Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Davicom DM9000 Fast Ethernet driver for Linux.
   4 * 	Copyright (C) 1997  Sten Wang
   5 *
   6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
   7 *
   8 * Additional updates, Copyright:
   9 *	Ben Dooks <ben@simtec.co.uk>
  10 *	Sascha Hauer <s.hauer@pengutronix.de>
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/ioport.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/interrupt.h>
  18#include <linux/skbuff.h>
  19#include <linux/spinlock.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22#include <linux/of.h>
  23#include <linux/of_net.h>
  24#include <linux/ethtool.h>
  25#include <linux/dm9000.h>
  26#include <linux/delay.h>
  27#include <linux/platform_device.h>
  28#include <linux/irq.h>
  29#include <linux/slab.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/gpio/consumer.h>
  32
  33#include <asm/delay.h>
  34#include <asm/irq.h>
  35#include <asm/io.h>
  36
  37#include "dm9000.h"
  38
  39/* Board/System/Debug information/definition ---------------- */
  40
  41#define DM9000_PHY		0x40	/* PHY address 0x01 */
  42
  43#define CARDNAME	"dm9000"
  44
  45/*
  46 * Transmit timeout, default 5 seconds.
  47 */
  48static int watchdog = 5000;
  49module_param(watchdog, int, 0400);
  50MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  51
  52/*
  53 * Debug messages level
  54 */
  55static int debug;
  56module_param(debug, int, 0644);
  57MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
  58
  59/* DM9000 register address locking.
  60 *
  61 * The DM9000 uses an address register to control where data written
  62 * to the data register goes. This means that the address register
  63 * must be preserved over interrupts or similar calls.
  64 *
  65 * During interrupt and other critical calls, a spinlock is used to
  66 * protect the system, but the calls themselves save the address
  67 * in the address register in case they are interrupting another
  68 * access to the device.
  69 *
  70 * For general accesses a lock is provided so that calls which are
  71 * allowed to sleep are serialised so that the address register does
  72 * not need to be saved. This lock also serves to serialise access
  73 * to the EEPROM and PHY access registers which are shared between
  74 * these two devices.
  75 */
  76
  77/* The driver supports the original DM9000E, and now the two newer
  78 * devices, DM9000A and DM9000B.
  79 */
  80
  81enum dm9000_type {
  82	TYPE_DM9000E,	/* original DM9000 */
  83	TYPE_DM9000A,
  84	TYPE_DM9000B
  85};
  86
  87/* Structure/enum declaration ------------------------------- */
  88struct board_info {
  89
  90	void __iomem	*io_addr;	/* Register I/O base address */
  91	void __iomem	*io_data;	/* Data I/O address */
  92	u16		 irq;		/* IRQ */
  93
  94	u16		tx_pkt_cnt;
  95	u16		queue_pkt_len;
  96	u16		queue_start_addr;
  97	u16		queue_ip_summed;
  98	u16		dbug_cnt;
  99	u8		io_mode;		/* 0:word, 2:byte */
 100	u8		phy_addr;
 101	u8		imr_all;
 102
 103	unsigned int	flags;
 104	unsigned int	in_timeout:1;
 105	unsigned int	in_suspend:1;
 106	unsigned int	wake_supported:1;
 107
 108	enum dm9000_type type;
 109
 110	void (*inblk)(void __iomem *port, void *data, int length);
 111	void (*outblk)(void __iomem *port, void *data, int length);
 112	void (*dumpblk)(void __iomem *port, int length);
 113
 114	struct device	*dev;	     /* parent device */
 115
 116	struct resource	*addr_res;   /* resources found */
 117	struct resource *data_res;
 118	struct resource	*addr_req;   /* resources requested */
 119	struct resource *data_req;
 120
 121	int		 irq_wake;
 122
 123	struct mutex	 addr_lock;	/* phy and eeprom access lock */
 124
 125	struct delayed_work phy_poll;
 126	struct net_device  *ndev;
 127
 128	spinlock_t	lock;
 129
 130	struct mii_if_info mii;
 131	u32		msg_enable;
 132	u32		wake_state;
 133
 134	int		ip_summed;
 135
 136	struct regulator *power_supply;
 137};
 138
 139/* debug code */
 140
 141#define dm9000_dbg(db, lev, msg...) do {		\
 142	if ((lev) < debug) {				\
 143		dev_dbg(db->dev, msg);			\
 144	}						\
 145} while (0)
 146
 147static inline struct board_info *to_dm9000_board(struct net_device *dev)
 148{
 149	return netdev_priv(dev);
 150}
 151
 152/* DM9000 network board routine ---------------------------- */
 153
 154/*
 155 *   Read a byte from I/O port
 156 */
 157static u8
 158ior(struct board_info *db, int reg)
 159{
 160	writeb(reg, db->io_addr);
 161	return readb(db->io_data);
 162}
 163
 164/*
 165 *   Write a byte to I/O port
 166 */
 167
 168static void
 169iow(struct board_info *db, int reg, int value)
 170{
 171	writeb(reg, db->io_addr);
 172	writeb(value, db->io_data);
 173}
 174
 175static void
 176dm9000_reset(struct board_info *db)
 177{
 178	dev_dbg(db->dev, "resetting device\n");
 179
 180	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 181	 * The essential point is that we have to do a double reset, and the
 182	 * instruction is to set LBK into MAC internal loopback mode.
 183	 */
 184	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 185	udelay(100); /* Application note says at least 20 us */
 186	if (ior(db, DM9000_NCR) & 1)
 187		dev_err(db->dev, "dm9000 did not respond to first reset\n");
 188
 189	iow(db, DM9000_NCR, 0);
 190	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 191	udelay(100);
 192	if (ior(db, DM9000_NCR) & 1)
 193		dev_err(db->dev, "dm9000 did not respond to second reset\n");
 194}
 195
 196/* routines for sending block to chip */
 197
 198static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 199{
 200	iowrite8_rep(reg, data, count);
 201}
 202
 203static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 204{
 205	iowrite16_rep(reg, data, (count+1) >> 1);
 206}
 207
 208static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 209{
 210	iowrite32_rep(reg, data, (count+3) >> 2);
 211}
 212
 213/* input block from chip to memory */
 214
 215static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 216{
 217	ioread8_rep(reg, data, count);
 218}
 219
 220
 221static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 222{
 223	ioread16_rep(reg, data, (count+1) >> 1);
 224}
 225
 226static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 227{
 228	ioread32_rep(reg, data, (count+3) >> 2);
 229}
 230
 231/* dump block from chip to null */
 232
 233static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 234{
 235	int i;
 236
 237	for (i = 0; i < count; i++)
 238		readb(reg);
 239}
 240
 241static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 242{
 243	int i;
 244
 245	count = (count + 1) >> 1;
 246
 247	for (i = 0; i < count; i++)
 248		readw(reg);
 249}
 250
 251static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 252{
 253	int i;
 254
 255	count = (count + 3) >> 2;
 256
 257	for (i = 0; i < count; i++)
 258		readl(reg);
 259}
 260
 261/*
 262 * Sleep, either by using msleep() or if we are suspending, then
 263 * use mdelay() to sleep.
 264 */
 265static void dm9000_msleep(struct board_info *db, unsigned int ms)
 266{
 267	if (db->in_suspend || db->in_timeout)
 268		mdelay(ms);
 269	else
 270		msleep(ms);
 271}
 272
 273/* Read a word from phyxcer */
 274static int
 275dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 276{
 277	struct board_info *db = netdev_priv(dev);
 278	unsigned long flags;
 279	unsigned int reg_save;
 280	int ret;
 281
 282	mutex_lock(&db->addr_lock);
 283
 284	spin_lock_irqsave(&db->lock, flags);
 285
 286	/* Save previous register address */
 287	reg_save = readb(db->io_addr);
 288
 289	/* Fill the phyxcer register into REG_0C */
 290	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 291
 292	/* Issue phyxcer read command */
 293	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 294
 295	writeb(reg_save, db->io_addr);
 296	spin_unlock_irqrestore(&db->lock, flags);
 297
 298	dm9000_msleep(db, 1);		/* Wait read complete */
 299
 300	spin_lock_irqsave(&db->lock, flags);
 301	reg_save = readb(db->io_addr);
 302
 303	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
 304
 305	/* The read data keeps on REG_0D & REG_0E */
 306	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 307
 308	/* restore the previous address */
 309	writeb(reg_save, db->io_addr);
 310	spin_unlock_irqrestore(&db->lock, flags);
 311
 312	mutex_unlock(&db->addr_lock);
 313
 314	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 315	return ret;
 316}
 317
 318/* Write a word to phyxcer */
 319static void
 320dm9000_phy_write(struct net_device *dev,
 321		 int phyaddr_unused, int reg, int value)
 322{
 323	struct board_info *db = netdev_priv(dev);
 324	unsigned long flags;
 325	unsigned long reg_save;
 326
 327	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 328	if (!db->in_timeout)
 329		mutex_lock(&db->addr_lock);
 330
 331	spin_lock_irqsave(&db->lock, flags);
 332
 333	/* Save previous register address */
 334	reg_save = readb(db->io_addr);
 335
 336	/* Fill the phyxcer register into REG_0C */
 337	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 338
 339	/* Fill the written data into REG_0D & REG_0E */
 340	iow(db, DM9000_EPDRL, value);
 341	iow(db, DM9000_EPDRH, value >> 8);
 342
 343	/* Issue phyxcer write command */
 344	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 345
 346	writeb(reg_save, db->io_addr);
 347	spin_unlock_irqrestore(&db->lock, flags);
 348
 349	dm9000_msleep(db, 1);		/* Wait write complete */
 350
 351	spin_lock_irqsave(&db->lock, flags);
 352	reg_save = readb(db->io_addr);
 353
 354	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
 355
 356	/* restore the previous address */
 357	writeb(reg_save, db->io_addr);
 358
 359	spin_unlock_irqrestore(&db->lock, flags);
 360	if (!db->in_timeout)
 361		mutex_unlock(&db->addr_lock);
 362}
 363
 364/* dm9000_set_io
 365 *
 366 * select the specified set of io routines to use with the
 367 * device
 368 */
 369
 370static void dm9000_set_io(struct board_info *db, int byte_width)
 371{
 372	/* use the size of the data resource to work out what IO
 373	 * routines we want to use
 374	 */
 375
 376	switch (byte_width) {
 377	case 1:
 378		db->dumpblk = dm9000_dumpblk_8bit;
 379		db->outblk  = dm9000_outblk_8bit;
 380		db->inblk   = dm9000_inblk_8bit;
 381		break;
 382
 383
 384	case 3:
 385		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 386		fallthrough;
 387	case 2:
 388		db->dumpblk = dm9000_dumpblk_16bit;
 389		db->outblk  = dm9000_outblk_16bit;
 390		db->inblk   = dm9000_inblk_16bit;
 391		break;
 392
 393	case 4:
 394	default:
 395		db->dumpblk = dm9000_dumpblk_32bit;
 396		db->outblk  = dm9000_outblk_32bit;
 397		db->inblk   = dm9000_inblk_32bit;
 398		break;
 399	}
 400}
 401
 402static void dm9000_schedule_poll(struct board_info *db)
 403{
 404	if (db->type == TYPE_DM9000E)
 405		schedule_delayed_work(&db->phy_poll, HZ * 2);
 406}
 407
 408static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 409{
 410	struct board_info *dm = to_dm9000_board(dev);
 411
 412	if (!netif_running(dev))
 413		return -EINVAL;
 414
 415	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 416}
 417
 418static unsigned int
 419dm9000_read_locked(struct board_info *db, int reg)
 420{
 421	unsigned long flags;
 422	unsigned int ret;
 423
 424	spin_lock_irqsave(&db->lock, flags);
 425	ret = ior(db, reg);
 426	spin_unlock_irqrestore(&db->lock, flags);
 427
 428	return ret;
 429}
 430
 431static int dm9000_wait_eeprom(struct board_info *db)
 432{
 433	unsigned int status;
 434	int timeout = 8;	/* wait max 8msec */
 435
 436	/* The DM9000 data sheets say we should be able to
 437	 * poll the ERRE bit in EPCR to wait for the EEPROM
 438	 * operation. From testing several chips, this bit
 439	 * does not seem to work.
 440	 *
 441	 * We attempt to use the bit, but fall back to the
 442	 * timeout (which is why we do not return an error
 443	 * on expiry) to say that the EEPROM operation has
 444	 * completed.
 445	 */
 446
 447	while (1) {
 448		status = dm9000_read_locked(db, DM9000_EPCR);
 449
 450		if ((status & EPCR_ERRE) == 0)
 451			break;
 452
 453		msleep(1);
 454
 455		if (timeout-- < 0) {
 456			dev_dbg(db->dev, "timeout waiting EEPROM\n");
 457			break;
 458		}
 459	}
 460
 461	return 0;
 462}
 463
 464/*
 465 *  Read a word data from EEPROM
 466 */
 467static void
 468dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 469{
 470	unsigned long flags;
 471
 472	if (db->flags & DM9000_PLATF_NO_EEPROM) {
 473		to[0] = 0xff;
 474		to[1] = 0xff;
 475		return;
 476	}
 477
 478	mutex_lock(&db->addr_lock);
 479
 480	spin_lock_irqsave(&db->lock, flags);
 481
 482	iow(db, DM9000_EPAR, offset);
 483	iow(db, DM9000_EPCR, EPCR_ERPRR);
 484
 485	spin_unlock_irqrestore(&db->lock, flags);
 486
 487	dm9000_wait_eeprom(db);
 488
 489	/* delay for at-least 150uS */
 490	msleep(1);
 491
 492	spin_lock_irqsave(&db->lock, flags);
 493
 494	iow(db, DM9000_EPCR, 0x0);
 495
 496	to[0] = ior(db, DM9000_EPDRL);
 497	to[1] = ior(db, DM9000_EPDRH);
 498
 499	spin_unlock_irqrestore(&db->lock, flags);
 500
 501	mutex_unlock(&db->addr_lock);
 502}
 503
 504/*
 505 * Write a word data to SROM
 506 */
 507static void
 508dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 509{
 510	unsigned long flags;
 511
 512	if (db->flags & DM9000_PLATF_NO_EEPROM)
 513		return;
 514
 515	mutex_lock(&db->addr_lock);
 516
 517	spin_lock_irqsave(&db->lock, flags);
 518	iow(db, DM9000_EPAR, offset);
 519	iow(db, DM9000_EPDRH, data[1]);
 520	iow(db, DM9000_EPDRL, data[0]);
 521	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 522	spin_unlock_irqrestore(&db->lock, flags);
 523
 524	dm9000_wait_eeprom(db);
 525
 526	mdelay(1);	/* wait at least 150uS to clear */
 527
 528	spin_lock_irqsave(&db->lock, flags);
 529	iow(db, DM9000_EPCR, 0);
 530	spin_unlock_irqrestore(&db->lock, flags);
 531
 532	mutex_unlock(&db->addr_lock);
 533}
 534
 535/* ethtool ops */
 536
 537static void dm9000_get_drvinfo(struct net_device *dev,
 538			       struct ethtool_drvinfo *info)
 539{
 540	struct board_info *dm = to_dm9000_board(dev);
 541
 542	strscpy(info->driver, CARDNAME, sizeof(info->driver));
 543	strscpy(info->bus_info, to_platform_device(dm->dev)->name,
 544		sizeof(info->bus_info));
 545}
 546
 547static u32 dm9000_get_msglevel(struct net_device *dev)
 548{
 549	struct board_info *dm = to_dm9000_board(dev);
 550
 551	return dm->msg_enable;
 552}
 553
 554static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 555{
 556	struct board_info *dm = to_dm9000_board(dev);
 557
 558	dm->msg_enable = value;
 559}
 560
 561static int dm9000_get_link_ksettings(struct net_device *dev,
 562				     struct ethtool_link_ksettings *cmd)
 563{
 564	struct board_info *dm = to_dm9000_board(dev);
 565
 566	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
 567	return 0;
 568}
 569
 570static int dm9000_set_link_ksettings(struct net_device *dev,
 571				     const struct ethtool_link_ksettings *cmd)
 572{
 573	struct board_info *dm = to_dm9000_board(dev);
 574
 575	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
 576}
 577
 578static int dm9000_nway_reset(struct net_device *dev)
 579{
 580	struct board_info *dm = to_dm9000_board(dev);
 581	return mii_nway_restart(&dm->mii);
 582}
 583
 584static int dm9000_set_features(struct net_device *dev,
 585	netdev_features_t features)
 586{
 587	struct board_info *dm = to_dm9000_board(dev);
 588	netdev_features_t changed = dev->features ^ features;
 589	unsigned long flags;
 590
 591	if (!(changed & NETIF_F_RXCSUM))
 592		return 0;
 593
 594	spin_lock_irqsave(&dm->lock, flags);
 595	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 596	spin_unlock_irqrestore(&dm->lock, flags);
 597
 598	return 0;
 599}
 600
 601static u32 dm9000_get_link(struct net_device *dev)
 602{
 603	struct board_info *dm = to_dm9000_board(dev);
 604	u32 ret;
 605
 606	if (dm->flags & DM9000_PLATF_EXT_PHY)
 607		ret = mii_link_ok(&dm->mii);
 608	else
 609		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 610
 611	return ret;
 612}
 613
 614#define DM_EEPROM_MAGIC		(0x444D394B)
 615
 616static int dm9000_get_eeprom_len(struct net_device *dev)
 617{
 618	return 128;
 619}
 620
 621static int dm9000_get_eeprom(struct net_device *dev,
 622			     struct ethtool_eeprom *ee, u8 *data)
 623{
 624	struct board_info *dm = to_dm9000_board(dev);
 625	int offset = ee->offset;
 626	int len = ee->len;
 627	int i;
 628
 629	/* EEPROM access is aligned to two bytes */
 630
 631	if ((len & 1) != 0 || (offset & 1) != 0)
 632		return -EINVAL;
 633
 634	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 635		return -ENOENT;
 636
 637	ee->magic = DM_EEPROM_MAGIC;
 638
 639	for (i = 0; i < len; i += 2)
 640		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 641
 642	return 0;
 643}
 644
 645static int dm9000_set_eeprom(struct net_device *dev,
 646			     struct ethtool_eeprom *ee, u8 *data)
 647{
 648	struct board_info *dm = to_dm9000_board(dev);
 649	int offset = ee->offset;
 650	int len = ee->len;
 651	int done;
 652
 653	/* EEPROM access is aligned to two bytes */
 654
 655	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 656		return -ENOENT;
 657
 658	if (ee->magic != DM_EEPROM_MAGIC)
 659		return -EINVAL;
 660
 661	while (len > 0) {
 662		if (len & 1 || offset & 1) {
 663			int which = offset & 1;
 664			u8 tmp[2];
 665
 666			dm9000_read_eeprom(dm, offset / 2, tmp);
 667			tmp[which] = *data;
 668			dm9000_write_eeprom(dm, offset / 2, tmp);
 669
 670			done = 1;
 671		} else {
 672			dm9000_write_eeprom(dm, offset / 2, data);
 673			done = 2;
 674		}
 675
 676		data += done;
 677		offset += done;
 678		len -= done;
 679	}
 680
 681	return 0;
 682}
 683
 684static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 685{
 686	struct board_info *dm = to_dm9000_board(dev);
 687
 688	memset(w, 0, sizeof(struct ethtool_wolinfo));
 689
 690	/* note, we could probably support wake-phy too */
 691	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 692	w->wolopts = dm->wake_state;
 693}
 694
 695static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 696{
 697	struct board_info *dm = to_dm9000_board(dev);
 698	unsigned long flags;
 699	u32 opts = w->wolopts;
 700	u32 wcr = 0;
 701
 702	if (!dm->wake_supported)
 703		return -EOPNOTSUPP;
 704
 705	if (opts & ~WAKE_MAGIC)
 706		return -EINVAL;
 707
 708	if (opts & WAKE_MAGIC)
 709		wcr |= WCR_MAGICEN;
 710
 711	mutex_lock(&dm->addr_lock);
 712
 713	spin_lock_irqsave(&dm->lock, flags);
 714	iow(dm, DM9000_WCR, wcr);
 715	spin_unlock_irqrestore(&dm->lock, flags);
 716
 717	mutex_unlock(&dm->addr_lock);
 718
 719	if (dm->wake_state != opts) {
 720		/* change in wol state, update IRQ state */
 721
 722		if (!dm->wake_state)
 723			irq_set_irq_wake(dm->irq_wake, 1);
 724		else if (dm->wake_state && !opts)
 725			irq_set_irq_wake(dm->irq_wake, 0);
 726	}
 727
 728	dm->wake_state = opts;
 729	return 0;
 730}
 731
 732static const struct ethtool_ops dm9000_ethtool_ops = {
 733	.get_drvinfo		= dm9000_get_drvinfo,
 734	.get_msglevel		= dm9000_get_msglevel,
 735	.set_msglevel		= dm9000_set_msglevel,
 736	.nway_reset		= dm9000_nway_reset,
 737	.get_link		= dm9000_get_link,
 738	.get_wol		= dm9000_get_wol,
 739	.set_wol		= dm9000_set_wol,
 740	.get_eeprom_len		= dm9000_get_eeprom_len,
 741	.get_eeprom		= dm9000_get_eeprom,
 742	.set_eeprom		= dm9000_set_eeprom,
 743	.get_link_ksettings	= dm9000_get_link_ksettings,
 744	.set_link_ksettings	= dm9000_set_link_ksettings,
 745};
 746
 747static void dm9000_show_carrier(struct board_info *db,
 748				unsigned carrier, unsigned nsr)
 749{
 750	int lpa;
 751	struct net_device *ndev = db->ndev;
 752	struct mii_if_info *mii = &db->mii;
 753	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 754
 755	if (carrier) {
 756		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 757		dev_info(db->dev,
 758			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 759			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 760			 (ncr & NCR_FDX) ? "full" : "half", lpa);
 761	} else {
 762		dev_info(db->dev, "%s: link down\n", ndev->name);
 763	}
 764}
 765
 766static void
 767dm9000_poll_work(struct work_struct *w)
 768{
 769	struct delayed_work *dw = to_delayed_work(w);
 770	struct board_info *db = container_of(dw, struct board_info, phy_poll);
 771	struct net_device *ndev = db->ndev;
 772
 773	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 774	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
 775		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 776		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 777		unsigned new_carrier;
 778
 779		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 780
 781		if (old_carrier != new_carrier) {
 782			if (netif_msg_link(db))
 783				dm9000_show_carrier(db, new_carrier, nsr);
 784
 785			if (!new_carrier)
 786				netif_carrier_off(ndev);
 787			else
 788				netif_carrier_on(ndev);
 789		}
 790	} else
 791		mii_check_media(&db->mii, netif_msg_link(db), 0);
 792
 793	if (netif_running(ndev))
 794		dm9000_schedule_poll(db);
 795}
 796
 797/* dm9000_release_board
 798 *
 799 * release a board, and any mapped resources
 800 */
 801
 802static void
 803dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 804{
 805	/* unmap our resources */
 806
 807	iounmap(db->io_addr);
 808	iounmap(db->io_data);
 809
 810	/* release the resources */
 811
 812	if (db->data_req)
 813		release_resource(db->data_req);
 814	kfree(db->data_req);
 815
 816	if (db->addr_req)
 817		release_resource(db->addr_req);
 818	kfree(db->addr_req);
 819}
 820
 821static unsigned char dm9000_type_to_char(enum dm9000_type type)
 822{
 823	switch (type) {
 824	case TYPE_DM9000E: return 'e';
 825	case TYPE_DM9000A: return 'a';
 826	case TYPE_DM9000B: return 'b';
 827	}
 828
 829	return '?';
 830}
 831
 832/*
 833 *  Set DM9000 multicast address
 834 */
 835static void
 836dm9000_hash_table_unlocked(struct net_device *dev)
 837{
 838	struct board_info *db = netdev_priv(dev);
 839	struct netdev_hw_addr *ha;
 840	int i, oft;
 841	u32 hash_val;
 842	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 843	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 844
 845	dm9000_dbg(db, 1, "entering %s\n", __func__);
 846
 847	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 848		iow(db, oft, dev->dev_addr[i]);
 849
 850	if (dev->flags & IFF_PROMISC)
 851		rcr |= RCR_PRMSC;
 852
 853	if (dev->flags & IFF_ALLMULTI)
 854		rcr |= RCR_ALL;
 855
 856	/* the multicast address in Hash Table : 64 bits */
 857	netdev_for_each_mc_addr(ha, dev) {
 858		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 859		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 860	}
 861
 862	/* Write the hash table to MAC MD table */
 863	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 864		iow(db, oft++, hash_table[i]);
 865		iow(db, oft++, hash_table[i] >> 8);
 866	}
 867
 868	iow(db, DM9000_RCR, rcr);
 869}
 870
 871static void
 872dm9000_hash_table(struct net_device *dev)
 873{
 874	struct board_info *db = netdev_priv(dev);
 875	unsigned long flags;
 876
 877	spin_lock_irqsave(&db->lock, flags);
 878	dm9000_hash_table_unlocked(dev);
 879	spin_unlock_irqrestore(&db->lock, flags);
 880}
 881
 882static void
 883dm9000_mask_interrupts(struct board_info *db)
 884{
 885	iow(db, DM9000_IMR, IMR_PAR);
 886}
 887
 888static void
 889dm9000_unmask_interrupts(struct board_info *db)
 890{
 891	iow(db, DM9000_IMR, db->imr_all);
 892}
 893
 894/*
 895 * Initialize dm9000 board
 896 */
 897static void
 898dm9000_init_dm9000(struct net_device *dev)
 899{
 900	struct board_info *db = netdev_priv(dev);
 901	unsigned int imr;
 902	unsigned int ncr;
 903
 904	dm9000_dbg(db, 1, "entering %s\n", __func__);
 905
 906	dm9000_reset(db);
 907	dm9000_mask_interrupts(db);
 908
 909	/* I/O mode */
 910	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
 911
 912	/* Checksum mode */
 913	if (dev->hw_features & NETIF_F_RXCSUM)
 914		iow(db, DM9000_RCSR,
 915			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 916
 917	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
 918	iow(db, DM9000_GPR, 0);
 919
 920	/* If we are dealing with DM9000B, some extra steps are required: a
 921	 * manual phy reset, and setting init params.
 922	 */
 923	if (db->type == TYPE_DM9000B) {
 924		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 925		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 926	}
 927
 928	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 929
 930	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
 931	 * up dumping the wake events if we disable this. There is already
 932	 * a wake-mask in DM9000_WCR */
 933	if (db->wake_supported)
 934		ncr |= NCR_WAKEEN;
 935
 936	iow(db, DM9000_NCR, ncr);
 937
 938	/* Program operating register */
 939	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
 940	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
 941	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
 942	iow(db, DM9000_SMCR, 0);        /* Special Mode */
 943	/* clear TX status */
 944	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 945	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 946
 947	/* Set address filter table */
 948	dm9000_hash_table_unlocked(dev);
 949
 950	imr = IMR_PAR | IMR_PTM | IMR_PRM;
 951	if (db->type != TYPE_DM9000E)
 952		imr |= IMR_LNKCHNG;
 953
 954	db->imr_all = imr;
 955
 956	/* Init Driver variable */
 957	db->tx_pkt_cnt = 0;
 958	db->queue_pkt_len = 0;
 959	netif_trans_update(dev);
 960}
 961
 962/* Our watchdog timed out. Called by the networking layer */
 963static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
 964{
 965	struct board_info *db = netdev_priv(dev);
 966	u8 reg_save;
 967	unsigned long flags;
 968
 969	/* Save previous register address */
 970	spin_lock_irqsave(&db->lock, flags);
 971	db->in_timeout = 1;
 972	reg_save = readb(db->io_addr);
 973
 974	netif_stop_queue(dev);
 975	dm9000_init_dm9000(dev);
 976	dm9000_unmask_interrupts(db);
 977	/* We can accept TX packets again */
 978	netif_trans_update(dev); /* prevent tx timeout */
 979	netif_wake_queue(dev);
 980
 981	/* Restore previous register address */
 982	writeb(reg_save, db->io_addr);
 983	db->in_timeout = 0;
 984	spin_unlock_irqrestore(&db->lock, flags);
 985}
 986
 987static void dm9000_send_packet(struct net_device *dev,
 988			       int ip_summed,
 989			       u16 pkt_len)
 990{
 991	struct board_info *dm = to_dm9000_board(dev);
 992
 993	/* The DM9000 is not smart enough to leave fragmented packets alone. */
 994	if (dm->ip_summed != ip_summed) {
 995		if (ip_summed == CHECKSUM_NONE)
 996			iow(dm, DM9000_TCCR, 0);
 997		else
 998			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 999		dm->ip_summed = ip_summed;
1000	}
1001
1002	/* Set TX length to DM9000 */
1003	iow(dm, DM9000_TXPLL, pkt_len);
1004	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1005
1006	/* Issue TX polling command */
1007	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1008}
1009
1010/*
1011 *  Hardware start transmission.
1012 *  Send a packet to media from the upper layer.
1013 */
1014static netdev_tx_t
1015dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1016{
1017	unsigned long flags;
1018	struct board_info *db = netdev_priv(dev);
1019
1020	dm9000_dbg(db, 3, "%s:\n", __func__);
1021
1022	if (db->tx_pkt_cnt > 1)
1023		return NETDEV_TX_BUSY;
1024
1025	spin_lock_irqsave(&db->lock, flags);
1026
1027	/* Move data to DM9000 TX RAM */
1028	writeb(DM9000_MWCMD, db->io_addr);
1029
1030	(db->outblk)(db->io_data, skb->data, skb->len);
1031	dev->stats.tx_bytes += skb->len;
1032
1033	db->tx_pkt_cnt++;
1034	/* TX control: First packet immediately send, second packet queue */
1035	if (db->tx_pkt_cnt == 1) {
1036		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1037	} else {
1038		/* Second packet */
1039		db->queue_pkt_len = skb->len;
1040		db->queue_ip_summed = skb->ip_summed;
1041		netif_stop_queue(dev);
1042	}
1043
1044	spin_unlock_irqrestore(&db->lock, flags);
1045
1046	/* free this SKB */
1047	dev_consume_skb_any(skb);
1048
1049	return NETDEV_TX_OK;
1050}
1051
1052/*
1053 * DM9000 interrupt handler
1054 * receive the packet to upper layer, free the transmitted packet
1055 */
1056
1057static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1058{
1059	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1060
1061	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1062		/* One packet sent complete */
1063		db->tx_pkt_cnt--;
1064		dev->stats.tx_packets++;
1065
1066		if (netif_msg_tx_done(db))
1067			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1068
1069		/* Queue packet check & send */
1070		if (db->tx_pkt_cnt > 0)
1071			dm9000_send_packet(dev, db->queue_ip_summed,
1072					   db->queue_pkt_len);
1073		netif_wake_queue(dev);
1074	}
1075}
1076
1077struct dm9000_rxhdr {
1078	u8	RxPktReady;
1079	u8	RxStatus;
1080	__le16	RxLen;
1081} __packed;
1082
1083/*
1084 *  Received a packet and pass to upper layer
1085 */
1086static void
1087dm9000_rx(struct net_device *dev)
1088{
1089	struct board_info *db = netdev_priv(dev);
1090	struct dm9000_rxhdr rxhdr;
1091	struct sk_buff *skb;
1092	u8 rxbyte, *rdptr;
1093	bool GoodPacket;
1094	int RxLen;
1095
1096	/* Check packet ready or not */
1097	do {
1098		ior(db, DM9000_MRCMDX);	/* Dummy read */
1099
1100		/* Get most updated data */
1101		rxbyte = readb(db->io_data);
1102
1103		/* Status check: this byte must be 0 or 1 */
1104		if (rxbyte & DM9000_PKT_ERR) {
1105			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1106			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1107			return;
1108		}
1109
1110		if (!(rxbyte & DM9000_PKT_RDY))
1111			return;
1112
1113		/* A packet ready now  & Get status/length */
1114		GoodPacket = true;
1115		writeb(DM9000_MRCMD, db->io_addr);
1116
1117		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1118
1119		RxLen = le16_to_cpu(rxhdr.RxLen);
1120
1121		if (netif_msg_rx_status(db))
1122			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1123				rxhdr.RxStatus, RxLen);
1124
1125		/* Packet Status check */
1126		if (RxLen < 0x40) {
1127			GoodPacket = false;
1128			if (netif_msg_rx_err(db))
1129				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1130		}
1131
1132		if (RxLen > DM9000_PKT_MAX) {
1133			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1134		}
1135
1136		/* rxhdr.RxStatus is identical to RSR register. */
1137		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1138				      RSR_PLE | RSR_RWTO |
1139				      RSR_LCS | RSR_RF)) {
1140			GoodPacket = false;
1141			if (rxhdr.RxStatus & RSR_FOE) {
1142				if (netif_msg_rx_err(db))
1143					dev_dbg(db->dev, "fifo error\n");
1144				dev->stats.rx_fifo_errors++;
1145			}
1146			if (rxhdr.RxStatus & RSR_CE) {
1147				if (netif_msg_rx_err(db))
1148					dev_dbg(db->dev, "crc error\n");
1149				dev->stats.rx_crc_errors++;
1150			}
1151			if (rxhdr.RxStatus & RSR_RF) {
1152				if (netif_msg_rx_err(db))
1153					dev_dbg(db->dev, "length error\n");
1154				dev->stats.rx_length_errors++;
1155			}
1156		}
1157
1158		/* Move data from DM9000 */
1159		if (GoodPacket &&
1160		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1161			skb_reserve(skb, 2);
1162			rdptr = skb_put(skb, RxLen - 4);
1163
1164			/* Read received packet from RX SRAM */
1165
1166			(db->inblk)(db->io_data, rdptr, RxLen);
1167			dev->stats.rx_bytes += RxLen;
1168
1169			/* Pass to upper layer */
1170			skb->protocol = eth_type_trans(skb, dev);
1171			if (dev->features & NETIF_F_RXCSUM) {
1172				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1173					skb->ip_summed = CHECKSUM_UNNECESSARY;
1174				else
1175					skb_checksum_none_assert(skb);
1176			}
1177			netif_rx(skb);
1178			dev->stats.rx_packets++;
1179
1180		} else {
1181			/* need to dump the packet's data */
1182
1183			(db->dumpblk)(db->io_data, RxLen);
1184		}
1185	} while (rxbyte & DM9000_PKT_RDY);
1186}
1187
1188static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1189{
1190	struct net_device *dev = dev_id;
1191	struct board_info *db = netdev_priv(dev);
1192	int int_status;
1193	unsigned long flags;
1194	u8 reg_save;
1195
1196	dm9000_dbg(db, 3, "entering %s\n", __func__);
1197
1198	/* A real interrupt coming */
1199
1200	/* holders of db->lock must always block IRQs */
1201	spin_lock_irqsave(&db->lock, flags);
1202
1203	/* Save previous register address */
1204	reg_save = readb(db->io_addr);
1205
1206	dm9000_mask_interrupts(db);
1207	/* Got DM9000 interrupt status */
1208	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1209	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1210
1211	if (netif_msg_intr(db))
1212		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1213
1214	/* Received the coming packet */
1215	if (int_status & ISR_PRS)
1216		dm9000_rx(dev);
1217
1218	/* Transmit Interrupt check */
1219	if (int_status & ISR_PTS)
1220		dm9000_tx_done(dev, db);
1221
1222	if (db->type != TYPE_DM9000E) {
1223		if (int_status & ISR_LNKCHNG) {
1224			/* fire a link-change request */
1225			schedule_delayed_work(&db->phy_poll, 1);
1226		}
1227	}
1228
1229	dm9000_unmask_interrupts(db);
1230	/* Restore previous register address */
1231	writeb(reg_save, db->io_addr);
1232
1233	spin_unlock_irqrestore(&db->lock, flags);
1234
1235	return IRQ_HANDLED;
1236}
1237
1238static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1239{
1240	struct net_device *dev = dev_id;
1241	struct board_info *db = netdev_priv(dev);
1242	unsigned long flags;
1243	unsigned nsr, wcr;
1244
1245	spin_lock_irqsave(&db->lock, flags);
1246
1247	nsr = ior(db, DM9000_NSR);
1248	wcr = ior(db, DM9000_WCR);
1249
1250	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1251
1252	if (nsr & NSR_WAKEST) {
1253		/* clear, so we can avoid */
1254		iow(db, DM9000_NSR, NSR_WAKEST);
1255
1256		if (wcr & WCR_LINKST)
1257			dev_info(db->dev, "wake by link status change\n");
1258		if (wcr & WCR_SAMPLEST)
1259			dev_info(db->dev, "wake by sample packet\n");
1260		if (wcr & WCR_MAGICST)
1261			dev_info(db->dev, "wake by magic packet\n");
1262		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1263			dev_err(db->dev, "wake signalled with no reason? "
1264				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1265	}
1266
1267	spin_unlock_irqrestore(&db->lock, flags);
1268
1269	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1270}
1271
1272#ifdef CONFIG_NET_POLL_CONTROLLER
1273/*
1274 *Used by netconsole
1275 */
1276static void dm9000_poll_controller(struct net_device *dev)
1277{
1278	disable_irq(dev->irq);
1279	dm9000_interrupt(dev->irq, dev);
1280	enable_irq(dev->irq);
1281}
1282#endif
1283
1284/*
1285 *  Open the interface.
1286 *  The interface is opened whenever "ifconfig" actives it.
1287 */
1288static int
1289dm9000_open(struct net_device *dev)
1290{
1291	struct board_info *db = netdev_priv(dev);
1292	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1293
1294	if (netif_msg_ifup(db))
1295		dev_dbg(db->dev, "enabling %s\n", dev->name);
1296
1297	/* If there is no IRQ type specified, tell the user that this is a
1298	 * problem
1299	 */
1300	if (irq_flags == IRQF_TRIGGER_NONE)
1301		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1302
1303	irq_flags |= IRQF_SHARED;
1304
1305	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1306	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1307	mdelay(1); /* delay needs by DM9000B */
1308
1309	/* Initialize DM9000 board */
1310	dm9000_init_dm9000(dev);
1311
1312	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1313		return -EAGAIN;
1314	/* Now that we have an interrupt handler hooked up we can unmask
1315	 * our interrupts
1316	 */
1317	dm9000_unmask_interrupts(db);
1318
1319	/* Init driver variable */
1320	db->dbug_cnt = 0;
1321
1322	mii_check_media(&db->mii, netif_msg_link(db), 1);
1323	netif_start_queue(dev);
1324
1325	/* Poll initial link status */
1326	schedule_delayed_work(&db->phy_poll, 1);
1327
1328	return 0;
1329}
1330
1331static void
1332dm9000_shutdown(struct net_device *dev)
1333{
1334	struct board_info *db = netdev_priv(dev);
1335
1336	/* RESET device */
1337	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1338	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1339	dm9000_mask_interrupts(db);
1340	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1341}
1342
1343/*
1344 * Stop the interface.
1345 * The interface is stopped when it is brought.
1346 */
1347static int
1348dm9000_stop(struct net_device *ndev)
1349{
1350	struct board_info *db = netdev_priv(ndev);
1351
1352	if (netif_msg_ifdown(db))
1353		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1354
1355	cancel_delayed_work_sync(&db->phy_poll);
1356
1357	netif_stop_queue(ndev);
1358	netif_carrier_off(ndev);
1359
1360	/* free interrupt */
1361	free_irq(ndev->irq, ndev);
1362
1363	dm9000_shutdown(ndev);
1364
1365	return 0;
1366}
1367
1368static const struct net_device_ops dm9000_netdev_ops = {
1369	.ndo_open		= dm9000_open,
1370	.ndo_stop		= dm9000_stop,
1371	.ndo_start_xmit		= dm9000_start_xmit,
1372	.ndo_tx_timeout		= dm9000_timeout,
1373	.ndo_set_rx_mode	= dm9000_hash_table,
1374	.ndo_eth_ioctl		= dm9000_ioctl,
1375	.ndo_set_features	= dm9000_set_features,
1376	.ndo_validate_addr	= eth_validate_addr,
1377	.ndo_set_mac_address	= eth_mac_addr,
1378#ifdef CONFIG_NET_POLL_CONTROLLER
1379	.ndo_poll_controller	= dm9000_poll_controller,
1380#endif
1381};
1382
1383static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1384{
1385	struct dm9000_plat_data *pdata;
1386	struct device_node *np = dev->of_node;
1387	int ret;
1388
1389	if (!IS_ENABLED(CONFIG_OF) || !np)
1390		return ERR_PTR(-ENXIO);
1391
1392	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1393	if (!pdata)
1394		return ERR_PTR(-ENOMEM);
1395
1396	if (of_property_read_bool(np, "davicom,ext-phy"))
1397		pdata->flags |= DM9000_PLATF_EXT_PHY;
1398	if (of_property_read_bool(np, "davicom,no-eeprom"))
1399		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1400
1401	ret = of_get_mac_address(np, pdata->dev_addr);
1402	if (ret == -EPROBE_DEFER)
1403		return ERR_PTR(ret);
1404
1405	return pdata;
1406}
1407
1408/*
1409 * Search DM9000 board, allocate space and register it
1410 */
1411static int
1412dm9000_probe(struct platform_device *pdev)
1413{
1414	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1415	struct board_info *db;	/* Point a board information structure */
1416	struct net_device *ndev;
1417	struct device *dev = &pdev->dev;
1418	const unsigned char *mac_src;
1419	int ret = 0;
1420	int iosize;
1421	int i;
1422	u32 id_val;
1423	struct gpio_desc *reset_gpio;
1424	struct regulator *power;
1425	bool inv_mac_addr = false;
1426	u8 addr[ETH_ALEN];
1427
1428	power = devm_regulator_get(dev, "vcc");
1429	if (IS_ERR(power)) {
1430		if (PTR_ERR(power) == -EPROBE_DEFER)
1431			return -EPROBE_DEFER;
1432		dev_dbg(dev, "no regulator provided\n");
1433	} else {
1434		ret = regulator_enable(power);
1435		if (ret != 0) {
1436			dev_err(dev,
1437				"Failed to enable power regulator: %d\n", ret);
1438			return ret;
1439		}
1440		dev_dbg(dev, "regulator enabled\n");
1441	}
1442
1443	reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1444	ret = PTR_ERR_OR_ZERO(reset_gpio);
1445	if (ret) {
1446		dev_err(dev, "failed to request reset gpio: %d\n", ret);
1447		goto out_regulator_disable;
1448	}
1449
1450	if (reset_gpio) {
1451		ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset");
1452		if (ret) {
1453			dev_err(dev, "failed to set reset gpio name: %d\n",
1454				ret);
1455			goto out_regulator_disable;
1456		}
1457
1458		/* According to manual PWRST# Low Period Min 1ms */
1459		msleep(2);
1460		gpiod_set_value_cansleep(reset_gpio, 0);
1461		/* Needs 3ms to read eeprom when PWRST is deasserted */
1462		msleep(4);
1463	}
1464
1465	if (!pdata) {
1466		pdata = dm9000_parse_dt(&pdev->dev);
1467		if (IS_ERR(pdata)) {
1468			ret = PTR_ERR(pdata);
1469			goto out_regulator_disable;
1470		}
1471	}
1472
1473	/* Init network device */
1474	ndev = alloc_etherdev(sizeof(struct board_info));
1475	if (!ndev) {
1476		ret = -ENOMEM;
1477		goto out_regulator_disable;
1478	}
1479
1480	SET_NETDEV_DEV(ndev, &pdev->dev);
1481
1482	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1483
1484	/* setup board info structure */
1485	db = netdev_priv(ndev);
1486
1487	db->dev = &pdev->dev;
1488	db->ndev = ndev;
1489	if (!IS_ERR(power))
1490		db->power_supply = power;
1491
1492	spin_lock_init(&db->lock);
1493	mutex_init(&db->addr_lock);
1494
1495	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1496
1497	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1498	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1499
1500	if (!db->addr_res || !db->data_res) {
1501		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1502			db->addr_res, db->data_res);
1503		ret = -ENOENT;
1504		goto out;
1505	}
1506
1507	ndev->irq = platform_get_irq(pdev, 0);
1508	if (ndev->irq < 0) {
1509		ret = ndev->irq;
1510		goto out;
1511	}
1512
1513	db->irq_wake = platform_get_irq_optional(pdev, 1);
1514	if (db->irq_wake >= 0) {
1515		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1516
1517		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1518				  IRQF_SHARED, dev_name(db->dev), ndev);
1519		if (ret) {
1520			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1521		} else {
1522
1523			/* test to see if irq is really wakeup capable */
1524			ret = irq_set_irq_wake(db->irq_wake, 1);
1525			if (ret) {
1526				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1527					db->irq_wake, ret);
1528			} else {
1529				irq_set_irq_wake(db->irq_wake, 0);
1530				db->wake_supported = 1;
1531			}
1532		}
1533	}
1534
1535	iosize = resource_size(db->addr_res);
1536	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537					  pdev->name);
1538
1539	if (db->addr_req == NULL) {
1540		dev_err(db->dev, "cannot claim address reg area\n");
1541		ret = -EIO;
1542		goto out;
1543	}
1544
1545	db->io_addr = ioremap(db->addr_res->start, iosize);
1546
1547	if (db->io_addr == NULL) {
1548		dev_err(db->dev, "failed to ioremap address reg\n");
1549		ret = -EINVAL;
1550		goto out;
1551	}
1552
1553	iosize = resource_size(db->data_res);
1554	db->data_req = request_mem_region(db->data_res->start, iosize,
1555					  pdev->name);
1556
1557	if (db->data_req == NULL) {
1558		dev_err(db->dev, "cannot claim data reg area\n");
1559		ret = -EIO;
1560		goto out;
1561	}
1562
1563	db->io_data = ioremap(db->data_res->start, iosize);
1564
1565	if (db->io_data == NULL) {
1566		dev_err(db->dev, "failed to ioremap data reg\n");
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* fill in parameters for net-dev structure */
1572	ndev->base_addr = (unsigned long)db->io_addr;
1573
1574	/* ensure at least we have a default set of IO routines */
1575	dm9000_set_io(db, iosize);
1576
1577	/* check to see if anything is being over-ridden */
1578	if (pdata != NULL) {
1579		/* check to see if the driver wants to over-ride the
1580		 * default IO width */
1581
1582		if (pdata->flags & DM9000_PLATF_8BITONLY)
1583			dm9000_set_io(db, 1);
1584
1585		if (pdata->flags & DM9000_PLATF_16BITONLY)
1586			dm9000_set_io(db, 2);
1587
1588		if (pdata->flags & DM9000_PLATF_32BITONLY)
1589			dm9000_set_io(db, 4);
1590
1591		/* check to see if there are any IO routine
1592		 * over-rides */
1593
1594		if (pdata->inblk != NULL)
1595			db->inblk = pdata->inblk;
1596
1597		if (pdata->outblk != NULL)
1598			db->outblk = pdata->outblk;
1599
1600		if (pdata->dumpblk != NULL)
1601			db->dumpblk = pdata->dumpblk;
1602
1603		db->flags = pdata->flags;
1604	}
1605
1606#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1607	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1608#endif
1609
1610	dm9000_reset(db);
1611
1612	/* try multiple times, DM9000 sometimes gets the read wrong */
1613	for (i = 0; i < 8; i++) {
1614		id_val  = ior(db, DM9000_VIDL);
1615		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1616		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1617		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1618
1619		if (id_val == DM9000_ID)
1620			break;
1621		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1622	}
1623
1624	if (id_val != DM9000_ID) {
1625		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1626		ret = -ENODEV;
1627		goto out;
1628	}
1629
1630	/* Identify what type of DM9000 we are working on */
1631
1632	id_val = ior(db, DM9000_CHIPR);
1633	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1634
1635	switch (id_val) {
1636	case CHIPR_DM9000A:
1637		db->type = TYPE_DM9000A;
1638		break;
1639	case CHIPR_DM9000B:
1640		db->type = TYPE_DM9000B;
1641		break;
1642	default:
1643		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1644		db->type = TYPE_DM9000E;
1645	}
1646
1647	/* dm9000a/b are capable of hardware checksum offload */
1648	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1649		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1650		ndev->features |= ndev->hw_features;
1651	}
1652
1653	/* from this point we assume that we have found a DM9000 */
1654
1655	ndev->netdev_ops	= &dm9000_netdev_ops;
1656	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1657	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1658
1659	db->msg_enable       = NETIF_MSG_LINK;
1660	db->mii.phy_id_mask  = 0x1f;
1661	db->mii.reg_num_mask = 0x1f;
1662	db->mii.force_media  = 0;
1663	db->mii.full_duplex  = 0;
1664	db->mii.dev	     = ndev;
1665	db->mii.mdio_read    = dm9000_phy_read;
1666	db->mii.mdio_write   = dm9000_phy_write;
1667
1668	mac_src = "eeprom";
1669
1670	/* try reading the node address from the attached EEPROM */
1671	for (i = 0; i < 6; i += 2)
1672		dm9000_read_eeprom(db, i / 2, addr + i);
1673	eth_hw_addr_set(ndev, addr);
1674
1675	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676		mac_src = "platform data";
1677		eth_hw_addr_set(ndev, pdata->dev_addr);
1678	}
1679
1680	if (!is_valid_ether_addr(ndev->dev_addr)) {
1681		/* try reading from mac */
1682
1683		mac_src = "chip";
1684		for (i = 0; i < 6; i++)
1685			addr[i] = ior(db, i + DM9000_PAR);
1686		eth_hw_addr_set(ndev, pdata->dev_addr);
1687	}
1688
1689	if (!is_valid_ether_addr(ndev->dev_addr)) {
1690		inv_mac_addr = true;
1691		eth_hw_addr_random(ndev);
1692		mac_src = "random";
1693	}
1694
1695
1696	platform_set_drvdata(pdev, ndev);
1697	ret = register_netdev(ndev);
1698
1699	if (ret == 0) {
1700		if (inv_mac_addr)
1701			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1702				 ndev->name);
1703		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1704		       ndev->name, dm9000_type_to_char(db->type),
1705		       db->io_addr, db->io_data, ndev->irq,
1706		       ndev->dev_addr, mac_src);
1707	}
1708	return 0;
1709
1710out:
1711	dev_err(db->dev, "not found (%d).\n", ret);
1712
1713	dm9000_release_board(pdev, db);
1714	free_netdev(ndev);
1715
1716out_regulator_disable:
1717	if (!IS_ERR(power))
1718		regulator_disable(power);
1719
1720	return ret;
1721}
1722
1723static int
1724dm9000_drv_suspend(struct device *dev)
1725{
1726	struct net_device *ndev = dev_get_drvdata(dev);
1727	struct board_info *db;
1728
1729	if (ndev) {
1730		db = netdev_priv(ndev);
1731		db->in_suspend = 1;
1732
1733		if (!netif_running(ndev))
1734			return 0;
1735
1736		netif_device_detach(ndev);
1737
1738		/* only shutdown if not using WoL */
1739		if (!db->wake_state)
1740			dm9000_shutdown(ndev);
1741	}
1742	return 0;
1743}
1744
1745static int
1746dm9000_drv_resume(struct device *dev)
1747{
1748	struct net_device *ndev = dev_get_drvdata(dev);
1749	struct board_info *db = netdev_priv(ndev);
1750
1751	if (ndev) {
1752		if (netif_running(ndev)) {
1753			/* reset if we were not in wake mode to ensure if
1754			 * the device was powered off it is in a known state */
1755			if (!db->wake_state) {
1756				dm9000_init_dm9000(ndev);
1757				dm9000_unmask_interrupts(db);
1758			}
1759
1760			netif_device_attach(ndev);
1761		}
1762
1763		db->in_suspend = 0;
1764	}
1765	return 0;
1766}
1767
1768static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769	.suspend	= dm9000_drv_suspend,
1770	.resume		= dm9000_drv_resume,
1771};
1772
1773static void dm9000_drv_remove(struct platform_device *pdev)
1774{
1775	struct net_device *ndev = platform_get_drvdata(pdev);
1776	struct board_info *dm = to_dm9000_board(ndev);
1777
1778	unregister_netdev(ndev);
1779	dm9000_release_board(pdev, dm);
1780	free_netdev(ndev);		/* free device structure */
1781	if (dm->power_supply)
1782		regulator_disable(dm->power_supply);
1783
1784	dev_dbg(&pdev->dev, "released and freed device\n");
1785}
1786
1787#ifdef CONFIG_OF
1788static const struct of_device_id dm9000_of_matches[] = {
1789	{ .compatible = "davicom,dm9000", },
1790	{ /* sentinel */ }
1791};
1792MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1793#endif
1794
1795static struct platform_driver dm9000_driver = {
1796	.driver	= {
1797		.name    = "dm9000",
1798		.pm	 = &dm9000_drv_pm_ops,
1799		.of_match_table = of_match_ptr(dm9000_of_matches),
1800	},
1801	.probe   = dm9000_probe,
1802	.remove_new = dm9000_drv_remove,
1803};
1804
1805module_platform_driver(dm9000_driver);
1806
1807MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1808MODULE_DESCRIPTION("Davicom DM9000 network driver");
1809MODULE_LICENSE("GPL");
1810MODULE_ALIAS("platform:dm9000");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Davicom DM9000 Fast Ethernet driver for Linux.
   4 * 	Copyright (C) 1997  Sten Wang
   5 *
   6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
   7 *
   8 * Additional updates, Copyright:
   9 *	Ben Dooks <ben@simtec.co.uk>
  10 *	Sascha Hauer <s.hauer@pengutronix.de>
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/ioport.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/interrupt.h>
  18#include <linux/skbuff.h>
  19#include <linux/spinlock.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22#include <linux/of.h>
  23#include <linux/of_net.h>
  24#include <linux/ethtool.h>
  25#include <linux/dm9000.h>
  26#include <linux/delay.h>
  27#include <linux/platform_device.h>
  28#include <linux/irq.h>
  29#include <linux/slab.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/gpio/consumer.h>
  32
  33#include <asm/delay.h>
  34#include <asm/irq.h>
  35#include <asm/io.h>
  36
  37#include "dm9000.h"
  38
  39/* Board/System/Debug information/definition ---------------- */
  40
  41#define DM9000_PHY		0x40	/* PHY address 0x01 */
  42
  43#define CARDNAME	"dm9000"
  44
  45/*
  46 * Transmit timeout, default 5 seconds.
  47 */
  48static int watchdog = 5000;
  49module_param(watchdog, int, 0400);
  50MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  51
  52/*
  53 * Debug messages level
  54 */
  55static int debug;
  56module_param(debug, int, 0644);
  57MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
  58
  59/* DM9000 register address locking.
  60 *
  61 * The DM9000 uses an address register to control where data written
  62 * to the data register goes. This means that the address register
  63 * must be preserved over interrupts or similar calls.
  64 *
  65 * During interrupt and other critical calls, a spinlock is used to
  66 * protect the system, but the calls themselves save the address
  67 * in the address register in case they are interrupting another
  68 * access to the device.
  69 *
  70 * For general accesses a lock is provided so that calls which are
  71 * allowed to sleep are serialised so that the address register does
  72 * not need to be saved. This lock also serves to serialise access
  73 * to the EEPROM and PHY access registers which are shared between
  74 * these two devices.
  75 */
  76
  77/* The driver supports the original DM9000E, and now the two newer
  78 * devices, DM9000A and DM9000B.
  79 */
  80
  81enum dm9000_type {
  82	TYPE_DM9000E,	/* original DM9000 */
  83	TYPE_DM9000A,
  84	TYPE_DM9000B
  85};
  86
  87/* Structure/enum declaration ------------------------------- */
  88struct board_info {
  89
  90	void __iomem	*io_addr;	/* Register I/O base address */
  91	void __iomem	*io_data;	/* Data I/O address */
  92	u16		 irq;		/* IRQ */
  93
  94	u16		tx_pkt_cnt;
  95	u16		queue_pkt_len;
  96	u16		queue_start_addr;
  97	u16		queue_ip_summed;
  98	u16		dbug_cnt;
  99	u8		io_mode;		/* 0:word, 2:byte */
 100	u8		phy_addr;
 101	u8		imr_all;
 102
 103	unsigned int	flags;
 104	unsigned int	in_timeout:1;
 105	unsigned int	in_suspend:1;
 106	unsigned int	wake_supported:1;
 107
 108	enum dm9000_type type;
 109
 110	void (*inblk)(void __iomem *port, void *data, int length);
 111	void (*outblk)(void __iomem *port, void *data, int length);
 112	void (*dumpblk)(void __iomem *port, int length);
 113
 114	struct device	*dev;	     /* parent device */
 115
 116	struct resource	*addr_res;   /* resources found */
 117	struct resource *data_res;
 118	struct resource	*addr_req;   /* resources requested */
 119	struct resource *data_req;
 120
 121	int		 irq_wake;
 122
 123	struct mutex	 addr_lock;	/* phy and eeprom access lock */
 124
 125	struct delayed_work phy_poll;
 126	struct net_device  *ndev;
 127
 128	spinlock_t	lock;
 129
 130	struct mii_if_info mii;
 131	u32		msg_enable;
 132	u32		wake_state;
 133
 134	int		ip_summed;
 135
 136	struct regulator *power_supply;
 137};
 138
 139/* debug code */
 140
 141#define dm9000_dbg(db, lev, msg...) do {		\
 142	if ((lev) < debug) {				\
 143		dev_dbg(db->dev, msg);			\
 144	}						\
 145} while (0)
 146
 147static inline struct board_info *to_dm9000_board(struct net_device *dev)
 148{
 149	return netdev_priv(dev);
 150}
 151
 152/* DM9000 network board routine ---------------------------- */
 153
 154/*
 155 *   Read a byte from I/O port
 156 */
 157static u8
 158ior(struct board_info *db, int reg)
 159{
 160	writeb(reg, db->io_addr);
 161	return readb(db->io_data);
 162}
 163
 164/*
 165 *   Write a byte to I/O port
 166 */
 167
 168static void
 169iow(struct board_info *db, int reg, int value)
 170{
 171	writeb(reg, db->io_addr);
 172	writeb(value, db->io_data);
 173}
 174
 175static void
 176dm9000_reset(struct board_info *db)
 177{
 178	dev_dbg(db->dev, "resetting device\n");
 179
 180	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 181	 * The essential point is that we have to do a double reset, and the
 182	 * instruction is to set LBK into MAC internal loopback mode.
 183	 */
 184	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 185	udelay(100); /* Application note says at least 20 us */
 186	if (ior(db, DM9000_NCR) & 1)
 187		dev_err(db->dev, "dm9000 did not respond to first reset\n");
 188
 189	iow(db, DM9000_NCR, 0);
 190	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 191	udelay(100);
 192	if (ior(db, DM9000_NCR) & 1)
 193		dev_err(db->dev, "dm9000 did not respond to second reset\n");
 194}
 195
 196/* routines for sending block to chip */
 197
 198static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 199{
 200	iowrite8_rep(reg, data, count);
 201}
 202
 203static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 204{
 205	iowrite16_rep(reg, data, (count+1) >> 1);
 206}
 207
 208static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 209{
 210	iowrite32_rep(reg, data, (count+3) >> 2);
 211}
 212
 213/* input block from chip to memory */
 214
 215static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 216{
 217	ioread8_rep(reg, data, count);
 218}
 219
 220
 221static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 222{
 223	ioread16_rep(reg, data, (count+1) >> 1);
 224}
 225
 226static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 227{
 228	ioread32_rep(reg, data, (count+3) >> 2);
 229}
 230
 231/* dump block from chip to null */
 232
 233static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 234{
 235	int i;
 236
 237	for (i = 0; i < count; i++)
 238		readb(reg);
 239}
 240
 241static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 242{
 243	int i;
 244
 245	count = (count + 1) >> 1;
 246
 247	for (i = 0; i < count; i++)
 248		readw(reg);
 249}
 250
 251static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 252{
 253	int i;
 254
 255	count = (count + 3) >> 2;
 256
 257	for (i = 0; i < count; i++)
 258		readl(reg);
 259}
 260
 261/*
 262 * Sleep, either by using msleep() or if we are suspending, then
 263 * use mdelay() to sleep.
 264 */
 265static void dm9000_msleep(struct board_info *db, unsigned int ms)
 266{
 267	if (db->in_suspend || db->in_timeout)
 268		mdelay(ms);
 269	else
 270		msleep(ms);
 271}
 272
 273/* Read a word from phyxcer */
 274static int
 275dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 276{
 277	struct board_info *db = netdev_priv(dev);
 278	unsigned long flags;
 279	unsigned int reg_save;
 280	int ret;
 281
 282	mutex_lock(&db->addr_lock);
 283
 284	spin_lock_irqsave(&db->lock, flags);
 285
 286	/* Save previous register address */
 287	reg_save = readb(db->io_addr);
 288
 289	/* Fill the phyxcer register into REG_0C */
 290	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 291
 292	/* Issue phyxcer read command */
 293	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 294
 295	writeb(reg_save, db->io_addr);
 296	spin_unlock_irqrestore(&db->lock, flags);
 297
 298	dm9000_msleep(db, 1);		/* Wait read complete */
 299
 300	spin_lock_irqsave(&db->lock, flags);
 301	reg_save = readb(db->io_addr);
 302
 303	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
 304
 305	/* The read data keeps on REG_0D & REG_0E */
 306	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 307
 308	/* restore the previous address */
 309	writeb(reg_save, db->io_addr);
 310	spin_unlock_irqrestore(&db->lock, flags);
 311
 312	mutex_unlock(&db->addr_lock);
 313
 314	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 315	return ret;
 316}
 317
 318/* Write a word to phyxcer */
 319static void
 320dm9000_phy_write(struct net_device *dev,
 321		 int phyaddr_unused, int reg, int value)
 322{
 323	struct board_info *db = netdev_priv(dev);
 324	unsigned long flags;
 325	unsigned long reg_save;
 326
 327	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 328	if (!db->in_timeout)
 329		mutex_lock(&db->addr_lock);
 330
 331	spin_lock_irqsave(&db->lock, flags);
 332
 333	/* Save previous register address */
 334	reg_save = readb(db->io_addr);
 335
 336	/* Fill the phyxcer register into REG_0C */
 337	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 338
 339	/* Fill the written data into REG_0D & REG_0E */
 340	iow(db, DM9000_EPDRL, value);
 341	iow(db, DM9000_EPDRH, value >> 8);
 342
 343	/* Issue phyxcer write command */
 344	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 345
 346	writeb(reg_save, db->io_addr);
 347	spin_unlock_irqrestore(&db->lock, flags);
 348
 349	dm9000_msleep(db, 1);		/* Wait write complete */
 350
 351	spin_lock_irqsave(&db->lock, flags);
 352	reg_save = readb(db->io_addr);
 353
 354	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
 355
 356	/* restore the previous address */
 357	writeb(reg_save, db->io_addr);
 358
 359	spin_unlock_irqrestore(&db->lock, flags);
 360	if (!db->in_timeout)
 361		mutex_unlock(&db->addr_lock);
 362}
 363
 364/* dm9000_set_io
 365 *
 366 * select the specified set of io routines to use with the
 367 * device
 368 */
 369
 370static void dm9000_set_io(struct board_info *db, int byte_width)
 371{
 372	/* use the size of the data resource to work out what IO
 373	 * routines we want to use
 374	 */
 375
 376	switch (byte_width) {
 377	case 1:
 378		db->dumpblk = dm9000_dumpblk_8bit;
 379		db->outblk  = dm9000_outblk_8bit;
 380		db->inblk   = dm9000_inblk_8bit;
 381		break;
 382
 383
 384	case 3:
 385		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 386		fallthrough;
 387	case 2:
 388		db->dumpblk = dm9000_dumpblk_16bit;
 389		db->outblk  = dm9000_outblk_16bit;
 390		db->inblk   = dm9000_inblk_16bit;
 391		break;
 392
 393	case 4:
 394	default:
 395		db->dumpblk = dm9000_dumpblk_32bit;
 396		db->outblk  = dm9000_outblk_32bit;
 397		db->inblk   = dm9000_inblk_32bit;
 398		break;
 399	}
 400}
 401
 402static void dm9000_schedule_poll(struct board_info *db)
 403{
 404	if (db->type == TYPE_DM9000E)
 405		schedule_delayed_work(&db->phy_poll, HZ * 2);
 406}
 407
 408static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 409{
 410	struct board_info *dm = to_dm9000_board(dev);
 411
 412	if (!netif_running(dev))
 413		return -EINVAL;
 414
 415	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 416}
 417
 418static unsigned int
 419dm9000_read_locked(struct board_info *db, int reg)
 420{
 421	unsigned long flags;
 422	unsigned int ret;
 423
 424	spin_lock_irqsave(&db->lock, flags);
 425	ret = ior(db, reg);
 426	spin_unlock_irqrestore(&db->lock, flags);
 427
 428	return ret;
 429}
 430
 431static int dm9000_wait_eeprom(struct board_info *db)
 432{
 433	unsigned int status;
 434	int timeout = 8;	/* wait max 8msec */
 435
 436	/* The DM9000 data sheets say we should be able to
 437	 * poll the ERRE bit in EPCR to wait for the EEPROM
 438	 * operation. From testing several chips, this bit
 439	 * does not seem to work.
 440	 *
 441	 * We attempt to use the bit, but fall back to the
 442	 * timeout (which is why we do not return an error
 443	 * on expiry) to say that the EEPROM operation has
 444	 * completed.
 445	 */
 446
 447	while (1) {
 448		status = dm9000_read_locked(db, DM9000_EPCR);
 449
 450		if ((status & EPCR_ERRE) == 0)
 451			break;
 452
 453		msleep(1);
 454
 455		if (timeout-- < 0) {
 456			dev_dbg(db->dev, "timeout waiting EEPROM\n");
 457			break;
 458		}
 459	}
 460
 461	return 0;
 462}
 463
 464/*
 465 *  Read a word data from EEPROM
 466 */
 467static void
 468dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 469{
 470	unsigned long flags;
 471
 472	if (db->flags & DM9000_PLATF_NO_EEPROM) {
 473		to[0] = 0xff;
 474		to[1] = 0xff;
 475		return;
 476	}
 477
 478	mutex_lock(&db->addr_lock);
 479
 480	spin_lock_irqsave(&db->lock, flags);
 481
 482	iow(db, DM9000_EPAR, offset);
 483	iow(db, DM9000_EPCR, EPCR_ERPRR);
 484
 485	spin_unlock_irqrestore(&db->lock, flags);
 486
 487	dm9000_wait_eeprom(db);
 488
 489	/* delay for at-least 150uS */
 490	msleep(1);
 491
 492	spin_lock_irqsave(&db->lock, flags);
 493
 494	iow(db, DM9000_EPCR, 0x0);
 495
 496	to[0] = ior(db, DM9000_EPDRL);
 497	to[1] = ior(db, DM9000_EPDRH);
 498
 499	spin_unlock_irqrestore(&db->lock, flags);
 500
 501	mutex_unlock(&db->addr_lock);
 502}
 503
 504/*
 505 * Write a word data to SROM
 506 */
 507static void
 508dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 509{
 510	unsigned long flags;
 511
 512	if (db->flags & DM9000_PLATF_NO_EEPROM)
 513		return;
 514
 515	mutex_lock(&db->addr_lock);
 516
 517	spin_lock_irqsave(&db->lock, flags);
 518	iow(db, DM9000_EPAR, offset);
 519	iow(db, DM9000_EPDRH, data[1]);
 520	iow(db, DM9000_EPDRL, data[0]);
 521	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 522	spin_unlock_irqrestore(&db->lock, flags);
 523
 524	dm9000_wait_eeprom(db);
 525
 526	mdelay(1);	/* wait at least 150uS to clear */
 527
 528	spin_lock_irqsave(&db->lock, flags);
 529	iow(db, DM9000_EPCR, 0);
 530	spin_unlock_irqrestore(&db->lock, flags);
 531
 532	mutex_unlock(&db->addr_lock);
 533}
 534
 535/* ethtool ops */
 536
 537static void dm9000_get_drvinfo(struct net_device *dev,
 538			       struct ethtool_drvinfo *info)
 539{
 540	struct board_info *dm = to_dm9000_board(dev);
 541
 542	strscpy(info->driver, CARDNAME, sizeof(info->driver));
 543	strscpy(info->bus_info, to_platform_device(dm->dev)->name,
 544		sizeof(info->bus_info));
 545}
 546
 547static u32 dm9000_get_msglevel(struct net_device *dev)
 548{
 549	struct board_info *dm = to_dm9000_board(dev);
 550
 551	return dm->msg_enable;
 552}
 553
 554static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 555{
 556	struct board_info *dm = to_dm9000_board(dev);
 557
 558	dm->msg_enable = value;
 559}
 560
 561static int dm9000_get_link_ksettings(struct net_device *dev,
 562				     struct ethtool_link_ksettings *cmd)
 563{
 564	struct board_info *dm = to_dm9000_board(dev);
 565
 566	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
 567	return 0;
 568}
 569
 570static int dm9000_set_link_ksettings(struct net_device *dev,
 571				     const struct ethtool_link_ksettings *cmd)
 572{
 573	struct board_info *dm = to_dm9000_board(dev);
 574
 575	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
 576}
 577
 578static int dm9000_nway_reset(struct net_device *dev)
 579{
 580	struct board_info *dm = to_dm9000_board(dev);
 581	return mii_nway_restart(&dm->mii);
 582}
 583
 584static int dm9000_set_features(struct net_device *dev,
 585	netdev_features_t features)
 586{
 587	struct board_info *dm = to_dm9000_board(dev);
 588	netdev_features_t changed = dev->features ^ features;
 589	unsigned long flags;
 590
 591	if (!(changed & NETIF_F_RXCSUM))
 592		return 0;
 593
 594	spin_lock_irqsave(&dm->lock, flags);
 595	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 596	spin_unlock_irqrestore(&dm->lock, flags);
 597
 598	return 0;
 599}
 600
 601static u32 dm9000_get_link(struct net_device *dev)
 602{
 603	struct board_info *dm = to_dm9000_board(dev);
 604	u32 ret;
 605
 606	if (dm->flags & DM9000_PLATF_EXT_PHY)
 607		ret = mii_link_ok(&dm->mii);
 608	else
 609		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 610
 611	return ret;
 612}
 613
 614#define DM_EEPROM_MAGIC		(0x444D394B)
 615
 616static int dm9000_get_eeprom_len(struct net_device *dev)
 617{
 618	return 128;
 619}
 620
 621static int dm9000_get_eeprom(struct net_device *dev,
 622			     struct ethtool_eeprom *ee, u8 *data)
 623{
 624	struct board_info *dm = to_dm9000_board(dev);
 625	int offset = ee->offset;
 626	int len = ee->len;
 627	int i;
 628
 629	/* EEPROM access is aligned to two bytes */
 630
 631	if ((len & 1) != 0 || (offset & 1) != 0)
 632		return -EINVAL;
 633
 634	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 635		return -ENOENT;
 636
 637	ee->magic = DM_EEPROM_MAGIC;
 638
 639	for (i = 0; i < len; i += 2)
 640		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 641
 642	return 0;
 643}
 644
 645static int dm9000_set_eeprom(struct net_device *dev,
 646			     struct ethtool_eeprom *ee, u8 *data)
 647{
 648	struct board_info *dm = to_dm9000_board(dev);
 649	int offset = ee->offset;
 650	int len = ee->len;
 651	int done;
 652
 653	/* EEPROM access is aligned to two bytes */
 654
 655	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 656		return -ENOENT;
 657
 658	if (ee->magic != DM_EEPROM_MAGIC)
 659		return -EINVAL;
 660
 661	while (len > 0) {
 662		if (len & 1 || offset & 1) {
 663			int which = offset & 1;
 664			u8 tmp[2];
 665
 666			dm9000_read_eeprom(dm, offset / 2, tmp);
 667			tmp[which] = *data;
 668			dm9000_write_eeprom(dm, offset / 2, tmp);
 669
 670			done = 1;
 671		} else {
 672			dm9000_write_eeprom(dm, offset / 2, data);
 673			done = 2;
 674		}
 675
 676		data += done;
 677		offset += done;
 678		len -= done;
 679	}
 680
 681	return 0;
 682}
 683
 684static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 685{
 686	struct board_info *dm = to_dm9000_board(dev);
 687
 688	memset(w, 0, sizeof(struct ethtool_wolinfo));
 689
 690	/* note, we could probably support wake-phy too */
 691	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 692	w->wolopts = dm->wake_state;
 693}
 694
 695static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 696{
 697	struct board_info *dm = to_dm9000_board(dev);
 698	unsigned long flags;
 699	u32 opts = w->wolopts;
 700	u32 wcr = 0;
 701
 702	if (!dm->wake_supported)
 703		return -EOPNOTSUPP;
 704
 705	if (opts & ~WAKE_MAGIC)
 706		return -EINVAL;
 707
 708	if (opts & WAKE_MAGIC)
 709		wcr |= WCR_MAGICEN;
 710
 711	mutex_lock(&dm->addr_lock);
 712
 713	spin_lock_irqsave(&dm->lock, flags);
 714	iow(dm, DM9000_WCR, wcr);
 715	spin_unlock_irqrestore(&dm->lock, flags);
 716
 717	mutex_unlock(&dm->addr_lock);
 718
 719	if (dm->wake_state != opts) {
 720		/* change in wol state, update IRQ state */
 721
 722		if (!dm->wake_state)
 723			irq_set_irq_wake(dm->irq_wake, 1);
 724		else if (dm->wake_state && !opts)
 725			irq_set_irq_wake(dm->irq_wake, 0);
 726	}
 727
 728	dm->wake_state = opts;
 729	return 0;
 730}
 731
 732static const struct ethtool_ops dm9000_ethtool_ops = {
 733	.get_drvinfo		= dm9000_get_drvinfo,
 734	.get_msglevel		= dm9000_get_msglevel,
 735	.set_msglevel		= dm9000_set_msglevel,
 736	.nway_reset		= dm9000_nway_reset,
 737	.get_link		= dm9000_get_link,
 738	.get_wol		= dm9000_get_wol,
 739	.set_wol		= dm9000_set_wol,
 740	.get_eeprom_len		= dm9000_get_eeprom_len,
 741	.get_eeprom		= dm9000_get_eeprom,
 742	.set_eeprom		= dm9000_set_eeprom,
 743	.get_link_ksettings	= dm9000_get_link_ksettings,
 744	.set_link_ksettings	= dm9000_set_link_ksettings,
 745};
 746
 747static void dm9000_show_carrier(struct board_info *db,
 748				unsigned carrier, unsigned nsr)
 749{
 750	int lpa;
 751	struct net_device *ndev = db->ndev;
 752	struct mii_if_info *mii = &db->mii;
 753	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 754
 755	if (carrier) {
 756		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 757		dev_info(db->dev,
 758			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 759			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 760			 (ncr & NCR_FDX) ? "full" : "half", lpa);
 761	} else {
 762		dev_info(db->dev, "%s: link down\n", ndev->name);
 763	}
 764}
 765
 766static void
 767dm9000_poll_work(struct work_struct *w)
 768{
 769	struct delayed_work *dw = to_delayed_work(w);
 770	struct board_info *db = container_of(dw, struct board_info, phy_poll);
 771	struct net_device *ndev = db->ndev;
 772
 773	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 774	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
 775		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 776		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 777		unsigned new_carrier;
 778
 779		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 780
 781		if (old_carrier != new_carrier) {
 782			if (netif_msg_link(db))
 783				dm9000_show_carrier(db, new_carrier, nsr);
 784
 785			if (!new_carrier)
 786				netif_carrier_off(ndev);
 787			else
 788				netif_carrier_on(ndev);
 789		}
 790	} else
 791		mii_check_media(&db->mii, netif_msg_link(db), 0);
 792
 793	if (netif_running(ndev))
 794		dm9000_schedule_poll(db);
 795}
 796
 797/* dm9000_release_board
 798 *
 799 * release a board, and any mapped resources
 800 */
 801
 802static void
 803dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 804{
 805	/* unmap our resources */
 806
 807	iounmap(db->io_addr);
 808	iounmap(db->io_data);
 809
 810	/* release the resources */
 811
 812	if (db->data_req)
 813		release_resource(db->data_req);
 814	kfree(db->data_req);
 815
 816	if (db->addr_req)
 817		release_resource(db->addr_req);
 818	kfree(db->addr_req);
 819}
 820
 821static unsigned char dm9000_type_to_char(enum dm9000_type type)
 822{
 823	switch (type) {
 824	case TYPE_DM9000E: return 'e';
 825	case TYPE_DM9000A: return 'a';
 826	case TYPE_DM9000B: return 'b';
 827	}
 828
 829	return '?';
 830}
 831
 832/*
 833 *  Set DM9000 multicast address
 834 */
 835static void
 836dm9000_hash_table_unlocked(struct net_device *dev)
 837{
 838	struct board_info *db = netdev_priv(dev);
 839	struct netdev_hw_addr *ha;
 840	int i, oft;
 841	u32 hash_val;
 842	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 843	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 844
 845	dm9000_dbg(db, 1, "entering %s\n", __func__);
 846
 847	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 848		iow(db, oft, dev->dev_addr[i]);
 849
 850	if (dev->flags & IFF_PROMISC)
 851		rcr |= RCR_PRMSC;
 852
 853	if (dev->flags & IFF_ALLMULTI)
 854		rcr |= RCR_ALL;
 855
 856	/* the multicast address in Hash Table : 64 bits */
 857	netdev_for_each_mc_addr(ha, dev) {
 858		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 859		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 860	}
 861
 862	/* Write the hash table to MAC MD table */
 863	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 864		iow(db, oft++, hash_table[i]);
 865		iow(db, oft++, hash_table[i] >> 8);
 866	}
 867
 868	iow(db, DM9000_RCR, rcr);
 869}
 870
 871static void
 872dm9000_hash_table(struct net_device *dev)
 873{
 874	struct board_info *db = netdev_priv(dev);
 875	unsigned long flags;
 876
 877	spin_lock_irqsave(&db->lock, flags);
 878	dm9000_hash_table_unlocked(dev);
 879	spin_unlock_irqrestore(&db->lock, flags);
 880}
 881
 882static void
 883dm9000_mask_interrupts(struct board_info *db)
 884{
 885	iow(db, DM9000_IMR, IMR_PAR);
 886}
 887
 888static void
 889dm9000_unmask_interrupts(struct board_info *db)
 890{
 891	iow(db, DM9000_IMR, db->imr_all);
 892}
 893
 894/*
 895 * Initialize dm9000 board
 896 */
 897static void
 898dm9000_init_dm9000(struct net_device *dev)
 899{
 900	struct board_info *db = netdev_priv(dev);
 901	unsigned int imr;
 902	unsigned int ncr;
 903
 904	dm9000_dbg(db, 1, "entering %s\n", __func__);
 905
 906	dm9000_reset(db);
 907	dm9000_mask_interrupts(db);
 908
 909	/* I/O mode */
 910	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
 911
 912	/* Checksum mode */
 913	if (dev->hw_features & NETIF_F_RXCSUM)
 914		iow(db, DM9000_RCSR,
 915			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 916
 917	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
 918	iow(db, DM9000_GPR, 0);
 919
 920	/* If we are dealing with DM9000B, some extra steps are required: a
 921	 * manual phy reset, and setting init params.
 922	 */
 923	if (db->type == TYPE_DM9000B) {
 924		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 925		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 926	}
 927
 928	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 929
 930	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
 931	 * up dumping the wake events if we disable this. There is already
 932	 * a wake-mask in DM9000_WCR */
 933	if (db->wake_supported)
 934		ncr |= NCR_WAKEEN;
 935
 936	iow(db, DM9000_NCR, ncr);
 937
 938	/* Program operating register */
 939	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
 940	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
 941	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
 942	iow(db, DM9000_SMCR, 0);        /* Special Mode */
 943	/* clear TX status */
 944	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 945	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 946
 947	/* Set address filter table */
 948	dm9000_hash_table_unlocked(dev);
 949
 950	imr = IMR_PAR | IMR_PTM | IMR_PRM;
 951	if (db->type != TYPE_DM9000E)
 952		imr |= IMR_LNKCHNG;
 953
 954	db->imr_all = imr;
 955
 956	/* Init Driver variable */
 957	db->tx_pkt_cnt = 0;
 958	db->queue_pkt_len = 0;
 959	netif_trans_update(dev);
 960}
 961
 962/* Our watchdog timed out. Called by the networking layer */
 963static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
 964{
 965	struct board_info *db = netdev_priv(dev);
 966	u8 reg_save;
 967	unsigned long flags;
 968
 969	/* Save previous register address */
 970	spin_lock_irqsave(&db->lock, flags);
 971	db->in_timeout = 1;
 972	reg_save = readb(db->io_addr);
 973
 974	netif_stop_queue(dev);
 975	dm9000_init_dm9000(dev);
 976	dm9000_unmask_interrupts(db);
 977	/* We can accept TX packets again */
 978	netif_trans_update(dev); /* prevent tx timeout */
 979	netif_wake_queue(dev);
 980
 981	/* Restore previous register address */
 982	writeb(reg_save, db->io_addr);
 983	db->in_timeout = 0;
 984	spin_unlock_irqrestore(&db->lock, flags);
 985}
 986
 987static void dm9000_send_packet(struct net_device *dev,
 988			       int ip_summed,
 989			       u16 pkt_len)
 990{
 991	struct board_info *dm = to_dm9000_board(dev);
 992
 993	/* The DM9000 is not smart enough to leave fragmented packets alone. */
 994	if (dm->ip_summed != ip_summed) {
 995		if (ip_summed == CHECKSUM_NONE)
 996			iow(dm, DM9000_TCCR, 0);
 997		else
 998			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 999		dm->ip_summed = ip_summed;
1000	}
1001
1002	/* Set TX length to DM9000 */
1003	iow(dm, DM9000_TXPLL, pkt_len);
1004	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1005
1006	/* Issue TX polling command */
1007	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1008}
1009
1010/*
1011 *  Hardware start transmission.
1012 *  Send a packet to media from the upper layer.
1013 */
1014static netdev_tx_t
1015dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1016{
1017	unsigned long flags;
1018	struct board_info *db = netdev_priv(dev);
1019
1020	dm9000_dbg(db, 3, "%s:\n", __func__);
1021
1022	if (db->tx_pkt_cnt > 1)
1023		return NETDEV_TX_BUSY;
1024
1025	spin_lock_irqsave(&db->lock, flags);
1026
1027	/* Move data to DM9000 TX RAM */
1028	writeb(DM9000_MWCMD, db->io_addr);
1029
1030	(db->outblk)(db->io_data, skb->data, skb->len);
1031	dev->stats.tx_bytes += skb->len;
1032
1033	db->tx_pkt_cnt++;
1034	/* TX control: First packet immediately send, second packet queue */
1035	if (db->tx_pkt_cnt == 1) {
1036		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1037	} else {
1038		/* Second packet */
1039		db->queue_pkt_len = skb->len;
1040		db->queue_ip_summed = skb->ip_summed;
1041		netif_stop_queue(dev);
1042	}
1043
1044	spin_unlock_irqrestore(&db->lock, flags);
1045
1046	/* free this SKB */
1047	dev_consume_skb_any(skb);
1048
1049	return NETDEV_TX_OK;
1050}
1051
1052/*
1053 * DM9000 interrupt handler
1054 * receive the packet to upper layer, free the transmitted packet
1055 */
1056
1057static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1058{
1059	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1060
1061	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1062		/* One packet sent complete */
1063		db->tx_pkt_cnt--;
1064		dev->stats.tx_packets++;
1065
1066		if (netif_msg_tx_done(db))
1067			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1068
1069		/* Queue packet check & send */
1070		if (db->tx_pkt_cnt > 0)
1071			dm9000_send_packet(dev, db->queue_ip_summed,
1072					   db->queue_pkt_len);
1073		netif_wake_queue(dev);
1074	}
1075}
1076
1077struct dm9000_rxhdr {
1078	u8	RxPktReady;
1079	u8	RxStatus;
1080	__le16	RxLen;
1081} __packed;
1082
1083/*
1084 *  Received a packet and pass to upper layer
1085 */
1086static void
1087dm9000_rx(struct net_device *dev)
1088{
1089	struct board_info *db = netdev_priv(dev);
1090	struct dm9000_rxhdr rxhdr;
1091	struct sk_buff *skb;
1092	u8 rxbyte, *rdptr;
1093	bool GoodPacket;
1094	int RxLen;
1095
1096	/* Check packet ready or not */
1097	do {
1098		ior(db, DM9000_MRCMDX);	/* Dummy read */
1099
1100		/* Get most updated data */
1101		rxbyte = readb(db->io_data);
1102
1103		/* Status check: this byte must be 0 or 1 */
1104		if (rxbyte & DM9000_PKT_ERR) {
1105			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1106			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1107			return;
1108		}
1109
1110		if (!(rxbyte & DM9000_PKT_RDY))
1111			return;
1112
1113		/* A packet ready now  & Get status/length */
1114		GoodPacket = true;
1115		writeb(DM9000_MRCMD, db->io_addr);
1116
1117		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1118
1119		RxLen = le16_to_cpu(rxhdr.RxLen);
1120
1121		if (netif_msg_rx_status(db))
1122			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1123				rxhdr.RxStatus, RxLen);
1124
1125		/* Packet Status check */
1126		if (RxLen < 0x40) {
1127			GoodPacket = false;
1128			if (netif_msg_rx_err(db))
1129				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1130		}
1131
1132		if (RxLen > DM9000_PKT_MAX) {
1133			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1134		}
1135
1136		/* rxhdr.RxStatus is identical to RSR register. */
1137		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1138				      RSR_PLE | RSR_RWTO |
1139				      RSR_LCS | RSR_RF)) {
1140			GoodPacket = false;
1141			if (rxhdr.RxStatus & RSR_FOE) {
1142				if (netif_msg_rx_err(db))
1143					dev_dbg(db->dev, "fifo error\n");
1144				dev->stats.rx_fifo_errors++;
1145			}
1146			if (rxhdr.RxStatus & RSR_CE) {
1147				if (netif_msg_rx_err(db))
1148					dev_dbg(db->dev, "crc error\n");
1149				dev->stats.rx_crc_errors++;
1150			}
1151			if (rxhdr.RxStatus & RSR_RF) {
1152				if (netif_msg_rx_err(db))
1153					dev_dbg(db->dev, "length error\n");
1154				dev->stats.rx_length_errors++;
1155			}
1156		}
1157
1158		/* Move data from DM9000 */
1159		if (GoodPacket &&
1160		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1161			skb_reserve(skb, 2);
1162			rdptr = skb_put(skb, RxLen - 4);
1163
1164			/* Read received packet from RX SRAM */
1165
1166			(db->inblk)(db->io_data, rdptr, RxLen);
1167			dev->stats.rx_bytes += RxLen;
1168
1169			/* Pass to upper layer */
1170			skb->protocol = eth_type_trans(skb, dev);
1171			if (dev->features & NETIF_F_RXCSUM) {
1172				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1173					skb->ip_summed = CHECKSUM_UNNECESSARY;
1174				else
1175					skb_checksum_none_assert(skb);
1176			}
1177			netif_rx(skb);
1178			dev->stats.rx_packets++;
1179
1180		} else {
1181			/* need to dump the packet's data */
1182
1183			(db->dumpblk)(db->io_data, RxLen);
1184		}
1185	} while (rxbyte & DM9000_PKT_RDY);
1186}
1187
1188static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1189{
1190	struct net_device *dev = dev_id;
1191	struct board_info *db = netdev_priv(dev);
1192	int int_status;
1193	unsigned long flags;
1194	u8 reg_save;
1195
1196	dm9000_dbg(db, 3, "entering %s\n", __func__);
1197
1198	/* A real interrupt coming */
1199
1200	/* holders of db->lock must always block IRQs */
1201	spin_lock_irqsave(&db->lock, flags);
1202
1203	/* Save previous register address */
1204	reg_save = readb(db->io_addr);
1205
1206	dm9000_mask_interrupts(db);
1207	/* Got DM9000 interrupt status */
1208	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1209	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1210
1211	if (netif_msg_intr(db))
1212		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1213
1214	/* Received the coming packet */
1215	if (int_status & ISR_PRS)
1216		dm9000_rx(dev);
1217
1218	/* Transmit Interrupt check */
1219	if (int_status & ISR_PTS)
1220		dm9000_tx_done(dev, db);
1221
1222	if (db->type != TYPE_DM9000E) {
1223		if (int_status & ISR_LNKCHNG) {
1224			/* fire a link-change request */
1225			schedule_delayed_work(&db->phy_poll, 1);
1226		}
1227	}
1228
1229	dm9000_unmask_interrupts(db);
1230	/* Restore previous register address */
1231	writeb(reg_save, db->io_addr);
1232
1233	spin_unlock_irqrestore(&db->lock, flags);
1234
1235	return IRQ_HANDLED;
1236}
1237
1238static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1239{
1240	struct net_device *dev = dev_id;
1241	struct board_info *db = netdev_priv(dev);
1242	unsigned long flags;
1243	unsigned nsr, wcr;
1244
1245	spin_lock_irqsave(&db->lock, flags);
1246
1247	nsr = ior(db, DM9000_NSR);
1248	wcr = ior(db, DM9000_WCR);
1249
1250	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1251
1252	if (nsr & NSR_WAKEST) {
1253		/* clear, so we can avoid */
1254		iow(db, DM9000_NSR, NSR_WAKEST);
1255
1256		if (wcr & WCR_LINKST)
1257			dev_info(db->dev, "wake by link status change\n");
1258		if (wcr & WCR_SAMPLEST)
1259			dev_info(db->dev, "wake by sample packet\n");
1260		if (wcr & WCR_MAGICST)
1261			dev_info(db->dev, "wake by magic packet\n");
1262		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1263			dev_err(db->dev, "wake signalled with no reason? "
1264				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1265	}
1266
1267	spin_unlock_irqrestore(&db->lock, flags);
1268
1269	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1270}
1271
1272#ifdef CONFIG_NET_POLL_CONTROLLER
1273/*
1274 *Used by netconsole
1275 */
1276static void dm9000_poll_controller(struct net_device *dev)
1277{
1278	disable_irq(dev->irq);
1279	dm9000_interrupt(dev->irq, dev);
1280	enable_irq(dev->irq);
1281}
1282#endif
1283
1284/*
1285 *  Open the interface.
1286 *  The interface is opened whenever "ifconfig" actives it.
1287 */
1288static int
1289dm9000_open(struct net_device *dev)
1290{
1291	struct board_info *db = netdev_priv(dev);
1292	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1293
1294	if (netif_msg_ifup(db))
1295		dev_dbg(db->dev, "enabling %s\n", dev->name);
1296
1297	/* If there is no IRQ type specified, tell the user that this is a
1298	 * problem
1299	 */
1300	if (irq_flags == IRQF_TRIGGER_NONE)
1301		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1302
1303	irq_flags |= IRQF_SHARED;
1304
1305	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1306	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1307	mdelay(1); /* delay needs by DM9000B */
1308
1309	/* Initialize DM9000 board */
1310	dm9000_init_dm9000(dev);
1311
1312	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1313		return -EAGAIN;
1314	/* Now that we have an interrupt handler hooked up we can unmask
1315	 * our interrupts
1316	 */
1317	dm9000_unmask_interrupts(db);
1318
1319	/* Init driver variable */
1320	db->dbug_cnt = 0;
1321
1322	mii_check_media(&db->mii, netif_msg_link(db), 1);
1323	netif_start_queue(dev);
1324
1325	/* Poll initial link status */
1326	schedule_delayed_work(&db->phy_poll, 1);
1327
1328	return 0;
1329}
1330
1331static void
1332dm9000_shutdown(struct net_device *dev)
1333{
1334	struct board_info *db = netdev_priv(dev);
1335
1336	/* RESET device */
1337	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1338	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1339	dm9000_mask_interrupts(db);
1340	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1341}
1342
1343/*
1344 * Stop the interface.
1345 * The interface is stopped when it is brought.
1346 */
1347static int
1348dm9000_stop(struct net_device *ndev)
1349{
1350	struct board_info *db = netdev_priv(ndev);
1351
1352	if (netif_msg_ifdown(db))
1353		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1354
1355	cancel_delayed_work_sync(&db->phy_poll);
1356
1357	netif_stop_queue(ndev);
1358	netif_carrier_off(ndev);
1359
1360	/* free interrupt */
1361	free_irq(ndev->irq, ndev);
1362
1363	dm9000_shutdown(ndev);
1364
1365	return 0;
1366}
1367
1368static const struct net_device_ops dm9000_netdev_ops = {
1369	.ndo_open		= dm9000_open,
1370	.ndo_stop		= dm9000_stop,
1371	.ndo_start_xmit		= dm9000_start_xmit,
1372	.ndo_tx_timeout		= dm9000_timeout,
1373	.ndo_set_rx_mode	= dm9000_hash_table,
1374	.ndo_eth_ioctl		= dm9000_ioctl,
1375	.ndo_set_features	= dm9000_set_features,
1376	.ndo_validate_addr	= eth_validate_addr,
1377	.ndo_set_mac_address	= eth_mac_addr,
1378#ifdef CONFIG_NET_POLL_CONTROLLER
1379	.ndo_poll_controller	= dm9000_poll_controller,
1380#endif
1381};
1382
1383static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1384{
1385	struct dm9000_plat_data *pdata;
1386	struct device_node *np = dev->of_node;
1387	int ret;
1388
1389	if (!IS_ENABLED(CONFIG_OF) || !np)
1390		return ERR_PTR(-ENXIO);
1391
1392	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1393	if (!pdata)
1394		return ERR_PTR(-ENOMEM);
1395
1396	if (of_property_read_bool(np, "davicom,ext-phy"))
1397		pdata->flags |= DM9000_PLATF_EXT_PHY;
1398	if (of_property_read_bool(np, "davicom,no-eeprom"))
1399		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1400
1401	ret = of_get_mac_address(np, pdata->dev_addr);
1402	if (ret == -EPROBE_DEFER)
1403		return ERR_PTR(ret);
1404
1405	return pdata;
1406}
1407
1408/*
1409 * Search DM9000 board, allocate space and register it
1410 */
1411static int
1412dm9000_probe(struct platform_device *pdev)
1413{
1414	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1415	struct board_info *db;	/* Point a board information structure */
1416	struct net_device *ndev;
1417	struct device *dev = &pdev->dev;
1418	const unsigned char *mac_src;
1419	int ret = 0;
1420	int iosize;
1421	int i;
1422	u32 id_val;
1423	struct gpio_desc *reset_gpio;
1424	struct regulator *power;
1425	bool inv_mac_addr = false;
1426	u8 addr[ETH_ALEN];
1427
1428	power = devm_regulator_get(dev, "vcc");
1429	if (IS_ERR(power)) {
1430		if (PTR_ERR(power) == -EPROBE_DEFER)
1431			return -EPROBE_DEFER;
1432		dev_dbg(dev, "no regulator provided\n");
1433	} else {
1434		ret = regulator_enable(power);
1435		if (ret != 0) {
1436			dev_err(dev,
1437				"Failed to enable power regulator: %d\n", ret);
1438			return ret;
1439		}
1440		dev_dbg(dev, "regulator enabled\n");
1441	}
1442
1443	reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1444	ret = PTR_ERR_OR_ZERO(reset_gpio);
1445	if (ret) {
1446		dev_err(dev, "failed to request reset gpio: %d\n", ret);
1447		goto out_regulator_disable;
1448	}
1449
1450	if (reset_gpio) {
1451		ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset");
1452		if (ret) {
1453			dev_err(dev, "failed to set reset gpio name: %d\n",
1454				ret);
1455			goto out_regulator_disable;
1456		}
1457
1458		/* According to manual PWRST# Low Period Min 1ms */
1459		msleep(2);
1460		gpiod_set_value_cansleep(reset_gpio, 0);
1461		/* Needs 3ms to read eeprom when PWRST is deasserted */
1462		msleep(4);
1463	}
1464
1465	if (!pdata) {
1466		pdata = dm9000_parse_dt(&pdev->dev);
1467		if (IS_ERR(pdata)) {
1468			ret = PTR_ERR(pdata);
1469			goto out_regulator_disable;
1470		}
1471	}
1472
1473	/* Init network device */
1474	ndev = alloc_etherdev(sizeof(struct board_info));
1475	if (!ndev) {
1476		ret = -ENOMEM;
1477		goto out_regulator_disable;
1478	}
1479
1480	SET_NETDEV_DEV(ndev, &pdev->dev);
1481
1482	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1483
1484	/* setup board info structure */
1485	db = netdev_priv(ndev);
1486
1487	db->dev = &pdev->dev;
1488	db->ndev = ndev;
1489	if (!IS_ERR(power))
1490		db->power_supply = power;
1491
1492	spin_lock_init(&db->lock);
1493	mutex_init(&db->addr_lock);
1494
1495	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1496
1497	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1498	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1499
1500	if (!db->addr_res || !db->data_res) {
1501		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1502			db->addr_res, db->data_res);
1503		ret = -ENOENT;
1504		goto out;
1505	}
1506
1507	ndev->irq = platform_get_irq(pdev, 0);
1508	if (ndev->irq < 0) {
1509		ret = ndev->irq;
1510		goto out;
1511	}
1512
1513	db->irq_wake = platform_get_irq_optional(pdev, 1);
1514	if (db->irq_wake >= 0) {
1515		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1516
1517		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1518				  IRQF_SHARED, dev_name(db->dev), ndev);
1519		if (ret) {
1520			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1521		} else {
1522
1523			/* test to see if irq is really wakeup capable */
1524			ret = irq_set_irq_wake(db->irq_wake, 1);
1525			if (ret) {
1526				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1527					db->irq_wake, ret);
1528			} else {
1529				irq_set_irq_wake(db->irq_wake, 0);
1530				db->wake_supported = 1;
1531			}
1532		}
1533	}
1534
1535	iosize = resource_size(db->addr_res);
1536	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537					  pdev->name);
1538
1539	if (db->addr_req == NULL) {
1540		dev_err(db->dev, "cannot claim address reg area\n");
1541		ret = -EIO;
1542		goto out;
1543	}
1544
1545	db->io_addr = ioremap(db->addr_res->start, iosize);
1546
1547	if (db->io_addr == NULL) {
1548		dev_err(db->dev, "failed to ioremap address reg\n");
1549		ret = -EINVAL;
1550		goto out;
1551	}
1552
1553	iosize = resource_size(db->data_res);
1554	db->data_req = request_mem_region(db->data_res->start, iosize,
1555					  pdev->name);
1556
1557	if (db->data_req == NULL) {
1558		dev_err(db->dev, "cannot claim data reg area\n");
1559		ret = -EIO;
1560		goto out;
1561	}
1562
1563	db->io_data = ioremap(db->data_res->start, iosize);
1564
1565	if (db->io_data == NULL) {
1566		dev_err(db->dev, "failed to ioremap data reg\n");
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* fill in parameters for net-dev structure */
1572	ndev->base_addr = (unsigned long)db->io_addr;
1573
1574	/* ensure at least we have a default set of IO routines */
1575	dm9000_set_io(db, iosize);
1576
1577	/* check to see if anything is being over-ridden */
1578	if (pdata != NULL) {
1579		/* check to see if the driver wants to over-ride the
1580		 * default IO width */
1581
1582		if (pdata->flags & DM9000_PLATF_8BITONLY)
1583			dm9000_set_io(db, 1);
1584
1585		if (pdata->flags & DM9000_PLATF_16BITONLY)
1586			dm9000_set_io(db, 2);
1587
1588		if (pdata->flags & DM9000_PLATF_32BITONLY)
1589			dm9000_set_io(db, 4);
1590
1591		/* check to see if there are any IO routine
1592		 * over-rides */
1593
1594		if (pdata->inblk != NULL)
1595			db->inblk = pdata->inblk;
1596
1597		if (pdata->outblk != NULL)
1598			db->outblk = pdata->outblk;
1599
1600		if (pdata->dumpblk != NULL)
1601			db->dumpblk = pdata->dumpblk;
1602
1603		db->flags = pdata->flags;
1604	}
1605
1606#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1607	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1608#endif
1609
1610	dm9000_reset(db);
1611
1612	/* try multiple times, DM9000 sometimes gets the read wrong */
1613	for (i = 0; i < 8; i++) {
1614		id_val  = ior(db, DM9000_VIDL);
1615		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1616		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1617		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1618
1619		if (id_val == DM9000_ID)
1620			break;
1621		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1622	}
1623
1624	if (id_val != DM9000_ID) {
1625		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1626		ret = -ENODEV;
1627		goto out;
1628	}
1629
1630	/* Identify what type of DM9000 we are working on */
1631
1632	id_val = ior(db, DM9000_CHIPR);
1633	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1634
1635	switch (id_val) {
1636	case CHIPR_DM9000A:
1637		db->type = TYPE_DM9000A;
1638		break;
1639	case CHIPR_DM9000B:
1640		db->type = TYPE_DM9000B;
1641		break;
1642	default:
1643		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1644		db->type = TYPE_DM9000E;
1645	}
1646
1647	/* dm9000a/b are capable of hardware checksum offload */
1648	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1649		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1650		ndev->features |= ndev->hw_features;
1651	}
1652
1653	/* from this point we assume that we have found a DM9000 */
1654
1655	ndev->netdev_ops	= &dm9000_netdev_ops;
1656	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1657	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1658
1659	db->msg_enable       = NETIF_MSG_LINK;
1660	db->mii.phy_id_mask  = 0x1f;
1661	db->mii.reg_num_mask = 0x1f;
1662	db->mii.force_media  = 0;
1663	db->mii.full_duplex  = 0;
1664	db->mii.dev	     = ndev;
1665	db->mii.mdio_read    = dm9000_phy_read;
1666	db->mii.mdio_write   = dm9000_phy_write;
1667
1668	mac_src = "eeprom";
1669
1670	/* try reading the node address from the attached EEPROM */
1671	for (i = 0; i < 6; i += 2)
1672		dm9000_read_eeprom(db, i / 2, addr + i);
1673	eth_hw_addr_set(ndev, addr);
1674
1675	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676		mac_src = "platform data";
1677		eth_hw_addr_set(ndev, pdata->dev_addr);
1678	}
1679
1680	if (!is_valid_ether_addr(ndev->dev_addr)) {
1681		/* try reading from mac */
1682
1683		mac_src = "chip";
1684		for (i = 0; i < 6; i++)
1685			addr[i] = ior(db, i + DM9000_PAR);
1686		eth_hw_addr_set(ndev, pdata->dev_addr);
1687	}
1688
1689	if (!is_valid_ether_addr(ndev->dev_addr)) {
1690		inv_mac_addr = true;
1691		eth_hw_addr_random(ndev);
1692		mac_src = "random";
1693	}
1694
1695
1696	platform_set_drvdata(pdev, ndev);
1697	ret = register_netdev(ndev);
1698
1699	if (ret == 0) {
1700		if (inv_mac_addr)
1701			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1702				 ndev->name);
1703		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1704		       ndev->name, dm9000_type_to_char(db->type),
1705		       db->io_addr, db->io_data, ndev->irq,
1706		       ndev->dev_addr, mac_src);
1707	}
1708	return 0;
1709
1710out:
1711	dev_err(db->dev, "not found (%d).\n", ret);
1712
1713	dm9000_release_board(pdev, db);
1714	free_netdev(ndev);
1715
1716out_regulator_disable:
1717	if (!IS_ERR(power))
1718		regulator_disable(power);
1719
1720	return ret;
1721}
1722
1723static int
1724dm9000_drv_suspend(struct device *dev)
1725{
1726	struct net_device *ndev = dev_get_drvdata(dev);
1727	struct board_info *db;
1728
1729	if (ndev) {
1730		db = netdev_priv(ndev);
1731		db->in_suspend = 1;
1732
1733		if (!netif_running(ndev))
1734			return 0;
1735
1736		netif_device_detach(ndev);
1737
1738		/* only shutdown if not using WoL */
1739		if (!db->wake_state)
1740			dm9000_shutdown(ndev);
1741	}
1742	return 0;
1743}
1744
1745static int
1746dm9000_drv_resume(struct device *dev)
1747{
1748	struct net_device *ndev = dev_get_drvdata(dev);
1749	struct board_info *db = netdev_priv(ndev);
1750
1751	if (ndev) {
1752		if (netif_running(ndev)) {
1753			/* reset if we were not in wake mode to ensure if
1754			 * the device was powered off it is in a known state */
1755			if (!db->wake_state) {
1756				dm9000_init_dm9000(ndev);
1757				dm9000_unmask_interrupts(db);
1758			}
1759
1760			netif_device_attach(ndev);
1761		}
1762
1763		db->in_suspend = 0;
1764	}
1765	return 0;
1766}
1767
1768static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769	.suspend	= dm9000_drv_suspend,
1770	.resume		= dm9000_drv_resume,
1771};
1772
1773static void dm9000_drv_remove(struct platform_device *pdev)
1774{
1775	struct net_device *ndev = platform_get_drvdata(pdev);
1776	struct board_info *dm = to_dm9000_board(ndev);
1777
1778	unregister_netdev(ndev);
1779	dm9000_release_board(pdev, dm);
1780	free_netdev(ndev);		/* free device structure */
1781	if (dm->power_supply)
1782		regulator_disable(dm->power_supply);
1783
1784	dev_dbg(&pdev->dev, "released and freed device\n");
1785}
1786
1787#ifdef CONFIG_OF
1788static const struct of_device_id dm9000_of_matches[] = {
1789	{ .compatible = "davicom,dm9000", },
1790	{ /* sentinel */ }
1791};
1792MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1793#endif
1794
1795static struct platform_driver dm9000_driver = {
1796	.driver	= {
1797		.name    = "dm9000",
1798		.pm	 = &dm9000_drv_pm_ops,
1799		.of_match_table = of_match_ptr(dm9000_of_matches),
1800	},
1801	.probe   = dm9000_probe,
1802	.remove_new = dm9000_drv_remove,
1803};
1804
1805module_platform_driver(dm9000_driver);
1806
1807MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1808MODULE_DESCRIPTION("Davicom DM9000 network driver");
1809MODULE_LICENSE("GPL");
1810MODULE_ALIAS("platform:dm9000");