Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  4
  5#include <linux/io.h>
  6#include <linux/rtc.h>
  7#include <linux/module.h>
  8#include <linux/slab.h>
  9#include <linux/interrupt.h>
 10#include <linux/platform_device.h>
 11#include <linux/pm_wakeirq.h>
 12#include <linux/clk.h>
 13#include <linux/of.h>
 14
 15#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 16#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 17#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 18
 19#define RTC_SW_BIT      (1 << 0)
 20#define RTC_ALM_BIT     (1 << 2)
 21#define RTC_1HZ_BIT     (1 << 4)
 22#define RTC_2HZ_BIT     (1 << 7)
 23#define RTC_SAM0_BIT    (1 << 8)
 24#define RTC_SAM1_BIT    (1 << 9)
 25#define RTC_SAM2_BIT    (1 << 10)
 26#define RTC_SAM3_BIT    (1 << 11)
 27#define RTC_SAM4_BIT    (1 << 12)
 28#define RTC_SAM5_BIT    (1 << 13)
 29#define RTC_SAM6_BIT    (1 << 14)
 30#define RTC_SAM7_BIT    (1 << 15)
 31#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 32			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 33			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 34
 35#define RTC_ENABLE_BIT  (1 << 7)
 36
 37#define MAX_PIE_NUM     9
 38#define MAX_PIE_FREQ    512
 39
 40#define MXC_RTC_TIME	0
 41#define MXC_RTC_ALARM	1
 42
 43#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 44#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 45#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 46#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 47#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 48#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 49#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 50#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 51#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 52#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 53#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 54#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 55#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 56
 57enum imx_rtc_type {
 58	IMX1_RTC,
 59	IMX21_RTC,
 60};
 61
 62struct rtc_plat_data {
 63	struct rtc_device *rtc;
 64	void __iomem *ioaddr;
 65	int irq;
 66	struct clk *clk_ref;
 67	struct clk *clk_ipg;
 68	struct rtc_time g_rtc_alarm;
 69	enum imx_rtc_type devtype;
 70};
 71
 72static const struct of_device_id imx_rtc_dt_ids[] = {
 73	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 74	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 75	{}
 76};
 77MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 78
 79static inline int is_imx1_rtc(struct rtc_plat_data *data)
 80{
 81	return data->devtype == IMX1_RTC;
 82}
 83
 84/*
 85 * This function is used to obtain the RTC time or the alarm value in
 86 * second.
 87 */
 88static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 89{
 90	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
117{
118	u32 tod, day, hr, min, sec, temp;
119	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
120	void __iomem *ioaddr = pdata->ioaddr;
121
122	day = div_s64_rem(time, 86400, &tod);
123
124	/* time is within a day now */
125	hr = tod / 3600;
126	tod -= hr * 3600;
127
128	/* time is within an hour now */
129	min = tod / 60;
130	sec = tod - min * 60;
131
132	temp = (hr << 8) + min;
133
134	switch (time_alarm) {
135	case MXC_RTC_TIME:
136		writew(day, ioaddr + RTC_DAYR);
137		writew(sec, ioaddr + RTC_SECOND);
138		writew(temp, ioaddr + RTC_HOURMIN);
139		break;
140	case MXC_RTC_ALARM:
141		writew(day, ioaddr + RTC_DAYALARM);
142		writew(sec, ioaddr + RTC_ALRM_SEC);
143		writew(temp, ioaddr + RTC_ALRM_HM);
144		break;
145	}
146}
147
148/*
149 * This function updates the RTC alarm registers and then clears all the
150 * interrupt status bits.
151 */
152static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
153{
154	time64_t time;
155	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
156	void __iomem *ioaddr = pdata->ioaddr;
157
158	time = rtc_tm_to_time64(alrm);
159
160	/* clear all the interrupt status bits */
161	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
162	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
163}
164
165static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
166				unsigned int enabled)
167{
168	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
169	void __iomem *ioaddr = pdata->ioaddr;
170	u32 reg;
171	unsigned long flags;
172
173	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
174	reg = readw(ioaddr + RTC_RTCIENR);
175
176	if (enabled)
177		reg |= bit;
178	else
179		reg &= ~bit;
180
181	writew(reg, ioaddr + RTC_RTCIENR);
182	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
183}
184
185/* This function is the RTC interrupt service routine. */
186static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
187{
188	struct platform_device *pdev = dev_id;
189	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
190	void __iomem *ioaddr = pdata->ioaddr;
191	u32 status;
192	u32 events = 0;
193
194	spin_lock(&pdata->rtc->irq_lock);
195	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
196	/* clear interrupt sources */
197	writew(status, ioaddr + RTC_RTCISR);
198
199	/* update irq data & counter */
200	if (status & RTC_ALM_BIT) {
201		events |= (RTC_AF | RTC_IRQF);
202		/* RTC alarm should be one-shot */
203		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
204	}
205
206	if (status & PIT_ALL_ON)
207		events |= (RTC_PF | RTC_IRQF);
208
209	rtc_update_irq(pdata->rtc, 1, events);
210	spin_unlock(&pdata->rtc->irq_lock);
211
212	return IRQ_HANDLED;
213}
214
215static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
216{
217	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
218	return 0;
219}
220
221/*
222 * This function reads the current RTC time into tm in Gregorian date.
223 */
224static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
225{
226	time64_t val;
227
228	/* Avoid roll-over from reading the different registers */
229	do {
230		val = get_alarm_or_time(dev, MXC_RTC_TIME);
231	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
232
233	rtc_time64_to_tm(val, tm);
234
235	return 0;
236}
237
238/*
239 * This function sets the internal RTC time based on tm in Gregorian date.
240 */
241static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
242{
243	time64_t time = rtc_tm_to_time64(tm);
244
245	/* Avoid roll-over from reading the different registers */
246	do {
247		set_alarm_or_time(dev, MXC_RTC_TIME, time);
248	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250	return 0;
251}
252
253/*
254 * This function reads the current alarm value into the passed in 'alrm'
255 * argument. It updates the alrm's pending field value based on the whether
256 * an alarm interrupt occurs or not.
257 */
258static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259{
260	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
261	void __iomem *ioaddr = pdata->ioaddr;
262
263	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
264	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
265
266	return 0;
267}
268
269/*
270 * This function sets the RTC alarm based on passed in alrm.
271 */
272static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273{
274	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
275
276	rtc_update_alarm(dev, &alrm->time);
277
278	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
279	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
280
281	return 0;
282}
283
284/* RTC layer */
285static const struct rtc_class_ops mxc_rtc_ops = {
286	.read_time		= mxc_rtc_read_time,
287	.set_time		= mxc_rtc_set_time,
288	.read_alarm		= mxc_rtc_read_alarm,
289	.set_alarm		= mxc_rtc_set_alarm,
290	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
291};
292
293static int mxc_rtc_probe(struct platform_device *pdev)
294{
295	struct rtc_device *rtc;
296	struct rtc_plat_data *pdata = NULL;
297	u32 reg;
298	unsigned long rate;
299	int ret;
300
301	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
302	if (!pdata)
303		return -ENOMEM;
304
305	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
306
307	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
308	if (IS_ERR(pdata->ioaddr))
309		return PTR_ERR(pdata->ioaddr);
310
311	rtc = devm_rtc_allocate_device(&pdev->dev);
312	if (IS_ERR(rtc))
313		return PTR_ERR(rtc);
314
315	pdata->rtc = rtc;
316	rtc->ops = &mxc_rtc_ops;
317	if (is_imx1_rtc(pdata)) {
318		struct rtc_time tm;
319
320		/* 9bit days + hours minutes seconds */
321		rtc->range_max = (1 << 9) * 86400 - 1;
322
323		/*
324		 * Set the start date as beginning of the current year. This can
325		 * be overridden using device tree.
326		 */
327		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
328		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
329		rtc->set_start_time = true;
330	} else {
331		/* 16bit days + hours minutes seconds */
332		rtc->range_max = (1 << 16) * 86400ULL - 1;
333	}
334
335	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
336	if (IS_ERR(pdata->clk_ipg)) {
337		dev_err(&pdev->dev, "unable to get ipg clock!\n");
338		return PTR_ERR(pdata->clk_ipg);
339	}
340
341	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
342	if (IS_ERR(pdata->clk_ref)) {
343		dev_err(&pdev->dev, "unable to get ref clock!\n");
344		return PTR_ERR(pdata->clk_ref);
345	}
346
347	rate = clk_get_rate(pdata->clk_ref);
348
349	if (rate == 32768)
350		reg = RTC_INPUT_CLK_32768HZ;
351	else if (rate == 32000)
352		reg = RTC_INPUT_CLK_32000HZ;
353	else if (rate == 38400)
354		reg = RTC_INPUT_CLK_38400HZ;
355	else {
356		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
357		return -EINVAL;
358	}
359
360	reg |= RTC_ENABLE_BIT;
361	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
362	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
363		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
364		return -EIO;
365	}
366
367	platform_set_drvdata(pdev, pdata);
368
369	/* Configure and enable the RTC */
370	pdata->irq = platform_get_irq(pdev, 0);
371
372	if (pdata->irq >= 0 &&
373	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
374			     IRQF_SHARED, pdev->name, pdev) < 0) {
375		dev_warn(&pdev->dev, "interrupt not available.\n");
376		pdata->irq = -1;
377	}
378
379	if (pdata->irq >= 0) {
380		device_init_wakeup(&pdev->dev, 1);
381		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
382		if (ret)
383			dev_err(&pdev->dev, "failed to enable irq wake\n");
384	}
385
386	ret = devm_rtc_register_device(rtc);
387
388	return ret;
389}
390
391static struct platform_driver mxc_rtc_driver = {
392	.driver = {
393		   .name	= "mxc_rtc",
394		   .of_match_table = imx_rtc_dt_ids,
395	},
396	.probe = mxc_rtc_probe,
397};
398
399module_platform_driver(mxc_rtc_driver)
400
401MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
402MODULE_DESCRIPTION("RTC driver for Freescale MXC");
403MODULE_LICENSE("GPL");
404
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  4
  5#include <linux/io.h>
  6#include <linux/rtc.h>
  7#include <linux/module.h>
  8#include <linux/slab.h>
  9#include <linux/interrupt.h>
 10#include <linux/platform_device.h>
 11#include <linux/pm_wakeirq.h>
 12#include <linux/clk.h>
 13#include <linux/of.h>
 14
 15#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 16#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 17#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 18
 19#define RTC_SW_BIT      (1 << 0)
 20#define RTC_ALM_BIT     (1 << 2)
 21#define RTC_1HZ_BIT     (1 << 4)
 22#define RTC_2HZ_BIT     (1 << 7)
 23#define RTC_SAM0_BIT    (1 << 8)
 24#define RTC_SAM1_BIT    (1 << 9)
 25#define RTC_SAM2_BIT    (1 << 10)
 26#define RTC_SAM3_BIT    (1 << 11)
 27#define RTC_SAM4_BIT    (1 << 12)
 28#define RTC_SAM5_BIT    (1 << 13)
 29#define RTC_SAM6_BIT    (1 << 14)
 30#define RTC_SAM7_BIT    (1 << 15)
 31#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 32			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 33			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 34
 35#define RTC_ENABLE_BIT  (1 << 7)
 36
 37#define MAX_PIE_NUM     9
 38#define MAX_PIE_FREQ    512
 39
 40#define MXC_RTC_TIME	0
 41#define MXC_RTC_ALARM	1
 42
 43#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 44#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 45#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 46#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 47#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 48#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 49#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 50#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 51#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 52#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 53#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 54#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 55#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 56
 57enum imx_rtc_type {
 58	IMX1_RTC,
 59	IMX21_RTC,
 60};
 61
 62struct rtc_plat_data {
 63	struct rtc_device *rtc;
 64	void __iomem *ioaddr;
 65	int irq;
 66	struct clk *clk_ref;
 67	struct clk *clk_ipg;
 68	struct rtc_time g_rtc_alarm;
 69	enum imx_rtc_type devtype;
 70};
 71
 72static const struct of_device_id imx_rtc_dt_ids[] = {
 73	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 74	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 75	{}
 76};
 77MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 78
 79static inline int is_imx1_rtc(struct rtc_plat_data *data)
 80{
 81	return data->devtype == IMX1_RTC;
 82}
 83
 84/*
 85 * This function is used to obtain the RTC time or the alarm value in
 86 * second.
 87 */
 88static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 89{
 90	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
117{
118	u32 tod, day, hr, min, sec, temp;
119	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
120	void __iomem *ioaddr = pdata->ioaddr;
121
122	day = div_s64_rem(time, 86400, &tod);
123
124	/* time is within a day now */
125	hr = tod / 3600;
126	tod -= hr * 3600;
127
128	/* time is within an hour now */
129	min = tod / 60;
130	sec = tod - min * 60;
131
132	temp = (hr << 8) + min;
133
134	switch (time_alarm) {
135	case MXC_RTC_TIME:
136		writew(day, ioaddr + RTC_DAYR);
137		writew(sec, ioaddr + RTC_SECOND);
138		writew(temp, ioaddr + RTC_HOURMIN);
139		break;
140	case MXC_RTC_ALARM:
141		writew(day, ioaddr + RTC_DAYALARM);
142		writew(sec, ioaddr + RTC_ALRM_SEC);
143		writew(temp, ioaddr + RTC_ALRM_HM);
144		break;
145	}
146}
147
148/*
149 * This function updates the RTC alarm registers and then clears all the
150 * interrupt status bits.
151 */
152static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
153{
154	time64_t time;
155	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
156	void __iomem *ioaddr = pdata->ioaddr;
157
158	time = rtc_tm_to_time64(alrm);
159
160	/* clear all the interrupt status bits */
161	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
162	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
163}
164
165static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
166				unsigned int enabled)
167{
168	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
169	void __iomem *ioaddr = pdata->ioaddr;
170	u32 reg;
171	unsigned long flags;
172
173	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
174	reg = readw(ioaddr + RTC_RTCIENR);
175
176	if (enabled)
177		reg |= bit;
178	else
179		reg &= ~bit;
180
181	writew(reg, ioaddr + RTC_RTCIENR);
182	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
183}
184
185/* This function is the RTC interrupt service routine. */
186static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
187{
188	struct platform_device *pdev = dev_id;
189	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
190	void __iomem *ioaddr = pdata->ioaddr;
191	u32 status;
192	u32 events = 0;
193
194	spin_lock(&pdata->rtc->irq_lock);
195	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
196	/* clear interrupt sources */
197	writew(status, ioaddr + RTC_RTCISR);
198
199	/* update irq data & counter */
200	if (status & RTC_ALM_BIT) {
201		events |= (RTC_AF | RTC_IRQF);
202		/* RTC alarm should be one-shot */
203		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
204	}
205
206	if (status & PIT_ALL_ON)
207		events |= (RTC_PF | RTC_IRQF);
208
209	rtc_update_irq(pdata->rtc, 1, events);
210	spin_unlock(&pdata->rtc->irq_lock);
211
212	return IRQ_HANDLED;
213}
214
215static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
216{
217	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
218	return 0;
219}
220
221/*
222 * This function reads the current RTC time into tm in Gregorian date.
223 */
224static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
225{
226	time64_t val;
227
228	/* Avoid roll-over from reading the different registers */
229	do {
230		val = get_alarm_or_time(dev, MXC_RTC_TIME);
231	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
232
233	rtc_time64_to_tm(val, tm);
234
235	return 0;
236}
237
238/*
239 * This function sets the internal RTC time based on tm in Gregorian date.
240 */
241static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
242{
243	time64_t time = rtc_tm_to_time64(tm);
244
245	/* Avoid roll-over from reading the different registers */
246	do {
247		set_alarm_or_time(dev, MXC_RTC_TIME, time);
248	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250	return 0;
251}
252
253/*
254 * This function reads the current alarm value into the passed in 'alrm'
255 * argument. It updates the alrm's pending field value based on the whether
256 * an alarm interrupt occurs or not.
257 */
258static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259{
260	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
261	void __iomem *ioaddr = pdata->ioaddr;
262
263	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
264	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
265
266	return 0;
267}
268
269/*
270 * This function sets the RTC alarm based on passed in alrm.
271 */
272static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273{
274	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
275
276	rtc_update_alarm(dev, &alrm->time);
277
278	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
279	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
280
281	return 0;
282}
283
284/* RTC layer */
285static const struct rtc_class_ops mxc_rtc_ops = {
286	.read_time		= mxc_rtc_read_time,
287	.set_time		= mxc_rtc_set_time,
288	.read_alarm		= mxc_rtc_read_alarm,
289	.set_alarm		= mxc_rtc_set_alarm,
290	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
291};
292
293static int mxc_rtc_probe(struct platform_device *pdev)
294{
295	struct rtc_device *rtc;
296	struct rtc_plat_data *pdata = NULL;
297	u32 reg;
298	unsigned long rate;
299	int ret;
300
301	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
302	if (!pdata)
303		return -ENOMEM;
304
305	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
306
307	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
308	if (IS_ERR(pdata->ioaddr))
309		return PTR_ERR(pdata->ioaddr);
310
311	rtc = devm_rtc_allocate_device(&pdev->dev);
312	if (IS_ERR(rtc))
313		return PTR_ERR(rtc);
314
315	pdata->rtc = rtc;
316	rtc->ops = &mxc_rtc_ops;
317	if (is_imx1_rtc(pdata)) {
318		struct rtc_time tm;
319
320		/* 9bit days + hours minutes seconds */
321		rtc->range_max = (1 << 9) * 86400 - 1;
322
323		/*
324		 * Set the start date as beginning of the current year. This can
325		 * be overridden using device tree.
326		 */
327		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
328		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
329		rtc->set_start_time = true;
330	} else {
331		/* 16bit days + hours minutes seconds */
332		rtc->range_max = (1 << 16) * 86400ULL - 1;
333	}
334
335	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
336	if (IS_ERR(pdata->clk_ipg)) {
337		dev_err(&pdev->dev, "unable to get ipg clock!\n");
338		return PTR_ERR(pdata->clk_ipg);
339	}
340
341	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
342	if (IS_ERR(pdata->clk_ref)) {
343		dev_err(&pdev->dev, "unable to get ref clock!\n");
344		return PTR_ERR(pdata->clk_ref);
345	}
346
347	rate = clk_get_rate(pdata->clk_ref);
348
349	if (rate == 32768)
350		reg = RTC_INPUT_CLK_32768HZ;
351	else if (rate == 32000)
352		reg = RTC_INPUT_CLK_32000HZ;
353	else if (rate == 38400)
354		reg = RTC_INPUT_CLK_38400HZ;
355	else {
356		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
357		return -EINVAL;
358	}
359
360	reg |= RTC_ENABLE_BIT;
361	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
362	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
363		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
364		return -EIO;
365	}
366
367	platform_set_drvdata(pdev, pdata);
368
369	/* Configure and enable the RTC */
370	pdata->irq = platform_get_irq(pdev, 0);
371
372	if (pdata->irq >= 0 &&
373	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
374			     IRQF_SHARED, pdev->name, pdev) < 0) {
375		dev_warn(&pdev->dev, "interrupt not available.\n");
376		pdata->irq = -1;
377	}
378
379	if (pdata->irq >= 0) {
380		device_init_wakeup(&pdev->dev, 1);
381		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
382		if (ret)
383			dev_err(&pdev->dev, "failed to enable irq wake\n");
384	}
385
386	ret = devm_rtc_register_device(rtc);
387
388	return ret;
389}
390
391static struct platform_driver mxc_rtc_driver = {
392	.driver = {
393		   .name	= "mxc_rtc",
394		   .of_match_table = imx_rtc_dt_ids,
395	},
396	.probe = mxc_rtc_probe,
397};
398
399module_platform_driver(mxc_rtc_driver)
400
401MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
402MODULE_DESCRIPTION("RTC driver for Freescale MXC");
403MODULE_LICENSE("GPL");
404