Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/init.h>
  4#include <linux/fs.h>
  5#include <linux/slab.h>
  6#include <linux/rwsem.h>
  7#include <linux/xattr.h>
  8#include <linux/security.h>
  9#include <linux/posix_acl_xattr.h>
 10#include <linux/iversion.h>
 11#include <linux/fsverity.h>
 12#include <linux/sched/mm.h>
 13#include "messages.h"
 14#include "ctree.h"
 15#include "btrfs_inode.h"
 16#include "transaction.h"
 17#include "disk-io.h"
 18#include "locking.h"
 19#include "fs.h"
 20#include "accessors.h"
 21#include "ioctl.h"
 22#include "verity.h"
 23#include "orphan.h"
 24
 25/*
 26 * Implementation of the interface defined in struct fsverity_operations.
 27 *
 28 * The main question is how and where to store the verity descriptor and the
 29 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
 30 * together with the rest of the inode metadata. This means we'll need to do
 31 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
 32 * has a lot of careful code around i_size and it seems better to make a new key
 33 * type than try and adjust all of our expectations for i_size.
 34 *
 35 * Note that this differs from the implementation in ext4 and f2fs, where
 36 * this data is stored as if it were in the file, but past EOF. However, btrfs
 37 * does not have a widespread mechanism for caching opaque metadata pages, so we
 38 * do pretend that the Merkle tree pages themselves are past EOF for the
 39 * purposes of caching them (as opposed to creating a virtual inode).
 40 *
 41 * fs verity items are stored under two different key types on disk.
 42 * The descriptor items:
 43 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
 44 *
 45 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
 46 * size of the descriptor item and some extra data for encryption.
 47 * Starting at offset 1, these hold the generic fs verity descriptor.
 48 * The latter are opaque to btrfs, we just read and write them as a blob for
 49 * the higher level verity code.  The most common descriptor size is 256 bytes.
 50 *
 51 * The merkle tree items:
 52 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
 53 *
 54 * These also start at offset 0, and correspond to the merkle tree bytes.
 55 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
 56 * starting at offset 0 for this key type.  These are also opaque to btrfs,
 57 * we're blindly storing whatever fsverity sends down.
 58 *
 59 * Another important consideration is the fact that the Merkle tree data scales
 60 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
 61 * ~1/127th the size) so for large files, writing the tree can be a lengthy
 62 * operation. For that reason, we guard the whole enable verity operation
 63 * (between begin_enable_verity and end_enable_verity) with an orphan item.
 64 * Again, because the data can be pretty large, it's quite possible that we
 65 * could run out of space writing it, so we try our best to handle errors by
 66 * stopping and rolling back rather than aborting the victim transaction.
 67 */
 68
 69#define MERKLE_START_ALIGN			65536
 70
 71/*
 72 * Compute the logical file offset where we cache the Merkle tree.
 73 *
 74 * @inode:  inode of the verity file
 75 *
 76 * For the purposes of caching the Merkle tree pages, as required by
 77 * fs-verity, it is convenient to do size computations in terms of a file
 78 * offset, rather than in terms of page indices.
 79 *
 80 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
 81 * That rounding operation itself can overflow loff_t, so we do it in u64 and
 82 * check.
 83 *
 84 * Returns the file offset on success, negative error code on failure.
 85 */
 86static loff_t merkle_file_pos(const struct inode *inode)
 87{
 88	u64 sz = inode->i_size;
 89	u64 rounded = round_up(sz, MERKLE_START_ALIGN);
 90
 91	if (rounded > inode->i_sb->s_maxbytes)
 92		return -EFBIG;
 93
 94	return rounded;
 95}
 96
 97/*
 98 * Drop all the items for this inode with this key_type.
 99 *
100 * @inode:     inode to drop items for
101 * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
102 *             BTRFS_VERITY_MERKLE_ITEM)
103 *
104 * Before doing a verity enable we cleanup any existing verity items.
105 * This is also used to clean up if a verity enable failed half way through.
106 *
107 * Returns number of dropped items on success, negative error code on failure.
108 */
109static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
110{
111	struct btrfs_trans_handle *trans;
112	struct btrfs_root *root = inode->root;
113	struct btrfs_path *path;
114	struct btrfs_key key;
115	int count = 0;
116	int ret;
117
118	path = btrfs_alloc_path();
119	if (!path)
120		return -ENOMEM;
121
122	while (1) {
123		/* 1 for the item being dropped */
124		trans = btrfs_start_transaction(root, 1);
125		if (IS_ERR(trans)) {
126			ret = PTR_ERR(trans);
127			goto out;
128		}
129
130		/*
131		 * Walk backwards through all the items until we find one that
132		 * isn't from our key type or objectid
133		 */
134		key.objectid = btrfs_ino(inode);
135		key.type = key_type;
136		key.offset = (u64)-1;
137
138		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
139		if (ret > 0) {
140			ret = 0;
141			/* No more keys of this type, we're done */
142			if (path->slots[0] == 0)
143				break;
144			path->slots[0]--;
145		} else if (ret < 0) {
146			btrfs_end_transaction(trans);
147			goto out;
148		}
149
150		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
151
152		/* No more keys of this type, we're done */
153		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
154			break;
155
156		/*
157		 * This shouldn't be a performance sensitive function because
158		 * it's not used as part of truncate.  If it ever becomes
159		 * perf sensitive, change this to walk forward and bulk delete
160		 * items
161		 */
162		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
163		if (ret) {
164			btrfs_end_transaction(trans);
165			goto out;
166		}
167		count++;
168		btrfs_release_path(path);
169		btrfs_end_transaction(trans);
170	}
171	ret = count;
172	btrfs_end_transaction(trans);
173out:
174	btrfs_free_path(path);
175	return ret;
176}
177
178/*
179 * Drop all verity items
180 *
181 * @inode:  inode to drop verity items for
182 *
183 * In most contexts where we are dropping verity items, we want to do it for all
184 * the types of verity items, not a particular one.
185 *
186 * Returns: 0 on success, negative error code on failure.
187 */
188int btrfs_drop_verity_items(struct btrfs_inode *inode)
189{
190	int ret;
191
192	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
193	if (ret < 0)
194		return ret;
195	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
196	if (ret < 0)
197		return ret;
198
199	return 0;
200}
201
202/*
203 * Insert and write inode items with a given key type and offset.
204 *
205 * @inode:     inode to insert for
206 * @key_type:  key type to insert
207 * @offset:    item offset to insert at
208 * @src:       source data to write
209 * @len:       length of source data to write
210 *
211 * Write len bytes from src into items of up to 2K length.
212 * The inserted items will have key (ino, key_type, offset + off) where off is
213 * consecutively increasing from 0 up to the last item ending at offset + len.
214 *
215 * Returns 0 on success and a negative error code on failure.
216 */
217static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
218			   const char *src, u64 len)
219{
220	struct btrfs_trans_handle *trans;
221	struct btrfs_path *path;
222	struct btrfs_root *root = inode->root;
223	struct extent_buffer *leaf;
224	struct btrfs_key key;
225	unsigned long copy_bytes;
226	unsigned long src_offset = 0;
227	void *data;
228	int ret = 0;
229
230	path = btrfs_alloc_path();
231	if (!path)
232		return -ENOMEM;
233
234	while (len > 0) {
235		/* 1 for the new item being inserted */
236		trans = btrfs_start_transaction(root, 1);
237		if (IS_ERR(trans)) {
238			ret = PTR_ERR(trans);
239			break;
240		}
241
242		key.objectid = btrfs_ino(inode);
243		key.type = key_type;
244		key.offset = offset;
245
246		/*
247		 * Insert 2K at a time mostly to be friendly for smaller leaf
248		 * size filesystems
249		 */
250		copy_bytes = min_t(u64, len, 2048);
251
252		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
253		if (ret) {
254			btrfs_end_transaction(trans);
255			break;
256		}
257
258		leaf = path->nodes[0];
259
260		data = btrfs_item_ptr(leaf, path->slots[0], void);
261		write_extent_buffer(leaf, src + src_offset,
262				    (unsigned long)data, copy_bytes);
263		offset += copy_bytes;
264		src_offset += copy_bytes;
265		len -= copy_bytes;
266
267		btrfs_release_path(path);
268		btrfs_end_transaction(trans);
269	}
270
271	btrfs_free_path(path);
272	return ret;
273}
274
275/*
276 * Read inode items of the given key type and offset from the btree.
277 *
278 * @inode:      inode to read items of
279 * @key_type:   key type to read
280 * @offset:     item offset to read from
281 * @dest:       Buffer to read into. This parameter has slightly tricky
282 *              semantics.  If it is NULL, the function will not do any copying
283 *              and will just return the size of all the items up to len bytes.
284 *              If dest_page is passed, then the function will kmap_local the
285 *              page and ignore dest, but it must still be non-NULL to avoid the
286 *              counting-only behavior.
287 * @len:        length in bytes to read
288 * @dest_page:  copy into this page instead of the dest buffer
289 *
290 * Helper function to read items from the btree.  This returns the number of
291 * bytes read or < 0 for errors.  We can return short reads if the items don't
292 * exist on disk or aren't big enough to fill the desired length.  Supports
293 * reading into a provided buffer (dest) or into the page cache
294 *
295 * Returns number of bytes read or a negative error code on failure.
296 */
297static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
298			  char *dest, u64 len, struct page *dest_page)
299{
300	struct btrfs_path *path;
301	struct btrfs_root *root = inode->root;
302	struct extent_buffer *leaf;
303	struct btrfs_key key;
304	u64 item_end;
305	u64 copy_end;
306	int copied = 0;
307	u32 copy_offset;
308	unsigned long copy_bytes;
309	unsigned long dest_offset = 0;
310	void *data;
311	char *kaddr = dest;
312	int ret;
313
314	path = btrfs_alloc_path();
315	if (!path)
316		return -ENOMEM;
317
318	if (dest_page)
319		path->reada = READA_FORWARD;
320
321	key.objectid = btrfs_ino(inode);
322	key.type = key_type;
323	key.offset = offset;
324
325	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
326	if (ret < 0) {
327		goto out;
328	} else if (ret > 0) {
329		ret = 0;
330		if (path->slots[0] == 0)
331			goto out;
332		path->slots[0]--;
333	}
334
335	while (len > 0) {
336		leaf = path->nodes[0];
337		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
338
339		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
340			break;
341
342		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
343
344		if (copied > 0) {
345			/*
346			 * Once we've copied something, we want all of the items
347			 * to be sequential
348			 */
349			if (key.offset != offset)
350				break;
351		} else {
352			/*
353			 * Our initial offset might be in the middle of an
354			 * item.  Make sure it all makes sense.
355			 */
356			if (key.offset > offset)
357				break;
358			if (item_end <= offset)
359				break;
360		}
361
362		/* desc = NULL to just sum all the item lengths */
363		if (!dest)
364			copy_end = item_end;
365		else
366			copy_end = min(offset + len, item_end);
367
368		/* Number of bytes in this item we want to copy */
369		copy_bytes = copy_end - offset;
370
371		/* Offset from the start of item for copying */
372		copy_offset = offset - key.offset;
373
374		if (dest) {
375			if (dest_page)
376				kaddr = kmap_local_page(dest_page);
377
378			data = btrfs_item_ptr(leaf, path->slots[0], void);
379			read_extent_buffer(leaf, kaddr + dest_offset,
380					   (unsigned long)data + copy_offset,
381					   copy_bytes);
382
383			if (dest_page)
384				kunmap_local(kaddr);
385		}
386
387		offset += copy_bytes;
388		dest_offset += copy_bytes;
389		len -= copy_bytes;
390		copied += copy_bytes;
391
392		path->slots[0]++;
393		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
394			/*
395			 * We've reached the last slot in this leaf and we need
396			 * to go to the next leaf.
397			 */
398			ret = btrfs_next_leaf(root, path);
399			if (ret < 0) {
400				break;
401			} else if (ret > 0) {
402				ret = 0;
403				break;
404			}
405		}
406	}
407out:
408	btrfs_free_path(path);
409	if (!ret)
410		ret = copied;
411	return ret;
412}
413
414/*
415 * Delete an fsverity orphan
416 *
417 * @trans:  transaction to do the delete in
418 * @inode:  inode to orphan
419 *
420 * Capture verity orphan specific logic that is repeated in the couple places
421 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
422 * with 0 links.
423 *
424 * Returns zero on success or a negative error code on failure.
425 */
426static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
427{
428	struct btrfs_root *root = inode->root;
429	int ret;
430
431	/*
432	 * If the inode has no links, it is either already unlinked, or was
433	 * created with O_TMPFILE. In either case, it should have an orphan from
434	 * that other operation. Rather than reference count the orphans, we
435	 * simply ignore them here, because we only invoke the verity path in
436	 * the orphan logic when i_nlink is 1.
437	 */
438	if (!inode->vfs_inode.i_nlink)
439		return 0;
440
441	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
442	if (ret == -ENOENT)
443		ret = 0;
444	return ret;
445}
446
447/*
448 * Rollback in-progress verity if we encounter an error.
449 *
450 * @inode:  inode verity had an error for
451 *
452 * We try to handle recoverable errors while enabling verity by rolling it back
453 * and just failing the operation, rather than having an fs level error no
454 * matter what. However, any error in rollback is unrecoverable.
455 *
456 * Returns 0 on success, negative error code on failure.
457 */
458static int rollback_verity(struct btrfs_inode *inode)
459{
460	struct btrfs_trans_handle *trans = NULL;
461	struct btrfs_root *root = inode->root;
462	int ret;
463
464	ASSERT(inode_is_locked(&inode->vfs_inode));
465	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
466	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
467	ret = btrfs_drop_verity_items(inode);
468	if (ret) {
469		btrfs_handle_fs_error(root->fs_info, ret,
470				"failed to drop verity items in rollback %llu",
471				(u64)inode->vfs_inode.i_ino);
472		goto out;
473	}
474
475	/*
476	 * 1 for updating the inode flag
477	 * 1 for deleting the orphan
478	 */
479	trans = btrfs_start_transaction(root, 2);
480	if (IS_ERR(trans)) {
481		ret = PTR_ERR(trans);
482		trans = NULL;
483		btrfs_handle_fs_error(root->fs_info, ret,
484			"failed to start transaction in verity rollback %llu",
485			(u64)inode->vfs_inode.i_ino);
486		goto out;
487	}
488	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
489	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
490	ret = btrfs_update_inode(trans, inode);
491	if (ret) {
492		btrfs_abort_transaction(trans, ret);
493		goto out;
494	}
495	ret = del_orphan(trans, inode);
496	if (ret) {
497		btrfs_abort_transaction(trans, ret);
498		goto out;
499	}
500out:
501	if (trans)
502		btrfs_end_transaction(trans);
503	return ret;
504}
505
506/*
507 * Finalize making the file a valid verity file
508 *
509 * @inode:      inode to be marked as verity
510 * @desc:       contents of the verity descriptor to write (not NULL)
511 * @desc_size:  size of the verity descriptor
512 *
513 * Do the actual work of finalizing verity after successfully writing the Merkle
514 * tree:
515 *
516 * - write out the descriptor items
517 * - mark the inode with the verity flag
518 * - delete the orphan item
519 * - mark the ro compat bit
520 * - clear the in progress bit
521 *
522 * Returns 0 on success, negative error code on failure.
523 */
524static int finish_verity(struct btrfs_inode *inode, const void *desc,
525			 size_t desc_size)
526{
527	struct btrfs_trans_handle *trans = NULL;
528	struct btrfs_root *root = inode->root;
529	struct btrfs_verity_descriptor_item item;
530	int ret;
531
532	/* Write out the descriptor item */
533	memset(&item, 0, sizeof(item));
534	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
535	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
536			      (const char *)&item, sizeof(item));
537	if (ret)
538		goto out;
539
540	/* Write out the descriptor itself */
541	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
542			      desc, desc_size);
543	if (ret)
544		goto out;
545
546	/*
547	 * 1 for updating the inode flag
548	 * 1 for deleting the orphan
549	 */
550	trans = btrfs_start_transaction(root, 2);
551	if (IS_ERR(trans)) {
552		ret = PTR_ERR(trans);
553		goto out;
554	}
555	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
556	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
557	ret = btrfs_update_inode(trans, inode);
558	if (ret)
559		goto end_trans;
560	ret = del_orphan(trans, inode);
561	if (ret)
562		goto end_trans;
563	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
564	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
565end_trans:
566	btrfs_end_transaction(trans);
567out:
568	return ret;
569
570}
571
572/*
573 * fsverity op that begins enabling verity.
574 *
575 * @filp:  file to enable verity on
576 *
577 * Begin enabling fsverity for the file. We drop any existing verity items, add
578 * an orphan and set the in progress bit.
579 *
580 * Returns 0 on success, negative error code on failure.
581 */
582static int btrfs_begin_enable_verity(struct file *filp)
583{
584	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
585	struct btrfs_root *root = inode->root;
586	struct btrfs_trans_handle *trans;
587	int ret;
588
589	ASSERT(inode_is_locked(file_inode(filp)));
590
591	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
592		return -EBUSY;
593
594	/*
595	 * This should almost never do anything, but theoretically, it's
596	 * possible that we failed to enable verity on a file, then were
597	 * interrupted or failed while rolling back, failed to cleanup the
598	 * orphan, and finally attempt to enable verity again.
599	 */
600	ret = btrfs_drop_verity_items(inode);
601	if (ret)
602		return ret;
603
604	/* 1 for the orphan item */
605	trans = btrfs_start_transaction(root, 1);
606	if (IS_ERR(trans))
607		return PTR_ERR(trans);
608
609	ret = btrfs_orphan_add(trans, inode);
610	if (!ret)
611		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
612	btrfs_end_transaction(trans);
613
614	return 0;
615}
616
617/*
618 * fsverity op that ends enabling verity.
619 *
620 * @filp:              file we are finishing enabling verity on
621 * @desc:              verity descriptor to write out (NULL in error conditions)
622 * @desc_size:         size of the verity descriptor (variable with signatures)
623 * @merkle_tree_size:  size of the merkle tree in bytes
624 *
625 * If desc is null, then VFS is signaling an error occurred during verity
626 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
627 *
628 * Returns 0 on success, negative error code on error.
629 */
630static int btrfs_end_enable_verity(struct file *filp, const void *desc,
631				   size_t desc_size, u64 merkle_tree_size)
632{
633	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
634	int ret = 0;
635	int rollback_ret;
636
637	ASSERT(inode_is_locked(file_inode(filp)));
638
639	if (desc == NULL)
640		goto rollback;
641
642	ret = finish_verity(inode, desc, desc_size);
643	if (ret)
644		goto rollback;
645	return ret;
646
647rollback:
648	rollback_ret = rollback_verity(inode);
649	if (rollback_ret)
650		btrfs_err(inode->root->fs_info,
651			  "failed to rollback verity items: %d", rollback_ret);
652	return ret;
653}
654
655/*
656 * fsverity op that gets the struct fsverity_descriptor.
657 *
658 * @inode:     inode to get the descriptor of
659 * @buf:       output buffer for the descriptor contents
660 * @buf_size:  size of the output buffer. 0 to query the size
661 *
662 * fsverity does a two pass setup for reading the descriptor, in the first pass
663 * it calls with buf_size = 0 to query the size of the descriptor, and then in
664 * the second pass it actually reads the descriptor off disk.
665 *
666 * Returns the size on success or a negative error code on failure.
667 */
668int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
669{
670	u64 true_size;
671	int ret = 0;
672	struct btrfs_verity_descriptor_item item;
673
674	memset(&item, 0, sizeof(item));
675	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
676			     (char *)&item, sizeof(item), NULL);
677	if (ret < 0)
678		return ret;
679
680	if (item.reserved[0] != 0 || item.reserved[1] != 0)
681		return -EUCLEAN;
682
683	true_size = btrfs_stack_verity_descriptor_size(&item);
684	if (true_size > INT_MAX)
685		return -EUCLEAN;
686
687	if (buf_size == 0)
688		return true_size;
689	if (buf_size < true_size)
690		return -ERANGE;
691
692	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
693			     buf, buf_size, NULL);
694	if (ret < 0)
695		return ret;
696	if (ret != true_size)
697		return -EIO;
698
699	return true_size;
700}
701
702/*
703 * fsverity op that reads and caches a merkle tree page.
704 *
705 * @inode:         inode to read a merkle tree page for
706 * @index:         page index relative to the start of the merkle tree
707 * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
708 *
709 * The Merkle tree is stored in the filesystem btree, but its pages are cached
710 * with a logical position past EOF in the inode's mapping.
711 *
712 * Returns the page we read, or an ERR_PTR on error.
713 */
714static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
715						pgoff_t index,
716						unsigned long num_ra_pages)
717{
718	struct folio *folio;
719	u64 off = (u64)index << PAGE_SHIFT;
720	loff_t merkle_pos = merkle_file_pos(inode);
721	int ret;
722
723	if (merkle_pos < 0)
724		return ERR_PTR(merkle_pos);
725	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
726		return ERR_PTR(-EFBIG);
727	index += merkle_pos >> PAGE_SHIFT;
728again:
729	folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0);
730	if (!IS_ERR(folio)) {
731		if (folio_test_uptodate(folio))
732			goto out;
733
734		folio_lock(folio);
735		/* If it's not uptodate after we have the lock, we got a read error. */
736		if (!folio_test_uptodate(folio)) {
737			folio_unlock(folio);
738			folio_put(folio);
739			return ERR_PTR(-EIO);
740		}
741		folio_unlock(folio);
742		goto out;
743	}
744
745	folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS),
746				    0);
747	if (!folio)
748		return ERR_PTR(-ENOMEM);
749
750	ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS);
751	if (ret) {
752		folio_put(folio);
753		/* Did someone else insert a folio here? */
754		if (ret == -EEXIST)
755			goto again;
756		return ERR_PTR(ret);
757	}
758
759	/*
760	 * Merkle item keys are indexed from byte 0 in the merkle tree.
761	 * They have the form:
762	 *
763	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
764	 */
765	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
766			     folio_address(folio), PAGE_SIZE, &folio->page);
767	if (ret < 0) {
768		folio_put(folio);
769		return ERR_PTR(ret);
770	}
771	if (ret < PAGE_SIZE)
772		folio_zero_segment(folio, ret, PAGE_SIZE);
773
774	folio_mark_uptodate(folio);
775	folio_unlock(folio);
776
777out:
778	return folio_file_page(folio, index);
779}
780
781/*
782 * fsverity op that writes a Merkle tree block into the btree.
783 *
784 * @inode:	inode to write a Merkle tree block for
785 * @buf:	Merkle tree block to write
786 * @pos:	the position of the block in the Merkle tree (in bytes)
787 * @size:	the Merkle tree block size (in bytes)
788 *
789 * Returns 0 on success or negative error code on failure
790 */
791static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
792					 u64 pos, unsigned int size)
793{
794	loff_t merkle_pos = merkle_file_pos(inode);
795
796	if (merkle_pos < 0)
797		return merkle_pos;
798	if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
799		return -EFBIG;
800
801	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
802			       pos, buf, size);
803}
804
805const struct fsverity_operations btrfs_verityops = {
806	.begin_enable_verity     = btrfs_begin_enable_verity,
807	.end_enable_verity       = btrfs_end_enable_verity,
808	.get_verity_descriptor   = btrfs_get_verity_descriptor,
809	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
810	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
811};
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/init.h>
  4#include <linux/fs.h>
  5#include <linux/slab.h>
  6#include <linux/rwsem.h>
  7#include <linux/xattr.h>
  8#include <linux/security.h>
  9#include <linux/posix_acl_xattr.h>
 10#include <linux/iversion.h>
 11#include <linux/fsverity.h>
 12#include <linux/sched/mm.h>
 13#include "messages.h"
 14#include "ctree.h"
 15#include "btrfs_inode.h"
 16#include "transaction.h"
 
 17#include "locking.h"
 18#include "fs.h"
 19#include "accessors.h"
 20#include "ioctl.h"
 21#include "verity.h"
 22#include "orphan.h"
 23
 24/*
 25 * Implementation of the interface defined in struct fsverity_operations.
 26 *
 27 * The main question is how and where to store the verity descriptor and the
 28 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
 29 * together with the rest of the inode metadata. This means we'll need to do
 30 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
 31 * has a lot of careful code around i_size and it seems better to make a new key
 32 * type than try and adjust all of our expectations for i_size.
 33 *
 34 * Note that this differs from the implementation in ext4 and f2fs, where
 35 * this data is stored as if it were in the file, but past EOF. However, btrfs
 36 * does not have a widespread mechanism for caching opaque metadata pages, so we
 37 * do pretend that the Merkle tree pages themselves are past EOF for the
 38 * purposes of caching them (as opposed to creating a virtual inode).
 39 *
 40 * fs verity items are stored under two different key types on disk.
 41 * The descriptor items:
 42 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
 43 *
 44 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
 45 * size of the descriptor item and some extra data for encryption.
 46 * Starting at offset 1, these hold the generic fs verity descriptor.
 47 * The latter are opaque to btrfs, we just read and write them as a blob for
 48 * the higher level verity code.  The most common descriptor size is 256 bytes.
 49 *
 50 * The merkle tree items:
 51 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
 52 *
 53 * These also start at offset 0, and correspond to the merkle tree bytes.
 54 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
 55 * starting at offset 0 for this key type.  These are also opaque to btrfs,
 56 * we're blindly storing whatever fsverity sends down.
 57 *
 58 * Another important consideration is the fact that the Merkle tree data scales
 59 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
 60 * ~1/127th the size) so for large files, writing the tree can be a lengthy
 61 * operation. For that reason, we guard the whole enable verity operation
 62 * (between begin_enable_verity and end_enable_verity) with an orphan item.
 63 * Again, because the data can be pretty large, it's quite possible that we
 64 * could run out of space writing it, so we try our best to handle errors by
 65 * stopping and rolling back rather than aborting the victim transaction.
 66 */
 67
 68#define MERKLE_START_ALIGN			65536
 69
 70/*
 71 * Compute the logical file offset where we cache the Merkle tree.
 72 *
 73 * @inode:  inode of the verity file
 74 *
 75 * For the purposes of caching the Merkle tree pages, as required by
 76 * fs-verity, it is convenient to do size computations in terms of a file
 77 * offset, rather than in terms of page indices.
 78 *
 79 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
 80 * That rounding operation itself can overflow loff_t, so we do it in u64 and
 81 * check.
 82 *
 83 * Returns the file offset on success, negative error code on failure.
 84 */
 85static loff_t merkle_file_pos(const struct inode *inode)
 86{
 87	u64 sz = inode->i_size;
 88	u64 rounded = round_up(sz, MERKLE_START_ALIGN);
 89
 90	if (rounded > inode->i_sb->s_maxbytes)
 91		return -EFBIG;
 92
 93	return rounded;
 94}
 95
 96/*
 97 * Drop all the items for this inode with this key_type.
 98 *
 99 * @inode:     inode to drop items for
100 * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
101 *             BTRFS_VERITY_MERKLE_ITEM)
102 *
103 * Before doing a verity enable we cleanup any existing verity items.
104 * This is also used to clean up if a verity enable failed half way through.
105 *
106 * Returns number of dropped items on success, negative error code on failure.
107 */
108static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
109{
110	struct btrfs_trans_handle *trans;
111	struct btrfs_root *root = inode->root;
112	struct btrfs_path *path;
113	struct btrfs_key key;
114	int count = 0;
115	int ret;
116
117	path = btrfs_alloc_path();
118	if (!path)
119		return -ENOMEM;
120
121	while (1) {
122		/* 1 for the item being dropped */
123		trans = btrfs_start_transaction(root, 1);
124		if (IS_ERR(trans)) {
125			ret = PTR_ERR(trans);
126			goto out;
127		}
128
129		/*
130		 * Walk backwards through all the items until we find one that
131		 * isn't from our key type or objectid
132		 */
133		key.objectid = btrfs_ino(inode);
134		key.type = key_type;
135		key.offset = (u64)-1;
136
137		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
138		if (ret > 0) {
139			ret = 0;
140			/* No more keys of this type, we're done */
141			if (path->slots[0] == 0)
142				break;
143			path->slots[0]--;
144		} else if (ret < 0) {
145			btrfs_end_transaction(trans);
146			goto out;
147		}
148
149		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
150
151		/* No more keys of this type, we're done */
152		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
153			break;
154
155		/*
156		 * This shouldn't be a performance sensitive function because
157		 * it's not used as part of truncate.  If it ever becomes
158		 * perf sensitive, change this to walk forward and bulk delete
159		 * items
160		 */
161		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
162		if (ret) {
163			btrfs_end_transaction(trans);
164			goto out;
165		}
166		count++;
167		btrfs_release_path(path);
168		btrfs_end_transaction(trans);
169	}
170	ret = count;
171	btrfs_end_transaction(trans);
172out:
173	btrfs_free_path(path);
174	return ret;
175}
176
177/*
178 * Drop all verity items
179 *
180 * @inode:  inode to drop verity items for
181 *
182 * In most contexts where we are dropping verity items, we want to do it for all
183 * the types of verity items, not a particular one.
184 *
185 * Returns: 0 on success, negative error code on failure.
186 */
187int btrfs_drop_verity_items(struct btrfs_inode *inode)
188{
189	int ret;
190
191	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
192	if (ret < 0)
193		return ret;
194	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
195	if (ret < 0)
196		return ret;
197
198	return 0;
199}
200
201/*
202 * Insert and write inode items with a given key type and offset.
203 *
204 * @inode:     inode to insert for
205 * @key_type:  key type to insert
206 * @offset:    item offset to insert at
207 * @src:       source data to write
208 * @len:       length of source data to write
209 *
210 * Write len bytes from src into items of up to 2K length.
211 * The inserted items will have key (ino, key_type, offset + off) where off is
212 * consecutively increasing from 0 up to the last item ending at offset + len.
213 *
214 * Returns 0 on success and a negative error code on failure.
215 */
216static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
217			   const char *src, u64 len)
218{
219	struct btrfs_trans_handle *trans;
220	struct btrfs_path *path;
221	struct btrfs_root *root = inode->root;
222	struct extent_buffer *leaf;
223	struct btrfs_key key;
224	unsigned long copy_bytes;
225	unsigned long src_offset = 0;
226	void *data;
227	int ret = 0;
228
229	path = btrfs_alloc_path();
230	if (!path)
231		return -ENOMEM;
232
233	while (len > 0) {
234		/* 1 for the new item being inserted */
235		trans = btrfs_start_transaction(root, 1);
236		if (IS_ERR(trans)) {
237			ret = PTR_ERR(trans);
238			break;
239		}
240
241		key.objectid = btrfs_ino(inode);
242		key.type = key_type;
243		key.offset = offset;
244
245		/*
246		 * Insert 2K at a time mostly to be friendly for smaller leaf
247		 * size filesystems
248		 */
249		copy_bytes = min_t(u64, len, 2048);
250
251		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
252		if (ret) {
253			btrfs_end_transaction(trans);
254			break;
255		}
256
257		leaf = path->nodes[0];
258
259		data = btrfs_item_ptr(leaf, path->slots[0], void);
260		write_extent_buffer(leaf, src + src_offset,
261				    (unsigned long)data, copy_bytes);
262		offset += copy_bytes;
263		src_offset += copy_bytes;
264		len -= copy_bytes;
265
266		btrfs_release_path(path);
267		btrfs_end_transaction(trans);
268	}
269
270	btrfs_free_path(path);
271	return ret;
272}
273
274/*
275 * Read inode items of the given key type and offset from the btree.
276 *
277 * @inode:      inode to read items of
278 * @key_type:   key type to read
279 * @offset:     item offset to read from
280 * @dest:       Buffer to read into. This parameter has slightly tricky
281 *              semantics.  If it is NULL, the function will not do any copying
282 *              and will just return the size of all the items up to len bytes.
283 *              If dest_page is passed, then the function will kmap_local the
284 *              page and ignore dest, but it must still be non-NULL to avoid the
285 *              counting-only behavior.
286 * @len:        length in bytes to read
287 * @dest_page:  copy into this page instead of the dest buffer
288 *
289 * Helper function to read items from the btree.  This returns the number of
290 * bytes read or < 0 for errors.  We can return short reads if the items don't
291 * exist on disk or aren't big enough to fill the desired length.  Supports
292 * reading into a provided buffer (dest) or into the page cache
293 *
294 * Returns number of bytes read or a negative error code on failure.
295 */
296static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
297			  char *dest, u64 len, struct page *dest_page)
298{
299	struct btrfs_path *path;
300	struct btrfs_root *root = inode->root;
301	struct extent_buffer *leaf;
302	struct btrfs_key key;
303	u64 item_end;
304	u64 copy_end;
305	int copied = 0;
306	u32 copy_offset;
307	unsigned long copy_bytes;
308	unsigned long dest_offset = 0;
309	void *data;
310	char *kaddr = dest;
311	int ret;
312
313	path = btrfs_alloc_path();
314	if (!path)
315		return -ENOMEM;
316
317	if (dest_page)
318		path->reada = READA_FORWARD;
319
320	key.objectid = btrfs_ino(inode);
321	key.type = key_type;
322	key.offset = offset;
323
324	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
325	if (ret < 0) {
326		goto out;
327	} else if (ret > 0) {
328		ret = 0;
329		if (path->slots[0] == 0)
330			goto out;
331		path->slots[0]--;
332	}
333
334	while (len > 0) {
335		leaf = path->nodes[0];
336		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
337
338		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
339			break;
340
341		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
342
343		if (copied > 0) {
344			/*
345			 * Once we've copied something, we want all of the items
346			 * to be sequential
347			 */
348			if (key.offset != offset)
349				break;
350		} else {
351			/*
352			 * Our initial offset might be in the middle of an
353			 * item.  Make sure it all makes sense.
354			 */
355			if (key.offset > offset)
356				break;
357			if (item_end <= offset)
358				break;
359		}
360
361		/* desc = NULL to just sum all the item lengths */
362		if (!dest)
363			copy_end = item_end;
364		else
365			copy_end = min(offset + len, item_end);
366
367		/* Number of bytes in this item we want to copy */
368		copy_bytes = copy_end - offset;
369
370		/* Offset from the start of item for copying */
371		copy_offset = offset - key.offset;
372
373		if (dest) {
374			if (dest_page)
375				kaddr = kmap_local_page(dest_page);
376
377			data = btrfs_item_ptr(leaf, path->slots[0], void);
378			read_extent_buffer(leaf, kaddr + dest_offset,
379					   (unsigned long)data + copy_offset,
380					   copy_bytes);
381
382			if (dest_page)
383				kunmap_local(kaddr);
384		}
385
386		offset += copy_bytes;
387		dest_offset += copy_bytes;
388		len -= copy_bytes;
389		copied += copy_bytes;
390
391		path->slots[0]++;
392		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
393			/*
394			 * We've reached the last slot in this leaf and we need
395			 * to go to the next leaf.
396			 */
397			ret = btrfs_next_leaf(root, path);
398			if (ret < 0) {
399				break;
400			} else if (ret > 0) {
401				ret = 0;
402				break;
403			}
404		}
405	}
406out:
407	btrfs_free_path(path);
408	if (!ret)
409		ret = copied;
410	return ret;
411}
412
413/*
414 * Delete an fsverity orphan
415 *
416 * @trans:  transaction to do the delete in
417 * @inode:  inode to orphan
418 *
419 * Capture verity orphan specific logic that is repeated in the couple places
420 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
421 * with 0 links.
422 *
423 * Returns zero on success or a negative error code on failure.
424 */
425static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
426{
427	struct btrfs_root *root = inode->root;
428	int ret;
429
430	/*
431	 * If the inode has no links, it is either already unlinked, or was
432	 * created with O_TMPFILE. In either case, it should have an orphan from
433	 * that other operation. Rather than reference count the orphans, we
434	 * simply ignore them here, because we only invoke the verity path in
435	 * the orphan logic when i_nlink is 1.
436	 */
437	if (!inode->vfs_inode.i_nlink)
438		return 0;
439
440	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
441	if (ret == -ENOENT)
442		ret = 0;
443	return ret;
444}
445
446/*
447 * Rollback in-progress verity if we encounter an error.
448 *
449 * @inode:  inode verity had an error for
450 *
451 * We try to handle recoverable errors while enabling verity by rolling it back
452 * and just failing the operation, rather than having an fs level error no
453 * matter what. However, any error in rollback is unrecoverable.
454 *
455 * Returns 0 on success, negative error code on failure.
456 */
457static int rollback_verity(struct btrfs_inode *inode)
458{
459	struct btrfs_trans_handle *trans = NULL;
460	struct btrfs_root *root = inode->root;
461	int ret;
462
463	ASSERT(inode_is_locked(&inode->vfs_inode));
464	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
465	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
466	ret = btrfs_drop_verity_items(inode);
467	if (ret) {
468		btrfs_handle_fs_error(root->fs_info, ret,
469				"failed to drop verity items in rollback %llu",
470				(u64)inode->vfs_inode.i_ino);
471		goto out;
472	}
473
474	/*
475	 * 1 for updating the inode flag
476	 * 1 for deleting the orphan
477	 */
478	trans = btrfs_start_transaction(root, 2);
479	if (IS_ERR(trans)) {
480		ret = PTR_ERR(trans);
481		trans = NULL;
482		btrfs_handle_fs_error(root->fs_info, ret,
483			"failed to start transaction in verity rollback %llu",
484			(u64)inode->vfs_inode.i_ino);
485		goto out;
486	}
487	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
488	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
489	ret = btrfs_update_inode(trans, inode);
490	if (ret) {
491		btrfs_abort_transaction(trans, ret);
492		goto out;
493	}
494	ret = del_orphan(trans, inode);
495	if (ret) {
496		btrfs_abort_transaction(trans, ret);
497		goto out;
498	}
499out:
500	if (trans)
501		btrfs_end_transaction(trans);
502	return ret;
503}
504
505/*
506 * Finalize making the file a valid verity file
507 *
508 * @inode:      inode to be marked as verity
509 * @desc:       contents of the verity descriptor to write (not NULL)
510 * @desc_size:  size of the verity descriptor
511 *
512 * Do the actual work of finalizing verity after successfully writing the Merkle
513 * tree:
514 *
515 * - write out the descriptor items
516 * - mark the inode with the verity flag
517 * - delete the orphan item
518 * - mark the ro compat bit
519 * - clear the in progress bit
520 *
521 * Returns 0 on success, negative error code on failure.
522 */
523static int finish_verity(struct btrfs_inode *inode, const void *desc,
524			 size_t desc_size)
525{
526	struct btrfs_trans_handle *trans = NULL;
527	struct btrfs_root *root = inode->root;
528	struct btrfs_verity_descriptor_item item;
529	int ret;
530
531	/* Write out the descriptor item */
532	memset(&item, 0, sizeof(item));
533	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
534	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
535			      (const char *)&item, sizeof(item));
536	if (ret)
537		goto out;
538
539	/* Write out the descriptor itself */
540	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
541			      desc, desc_size);
542	if (ret)
543		goto out;
544
545	/*
546	 * 1 for updating the inode flag
547	 * 1 for deleting the orphan
548	 */
549	trans = btrfs_start_transaction(root, 2);
550	if (IS_ERR(trans)) {
551		ret = PTR_ERR(trans);
552		goto out;
553	}
554	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
555	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
556	ret = btrfs_update_inode(trans, inode);
557	if (ret)
558		goto end_trans;
559	ret = del_orphan(trans, inode);
560	if (ret)
561		goto end_trans;
562	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
563	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
564end_trans:
565	btrfs_end_transaction(trans);
566out:
567	return ret;
568
569}
570
571/*
572 * fsverity op that begins enabling verity.
573 *
574 * @filp:  file to enable verity on
575 *
576 * Begin enabling fsverity for the file. We drop any existing verity items, add
577 * an orphan and set the in progress bit.
578 *
579 * Returns 0 on success, negative error code on failure.
580 */
581static int btrfs_begin_enable_verity(struct file *filp)
582{
583	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
584	struct btrfs_root *root = inode->root;
585	struct btrfs_trans_handle *trans;
586	int ret;
587
588	ASSERT(inode_is_locked(file_inode(filp)));
589
590	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
591		return -EBUSY;
592
593	/*
594	 * This should almost never do anything, but theoretically, it's
595	 * possible that we failed to enable verity on a file, then were
596	 * interrupted or failed while rolling back, failed to cleanup the
597	 * orphan, and finally attempt to enable verity again.
598	 */
599	ret = btrfs_drop_verity_items(inode);
600	if (ret)
601		return ret;
602
603	/* 1 for the orphan item */
604	trans = btrfs_start_transaction(root, 1);
605	if (IS_ERR(trans))
606		return PTR_ERR(trans);
607
608	ret = btrfs_orphan_add(trans, inode);
609	if (!ret)
610		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
611	btrfs_end_transaction(trans);
612
613	return 0;
614}
615
616/*
617 * fsverity op that ends enabling verity.
618 *
619 * @filp:              file we are finishing enabling verity on
620 * @desc:              verity descriptor to write out (NULL in error conditions)
621 * @desc_size:         size of the verity descriptor (variable with signatures)
622 * @merkle_tree_size:  size of the merkle tree in bytes
623 *
624 * If desc is null, then VFS is signaling an error occurred during verity
625 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
626 *
627 * Returns 0 on success, negative error code on error.
628 */
629static int btrfs_end_enable_verity(struct file *filp, const void *desc,
630				   size_t desc_size, u64 merkle_tree_size)
631{
632	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
633	int ret = 0;
634	int rollback_ret;
635
636	ASSERT(inode_is_locked(file_inode(filp)));
637
638	if (desc == NULL)
639		goto rollback;
640
641	ret = finish_verity(inode, desc, desc_size);
642	if (ret)
643		goto rollback;
644	return ret;
645
646rollback:
647	rollback_ret = rollback_verity(inode);
648	if (rollback_ret)
649		btrfs_err(inode->root->fs_info,
650			  "failed to rollback verity items: %d", rollback_ret);
651	return ret;
652}
653
654/*
655 * fsverity op that gets the struct fsverity_descriptor.
656 *
657 * @inode:     inode to get the descriptor of
658 * @buf:       output buffer for the descriptor contents
659 * @buf_size:  size of the output buffer. 0 to query the size
660 *
661 * fsverity does a two pass setup for reading the descriptor, in the first pass
662 * it calls with buf_size = 0 to query the size of the descriptor, and then in
663 * the second pass it actually reads the descriptor off disk.
664 *
665 * Returns the size on success or a negative error code on failure.
666 */
667int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
668{
669	u64 true_size;
670	int ret = 0;
671	struct btrfs_verity_descriptor_item item;
672
673	memset(&item, 0, sizeof(item));
674	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
675			     (char *)&item, sizeof(item), NULL);
676	if (ret < 0)
677		return ret;
678
679	if (item.reserved[0] != 0 || item.reserved[1] != 0)
680		return -EUCLEAN;
681
682	true_size = btrfs_stack_verity_descriptor_size(&item);
683	if (true_size > INT_MAX)
684		return -EUCLEAN;
685
686	if (buf_size == 0)
687		return true_size;
688	if (buf_size < true_size)
689		return -ERANGE;
690
691	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
692			     buf, buf_size, NULL);
693	if (ret < 0)
694		return ret;
695	if (ret != true_size)
696		return -EIO;
697
698	return true_size;
699}
700
701/*
702 * fsverity op that reads and caches a merkle tree page.
703 *
704 * @inode:         inode to read a merkle tree page for
705 * @index:         page index relative to the start of the merkle tree
706 * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
707 *
708 * The Merkle tree is stored in the filesystem btree, but its pages are cached
709 * with a logical position past EOF in the inode's mapping.
710 *
711 * Returns the page we read, or an ERR_PTR on error.
712 */
713static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
714						pgoff_t index,
715						unsigned long num_ra_pages)
716{
717	struct folio *folio;
718	u64 off = (u64)index << PAGE_SHIFT;
719	loff_t merkle_pos = merkle_file_pos(inode);
720	int ret;
721
722	if (merkle_pos < 0)
723		return ERR_PTR(merkle_pos);
724	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
725		return ERR_PTR(-EFBIG);
726	index += merkle_pos >> PAGE_SHIFT;
727again:
728	folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0);
729	if (!IS_ERR(folio)) {
730		if (folio_test_uptodate(folio))
731			goto out;
732
733		folio_lock(folio);
734		/* If it's not uptodate after we have the lock, we got a read error. */
735		if (!folio_test_uptodate(folio)) {
736			folio_unlock(folio);
737			folio_put(folio);
738			return ERR_PTR(-EIO);
739		}
740		folio_unlock(folio);
741		goto out;
742	}
743
744	folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS),
745				    0);
746	if (!folio)
747		return ERR_PTR(-ENOMEM);
748
749	ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS);
750	if (ret) {
751		folio_put(folio);
752		/* Did someone else insert a folio here? */
753		if (ret == -EEXIST)
754			goto again;
755		return ERR_PTR(ret);
756	}
757
758	/*
759	 * Merkle item keys are indexed from byte 0 in the merkle tree.
760	 * They have the form:
761	 *
762	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
763	 */
764	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
765			     folio_address(folio), PAGE_SIZE, &folio->page);
766	if (ret < 0) {
767		folio_put(folio);
768		return ERR_PTR(ret);
769	}
770	if (ret < PAGE_SIZE)
771		folio_zero_segment(folio, ret, PAGE_SIZE);
772
773	folio_mark_uptodate(folio);
774	folio_unlock(folio);
775
776out:
777	return folio_file_page(folio, index);
778}
779
780/*
781 * fsverity op that writes a Merkle tree block into the btree.
782 *
783 * @inode:	inode to write a Merkle tree block for
784 * @buf:	Merkle tree block to write
785 * @pos:	the position of the block in the Merkle tree (in bytes)
786 * @size:	the Merkle tree block size (in bytes)
787 *
788 * Returns 0 on success or negative error code on failure
789 */
790static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
791					 u64 pos, unsigned int size)
792{
793	loff_t merkle_pos = merkle_file_pos(inode);
794
795	if (merkle_pos < 0)
796		return merkle_pos;
797	if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
798		return -EFBIG;
799
800	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
801			       pos, buf, size);
802}
803
804const struct fsverity_operations btrfs_verityops = {
805	.begin_enable_verity     = btrfs_begin_enable_verity,
806	.end_enable_verity       = btrfs_end_enable_verity,
807	.get_verity_descriptor   = btrfs_get_verity_descriptor,
808	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
809	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
810};