.objectid != device->devid) {
4967			mutex_unlock(&fs_info->reclaim_bgs_lock);
4968			btrfs_release_path(path);
4969			break;
4970		}
4971
4972		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973		length = btrfs_dev_extent_length(l, dev_extent);
4974
4975		if (key.offset + length <= new_size) {
4976			mutex_unlock(&fs_info->reclaim_bgs_lock);
4977			btrfs_release_path(path);
4978			break;
4979		}
4980
4981		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982		btrfs_release_path(path);
4983
4984		/*
4985		 * We may be relocating the only data chunk we have,
4986		 * which could potentially end up with losing data's
4987		 * raid profile, so lets allocate an empty one in
4988		 * advance.
4989		 */
4990		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991		if (ret < 0) {
4992			mutex_unlock(&fs_info->reclaim_bgs_lock);
4993			goto done;
4994		}
4995
4996		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997		mutex_unlock(&fs_info->reclaim_bgs_lock);
4998		if (ret == -ENOSPC) {
4999			failed++;
5000		} else if (ret) {
5001			if (ret == -ETXTBSY) {
5002				btrfs_warn(fs_info,
5003		   "could not shrink block group %llu due to active swapfile",
5004					   chunk_offset);
5005			}
5006			goto done;
5007		}
5008	} while (key.offset-- > 0);
5009
5010	if (failed && !retried) {
5011		failed = 0;
5012		retried = true;
5013		goto again;
5014	} else if (failed && retried) {
5015		ret = -ENOSPC;
5016		goto done;
5017	}
5018
5019	/* Shrinking succeeded, else we would be at "done". */
5020	trans = btrfs_start_transaction(root, 0);
5021	if (IS_ERR(trans)) {
5022		ret = PTR_ERR(trans);
5023		goto done;
5024	}
5025
5026	mutex_lock(&fs_info->chunk_mutex);
5027	/* Clear all state bits beyond the shrunk device size */
5028	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029			  CHUNK_STATE_MASK);
5030
5031	btrfs_device_set_disk_total_bytes(device, new_size);
5032	if (list_empty(&device->post_commit_list))
5033		list_add_tail(&device->post_commit_list,
5034			      &trans->transaction->dev_update_list);
5035
5036	WARN_ON(diff > old_total);
5037	btrfs_set_super_total_bytes(super_copy,
5038			round_down(old_total - diff, fs_info->sectorsize));
5039	mutex_unlock(&fs_info->chunk_mutex);
5040
5041	btrfs_reserve_chunk_metadata(trans, false);
5042	/* Now btrfs_update_device() will change the on-disk size. */
5043	ret = btrfs_update_device(trans, device);
5044	btrfs_trans_release_chunk_metadata(trans);
5045	if (ret < 0) {
5046		btrfs_abort_transaction(trans, ret);
5047		btrfs_end_transaction(trans);
5048	} else {
5049		ret = btrfs_commit_transaction(trans);
5050	}
5051done:
5052	btrfs_free_path(path);
5053	if (ret) {
5054		mutex_lock(&fs_info->chunk_mutex);
5055		btrfs_device_set_total_bytes(device, old_size);
5056		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057			device->fs_devices->total_rw_bytes += diff;
5058			atomic64_add(free_diff, &fs_info->free_chunk_space);
5059		}
5060		mutex_unlock(&fs_info->chunk_mutex);
5061	}
5062	return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066			   struct btrfs_key *key,
5067			   struct btrfs_chunk *chunk, int item_size)
5068{
5069	struct btrfs_super_block *super_copy = fs_info->super_copy;
5070	struct btrfs_disk_key disk_key;
5071	u32 array_size;
5072	u8 *ptr;
5073
5074	lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076	array_size = btrfs_super_sys_array_size(super_copy);
5077	if (array_size + item_size + sizeof(disk_key)
5078			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079		return -EFBIG;
5080
5081	ptr = super_copy->sys_chunk_array + array_size;
5082	btrfs_cpu_key_to_disk(&disk_key, key);
5083	memcpy(ptr, &disk_key, sizeof(disk_key));
5084	ptr += sizeof(disk_key);
5085	memcpy(ptr, chunk, item_size);
5086	item_size += sizeof(disk_key);
5087	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089	return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097	const struct btrfs_device_info *di_a = a;
5098	const struct btrfs_device_info *di_b = b;
5099
5100	if (di_a->max_avail > di_b->max_avail)
5101		return -1;
5102	if (di_a->max_avail < di_b->max_avail)
5103		return 1;
5104	if (di_a->total_avail > di_b->total_avail)
5105		return -1;
5106	if (di_a->total_avail < di_b->total_avail)
5107		return 1;
5108	return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114		return;
5115
5116	btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122		return;
5123
5124	btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132	u64 start;
5133	u64 type;
5134	/* Total number of stripes to allocate */
5135	int num_stripes;
5136	/* sub_stripes info for map */
5137	int sub_stripes;
5138	/* Stripes per device */
5139	int dev_stripes;
5140	/* Maximum number of devices to use */
5141	int devs_max;
5142	/* Minimum number of devices to use */
5143	int devs_min;
5144	/* ndevs has to be a multiple of this */
5145	int devs_increment;
5146	/* Number of copies */
5147	int ncopies;
5148	/* Number of stripes worth of bytes to store parity information */
5149	int nparity;
5150	u64 max_stripe_size;
5151	u64 max_chunk_size;
5152	u64 dev_extent_min;
5153	u64 stripe_size;
5154	u64 chunk_size;
5155	int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159				struct btrfs_fs_devices *fs_devices,
5160				struct alloc_chunk_ctl *ctl)
5161{
5162	struct btrfs_space_info *space_info;
5163
5164	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165	ASSERT(space_info);
5166
5167	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173	/* We don't want a chunk larger than 10% of writable space */
5174	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175				  ctl->max_chunk_size);
5176	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180				      struct btrfs_fs_devices *fs_devices,
5181				      struct alloc_chunk_ctl *ctl)
5182{
5183	u64 zone_size = fs_devices->fs_info->zone_size;
5184	u64 limit;
5185	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187	u64 min_chunk_size = min_data_stripes * zone_size;
5188	u64 type = ctl->type;
5189
5190	ctl->max_stripe_size = zone_size;
5191	if (type & BTRFS_BLOCK_GROUP_DATA) {
5192		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193						 zone_size);
5194	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195		ctl->max_chunk_size = ctl->max_stripe_size;
5196	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198		ctl->devs_max = min_t(int, ctl->devs_max,
5199				      BTRFS_MAX_DEVS_SYS_CHUNK);
5200	} else {
5201		BUG();
5202	}
5203
5204	/* We don't want a chunk larger than 10% of writable space */
5205	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206			       zone_size),
5207		    min_chunk_size);
5208	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213				 struct alloc_chunk_ctl *ctl)
5214{
5215	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219	ctl->devs_max = btrfs_raid_array[index].devs_max;
5220	if (!ctl->devs_max)
5221		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222	ctl->devs_min = btrfs_raid_array[index].devs_min;
5223	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224	ctl->ncopies = btrfs_raid_array[index].ncopies;
5225	ctl->nparity = btrfs_raid_array[index].nparity;
5226	ctl->ndevs = 0;
5227
5228	switch (fs_devices->chunk_alloc_policy) {
5229	case BTRFS_CHUNK_ALLOC_REGULAR:
5230		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231		break;
5232	case BTRFS_CHUNK_ALLOC_ZONED:
5233		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234		break;
5235	default:
5236		BUG();
5237	}
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241			      struct alloc_chunk_ctl *ctl,
5242			      struct btrfs_device_info *devices_info)
5243{
5244	struct btrfs_fs_info *info = fs_devices->fs_info;
5245	struct btrfs_device *device;
5246	u64 total_avail;
5247	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248	int ret;
5249	int ndevs = 0;
5250	u64 max_avail;
5251	u64 dev_offset;
5252
5253	/*
5254	 * in the first pass through the devices list, we gather information
5255	 * about the available holes on each device.
5256	 */
5257	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259			WARN(1, KERN_ERR
5260			       "BTRFS: read-only device in alloc_list\n");
5261			continue;
5262		}
5263
5264		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265					&device->dev_state) ||
5266		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267			continue;
5268
5269		if (device->total_bytes > device->bytes_used)
5270			total_avail = device->total_bytes - device->bytes_used;
5271		else
5272			total_avail = 0;
5273
5274		/* If there is no space on this device, skip it. */
5275		if (total_avail < ctl->dev_extent_min)
5276			continue;
5277
5278		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279					   &max_avail);
5280		if (ret && ret != -ENOSPC)
5281			return ret;
5282
5283		if (ret == 0)
5284			max_avail = dev_extent_want;
5285
5286		if (max_avail < ctl->dev_extent_min) {
5287			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288				btrfs_debug(info,
5289			"%s: devid %llu has no free space, have=%llu want=%llu",
5290					    __func__, device->devid, max_avail,
5291					    ctl->dev_extent_min);
5292			continue;
5293		}
5294
5295		if (ndevs == fs_devices->rw_devices) {
5296			WARN(1, "%s: found more than %llu devices\n",
5297			     __func__, fs_devices->rw_devices);
5298			break;
5299		}
5300		devices_info[ndevs].dev_offset = dev_offset;
5301		devices_info[ndevs].max_avail = max_avail;
5302		devices_info[ndevs].total_avail = total_avail;
5303		devices_info[ndevs].dev = device;
5304		++ndevs;
5305	}
5306	ctl->ndevs = ndevs;
5307
5308	/*
5309	 * now sort the devices by hole size / available space
5310	 */
5311	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312	     btrfs_cmp_device_info, NULL);
5313
5314	return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318				      struct btrfs_device_info *devices_info)
5319{
5320	/* Number of stripes that count for block group size */
5321	int data_stripes;
5322
5323	/*
5324	 * The primary goal is to maximize the number of stripes, so use as
5325	 * many devices as possible, even if the stripes are not maximum sized.
5326	 *
5327	 * The DUP profile stores more than one stripe per device, the
5328	 * max_avail is the total size so we have to adjust.
5329	 */
5330	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331				   ctl->dev_stripes);
5332	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5335	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337	/*
5338	 * Use the number of data stripes to figure out how big this chunk is
5339	 * really going to be in terms of logical address space, and compare
5340	 * that answer with the max chunk size. If it's higher, we try to
5341	 * reduce stripe_size.
5342	 */
5343	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344		/*
5345		 * Reduce stripe_size, round it up to a 16MB boundary again and
5346		 * then use it, unless it ends up being even bigger than the
5347		 * previous value we had already.
5348		 */
5349		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350							data_stripes), SZ_16M),
5351				       ctl->stripe_size);
5352	}
5353
5354	/* Stripe size should not go beyond 1G. */
5355	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357	/* Align to BTRFS_STRIPE_LEN */
5358	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359	ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361	return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365				    struct btrfs_device_info *devices_info)
5366{
5367	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368	/* Number of stripes that count for block group size */
5369	int data_stripes;
5370
5371	/*
5372	 * It should hold because:
5373	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374	 */
5375	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377	ctl->stripe_size = zone_size;
5378	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384					     ctl->stripe_size) + ctl->nparity,
5385				     ctl->dev_stripes);
5386		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389	}
5390
5391	ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393	return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397			      struct alloc_chunk_ctl *ctl,
5398			      struct btrfs_device_info *devices_info)
5399{
5400	struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402	/*
5403	 * Round down to number of usable stripes, devs_increment can be any
5404	 * number so we can't use round_down() that requires power of 2, while
5405	 * rounddown is safe.
5406	 */
5407	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409	if (ctl->ndevs < ctl->devs_min) {
5410		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411			btrfs_debug(info,
5412	"%s: not enough devices with free space: have=%d minimum required=%d",
5413				    __func__, ctl->ndevs, ctl->devs_min);
5414		}
5415		return -ENOSPC;
5416	}
5417
5418	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420	switch (fs_devices->chunk_alloc_policy) {
5421	case BTRFS_CHUNK_ALLOC_REGULAR:
5422		return decide_stripe_size_regular(ctl, devices_info);
5423	case BTRFS_CHUNK_ALLOC_ZONED:
5424		return decide_stripe_size_zoned(ctl, devices_info);
5425	default:
5426		BUG();
5427	}
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432	for (int i = 0; i < map->num_stripes; i++) {
5433		struct btrfs_io_stripe *stripe = &map->stripes[i];
5434		struct btrfs_device *device = stripe->dev;
5435
5436		set_extent_bit(&device->alloc_state, stripe->physical,
5437			       stripe->physical + map->stripe_size - 1,
5438			       bits | EXTENT_NOWAIT, NULL);
5439	}
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444	for (int i = 0; i < map->num_stripes; i++) {
5445		struct btrfs_io_stripe *stripe = &map->stripes[i];
5446		struct btrfs_device *device = stripe->dev;
5447
5448		__clear_extent_bit(&device->alloc_state, stripe->physical,
5449				   stripe->physical + map->stripe_size - 1,
5450				   bits | EXTENT_NOWAIT,
5451				   NULL, NULL);
5452	}
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457	write_lock(&fs_info->mapping_tree_lock);
5458	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459	RB_CLEAR_NODE(&map->rb_node);
5460	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461	write_unlock(&fs_info->mapping_tree_lock);
5462
5463	/* Once for the tree reference. */
5464	btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470	struct rb_node **p;
5471	struct rb_node *parent = NULL;
5472	bool leftmost = true;
5473
5474	write_lock(&fs_info->mapping_tree_lock);
5475	p = &fs_info->mapping_tree.rb_root.rb_node;
5476	while (*p) {
5477		struct btrfs_chunk_map *entry;
5478
5479		parent = *p;
5480		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482		if (map->start < entry->start) {
5483			p = &(*p)->rb_left;
5484		} else if (map->start > entry->start) {
5485			p = &(*p)->rb_right;
5486			leftmost = false;
5487		} else {
5488			write_unlock(&fs_info->mapping_tree_lock);
5489			return -EEXIST;
5490		}
5491	}
5492	rb_link_node(&map->rb_node, parent, p);
5493	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496	write_unlock(&fs_info->mapping_tree_lock);
5497
5498	return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504	struct btrfs_chunk_map *map;
5505
5506	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507	if (!map)
5508		return NULL;
5509
5510	refcount_set(&map->refs, 1);
5511	RB_CLEAR_NODE(&map->rb_node);
5512
5513	return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518	const int size = btrfs_chunk_map_size(map->num_stripes);
5519	struct btrfs_chunk_map *clone;
5520
5521	clone = kmemdup(map, size, gfp);
5522	if (!clone)
5523		return NULL;
5524
5525	refcount_set(&clone->refs, 1);
5526	RB_CLEAR_NODE(&clone->rb_node);
5527
5528	return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532			struct alloc_chunk_ctl *ctl,
5533			struct btrfs_device_info *devices_info)
5534{
5535	struct btrfs_fs_info *info = trans->fs_info;
5536	struct btrfs_chunk_map *map;
5537	struct btrfs_block_group *block_group;
5538	u64 start = ctl->start;
5539	u64 type = ctl->type;
5540	int ret;
5541	int i;
5542	int j;
5543
5544	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545	if (!map)
5546		return ERR_PTR(-ENOMEM);
5547
5548	map->start = start;
5549	map->chunk_len = ctl->chunk_size;
5550	map->stripe_size = ctl->stripe_size;
5551	map->type = type;
5552	map->io_align = BTRFS_STRIPE_LEN;
5553	map->io_width = BTRFS_STRIPE_LEN;
5554	map->sub_stripes = ctl->sub_stripes;
5555	map->num_stripes = ctl->num_stripes;
5556
5557	for (i = 0; i < ctl->ndevs; ++i) {
5558		for (j = 0; j < ctl->dev_stripes; ++j) {
5559			int s = i * ctl->dev_stripes + j;
5560			map->stripes[s].dev = devices_info[i].dev;
5561			map->stripes[s].physical = devices_info[i].dev_offset +
5562						   j * ctl->stripe_size;
5563		}
5564	}
5565
5566	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568	ret = btrfs_add_chunk_map(info, map);
5569	if (ret) {
5570		btrfs_free_chunk_map(map);
5571		return ERR_PTR(ret);
5572	}
5573
5574	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575	if (IS_ERR(block_group)) {
5576		btrfs_remove_chunk_map(info, map);
5577		return block_group;
5578	}
5579
5580	for (int i = 0; i < map->num_stripes; i++) {
5581		struct btrfs_device *dev = map->stripes[i].dev;
5582
5583		btrfs_device_set_bytes_used(dev,
5584					    dev->bytes_used + ctl->stripe_size);
5585		if (list_empty(&dev->post_commit_list))
5586			list_add_tail(&dev->post_commit_list,
5587				      &trans->transaction->dev_update_list);
5588	}
5589
5590	atomic64_sub(ctl->stripe_size * map->num_stripes,
5591		     &info->free_chunk_space);
5592
5593	check_raid56_incompat_flag(info, type);
5594	check_raid1c34_incompat_flag(info, type);
5595
5596	return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600					    u64 type)
5601{
5602	struct btrfs_fs_info *info = trans->fs_info;
5603	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604	struct btrfs_device_info *devices_info = NULL;
5605	struct alloc_chunk_ctl ctl;
5606	struct btrfs_block_group *block_group;
5607	int ret;
5608
5609	lockdep_assert_held(&info->chunk_mutex);
5610
5611	if (!alloc_profile_is_valid(type, 0)) {
5612		ASSERT(0);
5613		return ERR_PTR(-EINVAL);
5614	}
5615
5616	if (list_empty(&fs_devices->alloc_list)) {
5617		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618			btrfs_debug(info, "%s: no writable device", __func__);
5619		return ERR_PTR(-ENOSPC);
5620	}
5621
5622	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624		ASSERT(0);
5625		return ERR_PTR(-EINVAL);
5626	}
5627
5628	ctl.start = find_next_chunk(info);
5629	ctl.type = type;
5630	init_alloc_chunk_ctl(fs_devices, &ctl);
5631
5632	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633			       GFP_NOFS);
5634	if (!devices_info)
5635		return ERR_PTR(-ENOMEM);
5636
5637	ret = gather_device_info(fs_devices, &ctl, devices_info);
5638	if (ret < 0) {
5639		block_group = ERR_PTR(ret);
5640		goto out;
5641	}
5642
5643	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644	if (ret < 0) {
5645		block_group = ERR_PTR(ret);
5646		goto out;
5647	}
5648
5649	block_group = create_chunk(trans, &ctl, devices_info);
5650
5651out:
5652	kfree(devices_info);
5653	return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665				     struct btrfs_block_group *bg)
5666{
5667	struct btrfs_fs_info *fs_info = trans->fs_info;
5668	struct btrfs_root *chunk_root = fs_info->chunk_root;
5669	struct btrfs_key key;
5670	struct btrfs_chunk *chunk;
5671	struct btrfs_stripe *stripe;
5672	struct btrfs_chunk_map *map;
5673	size_t item_size;
5674	int i;
5675	int ret;
5676
5677	/*
5678	 * We take the chunk_mutex for 2 reasons:
5679	 *
5680	 * 1) Updates and insertions in the chunk btree must be done while holding
5681	 *    the chunk_mutex, as well as updating the system chunk array in the
5682	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5683	 *    details;
5684	 *
5685	 * 2) To prevent races with the final phase of a device replace operation
5686	 *    that replaces the device object associated with the map's stripes,
5687	 *    because the device object's id can change at any time during that
5688	 *    final phase of the device replace operation
5689	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691	 *    which would cause a failure when updating the device item, which does
5692	 *    not exists, or persisting a stripe of the chunk item with such ID.
5693	 *    Here we can't use the device_list_mutex because our caller already
5694	 *    has locked the chunk_mutex, and the final phase of device replace
5695	 *    acquires both mutexes - first the device_list_mutex and then the
5696	 *    chunk_mutex. Using any of those two mutexes protects us from a
5697	 *    concurrent device replace.
5698	 */
5699	lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702	if (IS_ERR(map)) {
5703		ret = PTR_ERR(map);
5704		btrfs_abort_transaction(trans, ret);
5705		return ret;
5706	}
5707
5708	item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710	chunk = kzalloc(item_size, GFP_NOFS);
5711	if (!chunk) {
5712		ret = -ENOMEM;
5713		btrfs_abort_transaction(trans, ret);
5714		goto out;
5715	}
5716
5717	for (i = 0; i < map->num_stripes; i++) {
5718		struct btrfs_device *device = map->stripes[i].dev;
5719
5720		ret = btrfs_update_device(trans, device);
5721		if (ret)
5722			goto out;
5723	}
5724
5725	stripe = &chunk->stripe;
5726	for (i = 0; i < map->num_stripes; i++) {
5727		struct btrfs_device *device = map->stripes[i].dev;
5728		const u64 dev_offset = map->stripes[i].physical;
5729
5730		btrfs_set_stack_stripe_devid(stripe, device->devid);
5731		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733		stripe++;
5734	}
5735
5736	btrfs_set_stack_chunk_length(chunk, bg->length);
5737	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739	btrfs_set_stack_chunk_type(chunk, map->type);
5740	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747	key.type = BTRFS_CHUNK_ITEM_KEY;
5748	key.offset = bg->start;
5749
5750	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751	if (ret)
5752		goto out;
5753
5754	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758		if (ret)
5759			goto out;
5760	}
5761
5762out:
5763	kfree(chunk);
5764	btrfs_free_chunk_map(map);
5765	return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5769{
5770	struct btrfs_fs_info *fs_info = trans->fs_info;
5771	u64 alloc_profile;
5772	struct btrfs_block_group *meta_bg;
5773	struct btrfs_block_group *sys_bg;
5774
5775	/*
5776	 * When adding a new device for sprouting, the seed device is read-only
5777	 * so we must first allocate a metadata and a system chunk. But before
5778	 * adding the block group items to the extent, device and chunk btrees,
5779	 * we must first:
5780	 *
5781	 * 1) Create both chunks without doing any changes to the btrees, as
5782	 *    otherwise we would get -ENOSPC since the block groups from the
5783	 *    seed device are read-only;
5784	 *
5785	 * 2) Add the device item for the new sprout device - finishing the setup
5786	 *    of a new block group requires updating the device item in the chunk
5787	 *    btree, so it must exist when we attempt to do it. The previous step
5788	 *    ensures this does not fail with -ENOSPC.
5789	 *
5790	 * After that we can add the block group items to their btrees:
5791	 * update existing device item in the chunk btree, add a new block group
5792	 * item to the extent btree, add a new chunk item to the chunk btree and
5793	 * finally add the new device extent items to the devices btree.
5794	 */
5795
5796	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798	if (IS_ERR(meta_bg))
5799		return PTR_ERR(meta_bg);
5800
5801	alloc_profile = btrfs_system_alloc_profile(fs_info);
5802	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803	if (IS_ERR(sys_bg))
5804		return PTR_ERR(sys_bg);
5805
5806	return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810{
5811	const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813	return btrfs_raid_array[index].tolerated_failures;
5814}
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818	struct btrfs_chunk_map *map;
5819	int miss_ndevs = 0;
5820	int i;
5821	bool ret = true;
5822
5823	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824	if (IS_ERR(map))
5825		return false;
5826
5827	for (i = 0; i < map->num_stripes; i++) {
5828		if (test_bit(BTRFS_DEV_STATE_MISSING,
5829					&map->stripes[i].dev->dev_state)) {
5830			miss_ndevs++;
5831			continue;
5832		}
5833		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834					&map->stripes[i].dev->dev_state)) {
5835			ret = false;
5836			goto end;
5837		}
5838	}
5839
5840	/*
5841	 * If the number of missing devices is larger than max errors, we can
5842	 * not write the data into that chunk successfully.
5843	 */
5844	if (miss_ndevs > btrfs_chunk_max_errors(map))
5845		ret = false;
5846end:
5847	btrfs_free_chunk_map(map);
5848	return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853	write_lock(&fs_info->mapping_tree_lock);
5854	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855		struct btrfs_chunk_map *map;
5856		struct rb_node *node;
5857
5858		node = rb_first_cached(&fs_info->mapping_tree);
5859		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861		RB_CLEAR_NODE(&map->rb_node);
5862		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863		/* Once for the tree ref. */
5864		btrfs_free_chunk_map(map);
5865		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866	}
5867	write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872	struct btrfs_chunk_map *map;
5873	enum btrfs_raid_types index;
5874	int ret = 1;
5875
5876	map = btrfs_get_chunk_map(fs_info, logical, len);
5877	if (IS_ERR(map))
5878		/*
5879		 * We could return errors for these cases, but that could get
5880		 * ugly and we'd probably do the same thing which is just not do
5881		 * anything else and exit, so return 1 so the callers don't try
5882		 * to use other copies.
5883		 */
5884		return 1;
5885
5886	index = btrfs_bg_flags_to_raid_index(map->type);
5887
5888	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890		ret = btrfs_raid_array[index].ncopies;
5891	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892		ret = 2;
5893	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894		/*
5895		 * There could be two corrupted data stripes, we need
5896		 * to loop retry in order to rebuild the correct data.
5897		 *
5898		 * Fail a stripe at a time on every retry except the
5899		 * stripe under reconstruction.
5900		 */
5901		ret = map->num_stripes;
5902	btrfs_free_chunk_map(map);
5903	return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907				    u64 logical)
5908{
5909	struct btrfs_chunk_map *map;
5910	unsigned long len = fs_info->sectorsize;
5911
5912	if (!btrfs_fs_incompat(fs_info, RAID56))
5913		return len;
5914
5915	map = btrfs_get_chunk_map(fs_info, logical, len);
5916
5917	if (!WARN_ON(IS_ERR(map))) {
5918		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920		btrfs_free_chunk_map(map);
5921	}
5922	return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927	struct btrfs_chunk_map *map;
5928	int ret = 0;
5929
5930	if (!btrfs_fs_incompat(fs_info, RAID56))
5931		return 0;
5932
5933	map = btrfs_get_chunk_map(fs_info, logical, len);
5934
5935	if (!WARN_ON(IS_ERR(map))) {
5936		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937			ret = 1;
5938		btrfs_free_chunk_map(map);
5939	}
5940	return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944			    struct btrfs_chunk_map *map, int first,
5945			    int dev_replace_is_ongoing)
5946{
 
5947	int i;
5948	int num_stripes;
5949	int preferred_mirror;
5950	int tolerance;
5951	struct btrfs_device *srcdev;
5952
5953	ASSERT((map->type &
5954		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957		num_stripes = map->sub_stripes;
5958	else
5959		num_stripes = map->num_stripes;
5960
5961	switch (fs_info->fs_devices->read_policy) {
5962	default:
5963		/* Shouldn't happen, just warn and use pid instead of failing */
5964		btrfs_warn_rl(fs_info,
5965			      "unknown read_policy type %u, reset to pid",
5966			      fs_info->fs_devices->read_policy);
5967		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968		fallthrough;
5969	case BTRFS_READ_POLICY_PID:
5970		preferred_mirror = first + (current->pid % num_stripes);
5971		break;
5972	}
5973
5974	if (dev_replace_is_ongoing &&
5975	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977		srcdev = fs_info->dev_replace.srcdev;
5978	else
5979		srcdev = NULL;
5980
5981	/*
5982	 * try to avoid the drive that is the source drive for a
5983	 * dev-replace procedure, only choose it if no other non-missing
5984	 * mirror is available
5985	 */
5986	for (tolerance = 0; tolerance < 2; tolerance++) {
5987		if (map->stripes[preferred_mirror].dev->bdev &&
5988		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989			return preferred_mirror;
5990		for (i = first; i < first + num_stripes; i++) {
5991			if (map->stripes[i].dev->bdev &&
5992			    (tolerance || map->stripes[i].dev != srcdev))
5993				return i;
5994		}
5995	}
5996
5997	/* we couldn't find one that doesn't fail.  Just return something
5998	 * and the io error handling code will clean up eventually
5999	 */
6000	return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004						       u64 logical,
6005						       u16 total_stripes)
6006{
6007	struct btrfs_io_context *bioc;
6008
6009	bioc = kzalloc(
6010		 /* The size of btrfs_io_context */
6011		sizeof(struct btrfs_io_context) +
6012		/* Plus the variable array for the stripes */
6013		sizeof(struct btrfs_io_stripe) * (total_stripes),
6014		GFP_NOFS);
6015
6016	if (!bioc)
6017		return NULL;
6018
6019	refcount_set(&bioc->refs, 1);
6020
6021	bioc->fs_info = fs_info;
6022	bioc->replace_stripe_src = -1;
6023	bioc->full_stripe_logical = (u64)-1;
6024	bioc->logical = logical;
6025
6026	return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
6030{
6031	WARN_ON(!refcount_read(&bioc->refs));
6032	refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037	if (!bioc)
6038		return;
6039	if (refcount_dec_and_test(&bioc->refs))
6040		kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048					       u64 logical, u64 *length_ret,
6049					       u32 *num_stripes)
6050{
6051	struct btrfs_chunk_map *map;
6052	struct btrfs_discard_stripe *stripes;
6053	u64 length = *length_ret;
6054	u64 offset;
6055	u32 stripe_nr;
6056	u32 stripe_nr_end;
6057	u32 stripe_cnt;
6058	u64 stripe_end_offset;
6059	u64 stripe_offset;
6060	u32 stripe_index;
6061	u32 factor = 0;
6062	u32 sub_stripes = 0;
6063	u32 stripes_per_dev = 0;
6064	u32 remaining_stripes = 0;
6065	u32 last_stripe = 0;
6066	int ret;
6067	int i;
6068
6069	map = btrfs_get_chunk_map(fs_info, logical, length);
6070	if (IS_ERR(map))
6071		return ERR_CAST(map);
6072
6073	/* we don't discard raid56 yet */
6074	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075		ret = -EOPNOTSUPP;
6076		goto out_free_map;
6077	}
6078
6079	offset = logical - map->start;
6080	length = min_t(u64, map->start + map->chunk_len - logical, length);
6081	*length_ret = length;
6082
6083	/*
6084	 * stripe_nr counts the total number of stripes we have to stride
6085	 * to get to this block
6086	 */
6087	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089	/* stripe_offset is the offset of this block in its stripe */
6090	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093			BTRFS_STRIPE_LEN_SHIFT;
6094	stripe_cnt = stripe_nr_end - stripe_nr;
6095	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096			    (offset + length);
6097	/*
6098	 * after this, stripe_nr is the number of stripes on this
6099	 * device we have to walk to find the data, and stripe_index is
6100	 * the number of our device in the stripe array
6101	 */
6102	*num_stripes = 1;
6103	stripe_index = 0;
6104	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105			 BTRFS_BLOCK_GROUP_RAID10)) {
6106		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107			sub_stripes = 1;
6108		else
6109			sub_stripes = map->sub_stripes;
6110
6111		factor = map->num_stripes / sub_stripes;
6112		*num_stripes = min_t(u64, map->num_stripes,
6113				    sub_stripes * stripe_cnt);
6114		stripe_index = stripe_nr % factor;
6115		stripe_nr /= factor;
6116		stripe_index *= sub_stripes;
6117
6118		remaining_stripes = stripe_cnt % factor;
6119		stripes_per_dev = stripe_cnt / factor;
6120		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122				BTRFS_BLOCK_GROUP_DUP)) {
6123		*num_stripes = map->num_stripes;
6124	} else {
6125		stripe_index = stripe_nr % map->num_stripes;
6126		stripe_nr /= map->num_stripes;
6127	}
6128
6129	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130	if (!stripes) {
6131		ret = -ENOMEM;
6132		goto out_free_map;
6133	}
6134
6135	for (i = 0; i < *num_stripes; i++) {
6136		stripes[i].physical =
6137			map->stripes[stripe_index].physical +
6138			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139		stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142				 BTRFS_BLOCK_GROUP_RAID10)) {
6143			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6144
6145			if (i / sub_stripes < remaining_stripes)
6146				stripes[i].length += BTRFS_STRIPE_LEN;
6147
6148			/*
6149			 * Special for the first stripe and
6150			 * the last stripe:
6151			 *
6152			 * |-------|...|-------|
6153			 *     |----------|
6154			 *    off     end_off
6155			 */
6156			if (i < sub_stripes)
6157				stripes[i].length -= stripe_offset;
6158
6159			if (stripe_index >= last_stripe &&
6160			    stripe_index <= (last_stripe +
6161					     sub_stripes - 1))
6162				stripes[i].length -= stripe_end_offset;
6163
6164			if (i == sub_stripes - 1)
6165				stripe_offset = 0;
6166		} else {
6167			stripes[i].length = length;
6168		}
6169
6170		stripe_index++;
6171		if (stripe_index == map->num_stripes) {
6172			stripe_index = 0;
6173			stripe_nr++;
6174		}
6175	}
6176
6177	btrfs_free_chunk_map(map);
6178	return stripes;
6179out_free_map:
6180	btrfs_free_chunk_map(map);
6181	return ERR_PTR(ret);
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6185{
6186	struct btrfs_block_group *cache;
6187	bool ret;
6188
6189	/* Non zoned filesystem does not use "to_copy" flag */
6190	if (!btrfs_is_zoned(fs_info))
6191		return false;
6192
6193	cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197	btrfs_put_block_group(cache);
6198	return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202				      struct btrfs_io_context *bioc,
6203				      struct btrfs_dev_replace *dev_replace,
6204				      u64 logical,
6205				      int *num_stripes_ret, int *max_errors_ret)
6206{
6207	u64 srcdev_devid = dev_replace->srcdev->devid;
6208	/*
6209	 * At this stage, num_stripes is still the real number of stripes,
6210	 * excluding the duplicated stripes.
6211	 */
6212	int num_stripes = *num_stripes_ret;
6213	int nr_extra_stripes = 0;
6214	int max_errors = *max_errors_ret;
6215	int i;
6216
6217	/*
6218	 * A block group which has "to_copy" set will eventually be copied by
6219	 * the dev-replace process. We can avoid cloning IO here.
6220	 */
6221	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222		return;
6223
6224	/*
6225	 * Duplicate the write operations while the dev-replace procedure is
6226	 * running. Since the copying of the old disk to the new disk takes
6227	 * place at run time while the filesystem is mounted writable, the
6228	 * regular write operations to the old disk have to be duplicated to go
6229	 * to the new disk as well.
6230	 *
6231	 * Note that device->missing is handled by the caller, and that the
6232	 * write to the old disk is already set up in the stripes array.
6233	 */
6234	for (i = 0; i < num_stripes; i++) {
6235		struct btrfs_io_stripe *old = &bioc->stripes[i];
6236		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238		if (old->dev->devid != srcdev_devid)
6239			continue;
6240
6241		new->physical = old->physical;
6242		new->dev = dev_replace->tgtdev;
6243		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244			bioc->replace_stripe_src = i;
6245		nr_extra_stripes++;
6246	}
6247
6248	/* We can only have at most 2 extra nr_stripes (for DUP). */
6249	ASSERT(nr_extra_stripes <= 2);
6250	/*
6251	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252	 * replace.
6253	 * If we have 2 extra stripes, only choose the one with smaller physical.
6254	 */
6255	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259		/* Only DUP can have two extra stripes. */
6260		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262		/*
6263		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264		 * The extra stripe would still be there, but won't be accessed.
6265		 */
6266		if (first->physical > second->physical) {
6267			swap(second->physical, first->physical);
6268			swap(second->dev, first->dev);
6269			nr_extra_stripes--;
6270		}
6271	}
6272
6273	*num_stripes_ret = num_stripes + nr_extra_stripes;
6274	*max_errors_ret = max_errors + nr_extra_stripes;
6275	bioc->replace_nr_stripes = nr_extra_stripes;
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279			    struct btrfs_io_geometry *io_geom)
6280{
6281	/*
6282	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6283	 * the offset of this block in its stripe.
6284	 */
6285	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287	ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290		unsigned long full_stripe_len =
6291			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293		/*
6294		 * For full stripe start, we use previously calculated
6295		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296		 * STRIPE_LEN.
6297		 *
6298		 * By this we can avoid u64 division completely.  And we have
6299		 * to go rounddown(), not round_down(), as nr_data_stripes is
6300		 * not ensured to be power of 2.
6301		 */
6302		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307		/*
6308		 * For writes to RAID56, allow to write a full stripe set, but
6309		 * no straddling of stripe sets.
6310		 */
6311		if (io_geom->op == BTRFS_MAP_WRITE)
6312			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313	}
6314
6315	/*
6316	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317	 * a single disk).
6318	 */
6319	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321	return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325			 u64 *length, struct btrfs_io_stripe *dst,
6326			 struct btrfs_chunk_map *map,
6327			 struct btrfs_io_geometry *io_geom)
6328{
6329	dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331	if (io_geom->op == BTRFS_MAP_READ &&
6332	    btrfs_need_stripe_tree_update(fs_info, map->type))
6333		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334						    map->type,
6335						    io_geom->stripe_index, dst);
6336
6337	dst->physical = map->stripes[io_geom->stripe_index].physical +
6338			io_geom->stripe_offset +
6339			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340	return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344				const struct btrfs_io_stripe *smap,
6345				const struct btrfs_chunk_map *map,
6346				int num_alloc_stripes,
6347				enum btrfs_map_op op, int mirror_num)
6348{
6349	if (!smap)
6350		return false;
6351
6352	if (num_alloc_stripes != 1)
6353		return false;
6354
6355	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356		return false;
6357
6358	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359		return false;
6360
6361	return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365			     struct btrfs_io_geometry *io_geom)
6366{
6367	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368	io_geom->stripe_nr /= map->num_stripes;
6369	if (io_geom->op == BTRFS_MAP_READ)
6370		io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374			     struct btrfs_chunk_map *map,
6375			     struct btrfs_io_geometry *io_geom,
6376			     bool dev_replace_is_ongoing)
6377{
6378	if (io_geom->op != BTRFS_MAP_READ) {
6379		io_geom->num_stripes = map->num_stripes;
6380		return;
6381	}
6382
6383	if (io_geom->mirror_num) {
6384		io_geom->stripe_index = io_geom->mirror_num - 1;
6385		return;
6386	}
6387
6388	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389						 dev_replace_is_ongoing);
6390	io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394			   struct btrfs_io_geometry *io_geom)
6395{
6396	if (io_geom->op != BTRFS_MAP_READ) {
6397		io_geom->num_stripes = map->num_stripes;
6398		return;
6399	}
6400
6401	if (io_geom->mirror_num) {
6402		io_geom->stripe_index = io_geom->mirror_num - 1;
6403		return;
6404	}
6405
6406	io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410			      struct btrfs_chunk_map *map,
6411			      struct btrfs_io_geometry *io_geom,
6412			      bool dev_replace_is_ongoing)
6413{
6414	u32 factor = map->num_stripes / map->sub_stripes;
6415	int old_stripe_index;
6416
6417	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418	io_geom->stripe_nr /= factor;
6419
6420	if (io_geom->op != BTRFS_MAP_READ) {
6421		io_geom->num_stripes = map->sub_stripes;
6422		return;
6423	}
6424
6425	if (io_geom->mirror_num) {
6426		io_geom->stripe_index += io_geom->mirror_num - 1;
6427		return;
6428	}
6429
6430	old_stripe_index = io_geom->stripe_index;
6431	io_geom->stripe_index = find_live_mirror(fs_info, map,
6432						 io_geom->stripe_index,
6433						 dev_replace_is_ongoing);
6434	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438				    struct btrfs_io_geometry *io_geom,
6439				    u64 logical, u64 *length)
6440{
6441	int data_stripes = nr_data_stripes(map);
6442
6443	/*
6444	 * Needs full stripe mapping.
6445	 *
6446	 * Push stripe_nr back to the start of the full stripe For those cases
6447	 * needing a full stripe, @stripe_nr is the full stripe number.
6448	 *
6449	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450	 * that can be expensive.  Here we just divide @stripe_nr with
6451	 * @data_stripes.
6452	 */
6453	io_geom->stripe_nr /= data_stripes;
6454
6455	/* RAID[56] write or recovery. Return all stripes */
6456	io_geom->num_stripes = map->num_stripes;
6457	io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459	/* Return the length to the full stripe end. */
6460	*length = min(logical + *length,
6461		      io_geom->raid56_full_stripe_start + map->start +
6462		      btrfs_stripe_nr_to_offset(data_stripes)) -
6463		logical;
6464	io_geom->stripe_index = 0;
6465	io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469				   struct btrfs_io_geometry *io_geom)
6470{
6471	int data_stripes = nr_data_stripes(map);
6472
6473	ASSERT(io_geom->mirror_num <= 1);
6474	/* Just grab the data stripe directly. */
6475	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476	io_geom->stripe_nr /= data_stripes;
6477
6478	/* We distribute the parity blocks across stripes. */
6479	io_geom->stripe_index =
6480		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483		io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487			      struct btrfs_io_geometry *io_geom)
6488{
6489	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490	io_geom->stripe_nr /= map->num_stripes;
6491	io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length:		(Mandatory) mapped length of this run.
6498 *			One logical range can be split into different segments
6499 *			due to factors like zones and RAID0/5/6/10 stripe
6500 *			boundaries.
6501 *
6502 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6503 *			which has one or more physical ranges (btrfs_io_stripe)
6504 *			recorded inside.
6505 *			Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap:		(Optional) single physical range optimization.
6508 *			If the map request can be fulfilled by one single
6509 *			physical range, and this is parameter is not NULL,
6510 *			then @bioc_ret would be NULL, and @smap would be
6511 *			updated.
6512 *
6513 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6514 *			value is 0.
6515 *
6516 *			Mirror number 0 means to choose any live mirrors.
6517 *
6518 *			For non-RAID56 profiles, non-zero mirror_num means
6519 *			the Nth mirror. (e.g. mirror_num 1 means the first
6520 *			copy).
6521 *
6522 *			For RAID56 profile, mirror 1 means rebuild from P and
6523 *			the remaining data stripes.
6524 *
6525 *			For RAID6 profile, mirror > 2 means mark another
6526 *			data/P stripe error and rebuild from the remaining
6527 *			stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530		    u64 logical, u64 *length,
6531		    struct btrfs_io_context **bioc_ret,
6532		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534	struct btrfs_chunk_map *map;
6535	struct btrfs_io_geometry io_geom = { 0 };
6536	u64 map_offset;
6537	int i;
6538	int ret = 0;
6539	int num_copies;
6540	struct btrfs_io_context *bioc = NULL;
6541	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542	int dev_replace_is_ongoing = 0;
6543	u16 num_alloc_stripes;
6544	u64 max_len;
6545
6546	ASSERT(bioc_ret);
6547
6548	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549	io_geom.num_stripes = 1;
6550	io_geom.stripe_index = 0;
6551	io_geom.op = op;
6552
6553	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554	if (io_geom.mirror_num > num_copies)
6555		return -EINVAL;
6556
6557	map = btrfs_get_chunk_map(fs_info, logical, *length);
6558	if (IS_ERR(map))
6559		return PTR_ERR(map);
6560
6561	map_offset = logical - map->start;
6562	io_geom.raid56_full_stripe_start = (u64)-1;
6563	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566	down_read(&dev_replace->rwsem);
6567	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568	/*
6569	 * Hold the semaphore for read during the whole operation, write is
6570	 * requested at commit time but must wait.
6571	 */
6572	if (!dev_replace_is_ongoing)
6573		up_read(&dev_replace->rwsem);
6574
6575	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576	case BTRFS_BLOCK_GROUP_RAID0:
6577		map_blocks_raid0(map, &io_geom);
6578		break;
6579	case BTRFS_BLOCK_GROUP_RAID1:
6580	case BTRFS_BLOCK_GROUP_RAID1C3:
6581	case BTRFS_BLOCK_GROUP_RAID1C4:
6582		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583		break;
6584	case BTRFS_BLOCK_GROUP_DUP:
6585		map_blocks_dup(map, &io_geom);
6586		break;
6587	case BTRFS_BLOCK_GROUP_RAID10:
6588		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589		break;
6590	case BTRFS_BLOCK_GROUP_RAID5:
6591	case BTRFS_BLOCK_GROUP_RAID6:
6592		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593			map_blocks_raid56_write(map, &io_geom, logical, length);
6594		else
6595			map_blocks_raid56_read(map, &io_geom);
6596		break;
6597	default:
6598		/*
6599		 * After this, stripe_nr is the number of stripes on this
6600		 * device we have to walk to find the data, and stripe_index is
6601		 * the number of our device in the stripe array
6602		 */
6603		map_blocks_single(map, &io_geom);
6604		break;
6605	}
6606	if (io_geom.stripe_index >= map->num_stripes) {
6607		btrfs_crit(fs_info,
6608			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609			   io_geom.stripe_index, map->num_stripes);
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
6614	num_alloc_stripes = io_geom.num_stripes;
6615	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616	    op != BTRFS_MAP_READ)
6617		/*
6618		 * For replace case, we need to add extra stripes for extra
6619		 * duplicated stripes.
6620		 *
6621		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622		 * 2 more stripes (DUP types, otherwise 1).
6623		 */
6624		num_alloc_stripes += 2;
6625
6626	/*
6627	 * If this I/O maps to a single device, try to return the device and
6628	 * physical block information on the stack instead of allocating an
6629	 * I/O context structure.
6630	 */
6631	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632				io_geom.mirror_num)) {
6633		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634		if (mirror_num_ret)
6635			*mirror_num_ret = io_geom.mirror_num;
6636		*bioc_ret = NULL;
6637		goto out;
6638	}
6639
6640	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641	if (!bioc) {
6642		ret = -ENOMEM;
6643		goto out;
6644	}
6645	bioc->map_type = map->type;
6646
6647	/*
6648	 * For RAID56 full map, we need to make sure the stripes[] follows the
6649	 * rule that data stripes are all ordered, then followed with P and Q
6650	 * (if we have).
6651	 *
6652	 * It's still mostly the same as other profiles, just with extra rotation.
6653	 */
6654	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656		/*
6657		 * For RAID56 @stripe_nr is already the number of full stripes
6658		 * before us, which is also the rotation value (needs to modulo
6659		 * with num_stripes).
6660		 *
6661		 * In this case, we just add @stripe_nr with @i, then do the
6662		 * modulo, to reduce one modulo call.
6663		 */
6664		bioc->full_stripe_logical = map->start +
6665			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666						  nr_data_stripes(map));
6667		for (int i = 0; i < io_geom.num_stripes; i++) {
6668			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669			u32 stripe_index;
6670
6671			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672			dst->dev = map->stripes[stripe_index].dev;
6673			dst->physical =
6674				map->stripes[stripe_index].physical +
6675				io_geom.stripe_offset +
6676				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677		}
6678	} else {
6679		/*
6680		 * For all other non-RAID56 profiles, just copy the target
6681		 * stripe into the bioc.
6682		 */
6683		for (i = 0; i < io_geom.num_stripes; i++) {
6684			ret = set_io_stripe(fs_info, logical, length,
6685					    &bioc->stripes[i], map, &io_geom);
6686			if (ret < 0)
6687				break;
6688			io_geom.stripe_index++;
6689		}
6690	}
6691
6692	if (ret) {
6693		*bioc_ret = NULL;
6694		btrfs_put_bioc(bioc);
6695		goto out;
6696	}
6697
6698	if (op != BTRFS_MAP_READ)
6699		io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702	    op != BTRFS_MAP_READ) {
6703		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704					  &io_geom.num_stripes, &io_geom.max_errors);
6705	}
6706
6707	*bioc_ret = bioc;
6708	bioc->num_stripes = io_geom.num_stripes;
6709	bioc->max_errors = io_geom.max_errors;
6710	bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713	if (dev_replace_is_ongoing) {
6714		lockdep_assert_held(&dev_replace->rwsem);
6715		/* Unlock and let waiting writers proceed */
6716		up_read(&dev_replace->rwsem);
6717	}
6718	btrfs_free_chunk_map(map);
6719	return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723				      const struct btrfs_fs_devices *fs_devices)
6724{
6725	if (args->fsid == NULL)
6726		return true;
6727	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728		return true;
6729	return false;
6730}
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733				  const struct btrfs_device *device)
6734{
6735	if (args->missing) {
6736		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737		    !device->bdev)
6738			return true;
6739		return false;
6740	}
6741
6742	if (device->devid != args->devid)
6743		return false;
6744	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745		return false;
6746	return true;
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757				       const struct btrfs_dev_lookup_args *args)
6758{
6759	struct btrfs_device *device;
6760	struct btrfs_fs_devices *seed_devs;
6761
6762	if (dev_args_match_fs_devices(args, fs_devices)) {
6763		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764			if (dev_args_match_device(args, device))
6765				return device;
6766		}
6767	}
6768
6769	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770		if (!dev_args_match_fs_devices(args, seed_devs))
6771			continue;
6772		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773			if (dev_args_match_device(args, device))
6774				return device;
6775		}
6776	}
6777
6778	return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782					    u64 devid, u8 *dev_uuid)
6783{
6784	struct btrfs_device *device;
6785	unsigned int nofs_flag;
6786
6787	/*
6788	 * We call this under the chunk_mutex, so we want to use NOFS for this
6789	 * allocation, however we don't want to change btrfs_alloc_device() to
6790	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791	 * places.
6792	 */
6793
6794	nofs_flag = memalloc_nofs_save();
6795	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796	memalloc_nofs_restore(nofs_flag);
6797	if (IS_ERR(device))
6798		return device;
6799
6800	list_add(&device->dev_list, &fs_devices->devices);
6801	device->fs_devices = fs_devices;
6802	fs_devices->num_devices++;
6803
6804	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805	fs_devices->missing_devices++;
6806
6807	return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info:	used only for generating a new devid, can be NULL if
6814 *		devid is provided (i.e. @devid != NULL).
6815 * @devid:	a pointer to devid for this device.  If NULL a new devid
6816 *		is generated.
6817 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6818 *		is generated.
6819 * @path:	a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error.  Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826					const u64 *devid, const u8 *uuid,
6827					const char *path)
6828{
6829	struct btrfs_device *dev;
6830	u64 tmp;
6831
6832	if (WARN_ON(!devid && !fs_info))
6833		return ERR_PTR(-EINVAL);
6834
6835	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836	if (!dev)
6837		return ERR_PTR(-ENOMEM);
6838
6839	INIT_LIST_HEAD(&dev->dev_list);
6840	INIT_LIST_HEAD(&dev->dev_alloc_list);
6841	INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843	atomic_set(&dev->dev_stats_ccnt, 0);
6844	btrfs_device_data_ordered_init(dev);
6845	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847	if (devid)
6848		tmp = *devid;
6849	else {
6850		int ret;
6851
6852		ret = find_next_devid(fs_info, &tmp);
6853		if (ret) {
6854			btrfs_free_device(dev);
6855			return ERR_PTR(ret);
6856		}
6857	}
6858	dev->devid = tmp;
6859
6860	if (uuid)
6861		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862	else
6863		generate_random_uuid(dev->uuid);
6864
6865	if (path) {
6866		struct rcu_string *name;
6867
6868		name = rcu_string_strdup(path, GFP_KERNEL);
6869		if (!name) {
6870			btrfs_free_device(dev);
6871			return ERR_PTR(-ENOMEM);
6872		}
6873		rcu_assign_pointer(dev->name, name);
6874	}
6875
6876	return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880					u64 devid, u8 *uuid, bool error)
6881{
6882	if (error)
6883		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884			      devid, uuid);
6885	else
6886		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887			      devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894	return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906				  u64 logical, u64 length, u64 type)
6907{
6908	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909		return 0;
6910
6911	if (logical + length < MAX_LFS_FILESIZE)
6912		return 0;
6913
6914	btrfs_err_32bit_limit(fs_info);
6915	return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925				  u64 logical, u64 length, u64 type)
6926{
6927	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928		return;
6929
6930	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931		return;
6932
6933	btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938						  u64 devid, u8 *uuid)
6939{
6940	struct btrfs_device *dev;
6941
6942	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943		btrfs_report_missing_device(fs_info, devid, uuid, true);
6944		return ERR_PTR(-ENOENT);
6945	}
6946
6947	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948	if (IS_ERR(dev)) {
6949		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950			  devid, PTR_ERR(dev));
6951		return dev;
6952	}
6953	btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955	return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959			  struct btrfs_chunk *chunk)
6960{
6961	BTRFS_DEV_LOOKUP_ARGS(args);
6962	struct btrfs_fs_info *fs_info = leaf->fs_info;
6963	struct btrfs_chunk_map *map;
6964	u64 logical;
6965	u64 length;
6966	u64 devid;
6967	u64 type;
6968	u8 uuid[BTRFS_UUID_SIZE];
6969	int index;
6970	int num_stripes;
6971	int ret;
6972	int i;
6973
6974	logical = key->offset;
6975	length = btrfs_chunk_length(leaf, chunk);
6976	type = btrfs_chunk_type(leaf, chunk);
6977	index = btrfs_bg_flags_to_raid_index(type);
6978	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982	if (ret < 0)
6983		return ret;
6984	warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987	/*
6988	 * Only need to verify chunk item if we're reading from sys chunk array,
6989	 * as chunk item in tree block is already verified by tree-checker.
6990	 */
6991	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993		if (ret)
6994			return ret;
6995	}
6996
6997	map = btrfs_find_chunk_map(fs_info, logical, 1);
6998
6999	/* already mapped? */
7000	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001		btrfs_free_chunk_map(map);
7002		return 0;
7003	} else if (map) {
7004		btrfs_free_chunk_map(map);
7005	}
7006
7007	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008	if (!map)
7009		return -ENOMEM;
7010
7011	map->start = logical;
7012	map->chunk_len = length;
7013	map->num_stripes = num_stripes;
7014	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016	map->type = type;
7017	/*
7018	 * We can't use the sub_stripes value, as for profiles other than
7019	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020	 * older mkfs (<v5.4).
7021	 * In that case, it can cause divide-by-zero errors later.
7022	 * Since currently sub_stripes is fixed for each profile, let's
7023	 * use the trusted value instead.
7024	 */
7025	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026	map->verified_stripes = 0;
7027	map->stripe_size = btrfs_calc_stripe_length(map);
7028	for (i = 0; i < num_stripes; i++) {
7029		map->stripes[i].physical =
7030			btrfs_stripe_offset_nr(leaf, chunk, i);
7031		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032		args.devid = devid;
7033		read_extent_buffer(leaf, uuid, (unsigned long)
7034				   btrfs_stripe_dev_uuid_nr(chunk, i),
7035				   BTRFS_UUID_SIZE);
7036		args.uuid = uuid;
7037		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038		if (!map->stripes[i].dev) {
7039			map->stripes[i].dev = handle_missing_device(fs_info,
7040								    devid, uuid);
7041			if (IS_ERR(map->stripes[i].dev)) {
7042				ret = PTR_ERR(map->stripes[i].dev);
7043				btrfs_free_chunk_map(map);
7044				return ret;
7045			}
7046		}
7047
7048		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049				&(map->stripes[i].dev->dev_state));
7050	}
7051
7052	ret = btrfs_add_chunk_map(fs_info, map);
7053	if (ret < 0) {
7054		btrfs_err(fs_info,
7055			  "failed to add chunk map, start=%llu len=%llu: %d",
7056			  map->start, map->chunk_len, ret);
7057	}
7058
7059	return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063				 struct btrfs_dev_item *dev_item,
7064				 struct btrfs_device *device)
7065{
7066	unsigned long ptr;
7067
7068	device->devid = btrfs_device_id(leaf, dev_item);
7069	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070	device->total_bytes = device->disk_total_bytes;
7071	device->commit_total_bytes = device->disk_total_bytes;
7072	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073	device->commit_bytes_used = device->bytes_used;
7074	device->type = btrfs_device_type(leaf, dev_item);
7075	device->io_align = btrfs_device_io_align(leaf, dev_item);
7076	device->io_width = btrfs_device_io_width(leaf, dev_item);
7077	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081	ptr = btrfs_device_uuid(dev_item);
7082	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086						  u8 *fsid)
7087{
7088	struct btrfs_fs_devices *fs_devices;
7089	int ret;
7090
7091	lockdep_assert_held(&uuid_mutex);
7092	ASSERT(fsid);
7093
7094	/* This will match only for multi-device seed fs */
7095	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097			return fs_devices;
7098
7099
7100	fs_devices = find_fsid(fsid, NULL);
7101	if (!fs_devices) {
7102		if (!btrfs_test_opt(fs_info, DEGRADED))
7103			return ERR_PTR(-ENOENT);
7104
7105		fs_devices = alloc_fs_devices(fsid);
7106		if (IS_ERR(fs_devices))
7107			return fs_devices;
7108
7109		fs_devices->seeding = true;
7110		fs_devices->opened = 1;
7111		return fs_devices;
7112	}
7113
7114	/*
7115	 * Upon first call for a seed fs fsid, just create a private copy of the
7116	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117	 */
7118	fs_devices = clone_fs_devices(fs_devices);
7119	if (IS_ERR(fs_devices))
7120		return fs_devices;
7121
7122	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7123	if (ret) {
7124		free_fs_devices(fs_devices);
7125		return ERR_PTR(ret);
7126	}
7127
7128	if (!fs_devices->seeding) {
7129		close_fs_devices(fs_devices);
7130		free_fs_devices(fs_devices);
7131		return ERR_PTR(-EINVAL);
7132	}
7133
7134	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136	return fs_devices;
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
7140			struct btrfs_dev_item *dev_item)
7141{
7142	BTRFS_DEV_LOOKUP_ARGS(args);
7143	struct btrfs_fs_info *fs_info = leaf->fs_info;
7144	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145	struct btrfs_device *device;
7146	u64 devid;
7147	int ret;
7148	u8 fs_uuid[BTRFS_FSID_SIZE];
7149	u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151	devid = btrfs_device_id(leaf, dev_item);
7152	args.devid = devid;
7153	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7154			   BTRFS_UUID_SIZE);
7155	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156			   BTRFS_FSID_SIZE);
7157	args.uuid = dev_uuid;
7158	args.fsid = fs_uuid;
7159
7160	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161		fs_devices = open_seed_devices(fs_info, fs_uuid);
7162		if (IS_ERR(fs_devices))
7163			return PTR_ERR(fs_devices);
7164	}
7165
7166	device = btrfs_find_device(fs_info->fs_devices, &args);
7167	if (!device) {
7168		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169			btrfs_report_missing_device(fs_info, devid,
7170							dev_uuid, true);
7171			return -ENOENT;
7172		}
7173
7174		device = add_missing_dev(fs_devices, devid, dev_uuid);
7175		if (IS_ERR(device)) {
7176			btrfs_err(fs_info,
7177				"failed to add missing dev %llu: %ld",
7178				devid, PTR_ERR(device));
7179			return PTR_ERR(device);
7180		}
7181		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182	} else {
7183		if (!device->bdev) {
7184			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185				btrfs_report_missing_device(fs_info,
7186						devid, dev_uuid, true);
7187				return -ENOENT;
7188			}
7189			btrfs_report_missing_device(fs_info, devid,
7190							dev_uuid, false);
7191		}
7192
7193		if (!device->bdev &&
7194		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7195			/*
7196			 * this happens when a device that was properly setup
7197			 * in the device info lists suddenly goes bad.
7198			 * device->bdev is NULL, and so we have to set
7199			 * device->missing to one here
7200			 */
7201			device->fs_devices->missing_devices++;
7202			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203		}
7204
7205		/* Move the device to its own fs_devices */
7206		if (device->fs_devices != fs_devices) {
7207			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208							&device->dev_state));
7209
7210			list_move(&device->dev_list, &fs_devices->devices);
7211			device->fs_devices->num_devices--;
7212			fs_devices->num_devices++;
7213
7214			device->fs_devices->missing_devices--;
7215			fs_devices->missing_devices++;
7216
7217			device->fs_devices = fs_devices;
7218		}
7219	}
7220
7221	if (device->fs_devices != fs_info->fs_devices) {
7222		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223		if (device->generation !=
7224		    btrfs_device_generation(leaf, dev_item))
7225			return -EINVAL;
7226	}
7227
7228	fill_device_from_item(leaf, dev_item, device);
7229	if (device->bdev) {
7230		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232		if (device->total_bytes > max_total_bytes) {
7233			btrfs_err(fs_info,
7234			"device total_bytes should be at most %llu but found %llu",
7235				  max_total_bytes, device->total_bytes);
7236			return -EINVAL;
7237		}
7238	}
7239	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242		device->fs_devices->total_rw_bytes += device->total_bytes;
7243		atomic64_add(device->total_bytes - device->bytes_used,
7244				&fs_info->free_chunk_space);
7245	}
7246	ret = 0;
7247	return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252	struct btrfs_super_block *super_copy = fs_info->super_copy;
7253	struct extent_buffer *sb;
7254	struct btrfs_disk_key *disk_key;
7255	struct btrfs_chunk *chunk;
7256	u8 *array_ptr;
7257	unsigned long sb_array_offset;
7258	int ret = 0;
7259	u32 num_stripes;
7260	u32 array_size;
7261	u32 len = 0;
7262	u32 cur_offset;
7263	u64 type;
7264	struct btrfs_key key;
7265
7266	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268	/*
7269	 * We allocated a dummy extent, just to use extent buffer accessors.
7270	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271	 * that's fine, we will not go beyond system chunk array anyway.
7272	 */
7273	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274	if (!sb)
7275		return -ENOMEM;
7276	set_extent_buffer_uptodate(sb);
7277
7278	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279	array_size = btrfs_super_sys_array_size(super_copy);
7280
7281	array_ptr = super_copy->sys_chunk_array;
7282	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283	cur_offset = 0;
7284
7285	while (cur_offset < array_size) {
7286		disk_key = (struct btrfs_disk_key *)array_ptr;
7287		len = sizeof(*disk_key);
7288		if (cur_offset + len > array_size)
7289			goto out_short_read;
7290
7291		btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293		array_ptr += len;
7294		sb_array_offset += len;
7295		cur_offset += len;
7296
7297		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298			btrfs_err(fs_info,
7299			    "unexpected item type %u in sys_array at offset %u",
7300				  (u32)key.type, cur_offset);
7301			ret = -EIO;
7302			break;
7303		}
7304
7305		chunk = (struct btrfs_chunk *)sb_array_offset;
7306		/*
7307		 * At least one btrfs_chunk with one stripe must be present,
7308		 * exact stripe count check comes afterwards
7309		 */
7310		len = btrfs_chunk_item_size(1);
7311		if (cur_offset + len > array_size)
7312			goto out_short_read;
7313
7314		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315		if (!num_stripes) {
7316			btrfs_err(fs_info,
7317			"invalid number of stripes %u in sys_array at offset %u",
7318				  num_stripes, cur_offset);
7319			ret = -EIO;
7320			break;
7321		}
7322
7323		type = btrfs_chunk_type(sb, chunk);
7324		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325			btrfs_err(fs_info,
7326			"invalid chunk type %llu in sys_array at offset %u",
7327				  type, cur_offset);
7328			ret = -EIO;
7329			break;
7330		}
7331
7332		len = btrfs_chunk_item_size(num_stripes);
7333		if (cur_offset + len > array_size)
7334			goto out_short_read;
7335
7336		ret = read_one_chunk(&key, sb, chunk);
7337		if (ret)
7338			break;
7339
7340		array_ptr += len;
7341		sb_array_offset += len;
7342		cur_offset += len;
7343	}
7344	clear_extent_buffer_uptodate(sb);
7345	free_extent_buffer_stale(sb);
7346	return ret;
7347
7348out_short_read:
7349	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350			len, cur_offset);
7351	clear_extent_buffer_uptodate(sb);
7352	free_extent_buffer_stale(sb);
7353	return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365					struct btrfs_device *failing_dev)
7366{
7367	struct btrfs_chunk_map *map;
7368	u64 next_start;
7369	bool ret = true;
7370
7371	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372	/* No chunk at all? Return false anyway */
7373	if (!map) {
7374		ret = false;
7375		goto out;
7376	}
7377	while (map) {
7378		int missing = 0;
7379		int max_tolerated;
7380		int i;
7381
7382		max_tolerated =
7383			btrfs_get_num_tolerated_disk_barrier_failures(
7384					map->type);
7385		for (i = 0; i < map->num_stripes; i++) {
7386			struct btrfs_device *dev = map->stripes[i].dev;
7387
7388			if (!dev || !dev->bdev ||
7389			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390			    dev->last_flush_error)
7391				missing++;
7392			else if (failing_dev && failing_dev == dev)
7393				missing++;
7394		}
7395		if (missing > max_tolerated) {
7396			if (!failing_dev)
7397				btrfs_warn(fs_info,
7398	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399				   map->start, missing, max_tolerated);
7400			btrfs_free_chunk_map(map);
7401			ret = false;
7402			goto out;
7403		}
7404		next_start = map->start + map->chunk_len;
7405		btrfs_free_chunk_map(map);
7406
7407		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408	}
7409out:
7410	return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415	int i;
7416	const int nr_items = btrfs_header_nritems(node);
7417
7418	for (i = 0; i < nr_items; i++)
7419		btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424	struct btrfs_root *root = fs_info->chunk_root;
7425	struct btrfs_path *path;
7426	struct extent_buffer *leaf;
7427	struct btrfs_key key;
7428	struct btrfs_key found_key;
7429	int ret;
7430	int slot;
7431	int iter_ret = 0;
7432	u64 total_dev = 0;
7433	u64 last_ra_node = 0;
7434
7435	path = btrfs_alloc_path();
7436	if (!path)
7437		return -ENOMEM;
7438
7439	/*
7440	 * uuid_mutex is needed only if we are mounting a sprout FS
7441	 * otherwise we don't need it.
7442	 */
7443	mutex_lock(&uuid_mutex);
7444
7445	/*
7446	 * It is possible for mount and umount to race in such a way that
7447	 * we execute this code path, but open_fs_devices failed to clear
7448	 * total_rw_bytes. We certainly want it cleared before reading the
7449	 * device items, so clear it here.
7450	 */
7451	fs_info->fs_devices->total_rw_bytes = 0;
7452
7453	/*
7454	 * Lockdep complains about possible circular locking dependency between
7455	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456	 * used for freeze procection of a fs (struct super_block.s_writers),
7457	 * which we take when starting a transaction, and extent buffers of the
7458	 * chunk tree if we call read_one_dev() while holding a lock on an
7459	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460	 * and at this point there can't be any concurrent task modifying the
7461	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462	 */
7463	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464	path->skip_locking = 1;
7465
7466	/*
7467	 * Read all device items, and then all the chunk items. All
7468	 * device items are found before any chunk item (their object id
7469	 * is smaller than the lowest possible object id for a chunk
7470	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471	 */
7472	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473	key.offset = 0;
7474	key.type = 0;
7475	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476		struct extent_buffer *node = path->nodes[1];
7477
7478		leaf = path->nodes[0];
7479		slot = path->slots[0];
7480
7481		if (node) {
7482			if (last_ra_node != node->start) {
7483				readahead_tree_node_children(node);
7484				last_ra_node = node->start;
7485			}
7486		}
7487		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488			struct btrfs_dev_item *dev_item;
7489			dev_item = btrfs_item_ptr(leaf, slot,
7490						  struct btrfs_dev_item);
7491			ret = read_one_dev(leaf, dev_item);
7492			if (ret)
7493				goto error;
7494			total_dev++;
7495		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496			struct btrfs_chunk *chunk;
7497
7498			/*
7499			 * We are only called at mount time, so no need to take
7500			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501			 * we always lock first fs_info->chunk_mutex before
7502			 * acquiring any locks on the chunk tree. This is a
7503			 * requirement for chunk allocation, see the comment on
7504			 * top of btrfs_chunk_alloc() for details.
7505			 */
7506			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507			ret = read_one_chunk(&found_key, leaf, chunk);
7508			if (ret)
7509				goto error;
7510		}
7511	}
7512	/* Catch error found during iteration */
7513	if (iter_ret < 0) {
7514		ret = iter_ret;
7515		goto error;
7516	}
7517
7518	/*
7519	 * After loading chunk tree, we've got all device information,
7520	 * do another round of validation checks.
7521	 */
7522	if (total_dev != fs_info->fs_devices->total_devices) {
7523		btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525			  btrfs_super_num_devices(fs_info->super_copy),
7526			  total_dev);
7527		fs_info->fs_devices->total_devices = total_dev;
7528		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529	}
7530	if (btrfs_super_total_bytes(fs_info->super_copy) <
7531	    fs_info->fs_devices->total_rw_bytes) {
7532		btrfs_err(fs_info,
7533	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534			  btrfs_super_total_bytes(fs_info->super_copy),
7535			  fs_info->fs_devices->total_rw_bytes);
7536		ret = -EINVAL;
7537		goto error;
7538	}
7539	ret = 0;
7540error:
7541	mutex_unlock(&uuid_mutex);
7542
7543	btrfs_free_path(path);
7544	return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550	struct btrfs_device *device;
7551	int ret = 0;
7552
7553	fs_devices->fs_info = fs_info;
7554
7555	mutex_lock(&fs_devices->device_list_mutex);
7556	list_for_each_entry(device, &fs_devices->devices, dev_list)
7557		device->fs_info = fs_info;
7558
7559	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561			device->fs_info = fs_info;
7562			ret = btrfs_get_dev_zone_info(device, false);
7563			if (ret)
7564				break;
7565		}
7566
7567		seed_devs->fs_info = fs_info;
7568	}
7569	mutex_unlock(&fs_devices->device_list_mutex);
7570
7571	return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575				 const struct btrfs_dev_stats_item *ptr,
7576				 int index)
7577{
7578	u64 val;
7579
7580	read_extent_buffer(eb, &val,
7581			   offsetof(struct btrfs_dev_stats_item, values) +
7582			    ((unsigned long)ptr) + (index * sizeof(u64)),
7583			   sizeof(val));
7584	return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588				      struct btrfs_dev_stats_item *ptr,
7589				      int index, u64 val)
7590{
7591	write_extent_buffer(eb, &val,
7592			    offsetof(struct btrfs_dev_stats_item, values) +
7593			     ((unsigned long)ptr) + (index * sizeof(u64)),
7594			    sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598				       struct btrfs_path *path)
7599{
7600	struct btrfs_dev_stats_item *ptr;
7601	struct extent_buffer *eb;
7602	struct btrfs_key key;
7603	int item_size;
7604	int i, ret, slot;
7605
7606	if (!device->fs_info->dev_root)
7607		return 0;
7608
7609	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611	key.offset = device->devid;
7612	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613	if (ret) {
7614		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615			btrfs_dev_stat_set(device, i, 0);
7616		device->dev_stats_valid = 1;
7617		btrfs_release_path(path);
7618		return ret < 0 ? ret : 0;
7619	}
7620	slot = path->slots[0];
7621	eb = path->nodes[0];
7622	item_size = btrfs_item_size(eb, slot);
7623
7624	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627		if (item_size >= (1 + i) * sizeof(__le64))
7628			btrfs_dev_stat_set(device, i,
7629					   btrfs_dev_stats_value(eb, ptr, i));
7630		else
7631			btrfs_dev_stat_set(device, i, 0);
7632	}
7633
7634	device->dev_stats_valid = 1;
7635	btrfs_dev_stat_print_on_load(device);
7636	btrfs_release_path(path);
7637
7638	return 0;
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644	struct btrfs_device *device;
7645	struct btrfs_path *path = NULL;
7646	int ret = 0;
7647
7648	path = btrfs_alloc_path();
7649	if (!path)
7650		return -ENOMEM;
7651
7652	mutex_lock(&fs_devices->device_list_mutex);
7653	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654		ret = btrfs_device_init_dev_stats(device, path);
7655		if (ret)
7656			goto out;
7657	}
7658	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660			ret = btrfs_device_init_dev_stats(device, path);
7661			if (ret)
7662				goto out;
7663		}
7664	}
7665out:
7666	mutex_unlock(&fs_devices->device_list_mutex);
7667
7668	btrfs_free_path(path);
7669	return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673				struct btrfs_device *device)
7674{
7675	struct btrfs_fs_info *fs_info = trans->fs_info;
7676	struct btrfs_root *dev_root = fs_info->dev_root;
7677	struct btrfs_path *path;
7678	struct btrfs_key key;
7679	struct extent_buffer *eb;
7680	struct btrfs_dev_stats_item *ptr;
7681	int ret;
7682	int i;
7683
7684	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686	key.offset = device->devid;
7687
7688	path = btrfs_alloc_path();
7689	if (!path)
7690		return -ENOMEM;
7691	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692	if (ret < 0) {
7693		btrfs_warn_in_rcu(fs_info,
7694			"error %d while searching for dev_stats item for device %s",
7695				  ret, btrfs_dev_name(device));
7696		goto out;
7697	}
7698
7699	if (ret == 0 &&
7700	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701		/* need to delete old one and insert a new one */
7702		ret = btrfs_del_item(trans, dev_root, path);
7703		if (ret != 0) {
7704			btrfs_warn_in_rcu(fs_info,
7705				"delete too small dev_stats item for device %s failed %d",
7706					  btrfs_dev_name(device), ret);
7707			goto out;
7708		}
7709		ret = 1;
7710	}
7711
7712	if (ret == 1) {
7713		/* need to insert a new item */
7714		btrfs_release_path(path);
7715		ret = btrfs_insert_empty_item(trans, dev_root, path,
7716					      &key, sizeof(*ptr));
7717		if (ret < 0) {
7718			btrfs_warn_in_rcu(fs_info,
7719				"insert dev_stats item for device %s failed %d",
7720				btrfs_dev_name(device), ret);
7721			goto out;
7722		}
7723	}
7724
7725	eb = path->nodes[0];
7726	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728		btrfs_set_dev_stats_value(eb, ptr, i,
7729					  btrfs_dev_stat_read(device, i));
7730	btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733	btrfs_free_path(path);
7734	return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7741{
7742	struct btrfs_fs_info *fs_info = trans->fs_info;
7743	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744	struct btrfs_device *device;
7745	int stats_cnt;
7746	int ret = 0;
7747
7748	mutex_lock(&fs_devices->device_list_mutex);
7749	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751		if (!device->dev_stats_valid || stats_cnt == 0)
7752			continue;
7753
7754
7755		/*
7756		 * There is a LOAD-LOAD control dependency between the value of
7757		 * dev_stats_ccnt and updating the on-disk values which requires
7758		 * reading the in-memory counters. Such control dependencies
7759		 * require explicit read memory barriers.
7760		 *
7761		 * This memory barriers pairs with smp_mb__before_atomic in
7762		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763		 * barrier implied by atomic_xchg in
7764		 * btrfs_dev_stats_read_and_reset
7765		 */
7766		smp_rmb();
7767
7768		ret = update_dev_stat_item(trans, device);
7769		if (!ret)
7770			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771	}
7772	mutex_unlock(&fs_devices->device_list_mutex);
7773
7774	return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779	btrfs_dev_stat_inc(dev, index);
7780
7781	if (!dev->dev_stats_valid)
7782		return;
7783	btrfs_err_rl_in_rcu(dev->fs_info,
7784		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785			   btrfs_dev_name(dev),
7786			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795	int i;
7796
7797	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798		if (btrfs_dev_stat_read(dev, i) != 0)
7799			break;
7800	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801		return; /* all values == 0, suppress message */
7802
7803	btrfs_info_in_rcu(dev->fs_info,
7804		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805	       btrfs_dev_name(dev),
7806	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814			struct btrfs_ioctl_get_dev_stats *stats)
7815{
7816	BTRFS_DEV_LOOKUP_ARGS(args);
7817	struct btrfs_device *dev;
7818	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819	int i;
7820
7821	mutex_lock(&fs_devices->device_list_mutex);
7822	args.devid = stats->devid;
7823	dev = btrfs_find_device(fs_info->fs_devices, &args);
7824	mutex_unlock(&fs_devices->device_list_mutex);
7825
7826	if (!dev) {
7827		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7828		return -ENODEV;
7829	} else if (!dev->dev_stats_valid) {
7830		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7831		return -ENODEV;
7832	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834			if (stats->nr_items > i)
7835				stats->values[i] =
7836					btrfs_dev_stat_read_and_reset(dev, i);
7837			else
7838				btrfs_dev_stat_set(dev, i, 0);
7839		}
7840		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841			   current->comm, task_pid_nr(current));
7842	} else {
7843		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844			if (stats->nr_items > i)
7845				stats->values[i] = btrfs_dev_stat_read(dev, i);
7846	}
7847	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849	return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed.  This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861	struct btrfs_device *curr, *next;
7862
7863	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865	if (list_empty(&trans->dev_update_list))
7866		return;
7867
7868	/*
7869	 * We don't need the device_list_mutex here.  This list is owned by the
7870	 * transaction and the transaction must complete before the device is
7871	 * released.
7872	 */
7873	mutex_lock(&trans->fs_info->chunk_mutex);
7874	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875				 post_commit_list) {
7876		list_del_init(&curr->post_commit_list);
7877		curr->commit_total_bytes = curr->disk_total_bytes;
7878		curr->commit_bytes_used = curr->bytes_used;
7879	}
7880	mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888	const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890	return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896				 u64 chunk_offset, u64 devid,
7897				 u64 physical_offset, u64 physical_len)
7898{
7899	struct btrfs_dev_lookup_args args = { .devid = devid };
7900	struct btrfs_chunk_map *map;
7901	struct btrfs_device *dev;
7902	u64 stripe_len;
7903	bool found = false;
7904	int ret = 0;
7905	int i;
7906
7907	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908	if (!map) {
7909		btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911			  physical_offset, devid);
7912		ret = -EUCLEAN;
7913		goto out;
7914	}
7915
7916	stripe_len = btrfs_calc_stripe_length(map);
7917	if (physical_len != stripe_len) {
7918		btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920			  physical_offset, devid, map->start, physical_len,
7921			  stripe_len);
7922		ret = -EUCLEAN;
7923		goto out;
7924	}
7925
7926	/*
7927	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928	 * space. Although kernel can handle it without problem, better to warn
7929	 * the users.
7930	 */
7931	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932		btrfs_warn(fs_info,
7933		"devid %llu physical %llu len %llu inside the reserved space",
7934			   devid, physical_offset, physical_len);
7935
7936	for (i = 0; i < map->num_stripes; i++) {
7937		if (map->stripes[i].dev->devid == devid &&
7938		    map->stripes[i].physical == physical_offset) {
7939			found = true;
7940			if (map->verified_stripes >= map->num_stripes) {
7941				btrfs_err(fs_info,
7942				"too many dev extents for chunk %llu found",
7943					  map->start);
7944				ret = -EUCLEAN;
7945				goto out;
7946			}
7947			map->verified_stripes++;
7948			break;
7949		}
7950	}
7951	if (!found) {
7952		btrfs_err(fs_info,
7953	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7954			physical_offset, devid);
7955		ret = -EUCLEAN;
7956	}
7957
7958	/* Make sure no dev extent is beyond device boundary */
7959	dev = btrfs_find_device(fs_info->fs_devices, &args);
7960	if (!dev) {
7961		btrfs_err(fs_info, "failed to find devid %llu", devid);
7962		ret = -EUCLEAN;
7963		goto out;
7964	}
7965
7966	if (physical_offset + physical_len > dev->disk_total_bytes) {
7967		btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969			  devid, physical_offset, physical_len,
7970			  dev->disk_total_bytes);
7971		ret = -EUCLEAN;
7972		goto out;
7973	}
7974
7975	if (dev->zone_info) {
7976		u64 zone_size = dev->zone_info->zone_size;
7977
7978		if (!IS_ALIGNED(physical_offset, zone_size) ||
7979		    !IS_ALIGNED(physical_len, zone_size)) {
7980			btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982				  devid, physical_offset, physical_len);
7983			ret = -EUCLEAN;
7984			goto out;
7985		}
7986	}
7987
7988out:
7989	btrfs_free_chunk_map(map);
7990	return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995	struct rb_node *node;
7996	int ret = 0;
7997
7998	read_lock(&fs_info->mapping_tree_lock);
7999	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000		struct btrfs_chunk_map *map;
8001
8002		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003		if (map->num_stripes != map->verified_stripes) {
8004			btrfs_err(fs_info,
8005			"chunk %llu has missing dev extent, have %d expect %d",
8006				  map->start, map->verified_stripes, map->num_stripes);
8007			ret = -EUCLEAN;
8008			goto out;
8009		}
8010	}
8011out:
8012	read_unlock(&fs_info->mapping_tree_lock);
8013	return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree.  This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025	struct btrfs_path *path;
8026	struct btrfs_root *root = fs_info->dev_root;
8027	struct btrfs_key key;
8028	u64 prev_devid = 0;
8029	u64 prev_dev_ext_end = 0;
8030	int ret = 0;
8031
8032	/*
8033	 * We don't have a dev_root because we mounted with ignorebadroots and
8034	 * failed to load the root, so we want to skip the verification in this
8035	 * case for sure.
8036	 *
8037	 * However if the dev root is fine, but the tree itself is corrupted
8038	 * we'd still fail to mount.  This verification is only to make sure
8039	 * writes can happen safely, so instead just bypass this check
8040	 * completely in the case of IGNOREBADROOTS.
8041	 */
8042	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043		return 0;
8044
8045	key.objectid = 1;
8046	key.type = BTRFS_DEV_EXTENT_KEY;
8047	key.offset = 0;
8048
8049	path = btrfs_alloc_path();
8050	if (!path)
8051		return -ENOMEM;
8052
8053	path->reada = READA_FORWARD;
8054	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055	if (ret < 0)
8056		goto out;
8057
8058	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059		ret = btrfs_next_leaf(root, path);
8060		if (ret < 0)
8061			goto out;
8062		/* No dev extents at all? Not good */
8063		if (ret > 0) {
8064			ret = -EUCLEAN;
8065			goto out;
8066		}
8067	}
8068	while (1) {
8069		struct extent_buffer *leaf = path->nodes[0];
8070		struct btrfs_dev_extent *dext;
8071		int slot = path->slots[0];
8072		u64 chunk_offset;
8073		u64 physical_offset;
8074		u64 physical_len;
8075		u64 devid;
8076
8077		btrfs_item_key_to_cpu(leaf, &key, slot);
8078		if (key.type != BTRFS_DEV_EXTENT_KEY)
8079			break;
8080		devid = key.objectid;
8081		physical_offset = key.offset;
8082
8083		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085		physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087		/* Check if this dev extent overlaps with the previous one */
8088		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089			btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091				  devid, physical_offset, prev_dev_ext_end);
8092			ret = -EUCLEAN;
8093			goto out;
8094		}
8095
8096		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097					    physical_offset, physical_len);
8098		if (ret < 0)
8099			goto out;
8100		prev_devid = devid;
8101		prev_dev_ext_end = physical_offset + physical_len;
8102
8103		ret = btrfs_next_item(root, path);
8104		if (ret < 0)
8105			goto out;
8106		if (ret > 0) {
8107			ret = 0;
8108			break;
8109		}
8110	}
8111
8112	/* Ensure all chunks have corresponding dev extents */
8113	ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115	btrfs_free_path(path);
8116	return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125	struct btrfs_swapfile_pin *sp;
8126	struct rb_node *node;
8127
8128	spin_lock(&fs_info->swapfile_pins_lock);
8129	node = fs_info->swapfile_pins.rb_node;
8130	while (node) {
8131		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132		if (ptr < sp->ptr)
8133			node = node->rb_left;
8134		else if (ptr > sp->ptr)
8135			node = node->rb_right;
8136		else
8137			break;
8138	}
8139	spin_unlock(&fs_info->swapfile_pins_lock);
8140	return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145	struct btrfs_block_group *cache = data;
8146	struct btrfs_fs_info *fs_info = cache->fs_info;
8147	u64 target;
8148	int ret = 0;
8149
8150	target = cache->start;
8151	btrfs_put_block_group(cache);
8152
8153	sb_start_write(fs_info->sb);
8154	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155		btrfs_info(fs_info,
8156			   "zoned: skip relocating block group %llu to repair: EBUSY",
8157			   target);
8158		sb_end_write(fs_info->sb);
8159		return -EBUSY;
8160	}
8161
8162	mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164	/* Ensure block group still exists */
8165	cache = btrfs_lookup_block_group(fs_info, target);
8166	if (!cache)
8167		goto out;
8168
8169	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170		goto out;
8171
8172	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173	if (ret < 0)
8174		goto out;
8175
8176	btrfs_info(fs_info,
8177		   "zoned: relocating block group %llu to repair IO failure",
8178		   target);
8179	ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182	if (cache)
8183		btrfs_put_block_group(cache);
8184	mutex_unlock(&fs_info->reclaim_bgs_lock);
8185	btrfs_exclop_finish(fs_info);
8186	sb_end_write(fs_info->sb);
8187
8188	return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193	struct btrfs_block_group *cache;
8194
8195	if (!btrfs_is_zoned(fs_info))
8196		return false;
8197
8198	/* Do not attempt to repair in degraded state */
8199	if (btrfs_test_opt(fs_info, DEGRADED))
8200		return true;
8201
8202	cache = btrfs_lookup_block_group(fs_info, logical);
8203	if (!cache)
8204		return true;
8205
8206	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207		btrfs_put_block_group(cache);
8208		return true;
8209	}
8210
8211	kthread_run(relocating_repair_kthread, cache,
8212		    "btrfs-relocating-repair");
8213
8214	return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218				    struct btrfs_io_stripe *smap,
8219				    u64 logical)
8220{
8221	int data_stripes = nr_bioc_data_stripes(bioc);
8222	int i;
8223
8224	for (i = 0; i < data_stripes; i++) {
8225		u64 stripe_start = bioc->full_stripe_logical +
8226				   btrfs_stripe_nr_to_offset(i);
8227
8228		if (logical >= stripe_start &&
8229		    logical < stripe_start + BTRFS_STRIPE_LEN)
8230			break;
8231	}
8232	ASSERT(i < data_stripes);
8233	smap->dev = bioc->stripes[i].dev;
8234	smap->physical = bioc->stripes[i].physical +
8235			((logical - bioc->full_stripe_logical) &
8236			 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253			   struct btrfs_io_stripe *smap, u64 logical,
8254			   u32 length, int mirror_num)
8255{
8256	struct btrfs_io_context *bioc = NULL;
8257	u64 map_length = length;
8258	int mirror_ret = mirror_num;
8259	int ret;
8260
8261	ASSERT(mirror_num > 0);
8262
8263	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264			      &bioc, smap, &mirror_ret);
8265	if (ret < 0)
8266		return ret;
8267
8268	/* The map range should not cross stripe boundary. */
8269	ASSERT(map_length >= length);
8270
8271	/* Already mapped to single stripe. */
8272	if (!bioc)
8273		goto out;
8274
8275	/* Map the RAID56 multi-stripe writes to a single one. */
8276	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277		map_raid56_repair_block(bioc, smap, logical);
8278		goto out;
8279	}
8280
8281	ASSERT(mirror_num <= bioc->num_stripes);
8282	smap->dev = bioc->stripes[mirror_num - 1].dev;
8283	smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285	btrfs_put_bioc(bioc);
8286	ASSERT(smap->dev);
8287	return 0;
8288}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
 
  17#include "disk-io.h"
  18#include "transaction.h"
 
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "rcu-string.h"
  22#include "dev-replace.h"
  23#include "sysfs.h"
  24#include "tree-checker.h"
  25#include "space-info.h"
  26#include "block-group.h"
  27#include "discard.h"
  28#include "zoned.h"
  29#include "fs.h"
  30#include "accessors.h"
  31#include "uuid-tree.h"
  32#include "ioctl.h"
  33#include "relocation.h"
  34#include "scrub.h"
  35#include "super.h"
  36#include "raid-stripe-tree.h"
  37
  38#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  39					 BTRFS_BLOCK_GROUP_RAID10 | \
  40					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  41
  42struct btrfs_io_geometry {
  43	u32 stripe_index;
  44	u32 stripe_nr;
  45	int mirror_num;
  46	int num_stripes;
  47	u64 stripe_offset;
  48	u64 raid56_full_stripe_start;
  49	int max_errors;
  50	enum btrfs_map_op op;
  51};
  52
  53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  54	[BTRFS_RAID_RAID10] = {
  55		.sub_stripes	= 2,
  56		.dev_stripes	= 1,
  57		.devs_max	= 0,	/* 0 == as many as possible */
  58		.devs_min	= 2,
  59		.tolerated_failures = 1,
  60		.devs_increment	= 2,
  61		.ncopies	= 2,
  62		.nparity        = 0,
  63		.raid_name	= "raid10",
  64		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  65		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  66	},
  67	[BTRFS_RAID_RAID1] = {
  68		.sub_stripes	= 1,
  69		.dev_stripes	= 1,
  70		.devs_max	= 2,
  71		.devs_min	= 2,
  72		.tolerated_failures = 1,
  73		.devs_increment	= 2,
  74		.ncopies	= 2,
  75		.nparity        = 0,
  76		.raid_name	= "raid1",
  77		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  78		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  79	},
  80	[BTRFS_RAID_RAID1C3] = {
  81		.sub_stripes	= 1,
  82		.dev_stripes	= 1,
  83		.devs_max	= 3,
  84		.devs_min	= 3,
  85		.tolerated_failures = 2,
  86		.devs_increment	= 3,
  87		.ncopies	= 3,
  88		.nparity        = 0,
  89		.raid_name	= "raid1c3",
  90		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  91		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  92	},
  93	[BTRFS_RAID_RAID1C4] = {
  94		.sub_stripes	= 1,
  95		.dev_stripes	= 1,
  96		.devs_max	= 4,
  97		.devs_min	= 4,
  98		.tolerated_failures = 3,
  99		.devs_increment	= 4,
 100		.ncopies	= 4,
 101		.nparity        = 0,
 102		.raid_name	= "raid1c4",
 103		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 104		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 105	},
 106	[BTRFS_RAID_DUP] = {
 107		.sub_stripes	= 1,
 108		.dev_stripes	= 2,
 109		.devs_max	= 1,
 110		.devs_min	= 1,
 111		.tolerated_failures = 0,
 112		.devs_increment	= 1,
 113		.ncopies	= 2,
 114		.nparity        = 0,
 115		.raid_name	= "dup",
 116		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 117		.mindev_error	= 0,
 118	},
 119	[BTRFS_RAID_RAID0] = {
 120		.sub_stripes	= 1,
 121		.dev_stripes	= 1,
 122		.devs_max	= 0,
 123		.devs_min	= 1,
 124		.tolerated_failures = 0,
 125		.devs_increment	= 1,
 126		.ncopies	= 1,
 127		.nparity        = 0,
 128		.raid_name	= "raid0",
 129		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 130		.mindev_error	= 0,
 131	},
 132	[BTRFS_RAID_SINGLE] = {
 133		.sub_stripes	= 1,
 134		.dev_stripes	= 1,
 135		.devs_max	= 1,
 136		.devs_min	= 1,
 137		.tolerated_failures = 0,
 138		.devs_increment	= 1,
 139		.ncopies	= 1,
 140		.nparity        = 0,
 141		.raid_name	= "single",
 142		.bg_flag	= 0,
 143		.mindev_error	= 0,
 144	},
 145	[BTRFS_RAID_RAID5] = {
 146		.sub_stripes	= 1,
 147		.dev_stripes	= 1,
 148		.devs_max	= 0,
 149		.devs_min	= 2,
 150		.tolerated_failures = 1,
 151		.devs_increment	= 1,
 152		.ncopies	= 1,
 153		.nparity        = 1,
 154		.raid_name	= "raid5",
 155		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 156		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 157	},
 158	[BTRFS_RAID_RAID6] = {
 159		.sub_stripes	= 1,
 160		.dev_stripes	= 1,
 161		.devs_max	= 0,
 162		.devs_min	= 3,
 163		.tolerated_failures = 2,
 164		.devs_increment	= 1,
 165		.ncopies	= 1,
 166		.nparity        = 2,
 167		.raid_name	= "raid6",
 168		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 169		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 170	},
 171};
 172
 173/*
 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 175 * can be used as index to access btrfs_raid_array[].
 176 */
 177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 178{
 179	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 180
 181	if (!profile)
 182		return BTRFS_RAID_SINGLE;
 183
 184	return BTRFS_BG_FLAG_TO_INDEX(profile);
 185}
 186
 187const char *btrfs_bg_type_to_raid_name(u64 flags)
 188{
 189	const int index = btrfs_bg_flags_to_raid_index(flags);
 190
 191	if (index >= BTRFS_NR_RAID_TYPES)
 192		return NULL;
 193
 194	return btrfs_raid_array[index].raid_name;
 195}
 196
 197int btrfs_nr_parity_stripes(u64 type)
 198{
 199	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 200
 201	return btrfs_raid_array[index].nparity;
 202}
 203
 204/*
 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 206 * bytes including terminating null byte.
 207 */
 208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 209{
 210	int i;
 211	int ret;
 212	char *bp = buf;
 213	u64 flags = bg_flags;
 214	u32 size_bp = size_buf;
 215
 216	if (!flags) {
 217		strcpy(bp, "NONE");
 218		return;
 219	}
 220
 221#define DESCRIBE_FLAG(flag, desc)						\
 222	do {								\
 223		if (flags & (flag)) {					\
 224			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 225			if (ret < 0 || ret >= size_bp)			\
 226				goto out_overflow;			\
 227			size_bp -= ret;					\
 228			bp += ret;					\
 229			flags &= ~(flag);				\
 230		}							\
 231	} while (0)
 232
 233	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 234	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 236
 237	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 238	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 239		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 240			      btrfs_raid_array[i].raid_name);
 241#undef DESCRIBE_FLAG
 242
 243	if (flags) {
 244		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 245		size_bp -= ret;
 246	}
 247
 248	if (size_bp < size_buf)
 249		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 250
 251	/*
 252	 * The text is trimmed, it's up to the caller to provide sufficiently
 253	 * large buffer
 254	 */
 255out_overflow:;
 256}
 257
 258static int init_first_rw_device(struct btrfs_trans_handle *trans);
 259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 261
 262/*
 263 * Device locking
 264 * ==============
 265 *
 266 * There are several mutexes that protect manipulation of devices and low-level
 267 * structures like chunks but not block groups, extents or files
 268 *
 269 * uuid_mutex (global lock)
 270 * ------------------------
 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 273 * device) or requested by the device= mount option
 274 *
 275 * the mutex can be very coarse and can cover long-running operations
 276 *
 277 * protects: updates to fs_devices counters like missing devices, rw devices,
 278 * seeding, structure cloning, opening/closing devices at mount/umount time
 279 *
 280 * global::fs_devs - add, remove, updates to the global list
 281 *
 282 * does not protect: manipulation of the fs_devices::devices list in general
 283 * but in mount context it could be used to exclude list modifications by eg.
 284 * scan ioctl
 285 *
 286 * btrfs_device::name - renames (write side), read is RCU
 287 *
 288 * fs_devices::device_list_mutex (per-fs, with RCU)
 289 * ------------------------------------------------
 290 * protects updates to fs_devices::devices, ie. adding and deleting
 291 *
 292 * simple list traversal with read-only actions can be done with RCU protection
 293 *
 294 * may be used to exclude some operations from running concurrently without any
 295 * modifications to the list (see write_all_supers)
 296 *
 297 * Is not required at mount and close times, because our device list is
 298 * protected by the uuid_mutex at that point.
 299 *
 300 * balance_mutex
 301 * -------------
 302 * protects balance structures (status, state) and context accessed from
 303 * several places (internally, ioctl)
 304 *
 305 * chunk_mutex
 306 * -----------
 307 * protects chunks, adding or removing during allocation, trim or when a new
 308 * device is added/removed. Additionally it also protects post_commit_list of
 309 * individual devices, since they can be added to the transaction's
 310 * post_commit_list only with chunk_mutex held.
 311 *
 312 * cleaner_mutex
 313 * -------------
 314 * a big lock that is held by the cleaner thread and prevents running subvolume
 315 * cleaning together with relocation or delayed iputs
 316 *
 317 *
 318 * Lock nesting
 319 * ============
 320 *
 321 * uuid_mutex
 322 *   device_list_mutex
 323 *     chunk_mutex
 324 *   balance_mutex
 325 *
 326 *
 327 * Exclusive operations
 328 * ====================
 329 *
 330 * Maintains the exclusivity of the following operations that apply to the
 331 * whole filesystem and cannot run in parallel.
 332 *
 333 * - Balance (*)
 334 * - Device add
 335 * - Device remove
 336 * - Device replace (*)
 337 * - Resize
 338 *
 339 * The device operations (as above) can be in one of the following states:
 340 *
 341 * - Running state
 342 * - Paused state
 343 * - Completed state
 344 *
 345 * Only device operations marked with (*) can go into the Paused state for the
 346 * following reasons:
 347 *
 348 * - ioctl (only Balance can be Paused through ioctl)
 349 * - filesystem remounted as read-only
 350 * - filesystem unmounted and mounted as read-only
 351 * - system power-cycle and filesystem mounted as read-only
 352 * - filesystem or device errors leading to forced read-only
 353 *
 354 * The status of exclusive operation is set and cleared atomically.
 355 * During the course of Paused state, fs_info::exclusive_operation remains set.
 356 * A device operation in Paused or Running state can be canceled or resumed
 357 * either by ioctl (Balance only) or when remounted as read-write.
 358 * The exclusive status is cleared when the device operation is canceled or
 359 * completed.
 360 */
 361
 362DEFINE_MUTEX(uuid_mutex);
 363static LIST_HEAD(fs_uuids);
 364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 365{
 366	return &fs_uuids;
 367}
 368
 369/*
 370 * Allocate new btrfs_fs_devices structure identified by a fsid.
 371 *
 372 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
 373 *           fs_devices::metadata_fsid
 374 *
 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 376 * The returned struct is not linked onto any lists and can be destroyed with
 377 * kfree() right away.
 378 */
 379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 380{
 381	struct btrfs_fs_devices *fs_devs;
 382
 383	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 384	if (!fs_devs)
 385		return ERR_PTR(-ENOMEM);
 386
 387	mutex_init(&fs_devs->device_list_mutex);
 388
 389	INIT_LIST_HEAD(&fs_devs->devices);
 390	INIT_LIST_HEAD(&fs_devs->alloc_list);
 391	INIT_LIST_HEAD(&fs_devs->fs_list);
 392	INIT_LIST_HEAD(&fs_devs->seed_list);
 393
 394	if (fsid) {
 395		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 396		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 397	}
 398
 399	return fs_devs;
 400}
 401
 402static void btrfs_free_device(struct btrfs_device *device)
 403{
 404	WARN_ON(!list_empty(&device->post_commit_list));
 405	rcu_string_free(device->name);
 406	extent_io_tree_release(&device->alloc_state);
 407	btrfs_destroy_dev_zone_info(device);
 408	kfree(device);
 409}
 410
 411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 412{
 413	struct btrfs_device *device;
 414
 415	WARN_ON(fs_devices->opened);
 416	while (!list_empty(&fs_devices->devices)) {
 417		device = list_entry(fs_devices->devices.next,
 418				    struct btrfs_device, dev_list);
 419		list_del(&device->dev_list);
 420		btrfs_free_device(device);
 421	}
 422	kfree(fs_devices);
 423}
 424
 425void __exit btrfs_cleanup_fs_uuids(void)
 426{
 427	struct btrfs_fs_devices *fs_devices;
 428
 429	while (!list_empty(&fs_uuids)) {
 430		fs_devices = list_entry(fs_uuids.next,
 431					struct btrfs_fs_devices, fs_list);
 432		list_del(&fs_devices->fs_list);
 433		free_fs_devices(fs_devices);
 434	}
 435}
 436
 437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
 438				  const u8 *fsid, const u8 *metadata_fsid)
 439{
 440	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
 441		return false;
 442
 443	if (!metadata_fsid)
 444		return true;
 445
 446	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
 447		return false;
 448
 449	return true;
 450}
 451
 452static noinline struct btrfs_fs_devices *find_fsid(
 453		const u8 *fsid, const u8 *metadata_fsid)
 454{
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	ASSERT(fsid);
 458
 459	/* Handle non-split brain cases */
 460	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 461		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
 462			return fs_devices;
 463	}
 464	return NULL;
 465}
 466
 467static int
 468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
 469		      int flush, struct file **bdev_file,
 470		      struct btrfs_super_block **disk_super)
 471{
 472	struct block_device *bdev;
 473	int ret;
 474
 475	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
 476
 477	if (IS_ERR(*bdev_file)) {
 478		ret = PTR_ERR(*bdev_file);
 479		goto error;
 480	}
 481	bdev = file_bdev(*bdev_file);
 482
 483	if (flush)
 484		sync_blockdev(bdev);
 485	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
 486	if (ret) {
 487		fput(*bdev_file);
 488		goto error;
 489	}
 490	invalidate_bdev(bdev);
 491	*disk_super = btrfs_read_dev_super(bdev);
 492	if (IS_ERR(*disk_super)) {
 493		ret = PTR_ERR(*disk_super);
 494		fput(*bdev_file);
 495		goto error;
 496	}
 497
 498	return 0;
 499
 500error:
 501	*bdev_file = NULL;
 502	return ret;
 503}
 504
 505/*
 506 *  Search and remove all stale devices (which are not mounted).  When both
 507 *  inputs are NULL, it will search and release all stale devices.
 508 *
 509 *  @devt:         Optional. When provided will it release all unmounted devices
 510 *                 matching this devt only.
 511 *  @skip_device:  Optional. Will skip this device when searching for the stale
 512 *                 devices.
 513 *
 514 *  Return:	0 for success or if @devt is 0.
 515 *		-EBUSY if @devt is a mounted device.
 516 *		-ENOENT if @devt does not match any device in the list.
 517 */
 518static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 519{
 520	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 521	struct btrfs_device *device, *tmp_device;
 522	int ret;
 523	bool freed = false;
 524
 525	lockdep_assert_held(&uuid_mutex);
 526
 527	/* Return good status if there is no instance of devt. */
 528	ret = 0;
 529	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 530
 531		mutex_lock(&fs_devices->device_list_mutex);
 532		list_for_each_entry_safe(device, tmp_device,
 533					 &fs_devices->devices, dev_list) {
 534			if (skip_device && skip_device == device)
 535				continue;
 536			if (devt && devt != device->devt)
 537				continue;
 538			if (fs_devices->opened) {
 539				if (devt)
 540					ret = -EBUSY;
 541				break;
 542			}
 543
 544			/* delete the stale device */
 545			fs_devices->num_devices--;
 546			list_del(&device->dev_list);
 547			btrfs_free_device(device);
 548
 549			freed = true;
 550		}
 551		mutex_unlock(&fs_devices->device_list_mutex);
 552
 553		if (fs_devices->num_devices == 0) {
 554			btrfs_sysfs_remove_fsid(fs_devices);
 555			list_del(&fs_devices->fs_list);
 556			free_fs_devices(fs_devices);
 557		}
 558	}
 559
 560	/* If there is at least one freed device return 0. */
 561	if (freed)
 562		return 0;
 563
 564	return ret;
 565}
 566
 567static struct btrfs_fs_devices *find_fsid_by_device(
 568					struct btrfs_super_block *disk_super,
 569					dev_t devt, bool *same_fsid_diff_dev)
 570{
 571	struct btrfs_fs_devices *fsid_fs_devices;
 572	struct btrfs_fs_devices *devt_fs_devices;
 573	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 574					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 575	bool found_by_devt = false;
 576
 577	/* Find the fs_device by the usual method, if found use it. */
 578	fsid_fs_devices = find_fsid(disk_super->fsid,
 579		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
 580
 581	/* The temp_fsid feature is supported only with single device filesystem. */
 582	if (btrfs_super_num_devices(disk_super) != 1)
 583		return fsid_fs_devices;
 584
 585	/*
 586	 * A seed device is an integral component of the sprout device, which
 587	 * functions as a multi-device filesystem. So, temp-fsid feature is
 588	 * not supported.
 589	 */
 590	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
 591		return fsid_fs_devices;
 592
 593	/* Try to find a fs_devices by matching devt. */
 594	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
 595		struct btrfs_device *device;
 596
 597		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
 598			if (device->devt == devt) {
 599				found_by_devt = true;
 600				break;
 601			}
 602		}
 603		if (found_by_devt)
 604			break;
 605	}
 606
 607	if (found_by_devt) {
 608		/* Existing device. */
 609		if (fsid_fs_devices == NULL) {
 610			if (devt_fs_devices->opened == 0) {
 611				/* Stale device. */
 612				return NULL;
 613			} else {
 614				/* temp_fsid is mounting a subvol. */
 615				return devt_fs_devices;
 616			}
 617		} else {
 618			/* Regular or temp_fsid device mounting a subvol. */
 619			return devt_fs_devices;
 620		}
 621	} else {
 622		/* New device. */
 623		if (fsid_fs_devices == NULL) {
 624			return NULL;
 625		} else {
 626			/* sb::fsid is already used create a new temp_fsid. */
 627			*same_fsid_diff_dev = true;
 628			return NULL;
 629		}
 630	}
 631
 632	/* Not reached. */
 633}
 634
 635/*
 636 * This is only used on mount, and we are protected from competing things
 637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 638 * fs_devices->device_list_mutex here.
 639 */
 640static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 641			struct btrfs_device *device, blk_mode_t flags,
 642			void *holder)
 643{
 644	struct file *bdev_file;
 645	struct btrfs_super_block *disk_super;
 646	u64 devid;
 647	int ret;
 648
 649	if (device->bdev)
 650		return -EINVAL;
 651	if (!device->name)
 652		return -EINVAL;
 653
 654	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 655				    &bdev_file, &disk_super);
 656	if (ret)
 657		return ret;
 658
 659	devid = btrfs_stack_device_id(&disk_super->dev_item);
 660	if (devid != device->devid)
 661		goto error_free_page;
 662
 663	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 664		goto error_free_page;
 665
 666	device->generation = btrfs_super_generation(disk_super);
 667
 668	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 669		if (btrfs_super_incompat_flags(disk_super) &
 670		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 671			pr_err(
 672		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 673			goto error_free_page;
 674		}
 675
 676		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 677		fs_devices->seeding = true;
 678	} else {
 679		if (bdev_read_only(file_bdev(bdev_file)))
 680			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 681		else
 682			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 683	}
 684
 685	if (!bdev_nonrot(file_bdev(bdev_file)))
 686		fs_devices->rotating = true;
 687
 688	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
 689		fs_devices->discardable = true;
 690
 691	device->bdev_file = bdev_file;
 692	device->bdev = file_bdev(bdev_file);
 693	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 694
 695	if (device->devt != device->bdev->bd_dev) {
 696		btrfs_warn(NULL,
 697			   "device %s maj:min changed from %d:%d to %d:%d",
 698			   device->name->str, MAJOR(device->devt),
 699			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
 700			   MINOR(device->bdev->bd_dev));
 701
 702		device->devt = device->bdev->bd_dev;
 703	}
 704
 705	fs_devices->open_devices++;
 706	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 707	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 708		fs_devices->rw_devices++;
 709		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 710	}
 711	btrfs_release_disk_super(disk_super);
 712
 713	return 0;
 714
 715error_free_page:
 716	btrfs_release_disk_super(disk_super);
 717	fput(bdev_file);
 718
 719	return -EINVAL;
 720}
 721
 722u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
 723{
 724	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
 725				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 726
 727	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
 728}
 729
 730/*
 731 * Add new device to list of registered devices
 732 *
 733 * Returns:
 734 * device pointer which was just added or updated when successful
 735 * error pointer when failed
 736 */
 737static noinline struct btrfs_device *device_list_add(const char *path,
 738			   struct btrfs_super_block *disk_super,
 739			   bool *new_device_added)
 740{
 741	struct btrfs_device *device;
 742	struct btrfs_fs_devices *fs_devices = NULL;
 743	struct rcu_string *name;
 744	u64 found_transid = btrfs_super_generation(disk_super);
 745	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 746	dev_t path_devt;
 747	int error;
 748	bool same_fsid_diff_dev = false;
 749	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 750		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 751
 752	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
 753		btrfs_err(NULL,
 754"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
 755			  path);
 756		return ERR_PTR(-EAGAIN);
 757	}
 758
 759	error = lookup_bdev(path, &path_devt);
 760	if (error) {
 761		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 762			  path, error);
 763		return ERR_PTR(error);
 764	}
 765
 766	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
 767
 768	if (!fs_devices) {
 769		fs_devices = alloc_fs_devices(disk_super->fsid);
 770		if (IS_ERR(fs_devices))
 771			return ERR_CAST(fs_devices);
 772
 773		if (has_metadata_uuid)
 774			memcpy(fs_devices->metadata_uuid,
 775			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 776
 777		if (same_fsid_diff_dev) {
 778			generate_random_uuid(fs_devices->fsid);
 779			fs_devices->temp_fsid = true;
 780		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
 781				path, MAJOR(path_devt), MINOR(path_devt),
 782				fs_devices->fsid);
 783		}
 784
 785		mutex_lock(&fs_devices->device_list_mutex);
 786		list_add(&fs_devices->fs_list, &fs_uuids);
 787
 788		device = NULL;
 789	} else {
 790		struct btrfs_dev_lookup_args args = {
 791			.devid = devid,
 792			.uuid = disk_super->dev_item.uuid,
 793		};
 794
 795		mutex_lock(&fs_devices->device_list_mutex);
 796		device = btrfs_find_device(fs_devices, &args);
 797
 798		if (found_transid > fs_devices->latest_generation) {
 799			memcpy(fs_devices->fsid, disk_super->fsid,
 800					BTRFS_FSID_SIZE);
 801			memcpy(fs_devices->metadata_uuid,
 802			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
 803		}
 804	}
 805
 806	if (!device) {
 807		unsigned int nofs_flag;
 808
 809		if (fs_devices->opened) {
 810			btrfs_err(NULL,
 811"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
 812				  path, MAJOR(path_devt), MINOR(path_devt),
 813				  fs_devices->fsid, current->comm,
 814				  task_pid_nr(current));
 815			mutex_unlock(&fs_devices->device_list_mutex);
 816			return ERR_PTR(-EBUSY);
 817		}
 818
 819		nofs_flag = memalloc_nofs_save();
 820		device = btrfs_alloc_device(NULL, &devid,
 821					    disk_super->dev_item.uuid, path);
 822		memalloc_nofs_restore(nofs_flag);
 823		if (IS_ERR(device)) {
 824			mutex_unlock(&fs_devices->device_list_mutex);
 825			/* we can safely leave the fs_devices entry around */
 826			return device;
 827		}
 828
 829		device->devt = path_devt;
 830
 831		list_add_rcu(&device->dev_list, &fs_devices->devices);
 832		fs_devices->num_devices++;
 833
 834		device->fs_devices = fs_devices;
 835		*new_device_added = true;
 836
 837		if (disk_super->label[0])
 838			pr_info(
 839"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 840				disk_super->label, devid, found_transid, path,
 841				MAJOR(path_devt), MINOR(path_devt),
 842				current->comm, task_pid_nr(current));
 843		else
 844			pr_info(
 845"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 846				disk_super->fsid, devid, found_transid, path,
 847				MAJOR(path_devt), MINOR(path_devt),
 848				current->comm, task_pid_nr(current));
 849
 850	} else if (!device->name || strcmp(device->name->str, path)) {
 851		/*
 852		 * When FS is already mounted.
 853		 * 1. If you are here and if the device->name is NULL that
 854		 *    means this device was missing at time of FS mount.
 855		 * 2. If you are here and if the device->name is different
 856		 *    from 'path' that means either
 857		 *      a. The same device disappeared and reappeared with
 858		 *         different name. or
 859		 *      b. The missing-disk-which-was-replaced, has
 860		 *         reappeared now.
 861		 *
 862		 * We must allow 1 and 2a above. But 2b would be a spurious
 863		 * and unintentional.
 864		 *
 865		 * Further in case of 1 and 2a above, the disk at 'path'
 866		 * would have missed some transaction when it was away and
 867		 * in case of 2a the stale bdev has to be updated as well.
 868		 * 2b must not be allowed at all time.
 869		 */
 870
 871		/*
 872		 * For now, we do allow update to btrfs_fs_device through the
 873		 * btrfs dev scan cli after FS has been mounted.  We're still
 874		 * tracking a problem where systems fail mount by subvolume id
 875		 * when we reject replacement on a mounted FS.
 876		 */
 877		if (!fs_devices->opened && found_transid < device->generation) {
 878			/*
 879			 * That is if the FS is _not_ mounted and if you
 880			 * are here, that means there is more than one
 881			 * disk with same uuid and devid.We keep the one
 882			 * with larger generation number or the last-in if
 883			 * generation are equal.
 884			 */
 885			mutex_unlock(&fs_devices->device_list_mutex);
 886			btrfs_err(NULL,
 887"device %s already registered with a higher generation, found %llu expect %llu",
 888				  path, found_transid, device->generation);
 889			return ERR_PTR(-EEXIST);
 890		}
 891
 892		/*
 893		 * We are going to replace the device path for a given devid,
 894		 * make sure it's the same device if the device is mounted
 895		 *
 896		 * NOTE: the device->fs_info may not be reliable here so pass
 897		 * in a NULL to message helpers instead. This avoids a possible
 898		 * use-after-free when the fs_info and fs_info->sb are already
 899		 * torn down.
 900		 */
 901		if (device->bdev) {
 902			if (device->devt != path_devt) {
 903				mutex_unlock(&fs_devices->device_list_mutex);
 904				btrfs_warn_in_rcu(NULL,
 905	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 906						  path, devid, found_transid,
 907						  current->comm,
 908						  task_pid_nr(current));
 909				return ERR_PTR(-EEXIST);
 910			}
 911			btrfs_info_in_rcu(NULL,
 912	"devid %llu device path %s changed to %s scanned by %s (%d)",
 913					  devid, btrfs_dev_name(device),
 914					  path, current->comm,
 915					  task_pid_nr(current));
 916		}
 917
 918		name = rcu_string_strdup(path, GFP_NOFS);
 919		if (!name) {
 920			mutex_unlock(&fs_devices->device_list_mutex);
 921			return ERR_PTR(-ENOMEM);
 922		}
 923		rcu_string_free(device->name);
 924		rcu_assign_pointer(device->name, name);
 925		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 926			fs_devices->missing_devices--;
 927			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 928		}
 929		device->devt = path_devt;
 930	}
 931
 932	/*
 933	 * Unmount does not free the btrfs_device struct but would zero
 934	 * generation along with most of the other members. So just update
 935	 * it back. We need it to pick the disk with largest generation
 936	 * (as above).
 937	 */
 938	if (!fs_devices->opened) {
 939		device->generation = found_transid;
 940		fs_devices->latest_generation = max_t(u64, found_transid,
 941						fs_devices->latest_generation);
 942	}
 943
 944	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 945
 946	mutex_unlock(&fs_devices->device_list_mutex);
 947	return device;
 948}
 949
 950static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 951{
 952	struct btrfs_fs_devices *fs_devices;
 953	struct btrfs_device *device;
 954	struct btrfs_device *orig_dev;
 955	int ret = 0;
 956
 957	lockdep_assert_held(&uuid_mutex);
 958
 959	fs_devices = alloc_fs_devices(orig->fsid);
 960	if (IS_ERR(fs_devices))
 961		return fs_devices;
 962
 963	fs_devices->total_devices = orig->total_devices;
 964
 965	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 966		const char *dev_path = NULL;
 967
 968		/*
 969		 * This is ok to do without RCU read locked because we hold the
 970		 * uuid mutex so nothing we touch in here is going to disappear.
 971		 */
 972		if (orig_dev->name)
 973			dev_path = orig_dev->name->str;
 974
 975		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 976					    orig_dev->uuid, dev_path);
 977		if (IS_ERR(device)) {
 978			ret = PTR_ERR(device);
 979			goto error;
 980		}
 981
 982		if (orig_dev->zone_info) {
 983			struct btrfs_zoned_device_info *zone_info;
 984
 985			zone_info = btrfs_clone_dev_zone_info(orig_dev);
 986			if (!zone_info) {
 987				btrfs_free_device(device);
 988				ret = -ENOMEM;
 989				goto error;
 990			}
 991			device->zone_info = zone_info;
 992		}
 993
 994		list_add(&device->dev_list, &fs_devices->devices);
 995		device->fs_devices = fs_devices;
 996		fs_devices->num_devices++;
 997	}
 998	return fs_devices;
 999error:
1000	free_fs_devices(fs_devices);
1001	return ERR_PTR(ret);
1002}
1003
1004static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005				      struct btrfs_device **latest_dev)
1006{
1007	struct btrfs_device *device, *next;
1008
1009	/* This is the initialized path, it is safe to release the devices. */
1010	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013				      &device->dev_state) &&
1014			    !test_bit(BTRFS_DEV_STATE_MISSING,
1015				      &device->dev_state) &&
1016			    (!*latest_dev ||
1017			     device->generation > (*latest_dev)->generation)) {
1018				*latest_dev = device;
1019			}
1020			continue;
1021		}
1022
1023		/*
1024		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025		 * in btrfs_init_dev_replace() so just continue.
1026		 */
1027		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028			continue;
1029
1030		if (device->bdev_file) {
1031			fput(device->bdev_file);
1032			device->bdev = NULL;
1033			device->bdev_file = NULL;
1034			fs_devices->open_devices--;
1035		}
1036		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037			list_del_init(&device->dev_alloc_list);
1038			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039			fs_devices->rw_devices--;
1040		}
1041		list_del_init(&device->dev_list);
1042		fs_devices->num_devices--;
1043		btrfs_free_device(device);
1044	}
1045
1046}
1047
1048/*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053{
1054	struct btrfs_device *latest_dev = NULL;
1055	struct btrfs_fs_devices *seed_dev;
1056
1057	mutex_lock(&uuid_mutex);
1058	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063	fs_devices->latest_dev = latest_dev;
1064
1065	mutex_unlock(&uuid_mutex);
1066}
1067
1068static void btrfs_close_bdev(struct btrfs_device *device)
1069{
1070	if (!device->bdev)
1071		return;
1072
1073	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074		sync_blockdev(device->bdev);
1075		invalidate_bdev(device->bdev);
1076	}
1077
1078	fput(device->bdev_file);
1079}
1080
1081static void btrfs_close_one_device(struct btrfs_device *device)
1082{
1083	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087		list_del_init(&device->dev_alloc_list);
1088		fs_devices->rw_devices--;
1089	}
1090
1091	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096		fs_devices->missing_devices--;
1097	}
1098
1099	btrfs_close_bdev(device);
1100	if (device->bdev) {
1101		fs_devices->open_devices--;
1102		device->bdev = NULL;
1103	}
1104	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105	btrfs_destroy_dev_zone_info(device);
1106
1107	device->fs_info = NULL;
1108	atomic_set(&device->dev_stats_ccnt, 0);
1109	extent_io_tree_release(&device->alloc_state);
1110
1111	/*
1112	 * Reset the flush error record. We might have a transient flush error
1113	 * in this mount, and if so we aborted the current transaction and set
1114	 * the fs to an error state, guaranteeing no super blocks can be further
1115	 * committed. However that error might be transient and if we unmount the
1116	 * filesystem and mount it again, we should allow the mount to succeed
1117	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118	 * filesystem again we still get flush errors, then we will again abort
1119	 * any transaction and set the error state, guaranteeing no commits of
1120	 * unsafe super blocks.
1121	 */
1122	device->last_flush_error = 0;
1123
1124	/* Verify the device is back in a pristine state  */
1125	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127	WARN_ON(!list_empty(&device->dev_alloc_list));
1128	WARN_ON(!list_empty(&device->post_commit_list));
1129}
1130
1131static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132{
1133	struct btrfs_device *device, *tmp;
1134
1135	lockdep_assert_held(&uuid_mutex);
1136
1137	if (--fs_devices->opened > 0)
1138		return;
1139
1140	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141		btrfs_close_one_device(device);
1142
1143	WARN_ON(fs_devices->open_devices);
1144	WARN_ON(fs_devices->rw_devices);
1145	fs_devices->opened = 0;
1146	fs_devices->seeding = false;
1147	fs_devices->fs_info = NULL;
1148}
1149
1150void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151{
1152	LIST_HEAD(list);
1153	struct btrfs_fs_devices *tmp;
1154
1155	mutex_lock(&uuid_mutex);
1156	close_fs_devices(fs_devices);
1157	if (!fs_devices->opened) {
1158		list_splice_init(&fs_devices->seed_list, &list);
1159
1160		/*
1161		 * If the struct btrfs_fs_devices is not assembled with any
1162		 * other device, it can be re-initialized during the next mount
1163		 * without the needing device-scan step. Therefore, it can be
1164		 * fully freed.
1165		 */
1166		if (fs_devices->num_devices == 1) {
1167			list_del(&fs_devices->fs_list);
1168			free_fs_devices(fs_devices);
1169		}
1170	}
1171
1172
1173	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174		close_fs_devices(fs_devices);
1175		list_del(&fs_devices->seed_list);
1176		free_fs_devices(fs_devices);
1177	}
1178	mutex_unlock(&uuid_mutex);
1179}
1180
1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182				blk_mode_t flags, void *holder)
1183{
1184	struct btrfs_device *device;
1185	struct btrfs_device *latest_dev = NULL;
1186	struct btrfs_device *tmp_device;
1187	int ret = 0;
1188
1189	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190				 dev_list) {
1191		int ret2;
1192
1193		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194		if (ret2 == 0 &&
1195		    (!latest_dev || device->generation > latest_dev->generation)) {
1196			latest_dev = device;
1197		} else if (ret2 == -ENODATA) {
1198			fs_devices->num_devices--;
1199			list_del(&device->dev_list);
1200			btrfs_free_device(device);
1201		}
1202		if (ret == 0 && ret2 != 0)
1203			ret = ret2;
1204	}
1205
1206	if (fs_devices->open_devices == 0) {
1207		if (ret)
1208			return ret;
1209		return -EINVAL;
1210	}
1211
1212	fs_devices->opened = 1;
1213	fs_devices->latest_dev = latest_dev;
1214	fs_devices->total_rw_bytes = 0;
1215	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218	return 0;
1219}
1220
1221static int devid_cmp(void *priv, const struct list_head *a,
1222		     const struct list_head *b)
1223{
1224	const struct btrfs_device *dev1, *dev2;
1225
1226	dev1 = list_entry(a, struct btrfs_device, dev_list);
1227	dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229	if (dev1->devid < dev2->devid)
1230		return -1;
1231	else if (dev1->devid > dev2->devid)
1232		return 1;
1233	return 0;
1234}
1235
1236int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237		       blk_mode_t flags, void *holder)
1238{
1239	int ret;
1240
1241	lockdep_assert_held(&uuid_mutex);
1242	/*
1243	 * The device_list_mutex cannot be taken here in case opening the
1244	 * underlying device takes further locks like open_mutex.
1245	 *
1246	 * We also don't need the lock here as this is called during mount and
1247	 * exclusion is provided by uuid_mutex
1248	 */
1249
1250	if (fs_devices->opened) {
1251		fs_devices->opened++;
1252		ret = 0;
1253	} else {
1254		list_sort(NULL, &fs_devices->devices, devid_cmp);
1255		ret = open_fs_devices(fs_devices, flags, holder);
1256	}
1257
1258	return ret;
1259}
1260
1261void btrfs_release_disk_super(struct btrfs_super_block *super)
1262{
1263	struct page *page = virt_to_page(super);
1264
1265	put_page(page);
1266}
1267
1268static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269						       u64 bytenr, u64 bytenr_orig)
1270{
1271	struct btrfs_super_block *disk_super;
1272	struct page *page;
1273	void *p;
1274	pgoff_t index;
1275
1276	/* make sure our super fits in the device */
1277	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278		return ERR_PTR(-EINVAL);
1279
1280	/* make sure our super fits in the page */
1281	if (sizeof(*disk_super) > PAGE_SIZE)
1282		return ERR_PTR(-EINVAL);
1283
1284	/* make sure our super doesn't straddle pages on disk */
1285	index = bytenr >> PAGE_SHIFT;
1286	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287		return ERR_PTR(-EINVAL);
1288
1289	/* pull in the page with our super */
1290	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292	if (IS_ERR(page))
1293		return ERR_CAST(page);
1294
1295	p = page_address(page);
1296
1297	/* align our pointer to the offset of the super block */
1298	disk_super = p + offset_in_page(bytenr);
1299
1300	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302		btrfs_release_disk_super(p);
1303		return ERR_PTR(-EINVAL);
1304	}
1305
1306	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309	return disk_super;
1310}
1311
1312int btrfs_forget_devices(dev_t devt)
1313{
1314	int ret;
1315
1316	mutex_lock(&uuid_mutex);
1317	ret = btrfs_free_stale_devices(devt, NULL);
1318	mutex_unlock(&uuid_mutex);
1319
1320	return ret;
1321}
1322
1323static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324				    const char *path, dev_t devt,
1325				    bool mount_arg_dev)
1326{
1327	struct btrfs_fs_devices *fs_devices;
1328
1329	/*
1330	 * Do not skip device registration for mounted devices with matching
1331	 * maj:min but different paths. Booting without initrd relies on
1332	 * /dev/root initially, later replaced with the actual root device.
1333	 * A successful scan ensures grub2-probe selects the correct device.
1334	 */
1335	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336		struct btrfs_device *device;
1337
1338		mutex_lock(&fs_devices->device_list_mutex);
1339
1340		if (!fs_devices->opened) {
1341			mutex_unlock(&fs_devices->device_list_mutex);
1342			continue;
1343		}
1344
1345		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346			if (device->bdev && (device->bdev->bd_dev == devt) &&
1347			    strcmp(device->name->str, path) != 0) {
1348				mutex_unlock(&fs_devices->device_list_mutex);
1349
1350				/* Do not skip registration. */
1351				return false;
1352			}
1353		}
1354		mutex_unlock(&fs_devices->device_list_mutex);
1355	}
1356
1357	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359		return true;
1360
1361	return false;
1362}
1363
1364/*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374					   bool mount_arg_dev)
1375{
1376	struct btrfs_super_block *disk_super;
1377	bool new_device_added = false;
1378	struct btrfs_device *device = NULL;
1379	struct file *bdev_file;
1380	u64 bytenr, bytenr_orig;
1381	dev_t devt;
1382	int ret;
1383
1384	lockdep_assert_held(&uuid_mutex);
1385
1386	/*
1387	 * we would like to check all the supers, but that would make
1388	 * a btrfs mount succeed after a mkfs from a different FS.
1389	 * So, we need to add a special mount option to scan for
1390	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391	 */
1392
1393	/*
1394	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395	 * device scan which may race with the user's mount or mkfs command,
1396	 * resulting in failure.
1397	 * Since the device scan is solely for reading purposes, there is no
1398	 * need for an exclusive open. Additionally, the devices are read again
1399	 * during the mount process. It is ok to get some inconsistent
1400	 * values temporarily, as the device paths of the fsid are the only
1401	 * required information for assembling the volume.
1402	 */
1403	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404	if (IS_ERR(bdev_file))
1405		return ERR_CAST(bdev_file);
1406
1407	bytenr_orig = btrfs_sb_offset(0);
1408	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409	if (ret) {
1410		device = ERR_PTR(ret);
1411		goto error_bdev_put;
1412	}
1413
1414	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415					   bytenr_orig);
1416	if (IS_ERR(disk_super)) {
1417		device = ERR_CAST(disk_super);
1418		goto error_bdev_put;
1419	}
1420
1421	devt = file_bdev(bdev_file)->bd_dev;
1422	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424			  path, MAJOR(devt), MINOR(devt));
1425
1426		btrfs_free_stale_devices(devt, NULL);
 
 
 
 
 
1427
 
1428		device = NULL;
1429		goto free_disk_super;
1430	}
1431
1432	device = device_list_add(path, disk_super, &new_device_added);
1433	if (!IS_ERR(device) && new_device_added)
1434		btrfs_free_stale_devices(device->devt, device);
1435
1436free_disk_super:
1437	btrfs_release_disk_super(disk_super);
1438
1439error_bdev_put:
1440	fput(bdev_file);
1441
1442	return device;
1443}
1444
1445/*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450				    u64 len)
1451{
1452	u64 physical_start, physical_end;
1453
1454	lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456	if (find_first_extent_bit(&device->alloc_state, *start,
1457				  &physical_start, &physical_end,
1458				  CHUNK_ALLOCATED, NULL)) {
1459
1460		if (in_range(physical_start, *start, len) ||
1461		    in_range(*start, physical_start,
1462			     physical_end + 1 - physical_start)) {
1463			*start = physical_end + 1;
1464			return true;
1465		}
1466	}
1467	return false;
1468}
1469
1470static u64 dev_extent_search_start(struct btrfs_device *device)
1471{
1472	switch (device->fs_devices->chunk_alloc_policy) {
1473	case BTRFS_CHUNK_ALLOC_REGULAR:
1474		return BTRFS_DEVICE_RANGE_RESERVED;
1475	case BTRFS_CHUNK_ALLOC_ZONED:
1476		/*
1477		 * We don't care about the starting region like regular
1478		 * allocator, because we anyway use/reserve the first two zones
1479		 * for superblock logging.
1480		 */
1481		return 0;
1482	default:
1483		BUG();
1484	}
1485}
1486
1487static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488					u64 *hole_start, u64 *hole_size,
1489					u64 num_bytes)
1490{
1491	u64 zone_size = device->zone_info->zone_size;
1492	u64 pos;
1493	int ret;
1494	bool changed = false;
1495
1496	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498	while (*hole_size > 0) {
1499		pos = btrfs_find_allocatable_zones(device, *hole_start,
1500						   *hole_start + *hole_size,
1501						   num_bytes);
1502		if (pos != *hole_start) {
1503			*hole_size = *hole_start + *hole_size - pos;
1504			*hole_start = pos;
1505			changed = true;
1506			if (*hole_size < num_bytes)
1507				break;
1508		}
1509
1510		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512		/* Range is ensured to be empty */
1513		if (!ret)
1514			return changed;
1515
1516		/* Given hole range was invalid (outside of device) */
1517		if (ret == -ERANGE) {
1518			*hole_start += *hole_size;
1519			*hole_size = 0;
1520			return true;
1521		}
1522
1523		*hole_start += zone_size;
1524		*hole_size -= zone_size;
1525		changed = true;
1526	}
1527
1528	return changed;
1529}
1530
1531/*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device:	the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size:	the size of the hole
1537 * @num_bytes:	the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543				  u64 *hole_size, u64 num_bytes)
1544{
1545	bool changed = false;
1546	u64 hole_end = *hole_start + *hole_size;
1547
1548	for (;;) {
1549		/*
1550		 * Check before we set max_hole_start, otherwise we could end up
1551		 * sending back this offset anyway.
1552		 */
1553		if (contains_pending_extent(device, hole_start, *hole_size)) {
1554			if (hole_end >= *hole_start)
1555				*hole_size = hole_end - *hole_start;
1556			else
1557				*hole_size = 0;
1558			changed = true;
1559		}
1560
1561		switch (device->fs_devices->chunk_alloc_policy) {
1562		case BTRFS_CHUNK_ALLOC_REGULAR:
1563			/* No extra check */
1564			break;
1565		case BTRFS_CHUNK_ALLOC_ZONED:
1566			if (dev_extent_hole_check_zoned(device, hole_start,
1567							hole_size, num_bytes)) {
1568				changed = true;
1569				/*
1570				 * The changed hole can contain pending extent.
1571				 * Loop again to check that.
1572				 */
1573				continue;
1574			}
1575			break;
1576		default:
1577			BUG();
1578		}
1579
1580		break;
1581	}
1582
1583	return changed;
1584}
1585
1586/*
1587 * Find free space in the specified device.
1588 *
1589 * @device:	  the device which we search the free space in
1590 * @num_bytes:	  the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start:	  store the start of the free space.
1593 * @len:	  the size of the free space. that we find, or the size
1594 *		  of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614				u64 *start, u64 *len)
1615{
1616	struct btrfs_fs_info *fs_info = device->fs_info;
1617	struct btrfs_root *root = fs_info->dev_root;
1618	struct btrfs_key key;
1619	struct btrfs_dev_extent *dev_extent;
1620	struct btrfs_path *path;
1621	u64 search_start;
1622	u64 hole_size;
1623	u64 max_hole_start;
1624	u64 max_hole_size = 0;
1625	u64 extent_end;
1626	u64 search_end = device->total_bytes;
1627	int ret;
1628	int slot;
1629	struct extent_buffer *l;
1630
1631	search_start = dev_extent_search_start(device);
1632	max_hole_start = search_start;
1633
1634	WARN_ON(device->zone_info &&
1635		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637	path = btrfs_alloc_path();
1638	if (!path) {
1639		ret = -ENOMEM;
1640		goto out;
1641	}
1642again:
1643	if (search_start >= search_end ||
1644		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645		ret = -ENOSPC;
1646		goto out;
1647	}
1648
1649	path->reada = READA_FORWARD;
1650	path->search_commit_root = 1;
1651	path->skip_locking = 1;
1652
1653	key.objectid = device->devid;
1654	key.offset = search_start;
1655	key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657	ret = btrfs_search_backwards(root, &key, path);
1658	if (ret < 0)
1659		goto out;
1660
1661	while (search_start < search_end) {
1662		l = path->nodes[0];
1663		slot = path->slots[0];
1664		if (slot >= btrfs_header_nritems(l)) {
1665			ret = btrfs_next_leaf(root, path);
1666			if (ret == 0)
1667				continue;
1668			if (ret < 0)
1669				goto out;
1670
1671			break;
1672		}
1673		btrfs_item_key_to_cpu(l, &key, slot);
1674
1675		if (key.objectid < device->devid)
1676			goto next;
1677
1678		if (key.objectid > device->devid)
1679			break;
1680
1681		if (key.type != BTRFS_DEV_EXTENT_KEY)
1682			goto next;
1683
1684		if (key.offset > search_end)
1685			break;
1686
1687		if (key.offset > search_start) {
1688			hole_size = key.offset - search_start;
1689			dev_extent_hole_check(device, &search_start, &hole_size,
1690					      num_bytes);
1691
1692			if (hole_size > max_hole_size) {
1693				max_hole_start = search_start;
1694				max_hole_size = hole_size;
1695			}
1696
1697			/*
1698			 * If this free space is greater than which we need,
1699			 * it must be the max free space that we have found
1700			 * until now, so max_hole_start must point to the start
1701			 * of this free space and the length of this free space
1702			 * is stored in max_hole_size. Thus, we return
1703			 * max_hole_start and max_hole_size and go back to the
1704			 * caller.
1705			 */
1706			if (hole_size >= num_bytes) {
1707				ret = 0;
1708				goto out;
1709			}
1710		}
1711
1712		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713		extent_end = key.offset + btrfs_dev_extent_length(l,
1714								  dev_extent);
1715		if (extent_end > search_start)
1716			search_start = extent_end;
1717next:
1718		path->slots[0]++;
1719		cond_resched();
1720	}
1721
1722	/*
1723	 * At this point, search_start should be the end of
1724	 * allocated dev extents, and when shrinking the device,
1725	 * search_end may be smaller than search_start.
1726	 */
1727	if (search_end > search_start) {
1728		hole_size = search_end - search_start;
1729		if (dev_extent_hole_check(device, &search_start, &hole_size,
1730					  num_bytes)) {
1731			btrfs_release_path(path);
1732			goto again;
1733		}
1734
1735		if (hole_size > max_hole_size) {
1736			max_hole_start = search_start;
1737			max_hole_size = hole_size;
1738		}
1739	}
1740
1741	/* See above. */
1742	if (max_hole_size < num_bytes)
1743		ret = -ENOSPC;
1744	else
1745		ret = 0;
1746
1747	ASSERT(max_hole_start + max_hole_size <= search_end);
1748out:
1749	btrfs_free_path(path);
1750	*start = max_hole_start;
1751	if (len)
1752		*len = max_hole_size;
1753	return ret;
1754}
1755
1756static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757			  struct btrfs_device *device,
1758			  u64 start, u64 *dev_extent_len)
1759{
1760	struct btrfs_fs_info *fs_info = device->fs_info;
1761	struct btrfs_root *root = fs_info->dev_root;
1762	int ret;
1763	struct btrfs_path *path;
1764	struct btrfs_key key;
1765	struct btrfs_key found_key;
1766	struct extent_buffer *leaf = NULL;
1767	struct btrfs_dev_extent *extent = NULL;
1768
1769	path = btrfs_alloc_path();
1770	if (!path)
1771		return -ENOMEM;
1772
1773	key.objectid = device->devid;
1774	key.offset = start;
1775	key.type = BTRFS_DEV_EXTENT_KEY;
1776again:
1777	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778	if (ret > 0) {
1779		ret = btrfs_previous_item(root, path, key.objectid,
1780					  BTRFS_DEV_EXTENT_KEY);
1781		if (ret)
1782			goto out;
1783		leaf = path->nodes[0];
1784		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785		extent = btrfs_item_ptr(leaf, path->slots[0],
1786					struct btrfs_dev_extent);
1787		BUG_ON(found_key.offset > start || found_key.offset +
1788		       btrfs_dev_extent_length(leaf, extent) < start);
1789		key = found_key;
1790		btrfs_release_path(path);
1791		goto again;
1792	} else if (ret == 0) {
1793		leaf = path->nodes[0];
1794		extent = btrfs_item_ptr(leaf, path->slots[0],
1795					struct btrfs_dev_extent);
1796	} else {
1797		goto out;
1798	}
1799
1800	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802	ret = btrfs_del_item(trans, root, path);
1803	if (ret == 0)
1804		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805out:
1806	btrfs_free_path(path);
1807	return ret;
1808}
1809
1810static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811{
1812	struct rb_node *n;
1813	u64 ret = 0;
1814
1815	read_lock(&fs_info->mapping_tree_lock);
1816	n = rb_last(&fs_info->mapping_tree.rb_root);
1817	if (n) {
1818		struct btrfs_chunk_map *map;
1819
1820		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821		ret = map->start + map->chunk_len;
1822	}
1823	read_unlock(&fs_info->mapping_tree_lock);
1824
1825	return ret;
1826}
1827
1828static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829				    u64 *devid_ret)
1830{
1831	int ret;
1832	struct btrfs_key key;
1833	struct btrfs_key found_key;
1834	struct btrfs_path *path;
1835
1836	path = btrfs_alloc_path();
1837	if (!path)
1838		return -ENOMEM;
1839
1840	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841	key.type = BTRFS_DEV_ITEM_KEY;
1842	key.offset = (u64)-1;
1843
1844	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845	if (ret < 0)
1846		goto error;
1847
1848	if (ret == 0) {
1849		/* Corruption */
1850		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851		ret = -EUCLEAN;
1852		goto error;
1853	}
1854
1855	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856				  BTRFS_DEV_ITEMS_OBJECTID,
1857				  BTRFS_DEV_ITEM_KEY);
1858	if (ret) {
1859		*devid_ret = 1;
1860	} else {
1861		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862				      path->slots[0]);
1863		*devid_ret = found_key.offset + 1;
1864	}
1865	ret = 0;
1866error:
1867	btrfs_free_path(path);
1868	return ret;
1869}
1870
1871/*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876			    struct btrfs_device *device)
1877{
1878	int ret;
1879	struct btrfs_path *path;
1880	struct btrfs_dev_item *dev_item;
1881	struct extent_buffer *leaf;
1882	struct btrfs_key key;
1883	unsigned long ptr;
1884
1885	path = btrfs_alloc_path();
1886	if (!path)
1887		return -ENOMEM;
1888
1889	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890	key.type = BTRFS_DEV_ITEM_KEY;
1891	key.offset = device->devid;
1892
1893	btrfs_reserve_chunk_metadata(trans, true);
1894	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895				      &key, sizeof(*dev_item));
1896	btrfs_trans_release_chunk_metadata(trans);
1897	if (ret)
1898		goto out;
1899
1900	leaf = path->nodes[0];
1901	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903	btrfs_set_device_id(leaf, dev_item, device->devid);
1904	btrfs_set_device_generation(leaf, dev_item, 0);
1905	btrfs_set_device_type(leaf, dev_item, device->type);
1906	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909	btrfs_set_device_total_bytes(leaf, dev_item,
1910				     btrfs_device_get_disk_total_bytes(device));
1911	btrfs_set_device_bytes_used(leaf, dev_item,
1912				    btrfs_device_get_bytes_used(device));
1913	btrfs_set_device_group(leaf, dev_item, 0);
1914	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916	btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918	ptr = btrfs_device_uuid(dev_item);
1919	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920	ptr = btrfs_device_fsid(dev_item);
1921	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922			    ptr, BTRFS_FSID_SIZE);
1923	btrfs_mark_buffer_dirty(trans, leaf);
1924
1925	ret = 0;
1926out:
1927	btrfs_free_path(path);
1928	return ret;
1929}
1930
1931/*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937static void update_dev_time(const char *device_path)
1938{
1939	struct path path;
1940	int ret;
1941
1942	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943	if (ret)
1944		return;
1945
1946	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947	path_put(&path);
1948}
1949
1950static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951			     struct btrfs_device *device)
1952{
1953	struct btrfs_root *root = device->fs_info->chunk_root;
1954	int ret;
1955	struct btrfs_path *path;
1956	struct btrfs_key key;
1957
1958	path = btrfs_alloc_path();
1959	if (!path)
1960		return -ENOMEM;
1961
1962	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963	key.type = BTRFS_DEV_ITEM_KEY;
1964	key.offset = device->devid;
1965
1966	btrfs_reserve_chunk_metadata(trans, false);
1967	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968	btrfs_trans_release_chunk_metadata(trans);
1969	if (ret) {
1970		if (ret > 0)
1971			ret = -ENOENT;
1972		goto out;
1973	}
1974
1975	ret = btrfs_del_item(trans, root, path);
1976out:
1977	btrfs_free_path(path);
1978	return ret;
1979}
1980
1981/*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987		u64 num_devices)
1988{
1989	u64 all_avail;
1990	unsigned seq;
1991	int i;
1992
1993	do {
1994		seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996		all_avail = fs_info->avail_data_alloc_bits |
1997			    fs_info->avail_system_alloc_bits |
1998			    fs_info->avail_metadata_alloc_bits;
1999	} while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003			continue;
2004
2005		if (num_devices < btrfs_raid_array[i].devs_min)
2006			return btrfs_raid_array[i].mindev_error;
2007	}
2008
2009	return 0;
2010}
2011
2012static struct btrfs_device * btrfs_find_next_active_device(
2013		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014{
2015	struct btrfs_device *next_device;
2016
2017	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018		if (next_device != device &&
2019		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020		    && next_device->bdev)
2021			return next_device;
2022	}
2023
2024	return NULL;
2025}
2026
2027/*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034					    struct btrfs_device *next_device)
2035{
2036	struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038	if (!next_device)
2039		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040							    device);
2041	ASSERT(next_device);
2042
2043	if (fs_info->sb->s_bdev &&
2044			(fs_info->sb->s_bdev == device->bdev))
2045		fs_info->sb->s_bdev = next_device->bdev;
2046
2047	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048		fs_info->fs_devices->latest_dev = next_device;
2049}
2050
2051/*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056{
2057	u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059	down_read(&fs_info->dev_replace.rwsem);
2060	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061		ASSERT(num_devices > 1);
2062		num_devices--;
2063	}
2064	up_read(&fs_info->dev_replace.rwsem);
2065
2066	return num_devices;
2067}
2068
2069static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070				     struct block_device *bdev, int copy_num)
2071{
2072	struct btrfs_super_block *disk_super;
2073	const size_t len = sizeof(disk_super->magic);
2074	const u64 bytenr = btrfs_sb_offset(copy_num);
2075	int ret;
2076
2077	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078	if (IS_ERR(disk_super))
2079		return;
2080
2081	memset(&disk_super->magic, 0, len);
2082	folio_mark_dirty(virt_to_folio(disk_super));
2083	btrfs_release_disk_super(disk_super);
2084
2085	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086	if (ret)
2087		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088			copy_num, ret);
2089}
2090
2091void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
 
 
2092{
2093	int copy_num;
2094	struct block_device *bdev = device->bdev;
2095
2096	if (!bdev)
2097		return;
2098
2099	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100		if (bdev_is_zoned(bdev))
2101			btrfs_reset_sb_log_zones(bdev, copy_num);
2102		else
2103			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104	}
2105
2106	/* Notify udev that device has changed */
2107	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109	/* Update ctime/mtime for device path for libblkid */
2110	update_dev_time(device->name->str);
2111}
2112
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114		    struct btrfs_dev_lookup_args *args,
2115		    struct file **bdev_file)
2116{
2117	struct btrfs_trans_handle *trans;
2118	struct btrfs_device *device;
2119	struct btrfs_fs_devices *cur_devices;
2120	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121	u64 num_devices;
2122	int ret = 0;
2123
2124	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126		return -EINVAL;
2127	}
2128
2129	/*
2130	 * The device list in fs_devices is accessed without locks (neither
2131	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132	 * filesystem and another device rm cannot run.
2133	 */
2134	num_devices = btrfs_num_devices(fs_info);
2135
2136	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137	if (ret)
2138		return ret;
2139
2140	device = btrfs_find_device(fs_info->fs_devices, args);
2141	if (!device) {
2142		if (args->missing)
2143			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144		else
2145			ret = -ENOENT;
2146		return ret;
2147	}
2148
2149	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150		btrfs_warn_in_rcu(fs_info,
2151		  "cannot remove device %s (devid %llu) due to active swapfile",
2152				  btrfs_dev_name(device), device->devid);
2153		return -ETXTBSY;
2154	}
2155
2156	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157		return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160	    fs_info->fs_devices->rw_devices == 1)
2161		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164		mutex_lock(&fs_info->chunk_mutex);
2165		list_del_init(&device->dev_alloc_list);
2166		device->fs_devices->rw_devices--;
2167		mutex_unlock(&fs_info->chunk_mutex);
2168	}
2169
2170	ret = btrfs_shrink_device(device, 0);
2171	if (ret)
2172		goto error_undo;
2173
2174	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175	if (IS_ERR(trans)) {
2176		ret = PTR_ERR(trans);
2177		goto error_undo;
2178	}
2179
2180	ret = btrfs_rm_dev_item(trans, device);
2181	if (ret) {
2182		/* Any error in dev item removal is critical */
2183		btrfs_crit(fs_info,
2184			   "failed to remove device item for devid %llu: %d",
2185			   device->devid, ret);
2186		btrfs_abort_transaction(trans, ret);
2187		btrfs_end_transaction(trans);
2188		return ret;
2189	}
2190
2191	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192	btrfs_scrub_cancel_dev(device);
2193
2194	/*
2195	 * the device list mutex makes sure that we don't change
2196	 * the device list while someone else is writing out all
2197	 * the device supers. Whoever is writing all supers, should
2198	 * lock the device list mutex before getting the number of
2199	 * devices in the super block (super_copy). Conversely,
2200	 * whoever updates the number of devices in the super block
2201	 * (super_copy) should hold the device list mutex.
2202	 */
2203
2204	/*
2205	 * In normal cases the cur_devices == fs_devices. But in case
2206	 * of deleting a seed device, the cur_devices should point to
2207	 * its own fs_devices listed under the fs_devices->seed_list.
2208	 */
2209	cur_devices = device->fs_devices;
2210	mutex_lock(&fs_devices->device_list_mutex);
2211	list_del_rcu(&device->dev_list);
2212
2213	cur_devices->num_devices--;
2214	cur_devices->total_devices--;
2215	/* Update total_devices of the parent fs_devices if it's seed */
2216	if (cur_devices != fs_devices)
2217		fs_devices->total_devices--;
2218
2219	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220		cur_devices->missing_devices--;
2221
2222	btrfs_assign_next_active_device(device, NULL);
2223
2224	if (device->bdev_file) {
2225		cur_devices->open_devices--;
2226		/* remove sysfs entry */
2227		btrfs_sysfs_remove_device(device);
2228	}
2229
2230	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232	mutex_unlock(&fs_devices->device_list_mutex);
2233
2234	/*
2235	 * At this point, the device is zero sized and detached from the
2236	 * devices list.  All that's left is to zero out the old supers and
2237	 * free the device.
2238	 *
2239	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240	 * write lock, and fput() on the block device will pull in the
2241	 * ->open_mutex on the block device and it's dependencies.  Instead
2242	 *  just flush the device and let the caller do the final bdev_release.
2243	 */
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		btrfs_scratch_superblocks(fs_info, device);
 
2246		if (device->bdev) {
2247			sync_blockdev(device->bdev);
2248			invalidate_bdev(device->bdev);
2249		}
2250	}
2251
2252	*bdev_file = device->bdev_file;
2253	synchronize_rcu();
2254	btrfs_free_device(device);
2255
2256	/*
2257	 * This can happen if cur_devices is the private seed devices list.  We
2258	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259	 * to be held, but in fact we don't need that for the private
2260	 * seed_devices, we can simply decrement cur_devices->opened and then
2261	 * remove it from our list and free the fs_devices.
2262	 */
2263	if (cur_devices->num_devices == 0) {
2264		list_del_init(&cur_devices->seed_list);
2265		ASSERT(cur_devices->opened == 1);
2266		cur_devices->opened--;
2267		free_fs_devices(cur_devices);
2268	}
2269
2270	ret = btrfs_commit_transaction(trans);
2271
2272	return ret;
2273
2274error_undo:
2275	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276		mutex_lock(&fs_info->chunk_mutex);
2277		list_add(&device->dev_alloc_list,
2278			 &fs_devices->alloc_list);
2279		device->fs_devices->rw_devices++;
2280		mutex_unlock(&fs_info->chunk_mutex);
2281	}
2282	return ret;
2283}
2284
2285void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286{
2287	struct btrfs_fs_devices *fs_devices;
2288
2289	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291	/*
2292	 * in case of fs with no seed, srcdev->fs_devices will point
2293	 * to fs_devices of fs_info. However when the dev being replaced is
2294	 * a seed dev it will point to the seed's local fs_devices. In short
2295	 * srcdev will have its correct fs_devices in both the cases.
2296	 */
2297	fs_devices = srcdev->fs_devices;
2298
2299	list_del_rcu(&srcdev->dev_list);
2300	list_del(&srcdev->dev_alloc_list);
2301	fs_devices->num_devices--;
2302	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303		fs_devices->missing_devices--;
2304
2305	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306		fs_devices->rw_devices--;
2307
2308	if (srcdev->bdev)
2309		fs_devices->open_devices--;
2310}
2311
2312void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313{
2314	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316	mutex_lock(&uuid_mutex);
2317
2318	btrfs_close_bdev(srcdev);
2319	synchronize_rcu();
2320	btrfs_free_device(srcdev);
2321
2322	/* if this is no devs we rather delete the fs_devices */
2323	if (!fs_devices->num_devices) {
2324		/*
2325		 * On a mounted FS, num_devices can't be zero unless it's a
2326		 * seed. In case of a seed device being replaced, the replace
2327		 * target added to the sprout FS, so there will be no more
2328		 * device left under the seed FS.
2329		 */
2330		ASSERT(fs_devices->seeding);
2331
2332		list_del_init(&fs_devices->seed_list);
2333		close_fs_devices(fs_devices);
2334		free_fs_devices(fs_devices);
2335	}
2336	mutex_unlock(&uuid_mutex);
2337}
2338
2339void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340{
2341	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343	mutex_lock(&fs_devices->device_list_mutex);
2344
2345	btrfs_sysfs_remove_device(tgtdev);
2346
2347	if (tgtdev->bdev)
2348		fs_devices->open_devices--;
2349
2350	fs_devices->num_devices--;
2351
2352	btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354	list_del_rcu(&tgtdev->dev_list);
2355
2356	mutex_unlock(&fs_devices->device_list_mutex);
2357
2358	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
 
2359
2360	btrfs_close_bdev(tgtdev);
2361	synchronize_rcu();
2362	btrfs_free_device(tgtdev);
2363}
2364
2365/*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info:	the filesystem
2369 * @args:	the args to populate
2370 * @path:	the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks.  The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384				 struct btrfs_dev_lookup_args *args,
2385				 const char *path)
2386{
2387	struct btrfs_super_block *disk_super;
2388	struct file *bdev_file;
2389	int ret;
2390
2391	if (!path || !path[0])
2392		return -EINVAL;
2393	if (!strcmp(path, "missing")) {
2394		args->missing = true;
2395		return 0;
2396	}
2397
2398	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400	if (!args->uuid || !args->fsid) {
2401		btrfs_put_dev_args_from_path(args);
2402		return -ENOMEM;
2403	}
2404
2405	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406				    &bdev_file, &disk_super);
2407	if (ret) {
2408		btrfs_put_dev_args_from_path(args);
2409		return ret;
2410	}
2411
2412	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416	else
2417		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418	btrfs_release_disk_super(disk_super);
2419	fput(bdev_file);
2420	return 0;
2421}
2422
2423/*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429{
2430	kfree(args->uuid);
2431	kfree(args->fsid);
2432	args->uuid = NULL;
2433	args->fsid = NULL;
2434}
2435
2436struct btrfs_device *btrfs_find_device_by_devspec(
2437		struct btrfs_fs_info *fs_info, u64 devid,
2438		const char *device_path)
2439{
2440	BTRFS_DEV_LOOKUP_ARGS(args);
2441	struct btrfs_device *device;
2442	int ret;
2443
2444	if (devid) {
2445		args.devid = devid;
2446		device = btrfs_find_device(fs_info->fs_devices, &args);
2447		if (!device)
2448			return ERR_PTR(-ENOENT);
2449		return device;
2450	}
2451
2452	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453	if (ret)
2454		return ERR_PTR(ret);
2455	device = btrfs_find_device(fs_info->fs_devices, &args);
2456	btrfs_put_dev_args_from_path(&args);
2457	if (!device)
2458		return ERR_PTR(-ENOENT);
2459	return device;
2460}
2461
2462static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463{
2464	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465	struct btrfs_fs_devices *old_devices;
2466	struct btrfs_fs_devices *seed_devices;
2467
2468	lockdep_assert_held(&uuid_mutex);
2469	if (!fs_devices->seeding)
2470		return ERR_PTR(-EINVAL);
2471
2472	/*
2473	 * Private copy of the seed devices, anchored at
2474	 * fs_info->fs_devices->seed_list
2475	 */
2476	seed_devices = alloc_fs_devices(NULL);
2477	if (IS_ERR(seed_devices))
2478		return seed_devices;
2479
2480	/*
2481	 * It's necessary to retain a copy of the original seed fs_devices in
2482	 * fs_uuids so that filesystems which have been seeded can successfully
2483	 * reference the seed device from open_seed_devices. This also supports
2484	 * multiple fs seed.
2485	 */
2486	old_devices = clone_fs_devices(fs_devices);
2487	if (IS_ERR(old_devices)) {
2488		kfree(seed_devices);
2489		return old_devices;
2490	}
2491
2492	list_add(&old_devices->fs_list, &fs_uuids);
2493
2494	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495	seed_devices->opened = 1;
2496	INIT_LIST_HEAD(&seed_devices->devices);
2497	INIT_LIST_HEAD(&seed_devices->alloc_list);
2498	mutex_init(&seed_devices->device_list_mutex);
2499
2500	return seed_devices;
2501}
2502
2503/*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508			       struct btrfs_fs_devices *seed_devices)
2509{
2510	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511	struct btrfs_super_block *disk_super = fs_info->super_copy;
2512	struct btrfs_device *device;
2513	u64 super_flags;
2514
2515	/*
2516	 * We are updating the fsid, the thread leading to device_list_add()
2517	 * could race, so uuid_mutex is needed.
2518	 */
2519	lockdep_assert_held(&uuid_mutex);
2520
2521	/*
2522	 * The threads listed below may traverse dev_list but can do that without
2523	 * device_list_mutex:
2524	 * - All device ops and balance - as we are in btrfs_exclop_start.
2525	 * - Various dev_list readers - are using RCU.
2526	 * - btrfs_ioctl_fitrim() - is using RCU.
2527	 *
2528	 * For-read threads as below are using device_list_mutex:
2529	 * - Readonly scrub btrfs_scrub_dev()
2530	 * - Readonly scrub btrfs_scrub_progress()
2531	 * - btrfs_get_dev_stats()
2532	 */
2533	lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536			      synchronize_rcu);
2537	list_for_each_entry(device, &seed_devices->devices, dev_list)
2538		device->fs_devices = seed_devices;
2539
2540	fs_devices->seeding = false;
2541	fs_devices->num_devices = 0;
2542	fs_devices->open_devices = 0;
2543	fs_devices->missing_devices = 0;
2544	fs_devices->rotating = false;
2545	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547	generate_random_uuid(fs_devices->fsid);
2548	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551	super_flags = btrfs_super_flags(disk_super) &
2552		      ~BTRFS_SUPER_FLAG_SEEDING;
2553	btrfs_set_super_flags(disk_super, super_flags);
2554}
2555
2556/*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560{
2561	BTRFS_DEV_LOOKUP_ARGS(args);
2562	struct btrfs_fs_info *fs_info = trans->fs_info;
2563	struct btrfs_root *root = fs_info->chunk_root;
2564	struct btrfs_path *path;
2565	struct extent_buffer *leaf;
2566	struct btrfs_dev_item *dev_item;
2567	struct btrfs_device *device;
2568	struct btrfs_key key;
2569	u8 fs_uuid[BTRFS_FSID_SIZE];
2570	u8 dev_uuid[BTRFS_UUID_SIZE];
2571	int ret;
2572
2573	path = btrfs_alloc_path();
2574	if (!path)
2575		return -ENOMEM;
2576
2577	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578	key.offset = 0;
2579	key.type = BTRFS_DEV_ITEM_KEY;
2580
2581	while (1) {
2582		btrfs_reserve_chunk_metadata(trans, false);
2583		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584		btrfs_trans_release_chunk_metadata(trans);
2585		if (ret < 0)
2586			goto error;
2587
2588		leaf = path->nodes[0];
2589next_slot:
2590		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591			ret = btrfs_next_leaf(root, path);
2592			if (ret > 0)
2593				break;
2594			if (ret < 0)
2595				goto error;
2596			leaf = path->nodes[0];
2597			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598			btrfs_release_path(path);
2599			continue;
2600		}
2601
2602		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604		    key.type != BTRFS_DEV_ITEM_KEY)
2605			break;
2606
2607		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608					  struct btrfs_dev_item);
2609		args.devid = btrfs_device_id(leaf, dev_item);
2610		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611				   BTRFS_UUID_SIZE);
2612		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613				   BTRFS_FSID_SIZE);
2614		args.uuid = dev_uuid;
2615		args.fsid = fs_uuid;
2616		device = btrfs_find_device(fs_info->fs_devices, &args);
2617		BUG_ON(!device); /* Logic error */
2618
2619		if (device->fs_devices->seeding) {
2620			btrfs_set_device_generation(leaf, dev_item,
2621						    device->generation);
2622			btrfs_mark_buffer_dirty(trans, leaf);
2623		}
2624
2625		path->slots[0]++;
2626		goto next_slot;
2627	}
2628	ret = 0;
2629error:
2630	btrfs_free_path(path);
2631	return ret;
2632}
2633
2634int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635{
2636	struct btrfs_root *root = fs_info->dev_root;
2637	struct btrfs_trans_handle *trans;
2638	struct btrfs_device *device;
2639	struct file *bdev_file;
2640	struct super_block *sb = fs_info->sb;
2641	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642	struct btrfs_fs_devices *seed_devices = NULL;
2643	u64 orig_super_total_bytes;
2644	u64 orig_super_num_devices;
2645	int ret = 0;
2646	bool seeding_dev = false;
2647	bool locked = false;
2648
2649	if (sb_rdonly(sb) && !fs_devices->seeding)
2650		return -EROFS;
2651
2652	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653					fs_info->bdev_holder, NULL);
2654	if (IS_ERR(bdev_file))
2655		return PTR_ERR(bdev_file);
2656
2657	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658		ret = -EINVAL;
2659		goto error;
2660	}
2661
2662	if (fs_devices->seeding) {
2663		seeding_dev = true;
2664		down_write(&sb->s_umount);
2665		mutex_lock(&uuid_mutex);
2666		locked = true;
2667	}
2668
2669	sync_blockdev(file_bdev(bdev_file));
2670
2671	rcu_read_lock();
2672	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673		if (device->bdev == file_bdev(bdev_file)) {
2674			ret = -EEXIST;
2675			rcu_read_unlock();
2676			goto error;
2677		}
2678	}
2679	rcu_read_unlock();
2680
2681	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682	if (IS_ERR(device)) {
2683		/* we can safely leave the fs_devices entry around */
2684		ret = PTR_ERR(device);
2685		goto error;
2686	}
2687
2688	device->fs_info = fs_info;
2689	device->bdev_file = bdev_file;
2690	device->bdev = file_bdev(bdev_file);
2691	ret = lookup_bdev(device_path, &device->devt);
2692	if (ret)
2693		goto error_free_device;
2694
2695	ret = btrfs_get_dev_zone_info(device, false);
2696	if (ret)
2697		goto error_free_device;
2698
2699	trans = btrfs_start_transaction(root, 0);
2700	if (IS_ERR(trans)) {
2701		ret = PTR_ERR(trans);
2702		goto error_free_zone;
2703	}
2704
2705	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706	device->generation = trans->transid;
2707	device->io_width = fs_info->sectorsize;
2708	device->io_align = fs_info->sectorsize;
2709	device->sector_size = fs_info->sectorsize;
2710	device->total_bytes =
2711		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712	device->disk_total_bytes = device->total_bytes;
2713	device->commit_total_bytes = device->total_bytes;
2714	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716	device->dev_stats_valid = 1;
2717	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719	if (seeding_dev) {
2720		btrfs_clear_sb_rdonly(sb);
2721
2722		/* GFP_KERNEL allocation must not be under device_list_mutex */
2723		seed_devices = btrfs_init_sprout(fs_info);
2724		if (IS_ERR(seed_devices)) {
2725			ret = PTR_ERR(seed_devices);
2726			btrfs_abort_transaction(trans, ret);
2727			goto error_trans;
2728		}
2729	}
2730
2731	mutex_lock(&fs_devices->device_list_mutex);
2732	if (seeding_dev) {
2733		btrfs_setup_sprout(fs_info, seed_devices);
2734		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735						device);
2736	}
2737
2738	device->fs_devices = fs_devices;
2739
2740	mutex_lock(&fs_info->chunk_mutex);
2741	list_add_rcu(&device->dev_list, &fs_devices->devices);
2742	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743	fs_devices->num_devices++;
2744	fs_devices->open_devices++;
2745	fs_devices->rw_devices++;
2746	fs_devices->total_devices++;
2747	fs_devices->total_rw_bytes += device->total_bytes;
2748
2749	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751	if (!bdev_nonrot(device->bdev))
2752		fs_devices->rotating = true;
2753
2754	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755	btrfs_set_super_total_bytes(fs_info->super_copy,
2756		round_down(orig_super_total_bytes + device->total_bytes,
2757			   fs_info->sectorsize));
2758
2759	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760	btrfs_set_super_num_devices(fs_info->super_copy,
2761				    orig_super_num_devices + 1);
2762
2763	/*
2764	 * we've got more storage, clear any full flags on the space
2765	 * infos
2766	 */
2767	btrfs_clear_space_info_full(fs_info);
2768
2769	mutex_unlock(&fs_info->chunk_mutex);
2770
2771	/* Add sysfs device entry */
2772	btrfs_sysfs_add_device(device);
2773
2774	mutex_unlock(&fs_devices->device_list_mutex);
2775
2776	if (seeding_dev) {
2777		mutex_lock(&fs_info->chunk_mutex);
2778		ret = init_first_rw_device(trans);
2779		mutex_unlock(&fs_info->chunk_mutex);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto error_sysfs;
2783		}
2784	}
2785
2786	ret = btrfs_add_dev_item(trans, device);
2787	if (ret) {
2788		btrfs_abort_transaction(trans, ret);
2789		goto error_sysfs;
2790	}
2791
2792	if (seeding_dev) {
2793		ret = btrfs_finish_sprout(trans);
2794		if (ret) {
2795			btrfs_abort_transaction(trans, ret);
2796			goto error_sysfs;
2797		}
2798
2799		/*
2800		 * fs_devices now represents the newly sprouted filesystem and
2801		 * its fsid has been changed by btrfs_sprout_splice().
2802		 */
2803		btrfs_sysfs_update_sprout_fsid(fs_devices);
2804	}
2805
2806	ret = btrfs_commit_transaction(trans);
2807
2808	if (seeding_dev) {
2809		mutex_unlock(&uuid_mutex);
2810		up_write(&sb->s_umount);
2811		locked = false;
2812
2813		if (ret) /* transaction commit */
2814			return ret;
2815
2816		ret = btrfs_relocate_sys_chunks(fs_info);
2817		if (ret < 0)
2818			btrfs_handle_fs_error(fs_info, ret,
2819				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820		trans = btrfs_attach_transaction(root);
2821		if (IS_ERR(trans)) {
2822			if (PTR_ERR(trans) == -ENOENT)
2823				return 0;
2824			ret = PTR_ERR(trans);
2825			trans = NULL;
2826			goto error_sysfs;
2827		}
2828		ret = btrfs_commit_transaction(trans);
2829	}
2830
2831	/*
2832	 * Now that we have written a new super block to this device, check all
2833	 * other fs_devices list if device_path alienates any other scanned
2834	 * device.
2835	 * We can ignore the return value as it typically returns -EINVAL and
2836	 * only succeeds if the device was an alien.
2837	 */
2838	btrfs_forget_devices(device->devt);
2839
2840	/* Update ctime/mtime for blkid or udev */
2841	update_dev_time(device_path);
2842
2843	return ret;
2844
2845error_sysfs:
2846	btrfs_sysfs_remove_device(device);
2847	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848	mutex_lock(&fs_info->chunk_mutex);
2849	list_del_rcu(&device->dev_list);
2850	list_del(&device->dev_alloc_list);
2851	fs_info->fs_devices->num_devices--;
2852	fs_info->fs_devices->open_devices--;
2853	fs_info->fs_devices->rw_devices--;
2854	fs_info->fs_devices->total_devices--;
2855	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857	btrfs_set_super_total_bytes(fs_info->super_copy,
2858				    orig_super_total_bytes);
2859	btrfs_set_super_num_devices(fs_info->super_copy,
2860				    orig_super_num_devices);
2861	mutex_unlock(&fs_info->chunk_mutex);
2862	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863error_trans:
2864	if (seeding_dev)
2865		btrfs_set_sb_rdonly(sb);
2866	if (trans)
2867		btrfs_end_transaction(trans);
2868error_free_zone:
2869	btrfs_destroy_dev_zone_info(device);
2870error_free_device:
2871	btrfs_free_device(device);
2872error:
2873	fput(bdev_file);
2874	if (locked) {
2875		mutex_unlock(&uuid_mutex);
2876		up_write(&sb->s_umount);
2877	}
2878	return ret;
2879}
2880
2881static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882					struct btrfs_device *device)
2883{
2884	int ret;
2885	struct btrfs_path *path;
2886	struct btrfs_root *root = device->fs_info->chunk_root;
2887	struct btrfs_dev_item *dev_item;
2888	struct extent_buffer *leaf;
2889	struct btrfs_key key;
2890
2891	path = btrfs_alloc_path();
2892	if (!path)
2893		return -ENOMEM;
2894
2895	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896	key.type = BTRFS_DEV_ITEM_KEY;
2897	key.offset = device->devid;
2898
2899	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900	if (ret < 0)
2901		goto out;
2902
2903	if (ret > 0) {
2904		ret = -ENOENT;
2905		goto out;
2906	}
2907
2908	leaf = path->nodes[0];
2909	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911	btrfs_set_device_id(leaf, dev_item, device->devid);
2912	btrfs_set_device_type(leaf, dev_item, device->type);
2913	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916	btrfs_set_device_total_bytes(leaf, dev_item,
2917				     btrfs_device_get_disk_total_bytes(device));
2918	btrfs_set_device_bytes_used(leaf, dev_item,
2919				    btrfs_device_get_bytes_used(device));
2920	btrfs_mark_buffer_dirty(trans, leaf);
2921
2922out:
2923	btrfs_free_path(path);
2924	return ret;
2925}
2926
2927int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928		      struct btrfs_device *device, u64 new_size)
2929{
2930	struct btrfs_fs_info *fs_info = device->fs_info;
2931	struct btrfs_super_block *super_copy = fs_info->super_copy;
2932	u64 old_total;
2933	u64 diff;
2934	int ret;
2935
2936	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937		return -EACCES;
2938
2939	new_size = round_down(new_size, fs_info->sectorsize);
2940
2941	mutex_lock(&fs_info->chunk_mutex);
2942	old_total = btrfs_super_total_bytes(super_copy);
2943	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945	if (new_size <= device->total_bytes ||
2946	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947		mutex_unlock(&fs_info->chunk_mutex);
2948		return -EINVAL;
2949	}
2950
2951	btrfs_set_super_total_bytes(super_copy,
2952			round_down(old_total + diff, fs_info->sectorsize));
2953	device->fs_devices->total_rw_bytes += diff;
2954	atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956	btrfs_device_set_total_bytes(device, new_size);
2957	btrfs_device_set_disk_total_bytes(device, new_size);
2958	btrfs_clear_space_info_full(device->fs_info);
2959	if (list_empty(&device->post_commit_list))
2960		list_add_tail(&device->post_commit_list,
2961			      &trans->transaction->dev_update_list);
2962	mutex_unlock(&fs_info->chunk_mutex);
2963
2964	btrfs_reserve_chunk_metadata(trans, false);
2965	ret = btrfs_update_device(trans, device);
2966	btrfs_trans_release_chunk_metadata(trans);
2967
2968	return ret;
2969}
2970
2971static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972{
2973	struct btrfs_fs_info *fs_info = trans->fs_info;
2974	struct btrfs_root *root = fs_info->chunk_root;
2975	int ret;
2976	struct btrfs_path *path;
2977	struct btrfs_key key;
2978
2979	path = btrfs_alloc_path();
2980	if (!path)
2981		return -ENOMEM;
2982
2983	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984	key.offset = chunk_offset;
2985	key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988	if (ret < 0)
2989		goto out;
2990	else if (ret > 0) { /* Logic error or corruption */
2991		btrfs_handle_fs_error(fs_info, -ENOENT,
2992				      "Failed lookup while freeing chunk.");
2993		ret = -ENOENT;
2994		goto out;
2995	}
2996
2997	ret = btrfs_del_item(trans, root, path);
2998	if (ret < 0)
2999		btrfs_handle_fs_error(fs_info, ret,
3000				      "Failed to delete chunk item.");
3001out:
3002	btrfs_free_path(path);
3003	return ret;
3004}
3005
3006static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007{
3008	struct btrfs_super_block *super_copy = fs_info->super_copy;
3009	struct btrfs_disk_key *disk_key;
3010	struct btrfs_chunk *chunk;
3011	u8 *ptr;
3012	int ret = 0;
3013	u32 num_stripes;
3014	u32 array_size;
3015	u32 len = 0;
3016	u32 cur;
3017	struct btrfs_key key;
3018
3019	lockdep_assert_held(&fs_info->chunk_mutex);
3020	array_size = btrfs_super_sys_array_size(super_copy);
3021
3022	ptr = super_copy->sys_chunk_array;
3023	cur = 0;
3024
3025	while (cur < array_size) {
3026		disk_key = (struct btrfs_disk_key *)ptr;
3027		btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029		len = sizeof(*disk_key);
3030
3031		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032			chunk = (struct btrfs_chunk *)(ptr + len);
3033			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034			len += btrfs_chunk_item_size(num_stripes);
3035		} else {
3036			ret = -EIO;
3037			break;
3038		}
3039		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040		    key.offset == chunk_offset) {
3041			memmove(ptr, ptr + len, array_size - (cur + len));
3042			array_size -= len;
3043			btrfs_set_super_sys_array_size(super_copy, array_size);
3044		} else {
3045			ptr += len;
3046			cur += len;
3047		}
3048	}
3049	return ret;
3050}
3051
3052struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053						    u64 logical, u64 length)
3054{
3055	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056	struct rb_node *prev = NULL;
3057	struct rb_node *orig_prev;
3058	struct btrfs_chunk_map *map;
3059	struct btrfs_chunk_map *prev_map = NULL;
3060
3061	while (node) {
3062		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063		prev = node;
3064		prev_map = map;
3065
3066		if (logical < map->start) {
3067			node = node->rb_left;
3068		} else if (logical >= map->start + map->chunk_len) {
3069			node = node->rb_right;
3070		} else {
3071			refcount_inc(&map->refs);
3072			return map;
3073		}
3074	}
3075
3076	if (!prev)
3077		return NULL;
3078
3079	orig_prev = prev;
3080	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081		prev = rb_next(prev);
3082		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083	}
3084
3085	if (!prev) {
3086		prev = orig_prev;
3087		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088		while (prev && logical < prev_map->start) {
3089			prev = rb_prev(prev);
3090			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091		}
3092	}
3093
3094	if (prev) {
3095		u64 end = logical + length;
3096
3097		/*
3098		 * Caller can pass a U64_MAX length when it wants to get any
3099		 * chunk starting at an offset of 'logical' or higher, so deal
3100		 * with underflow by resetting the end offset to U64_MAX.
3101		 */
3102		if (end < logical)
3103			end = U64_MAX;
3104
3105		if (end > prev_map->start &&
3106		    logical < prev_map->start + prev_map->chunk_len) {
3107			refcount_inc(&prev_map->refs);
3108			return prev_map;
3109		}
3110	}
3111
3112	return NULL;
3113}
3114
3115struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116					     u64 logical, u64 length)
3117{
3118	struct btrfs_chunk_map *map;
3119
3120	read_lock(&fs_info->mapping_tree_lock);
3121	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122	read_unlock(&fs_info->mapping_tree_lock);
3123
3124	return map;
3125}
3126
3127/*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136					    u64 logical, u64 length)
3137{
3138	struct btrfs_chunk_map *map;
3139
3140	map = btrfs_find_chunk_map(fs_info, logical, length);
3141
3142	if (unlikely(!map)) {
3143		btrfs_crit(fs_info,
3144			   "unable to find chunk map for logical %llu length %llu",
3145			   logical, length);
3146		return ERR_PTR(-EINVAL);
3147	}
3148
3149	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150		btrfs_crit(fs_info,
3151			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152			   logical, logical + length, map->start,
3153			   map->start + map->chunk_len);
3154		btrfs_free_chunk_map(map);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	/* Callers are responsible for dropping the reference. */
3159	return map;
3160}
3161
3162static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163			     struct btrfs_chunk_map *map, u64 chunk_offset)
3164{
3165	int i;
3166
3167	/*
3168	 * Removing chunk items and updating the device items in the chunks btree
3169	 * requires holding the chunk_mutex.
3170	 * See the comment at btrfs_chunk_alloc() for the details.
3171	 */
3172	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174	for (i = 0; i < map->num_stripes; i++) {
3175		int ret;
3176
3177		ret = btrfs_update_device(trans, map->stripes[i].dev);
3178		if (ret)
3179			return ret;
3180	}
3181
3182	return btrfs_free_chunk(trans, chunk_offset);
3183}
3184
3185int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186{
3187	struct btrfs_fs_info *fs_info = trans->fs_info;
3188	struct btrfs_chunk_map *map;
3189	u64 dev_extent_len = 0;
3190	int i, ret = 0;
3191	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194	if (IS_ERR(map)) {
3195		/*
3196		 * This is a logic error, but we don't want to just rely on the
3197		 * user having built with ASSERT enabled, so if ASSERT doesn't
3198		 * do anything we still error out.
3199		 */
3200		ASSERT(0);
3201		return PTR_ERR(map);
3202	}
3203
3204	/*
3205	 * First delete the device extent items from the devices btree.
3206	 * We take the device_list_mutex to avoid racing with the finishing phase
3207	 * of a device replace operation. See the comment below before acquiring
3208	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209	 * because that can result in a deadlock when deleting the device extent
3210	 * items from the devices btree - COWing an extent buffer from the btree
3211	 * may result in allocating a new metadata chunk, which would attempt to
3212	 * lock again fs_info->chunk_mutex.
3213	 */
3214	mutex_lock(&fs_devices->device_list_mutex);
3215	for (i = 0; i < map->num_stripes; i++) {
3216		struct btrfs_device *device = map->stripes[i].dev;
3217		ret = btrfs_free_dev_extent(trans, device,
3218					    map->stripes[i].physical,
3219					    &dev_extent_len);
3220		if (ret) {
3221			mutex_unlock(&fs_devices->device_list_mutex);
3222			btrfs_abort_transaction(trans, ret);
3223			goto out;
3224		}
3225
3226		if (device->bytes_used > 0) {
3227			mutex_lock(&fs_info->chunk_mutex);
3228			btrfs_device_set_bytes_used(device,
3229					device->bytes_used - dev_extent_len);
3230			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231			btrfs_clear_space_info_full(fs_info);
3232			mutex_unlock(&fs_info->chunk_mutex);
3233		}
3234	}
3235	mutex_unlock(&fs_devices->device_list_mutex);
3236
3237	/*
3238	 * We acquire fs_info->chunk_mutex for 2 reasons:
3239	 *
3240	 * 1) Just like with the first phase of the chunk allocation, we must
3241	 *    reserve system space, do all chunk btree updates and deletions, and
3242	 *    update the system chunk array in the superblock while holding this
3243	 *    mutex. This is for similar reasons as explained on the comment at
3244	 *    the top of btrfs_chunk_alloc();
3245	 *
3246	 * 2) Prevent races with the final phase of a device replace operation
3247	 *    that replaces the device object associated with the map's stripes,
3248	 *    because the device object's id can change at any time during that
3249	 *    final phase of the device replace operation
3250	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251	 *    replaced device and then see it with an ID of
3252	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253	 *    the device item, which does not exists on the chunk btree.
3254	 *    The finishing phase of device replace acquires both the
3255	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3256	 *    safe by just acquiring the chunk_mutex.
3257	 */
3258	trans->removing_chunk = true;
3259	mutex_lock(&fs_info->chunk_mutex);
3260
3261	check_system_chunk(trans, map->type);
3262
3263	ret = remove_chunk_item(trans, map, chunk_offset);
3264	/*
3265	 * Normally we should not get -ENOSPC since we reserved space before
3266	 * through the call to check_system_chunk().
3267	 *
3268	 * Despite our system space_info having enough free space, we may not
3269	 * be able to allocate extents from its block groups, because all have
3270	 * an incompatible profile, which will force us to allocate a new system
3271	 * block group with the right profile, or right after we called
3272	 * check_system_space() above, a scrub turned the only system block group
3273	 * with enough free space into RO mode.
3274	 * This is explained with more detail at do_chunk_alloc().
3275	 *
3276	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277	 */
3278	if (ret == -ENOSPC) {
3279		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280		struct btrfs_block_group *sys_bg;
3281
3282		sys_bg = btrfs_create_chunk(trans, sys_flags);
3283		if (IS_ERR(sys_bg)) {
3284			ret = PTR_ERR(sys_bg);
3285			btrfs_abort_transaction(trans, ret);
3286			goto out;
3287		}
3288
3289		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290		if (ret) {
3291			btrfs_abort_transaction(trans, ret);
3292			goto out;
3293		}
3294
3295		ret = remove_chunk_item(trans, map, chunk_offset);
3296		if (ret) {
3297			btrfs_abort_transaction(trans, ret);
3298			goto out;
3299		}
3300	} else if (ret) {
3301		btrfs_abort_transaction(trans, ret);
3302		goto out;
3303	}
3304
3305	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309		if (ret) {
3310			btrfs_abort_transaction(trans, ret);
3311			goto out;
3312		}
3313	}
3314
3315	mutex_unlock(&fs_info->chunk_mutex);
3316	trans->removing_chunk = false;
3317
3318	/*
3319	 * We are done with chunk btree updates and deletions, so release the
3320	 * system space we previously reserved (with check_system_chunk()).
3321	 */
3322	btrfs_trans_release_chunk_metadata(trans);
3323
3324	ret = btrfs_remove_block_group(trans, map);
3325	if (ret) {
3326		btrfs_abort_transaction(trans, ret);
3327		goto out;
3328	}
3329
3330out:
3331	if (trans->removing_chunk) {
3332		mutex_unlock(&fs_info->chunk_mutex);
3333		trans->removing_chunk = false;
3334	}
3335	/* once for us */
3336	btrfs_free_chunk_map(map);
3337	return ret;
3338}
3339
3340int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341{
3342	struct btrfs_root *root = fs_info->chunk_root;
3343	struct btrfs_trans_handle *trans;
3344	struct btrfs_block_group *block_group;
3345	u64 length;
3346	int ret;
3347
3348	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349		btrfs_err(fs_info,
3350			  "relocate: not supported on extent tree v2 yet");
3351		return -EINVAL;
3352	}
3353
3354	/*
3355	 * Prevent races with automatic removal of unused block groups.
3356	 * After we relocate and before we remove the chunk with offset
3357	 * chunk_offset, automatic removal of the block group can kick in,
3358	 * resulting in a failure when calling btrfs_remove_chunk() below.
3359	 *
3360	 * Make sure to acquire this mutex before doing a tree search (dev
3361	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363	 * we release the path used to search the chunk/dev tree and before
3364	 * the current task acquires this mutex and calls us.
3365	 */
3366	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368	/* step one, relocate all the extents inside this chunk */
3369	btrfs_scrub_pause(fs_info);
3370	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371	btrfs_scrub_continue(fs_info);
3372	if (ret) {
3373		/*
3374		 * If we had a transaction abort, stop all running scrubs.
3375		 * See transaction.c:cleanup_transaction() why we do it here.
3376		 */
3377		if (BTRFS_FS_ERROR(fs_info))
3378			btrfs_scrub_cancel(fs_info);
3379		return ret;
3380	}
3381
3382	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383	if (!block_group)
3384		return -ENOENT;
3385	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386	length = block_group->length;
3387	btrfs_put_block_group(block_group);
3388
3389	/*
3390	 * On a zoned file system, discard the whole block group, this will
3391	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392	 * resetting the zone fails, don't treat it as a fatal problem from the
3393	 * filesystem's point of view.
3394	 */
3395	if (btrfs_is_zoned(fs_info)) {
3396		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397		if (ret)
3398			btrfs_info(fs_info,
3399				"failed to reset zone %llu after relocation",
3400				chunk_offset);
3401	}
3402
3403	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404						     chunk_offset);
3405	if (IS_ERR(trans)) {
3406		ret = PTR_ERR(trans);
3407		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408		return ret;
3409	}
3410
3411	/*
3412	 * step two, delete the device extents and the
3413	 * chunk tree entries
3414	 */
3415	ret = btrfs_remove_chunk(trans, chunk_offset);
3416	btrfs_end_transaction(trans);
3417	return ret;
3418}
3419
3420static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421{
3422	struct btrfs_root *chunk_root = fs_info->chunk_root;
3423	struct btrfs_path *path;
3424	struct extent_buffer *leaf;
3425	struct btrfs_chunk *chunk;
3426	struct btrfs_key key;
3427	struct btrfs_key found_key;
3428	u64 chunk_type;
3429	bool retried = false;
3430	int failed = 0;
3431	int ret;
3432
3433	path = btrfs_alloc_path();
3434	if (!path)
3435		return -ENOMEM;
3436
3437again:
3438	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439	key.offset = (u64)-1;
3440	key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442	while (1) {
3443		mutex_lock(&fs_info->reclaim_bgs_lock);
3444		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445		if (ret < 0) {
3446			mutex_unlock(&fs_info->reclaim_bgs_lock);
3447			goto error;
3448		}
3449		if (ret == 0) {
3450			/*
3451			 * On the first search we would find chunk tree with
3452			 * offset -1, which is not possible. On subsequent
3453			 * loops this would find an existing item on an invalid
3454			 * offset (one less than the previous one, wrong
3455			 * alignment and size).
3456			 */
3457			ret = -EUCLEAN;
3458			mutex_unlock(&fs_info->reclaim_bgs_lock);
3459			goto error;
3460		}
3461
3462		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463					  key.type);
3464		if (ret)
3465			mutex_unlock(&fs_info->reclaim_bgs_lock);
3466		if (ret < 0)
3467			goto error;
3468		if (ret > 0)
3469			break;
3470
3471		leaf = path->nodes[0];
3472		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473
3474		chunk = btrfs_item_ptr(leaf, path->slots[0],
3475				       struct btrfs_chunk);
3476		chunk_type = btrfs_chunk_type(leaf, chunk);
3477		btrfs_release_path(path);
3478
3479		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481			if (ret == -ENOSPC)
3482				failed++;
3483			else
3484				BUG_ON(ret);
3485		}
3486		mutex_unlock(&fs_info->reclaim_bgs_lock);
3487
3488		if (found_key.offset == 0)
3489			break;
3490		key.offset = found_key.offset - 1;
3491	}
3492	ret = 0;
3493	if (failed && !retried) {
3494		failed = 0;
3495		retried = true;
3496		goto again;
3497	} else if (WARN_ON(failed && retried)) {
3498		ret = -ENOSPC;
3499	}
3500error:
3501	btrfs_free_path(path);
3502	return ret;
3503}
3504
3505/*
3506 * return 1 : allocate a data chunk successfully,
3507 * return <0: errors during allocating a data chunk,
3508 * return 0 : no need to allocate a data chunk.
3509 */
3510static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511				      u64 chunk_offset)
3512{
3513	struct btrfs_block_group *cache;
3514	u64 bytes_used;
3515	u64 chunk_type;
3516
3517	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518	ASSERT(cache);
3519	chunk_type = cache->flags;
3520	btrfs_put_block_group(cache);
3521
3522	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523		return 0;
3524
3525	spin_lock(&fs_info->data_sinfo->lock);
3526	bytes_used = fs_info->data_sinfo->bytes_used;
3527	spin_unlock(&fs_info->data_sinfo->lock);
3528
3529	if (!bytes_used) {
3530		struct btrfs_trans_handle *trans;
3531		int ret;
3532
3533		trans =	btrfs_join_transaction(fs_info->tree_root);
3534		if (IS_ERR(trans))
3535			return PTR_ERR(trans);
3536
3537		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538		btrfs_end_transaction(trans);
3539		if (ret < 0)
3540			return ret;
3541		return 1;
3542	}
3543
3544	return 0;
3545}
3546
3547static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548					   const struct btrfs_disk_balance_args *disk)
3549{
3550	memset(cpu, 0, sizeof(*cpu));
3551
3552	cpu->profiles = le64_to_cpu(disk->profiles);
3553	cpu->usage = le64_to_cpu(disk->usage);
3554	cpu->devid = le64_to_cpu(disk->devid);
3555	cpu->pstart = le64_to_cpu(disk->pstart);
3556	cpu->pend = le64_to_cpu(disk->pend);
3557	cpu->vstart = le64_to_cpu(disk->vstart);
3558	cpu->vend = le64_to_cpu(disk->vend);
3559	cpu->target = le64_to_cpu(disk->target);
3560	cpu->flags = le64_to_cpu(disk->flags);
3561	cpu->limit = le64_to_cpu(disk->limit);
3562	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564}
3565
3566static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567					   const struct btrfs_balance_args *cpu)
3568{
3569	memset(disk, 0, sizeof(*disk));
3570
3571	disk->profiles = cpu_to_le64(cpu->profiles);
3572	disk->usage = cpu_to_le64(cpu->usage);
3573	disk->devid = cpu_to_le64(cpu->devid);
3574	disk->pstart = cpu_to_le64(cpu->pstart);
3575	disk->pend = cpu_to_le64(cpu->pend);
3576	disk->vstart = cpu_to_le64(cpu->vstart);
3577	disk->vend = cpu_to_le64(cpu->vend);
3578	disk->target = cpu_to_le64(cpu->target);
3579	disk->flags = cpu_to_le64(cpu->flags);
3580	disk->limit = cpu_to_le64(cpu->limit);
3581	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583}
3584
3585static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586			       struct btrfs_balance_control *bctl)
3587{
3588	struct btrfs_root *root = fs_info->tree_root;
3589	struct btrfs_trans_handle *trans;
3590	struct btrfs_balance_item *item;
3591	struct btrfs_disk_balance_args disk_bargs;
3592	struct btrfs_path *path;
3593	struct extent_buffer *leaf;
3594	struct btrfs_key key;
3595	int ret, err;
3596
3597	path = btrfs_alloc_path();
3598	if (!path)
3599		return -ENOMEM;
3600
3601	trans = btrfs_start_transaction(root, 0);
3602	if (IS_ERR(trans)) {
3603		btrfs_free_path(path);
3604		return PTR_ERR(trans);
3605	}
3606
3607	key.objectid = BTRFS_BALANCE_OBJECTID;
3608	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609	key.offset = 0;
3610
3611	ret = btrfs_insert_empty_item(trans, root, path, &key,
3612				      sizeof(*item));
3613	if (ret)
3614		goto out;
3615
3616	leaf = path->nodes[0];
3617	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618
3619	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620
3621	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622	btrfs_set_balance_data(leaf, item, &disk_bargs);
3623	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627
3628	btrfs_set_balance_flags(leaf, item, bctl->flags);
3629
3630	btrfs_mark_buffer_dirty(trans, leaf);
3631out:
3632	btrfs_free_path(path);
3633	err = btrfs_commit_transaction(trans);
3634	if (err && !ret)
3635		ret = err;
3636	return ret;
3637}
3638
3639static int del_balance_item(struct btrfs_fs_info *fs_info)
3640{
3641	struct btrfs_root *root = fs_info->tree_root;
3642	struct btrfs_trans_handle *trans;
3643	struct btrfs_path *path;
3644	struct btrfs_key key;
3645	int ret, err;
3646
3647	path = btrfs_alloc_path();
3648	if (!path)
3649		return -ENOMEM;
3650
3651	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652	if (IS_ERR(trans)) {
3653		btrfs_free_path(path);
3654		return PTR_ERR(trans);
3655	}
3656
3657	key.objectid = BTRFS_BALANCE_OBJECTID;
3658	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659	key.offset = 0;
3660
3661	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662	if (ret < 0)
3663		goto out;
3664	if (ret > 0) {
3665		ret = -ENOENT;
3666		goto out;
3667	}
3668
3669	ret = btrfs_del_item(trans, root, path);
3670out:
3671	btrfs_free_path(path);
3672	err = btrfs_commit_transaction(trans);
3673	if (err && !ret)
3674		ret = err;
3675	return ret;
3676}
3677
3678/*
3679 * This is a heuristic used to reduce the number of chunks balanced on
3680 * resume after balance was interrupted.
3681 */
3682static void update_balance_args(struct btrfs_balance_control *bctl)
3683{
3684	/*
3685	 * Turn on soft mode for chunk types that were being converted.
3686	 */
3687	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693
3694	/*
3695	 * Turn on usage filter if is not already used.  The idea is
3696	 * that chunks that we have already balanced should be
3697	 * reasonably full.  Don't do it for chunks that are being
3698	 * converted - that will keep us from relocating unconverted
3699	 * (albeit full) chunks.
3700	 */
3701	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705		bctl->data.usage = 90;
3706	}
3707	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711		bctl->sys.usage = 90;
3712	}
3713	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717		bctl->meta.usage = 90;
3718	}
3719}
3720
3721/*
3722 * Clear the balance status in fs_info and delete the balance item from disk.
3723 */
3724static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725{
3726	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727	int ret;
3728
3729	ASSERT(fs_info->balance_ctl);
3730
3731	spin_lock(&fs_info->balance_lock);
3732	fs_info->balance_ctl = NULL;
3733	spin_unlock(&fs_info->balance_lock);
3734
3735	kfree(bctl);
3736	ret = del_balance_item(fs_info);
3737	if (ret)
3738		btrfs_handle_fs_error(fs_info, ret, NULL);
3739}
3740
3741/*
3742 * Balance filters.  Return 1 if chunk should be filtered out
3743 * (should not be balanced).
3744 */
3745static int chunk_profiles_filter(u64 chunk_type,
3746				 struct btrfs_balance_args *bargs)
3747{
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->profiles & chunk_type)
3752		return 0;
3753
3754	return 1;
3755}
3756
3757static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758			      struct btrfs_balance_args *bargs)
3759{
3760	struct btrfs_block_group *cache;
3761	u64 chunk_used;
3762	u64 user_thresh_min;
3763	u64 user_thresh_max;
3764	int ret = 1;
3765
3766	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767	chunk_used = cache->used;
3768
3769	if (bargs->usage_min == 0)
3770		user_thresh_min = 0;
3771	else
3772		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773
3774	if (bargs->usage_max == 0)
3775		user_thresh_max = 1;
3776	else if (bargs->usage_max > 100)
3777		user_thresh_max = cache->length;
3778	else
3779		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780
3781	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782		ret = 0;
3783
3784	btrfs_put_block_group(cache);
3785	return ret;
3786}
3787
3788static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789		u64 chunk_offset, struct btrfs_balance_args *bargs)
3790{
3791	struct btrfs_block_group *cache;
3792	u64 chunk_used, user_thresh;
3793	int ret = 1;
3794
3795	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796	chunk_used = cache->used;
3797
3798	if (bargs->usage_min == 0)
3799		user_thresh = 1;
3800	else if (bargs->usage > 100)
3801		user_thresh = cache->length;
3802	else
3803		user_thresh = mult_perc(cache->length, bargs->usage);
3804
3805	if (chunk_used < user_thresh)
3806		ret = 0;
3807
3808	btrfs_put_block_group(cache);
3809	return ret;
3810}
3811
3812static int chunk_devid_filter(struct extent_buffer *leaf,
3813			      struct btrfs_chunk *chunk,
3814			      struct btrfs_balance_args *bargs)
3815{
3816	struct btrfs_stripe *stripe;
3817	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818	int i;
3819
3820	for (i = 0; i < num_stripes; i++) {
3821		stripe = btrfs_stripe_nr(chunk, i);
3822		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823			return 0;
3824	}
3825
3826	return 1;
3827}
3828
3829static u64 calc_data_stripes(u64 type, int num_stripes)
3830{
3831	const int index = btrfs_bg_flags_to_raid_index(type);
3832	const int ncopies = btrfs_raid_array[index].ncopies;
3833	const int nparity = btrfs_raid_array[index].nparity;
3834
3835	return (num_stripes - nparity) / ncopies;
3836}
3837
3838/* [pstart, pend) */
3839static int chunk_drange_filter(struct extent_buffer *leaf,
3840			       struct btrfs_chunk *chunk,
3841			       struct btrfs_balance_args *bargs)
3842{
3843	struct btrfs_stripe *stripe;
3844	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845	u64 stripe_offset;
3846	u64 stripe_length;
3847	u64 type;
3848	int factor;
3849	int i;
3850
3851	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852		return 0;
3853
3854	type = btrfs_chunk_type(leaf, chunk);
3855	factor = calc_data_stripes(type, num_stripes);
3856
3857	for (i = 0; i < num_stripes; i++) {
3858		stripe = btrfs_stripe_nr(chunk, i);
3859		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860			continue;
3861
3862		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863		stripe_length = btrfs_chunk_length(leaf, chunk);
3864		stripe_length = div_u64(stripe_length, factor);
3865
3866		if (stripe_offset < bargs->pend &&
3867		    stripe_offset + stripe_length > bargs->pstart)
3868			return 0;
3869	}
3870
3871	return 1;
3872}
3873
3874/* [vstart, vend) */
3875static int chunk_vrange_filter(struct extent_buffer *leaf,
3876			       struct btrfs_chunk *chunk,
3877			       u64 chunk_offset,
3878			       struct btrfs_balance_args *bargs)
3879{
3880	if (chunk_offset < bargs->vend &&
3881	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882		/* at least part of the chunk is inside this vrange */
3883		return 0;
3884
3885	return 1;
3886}
3887
3888static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889			       struct btrfs_chunk *chunk,
3890			       struct btrfs_balance_args *bargs)
3891{
3892	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893
3894	if (bargs->stripes_min <= num_stripes
3895			&& num_stripes <= bargs->stripes_max)
3896		return 0;
3897
3898	return 1;
3899}
3900
3901static int chunk_soft_convert_filter(u64 chunk_type,
3902				     struct btrfs_balance_args *bargs)
3903{
3904	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905		return 0;
3906
3907	chunk_type = chunk_to_extended(chunk_type) &
3908				BTRFS_EXTENDED_PROFILE_MASK;
3909
3910	if (bargs->target == chunk_type)
3911		return 1;
3912
3913	return 0;
3914}
3915
3916static int should_balance_chunk(struct extent_buffer *leaf,
3917				struct btrfs_chunk *chunk, u64 chunk_offset)
3918{
3919	struct btrfs_fs_info *fs_info = leaf->fs_info;
3920	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921	struct btrfs_balance_args *bargs = NULL;
3922	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923
3924	/* type filter */
3925	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927		return 0;
3928	}
3929
3930	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931		bargs = &bctl->data;
3932	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933		bargs = &bctl->sys;
3934	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935		bargs = &bctl->meta;
3936
3937	/* profiles filter */
3938	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939	    chunk_profiles_filter(chunk_type, bargs)) {
3940		return 0;
3941	}
3942
3943	/* usage filter */
3944	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946		return 0;
3947	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949		return 0;
3950	}
3951
3952	/* devid filter */
3953	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954	    chunk_devid_filter(leaf, chunk, bargs)) {
3955		return 0;
3956	}
3957
3958	/* drange filter, makes sense only with devid filter */
3959	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960	    chunk_drange_filter(leaf, chunk, bargs)) {
3961		return 0;
3962	}
3963
3964	/* vrange filter */
3965	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967		return 0;
3968	}
3969
3970	/* stripes filter */
3971	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973		return 0;
3974	}
3975
3976	/* soft profile changing mode */
3977	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978	    chunk_soft_convert_filter(chunk_type, bargs)) {
3979		return 0;
3980	}
3981
3982	/*
3983	 * limited by count, must be the last filter
3984	 */
3985	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986		if (bargs->limit == 0)
3987			return 0;
3988		else
3989			bargs->limit--;
3990	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991		/*
3992		 * Same logic as the 'limit' filter; the minimum cannot be
3993		 * determined here because we do not have the global information
3994		 * about the count of all chunks that satisfy the filters.
3995		 */
3996		if (bargs->limit_max == 0)
3997			return 0;
3998		else
3999			bargs->limit_max--;
4000	}
4001
4002	return 1;
4003}
4004
4005static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006{
4007	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008	struct btrfs_root *chunk_root = fs_info->chunk_root;
4009	u64 chunk_type;
4010	struct btrfs_chunk *chunk;
4011	struct btrfs_path *path = NULL;
4012	struct btrfs_key key;
4013	struct btrfs_key found_key;
4014	struct extent_buffer *leaf;
4015	int slot;
4016	int ret;
4017	int enospc_errors = 0;
4018	bool counting = true;
4019	/* The single value limit and min/max limits use the same bytes in the */
4020	u64 limit_data = bctl->data.limit;
4021	u64 limit_meta = bctl->meta.limit;
4022	u64 limit_sys = bctl->sys.limit;
4023	u32 count_data = 0;
4024	u32 count_meta = 0;
4025	u32 count_sys = 0;
4026	int chunk_reserved = 0;
4027
4028	path = btrfs_alloc_path();
4029	if (!path) {
4030		ret = -ENOMEM;
4031		goto error;
4032	}
4033
4034	/* zero out stat counters */
4035	spin_lock(&fs_info->balance_lock);
4036	memset(&bctl->stat, 0, sizeof(bctl->stat));
4037	spin_unlock(&fs_info->balance_lock);
4038again:
4039	if (!counting) {
4040		/*
4041		 * The single value limit and min/max limits use the same bytes
4042		 * in the
4043		 */
4044		bctl->data.limit = limit_data;
4045		bctl->meta.limit = limit_meta;
4046		bctl->sys.limit = limit_sys;
4047	}
4048	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049	key.offset = (u64)-1;
4050	key.type = BTRFS_CHUNK_ITEM_KEY;
4051
4052	while (1) {
4053		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054		    atomic_read(&fs_info->balance_cancel_req)) {
4055			ret = -ECANCELED;
4056			goto error;
4057		}
4058
4059		mutex_lock(&fs_info->reclaim_bgs_lock);
4060		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061		if (ret < 0) {
4062			mutex_unlock(&fs_info->reclaim_bgs_lock);
4063			goto error;
4064		}
4065
4066		/*
4067		 * this shouldn't happen, it means the last relocate
4068		 * failed
4069		 */
4070		if (ret == 0)
4071			BUG(); /* FIXME break ? */
4072
4073		ret = btrfs_previous_item(chunk_root, path, 0,
4074					  BTRFS_CHUNK_ITEM_KEY);
4075		if (ret) {
4076			mutex_unlock(&fs_info->reclaim_bgs_lock);
4077			ret = 0;
4078			break;
4079		}
4080
4081		leaf = path->nodes[0];
4082		slot = path->slots[0];
4083		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084
4085		if (found_key.objectid != key.objectid) {
4086			mutex_unlock(&fs_info->reclaim_bgs_lock);
4087			break;
4088		}
4089
4090		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091		chunk_type = btrfs_chunk_type(leaf, chunk);
4092
4093		if (!counting) {
4094			spin_lock(&fs_info->balance_lock);
4095			bctl->stat.considered++;
4096			spin_unlock(&fs_info->balance_lock);
4097		}
4098
4099		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100
4101		btrfs_release_path(path);
4102		if (!ret) {
4103			mutex_unlock(&fs_info->reclaim_bgs_lock);
4104			goto loop;
4105		}
4106
4107		if (counting) {
4108			mutex_unlock(&fs_info->reclaim_bgs_lock);
4109			spin_lock(&fs_info->balance_lock);
4110			bctl->stat.expected++;
4111			spin_unlock(&fs_info->balance_lock);
4112
4113			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114				count_data++;
4115			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116				count_sys++;
4117			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118				count_meta++;
4119
4120			goto loop;
4121		}
4122
4123		/*
4124		 * Apply limit_min filter, no need to check if the LIMITS
4125		 * filter is used, limit_min is 0 by default
4126		 */
4127		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128					count_data < bctl->data.limit_min)
4129				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130					count_meta < bctl->meta.limit_min)
4131				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132					count_sys < bctl->sys.limit_min)) {
4133			mutex_unlock(&fs_info->reclaim_bgs_lock);
4134			goto loop;
4135		}
4136
4137		if (!chunk_reserved) {
4138			/*
4139			 * We may be relocating the only data chunk we have,
4140			 * which could potentially end up with losing data's
4141			 * raid profile, so lets allocate an empty one in
4142			 * advance.
4143			 */
4144			ret = btrfs_may_alloc_data_chunk(fs_info,
4145							 found_key.offset);
4146			if (ret < 0) {
4147				mutex_unlock(&fs_info->reclaim_bgs_lock);
4148				goto error;
4149			} else if (ret == 1) {
4150				chunk_reserved = 1;
4151			}
4152		}
4153
4154		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155		mutex_unlock(&fs_info->reclaim_bgs_lock);
4156		if (ret == -ENOSPC) {
4157			enospc_errors++;
4158		} else if (ret == -ETXTBSY) {
4159			btrfs_info(fs_info,
4160	   "skipping relocation of block group %llu due to active swapfile",
4161				   found_key.offset);
4162			ret = 0;
4163		} else if (ret) {
4164			goto error;
4165		} else {
4166			spin_lock(&fs_info->balance_lock);
4167			bctl->stat.completed++;
4168			spin_unlock(&fs_info->balance_lock);
4169		}
4170loop:
4171		if (found_key.offset == 0)
4172			break;
4173		key.offset = found_key.offset - 1;
4174	}
4175
4176	if (counting) {
4177		btrfs_release_path(path);
4178		counting = false;
4179		goto again;
4180	}
4181error:
4182	btrfs_free_path(path);
4183	if (enospc_errors) {
4184		btrfs_info(fs_info, "%d enospc errors during balance",
4185			   enospc_errors);
4186		if (!ret)
4187			ret = -ENOSPC;
4188	}
4189
4190	return ret;
4191}
4192
4193/*
4194 * See if a given profile is valid and reduced.
4195 *
4196 * @flags:     profile to validate
4197 * @extended:  if true @flags is treated as an extended profile
4198 */
4199static int alloc_profile_is_valid(u64 flags, int extended)
4200{
4201	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203
4204	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205
4206	/* 1) check that all other bits are zeroed */
4207	if (flags & ~mask)
4208		return 0;
4209
4210	/* 2) see if profile is reduced */
4211	if (flags == 0)
4212		return !extended; /* "0" is valid for usual profiles */
4213
4214	return has_single_bit_set(flags);
4215}
4216
4217/*
4218 * Validate target profile against allowed profiles and return true if it's OK.
4219 * Otherwise print the error message and return false.
4220 */
4221static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222		const struct btrfs_balance_args *bargs,
4223		u64 allowed, const char *type)
4224{
4225	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226		return true;
4227
4228	/* Profile is valid and does not have bits outside of the allowed set */
4229	if (alloc_profile_is_valid(bargs->target, 1) &&
4230	    (bargs->target & ~allowed) == 0)
4231		return true;
4232
4233	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234			type, btrfs_bg_type_to_raid_name(bargs->target));
4235	return false;
4236}
4237
4238/*
4239 * Fill @buf with textual description of balance filter flags @bargs, up to
4240 * @size_buf including the terminating null. The output may be trimmed if it
4241 * does not fit into the provided buffer.
4242 */
4243static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244				 u32 size_buf)
4245{
4246	int ret;
4247	u32 size_bp = size_buf;
4248	char *bp = buf;
4249	u64 flags = bargs->flags;
4250	char tmp_buf[128] = {'\0'};
4251
4252	if (!flags)
4253		return;
4254
4255#define CHECK_APPEND_NOARG(a)						\
4256	do {								\
4257		ret = snprintf(bp, size_bp, (a));			\
4258		if (ret < 0 || ret >= size_bp)				\
4259			goto out_overflow;				\
4260		size_bp -= ret;						\
4261		bp += ret;						\
4262	} while (0)
4263
4264#define CHECK_APPEND_1ARG(a, v1)					\
4265	do {								\
4266		ret = snprintf(bp, size_bp, (a), (v1));			\
4267		if (ret < 0 || ret >= size_bp)				\
4268			goto out_overflow;				\
4269		size_bp -= ret;						\
4270		bp += ret;						\
4271	} while (0)
4272
4273#define CHECK_APPEND_2ARG(a, v1, v2)					\
4274	do {								\
4275		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4276		if (ret < 0 || ret >= size_bp)				\
4277			goto out_overflow;				\
4278		size_bp -= ret;						\
4279		bp += ret;						\
4280	} while (0)
4281
4282	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283		CHECK_APPEND_1ARG("convert=%s,",
4284				  btrfs_bg_type_to_raid_name(bargs->target));
4285
4286	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287		CHECK_APPEND_NOARG("soft,");
4288
4289	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291					    sizeof(tmp_buf));
4292		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293	}
4294
4295	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297
4298	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299		CHECK_APPEND_2ARG("usage=%u..%u,",
4300				  bargs->usage_min, bargs->usage_max);
4301
4302	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304
4305	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307				  bargs->pstart, bargs->pend);
4308
4309	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311				  bargs->vstart, bargs->vend);
4312
4313	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315
4316	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317		CHECK_APPEND_2ARG("limit=%u..%u,",
4318				bargs->limit_min, bargs->limit_max);
4319
4320	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321		CHECK_APPEND_2ARG("stripes=%u..%u,",
4322				  bargs->stripes_min, bargs->stripes_max);
4323
4324#undef CHECK_APPEND_2ARG
4325#undef CHECK_APPEND_1ARG
4326#undef CHECK_APPEND_NOARG
4327
4328out_overflow:
4329
4330	if (size_bp < size_buf)
4331		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332	else
4333		buf[0] = '\0';
4334}
4335
4336static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337{
4338	u32 size_buf = 1024;
4339	char tmp_buf[192] = {'\0'};
4340	char *buf;
4341	char *bp;
4342	u32 size_bp = size_buf;
4343	int ret;
4344	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345
4346	buf = kzalloc(size_buf, GFP_KERNEL);
4347	if (!buf)
4348		return;
4349
4350	bp = buf;
4351
4352#define CHECK_APPEND_1ARG(a, v1)					\
4353	do {								\
4354		ret = snprintf(bp, size_bp, (a), (v1));			\
4355		if (ret < 0 || ret >= size_bp)				\
4356			goto out_overflow;				\
4357		size_bp -= ret;						\
4358		bp += ret;						\
4359	} while (0)
4360
4361	if (bctl->flags & BTRFS_BALANCE_FORCE)
4362		CHECK_APPEND_1ARG("%s", "-f ");
4363
4364	if (bctl->flags & BTRFS_BALANCE_DATA) {
4365		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367	}
4368
4369	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372	}
4373
4374	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377	}
4378
4379#undef CHECK_APPEND_1ARG
4380
4381out_overflow:
4382
4383	if (size_bp < size_buf)
4384		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385	btrfs_info(fs_info, "balance: %s %s",
4386		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387		   "resume" : "start", buf);
4388
4389	kfree(buf);
4390}
4391
4392/*
4393 * Should be called with balance mutexe held
4394 */
4395int btrfs_balance(struct btrfs_fs_info *fs_info,
4396		  struct btrfs_balance_control *bctl,
4397		  struct btrfs_ioctl_balance_args *bargs)
4398{
4399	u64 meta_target, data_target;
4400	u64 allowed;
4401	int mixed = 0;
4402	int ret;
4403	u64 num_devices;
4404	unsigned seq;
4405	bool reducing_redundancy;
4406	bool paused = false;
4407	int i;
4408
4409	if (btrfs_fs_closing(fs_info) ||
4410	    atomic_read(&fs_info->balance_pause_req) ||
4411	    btrfs_should_cancel_balance(fs_info)) {
4412		ret = -EINVAL;
4413		goto out;
4414	}
4415
4416	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418		mixed = 1;
4419
4420	/*
4421	 * In case of mixed groups both data and meta should be picked,
4422	 * and identical options should be given for both of them.
4423	 */
4424	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425	if (mixed && (bctl->flags & allowed)) {
4426		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429			btrfs_err(fs_info,
4430	  "balance: mixed groups data and metadata options must be the same");
4431			ret = -EINVAL;
4432			goto out;
4433		}
4434	}
4435
4436	/*
4437	 * rw_devices will not change at the moment, device add/delete/replace
4438	 * are exclusive
4439	 */
4440	num_devices = fs_info->fs_devices->rw_devices;
4441
4442	/*
4443	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444	 * special bit for it, to make it easier to distinguish.  Thus we need
4445	 * to set it manually, or balance would refuse the profile.
4446	 */
4447	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449		if (num_devices >= btrfs_raid_array[i].devs_min)
4450			allowed |= btrfs_raid_array[i].bg_flag;
4451
4452	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4455		ret = -EINVAL;
4456		goto out;
4457	}
4458
4459	/*
4460	 * Allow to reduce metadata or system integrity only if force set for
4461	 * profiles with redundancy (copies, parity)
4462	 */
4463	allowed = 0;
4464	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465		if (btrfs_raid_array[i].ncopies >= 2 ||
4466		    btrfs_raid_array[i].tolerated_failures >= 1)
4467			allowed |= btrfs_raid_array[i].bg_flag;
4468	}
4469	do {
4470		seq = read_seqbegin(&fs_info->profiles_lock);
4471
4472		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473		     (fs_info->avail_system_alloc_bits & allowed) &&
4474		     !(bctl->sys.target & allowed)) ||
4475		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4477		     !(bctl->meta.target & allowed)))
4478			reducing_redundancy = true;
4479		else
4480			reducing_redundancy = false;
4481
4482		/* if we're not converting, the target field is uninitialized */
4483		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486			bctl->data.target : fs_info->avail_data_alloc_bits;
4487	} while (read_seqretry(&fs_info->profiles_lock, seq));
4488
4489	if (reducing_redundancy) {
4490		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491			btrfs_info(fs_info,
4492			   "balance: force reducing metadata redundancy");
4493		} else {
4494			btrfs_err(fs_info,
4495	"balance: reduces metadata redundancy, use --force if you want this");
4496			ret = -EINVAL;
4497			goto out;
4498		}
4499	}
4500
4501	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503		btrfs_warn(fs_info,
4504	"balance: metadata profile %s has lower redundancy than data profile %s",
4505				btrfs_bg_type_to_raid_name(meta_target),
4506				btrfs_bg_type_to_raid_name(data_target));
4507	}
4508
4509	ret = insert_balance_item(fs_info, bctl);
4510	if (ret && ret != -EEXIST)
4511		goto out;
4512
4513	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514		BUG_ON(ret == -EEXIST);
4515		BUG_ON(fs_info->balance_ctl);
4516		spin_lock(&fs_info->balance_lock);
4517		fs_info->balance_ctl = bctl;
4518		spin_unlock(&fs_info->balance_lock);
4519	} else {
4520		BUG_ON(ret != -EEXIST);
4521		spin_lock(&fs_info->balance_lock);
4522		update_balance_args(bctl);
4523		spin_unlock(&fs_info->balance_lock);
4524	}
4525
4526	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528	describe_balance_start_or_resume(fs_info);
4529	mutex_unlock(&fs_info->balance_mutex);
4530
4531	ret = __btrfs_balance(fs_info);
4532
4533	mutex_lock(&fs_info->balance_mutex);
4534	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535		btrfs_info(fs_info, "balance: paused");
4536		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537		paused = true;
4538	}
4539	/*
4540	 * Balance can be canceled by:
4541	 *
4542	 * - Regular cancel request
4543	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4544	 *
4545	 * - Fatal signal to "btrfs" process
4546	 *   Either the signal caught by wait_reserve_ticket() and callers
4547	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4548	 *   got -ECANCELED.
4549	 *   Either way, in this case balance_cancel_req = 0, and
4550	 *   ret == -EINTR or ret == -ECANCELED.
4551	 *
4552	 * So here we only check the return value to catch canceled balance.
4553	 */
4554	else if (ret == -ECANCELED || ret == -EINTR)
4555		btrfs_info(fs_info, "balance: canceled");
4556	else
4557		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558
4559	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560
4561	if (bargs) {
4562		memset(bargs, 0, sizeof(*bargs));
4563		btrfs_update_ioctl_balance_args(fs_info, bargs);
4564	}
4565
4566	/* We didn't pause, we can clean everything up. */
4567	if (!paused) {
4568		reset_balance_state(fs_info);
4569		btrfs_exclop_finish(fs_info);
4570	}
4571
4572	wake_up(&fs_info->balance_wait_q);
4573
4574	return ret;
4575out:
4576	if (bctl->flags & BTRFS_BALANCE_RESUME)
4577		reset_balance_state(fs_info);
4578	else
4579		kfree(bctl);
4580	btrfs_exclop_finish(fs_info);
4581
4582	return ret;
4583}
4584
4585static int balance_kthread(void *data)
4586{
4587	struct btrfs_fs_info *fs_info = data;
4588	int ret = 0;
4589
4590	sb_start_write(fs_info->sb);
4591	mutex_lock(&fs_info->balance_mutex);
4592	if (fs_info->balance_ctl)
4593		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594	mutex_unlock(&fs_info->balance_mutex);
4595	sb_end_write(fs_info->sb);
4596
4597	return ret;
4598}
4599
4600int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601{
4602	struct task_struct *tsk;
4603
4604	mutex_lock(&fs_info->balance_mutex);
4605	if (!fs_info->balance_ctl) {
4606		mutex_unlock(&fs_info->balance_mutex);
4607		return 0;
4608	}
4609	mutex_unlock(&fs_info->balance_mutex);
4610
4611	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612		btrfs_info(fs_info, "balance: resume skipped");
4613		return 0;
4614	}
4615
4616	spin_lock(&fs_info->super_lock);
4617	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619	spin_unlock(&fs_info->super_lock);
4620	/*
4621	 * A ro->rw remount sequence should continue with the paused balance
4622	 * regardless of who pauses it, system or the user as of now, so set
4623	 * the resume flag.
4624	 */
4625	spin_lock(&fs_info->balance_lock);
4626	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627	spin_unlock(&fs_info->balance_lock);
4628
4629	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630	return PTR_ERR_OR_ZERO(tsk);
4631}
4632
4633int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634{
4635	struct btrfs_balance_control *bctl;
4636	struct btrfs_balance_item *item;
4637	struct btrfs_disk_balance_args disk_bargs;
4638	struct btrfs_path *path;
4639	struct extent_buffer *leaf;
4640	struct btrfs_key key;
4641	int ret;
4642
4643	path = btrfs_alloc_path();
4644	if (!path)
4645		return -ENOMEM;
4646
4647	key.objectid = BTRFS_BALANCE_OBJECTID;
4648	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649	key.offset = 0;
4650
4651	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652	if (ret < 0)
4653		goto out;
4654	if (ret > 0) { /* ret = -ENOENT; */
4655		ret = 0;
4656		goto out;
4657	}
4658
4659	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660	if (!bctl) {
4661		ret = -ENOMEM;
4662		goto out;
4663	}
4664
4665	leaf = path->nodes[0];
4666	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667
4668	bctl->flags = btrfs_balance_flags(leaf, item);
4669	bctl->flags |= BTRFS_BALANCE_RESUME;
4670
4671	btrfs_balance_data(leaf, item, &disk_bargs);
4672	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673	btrfs_balance_meta(leaf, item, &disk_bargs);
4674	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675	btrfs_balance_sys(leaf, item, &disk_bargs);
4676	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677
4678	/*
4679	 * This should never happen, as the paused balance state is recovered
4680	 * during mount without any chance of other exclusive ops to collide.
4681	 *
4682	 * This gives the exclusive op status to balance and keeps in paused
4683	 * state until user intervention (cancel or umount). If the ownership
4684	 * cannot be assigned, show a message but do not fail. The balance
4685	 * is in a paused state and must have fs_info::balance_ctl properly
4686	 * set up.
4687	 */
4688	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689		btrfs_warn(fs_info,
4690	"balance: cannot set exclusive op status, resume manually");
4691
4692	btrfs_release_path(path);
4693
4694	mutex_lock(&fs_info->balance_mutex);
4695	BUG_ON(fs_info->balance_ctl);
4696	spin_lock(&fs_info->balance_lock);
4697	fs_info->balance_ctl = bctl;
4698	spin_unlock(&fs_info->balance_lock);
4699	mutex_unlock(&fs_info->balance_mutex);
4700out:
4701	btrfs_free_path(path);
4702	return ret;
4703}
4704
4705int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706{
4707	int ret = 0;
4708
4709	mutex_lock(&fs_info->balance_mutex);
4710	if (!fs_info->balance_ctl) {
4711		mutex_unlock(&fs_info->balance_mutex);
4712		return -ENOTCONN;
4713	}
4714
4715	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716		atomic_inc(&fs_info->balance_pause_req);
4717		mutex_unlock(&fs_info->balance_mutex);
4718
4719		wait_event(fs_info->balance_wait_q,
4720			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721
4722		mutex_lock(&fs_info->balance_mutex);
4723		/* we are good with balance_ctl ripped off from under us */
4724		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725		atomic_dec(&fs_info->balance_pause_req);
4726	} else {
4727		ret = -ENOTCONN;
4728	}
4729
4730	mutex_unlock(&fs_info->balance_mutex);
4731	return ret;
4732}
4733
4734int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735{
4736	mutex_lock(&fs_info->balance_mutex);
4737	if (!fs_info->balance_ctl) {
4738		mutex_unlock(&fs_info->balance_mutex);
4739		return -ENOTCONN;
4740	}
4741
4742	/*
4743	 * A paused balance with the item stored on disk can be resumed at
4744	 * mount time if the mount is read-write. Otherwise it's still paused
4745	 * and we must not allow cancelling as it deletes the item.
4746	 */
4747	if (sb_rdonly(fs_info->sb)) {
4748		mutex_unlock(&fs_info->balance_mutex);
4749		return -EROFS;
4750	}
4751
4752	atomic_inc(&fs_info->balance_cancel_req);
4753	/*
4754	 * if we are running just wait and return, balance item is
4755	 * deleted in btrfs_balance in this case
4756	 */
4757	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758		mutex_unlock(&fs_info->balance_mutex);
4759		wait_event(fs_info->balance_wait_q,
4760			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761		mutex_lock(&fs_info->balance_mutex);
4762	} else {
4763		mutex_unlock(&fs_info->balance_mutex);
4764		/*
4765		 * Lock released to allow other waiters to continue, we'll
4766		 * reexamine the status again.
4767		 */
4768		mutex_lock(&fs_info->balance_mutex);
4769
4770		if (fs_info->balance_ctl) {
4771			reset_balance_state(fs_info);
4772			btrfs_exclop_finish(fs_info);
4773			btrfs_info(fs_info, "balance: canceled");
4774		}
4775	}
4776
4777	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4778	atomic_dec(&fs_info->balance_cancel_req);
4779	mutex_unlock(&fs_info->balance_mutex);
4780	return 0;
4781}
4782
4783int btrfs_uuid_scan_kthread(void *data)
4784{
4785	struct btrfs_fs_info *fs_info = data;
4786	struct btrfs_root *root = fs_info->tree_root;
4787	struct btrfs_key key;
4788	struct btrfs_path *path = NULL;
4789	int ret = 0;
4790	struct extent_buffer *eb;
4791	int slot;
4792	struct btrfs_root_item root_item;
4793	u32 item_size;
4794	struct btrfs_trans_handle *trans = NULL;
4795	bool closing = false;
4796
4797	path = btrfs_alloc_path();
4798	if (!path) {
4799		ret = -ENOMEM;
4800		goto out;
4801	}
4802
4803	key.objectid = 0;
4804	key.type = BTRFS_ROOT_ITEM_KEY;
4805	key.offset = 0;
4806
4807	while (1) {
4808		if (btrfs_fs_closing(fs_info)) {
4809			closing = true;
4810			break;
4811		}
4812		ret = btrfs_search_forward(root, &key, path,
4813				BTRFS_OLDEST_GENERATION);
4814		if (ret) {
4815			if (ret > 0)
4816				ret = 0;
4817			break;
4818		}
4819
4820		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824			goto skip;
4825
4826		eb = path->nodes[0];
4827		slot = path->slots[0];
4828		item_size = btrfs_item_size(eb, slot);
4829		if (item_size < sizeof(root_item))
4830			goto skip;
4831
4832		read_extent_buffer(eb, &root_item,
4833				   btrfs_item_ptr_offset(eb, slot),
4834				   (int)sizeof(root_item));
4835		if (btrfs_root_refs(&root_item) == 0)
4836			goto skip;
4837
4838		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840			if (trans)
4841				goto update_tree;
4842
4843			btrfs_release_path(path);
4844			/*
4845			 * 1 - subvol uuid item
4846			 * 1 - received_subvol uuid item
4847			 */
4848			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849			if (IS_ERR(trans)) {
4850				ret = PTR_ERR(trans);
4851				break;
4852			}
4853			continue;
4854		} else {
4855			goto skip;
4856		}
4857update_tree:
4858		btrfs_release_path(path);
4859		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861						  BTRFS_UUID_KEY_SUBVOL,
4862						  key.objectid);
4863			if (ret < 0) {
4864				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865					ret);
4866				break;
4867			}
4868		}
4869
4870		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871			ret = btrfs_uuid_tree_add(trans,
4872						  root_item.received_uuid,
4873						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874						  key.objectid);
4875			if (ret < 0) {
4876				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877					ret);
4878				break;
4879			}
4880		}
4881
4882skip:
4883		btrfs_release_path(path);
4884		if (trans) {
4885			ret = btrfs_end_transaction(trans);
4886			trans = NULL;
4887			if (ret)
4888				break;
4889		}
4890
4891		if (key.offset < (u64)-1) {
4892			key.offset++;
4893		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894			key.offset = 0;
4895			key.type = BTRFS_ROOT_ITEM_KEY;
4896		} else if (key.objectid < (u64)-1) {
4897			key.offset = 0;
4898			key.type = BTRFS_ROOT_ITEM_KEY;
4899			key.objectid++;
4900		} else {
4901			break;
4902		}
4903		cond_resched();
4904	}
4905
4906out:
4907	btrfs_free_path(path);
4908	if (trans && !IS_ERR(trans))
4909		btrfs_end_transaction(trans);
4910	if (ret)
4911		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912	else if (!closing)
4913		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914	up(&fs_info->uuid_tree_rescan_sem);
4915	return 0;
4916}
4917
4918int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919{
4920	struct btrfs_trans_handle *trans;
4921	struct btrfs_root *tree_root = fs_info->tree_root;
4922	struct btrfs_root *uuid_root;
4923	struct task_struct *task;
4924	int ret;
4925
4926	/*
4927	 * 1 - root node
4928	 * 1 - root item
4929	 */
4930	trans = btrfs_start_transaction(tree_root, 2);
4931	if (IS_ERR(trans))
4932		return PTR_ERR(trans);
4933
4934	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935	if (IS_ERR(uuid_root)) {
4936		ret = PTR_ERR(uuid_root);
4937		btrfs_abort_transaction(trans, ret);
4938		btrfs_end_transaction(trans);
4939		return ret;
4940	}
4941
4942	fs_info->uuid_root = uuid_root;
4943
4944	ret = btrfs_commit_transaction(trans);
4945	if (ret)
4946		return ret;
4947
4948	down(&fs_info->uuid_tree_rescan_sem);
4949	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950	if (IS_ERR(task)) {
4951		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952		btrfs_warn(fs_info, "failed to start uuid_scan task");
4953		up(&fs_info->uuid_tree_rescan_sem);
4954		return PTR_ERR(task);
4955	}
4956
4957	return 0;
4958}
4959
4960/*
4961 * shrinking a device means finding all of the device extents past
4962 * the new size, and then following the back refs to the chunks.
4963 * The chunk relocation code actually frees the device extent
4964 */
4965int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966{
4967	struct btrfs_fs_info *fs_info = device->fs_info;
4968	struct btrfs_root *root = fs_info->dev_root;
4969	struct btrfs_trans_handle *trans;
4970	struct btrfs_dev_extent *dev_extent = NULL;
4971	struct btrfs_path *path;
4972	u64 length;
4973	u64 chunk_offset;
4974	int ret;
4975	int slot;
4976	int failed = 0;
4977	bool retried = false;
4978	struct extent_buffer *l;
4979	struct btrfs_key key;
4980	struct btrfs_super_block *super_copy = fs_info->super_copy;
4981	u64 old_total = btrfs_super_total_bytes(super_copy);
4982	u64 old_size = btrfs_device_get_total_bytes(device);
4983	u64 diff;
4984	u64 start;
4985	u64 free_diff = 0;
4986
4987	new_size = round_down(new_size, fs_info->sectorsize);
4988	start = new_size;
4989	diff = round_down(old_size - new_size, fs_info->sectorsize);
4990
4991	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992		return -EINVAL;
4993
4994	path = btrfs_alloc_path();
4995	if (!path)
4996		return -ENOMEM;
4997
4998	path->reada = READA_BACK;
4999
5000	trans = btrfs_start_transaction(root, 0);
5001	if (IS_ERR(trans)) {
5002		btrfs_free_path(path);
5003		return PTR_ERR(trans);
5004	}
5005
5006	mutex_lock(&fs_info->chunk_mutex);
5007
5008	btrfs_device_set_total_bytes(device, new_size);
5009	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010		device->fs_devices->total_rw_bytes -= diff;
5011
5012		/*
5013		 * The new free_chunk_space is new_size - used, so we have to
5014		 * subtract the delta of the old free_chunk_space which included
5015		 * old_size - used.  If used > new_size then just subtract this
5016		 * entire device's free space.
5017		 */
5018		if (device->bytes_used < new_size)
5019			free_diff = (old_size - device->bytes_used) -
5020				    (new_size - device->bytes_used);
5021		else
5022			free_diff = old_size - device->bytes_used;
5023		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024	}
5025
5026	/*
5027	 * Once the device's size has been set to the new size, ensure all
5028	 * in-memory chunks are synced to disk so that the loop below sees them
5029	 * and relocates them accordingly.
5030	 */
5031	if (contains_pending_extent(device, &start, diff)) {
5032		mutex_unlock(&fs_info->chunk_mutex);
5033		ret = btrfs_commit_transaction(trans);
5034		if (ret)
5035			goto done;
5036	} else {
5037		mutex_unlock(&fs_info->chunk_mutex);
5038		btrfs_end_transaction(trans);
5039	}
5040
5041again:
5042	key.objectid = device->devid;
5043	key.offset = (u64)-1;
5044	key.type = BTRFS_DEV_EXTENT_KEY;
5045
5046	do {
5047		mutex_lock(&fs_info->reclaim_bgs_lock);
5048		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049		if (ret < 0) {
5050			mutex_unlock(&fs_info->reclaim_bgs_lock);
5051			goto done;
5052		}
5053
5054		ret = btrfs_previous_item(root, path, 0, key.type);
5055		if (ret) {
5056			mutex_unlock(&fs_info->reclaim_bgs_lock);
5057			if (ret < 0)
5058				goto done;
5059			ret = 0;
5060			btrfs_release_path(path);
5061			break;
5062		}
5063
5064		l = path->nodes[0];
5065		slot = path->slots[0];
5066		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067
5068		if (key.objectid != device->devid) {
5069			mutex_unlock(&fs_info->reclaim_bgs_lock);
5070			btrfs_release_path(path);
5071			break;
5072		}
5073
5074		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075		length = btrfs_dev_extent_length(l, dev_extent);
5076
5077		if (key.offset + length <= new_size) {
5078			mutex_unlock(&fs_info->reclaim_bgs_lock);
5079			btrfs_release_path(path);
5080			break;
5081		}
5082
5083		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084		btrfs_release_path(path);
5085
5086		/*
5087		 * We may be relocating the only data chunk we have,
5088		 * which could potentially end up with losing data's
5089		 * raid profile, so lets allocate an empty one in
5090		 * advance.
5091		 */
5092		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093		if (ret < 0) {
5094			mutex_unlock(&fs_info->reclaim_bgs_lock);
5095			goto done;
5096		}
5097
5098		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099		mutex_unlock(&fs_info->reclaim_bgs_lock);
5100		if (ret == -ENOSPC) {
5101			failed++;
5102		} else if (ret) {
5103			if (ret == -ETXTBSY) {
5104				btrfs_warn(fs_info,
5105		   "could not shrink block group %llu due to active swapfile",
5106					   chunk_offset);
5107			}
5108			goto done;
5109		}
5110	} while (key.offset-- > 0);
5111
5112	if (failed && !retried) {
5113		failed = 0;
5114		retried = true;
5115		goto again;
5116	} else if (failed && retried) {
5117		ret = -ENOSPC;
5118		goto done;
5119	}
5120
5121	/* Shrinking succeeded, else we would be at "done". */
5122	trans = btrfs_start_transaction(root, 0);
5123	if (IS_ERR(trans)) {
5124		ret = PTR_ERR(trans);
5125		goto done;
5126	}
5127
5128	mutex_lock(&fs_info->chunk_mutex);
5129	/* Clear all state bits beyond the shrunk device size */
5130	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131			  CHUNK_STATE_MASK);
5132
5133	btrfs_device_set_disk_total_bytes(device, new_size);
5134	if (list_empty(&device->post_commit_list))
5135		list_add_tail(&device->post_commit_list,
5136			      &trans->transaction->dev_update_list);
5137
5138	WARN_ON(diff > old_total);
5139	btrfs_set_super_total_bytes(super_copy,
5140			round_down(old_total - diff, fs_info->sectorsize));
5141	mutex_unlock(&fs_info->chunk_mutex);
5142
5143	btrfs_reserve_chunk_metadata(trans, false);
5144	/* Now btrfs_update_device() will change the on-disk size. */
5145	ret = btrfs_update_device(trans, device);
5146	btrfs_trans_release_chunk_metadata(trans);
5147	if (ret < 0) {
5148		btrfs_abort_transaction(trans, ret);
5149		btrfs_end_transaction(trans);
5150	} else {
5151		ret = btrfs_commit_transaction(trans);
5152	}
5153done:
5154	btrfs_free_path(path);
5155	if (ret) {
5156		mutex_lock(&fs_info->chunk_mutex);
5157		btrfs_device_set_total_bytes(device, old_size);
5158		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159			device->fs_devices->total_rw_bytes += diff;
5160			atomic64_add(free_diff, &fs_info->free_chunk_space);
5161		}
5162		mutex_unlock(&fs_info->chunk_mutex);
5163	}
5164	return ret;
5165}
5166
5167static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168			   struct btrfs_key *key,
5169			   struct btrfs_chunk *chunk, int item_size)
5170{
5171	struct btrfs_super_block *super_copy = fs_info->super_copy;
5172	struct btrfs_disk_key disk_key;
5173	u32 array_size;
5174	u8 *ptr;
5175
5176	lockdep_assert_held(&fs_info->chunk_mutex);
5177
5178	array_size = btrfs_super_sys_array_size(super_copy);
5179	if (array_size + item_size + sizeof(disk_key)
5180			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181		return -EFBIG;
5182
5183	ptr = super_copy->sys_chunk_array + array_size;
5184	btrfs_cpu_key_to_disk(&disk_key, key);
5185	memcpy(ptr, &disk_key, sizeof(disk_key));
5186	ptr += sizeof(disk_key);
5187	memcpy(ptr, chunk, item_size);
5188	item_size += sizeof(disk_key);
5189	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190
5191	return 0;
5192}
5193
5194/*
5195 * sort the devices in descending order by max_avail, total_avail
5196 */
5197static int btrfs_cmp_device_info(const void *a, const void *b)
5198{
5199	const struct btrfs_device_info *di_a = a;
5200	const struct btrfs_device_info *di_b = b;
5201
5202	if (di_a->max_avail > di_b->max_avail)
5203		return -1;
5204	if (di_a->max_avail < di_b->max_avail)
5205		return 1;
5206	if (di_a->total_avail > di_b->total_avail)
5207		return -1;
5208	if (di_a->total_avail < di_b->total_avail)
5209		return 1;
5210	return 0;
5211}
5212
5213static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214{
5215	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216		return;
5217
5218	btrfs_set_fs_incompat(info, RAID56);
5219}
5220
5221static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222{
5223	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224		return;
5225
5226	btrfs_set_fs_incompat(info, RAID1C34);
5227}
5228
5229/*
5230 * Structure used internally for btrfs_create_chunk() function.
5231 * Wraps needed parameters.
5232 */
5233struct alloc_chunk_ctl {
5234	u64 start;
5235	u64 type;
5236	/* Total number of stripes to allocate */
5237	int num_stripes;
5238	/* sub_stripes info for map */
5239	int sub_stripes;
5240	/* Stripes per device */
5241	int dev_stripes;
5242	/* Maximum number of devices to use */
5243	int devs_max;
5244	/* Minimum number of devices to use */
5245	int devs_min;
5246	/* ndevs has to be a multiple of this */
5247	int devs_increment;
5248	/* Number of copies */
5249	int ncopies;
5250	/* Number of stripes worth of bytes to store parity information */
5251	int nparity;
5252	u64 max_stripe_size;
5253	u64 max_chunk_size;
5254	u64 dev_extent_min;
5255	u64 stripe_size;
5256	u64 chunk_size;
5257	int ndevs;
5258};
5259
5260static void init_alloc_chunk_ctl_policy_regular(
5261				struct btrfs_fs_devices *fs_devices,
5262				struct alloc_chunk_ctl *ctl)
5263{
5264	struct btrfs_space_info *space_info;
5265
5266	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267	ASSERT(space_info);
5268
5269	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271
5272	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274
5275	/* We don't want a chunk larger than 10% of writable space */
5276	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277				  ctl->max_chunk_size);
5278	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279}
5280
5281static void init_alloc_chunk_ctl_policy_zoned(
5282				      struct btrfs_fs_devices *fs_devices,
5283				      struct alloc_chunk_ctl *ctl)
5284{
5285	u64 zone_size = fs_devices->fs_info->zone_size;
5286	u64 limit;
5287	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289	u64 min_chunk_size = min_data_stripes * zone_size;
5290	u64 type = ctl->type;
5291
5292	ctl->max_stripe_size = zone_size;
5293	if (type & BTRFS_BLOCK_GROUP_DATA) {
5294		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295						 zone_size);
5296	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297		ctl->max_chunk_size = ctl->max_stripe_size;
5298	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300		ctl->devs_max = min_t(int, ctl->devs_max,
5301				      BTRFS_MAX_DEVS_SYS_CHUNK);
5302	} else {
5303		BUG();
5304	}
5305
5306	/* We don't want a chunk larger than 10% of writable space */
5307	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308			       zone_size),
5309		    min_chunk_size);
5310	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312}
5313
5314static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315				 struct alloc_chunk_ctl *ctl)
5316{
5317	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318
5319	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321	ctl->devs_max = btrfs_raid_array[index].devs_max;
5322	if (!ctl->devs_max)
5323		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324	ctl->devs_min = btrfs_raid_array[index].devs_min;
5325	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326	ctl->ncopies = btrfs_raid_array[index].ncopies;
5327	ctl->nparity = btrfs_raid_array[index].nparity;
5328	ctl->ndevs = 0;
5329
5330	switch (fs_devices->chunk_alloc_policy) {
5331	case BTRFS_CHUNK_ALLOC_REGULAR:
5332		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333		break;
5334	case BTRFS_CHUNK_ALLOC_ZONED:
5335		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336		break;
5337	default:
5338		BUG();
5339	}
5340}
5341
5342static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343			      struct alloc_chunk_ctl *ctl,
5344			      struct btrfs_device_info *devices_info)
5345{
5346	struct btrfs_fs_info *info = fs_devices->fs_info;
5347	struct btrfs_device *device;
5348	u64 total_avail;
5349	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350	int ret;
5351	int ndevs = 0;
5352	u64 max_avail;
5353	u64 dev_offset;
5354
5355	/*
5356	 * in the first pass through the devices list, we gather information
5357	 * about the available holes on each device.
5358	 */
5359	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361			WARN(1, KERN_ERR
5362			       "BTRFS: read-only device in alloc_list\n");
5363			continue;
5364		}
5365
5366		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367					&device->dev_state) ||
5368		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369			continue;
5370
5371		if (device->total_bytes > device->bytes_used)
5372			total_avail = device->total_bytes - device->bytes_used;
5373		else
5374			total_avail = 0;
5375
5376		/* If there is no space on this device, skip it. */
5377		if (total_avail < ctl->dev_extent_min)
5378			continue;
5379
5380		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381					   &max_avail);
5382		if (ret && ret != -ENOSPC)
5383			return ret;
5384
5385		if (ret == 0)
5386			max_avail = dev_extent_want;
5387
5388		if (max_avail < ctl->dev_extent_min) {
5389			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390				btrfs_debug(info,
5391			"%s: devid %llu has no free space, have=%llu want=%llu",
5392					    __func__, device->devid, max_avail,
5393					    ctl->dev_extent_min);
5394			continue;
5395		}
5396
5397		if (ndevs == fs_devices->rw_devices) {
5398			WARN(1, "%s: found more than %llu devices\n",
5399			     __func__, fs_devices->rw_devices);
5400			break;
5401		}
5402		devices_info[ndevs].dev_offset = dev_offset;
5403		devices_info[ndevs].max_avail = max_avail;
5404		devices_info[ndevs].total_avail = total_avail;
5405		devices_info[ndevs].dev = device;
5406		++ndevs;
5407	}
5408	ctl->ndevs = ndevs;
5409
5410	/*
5411	 * now sort the devices by hole size / available space
5412	 */
5413	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414	     btrfs_cmp_device_info, NULL);
5415
5416	return 0;
5417}
5418
5419static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420				      struct btrfs_device_info *devices_info)
5421{
5422	/* Number of stripes that count for block group size */
5423	int data_stripes;
5424
5425	/*
5426	 * The primary goal is to maximize the number of stripes, so use as
5427	 * many devices as possible, even if the stripes are not maximum sized.
5428	 *
5429	 * The DUP profile stores more than one stripe per device, the
5430	 * max_avail is the total size so we have to adjust.
5431	 */
5432	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433				   ctl->dev_stripes);
5434	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435
5436	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5437	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438
5439	/*
5440	 * Use the number of data stripes to figure out how big this chunk is
5441	 * really going to be in terms of logical address space, and compare
5442	 * that answer with the max chunk size. If it's higher, we try to
5443	 * reduce stripe_size.
5444	 */
5445	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446		/*
5447		 * Reduce stripe_size, round it up to a 16MB boundary again and
5448		 * then use it, unless it ends up being even bigger than the
5449		 * previous value we had already.
5450		 */
5451		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452							data_stripes), SZ_16M),
5453				       ctl->stripe_size);
5454	}
5455
5456	/* Stripe size should not go beyond 1G. */
5457	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458
5459	/* Align to BTRFS_STRIPE_LEN */
5460	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461	ctl->chunk_size = ctl->stripe_size * data_stripes;
5462
5463	return 0;
5464}
5465
5466static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467				    struct btrfs_device_info *devices_info)
5468{
5469	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470	/* Number of stripes that count for block group size */
5471	int data_stripes;
5472
5473	/*
5474	 * It should hold because:
5475	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476	 */
5477	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478
5479	ctl->stripe_size = zone_size;
5480	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482
5483	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486					     ctl->stripe_size) + ctl->nparity,
5487				     ctl->dev_stripes);
5488		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491	}
5492
5493	ctl->chunk_size = ctl->stripe_size * data_stripes;
5494
5495	return 0;
5496}
5497
5498static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499			      struct alloc_chunk_ctl *ctl,
5500			      struct btrfs_device_info *devices_info)
5501{
5502	struct btrfs_fs_info *info = fs_devices->fs_info;
5503
5504	/*
5505	 * Round down to number of usable stripes, devs_increment can be any
5506	 * number so we can't use round_down() that requires power of 2, while
5507	 * rounddown is safe.
5508	 */
5509	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510
5511	if (ctl->ndevs < ctl->devs_min) {
5512		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513			btrfs_debug(info,
5514	"%s: not enough devices with free space: have=%d minimum required=%d",
5515				    __func__, ctl->ndevs, ctl->devs_min);
5516		}
5517		return -ENOSPC;
5518	}
5519
5520	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521
5522	switch (fs_devices->chunk_alloc_policy) {
5523	case BTRFS_CHUNK_ALLOC_REGULAR:
5524		return decide_stripe_size_regular(ctl, devices_info);
5525	case BTRFS_CHUNK_ALLOC_ZONED:
5526		return decide_stripe_size_zoned(ctl, devices_info);
5527	default:
5528		BUG();
5529	}
5530}
5531
5532static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533{
5534	for (int i = 0; i < map->num_stripes; i++) {
5535		struct btrfs_io_stripe *stripe = &map->stripes[i];
5536		struct btrfs_device *device = stripe->dev;
5537
5538		set_extent_bit(&device->alloc_state, stripe->physical,
5539			       stripe->physical + map->stripe_size - 1,
5540			       bits | EXTENT_NOWAIT, NULL);
5541	}
5542}
5543
5544static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545{
5546	for (int i = 0; i < map->num_stripes; i++) {
5547		struct btrfs_io_stripe *stripe = &map->stripes[i];
5548		struct btrfs_device *device = stripe->dev;
5549
5550		__clear_extent_bit(&device->alloc_state, stripe->physical,
5551				   stripe->physical + map->stripe_size - 1,
5552				   bits | EXTENT_NOWAIT,
5553				   NULL, NULL);
5554	}
5555}
5556
5557void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558{
5559	write_lock(&fs_info->mapping_tree_lock);
5560	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561	RB_CLEAR_NODE(&map->rb_node);
5562	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563	write_unlock(&fs_info->mapping_tree_lock);
5564
5565	/* Once for the tree reference. */
5566	btrfs_free_chunk_map(map);
5567}
5568
5569EXPORT_FOR_TESTS
5570int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571{
5572	struct rb_node **p;
5573	struct rb_node *parent = NULL;
5574	bool leftmost = true;
5575
5576	write_lock(&fs_info->mapping_tree_lock);
5577	p = &fs_info->mapping_tree.rb_root.rb_node;
5578	while (*p) {
5579		struct btrfs_chunk_map *entry;
5580
5581		parent = *p;
5582		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583
5584		if (map->start < entry->start) {
5585			p = &(*p)->rb_left;
5586		} else if (map->start > entry->start) {
5587			p = &(*p)->rb_right;
5588			leftmost = false;
5589		} else {
5590			write_unlock(&fs_info->mapping_tree_lock);
5591			return -EEXIST;
5592		}
5593	}
5594	rb_link_node(&map->rb_node, parent, p);
5595	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598	write_unlock(&fs_info->mapping_tree_lock);
5599
5600	return 0;
5601}
5602
5603EXPORT_FOR_TESTS
5604struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605{
5606	struct btrfs_chunk_map *map;
5607
5608	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609	if (!map)
5610		return NULL;
5611
5612	refcount_set(&map->refs, 1);
5613	RB_CLEAR_NODE(&map->rb_node);
5614
5615	return map;
5616}
5617
5618struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5619{
5620	const int size = btrfs_chunk_map_size(map->num_stripes);
5621	struct btrfs_chunk_map *clone;
5622
5623	clone = kmemdup(map, size, gfp);
5624	if (!clone)
5625		return NULL;
5626
5627	refcount_set(&clone->refs, 1);
5628	RB_CLEAR_NODE(&clone->rb_node);
5629
5630	return clone;
5631}
5632
5633static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5634			struct alloc_chunk_ctl *ctl,
5635			struct btrfs_device_info *devices_info)
5636{
5637	struct btrfs_fs_info *info = trans->fs_info;
5638	struct btrfs_chunk_map *map;
5639	struct btrfs_block_group *block_group;
5640	u64 start = ctl->start;
5641	u64 type = ctl->type;
5642	int ret;
5643	int i;
5644	int j;
5645
5646	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5647	if (!map)
5648		return ERR_PTR(-ENOMEM);
5649
5650	map->start = start;
5651	map->chunk_len = ctl->chunk_size;
5652	map->stripe_size = ctl->stripe_size;
5653	map->type = type;
5654	map->io_align = BTRFS_STRIPE_LEN;
5655	map->io_width = BTRFS_STRIPE_LEN;
5656	map->sub_stripes = ctl->sub_stripes;
5657	map->num_stripes = ctl->num_stripes;
5658
5659	for (i = 0; i < ctl->ndevs; ++i) {
5660		for (j = 0; j < ctl->dev_stripes; ++j) {
5661			int s = i * ctl->dev_stripes + j;
5662			map->stripes[s].dev = devices_info[i].dev;
5663			map->stripes[s].physical = devices_info[i].dev_offset +
5664						   j * ctl->stripe_size;
5665		}
5666	}
5667
5668	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5669
5670	ret = btrfs_add_chunk_map(info, map);
5671	if (ret) {
5672		btrfs_free_chunk_map(map);
5673		return ERR_PTR(ret);
5674	}
5675
5676	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5677	if (IS_ERR(block_group)) {
5678		btrfs_remove_chunk_map(info, map);
5679		return block_group;
5680	}
5681
5682	for (int i = 0; i < map->num_stripes; i++) {
5683		struct btrfs_device *dev = map->stripes[i].dev;
5684
5685		btrfs_device_set_bytes_used(dev,
5686					    dev->bytes_used + ctl->stripe_size);
5687		if (list_empty(&dev->post_commit_list))
5688			list_add_tail(&dev->post_commit_list,
5689				      &trans->transaction->dev_update_list);
5690	}
5691
5692	atomic64_sub(ctl->stripe_size * map->num_stripes,
5693		     &info->free_chunk_space);
5694
5695	check_raid56_incompat_flag(info, type);
5696	check_raid1c34_incompat_flag(info, type);
5697
5698	return block_group;
5699}
5700
5701struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5702					    u64 type)
5703{
5704	struct btrfs_fs_info *info = trans->fs_info;
5705	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5706	struct btrfs_device_info *devices_info = NULL;
5707	struct alloc_chunk_ctl ctl;
5708	struct btrfs_block_group *block_group;
5709	int ret;
5710
5711	lockdep_assert_held(&info->chunk_mutex);
5712
5713	if (!alloc_profile_is_valid(type, 0)) {
5714		ASSERT(0);
5715		return ERR_PTR(-EINVAL);
5716	}
5717
5718	if (list_empty(&fs_devices->alloc_list)) {
5719		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5720			btrfs_debug(info, "%s: no writable device", __func__);
5721		return ERR_PTR(-ENOSPC);
5722	}
5723
5724	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5725		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5726		ASSERT(0);
5727		return ERR_PTR(-EINVAL);
5728	}
5729
5730	ctl.start = find_next_chunk(info);
5731	ctl.type = type;
5732	init_alloc_chunk_ctl(fs_devices, &ctl);
5733
5734	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5735			       GFP_NOFS);
5736	if (!devices_info)
5737		return ERR_PTR(-ENOMEM);
5738
5739	ret = gather_device_info(fs_devices, &ctl, devices_info);
5740	if (ret < 0) {
5741		block_group = ERR_PTR(ret);
5742		goto out;
5743	}
5744
5745	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5746	if (ret < 0) {
5747		block_group = ERR_PTR(ret);
5748		goto out;
5749	}
5750
5751	block_group = create_chunk(trans, &ctl, devices_info);
5752
5753out:
5754	kfree(devices_info);
5755	return block_group;
5756}
5757
5758/*
5759 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5760 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5761 * chunks.
5762 *
5763 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5764 * phases.
5765 */
5766int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5767				     struct btrfs_block_group *bg)
5768{
5769	struct btrfs_fs_info *fs_info = trans->fs_info;
5770	struct btrfs_root *chunk_root = fs_info->chunk_root;
5771	struct btrfs_key key;
5772	struct btrfs_chunk *chunk;
5773	struct btrfs_stripe *stripe;
5774	struct btrfs_chunk_map *map;
5775	size_t item_size;
5776	int i;
5777	int ret;
5778
5779	/*
5780	 * We take the chunk_mutex for 2 reasons:
5781	 *
5782	 * 1) Updates and insertions in the chunk btree must be done while holding
5783	 *    the chunk_mutex, as well as updating the system chunk array in the
5784	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5785	 *    details;
5786	 *
5787	 * 2) To prevent races with the final phase of a device replace operation
5788	 *    that replaces the device object associated with the map's stripes,
5789	 *    because the device object's id can change at any time during that
5790	 *    final phase of the device replace operation
5791	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5792	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5793	 *    which would cause a failure when updating the device item, which does
5794	 *    not exists, or persisting a stripe of the chunk item with such ID.
5795	 *    Here we can't use the device_list_mutex because our caller already
5796	 *    has locked the chunk_mutex, and the final phase of device replace
5797	 *    acquires both mutexes - first the device_list_mutex and then the
5798	 *    chunk_mutex. Using any of those two mutexes protects us from a
5799	 *    concurrent device replace.
5800	 */
5801	lockdep_assert_held(&fs_info->chunk_mutex);
5802
5803	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5804	if (IS_ERR(map)) {
5805		ret = PTR_ERR(map);
5806		btrfs_abort_transaction(trans, ret);
5807		return ret;
5808	}
5809
5810	item_size = btrfs_chunk_item_size(map->num_stripes);
5811
5812	chunk = kzalloc(item_size, GFP_NOFS);
5813	if (!chunk) {
5814		ret = -ENOMEM;
5815		btrfs_abort_transaction(trans, ret);
5816		goto out;
5817	}
5818
5819	for (i = 0; i < map->num_stripes; i++) {
5820		struct btrfs_device *device = map->stripes[i].dev;
5821
5822		ret = btrfs_update_device(trans, device);
5823		if (ret)
5824			goto out;
5825	}
5826
5827	stripe = &chunk->stripe;
5828	for (i = 0; i < map->num_stripes; i++) {
5829		struct btrfs_device *device = map->stripes[i].dev;
5830		const u64 dev_offset = map->stripes[i].physical;
5831
5832		btrfs_set_stack_stripe_devid(stripe, device->devid);
5833		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5834		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5835		stripe++;
5836	}
5837
5838	btrfs_set_stack_chunk_length(chunk, bg->length);
5839	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5840	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5841	btrfs_set_stack_chunk_type(chunk, map->type);
5842	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5843	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5844	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5845	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5846	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5847
5848	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5849	key.type = BTRFS_CHUNK_ITEM_KEY;
5850	key.offset = bg->start;
5851
5852	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5853	if (ret)
5854		goto out;
5855
5856	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5857
5858	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5859		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5860		if (ret)
5861			goto out;
5862	}
5863
5864out:
5865	kfree(chunk);
5866	btrfs_free_chunk_map(map);
5867	return ret;
5868}
5869
5870static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5871{
5872	struct btrfs_fs_info *fs_info = trans->fs_info;
5873	u64 alloc_profile;
5874	struct btrfs_block_group *meta_bg;
5875	struct btrfs_block_group *sys_bg;
5876
5877	/*
5878	 * When adding a new device for sprouting, the seed device is read-only
5879	 * so we must first allocate a metadata and a system chunk. But before
5880	 * adding the block group items to the extent, device and chunk btrees,
5881	 * we must first:
5882	 *
5883	 * 1) Create both chunks without doing any changes to the btrees, as
5884	 *    otherwise we would get -ENOSPC since the block groups from the
5885	 *    seed device are read-only;
5886	 *
5887	 * 2) Add the device item for the new sprout device - finishing the setup
5888	 *    of a new block group requires updating the device item in the chunk
5889	 *    btree, so it must exist when we attempt to do it. The previous step
5890	 *    ensures this does not fail with -ENOSPC.
5891	 *
5892	 * After that we can add the block group items to their btrees:
5893	 * update existing device item in the chunk btree, add a new block group
5894	 * item to the extent btree, add a new chunk item to the chunk btree and
5895	 * finally add the new device extent items to the devices btree.
5896	 */
5897
5898	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5899	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5900	if (IS_ERR(meta_bg))
5901		return PTR_ERR(meta_bg);
5902
5903	alloc_profile = btrfs_system_alloc_profile(fs_info);
5904	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5905	if (IS_ERR(sys_bg))
5906		return PTR_ERR(sys_bg);
5907
5908	return 0;
5909}
5910
5911static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5912{
5913	const int index = btrfs_bg_flags_to_raid_index(map->type);
5914
5915	return btrfs_raid_array[index].tolerated_failures;
5916}
5917
5918bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5919{
5920	struct btrfs_chunk_map *map;
5921	int miss_ndevs = 0;
5922	int i;
5923	bool ret = true;
5924
5925	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5926	if (IS_ERR(map))
5927		return false;
5928
5929	for (i = 0; i < map->num_stripes; i++) {
5930		if (test_bit(BTRFS_DEV_STATE_MISSING,
5931					&map->stripes[i].dev->dev_state)) {
5932			miss_ndevs++;
5933			continue;
5934		}
5935		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5936					&map->stripes[i].dev->dev_state)) {
5937			ret = false;
5938			goto end;
5939		}
5940	}
5941
5942	/*
5943	 * If the number of missing devices is larger than max errors, we can
5944	 * not write the data into that chunk successfully.
5945	 */
5946	if (miss_ndevs > btrfs_chunk_max_errors(map))
5947		ret = false;
5948end:
5949	btrfs_free_chunk_map(map);
5950	return ret;
5951}
5952
5953void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5954{
5955	write_lock(&fs_info->mapping_tree_lock);
5956	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5957		struct btrfs_chunk_map *map;
5958		struct rb_node *node;
5959
5960		node = rb_first_cached(&fs_info->mapping_tree);
5961		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5962		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5963		RB_CLEAR_NODE(&map->rb_node);
5964		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5965		/* Once for the tree ref. */
5966		btrfs_free_chunk_map(map);
5967		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5968	}
5969	write_unlock(&fs_info->mapping_tree_lock);
5970}
5971
5972int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5973{
5974	struct btrfs_chunk_map *map;
5975	enum btrfs_raid_types index;
5976	int ret = 1;
5977
5978	map = btrfs_get_chunk_map(fs_info, logical, len);
5979	if (IS_ERR(map))
5980		/*
5981		 * We could return errors for these cases, but that could get
5982		 * ugly and we'd probably do the same thing which is just not do
5983		 * anything else and exit, so return 1 so the callers don't try
5984		 * to use other copies.
5985		 */
5986		return 1;
5987
5988	index = btrfs_bg_flags_to_raid_index(map->type);
5989
5990	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5991	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5992		ret = btrfs_raid_array[index].ncopies;
5993	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5994		ret = 2;
5995	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5996		/*
5997		 * There could be two corrupted data stripes, we need
5998		 * to loop retry in order to rebuild the correct data.
5999		 *
6000		 * Fail a stripe at a time on every retry except the
6001		 * stripe under reconstruction.
6002		 */
6003		ret = map->num_stripes;
6004	btrfs_free_chunk_map(map);
6005	return ret;
6006}
6007
6008unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6009				    u64 logical)
6010{
6011	struct btrfs_chunk_map *map;
6012	unsigned long len = fs_info->sectorsize;
6013
6014	if (!btrfs_fs_incompat(fs_info, RAID56))
6015		return len;
6016
6017	map = btrfs_get_chunk_map(fs_info, logical, len);
6018
6019	if (!WARN_ON(IS_ERR(map))) {
6020		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6021			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6022		btrfs_free_chunk_map(map);
6023	}
6024	return len;
6025}
6026
6027int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6028{
6029	struct btrfs_chunk_map *map;
6030	int ret = 0;
6031
6032	if (!btrfs_fs_incompat(fs_info, RAID56))
6033		return 0;
6034
6035	map = btrfs_get_chunk_map(fs_info, logical, len);
6036
6037	if (!WARN_ON(IS_ERR(map))) {
6038		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6039			ret = 1;
6040		btrfs_free_chunk_map(map);
6041	}
6042	return ret;
6043}
6044
6045static int find_live_mirror(struct btrfs_fs_info *fs_info,
6046			    struct btrfs_chunk_map *map, int first,
6047			    int dev_replace_is_ongoing)
6048{
6049	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6050	int i;
6051	int num_stripes;
6052	int preferred_mirror;
6053	int tolerance;
6054	struct btrfs_device *srcdev;
6055
6056	ASSERT((map->type &
6057		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6058
6059	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6060		num_stripes = map->sub_stripes;
6061	else
6062		num_stripes = map->num_stripes;
6063
6064	switch (policy) {
6065	default:
6066		/* Shouldn't happen, just warn and use pid instead of failing */
6067		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6068			      policy);
6069		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
 
6070		fallthrough;
6071	case BTRFS_READ_POLICY_PID:
6072		preferred_mirror = first + (current->pid % num_stripes);
6073		break;
6074	}
6075
6076	if (dev_replace_is_ongoing &&
6077	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6078	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6079		srcdev = fs_info->dev_replace.srcdev;
6080	else
6081		srcdev = NULL;
6082
6083	/*
6084	 * try to avoid the drive that is the source drive for a
6085	 * dev-replace procedure, only choose it if no other non-missing
6086	 * mirror is available
6087	 */
6088	for (tolerance = 0; tolerance < 2; tolerance++) {
6089		if (map->stripes[preferred_mirror].dev->bdev &&
6090		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6091			return preferred_mirror;
6092		for (i = first; i < first + num_stripes; i++) {
6093			if (map->stripes[i].dev->bdev &&
6094			    (tolerance || map->stripes[i].dev != srcdev))
6095				return i;
6096		}
6097	}
6098
6099	/* we couldn't find one that doesn't fail.  Just return something
6100	 * and the io error handling code will clean up eventually
6101	 */
6102	return preferred_mirror;
6103}
6104
6105static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6106						       u64 logical,
6107						       u16 total_stripes)
6108{
6109	struct btrfs_io_context *bioc;
6110
6111	bioc = kzalloc(
6112		 /* The size of btrfs_io_context */
6113		sizeof(struct btrfs_io_context) +
6114		/* Plus the variable array for the stripes */
6115		sizeof(struct btrfs_io_stripe) * (total_stripes),
6116		GFP_NOFS);
6117
6118	if (!bioc)
6119		return NULL;
6120
6121	refcount_set(&bioc->refs, 1);
6122
6123	bioc->fs_info = fs_info;
6124	bioc->replace_stripe_src = -1;
6125	bioc->full_stripe_logical = (u64)-1;
6126	bioc->logical = logical;
6127
6128	return bioc;
6129}
6130
6131void btrfs_get_bioc(struct btrfs_io_context *bioc)
6132{
6133	WARN_ON(!refcount_read(&bioc->refs));
6134	refcount_inc(&bioc->refs);
6135}
6136
6137void btrfs_put_bioc(struct btrfs_io_context *bioc)
6138{
6139	if (!bioc)
6140		return;
6141	if (refcount_dec_and_test(&bioc->refs))
6142		kfree(bioc);
6143}
6144
6145/*
6146 * Please note that, discard won't be sent to target device of device
6147 * replace.
6148 */
6149struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6150					       u64 logical, u64 *length_ret,
6151					       u32 *num_stripes)
6152{
6153	struct btrfs_chunk_map *map;
6154	struct btrfs_discard_stripe *stripes;
6155	u64 length = *length_ret;
6156	u64 offset;
6157	u32 stripe_nr;
6158	u32 stripe_nr_end;
6159	u32 stripe_cnt;
6160	u64 stripe_end_offset;
6161	u64 stripe_offset;
6162	u32 stripe_index;
6163	u32 factor = 0;
6164	u32 sub_stripes = 0;
6165	u32 stripes_per_dev = 0;
6166	u32 remaining_stripes = 0;
6167	u32 last_stripe = 0;
6168	int ret;
6169	int i;
6170
6171	map = btrfs_get_chunk_map(fs_info, logical, length);
6172	if (IS_ERR(map))
6173		return ERR_CAST(map);
6174
6175	/* we don't discard raid56 yet */
6176	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177		ret = -EOPNOTSUPP;
6178		goto out_free_map;
6179	}
6180
6181	offset = logical - map->start;
6182	length = min_t(u64, map->start + map->chunk_len - logical, length);
6183	*length_ret = length;
6184
6185	/*
6186	 * stripe_nr counts the total number of stripes we have to stride
6187	 * to get to this block
6188	 */
6189	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6190
6191	/* stripe_offset is the offset of this block in its stripe */
6192	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6193
6194	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6195			BTRFS_STRIPE_LEN_SHIFT;
6196	stripe_cnt = stripe_nr_end - stripe_nr;
6197	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6198			    (offset + length);
6199	/*
6200	 * after this, stripe_nr is the number of stripes on this
6201	 * device we have to walk to find the data, and stripe_index is
6202	 * the number of our device in the stripe array
6203	 */
6204	*num_stripes = 1;
6205	stripe_index = 0;
6206	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207			 BTRFS_BLOCK_GROUP_RAID10)) {
6208		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6209			sub_stripes = 1;
6210		else
6211			sub_stripes = map->sub_stripes;
6212
6213		factor = map->num_stripes / sub_stripes;
6214		*num_stripes = min_t(u64, map->num_stripes,
6215				    sub_stripes * stripe_cnt);
6216		stripe_index = stripe_nr % factor;
6217		stripe_nr /= factor;
6218		stripe_index *= sub_stripes;
6219
6220		remaining_stripes = stripe_cnt % factor;
6221		stripes_per_dev = stripe_cnt / factor;
6222		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6223	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6224				BTRFS_BLOCK_GROUP_DUP)) {
6225		*num_stripes = map->num_stripes;
6226	} else {
6227		stripe_index = stripe_nr % map->num_stripes;
6228		stripe_nr /= map->num_stripes;
6229	}
6230
6231	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6232	if (!stripes) {
6233		ret = -ENOMEM;
6234		goto out_free_map;
6235	}
6236
6237	for (i = 0; i < *num_stripes; i++) {
6238		stripes[i].physical =
6239			map->stripes[stripe_index].physical +
6240			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6241		stripes[i].dev = map->stripes[stripe_index].dev;
6242
6243		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6244				 BTRFS_BLOCK_GROUP_RAID10)) {
6245			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6246
6247			if (i / sub_stripes < remaining_stripes)
6248				stripes[i].length += BTRFS_STRIPE_LEN;
6249
6250			/*
6251			 * Special for the first stripe and
6252			 * the last stripe:
6253			 *
6254			 * |-------|...|-------|
6255			 *     |----------|
6256			 *    off     end_off
6257			 */
6258			if (i < sub_stripes)
6259				stripes[i].length -= stripe_offset;
6260
6261			if (stripe_index >= last_stripe &&
6262			    stripe_index <= (last_stripe +
6263					     sub_stripes - 1))
6264				stripes[i].length -= stripe_end_offset;
6265
6266			if (i == sub_stripes - 1)
6267				stripe_offset = 0;
6268		} else {
6269			stripes[i].length = length;
6270		}
6271
6272		stripe_index++;
6273		if (stripe_index == map->num_stripes) {
6274			stripe_index = 0;
6275			stripe_nr++;
6276		}
6277	}
6278
6279	btrfs_free_chunk_map(map);
6280	return stripes;
6281out_free_map:
6282	btrfs_free_chunk_map(map);
6283	return ERR_PTR(ret);
6284}
6285
6286static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6287{
6288	struct btrfs_block_group *cache;
6289	bool ret;
6290
6291	/* Non zoned filesystem does not use "to_copy" flag */
6292	if (!btrfs_is_zoned(fs_info))
6293		return false;
6294
6295	cache = btrfs_lookup_block_group(fs_info, logical);
6296
6297	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6298
6299	btrfs_put_block_group(cache);
6300	return ret;
6301}
6302
6303static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6304				      struct btrfs_io_context *bioc,
6305				      struct btrfs_dev_replace *dev_replace,
6306				      u64 logical,
6307				      int *num_stripes_ret, int *max_errors_ret)
6308{
6309	u64 srcdev_devid = dev_replace->srcdev->devid;
6310	/*
6311	 * At this stage, num_stripes is still the real number of stripes,
6312	 * excluding the duplicated stripes.
6313	 */
6314	int num_stripes = *num_stripes_ret;
6315	int nr_extra_stripes = 0;
6316	int max_errors = *max_errors_ret;
6317	int i;
6318
6319	/*
6320	 * A block group which has "to_copy" set will eventually be copied by
6321	 * the dev-replace process. We can avoid cloning IO here.
6322	 */
6323	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6324		return;
6325
6326	/*
6327	 * Duplicate the write operations while the dev-replace procedure is
6328	 * running. Since the copying of the old disk to the new disk takes
6329	 * place at run time while the filesystem is mounted writable, the
6330	 * regular write operations to the old disk have to be duplicated to go
6331	 * to the new disk as well.
6332	 *
6333	 * Note that device->missing is handled by the caller, and that the
6334	 * write to the old disk is already set up in the stripes array.
6335	 */
6336	for (i = 0; i < num_stripes; i++) {
6337		struct btrfs_io_stripe *old = &bioc->stripes[i];
6338		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6339
6340		if (old->dev->devid != srcdev_devid)
6341			continue;
6342
6343		new->physical = old->physical;
6344		new->dev = dev_replace->tgtdev;
6345		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6346			bioc->replace_stripe_src = i;
6347		nr_extra_stripes++;
6348	}
6349
6350	/* We can only have at most 2 extra nr_stripes (for DUP). */
6351	ASSERT(nr_extra_stripes <= 2);
6352	/*
6353	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6354	 * replace.
6355	 * If we have 2 extra stripes, only choose the one with smaller physical.
6356	 */
6357	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6358		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6359		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6360
6361		/* Only DUP can have two extra stripes. */
6362		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6363
6364		/*
6365		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6366		 * The extra stripe would still be there, but won't be accessed.
6367		 */
6368		if (first->physical > second->physical) {
6369			swap(second->physical, first->physical);
6370			swap(second->dev, first->dev);
6371			nr_extra_stripes--;
6372		}
6373	}
6374
6375	*num_stripes_ret = num_stripes + nr_extra_stripes;
6376	*max_errors_ret = max_errors + nr_extra_stripes;
6377	bioc->replace_nr_stripes = nr_extra_stripes;
6378}
6379
6380static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6381			    struct btrfs_io_geometry *io_geom)
6382{
6383	/*
6384	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6385	 * the offset of this block in its stripe.
6386	 */
6387	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6388	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6389	ASSERT(io_geom->stripe_offset < U32_MAX);
6390
6391	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392		unsigned long full_stripe_len =
6393			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6394
6395		/*
6396		 * For full stripe start, we use previously calculated
6397		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6398		 * STRIPE_LEN.
6399		 *
6400		 * By this we can avoid u64 division completely.  And we have
6401		 * to go rounddown(), not round_down(), as nr_data_stripes is
6402		 * not ensured to be power of 2.
6403		 */
6404		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6405			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6406
6407		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6408		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6409		/*
6410		 * For writes to RAID56, allow to write a full stripe set, but
6411		 * no straddling of stripe sets.
6412		 */
6413		if (io_geom->op == BTRFS_MAP_WRITE)
6414			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6415	}
6416
6417	/*
6418	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6419	 * a single disk).
6420	 */
6421	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6422		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6423	return U64_MAX;
6424}
6425
6426static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6427			 u64 *length, struct btrfs_io_stripe *dst,
6428			 struct btrfs_chunk_map *map,
6429			 struct btrfs_io_geometry *io_geom)
6430{
6431	dst->dev = map->stripes[io_geom->stripe_index].dev;
6432
6433	if (io_geom->op == BTRFS_MAP_READ &&
6434	    btrfs_need_stripe_tree_update(fs_info, map->type))
6435		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6436						    map->type,
6437						    io_geom->stripe_index, dst);
6438
6439	dst->physical = map->stripes[io_geom->stripe_index].physical +
6440			io_geom->stripe_offset +
6441			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6442	return 0;
6443}
6444
6445static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6446				const struct btrfs_io_stripe *smap,
6447				const struct btrfs_chunk_map *map,
6448				int num_alloc_stripes,
6449				enum btrfs_map_op op, int mirror_num)
6450{
6451	if (!smap)
6452		return false;
6453
6454	if (num_alloc_stripes != 1)
6455		return false;
6456
6457	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6458		return false;
6459
6460	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6461		return false;
6462
6463	return true;
6464}
6465
6466static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6467			     struct btrfs_io_geometry *io_geom)
6468{
6469	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6470	io_geom->stripe_nr /= map->num_stripes;
6471	if (io_geom->op == BTRFS_MAP_READ)
6472		io_geom->mirror_num = 1;
6473}
6474
6475static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6476			     struct btrfs_chunk_map *map,
6477			     struct btrfs_io_geometry *io_geom,
6478			     bool dev_replace_is_ongoing)
6479{
6480	if (io_geom->op != BTRFS_MAP_READ) {
6481		io_geom->num_stripes = map->num_stripes;
6482		return;
6483	}
6484
6485	if (io_geom->mirror_num) {
6486		io_geom->stripe_index = io_geom->mirror_num - 1;
6487		return;
6488	}
6489
6490	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6491						 dev_replace_is_ongoing);
6492	io_geom->mirror_num = io_geom->stripe_index + 1;
6493}
6494
6495static void map_blocks_dup(const struct btrfs_chunk_map *map,
6496			   struct btrfs_io_geometry *io_geom)
6497{
6498	if (io_geom->op != BTRFS_MAP_READ) {
6499		io_geom->num_stripes = map->num_stripes;
6500		return;
6501	}
6502
6503	if (io_geom->mirror_num) {
6504		io_geom->stripe_index = io_geom->mirror_num - 1;
6505		return;
6506	}
6507
6508	io_geom->mirror_num = 1;
6509}
6510
6511static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6512			      struct btrfs_chunk_map *map,
6513			      struct btrfs_io_geometry *io_geom,
6514			      bool dev_replace_is_ongoing)
6515{
6516	u32 factor = map->num_stripes / map->sub_stripes;
6517	int old_stripe_index;
6518
6519	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6520	io_geom->stripe_nr /= factor;
6521
6522	if (io_geom->op != BTRFS_MAP_READ) {
6523		io_geom->num_stripes = map->sub_stripes;
6524		return;
6525	}
6526
6527	if (io_geom->mirror_num) {
6528		io_geom->stripe_index += io_geom->mirror_num - 1;
6529		return;
6530	}
6531
6532	old_stripe_index = io_geom->stripe_index;
6533	io_geom->stripe_index = find_live_mirror(fs_info, map,
6534						 io_geom->stripe_index,
6535						 dev_replace_is_ongoing);
6536	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6537}
6538
6539static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6540				    struct btrfs_io_geometry *io_geom,
6541				    u64 logical, u64 *length)
6542{
6543	int data_stripes = nr_data_stripes(map);
6544
6545	/*
6546	 * Needs full stripe mapping.
6547	 *
6548	 * Push stripe_nr back to the start of the full stripe For those cases
6549	 * needing a full stripe, @stripe_nr is the full stripe number.
6550	 *
6551	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6552	 * that can be expensive.  Here we just divide @stripe_nr with
6553	 * @data_stripes.
6554	 */
6555	io_geom->stripe_nr /= data_stripes;
6556
6557	/* RAID[56] write or recovery. Return all stripes */
6558	io_geom->num_stripes = map->num_stripes;
6559	io_geom->max_errors = btrfs_chunk_max_errors(map);
6560
6561	/* Return the length to the full stripe end. */
6562	*length = min(logical + *length,
6563		      io_geom->raid56_full_stripe_start + map->start +
6564		      btrfs_stripe_nr_to_offset(data_stripes)) -
6565		logical;
6566	io_geom->stripe_index = 0;
6567	io_geom->stripe_offset = 0;
6568}
6569
6570static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6571				   struct btrfs_io_geometry *io_geom)
6572{
6573	int data_stripes = nr_data_stripes(map);
6574
6575	ASSERT(io_geom->mirror_num <= 1);
6576	/* Just grab the data stripe directly. */
6577	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6578	io_geom->stripe_nr /= data_stripes;
6579
6580	/* We distribute the parity blocks across stripes. */
6581	io_geom->stripe_index =
6582		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6583
6584	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6585		io_geom->mirror_num = 1;
6586}
6587
6588static void map_blocks_single(const struct btrfs_chunk_map *map,
6589			      struct btrfs_io_geometry *io_geom)
6590{
6591	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6592	io_geom->stripe_nr /= map->num_stripes;
6593	io_geom->mirror_num = io_geom->stripe_index + 1;
6594}
6595
6596/*
6597 * Map one logical range to one or more physical ranges.
6598 *
6599 * @length:		(Mandatory) mapped length of this run.
6600 *			One logical range can be split into different segments
6601 *			due to factors like zones and RAID0/5/6/10 stripe
6602 *			boundaries.
6603 *
6604 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6605 *			which has one or more physical ranges (btrfs_io_stripe)
6606 *			recorded inside.
6607 *			Caller should call btrfs_put_bioc() to free it after use.
6608 *
6609 * @smap:		(Optional) single physical range optimization.
6610 *			If the map request can be fulfilled by one single
6611 *			physical range, and this is parameter is not NULL,
6612 *			then @bioc_ret would be NULL, and @smap would be
6613 *			updated.
6614 *
6615 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6616 *			value is 0.
6617 *
6618 *			Mirror number 0 means to choose any live mirrors.
6619 *
6620 *			For non-RAID56 profiles, non-zero mirror_num means
6621 *			the Nth mirror. (e.g. mirror_num 1 means the first
6622 *			copy).
6623 *
6624 *			For RAID56 profile, mirror 1 means rebuild from P and
6625 *			the remaining data stripes.
6626 *
6627 *			For RAID6 profile, mirror > 2 means mark another
6628 *			data/P stripe error and rebuild from the remaining
6629 *			stripes..
6630 */
6631int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6632		    u64 logical, u64 *length,
6633		    struct btrfs_io_context **bioc_ret,
6634		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6635{
6636	struct btrfs_chunk_map *map;
6637	struct btrfs_io_geometry io_geom = { 0 };
6638	u64 map_offset;
6639	int i;
6640	int ret = 0;
6641	int num_copies;
6642	struct btrfs_io_context *bioc = NULL;
6643	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6644	int dev_replace_is_ongoing = 0;
6645	u16 num_alloc_stripes;
6646	u64 max_len;
6647
6648	ASSERT(bioc_ret);
6649
6650	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6651	io_geom.num_stripes = 1;
6652	io_geom.stripe_index = 0;
6653	io_geom.op = op;
6654
6655	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6656	if (io_geom.mirror_num > num_copies)
6657		return -EINVAL;
6658
6659	map = btrfs_get_chunk_map(fs_info, logical, *length);
6660	if (IS_ERR(map))
6661		return PTR_ERR(map);
6662
6663	map_offset = logical - map->start;
6664	io_geom.raid56_full_stripe_start = (u64)-1;
6665	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6666	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6667
6668	down_read(&dev_replace->rwsem);
6669	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6670	/*
6671	 * Hold the semaphore for read during the whole operation, write is
6672	 * requested at commit time but must wait.
6673	 */
6674	if (!dev_replace_is_ongoing)
6675		up_read(&dev_replace->rwsem);
6676
6677	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6678	case BTRFS_BLOCK_GROUP_RAID0:
6679		map_blocks_raid0(map, &io_geom);
6680		break;
6681	case BTRFS_BLOCK_GROUP_RAID1:
6682	case BTRFS_BLOCK_GROUP_RAID1C3:
6683	case BTRFS_BLOCK_GROUP_RAID1C4:
6684		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6685		break;
6686	case BTRFS_BLOCK_GROUP_DUP:
6687		map_blocks_dup(map, &io_geom);
6688		break;
6689	case BTRFS_BLOCK_GROUP_RAID10:
6690		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6691		break;
6692	case BTRFS_BLOCK_GROUP_RAID5:
6693	case BTRFS_BLOCK_GROUP_RAID6:
6694		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6695			map_blocks_raid56_write(map, &io_geom, logical, length);
6696		else
6697			map_blocks_raid56_read(map, &io_geom);
6698		break;
6699	default:
6700		/*
6701		 * After this, stripe_nr is the number of stripes on this
6702		 * device we have to walk to find the data, and stripe_index is
6703		 * the number of our device in the stripe array
6704		 */
6705		map_blocks_single(map, &io_geom);
6706		break;
6707	}
6708	if (io_geom.stripe_index >= map->num_stripes) {
6709		btrfs_crit(fs_info,
6710			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6711			   io_geom.stripe_index, map->num_stripes);
6712		ret = -EINVAL;
6713		goto out;
6714	}
6715
6716	num_alloc_stripes = io_geom.num_stripes;
6717	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6718	    op != BTRFS_MAP_READ)
6719		/*
6720		 * For replace case, we need to add extra stripes for extra
6721		 * duplicated stripes.
6722		 *
6723		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6724		 * 2 more stripes (DUP types, otherwise 1).
6725		 */
6726		num_alloc_stripes += 2;
6727
6728	/*
6729	 * If this I/O maps to a single device, try to return the device and
6730	 * physical block information on the stack instead of allocating an
6731	 * I/O context structure.
6732	 */
6733	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6734				io_geom.mirror_num)) {
6735		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6736		if (mirror_num_ret)
6737			*mirror_num_ret = io_geom.mirror_num;
6738		*bioc_ret = NULL;
6739		goto out;
6740	}
6741
6742	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6743	if (!bioc) {
6744		ret = -ENOMEM;
6745		goto out;
6746	}
6747	bioc->map_type = map->type;
6748
6749	/*
6750	 * For RAID56 full map, we need to make sure the stripes[] follows the
6751	 * rule that data stripes are all ordered, then followed with P and Q
6752	 * (if we have).
6753	 *
6754	 * It's still mostly the same as other profiles, just with extra rotation.
6755	 */
6756	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6757	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6758		/*
6759		 * For RAID56 @stripe_nr is already the number of full stripes
6760		 * before us, which is also the rotation value (needs to modulo
6761		 * with num_stripes).
6762		 *
6763		 * In this case, we just add @stripe_nr with @i, then do the
6764		 * modulo, to reduce one modulo call.
6765		 */
6766		bioc->full_stripe_logical = map->start +
6767			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6768						  nr_data_stripes(map));
6769		for (int i = 0; i < io_geom.num_stripes; i++) {
6770			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6771			u32 stripe_index;
6772
6773			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6774			dst->dev = map->stripes[stripe_index].dev;
6775			dst->physical =
6776				map->stripes[stripe_index].physical +
6777				io_geom.stripe_offset +
6778				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6779		}
6780	} else {
6781		/*
6782		 * For all other non-RAID56 profiles, just copy the target
6783		 * stripe into the bioc.
6784		 */
6785		for (i = 0; i < io_geom.num_stripes; i++) {
6786			ret = set_io_stripe(fs_info, logical, length,
6787					    &bioc->stripes[i], map, &io_geom);
6788			if (ret < 0)
6789				break;
6790			io_geom.stripe_index++;
6791		}
6792	}
6793
6794	if (ret) {
6795		*bioc_ret = NULL;
6796		btrfs_put_bioc(bioc);
6797		goto out;
6798	}
6799
6800	if (op != BTRFS_MAP_READ)
6801		io_geom.max_errors = btrfs_chunk_max_errors(map);
6802
6803	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6804	    op != BTRFS_MAP_READ) {
6805		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6806					  &io_geom.num_stripes, &io_geom.max_errors);
6807	}
6808
6809	*bioc_ret = bioc;
6810	bioc->num_stripes = io_geom.num_stripes;
6811	bioc->max_errors = io_geom.max_errors;
6812	bioc->mirror_num = io_geom.mirror_num;
6813
6814out:
6815	if (dev_replace_is_ongoing) {
6816		lockdep_assert_held(&dev_replace->rwsem);
6817		/* Unlock and let waiting writers proceed */
6818		up_read(&dev_replace->rwsem);
6819	}
6820	btrfs_free_chunk_map(map);
6821	return ret;
6822}
6823
6824static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6825				      const struct btrfs_fs_devices *fs_devices)
6826{
6827	if (args->fsid == NULL)
6828		return true;
6829	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6830		return true;
6831	return false;
6832}
6833
6834static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6835				  const struct btrfs_device *device)
6836{
6837	if (args->missing) {
6838		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6839		    !device->bdev)
6840			return true;
6841		return false;
6842	}
6843
6844	if (device->devid != args->devid)
6845		return false;
6846	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6847		return false;
6848	return true;
6849}
6850
6851/*
6852 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6853 * return NULL.
6854 *
6855 * If devid and uuid are both specified, the match must be exact, otherwise
6856 * only devid is used.
6857 */
6858struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6859				       const struct btrfs_dev_lookup_args *args)
6860{
6861	struct btrfs_device *device;
6862	struct btrfs_fs_devices *seed_devs;
6863
6864	if (dev_args_match_fs_devices(args, fs_devices)) {
6865		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6866			if (dev_args_match_device(args, device))
6867				return device;
6868		}
6869	}
6870
6871	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6872		if (!dev_args_match_fs_devices(args, seed_devs))
6873			continue;
6874		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6875			if (dev_args_match_device(args, device))
6876				return device;
6877		}
6878	}
6879
6880	return NULL;
6881}
6882
6883static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6884					    u64 devid, u8 *dev_uuid)
6885{
6886	struct btrfs_device *device;
6887	unsigned int nofs_flag;
6888
6889	/*
6890	 * We call this under the chunk_mutex, so we want to use NOFS for this
6891	 * allocation, however we don't want to change btrfs_alloc_device() to
6892	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6893	 * places.
6894	 */
6895
6896	nofs_flag = memalloc_nofs_save();
6897	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6898	memalloc_nofs_restore(nofs_flag);
6899	if (IS_ERR(device))
6900		return device;
6901
6902	list_add(&device->dev_list, &fs_devices->devices);
6903	device->fs_devices = fs_devices;
6904	fs_devices->num_devices++;
6905
6906	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6907	fs_devices->missing_devices++;
6908
6909	return device;
6910}
6911
6912/*
6913 * Allocate new device struct, set up devid and UUID.
6914 *
6915 * @fs_info:	used only for generating a new devid, can be NULL if
6916 *		devid is provided (i.e. @devid != NULL).
6917 * @devid:	a pointer to devid for this device.  If NULL a new devid
6918 *		is generated.
6919 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6920 *		is generated.
6921 * @path:	a pointer to device path if available, NULL otherwise.
6922 *
6923 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924 * on error.  Returned struct is not linked onto any lists and must be
6925 * destroyed with btrfs_free_device.
6926 */
6927struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928					const u64 *devid, const u8 *uuid,
6929					const char *path)
6930{
6931	struct btrfs_device *dev;
6932	u64 tmp;
6933
6934	if (WARN_ON(!devid && !fs_info))
6935		return ERR_PTR(-EINVAL);
6936
6937	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938	if (!dev)
6939		return ERR_PTR(-ENOMEM);
6940
6941	INIT_LIST_HEAD(&dev->dev_list);
6942	INIT_LIST_HEAD(&dev->dev_alloc_list);
6943	INIT_LIST_HEAD(&dev->post_commit_list);
6944
6945	atomic_set(&dev->dev_stats_ccnt, 0);
6946	btrfs_device_data_ordered_init(dev);
6947	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6948
6949	if (devid)
6950		tmp = *devid;
6951	else {
6952		int ret;
6953
6954		ret = find_next_devid(fs_info, &tmp);
6955		if (ret) {
6956			btrfs_free_device(dev);
6957			return ERR_PTR(ret);
6958		}
6959	}
6960	dev->devid = tmp;
6961
6962	if (uuid)
6963		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6964	else
6965		generate_random_uuid(dev->uuid);
6966
6967	if (path) {
6968		struct rcu_string *name;
6969
6970		name = rcu_string_strdup(path, GFP_KERNEL);
6971		if (!name) {
6972			btrfs_free_device(dev);
6973			return ERR_PTR(-ENOMEM);
6974		}
6975		rcu_assign_pointer(dev->name, name);
6976	}
6977
6978	return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982					u64 devid, u8 *uuid, bool error)
6983{
6984	if (error)
6985		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986			      devid, uuid);
6987	else
6988		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989			      devid, uuid);
6990}
6991
6992u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6993{
6994	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6995
6996	return div_u64(map->chunk_len, data_stripes);
6997}
6998
6999#if BITS_PER_LONG == 32
7000/*
7001 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002 * can't be accessed on 32bit systems.
7003 *
7004 * This function do mount time check to reject the fs if it already has
7005 * metadata chunk beyond that limit.
7006 */
7007static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008				  u64 logical, u64 length, u64 type)
7009{
7010	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011		return 0;
7012
7013	if (logical + length < MAX_LFS_FILESIZE)
7014		return 0;
7015
7016	btrfs_err_32bit_limit(fs_info);
7017	return -EOVERFLOW;
7018}
7019
7020/*
7021 * This is to give early warning for any metadata chunk reaching
7022 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023 * Although we can still access the metadata, it's not going to be possible
7024 * once the limit is reached.
7025 */
7026static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027				  u64 logical, u64 length, u64 type)
7028{
7029	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030		return;
7031
7032	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033		return;
7034
7035	btrfs_warn_32bit_limit(fs_info);
7036}
7037#endif
7038
7039static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040						  u64 devid, u8 *uuid)
7041{
7042	struct btrfs_device *dev;
7043
7044	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045		btrfs_report_missing_device(fs_info, devid, uuid, true);
7046		return ERR_PTR(-ENOENT);
7047	}
7048
7049	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050	if (IS_ERR(dev)) {
7051		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052			  devid, PTR_ERR(dev));
7053		return dev;
7054	}
7055	btrfs_report_missing_device(fs_info, devid, uuid, false);
7056
7057	return dev;
7058}
7059
7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061			  struct btrfs_chunk *chunk)
7062{
7063	BTRFS_DEV_LOOKUP_ARGS(args);
7064	struct btrfs_fs_info *fs_info = leaf->fs_info;
7065	struct btrfs_chunk_map *map;
7066	u64 logical;
7067	u64 length;
7068	u64 devid;
7069	u64 type;
7070	u8 uuid[BTRFS_UUID_SIZE];
7071	int index;
7072	int num_stripes;
7073	int ret;
7074	int i;
7075
7076	logical = key->offset;
7077	length = btrfs_chunk_length(leaf, chunk);
7078	type = btrfs_chunk_type(leaf, chunk);
7079	index = btrfs_bg_flags_to_raid_index(type);
7080	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
7082#if BITS_PER_LONG == 32
7083	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084	if (ret < 0)
7085		return ret;
7086	warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
7089	/*
7090	 * Only need to verify chunk item if we're reading from sys chunk array,
7091	 * as chunk item in tree block is already verified by tree-checker.
7092	 */
7093	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095		if (ret)
7096			return ret;
7097	}
7098
7099	map = btrfs_find_chunk_map(fs_info, logical, 1);
7100
7101	/* already mapped? */
7102	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7103		btrfs_free_chunk_map(map);
7104		return 0;
7105	} else if (map) {
7106		btrfs_free_chunk_map(map);
7107	}
7108
7109	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7110	if (!map)
7111		return -ENOMEM;
7112
7113	map->start = logical;
7114	map->chunk_len = length;
7115	map->num_stripes = num_stripes;
7116	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7117	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7118	map->type = type;
7119	/*
7120	 * We can't use the sub_stripes value, as for profiles other than
7121	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7122	 * older mkfs (<v5.4).
7123	 * In that case, it can cause divide-by-zero errors later.
7124	 * Since currently sub_stripes is fixed for each profile, let's
7125	 * use the trusted value instead.
7126	 */
7127	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7128	map->verified_stripes = 0;
7129	map->stripe_size = btrfs_calc_stripe_length(map);
7130	for (i = 0; i < num_stripes; i++) {
7131		map->stripes[i].physical =
7132			btrfs_stripe_offset_nr(leaf, chunk, i);
7133		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7134		args.devid = devid;
7135		read_extent_buffer(leaf, uuid, (unsigned long)
7136				   btrfs_stripe_dev_uuid_nr(chunk, i),
7137				   BTRFS_UUID_SIZE);
7138		args.uuid = uuid;
7139		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7140		if (!map->stripes[i].dev) {
7141			map->stripes[i].dev = handle_missing_device(fs_info,
7142								    devid, uuid);
7143			if (IS_ERR(map->stripes[i].dev)) {
7144				ret = PTR_ERR(map->stripes[i].dev);
7145				btrfs_free_chunk_map(map);
7146				return ret;
7147			}
7148		}
7149
7150		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7151				&(map->stripes[i].dev->dev_state));
7152	}
7153
7154	ret = btrfs_add_chunk_map(fs_info, map);
7155	if (ret < 0) {
7156		btrfs_err(fs_info,
7157			  "failed to add chunk map, start=%llu len=%llu: %d",
7158			  map->start, map->chunk_len, ret);
7159	}
7160
7161	return ret;
7162}
7163
7164static void fill_device_from_item(struct extent_buffer *leaf,
7165				 struct btrfs_dev_item *dev_item,
7166				 struct btrfs_device *device)
7167{
7168	unsigned long ptr;
7169
7170	device->devid = btrfs_device_id(leaf, dev_item);
7171	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7172	device->total_bytes = device->disk_total_bytes;
7173	device->commit_total_bytes = device->disk_total_bytes;
7174	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7175	device->commit_bytes_used = device->bytes_used;
7176	device->type = btrfs_device_type(leaf, dev_item);
7177	device->io_align = btrfs_device_io_align(leaf, dev_item);
7178	device->io_width = btrfs_device_io_width(leaf, dev_item);
7179	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7180	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7181	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7182
7183	ptr = btrfs_device_uuid(dev_item);
7184	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7185}
7186
7187static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7188						  u8 *fsid)
7189{
7190	struct btrfs_fs_devices *fs_devices;
7191	int ret;
7192
7193	lockdep_assert_held(&uuid_mutex);
7194	ASSERT(fsid);
7195
7196	/* This will match only for multi-device seed fs */
7197	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7198		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7199			return fs_devices;
7200
7201
7202	fs_devices = find_fsid(fsid, NULL);
7203	if (!fs_devices) {
7204		if (!btrfs_test_opt(fs_info, DEGRADED))
7205			return ERR_PTR(-ENOENT);
7206
7207		fs_devices = alloc_fs_devices(fsid);
7208		if (IS_ERR(fs_devices))
7209			return fs_devices;
7210
7211		fs_devices->seeding = true;
7212		fs_devices->opened = 1;
7213		return fs_devices;
7214	}
7215
7216	/*
7217	 * Upon first call for a seed fs fsid, just create a private copy of the
7218	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7219	 */
7220	fs_devices = clone_fs_devices(fs_devices);
7221	if (IS_ERR(fs_devices))
7222		return fs_devices;
7223
7224	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7225	if (ret) {
7226		free_fs_devices(fs_devices);
7227		return ERR_PTR(ret);
7228	}
7229
7230	if (!fs_devices->seeding) {
7231		close_fs_devices(fs_devices);
7232		free_fs_devices(fs_devices);
7233		return ERR_PTR(-EINVAL);
7234	}
7235
7236	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7237
7238	return fs_devices;
7239}
7240
7241static int read_one_dev(struct extent_buffer *leaf,
7242			struct btrfs_dev_item *dev_item)
7243{
7244	BTRFS_DEV_LOOKUP_ARGS(args);
7245	struct btrfs_fs_info *fs_info = leaf->fs_info;
7246	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247	struct btrfs_device *device;
7248	u64 devid;
7249	int ret;
7250	u8 fs_uuid[BTRFS_FSID_SIZE];
7251	u8 dev_uuid[BTRFS_UUID_SIZE];
7252
7253	devid = btrfs_device_id(leaf, dev_item);
7254	args.devid = devid;
7255	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7256			   BTRFS_UUID_SIZE);
7257	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7258			   BTRFS_FSID_SIZE);
7259	args.uuid = dev_uuid;
7260	args.fsid = fs_uuid;
7261
7262	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7263		fs_devices = open_seed_devices(fs_info, fs_uuid);
7264		if (IS_ERR(fs_devices))
7265			return PTR_ERR(fs_devices);
7266	}
7267
7268	device = btrfs_find_device(fs_info->fs_devices, &args);
7269	if (!device) {
7270		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271			btrfs_report_missing_device(fs_info, devid,
7272							dev_uuid, true);
7273			return -ENOENT;
7274		}
7275
7276		device = add_missing_dev(fs_devices, devid, dev_uuid);
7277		if (IS_ERR(device)) {
7278			btrfs_err(fs_info,
7279				"failed to add missing dev %llu: %ld",
7280				devid, PTR_ERR(device));
7281			return PTR_ERR(device);
7282		}
7283		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7284	} else {
7285		if (!device->bdev) {
7286			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7287				btrfs_report_missing_device(fs_info,
7288						devid, dev_uuid, true);
7289				return -ENOENT;
7290			}
7291			btrfs_report_missing_device(fs_info, devid,
7292							dev_uuid, false);
7293		}
7294
7295		if (!device->bdev &&
7296		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7297			/*
7298			 * this happens when a device that was properly setup
7299			 * in the device info lists suddenly goes bad.
7300			 * device->bdev is NULL, and so we have to set
7301			 * device->missing to one here
7302			 */
7303			device->fs_devices->missing_devices++;
7304			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7305		}
7306
7307		/* Move the device to its own fs_devices */
7308		if (device->fs_devices != fs_devices) {
7309			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7310							&device->dev_state));
7311
7312			list_move(&device->dev_list, &fs_devices->devices);
7313			device->fs_devices->num_devices--;
7314			fs_devices->num_devices++;
7315
7316			device->fs_devices->missing_devices--;
7317			fs_devices->missing_devices++;
7318
7319			device->fs_devices = fs_devices;
7320		}
7321	}
7322
7323	if (device->fs_devices != fs_info->fs_devices) {
7324		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7325		if (device->generation !=
7326		    btrfs_device_generation(leaf, dev_item))
7327			return -EINVAL;
7328	}
7329
7330	fill_device_from_item(leaf, dev_item, device);
7331	if (device->bdev) {
7332		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7333
7334		if (device->total_bytes > max_total_bytes) {
7335			btrfs_err(fs_info,
7336			"device total_bytes should be at most %llu but found %llu",
7337				  max_total_bytes, device->total_bytes);
7338			return -EINVAL;
7339		}
7340	}
7341	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7342	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7343	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7344		device->fs_devices->total_rw_bytes += device->total_bytes;
7345		atomic64_add(device->total_bytes - device->bytes_used,
7346				&fs_info->free_chunk_space);
7347	}
7348	ret = 0;
7349	return ret;
7350}
7351
7352int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7353{
7354	struct btrfs_super_block *super_copy = fs_info->super_copy;
7355	struct extent_buffer *sb;
7356	struct btrfs_disk_key *disk_key;
7357	struct btrfs_chunk *chunk;
7358	u8 *array_ptr;
7359	unsigned long sb_array_offset;
7360	int ret = 0;
7361	u32 num_stripes;
7362	u32 array_size;
7363	u32 len = 0;
7364	u32 cur_offset;
7365	u64 type;
7366	struct btrfs_key key;
7367
7368	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7369
7370	/*
7371	 * We allocated a dummy extent, just to use extent buffer accessors.
7372	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7373	 * that's fine, we will not go beyond system chunk array anyway.
7374	 */
7375	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7376	if (!sb)
7377		return -ENOMEM;
7378	set_extent_buffer_uptodate(sb);
7379
7380	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7381	array_size = btrfs_super_sys_array_size(super_copy);
7382
7383	array_ptr = super_copy->sys_chunk_array;
7384	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7385	cur_offset = 0;
7386
7387	while (cur_offset < array_size) {
7388		disk_key = (struct btrfs_disk_key *)array_ptr;
7389		len = sizeof(*disk_key);
7390		if (cur_offset + len > array_size)
7391			goto out_short_read;
7392
7393		btrfs_disk_key_to_cpu(&key, disk_key);
7394
7395		array_ptr += len;
7396		sb_array_offset += len;
7397		cur_offset += len;
7398
7399		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400			btrfs_err(fs_info,
7401			    "unexpected item type %u in sys_array at offset %u",
7402				  (u32)key.type, cur_offset);
7403			ret = -EIO;
7404			break;
7405		}
7406
7407		chunk = (struct btrfs_chunk *)sb_array_offset;
7408		/*
7409		 * At least one btrfs_chunk with one stripe must be present,
7410		 * exact stripe count check comes afterwards
7411		 */
7412		len = btrfs_chunk_item_size(1);
7413		if (cur_offset + len > array_size)
7414			goto out_short_read;
7415
7416		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7417		if (!num_stripes) {
7418			btrfs_err(fs_info,
7419			"invalid number of stripes %u in sys_array at offset %u",
7420				  num_stripes, cur_offset);
7421			ret = -EIO;
7422			break;
7423		}
7424
7425		type = btrfs_chunk_type(sb, chunk);
7426		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427			btrfs_err(fs_info,
7428			"invalid chunk type %llu in sys_array at offset %u",
7429				  type, cur_offset);
7430			ret = -EIO;
7431			break;
7432		}
7433
7434		len = btrfs_chunk_item_size(num_stripes);
7435		if (cur_offset + len > array_size)
7436			goto out_short_read;
7437
7438		ret = read_one_chunk(&key, sb, chunk);
7439		if (ret)
7440			break;
7441
7442		array_ptr += len;
7443		sb_array_offset += len;
7444		cur_offset += len;
7445	}
7446	clear_extent_buffer_uptodate(sb);
7447	free_extent_buffer_stale(sb);
7448	return ret;
7449
7450out_short_read:
7451	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452			len, cur_offset);
7453	clear_extent_buffer_uptodate(sb);
7454	free_extent_buffer_stale(sb);
7455	return -EIO;
7456}
7457
7458/*
7459 * Check if all chunks in the fs are OK for read-write degraded mount
7460 *
7461 * If the @failing_dev is specified, it's accounted as missing.
7462 *
7463 * Return true if all chunks meet the minimal RW mount requirements.
7464 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465 */
7466bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7467					struct btrfs_device *failing_dev)
7468{
7469	struct btrfs_chunk_map *map;
7470	u64 next_start;
7471	bool ret = true;
7472
7473	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7474	/* No chunk at all? Return false anyway */
7475	if (!map) {
7476		ret = false;
7477		goto out;
7478	}
7479	while (map) {
7480		int missing = 0;
7481		int max_tolerated;
7482		int i;
7483
7484		max_tolerated =
7485			btrfs_get_num_tolerated_disk_barrier_failures(
7486					map->type);
7487		for (i = 0; i < map->num_stripes; i++) {
7488			struct btrfs_device *dev = map->stripes[i].dev;
7489
7490			if (!dev || !dev->bdev ||
7491			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7492			    dev->last_flush_error)
7493				missing++;
7494			else if (failing_dev && failing_dev == dev)
7495				missing++;
7496		}
7497		if (missing > max_tolerated) {
7498			if (!failing_dev)
7499				btrfs_warn(fs_info,
7500	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7501				   map->start, missing, max_tolerated);
7502			btrfs_free_chunk_map(map);
7503			ret = false;
7504			goto out;
7505		}
7506		next_start = map->start + map->chunk_len;
7507		btrfs_free_chunk_map(map);
7508
7509		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7510	}
7511out:
7512	return ret;
7513}
7514
7515static void readahead_tree_node_children(struct extent_buffer *node)
7516{
7517	int i;
7518	const int nr_items = btrfs_header_nritems(node);
7519
7520	for (i = 0; i < nr_items; i++)
7521		btrfs_readahead_node_child(node, i);
7522}
7523
7524int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7525{
7526	struct btrfs_root *root = fs_info->chunk_root;
7527	struct btrfs_path *path;
7528	struct extent_buffer *leaf;
7529	struct btrfs_key key;
7530	struct btrfs_key found_key;
7531	int ret;
7532	int slot;
7533	int iter_ret = 0;
7534	u64 total_dev = 0;
7535	u64 last_ra_node = 0;
7536
7537	path = btrfs_alloc_path();
7538	if (!path)
7539		return -ENOMEM;
7540
7541	/*
7542	 * uuid_mutex is needed only if we are mounting a sprout FS
7543	 * otherwise we don't need it.
7544	 */
7545	mutex_lock(&uuid_mutex);
7546
7547	/*
7548	 * It is possible for mount and umount to race in such a way that
7549	 * we execute this code path, but open_fs_devices failed to clear
7550	 * total_rw_bytes. We certainly want it cleared before reading the
7551	 * device items, so clear it here.
7552	 */
7553	fs_info->fs_devices->total_rw_bytes = 0;
7554
7555	/*
7556	 * Lockdep complains about possible circular locking dependency between
7557	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7558	 * used for freeze procection of a fs (struct super_block.s_writers),
7559	 * which we take when starting a transaction, and extent buffers of the
7560	 * chunk tree if we call read_one_dev() while holding a lock on an
7561	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7562	 * and at this point there can't be any concurrent task modifying the
7563	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7564	 */
7565	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7566	path->skip_locking = 1;
7567
7568	/*
7569	 * Read all device items, and then all the chunk items. All
7570	 * device items are found before any chunk item (their object id
7571	 * is smaller than the lowest possible object id for a chunk
7572	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7573	 */
7574	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7575	key.offset = 0;
7576	key.type = 0;
7577	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7578		struct extent_buffer *node = path->nodes[1];
7579
7580		leaf = path->nodes[0];
7581		slot = path->slots[0];
7582
7583		if (node) {
7584			if (last_ra_node != node->start) {
7585				readahead_tree_node_children(node);
7586				last_ra_node = node->start;
7587			}
7588		}
7589		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7590			struct btrfs_dev_item *dev_item;
7591			dev_item = btrfs_item_ptr(leaf, slot,
7592						  struct btrfs_dev_item);
7593			ret = read_one_dev(leaf, dev_item);
7594			if (ret)
7595				goto error;
7596			total_dev++;
7597		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7598			struct btrfs_chunk *chunk;
7599
7600			/*
7601			 * We are only called at mount time, so no need to take
7602			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7603			 * we always lock first fs_info->chunk_mutex before
7604			 * acquiring any locks on the chunk tree. This is a
7605			 * requirement for chunk allocation, see the comment on
7606			 * top of btrfs_chunk_alloc() for details.
7607			 */
7608			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7609			ret = read_one_chunk(&found_key, leaf, chunk);
7610			if (ret)
7611				goto error;
7612		}
7613	}
7614	/* Catch error found during iteration */
7615	if (iter_ret < 0) {
7616		ret = iter_ret;
7617		goto error;
7618	}
7619
7620	/*
7621	 * After loading chunk tree, we've got all device information,
7622	 * do another round of validation checks.
7623	 */
7624	if (total_dev != fs_info->fs_devices->total_devices) {
7625		btrfs_warn(fs_info,
7626"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7627			  btrfs_super_num_devices(fs_info->super_copy),
7628			  total_dev);
7629		fs_info->fs_devices->total_devices = total_dev;
7630		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7631	}
7632	if (btrfs_super_total_bytes(fs_info->super_copy) <
7633	    fs_info->fs_devices->total_rw_bytes) {
7634		btrfs_err(fs_info,
7635	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7636			  btrfs_super_total_bytes(fs_info->super_copy),
7637			  fs_info->fs_devices->total_rw_bytes);
7638		ret = -EINVAL;
7639		goto error;
7640	}
7641	ret = 0;
7642error:
7643	mutex_unlock(&uuid_mutex);
7644
7645	btrfs_free_path(path);
7646	return ret;
7647}
7648
7649int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7650{
7651	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7652	struct btrfs_device *device;
7653	int ret = 0;
7654
7655	fs_devices->fs_info = fs_info;
7656
7657	mutex_lock(&fs_devices->device_list_mutex);
7658	list_for_each_entry(device, &fs_devices->devices, dev_list)
7659		device->fs_info = fs_info;
7660
7661	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7662		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7663			device->fs_info = fs_info;
7664			ret = btrfs_get_dev_zone_info(device, false);
7665			if (ret)
7666				break;
7667		}
7668
7669		seed_devs->fs_info = fs_info;
7670	}
7671	mutex_unlock(&fs_devices->device_list_mutex);
7672
7673	return ret;
7674}
7675
7676static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7677				 const struct btrfs_dev_stats_item *ptr,
7678				 int index)
7679{
7680	u64 val;
7681
7682	read_extent_buffer(eb, &val,
7683			   offsetof(struct btrfs_dev_stats_item, values) +
7684			    ((unsigned long)ptr) + (index * sizeof(u64)),
7685			   sizeof(val));
7686	return val;
7687}
7688
7689static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7690				      struct btrfs_dev_stats_item *ptr,
7691				      int index, u64 val)
7692{
7693	write_extent_buffer(eb, &val,
7694			    offsetof(struct btrfs_dev_stats_item, values) +
7695			     ((unsigned long)ptr) + (index * sizeof(u64)),
7696			    sizeof(val));
7697}
7698
7699static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7700				       struct btrfs_path *path)
7701{
7702	struct btrfs_dev_stats_item *ptr;
7703	struct extent_buffer *eb;
7704	struct btrfs_key key;
7705	int item_size;
7706	int i, ret, slot;
7707
7708	if (!device->fs_info->dev_root)
7709		return 0;
7710
7711	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7712	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7713	key.offset = device->devid;
7714	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715	if (ret) {
7716		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7717			btrfs_dev_stat_set(device, i, 0);
7718		device->dev_stats_valid = 1;
7719		btrfs_release_path(path);
7720		return ret < 0 ? ret : 0;
7721	}
7722	slot = path->slots[0];
7723	eb = path->nodes[0];
7724	item_size = btrfs_item_size(eb, slot);
7725
7726	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727
7728	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7729		if (item_size >= (1 + i) * sizeof(__le64))
7730			btrfs_dev_stat_set(device, i,
7731					   btrfs_dev_stats_value(eb, ptr, i));
7732		else
7733			btrfs_dev_stat_set(device, i, 0);
7734	}
7735
7736	device->dev_stats_valid = 1;
7737	btrfs_dev_stat_print_on_load(device);
7738	btrfs_release_path(path);
7739
7740	return 0;
7741}
7742
7743int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744{
7745	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7746	struct btrfs_device *device;
7747	struct btrfs_path *path = NULL;
7748	int ret = 0;
7749
7750	path = btrfs_alloc_path();
7751	if (!path)
7752		return -ENOMEM;
7753
7754	mutex_lock(&fs_devices->device_list_mutex);
7755	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7756		ret = btrfs_device_init_dev_stats(device, path);
7757		if (ret)
7758			goto out;
7759	}
7760	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7761		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7762			ret = btrfs_device_init_dev_stats(device, path);
7763			if (ret)
7764				goto out;
7765		}
7766	}
7767out:
7768	mutex_unlock(&fs_devices->device_list_mutex);
7769
7770	btrfs_free_path(path);
7771	return ret;
7772}
7773
7774static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7775				struct btrfs_device *device)
7776{
7777	struct btrfs_fs_info *fs_info = trans->fs_info;
7778	struct btrfs_root *dev_root = fs_info->dev_root;
7779	struct btrfs_path *path;
7780	struct btrfs_key key;
7781	struct extent_buffer *eb;
7782	struct btrfs_dev_stats_item *ptr;
7783	int ret;
7784	int i;
7785
7786	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7787	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7788	key.offset = device->devid;
7789
7790	path = btrfs_alloc_path();
7791	if (!path)
7792		return -ENOMEM;
7793	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794	if (ret < 0) {
7795		btrfs_warn_in_rcu(fs_info,
7796			"error %d while searching for dev_stats item for device %s",
7797				  ret, btrfs_dev_name(device));
7798		goto out;
7799	}
7800
7801	if (ret == 0 &&
7802	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7803		/* need to delete old one and insert a new one */
7804		ret = btrfs_del_item(trans, dev_root, path);
7805		if (ret != 0) {
7806			btrfs_warn_in_rcu(fs_info,
7807				"delete too small dev_stats item for device %s failed %d",
7808					  btrfs_dev_name(device), ret);
7809			goto out;
7810		}
7811		ret = 1;
7812	}
7813
7814	if (ret == 1) {
7815		/* need to insert a new item */
7816		btrfs_release_path(path);
7817		ret = btrfs_insert_empty_item(trans, dev_root, path,
7818					      &key, sizeof(*ptr));
7819		if (ret < 0) {
7820			btrfs_warn_in_rcu(fs_info,
7821				"insert dev_stats item for device %s failed %d",
7822				btrfs_dev_name(device), ret);
7823			goto out;
7824		}
7825	}
7826
7827	eb = path->nodes[0];
7828	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7829	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7830		btrfs_set_dev_stats_value(eb, ptr, i,
7831					  btrfs_dev_stat_read(device, i));
7832	btrfs_mark_buffer_dirty(trans, eb);
7833
7834out:
7835	btrfs_free_path(path);
7836	return ret;
7837}
7838
7839/*
7840 * called from commit_transaction. Writes all changed device stats to disk.
7841 */
7842int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843{
7844	struct btrfs_fs_info *fs_info = trans->fs_info;
7845	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846	struct btrfs_device *device;
7847	int stats_cnt;
7848	int ret = 0;
7849
7850	mutex_lock(&fs_devices->device_list_mutex);
7851	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7852		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7853		if (!device->dev_stats_valid || stats_cnt == 0)
7854			continue;
7855
7856
7857		/*
7858		 * There is a LOAD-LOAD control dependency between the value of
7859		 * dev_stats_ccnt and updating the on-disk values which requires
7860		 * reading the in-memory counters. Such control dependencies
7861		 * require explicit read memory barriers.
7862		 *
7863		 * This memory barriers pairs with smp_mb__before_atomic in
7864		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7865		 * barrier implied by atomic_xchg in
7866		 * btrfs_dev_stats_read_and_reset
7867		 */
7868		smp_rmb();
7869
7870		ret = update_dev_stat_item(trans, device);
7871		if (!ret)
7872			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873	}
7874	mutex_unlock(&fs_devices->device_list_mutex);
7875
7876	return ret;
7877}
7878
7879void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880{
7881	btrfs_dev_stat_inc(dev, index);
7882
7883	if (!dev->dev_stats_valid)
7884		return;
7885	btrfs_err_rl_in_rcu(dev->fs_info,
7886		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7887			   btrfs_dev_name(dev),
7888			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7889			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7890			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7891			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7892			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7893}
7894
7895static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7896{
7897	int i;
7898
7899	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7900		if (btrfs_dev_stat_read(dev, i) != 0)
7901			break;
7902	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7903		return; /* all values == 0, suppress message */
7904
7905	btrfs_info_in_rcu(dev->fs_info,
7906		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7907	       btrfs_dev_name(dev),
7908	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7909	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7910	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7911	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7912	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7913}
7914
7915int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7916			struct btrfs_ioctl_get_dev_stats *stats)
7917{
7918	BTRFS_DEV_LOOKUP_ARGS(args);
7919	struct btrfs_device *dev;
7920	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7921	int i;
7922
7923	mutex_lock(&fs_devices->device_list_mutex);
7924	args.devid = stats->devid;
7925	dev = btrfs_find_device(fs_info->fs_devices, &args);
7926	mutex_unlock(&fs_devices->device_list_mutex);
7927
7928	if (!dev) {
7929		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7930		return -ENODEV;
7931	} else if (!dev->dev_stats_valid) {
7932		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7933		return -ENODEV;
7934	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7935		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7936			if (stats->nr_items > i)
7937				stats->values[i] =
7938					btrfs_dev_stat_read_and_reset(dev, i);
7939			else
7940				btrfs_dev_stat_set(dev, i, 0);
7941		}
7942		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7943			   current->comm, task_pid_nr(current));
7944	} else {
7945		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946			if (stats->nr_items > i)
7947				stats->values[i] = btrfs_dev_stat_read(dev, i);
7948	}
7949	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7950		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7951	return 0;
7952}
7953
7954/*
7955 * Update the size and bytes used for each device where it changed.  This is
7956 * delayed since we would otherwise get errors while writing out the
7957 * superblocks.
7958 *
7959 * Must be invoked during transaction commit.
7960 */
7961void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7962{
7963	struct btrfs_device *curr, *next;
7964
7965	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7966
7967	if (list_empty(&trans->dev_update_list))
7968		return;
7969
7970	/*
7971	 * We don't need the device_list_mutex here.  This list is owned by the
7972	 * transaction and the transaction must complete before the device is
7973	 * released.
7974	 */
7975	mutex_lock(&trans->fs_info->chunk_mutex);
7976	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7977				 post_commit_list) {
7978		list_del_init(&curr->post_commit_list);
7979		curr->commit_total_bytes = curr->disk_total_bytes;
7980		curr->commit_bytes_used = curr->bytes_used;
7981	}
7982	mutex_unlock(&trans->fs_info->chunk_mutex);
7983}
7984
7985/*
7986 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7987 */
7988int btrfs_bg_type_to_factor(u64 flags)
7989{
7990	const int index = btrfs_bg_flags_to_raid_index(flags);
7991
7992	return btrfs_raid_array[index].ncopies;
7993}
7994
7995
7996
7997static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7998				 u64 chunk_offset, u64 devid,
7999				 u64 physical_offset, u64 physical_len)
8000{
8001	struct btrfs_dev_lookup_args args = { .devid = devid };
8002	struct btrfs_chunk_map *map;
8003	struct btrfs_device *dev;
8004	u64 stripe_len;
8005	bool found = false;
8006	int ret = 0;
8007	int i;
8008
8009	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8010	if (!map) {
8011		btrfs_err(fs_info,
8012"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8013			  physical_offset, devid);
8014		ret = -EUCLEAN;
8015		goto out;
8016	}
8017
8018	stripe_len = btrfs_calc_stripe_length(map);
8019	if (physical_len != stripe_len) {
8020		btrfs_err(fs_info,
8021"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8022			  physical_offset, devid, map->start, physical_len,
8023			  stripe_len);
8024		ret = -EUCLEAN;
8025		goto out;
8026	}
8027
8028	/*
8029	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8030	 * space. Although kernel can handle it without problem, better to warn
8031	 * the users.
8032	 */
8033	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8034		btrfs_warn(fs_info,
8035		"devid %llu physical %llu len %llu inside the reserved space",
8036			   devid, physical_offset, physical_len);
8037
8038	for (i = 0; i < map->num_stripes; i++) {
8039		if (map->stripes[i].dev->devid == devid &&
8040		    map->stripes[i].physical == physical_offset) {
8041			found = true;
8042			if (map->verified_stripes >= map->num_stripes) {
8043				btrfs_err(fs_info,
8044				"too many dev extents for chunk %llu found",
8045					  map->start);
8046				ret = -EUCLEAN;
8047				goto out;
8048			}
8049			map->verified_stripes++;
8050			break;
8051		}
8052	}
8053	if (!found) {
8054		btrfs_err(fs_info,
8055	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8056			physical_offset, devid);
8057		ret = -EUCLEAN;
8058	}
8059
8060	/* Make sure no dev extent is beyond device boundary */
8061	dev = btrfs_find_device(fs_info->fs_devices, &args);
8062	if (!dev) {
8063		btrfs_err(fs_info, "failed to find devid %llu", devid);
8064		ret = -EUCLEAN;
8065		goto out;
8066	}
8067
8068	if (physical_offset + physical_len > dev->disk_total_bytes) {
8069		btrfs_err(fs_info,
8070"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8071			  devid, physical_offset, physical_len,
8072			  dev->disk_total_bytes);
8073		ret = -EUCLEAN;
8074		goto out;
8075	}
8076
8077	if (dev->zone_info) {
8078		u64 zone_size = dev->zone_info->zone_size;
8079
8080		if (!IS_ALIGNED(physical_offset, zone_size) ||
8081		    !IS_ALIGNED(physical_len, zone_size)) {
8082			btrfs_err(fs_info,
8083"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8084				  devid, physical_offset, physical_len);
8085			ret = -EUCLEAN;
8086			goto out;
8087		}
8088	}
8089
8090out:
8091	btrfs_free_chunk_map(map);
8092	return ret;
8093}
8094
8095static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096{
8097	struct rb_node *node;
8098	int ret = 0;
8099
8100	read_lock(&fs_info->mapping_tree_lock);
8101	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8102		struct btrfs_chunk_map *map;
8103
8104		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8105		if (map->num_stripes != map->verified_stripes) {
8106			btrfs_err(fs_info,
8107			"chunk %llu has missing dev extent, have %d expect %d",
8108				  map->start, map->verified_stripes, map->num_stripes);
8109			ret = -EUCLEAN;
8110			goto out;
8111		}
8112	}
8113out:
8114	read_unlock(&fs_info->mapping_tree_lock);
8115	return ret;
8116}
8117
8118/*
8119 * Ensure that all dev extents are mapped to correct chunk, otherwise
8120 * later chunk allocation/free would cause unexpected behavior.
8121 *
8122 * NOTE: This will iterate through the whole device tree, which should be of
8123 * the same size level as the chunk tree.  This slightly increases mount time.
8124 */
8125int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8126{
8127	struct btrfs_path *path;
8128	struct btrfs_root *root = fs_info->dev_root;
8129	struct btrfs_key key;
8130	u64 prev_devid = 0;
8131	u64 prev_dev_ext_end = 0;
8132	int ret = 0;
8133
8134	/*
8135	 * We don't have a dev_root because we mounted with ignorebadroots and
8136	 * failed to load the root, so we want to skip the verification in this
8137	 * case for sure.
8138	 *
8139	 * However if the dev root is fine, but the tree itself is corrupted
8140	 * we'd still fail to mount.  This verification is only to make sure
8141	 * writes can happen safely, so instead just bypass this check
8142	 * completely in the case of IGNOREBADROOTS.
8143	 */
8144	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8145		return 0;
8146
8147	key.objectid = 1;
8148	key.type = BTRFS_DEV_EXTENT_KEY;
8149	key.offset = 0;
8150
8151	path = btrfs_alloc_path();
8152	if (!path)
8153		return -ENOMEM;
8154
8155	path->reada = READA_FORWARD;
8156	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8157	if (ret < 0)
8158		goto out;
8159
8160	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8161		ret = btrfs_next_leaf(root, path);
8162		if (ret < 0)
8163			goto out;
8164		/* No dev extents at all? Not good */
8165		if (ret > 0) {
8166			ret = -EUCLEAN;
8167			goto out;
8168		}
8169	}
8170	while (1) {
8171		struct extent_buffer *leaf = path->nodes[0];
8172		struct btrfs_dev_extent *dext;
8173		int slot = path->slots[0];
8174		u64 chunk_offset;
8175		u64 physical_offset;
8176		u64 physical_len;
8177		u64 devid;
8178
8179		btrfs_item_key_to_cpu(leaf, &key, slot);
8180		if (key.type != BTRFS_DEV_EXTENT_KEY)
8181			break;
8182		devid = key.objectid;
8183		physical_offset = key.offset;
8184
8185		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8186		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8187		physical_len = btrfs_dev_extent_length(leaf, dext);
8188
8189		/* Check if this dev extent overlaps with the previous one */
8190		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8191			btrfs_err(fs_info,
8192"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8193				  devid, physical_offset, prev_dev_ext_end);
8194			ret = -EUCLEAN;
8195			goto out;
8196		}
8197
8198		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8199					    physical_offset, physical_len);
8200		if (ret < 0)
8201			goto out;
8202		prev_devid = devid;
8203		prev_dev_ext_end = physical_offset + physical_len;
8204
8205		ret = btrfs_next_item(root, path);
8206		if (ret < 0)
8207			goto out;
8208		if (ret > 0) {
8209			ret = 0;
8210			break;
8211		}
8212	}
8213
8214	/* Ensure all chunks have corresponding dev extents */
8215	ret = verify_chunk_dev_extent_mapping(fs_info);
8216out:
8217	btrfs_free_path(path);
8218	return ret;
8219}
8220
8221/*
8222 * Check whether the given block group or device is pinned by any inode being
8223 * used as a swapfile.
8224 */
8225bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8226{
8227	struct btrfs_swapfile_pin *sp;
8228	struct rb_node *node;
8229
8230	spin_lock(&fs_info->swapfile_pins_lock);
8231	node = fs_info->swapfile_pins.rb_node;
8232	while (node) {
8233		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8234		if (ptr < sp->ptr)
8235			node = node->rb_left;
8236		else if (ptr > sp->ptr)
8237			node = node->rb_right;
8238		else
8239			break;
8240	}
8241	spin_unlock(&fs_info->swapfile_pins_lock);
8242	return node != NULL;
8243}
8244
8245static int relocating_repair_kthread(void *data)
8246{
8247	struct btrfs_block_group *cache = data;
8248	struct btrfs_fs_info *fs_info = cache->fs_info;
8249	u64 target;
8250	int ret = 0;
8251
8252	target = cache->start;
8253	btrfs_put_block_group(cache);
8254
8255	sb_start_write(fs_info->sb);
8256	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257		btrfs_info(fs_info,
8258			   "zoned: skip relocating block group %llu to repair: EBUSY",
8259			   target);
8260		sb_end_write(fs_info->sb);
8261		return -EBUSY;
8262	}
8263
8264	mutex_lock(&fs_info->reclaim_bgs_lock);
8265
8266	/* Ensure block group still exists */
8267	cache = btrfs_lookup_block_group(fs_info, target);
8268	if (!cache)
8269		goto out;
8270
8271	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8272		goto out;
8273
8274	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8275	if (ret < 0)
8276		goto out;
8277
8278	btrfs_info(fs_info,
8279		   "zoned: relocating block group %llu to repair IO failure",
8280		   target);
8281	ret = btrfs_relocate_chunk(fs_info, target);
8282
8283out:
8284	if (cache)
8285		btrfs_put_block_group(cache);
8286	mutex_unlock(&fs_info->reclaim_bgs_lock);
8287	btrfs_exclop_finish(fs_info);
8288	sb_end_write(fs_info->sb);
8289
8290	return ret;
8291}
8292
8293bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8294{
8295	struct btrfs_block_group *cache;
8296
8297	if (!btrfs_is_zoned(fs_info))
8298		return false;
8299
8300	/* Do not attempt to repair in degraded state */
8301	if (btrfs_test_opt(fs_info, DEGRADED))
8302		return true;
8303
8304	cache = btrfs_lookup_block_group(fs_info, logical);
8305	if (!cache)
8306		return true;
8307
8308	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8309		btrfs_put_block_group(cache);
8310		return true;
8311	}
8312
8313	kthread_run(relocating_repair_kthread, cache,
8314		    "btrfs-relocating-repair");
8315
8316	return true;
8317}
8318
8319static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8320				    struct btrfs_io_stripe *smap,
8321				    u64 logical)
8322{
8323	int data_stripes = nr_bioc_data_stripes(bioc);
8324	int i;
8325
8326	for (i = 0; i < data_stripes; i++) {
8327		u64 stripe_start = bioc->full_stripe_logical +
8328				   btrfs_stripe_nr_to_offset(i);
8329
8330		if (logical >= stripe_start &&
8331		    logical < stripe_start + BTRFS_STRIPE_LEN)
8332			break;
8333	}
8334	ASSERT(i < data_stripes);
8335	smap->dev = bioc->stripes[i].dev;
8336	smap->physical = bioc->stripes[i].physical +
8337			((logical - bioc->full_stripe_logical) &
8338			 BTRFS_STRIPE_LEN_MASK);
8339}
8340
8341/*
8342 * Map a repair write into a single device.
8343 *
8344 * A repair write is triggered by read time repair or scrub, which would only
8345 * update the contents of a single device.
8346 * Not update any other mirrors nor go through RMW path.
8347 *
8348 * Callers should ensure:
8349 *
8350 * - Call btrfs_bio_counter_inc_blocked() first
8351 * - The range does not cross stripe boundary
8352 * - Has a valid @mirror_num passed in.
8353 */
8354int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8355			   struct btrfs_io_stripe *smap, u64 logical,
8356			   u32 length, int mirror_num)
8357{
8358	struct btrfs_io_context *bioc = NULL;
8359	u64 map_length = length;
8360	int mirror_ret = mirror_num;
8361	int ret;
8362
8363	ASSERT(mirror_num > 0);
8364
8365	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8366			      &bioc, smap, &mirror_ret);
8367	if (ret < 0)
8368		return ret;
8369
8370	/* The map range should not cross stripe boundary. */
8371	ASSERT(map_length >= length);
8372
8373	/* Already mapped to single stripe. */
8374	if (!bioc)
8375		goto out;
8376
8377	/* Map the RAID56 multi-stripe writes to a single one. */
8378	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8379		map_raid56_repair_block(bioc, smap, logical);
8380		goto out;
8381	}
8382
8383	ASSERT(mirror_num <= bioc->num_stripes);
8384	smap->dev = bioc->stripes[mirror_num - 1].dev;
8385	smap->physical = bioc->stripes[mirror_num - 1].physical;
8386out:
8387	btrfs_put_bioc(bioc);
8388	ASSERT(smap->dev);
8389	return 0;
8390}