Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/phy/phy.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/reset.h>
 
  34
  35#define DRIVER_NAME	"xilinx_can"
  36
  37/* CAN registers set */
  38enum xcan_reg {
  39	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  40	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  41	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  42	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  43	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  44	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  45	XCAN_SR_OFFSET		= 0x18, /* Status */
  46	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  47	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  48	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  49
  50	/* not on CAN FD cores */
  51	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  52	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  53	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  54
  55	/* only on CAN FD cores */
  56	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  57					  * Prescaler
  58					  */
  59	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  60	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
 
 
 
 
 
 
 
  61	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  62	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  63	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  64	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  65	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  66	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  67	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  68};
  69
  70#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  71#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  72#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  73#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  74#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  75
  76#define XCAN_CANFD_FRAME_SIZE		0x48
  77#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  78					 XCAN_CANFD_FRAME_SIZE * (n))
  79#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  80					 XCAN_CANFD_FRAME_SIZE * (n))
  81#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  82					 XCAN_CANFD_FRAME_SIZE * (n))
  83
  84/* the single TX mailbox used by this driver on CAN FD HW */
  85#define XCAN_TX_MAILBOX_IDX		0
  86
  87/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  88#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  89#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  90#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  91#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  92#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  93#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
  94#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
  95#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  96#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  97#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  98#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  99#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
 100#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
 101#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 102#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 103#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 104#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 105#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 106#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 107#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 108#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 109#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 110#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 111#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 112#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 113#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 114#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 115#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 116#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 117#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 118#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 119#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 120#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 121#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 122#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 123#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 124#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 125#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 126#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 
 
 
 
 
 
 
 
 
 
 
 
 127#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 128#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 129#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 130#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 131#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 132#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 133#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 134#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 135#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 136#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 137#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 138#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 139#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 
 
 
 
 
 140
 141/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 142#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 143#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 144#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 145#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 146#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 147#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 148#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 149#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 150#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 151
 152/* CAN frame length constants */
 153#define XCAN_FRAME_MAX_DATA_LEN		8
 154#define XCANFD_DW_BYTES			4
 155#define XCAN_TIMEOUT			(1 * HZ)
 156
 157/* TX-FIFO-empty interrupt available */
 158#define XCAN_FLAG_TXFEMP	0x0001
 159/* RX Match Not Finished interrupt available */
 160#define XCAN_FLAG_RXMNF		0x0002
 161/* Extended acceptance filters with control at 0xE0 */
 162#define XCAN_FLAG_EXT_FILTERS	0x0004
 163/* TX mailboxes instead of TX FIFO */
 164#define XCAN_FLAG_TX_MAILBOXES	0x0008
 165/* RX FIFO with each buffer in separate registers at 0x1100
 166 * instead of the regular FIFO at 0x50
 167 */
 168#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 169#define XCAN_FLAG_CANFD_2	0x0020
 170
 171enum xcan_ip_type {
 172	XAXI_CAN = 0,
 173	XZYNQ_CANPS,
 174	XAXI_CANFD,
 175	XAXI_CANFD_2_0,
 176};
 177
 178struct xcan_devtype_data {
 179	enum xcan_ip_type cantype;
 180	unsigned int flags;
 181	const struct can_bittiming_const *bittiming_const;
 182	const char *bus_clk_name;
 183	unsigned int btr_ts2_shift;
 184	unsigned int btr_sjw_shift;
 185};
 186
 187/**
 188 * struct xcan_priv - This definition define CAN driver instance
 189 * @can:			CAN private data structure.
 190 * @tx_lock:			Lock for synchronizing TX interrupt handling
 191 * @tx_head:			Tx CAN packets ready to send on the queue
 192 * @tx_tail:			Tx CAN packets successfully sended on the queue
 193 * @tx_max:			Maximum number packets the driver can send
 194 * @napi:			NAPI structure
 195 * @read_reg:			For reading data from CAN registers
 196 * @write_reg:			For writing data to CAN registers
 197 * @dev:			Network device data structure
 198 * @reg_base:			Ioremapped address to registers
 199 * @irq_flags:			For request_irq()
 200 * @bus_clk:			Pointer to struct clk
 201 * @can_clk:			Pointer to struct clk
 202 * @devtype:			Device type specific constants
 203 * @transceiver:		Optional pointer to associated CAN transceiver
 204 * @rstc:			Pointer to reset control
 
 
 
 
 
 
 
 
 205 */
 206struct xcan_priv {
 207	struct can_priv can;
 208	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 209	unsigned int tx_head;
 210	unsigned int tx_tail;
 211	unsigned int tx_max;
 212	struct napi_struct napi;
 213	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 214	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 215			  u32 val);
 216	struct device *dev;
 217	void __iomem *reg_base;
 218	unsigned long irq_flags;
 219	struct clk *bus_clk;
 220	struct clk *can_clk;
 221	struct xcan_devtype_data devtype;
 222	struct phy *transceiver;
 223	struct reset_control *rstc;
 
 
 
 
 
 
 
 
 224};
 225
 226/* CAN Bittiming constants as per Xilinx CAN specs */
 227static const struct can_bittiming_const xcan_bittiming_const = {
 228	.name = DRIVER_NAME,
 229	.tseg1_min = 1,
 230	.tseg1_max = 16,
 231	.tseg2_min = 1,
 232	.tseg2_max = 8,
 233	.sjw_max = 4,
 234	.brp_min = 1,
 235	.brp_max = 256,
 236	.brp_inc = 1,
 237};
 238
 239/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 240static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 241	.name = DRIVER_NAME,
 242	.tseg1_min = 1,
 243	.tseg1_max = 64,
 244	.tseg2_min = 1,
 245	.tseg2_max = 16,
 246	.sjw_max = 16,
 247	.brp_min = 1,
 248	.brp_max = 256,
 249	.brp_inc = 1,
 250};
 251
 252/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 253static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 254	.name = DRIVER_NAME,
 255	.tseg1_min = 1,
 256	.tseg1_max = 16,
 257	.tseg2_min = 1,
 258	.tseg2_max = 8,
 259	.sjw_max = 8,
 260	.brp_min = 1,
 261	.brp_max = 256,
 262	.brp_inc = 1,
 263};
 264
 265/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 266static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 267	.name = DRIVER_NAME,
 268	.tseg1_min = 1,
 269	.tseg1_max = 256,
 270	.tseg2_min = 1,
 271	.tseg2_max = 128,
 272	.sjw_max = 128,
 273	.brp_min = 1,
 274	.brp_max = 256,
 275	.brp_inc = 1,
 276};
 277
 278/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 279static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 280	.name = DRIVER_NAME,
 281	.tseg1_min = 1,
 282	.tseg1_max = 32,
 283	.tseg2_min = 1,
 284	.tseg2_max = 16,
 285	.sjw_max = 16,
 286	.brp_min = 1,
 287	.brp_max = 256,
 288	.brp_inc = 1,
 289};
 290
 291/* Transmission Delay Compensation constants for CANFD 1.0 */
 292static const struct can_tdc_const xcan_tdc_const_canfd = {
 293	.tdcv_min = 0,
 294	.tdcv_max = 0, /* Manual mode not supported. */
 295	.tdco_min = 0,
 296	.tdco_max = 32,
 297	.tdcf_min = 0, /* Filter window not supported */
 298	.tdcf_max = 0,
 299};
 300
 301/* Transmission Delay Compensation constants for CANFD 2.0 */
 302static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 303	.tdcv_min = 0,
 304	.tdcv_max = 0, /* Manual mode not supported. */
 305	.tdco_min = 0,
 306	.tdco_max = 64,
 307	.tdcf_min = 0, /* Filter window not supported */
 308	.tdcf_max = 0,
 309};
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311/**
 312 * xcan_write_reg_le - Write a value to the device register little endian
 313 * @priv:	Driver private data structure
 314 * @reg:	Register offset
 315 * @val:	Value to write at the Register offset
 316 *
 317 * Write data to the paricular CAN register
 318 */
 319static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 320			      u32 val)
 321{
 322	iowrite32(val, priv->reg_base + reg);
 323}
 324
 325/**
 326 * xcan_read_reg_le - Read a value from the device register little endian
 327 * @priv:	Driver private data structure
 328 * @reg:	Register offset
 329 *
 330 * Read data from the particular CAN register
 331 * Return: value read from the CAN register
 332 */
 333static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 334{
 335	return ioread32(priv->reg_base + reg);
 336}
 337
 338/**
 339 * xcan_write_reg_be - Write a value to the device register big endian
 340 * @priv:	Driver private data structure
 341 * @reg:	Register offset
 342 * @val:	Value to write at the Register offset
 343 *
 344 * Write data to the paricular CAN register
 345 */
 346static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 347			      u32 val)
 348{
 349	iowrite32be(val, priv->reg_base + reg);
 350}
 351
 352/**
 353 * xcan_read_reg_be - Read a value from the device register big endian
 354 * @priv:	Driver private data structure
 355 * @reg:	Register offset
 356 *
 357 * Read data from the particular CAN register
 358 * Return: value read from the CAN register
 359 */
 360static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 361{
 362	return ioread32be(priv->reg_base + reg);
 363}
 364
 365/**
 366 * xcan_rx_int_mask - Get the mask for the receive interrupt
 367 * @priv:	Driver private data structure
 368 *
 369 * Return: The receive interrupt mask used by the driver on this HW
 370 */
 371static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 372{
 373	/* RXNEMP is better suited for our use case as it cannot be cleared
 374	 * while the FIFO is non-empty, but CAN FD HW does not have it
 375	 */
 376	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 377		return XCAN_IXR_RXOK_MASK;
 378	else
 379		return XCAN_IXR_RXNEMP_MASK;
 380}
 381
 382/**
 383 * set_reset_mode - Resets the CAN device mode
 384 * @ndev:	Pointer to net_device structure
 385 *
 386 * This is the driver reset mode routine.The driver
 387 * enters into configuration mode.
 388 *
 389 * Return: 0 on success and failure value on error
 390 */
 391static int set_reset_mode(struct net_device *ndev)
 392{
 393	struct xcan_priv *priv = netdev_priv(ndev);
 394	unsigned long timeout;
 395
 396	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 397
 398	timeout = jiffies + XCAN_TIMEOUT;
 399	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 400		if (time_after(jiffies, timeout)) {
 401			netdev_warn(ndev, "timed out for config mode\n");
 402			return -ETIMEDOUT;
 403		}
 404		usleep_range(500, 10000);
 405	}
 406
 407	/* reset clears FIFOs */
 408	priv->tx_head = 0;
 409	priv->tx_tail = 0;
 410
 411	return 0;
 412}
 413
 414/**
 415 * xcan_set_bittiming - CAN set bit timing routine
 416 * @ndev:	Pointer to net_device structure
 417 *
 418 * This is the driver set bittiming  routine.
 419 * Return: 0 on success and failure value on error
 420 */
 421static int xcan_set_bittiming(struct net_device *ndev)
 422{
 423	struct xcan_priv *priv = netdev_priv(ndev);
 424	struct can_bittiming *bt = &priv->can.bittiming;
 425	struct can_bittiming *dbt = &priv->can.data_bittiming;
 426	u32 btr0, btr1;
 427	u32 is_config_mode;
 428
 429	/* Check whether Xilinx CAN is in configuration mode.
 430	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 431	 */
 432	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 433				XCAN_SR_CONFIG_MASK;
 434	if (!is_config_mode) {
 435		netdev_alert(ndev,
 436			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 437		return -EPERM;
 438	}
 439
 440	/* Setting Baud Rate prescaler value in BRPR Register */
 441	btr0 = (bt->brp - 1);
 442
 443	/* Setting Time Segment 1 in BTR Register */
 444	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 445
 446	/* Setting Time Segment 2 in BTR Register */
 447	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 448
 449	/* Setting Synchronous jump width in BTR Register */
 450	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 451
 452	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 453	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 454
 455	if (priv->devtype.cantype == XAXI_CANFD ||
 456	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 457		/* Setting Baud Rate prescaler value in F_BRPR Register */
 458		btr0 = dbt->brp - 1;
 459		if (can_tdc_is_enabled(&priv->can)) {
 460			if (priv->devtype.cantype == XAXI_CANFD)
 461				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 462					XCAN_BRPR_TDC_ENABLE;
 463			else
 464				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 465					XCAN_BRPR_TDC_ENABLE;
 466		}
 467
 468		/* Setting Time Segment 1 in BTR Register */
 469		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 470
 471		/* Setting Time Segment 2 in BTR Register */
 472		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 473
 474		/* Setting Synchronous jump width in BTR Register */
 475		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 476
 477		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 478		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 479	}
 480
 481	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 482		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 483		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 484
 485	return 0;
 486}
 487
 488/**
 489 * xcan_chip_start - This the drivers start routine
 490 * @ndev:	Pointer to net_device structure
 491 *
 492 * This is the drivers start routine.
 493 * Based on the State of the CAN device it puts
 494 * the CAN device into a proper mode.
 495 *
 496 * Return: 0 on success and failure value on error
 497 */
 498static int xcan_chip_start(struct net_device *ndev)
 499{
 500	struct xcan_priv *priv = netdev_priv(ndev);
 501	u32 reg_msr;
 502	int err;
 503	u32 ier;
 504
 505	/* Check if it is in reset mode */
 506	err = set_reset_mode(ndev);
 507	if (err < 0)
 508		return err;
 509
 510	err = xcan_set_bittiming(ndev);
 511	if (err < 0)
 512		return err;
 513
 514	/* Enable interrupts
 515	 *
 516	 * We enable the ERROR interrupt even with
 517	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 518	 * dedicated interrupt for a state change to
 519	 * ERROR_WARNING/ERROR_PASSIVE.
 520	 */
 521	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 522		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 523		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 524		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 525
 
 
 
 526	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 527		ier |= XCAN_IXR_RXMNF_MASK;
 528
 529	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 530
 531	/* Check whether it is loopback mode or normal mode  */
 532	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 533		reg_msr = XCAN_MSR_LBACK_MASK;
 534	else
 535		reg_msr = 0x0;
 536
 537	/* enable the first extended filter, if any, as cores with extended
 538	 * filtering default to non-receipt if all filters are disabled
 539	 */
 540	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 541		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 542
 543	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 544	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 545
 546	netdev_dbg(ndev, "status:#x%08x\n",
 547		   priv->read_reg(priv, XCAN_SR_OFFSET));
 548
 549	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 550	return 0;
 551}
 552
 553/**
 554 * xcan_do_set_mode - This sets the mode of the driver
 555 * @ndev:	Pointer to net_device structure
 556 * @mode:	Tells the mode of the driver
 557 *
 558 * This check the drivers state and calls the corresponding modes to set.
 559 *
 560 * Return: 0 on success and failure value on error
 561 */
 562static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 563{
 564	int ret;
 565
 566	switch (mode) {
 567	case CAN_MODE_START:
 568		ret = xcan_chip_start(ndev);
 569		if (ret < 0) {
 570			netdev_err(ndev, "xcan_chip_start failed!\n");
 571			return ret;
 572		}
 573		netif_wake_queue(ndev);
 574		break;
 575	default:
 576		ret = -EOPNOTSUPP;
 577		break;
 578	}
 579
 580	return ret;
 581}
 582
 583/**
 584 * xcan_write_frame - Write a frame to HW
 585 * @ndev:		Pointer to net_device structure
 586 * @skb:		sk_buff pointer that contains data to be Txed
 587 * @frame_offset:	Register offset to write the frame to
 588 */
 589static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 590			     int frame_offset)
 591{
 592	u32 id, dlc, data[2] = {0, 0};
 593	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 594	u32 ramoff, dwindex = 0, i;
 595	struct xcan_priv *priv = netdev_priv(ndev);
 596
 597	/* Watch carefully on the bit sequence */
 598	if (cf->can_id & CAN_EFF_FLAG) {
 599		/* Extended CAN ID format */
 600		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 601			XCAN_IDR_ID2_MASK;
 602		id |= (((cf->can_id & CAN_EFF_MASK) >>
 603			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 604			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 605
 606		/* The substibute remote TX request bit should be "1"
 607		 * for extended frames as in the Xilinx CAN datasheet
 608		 */
 609		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 610
 611		if (cf->can_id & CAN_RTR_FLAG)
 612			/* Extended frames remote TX request */
 613			id |= XCAN_IDR_RTR_MASK;
 614	} else {
 615		/* Standard CAN ID format */
 616		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 617			XCAN_IDR_ID1_MASK;
 618
 619		if (cf->can_id & CAN_RTR_FLAG)
 620			/* Standard frames remote TX request */
 621			id |= XCAN_IDR_SRR_MASK;
 622	}
 623
 624	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 625	if (can_is_canfd_skb(skb)) {
 626		if (cf->flags & CANFD_BRS)
 627			dlc |= XCAN_DLCR_BRS_MASK;
 628		dlc |= XCAN_DLCR_EDL_MASK;
 629	}
 630
 631	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 632	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 633		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 634	else
 635		can_put_echo_skb(skb, ndev, 0, 0);
 636
 637	priv->tx_head++;
 638
 639	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 640	/* If the CAN frame is RTR frame this write triggers transmission
 641	 * (not on CAN FD)
 642	 */
 643	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 644	if (priv->devtype.cantype == XAXI_CANFD ||
 645	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 646		for (i = 0; i < cf->len; i += 4) {
 647			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 648					(dwindex * XCANFD_DW_BYTES);
 649			priv->write_reg(priv, ramoff,
 650					be32_to_cpup((__be32 *)(cf->data + i)));
 651			dwindex++;
 652		}
 653	} else {
 654		if (cf->len > 0)
 655			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 656		if (cf->len > 4)
 657			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 658
 659		if (!(cf->can_id & CAN_RTR_FLAG)) {
 660			priv->write_reg(priv,
 661					XCAN_FRAME_DW1_OFFSET(frame_offset),
 662					data[0]);
 663			/* If the CAN frame is Standard/Extended frame this
 664			 * write triggers transmission (not on CAN FD)
 665			 */
 666			priv->write_reg(priv,
 667					XCAN_FRAME_DW2_OFFSET(frame_offset),
 668					data[1]);
 669		}
 670	}
 671}
 672
 673/**
 674 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 675 * @skb:	sk_buff pointer that contains data to be Txed
 676 * @ndev:	Pointer to net_device structure
 677 *
 678 * Return: 0 on success, -ENOSPC if FIFO is full.
 679 */
 680static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 681{
 682	struct xcan_priv *priv = netdev_priv(ndev);
 683	unsigned long flags;
 684
 685	/* Check if the TX buffer is full */
 686	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 687			XCAN_SR_TXFLL_MASK))
 688		return -ENOSPC;
 689
 690	spin_lock_irqsave(&priv->tx_lock, flags);
 691
 692	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 693
 694	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 695	if (priv->tx_max > 1)
 696		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 697
 698	/* Check if the TX buffer is full */
 699	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 700		netif_stop_queue(ndev);
 701
 702	spin_unlock_irqrestore(&priv->tx_lock, flags);
 703
 704	return 0;
 705}
 706
 707/**
 708 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 709 * @skb:	sk_buff pointer that contains data to be Txed
 710 * @ndev:	Pointer to net_device structure
 711 *
 712 * Return: 0 on success, -ENOSPC if there is no space
 713 */
 714static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 715{
 716	struct xcan_priv *priv = netdev_priv(ndev);
 717	unsigned long flags;
 718
 719	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 720		     BIT(XCAN_TX_MAILBOX_IDX)))
 721		return -ENOSPC;
 722
 723	spin_lock_irqsave(&priv->tx_lock, flags);
 724
 725	xcan_write_frame(ndev, skb,
 726			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 727
 728	/* Mark buffer as ready for transmit */
 729	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 730
 731	netif_stop_queue(ndev);
 732
 733	spin_unlock_irqrestore(&priv->tx_lock, flags);
 734
 735	return 0;
 736}
 737
 738/**
 739 * xcan_start_xmit - Starts the transmission
 740 * @skb:	sk_buff pointer that contains data to be Txed
 741 * @ndev:	Pointer to net_device structure
 742 *
 743 * This function is invoked from upper layers to initiate transmission.
 744 *
 745 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 746 */
 747static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 748{
 749	struct xcan_priv *priv = netdev_priv(ndev);
 750	int ret;
 751
 752	if (can_dev_dropped_skb(ndev, skb))
 753		return NETDEV_TX_OK;
 754
 755	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 756		ret = xcan_start_xmit_mailbox(skb, ndev);
 757	else
 758		ret = xcan_start_xmit_fifo(skb, ndev);
 759
 760	if (ret < 0) {
 761		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 762		netif_stop_queue(ndev);
 763		return NETDEV_TX_BUSY;
 764	}
 765
 766	return NETDEV_TX_OK;
 767}
 768
 769/**
 770 * xcan_rx -  Is called from CAN isr to complete the received
 771 *		frame  processing
 772 * @ndev:	Pointer to net_device structure
 773 * @frame_base:	Register offset to the frame to be read
 774 *
 775 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 776 * does minimal processing and invokes "netif_receive_skb" to complete further
 777 * processing.
 778 * Return: 1 on success and 0 on failure.
 779 */
 780static int xcan_rx(struct net_device *ndev, int frame_base)
 781{
 782	struct xcan_priv *priv = netdev_priv(ndev);
 783	struct net_device_stats *stats = &ndev->stats;
 784	struct can_frame *cf;
 785	struct sk_buff *skb;
 786	u32 id_xcan, dlc, data[2] = {0, 0};
 787
 788	skb = alloc_can_skb(ndev, &cf);
 789	if (unlikely(!skb)) {
 790		stats->rx_dropped++;
 791		return 0;
 792	}
 793
 794	/* Read a frame from Xilinx zynq CANPS */
 795	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 796	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 797				   XCAN_DLCR_DLC_SHIFT;
 798
 799	/* Change Xilinx CAN data length format to socketCAN data format */
 800	cf->len = can_cc_dlc2len(dlc);
 801
 802	/* Change Xilinx CAN ID format to socketCAN ID format */
 803	if (id_xcan & XCAN_IDR_IDE_MASK) {
 804		/* The received frame is an Extended format frame */
 805		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 806		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 807				XCAN_IDR_ID2_SHIFT;
 808		cf->can_id |= CAN_EFF_FLAG;
 809		if (id_xcan & XCAN_IDR_RTR_MASK)
 810			cf->can_id |= CAN_RTR_FLAG;
 811	} else {
 812		/* The received frame is a standard format frame */
 813		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 814				XCAN_IDR_ID1_SHIFT;
 815		if (id_xcan & XCAN_IDR_SRR_MASK)
 816			cf->can_id |= CAN_RTR_FLAG;
 817	}
 818
 819	/* DW1/DW2 must always be read to remove message from RXFIFO */
 820	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 821	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 822
 823	if (!(cf->can_id & CAN_RTR_FLAG)) {
 824		/* Change Xilinx CAN data format to socketCAN data format */
 825		if (cf->len > 0)
 826			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 827		if (cf->len > 4)
 828			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 829
 830		stats->rx_bytes += cf->len;
 831	}
 832	stats->rx_packets++;
 833
 834	netif_receive_skb(skb);
 835
 836	return 1;
 837}
 838
 839/**
 840 * xcanfd_rx -  Is called from CAN isr to complete the received
 841 *		frame  processing
 842 * @ndev:	Pointer to net_device structure
 843 * @frame_base:	Register offset to the frame to be read
 844 *
 845 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 846 * does minimal processing and invokes "netif_receive_skb" to complete further
 847 * processing.
 848 * Return: 1 on success and 0 on failure.
 849 */
 850static int xcanfd_rx(struct net_device *ndev, int frame_base)
 851{
 852	struct xcan_priv *priv = netdev_priv(ndev);
 853	struct net_device_stats *stats = &ndev->stats;
 854	struct canfd_frame *cf;
 855	struct sk_buff *skb;
 856	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 857
 858	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 859	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 860	if (dlc & XCAN_DLCR_EDL_MASK)
 861		skb = alloc_canfd_skb(ndev, &cf);
 862	else
 863		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 864
 865	if (unlikely(!skb)) {
 866		stats->rx_dropped++;
 867		return 0;
 868	}
 869
 870	/* Change Xilinx CANFD data length format to socketCAN data
 871	 * format
 872	 */
 873	if (dlc & XCAN_DLCR_EDL_MASK)
 874		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 875				  XCAN_DLCR_DLC_SHIFT);
 876	else
 877		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 878					  XCAN_DLCR_DLC_SHIFT);
 879
 880	/* Change Xilinx CAN ID format to socketCAN ID format */
 881	if (id_xcan & XCAN_IDR_IDE_MASK) {
 882		/* The received frame is an Extended format frame */
 883		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 884		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 885				XCAN_IDR_ID2_SHIFT;
 886		cf->can_id |= CAN_EFF_FLAG;
 887		if (id_xcan & XCAN_IDR_RTR_MASK)
 888			cf->can_id |= CAN_RTR_FLAG;
 889	} else {
 890		/* The received frame is a standard format frame */
 891		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 892				XCAN_IDR_ID1_SHIFT;
 893		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 894					XCAN_IDR_SRR_MASK))
 895			cf->can_id |= CAN_RTR_FLAG;
 896	}
 897
 898	/* Check the frame received is FD or not*/
 899	if (dlc & XCAN_DLCR_EDL_MASK) {
 900		for (i = 0; i < cf->len; i += 4) {
 901			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 902					(dwindex * XCANFD_DW_BYTES);
 903			data[0] = priv->read_reg(priv, dw_offset);
 904			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 905			dwindex++;
 906		}
 907	} else {
 908		for (i = 0; i < cf->len; i += 4) {
 909			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 910			data[0] = priv->read_reg(priv, dw_offset + i);
 911			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 912		}
 913	}
 914
 915	if (!(cf->can_id & CAN_RTR_FLAG))
 916		stats->rx_bytes += cf->len;
 917	stats->rx_packets++;
 918
 919	netif_receive_skb(skb);
 920
 921	return 1;
 922}
 923
 924/**
 925 * xcan_current_error_state - Get current error state from HW
 926 * @ndev:	Pointer to net_device structure
 927 *
 928 * Checks the current CAN error state from the HW. Note that this
 929 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 930 *
 931 * Return:
 932 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 933 * otherwise.
 934 */
 935static enum can_state xcan_current_error_state(struct net_device *ndev)
 936{
 937	struct xcan_priv *priv = netdev_priv(ndev);
 938	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 939
 940	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 941		return CAN_STATE_ERROR_PASSIVE;
 942	else if (status & XCAN_SR_ERRWRN_MASK)
 943		return CAN_STATE_ERROR_WARNING;
 944	else
 945		return CAN_STATE_ERROR_ACTIVE;
 946}
 947
 948/**
 949 * xcan_set_error_state - Set new CAN error state
 950 * @ndev:	Pointer to net_device structure
 951 * @new_state:	The new CAN state to be set
 952 * @cf:		Error frame to be populated or NULL
 953 *
 954 * Set new CAN error state for the device, updating statistics and
 955 * populating the error frame if given.
 956 */
 957static void xcan_set_error_state(struct net_device *ndev,
 958				 enum can_state new_state,
 959				 struct can_frame *cf)
 960{
 961	struct xcan_priv *priv = netdev_priv(ndev);
 962	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 963	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 964	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 965	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 966	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 967
 968	/* non-ERROR states are handled elsewhere */
 969	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 970		return;
 971
 972	can_change_state(ndev, cf, tx_state, rx_state);
 973
 974	if (cf) {
 975		cf->can_id |= CAN_ERR_CNT;
 976		cf->data[6] = txerr;
 977		cf->data[7] = rxerr;
 978	}
 979}
 980
 981/**
 982 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 983 * @ndev:	Pointer to net_device structure
 984 *
 985 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 986 * the performed RX/TX has caused it to drop to a lesser state and set
 987 * the interface state accordingly.
 988 */
 989static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 990{
 991	struct xcan_priv *priv = netdev_priv(ndev);
 992	enum can_state old_state = priv->can.state;
 993	enum can_state new_state;
 994
 995	/* changing error state due to successful frame RX/TX can only
 996	 * occur from these states
 997	 */
 998	if (old_state != CAN_STATE_ERROR_WARNING &&
 999	    old_state != CAN_STATE_ERROR_PASSIVE)
1000		return;
1001
1002	new_state = xcan_current_error_state(ndev);
1003
1004	if (new_state != old_state) {
1005		struct sk_buff *skb;
1006		struct can_frame *cf;
1007
1008		skb = alloc_can_err_skb(ndev, &cf);
1009
1010		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1011
1012		if (skb)
1013			netif_rx(skb);
1014	}
1015}
1016
1017/**
1018 * xcan_err_interrupt - error frame Isr
1019 * @ndev:	net_device pointer
1020 * @isr:	interrupt status register value
1021 *
1022 * This is the CAN error interrupt and it will
1023 * check the type of error and forward the error
1024 * frame to upper layers.
1025 */
1026static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1027{
1028	struct xcan_priv *priv = netdev_priv(ndev);
1029	struct net_device_stats *stats = &ndev->stats;
1030	struct can_frame cf = { };
1031	u32 err_status;
1032
1033	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1034	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1035
1036	if (isr & XCAN_IXR_BSOFF_MASK) {
1037		priv->can.state = CAN_STATE_BUS_OFF;
1038		priv->can.can_stats.bus_off++;
1039		/* Leave device in Config Mode in bus-off state */
1040		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1041		can_bus_off(ndev);
1042		cf.can_id |= CAN_ERR_BUSOFF;
1043	} else {
1044		enum can_state new_state = xcan_current_error_state(ndev);
1045
1046		if (new_state != priv->can.state)
1047			xcan_set_error_state(ndev, new_state, &cf);
1048	}
1049
1050	/* Check for Arbitration lost interrupt */
1051	if (isr & XCAN_IXR_ARBLST_MASK) {
1052		priv->can.can_stats.arbitration_lost++;
1053		cf.can_id |= CAN_ERR_LOSTARB;
1054		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1055	}
1056
1057	/* Check for RX FIFO Overflow interrupt */
1058	if (isr & XCAN_IXR_RXOFLW_MASK) {
1059		stats->rx_over_errors++;
1060		stats->rx_errors++;
1061		cf.can_id |= CAN_ERR_CRTL;
1062		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1063	}
1064
1065	/* Check for RX Match Not Finished interrupt */
1066	if (isr & XCAN_IXR_RXMNF_MASK) {
1067		stats->rx_dropped++;
1068		stats->rx_errors++;
1069		netdev_err(ndev, "RX match not finished, frame discarded\n");
1070		cf.can_id |= CAN_ERR_CRTL;
1071		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1072	}
1073
1074	/* Check for error interrupt */
1075	if (isr & XCAN_IXR_ERROR_MASK) {
1076		bool berr_reporting = false;
1077
1078		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1079			berr_reporting = true;
1080			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1081		}
1082
1083		/* Check for Ack error interrupt */
1084		if (err_status & XCAN_ESR_ACKER_MASK) {
1085			stats->tx_errors++;
1086			if (berr_reporting) {
1087				cf.can_id |= CAN_ERR_ACK;
1088				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1089			}
1090		}
1091
1092		/* Check for Bit error interrupt */
1093		if (err_status & XCAN_ESR_BERR_MASK) {
1094			stats->tx_errors++;
1095			if (berr_reporting) {
1096				cf.can_id |= CAN_ERR_PROT;
1097				cf.data[2] = CAN_ERR_PROT_BIT;
1098			}
1099		}
1100
1101		/* Check for Stuff error interrupt */
1102		if (err_status & XCAN_ESR_STER_MASK) {
1103			stats->rx_errors++;
1104			if (berr_reporting) {
1105				cf.can_id |= CAN_ERR_PROT;
1106				cf.data[2] = CAN_ERR_PROT_STUFF;
1107			}
1108		}
1109
1110		/* Check for Form error interrupt */
1111		if (err_status & XCAN_ESR_FMER_MASK) {
1112			stats->rx_errors++;
1113			if (berr_reporting) {
1114				cf.can_id |= CAN_ERR_PROT;
1115				cf.data[2] = CAN_ERR_PROT_FORM;
1116			}
1117		}
1118
1119		/* Check for CRC error interrupt */
1120		if (err_status & XCAN_ESR_CRCER_MASK) {
1121			stats->rx_errors++;
1122			if (berr_reporting) {
1123				cf.can_id |= CAN_ERR_PROT;
1124				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1125			}
1126		}
1127		priv->can.can_stats.bus_error++;
1128	}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130	if (cf.can_id) {
1131		struct can_frame *skb_cf;
1132		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1133
1134		if (skb) {
1135			skb_cf->can_id |= cf.can_id;
1136			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1137			netif_rx(skb);
1138		}
1139	}
1140
1141	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1142		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1143}
1144
1145/**
1146 * xcan_state_interrupt - It will check the state of the CAN device
1147 * @ndev:	net_device pointer
1148 * @isr:	interrupt status register value
1149 *
1150 * This will checks the state of the CAN device
1151 * and puts the device into appropriate state.
1152 */
1153static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1154{
1155	struct xcan_priv *priv = netdev_priv(ndev);
1156
1157	/* Check for Sleep interrupt if set put CAN device in sleep state */
1158	if (isr & XCAN_IXR_SLP_MASK)
1159		priv->can.state = CAN_STATE_SLEEPING;
1160
1161	/* Check for Wake up interrupt if set put CAN device in Active state */
1162	if (isr & XCAN_IXR_WKUP_MASK)
1163		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164}
1165
1166/**
1167 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1168 * @priv:	Driver private data structure
1169 *
1170 * Return: Register offset of the next frame in RX FIFO.
1171 */
1172static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1173{
1174	int offset;
1175
1176	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1177		u32 fsr, mask;
1178
1179		/* clear RXOK before the is-empty check so that any newly
1180		 * received frame will reassert it without a race
1181		 */
1182		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1183
1184		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1185
1186		/* check if RX FIFO is empty */
1187		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1188			mask = XCAN_2_FSR_FL_MASK;
1189		else
1190			mask = XCAN_FSR_FL_MASK;
1191
1192		if (!(fsr & mask))
1193			return -ENOENT;
1194
1195		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1196			offset =
1197			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1198		else
1199			offset =
1200			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1201
1202	} else {
1203		/* check if RX FIFO is empty */
1204		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1205		      XCAN_IXR_RXNEMP_MASK))
1206			return -ENOENT;
1207
1208		/* frames are read from a static offset */
1209		offset = XCAN_RXFIFO_OFFSET;
1210	}
1211
1212	return offset;
1213}
1214
1215/**
1216 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1217 * @napi:	napi structure pointer
1218 * @quota:	Max number of rx packets to be processed.
1219 *
1220 * This is the poll routine for rx part.
1221 * It will process the packets maximux quota value.
1222 *
1223 * Return: number of packets received
1224 */
1225static int xcan_rx_poll(struct napi_struct *napi, int quota)
1226{
1227	struct net_device *ndev = napi->dev;
1228	struct xcan_priv *priv = netdev_priv(ndev);
1229	u32 ier;
1230	int work_done = 0;
1231	int frame_offset;
1232
1233	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1234	       (work_done < quota)) {
1235		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1236			work_done += xcanfd_rx(ndev, frame_offset);
1237		else
1238			work_done += xcan_rx(ndev, frame_offset);
1239
1240		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1241			/* increment read index */
1242			priv->write_reg(priv, XCAN_FSR_OFFSET,
1243					XCAN_FSR_IRI_MASK);
1244		else
1245			/* clear rx-not-empty (will actually clear only if
1246			 * empty)
1247			 */
1248			priv->write_reg(priv, XCAN_ICR_OFFSET,
1249					XCAN_IXR_RXNEMP_MASK);
1250	}
1251
1252	if (work_done)
1253		xcan_update_error_state_after_rxtx(ndev);
1254
1255	if (work_done < quota) {
1256		if (napi_complete_done(napi, work_done)) {
1257			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1258			ier |= xcan_rx_int_mask(priv);
1259			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1260		}
1261	}
1262	return work_done;
1263}
1264
1265/**
1266 * xcan_tx_interrupt - Tx Done Isr
1267 * @ndev:	net_device pointer
1268 * @isr:	Interrupt status register value
1269 */
1270static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1271{
1272	struct xcan_priv *priv = netdev_priv(ndev);
1273	struct net_device_stats *stats = &ndev->stats;
1274	unsigned int frames_in_fifo;
1275	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1276	unsigned long flags;
1277	int retries = 0;
1278
1279	/* Synchronize with xmit as we need to know the exact number
1280	 * of frames in the FIFO to stay in sync due to the TXFEMP
1281	 * handling.
1282	 * This also prevents a race between netif_wake_queue() and
1283	 * netif_stop_queue().
1284	 */
1285	spin_lock_irqsave(&priv->tx_lock, flags);
1286
1287	frames_in_fifo = priv->tx_head - priv->tx_tail;
1288
1289	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1290		/* clear TXOK anyway to avoid getting back here */
1291		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1292		spin_unlock_irqrestore(&priv->tx_lock, flags);
1293		return;
1294	}
1295
1296	/* Check if 2 frames were sent (TXOK only means that at least 1
1297	 * frame was sent).
1298	 */
1299	if (frames_in_fifo > 1) {
1300		WARN_ON(frames_in_fifo > priv->tx_max);
1301
1302		/* Synchronize TXOK and isr so that after the loop:
1303		 * (1) isr variable is up-to-date at least up to TXOK clear
1304		 *     time. This avoids us clearing a TXOK of a second frame
1305		 *     but not noticing that the FIFO is now empty and thus
1306		 *     marking only a single frame as sent.
1307		 * (2) No TXOK is left. Having one could mean leaving a
1308		 *     stray TXOK as we might process the associated frame
1309		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1310		 *     clear to satisfy (1).
1311		 */
1312		while ((isr & XCAN_IXR_TXOK_MASK) &&
1313		       !WARN_ON(++retries == 100)) {
1314			priv->write_reg(priv, XCAN_ICR_OFFSET,
1315					XCAN_IXR_TXOK_MASK);
1316			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1317		}
1318
1319		if (isr & XCAN_IXR_TXFEMP_MASK) {
1320			/* nothing in FIFO anymore */
1321			frames_sent = frames_in_fifo;
1322		}
1323	} else {
1324		/* single frame in fifo, just clear TXOK */
1325		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1326	}
1327
1328	while (frames_sent--) {
1329		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1330						    priv->tx_max, NULL);
1331		priv->tx_tail++;
1332		stats->tx_packets++;
1333	}
1334
1335	netif_wake_queue(ndev);
1336
1337	spin_unlock_irqrestore(&priv->tx_lock, flags);
1338
1339	xcan_update_error_state_after_rxtx(ndev);
1340}
1341
1342/**
1343 * xcan_interrupt - CAN Isr
1344 * @irq:	irq number
1345 * @dev_id:	device id pointer
1346 *
1347 * This is the xilinx CAN Isr. It checks for the type of interrupt
1348 * and invokes the corresponding ISR.
1349 *
1350 * Return:
1351 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1352 */
1353static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1354{
1355	struct net_device *ndev = (struct net_device *)dev_id;
1356	struct xcan_priv *priv = netdev_priv(ndev);
 
1357	u32 isr, ier;
1358	u32 isr_errors;
1359	u32 rx_int_mask = xcan_rx_int_mask(priv);
1360
1361	/* Get the interrupt status from Xilinx CAN */
1362	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1363	if (!isr)
1364		return IRQ_NONE;
1365
1366	/* Check for the type of interrupt and Processing it */
1367	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1368		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1369				XCAN_IXR_WKUP_MASK));
1370		xcan_state_interrupt(ndev, isr);
1371	}
1372
1373	/* Check for Tx interrupt and Processing it */
1374	if (isr & XCAN_IXR_TXOK_MASK)
1375		xcan_tx_interrupt(ndev, isr);
1376
 
 
 
 
 
 
 
1377	/* Check for the type of error interrupt and Processing it */
1378	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1379			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1380			    XCAN_IXR_RXMNF_MASK);
1381	if (isr_errors) {
1382		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1383		xcan_err_interrupt(ndev, isr);
1384	}
1385
1386	/* Check for the type of receive interrupt and Processing it */
1387	if (isr & rx_int_mask) {
1388		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1389		ier &= ~rx_int_mask;
1390		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1391		napi_schedule(&priv->napi);
1392	}
1393	return IRQ_HANDLED;
1394}
1395
1396/**
1397 * xcan_chip_stop - Driver stop routine
1398 * @ndev:	Pointer to net_device structure
1399 *
1400 * This is the drivers stop routine. It will disable the
1401 * interrupts and put the device into configuration mode.
1402 */
1403static void xcan_chip_stop(struct net_device *ndev)
1404{
1405	struct xcan_priv *priv = netdev_priv(ndev);
1406	int ret;
1407
1408	/* Disable interrupts and leave the can in configuration mode */
1409	ret = set_reset_mode(ndev);
1410	if (ret < 0)
1411		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1412
1413	priv->can.state = CAN_STATE_STOPPED;
1414}
1415
1416/**
1417 * xcan_open - Driver open routine
1418 * @ndev:	Pointer to net_device structure
1419 *
1420 * This is the driver open routine.
1421 * Return: 0 on success and failure value on error
1422 */
1423static int xcan_open(struct net_device *ndev)
1424{
1425	struct xcan_priv *priv = netdev_priv(ndev);
1426	int ret;
1427
1428	ret = phy_power_on(priv->transceiver);
1429	if (ret)
1430		return ret;
1431
1432	ret = pm_runtime_get_sync(priv->dev);
1433	if (ret < 0) {
1434		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1435			   __func__, ret);
1436		goto err;
1437	}
1438
1439	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1440			  ndev->name, ndev);
1441	if (ret < 0) {
1442		netdev_err(ndev, "irq allocation for CAN failed\n");
1443		goto err;
1444	}
1445
1446	/* Set chip into reset mode */
1447	ret = set_reset_mode(ndev);
1448	if (ret < 0) {
1449		netdev_err(ndev, "mode resetting failed!\n");
1450		goto err_irq;
1451	}
1452
1453	/* Common open */
1454	ret = open_candev(ndev);
1455	if (ret)
1456		goto err_irq;
1457
1458	ret = xcan_chip_start(ndev);
1459	if (ret < 0) {
1460		netdev_err(ndev, "xcan_chip_start failed!\n");
1461		goto err_candev;
1462	}
1463
1464	napi_enable(&priv->napi);
1465	netif_start_queue(ndev);
1466
1467	return 0;
1468
1469err_candev:
1470	close_candev(ndev);
1471err_irq:
1472	free_irq(ndev->irq, ndev);
1473err:
1474	pm_runtime_put(priv->dev);
1475	phy_power_off(priv->transceiver);
1476
1477	return ret;
1478}
1479
1480/**
1481 * xcan_close - Driver close routine
1482 * @ndev:	Pointer to net_device structure
1483 *
1484 * Return: 0 always
1485 */
1486static int xcan_close(struct net_device *ndev)
1487{
1488	struct xcan_priv *priv = netdev_priv(ndev);
1489
1490	netif_stop_queue(ndev);
1491	napi_disable(&priv->napi);
1492	xcan_chip_stop(ndev);
1493	free_irq(ndev->irq, ndev);
1494	close_candev(ndev);
1495
1496	pm_runtime_put(priv->dev);
1497	phy_power_off(priv->transceiver);
1498
1499	return 0;
1500}
1501
1502/**
1503 * xcan_get_berr_counter - error counter routine
1504 * @ndev:	Pointer to net_device structure
1505 * @bec:	Pointer to can_berr_counter structure
1506 *
1507 * This is the driver error counter routine.
1508 * Return: 0 on success and failure value on error
1509 */
1510static int xcan_get_berr_counter(const struct net_device *ndev,
1511				 struct can_berr_counter *bec)
1512{
1513	struct xcan_priv *priv = netdev_priv(ndev);
1514	int ret;
1515
1516	ret = pm_runtime_get_sync(priv->dev);
1517	if (ret < 0) {
1518		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1519			   __func__, ret);
1520		pm_runtime_put(priv->dev);
1521		return ret;
1522	}
1523
1524	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1525	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1526			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1527
1528	pm_runtime_put(priv->dev);
1529
1530	return 0;
1531}
1532
1533/**
1534 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1535 * @ndev:	Pointer to net_device structure
1536 * @tdcv:	Pointer to TDCV value
1537 *
1538 * Return: 0 on success
1539 */
1540static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1541{
1542	struct xcan_priv *priv = netdev_priv(ndev);
1543
1544	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1545
1546	return 0;
1547}
1548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549static const struct net_device_ops xcan_netdev_ops = {
1550	.ndo_open	= xcan_open,
1551	.ndo_stop	= xcan_close,
1552	.ndo_start_xmit	= xcan_start_xmit,
1553	.ndo_change_mtu	= can_change_mtu,
1554};
1555
1556static const struct ethtool_ops xcan_ethtool_ops = {
1557	.get_ts_info = ethtool_op_get_ts_info,
 
 
 
1558};
1559
1560/**
1561 * xcan_suspend - Suspend method for the driver
1562 * @dev:	Address of the device structure
1563 *
1564 * Put the driver into low power mode.
1565 * Return: 0 on success and failure value on error
1566 */
1567static int __maybe_unused xcan_suspend(struct device *dev)
1568{
1569	struct net_device *ndev = dev_get_drvdata(dev);
1570
1571	if (netif_running(ndev)) {
1572		netif_stop_queue(ndev);
1573		netif_device_detach(ndev);
1574		xcan_chip_stop(ndev);
1575	}
1576
1577	return pm_runtime_force_suspend(dev);
1578}
1579
1580/**
1581 * xcan_resume - Resume from suspend
1582 * @dev:	Address of the device structure
1583 *
1584 * Resume operation after suspend.
1585 * Return: 0 on success and failure value on error
1586 */
1587static int __maybe_unused xcan_resume(struct device *dev)
1588{
1589	struct net_device *ndev = dev_get_drvdata(dev);
1590	int ret;
1591
1592	ret = pm_runtime_force_resume(dev);
1593	if (ret) {
1594		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1595		return ret;
1596	}
1597
1598	if (netif_running(ndev)) {
1599		ret = xcan_chip_start(ndev);
1600		if (ret) {
1601			dev_err(dev, "xcan_chip_start failed on resume\n");
1602			return ret;
1603		}
1604
1605		netif_device_attach(ndev);
1606		netif_start_queue(ndev);
1607	}
1608
1609	return 0;
1610}
1611
1612/**
1613 * xcan_runtime_suspend - Runtime suspend method for the driver
1614 * @dev:	Address of the device structure
1615 *
1616 * Put the driver into low power mode.
1617 * Return: 0 always
1618 */
1619static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1620{
1621	struct net_device *ndev = dev_get_drvdata(dev);
1622	struct xcan_priv *priv = netdev_priv(ndev);
1623
1624	clk_disable_unprepare(priv->bus_clk);
1625	clk_disable_unprepare(priv->can_clk);
1626
1627	return 0;
1628}
1629
1630/**
1631 * xcan_runtime_resume - Runtime resume from suspend
1632 * @dev:	Address of the device structure
1633 *
1634 * Resume operation after suspend.
1635 * Return: 0 on success and failure value on error
1636 */
1637static int __maybe_unused xcan_runtime_resume(struct device *dev)
1638{
1639	struct net_device *ndev = dev_get_drvdata(dev);
1640	struct xcan_priv *priv = netdev_priv(ndev);
1641	int ret;
1642
1643	ret = clk_prepare_enable(priv->bus_clk);
1644	if (ret) {
1645		dev_err(dev, "Cannot enable clock.\n");
1646		return ret;
1647	}
1648	ret = clk_prepare_enable(priv->can_clk);
1649	if (ret) {
1650		dev_err(dev, "Cannot enable clock.\n");
1651		clk_disable_unprepare(priv->bus_clk);
1652		return ret;
1653	}
1654
1655	return 0;
1656}
1657
1658static const struct dev_pm_ops xcan_dev_pm_ops = {
1659	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1660	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1661};
1662
1663static const struct xcan_devtype_data xcan_zynq_data = {
1664	.cantype = XZYNQ_CANPS,
1665	.flags = XCAN_FLAG_TXFEMP,
1666	.bittiming_const = &xcan_bittiming_const,
1667	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1668	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1669	.bus_clk_name = "pclk",
1670};
1671
1672static const struct xcan_devtype_data xcan_axi_data = {
1673	.cantype = XAXI_CAN,
1674	.bittiming_const = &xcan_bittiming_const,
1675	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1676	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1677	.bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd_data = {
1681	.cantype = XAXI_CANFD,
1682	.flags = XCAN_FLAG_EXT_FILTERS |
1683		 XCAN_FLAG_RXMNF |
1684		 XCAN_FLAG_TX_MAILBOXES |
1685		 XCAN_FLAG_RX_FIFO_MULTI,
1686	.bittiming_const = &xcan_bittiming_const_canfd,
1687	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1688	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1689	.bus_clk_name = "s_axi_aclk",
1690};
1691
1692static const struct xcan_devtype_data xcan_canfd2_data = {
1693	.cantype = XAXI_CANFD_2_0,
1694	.flags = XCAN_FLAG_EXT_FILTERS |
1695		 XCAN_FLAG_RXMNF |
1696		 XCAN_FLAG_TX_MAILBOXES |
1697		 XCAN_FLAG_CANFD_2 |
1698		 XCAN_FLAG_RX_FIFO_MULTI,
1699	.bittiming_const = &xcan_bittiming_const_canfd2,
1700	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1701	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1702	.bus_clk_name = "s_axi_aclk",
1703};
1704
1705/* Match table for OF platform binding */
1706static const struct of_device_id xcan_of_match[] = {
1707	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1708	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1709	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1710	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1711	{ /* end of list */ },
1712};
1713MODULE_DEVICE_TABLE(of, xcan_of_match);
1714
1715/**
1716 * xcan_probe - Platform registration call
1717 * @pdev:	Handle to the platform device structure
1718 *
1719 * This function does all the memory allocation and registration for the CAN
1720 * device.
1721 *
1722 * Return: 0 on success and failure value on error
1723 */
1724static int xcan_probe(struct platform_device *pdev)
1725{
1726	struct net_device *ndev;
1727	struct xcan_priv *priv;
1728	struct phy *transceiver;
1729	const struct xcan_devtype_data *devtype;
1730	void __iomem *addr;
1731	int ret;
1732	int rx_max, tx_max;
1733	u32 hw_tx_max = 0, hw_rx_max = 0;
1734	const char *hw_tx_max_property;
1735
1736	/* Get the virtual base address for the device */
1737	addr = devm_platform_ioremap_resource(pdev, 0);
1738	if (IS_ERR(addr)) {
1739		ret = PTR_ERR(addr);
1740		goto err;
1741	}
1742
1743	devtype = device_get_match_data(&pdev->dev);
1744
1745	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746			     "tx-mailbox-count" : "tx-fifo-depth";
1747
1748	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1749				   &hw_tx_max);
1750	if (ret < 0) {
1751		dev_err(&pdev->dev, "missing %s property\n",
1752			hw_tx_max_property);
1753		goto err;
1754	}
1755
1756	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1757				   &hw_rx_max);
1758	if (ret < 0) {
1759		dev_err(&pdev->dev,
1760			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1761		goto err;
1762	}
1763
1764	/* With TX FIFO:
1765	 *
1766	 * There is no way to directly figure out how many frames have been
1767	 * sent when the TXOK interrupt is processed. If TXFEMP
1768	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769	 * to determine if 1 or 2 frames have been sent.
1770	 * Theoretically we should be able to use TXFWMEMP to determine up
1771	 * to 3 frames, but it seems that after putting a second frame in the
1772	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775	 * completely synchronized with the rest of the bits?
1776	 *
1777	 * With TX mailboxes:
1778	 *
1779	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780	 * we submit frames one at a time.
1781	 */
1782	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783	    (devtype->flags & XCAN_FLAG_TXFEMP))
1784		tx_max = min(hw_tx_max, 2U);
1785	else
1786		tx_max = 1;
1787
1788	rx_max = hw_rx_max;
1789
1790	/* Create a CAN device instance */
1791	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1792	if (!ndev)
1793		return -ENOMEM;
1794
1795	priv = netdev_priv(ndev);
 
1796	priv->dev = &pdev->dev;
1797	priv->can.bittiming_const = devtype->bittiming_const;
1798	priv->can.do_set_mode = xcan_do_set_mode;
1799	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801					CAN_CTRLMODE_BERR_REPORTING;
1802	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1803	if (IS_ERR(priv->rstc)) {
1804		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1805		ret = PTR_ERR(priv->rstc);
1806		goto err_free;
1807	}
1808
1809	ret = reset_control_reset(priv->rstc);
1810	if (ret)
1811		goto err_free;
1812
1813	if (devtype->cantype == XAXI_CANFD) {
1814		priv->can.data_bittiming_const =
1815			&xcan_data_bittiming_const_canfd;
1816		priv->can.tdc_const = &xcan_tdc_const_canfd;
1817	}
1818
1819	if (devtype->cantype == XAXI_CANFD_2_0) {
1820		priv->can.data_bittiming_const =
1821			&xcan_data_bittiming_const_canfd2;
1822		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1823	}
1824
1825	if (devtype->cantype == XAXI_CANFD ||
1826	    devtype->cantype == XAXI_CANFD_2_0) {
1827		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1828						CAN_CTRLMODE_TDC_AUTO;
1829		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1830	}
1831
1832	priv->reg_base = addr;
1833	priv->tx_max = tx_max;
1834	priv->devtype = *devtype;
1835	spin_lock_init(&priv->tx_lock);
1836
1837	/* Get IRQ for the device */
1838	ret = platform_get_irq(pdev, 0);
1839	if (ret < 0)
1840		goto err_reset;
1841
1842	ndev->irq = ret;
1843
1844	ndev->flags |= IFF_ECHO;	/* We support local echo */
1845
1846	platform_set_drvdata(pdev, ndev);
1847	SET_NETDEV_DEV(ndev, &pdev->dev);
1848	ndev->netdev_ops = &xcan_netdev_ops;
1849	ndev->ethtool_ops = &xcan_ethtool_ops;
1850
1851	/* Getting the CAN can_clk info */
1852	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1853	if (IS_ERR(priv->can_clk)) {
1854		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1855				    "device clock not found\n");
1856		goto err_reset;
1857	}
1858
1859	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1860	if (IS_ERR(priv->bus_clk)) {
1861		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1862				    "bus clock not found\n");
1863		goto err_reset;
1864	}
1865
1866	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1867	if (IS_ERR(transceiver)) {
1868		ret = PTR_ERR(transceiver);
1869		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1870		goto err_reset;
1871	}
1872	priv->transceiver = transceiver;
1873
1874	priv->write_reg = xcan_write_reg_le;
1875	priv->read_reg = xcan_read_reg_le;
1876
1877	pm_runtime_enable(&pdev->dev);
1878	ret = pm_runtime_get_sync(&pdev->dev);
1879	if (ret < 0) {
1880		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1881			   __func__, ret);
1882		goto err_disableclks;
1883	}
1884
1885	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1886		priv->write_reg = xcan_write_reg_be;
1887		priv->read_reg = xcan_read_reg_be;
1888	}
1889
1890	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1891
1892	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1893
1894	ret = register_candev(ndev);
1895	if (ret) {
1896		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1897		goto err_disableclks;
1898	}
1899
1900	of_can_transceiver(ndev);
1901	pm_runtime_put(&pdev->dev);
1902
1903	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1904		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1905		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1906	}
1907
1908	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1909		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1910		   hw_tx_max, priv->tx_max);
1911
 
 
 
 
 
1912	return 0;
1913
1914err_disableclks:
1915	pm_runtime_put(priv->dev);
1916	pm_runtime_disable(&pdev->dev);
1917err_reset:
1918	reset_control_assert(priv->rstc);
1919err_free:
1920	free_candev(ndev);
1921err:
1922	return ret;
1923}
1924
1925/**
1926 * xcan_remove - Unregister the device after releasing the resources
1927 * @pdev:	Handle to the platform device structure
1928 *
1929 * This function frees all the resources allocated to the device.
1930 * Return: 0 always
1931 */
1932static void xcan_remove(struct platform_device *pdev)
1933{
1934	struct net_device *ndev = platform_get_drvdata(pdev);
1935	struct xcan_priv *priv = netdev_priv(ndev);
1936
1937	unregister_candev(ndev);
1938	pm_runtime_disable(&pdev->dev);
1939	reset_control_assert(priv->rstc);
1940	free_candev(ndev);
1941}
1942
1943static struct platform_driver xcan_driver = {
1944	.probe = xcan_probe,
1945	.remove_new = xcan_remove,
1946	.driver	= {
1947		.name = DRIVER_NAME,
1948		.pm = &xcan_dev_pm_ops,
1949		.of_match_table	= xcan_of_match,
1950	},
1951};
1952
1953module_platform_driver(xcan_driver);
1954
1955MODULE_LICENSE("GPL");
1956MODULE_AUTHOR("Xilinx Inc");
1957MODULE_DESCRIPTION("Xilinx CAN interface");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/phy/phy.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/reset.h>
  34#include <linux/u64_stats_sync.h>
  35
  36#define DRIVER_NAME	"xilinx_can"
  37
  38/* CAN registers set */
  39enum xcan_reg {
  40	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  41	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  42	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  43	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  44	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  45	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  46	XCAN_SR_OFFSET		= 0x18, /* Status */
  47	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  48	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  49	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  50
  51	/* not on CAN FD cores */
  52	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  53	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  54	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  55
  56	/* only on CAN FD cores */
  57	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  58					  * Prescaler
  59					  */
  60	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  61	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  62
  63	/* only on AXI CAN cores */
  64	XCAN_ECC_CFG_OFFSET	= 0xC8, /* ECC Configuration */
  65	XCAN_TXTLFIFO_ECC_OFFSET	= 0xCC, /* TXTL FIFO ECC error counter */
  66	XCAN_TXOLFIFO_ECC_OFFSET	= 0xD0, /* TXOL FIFO ECC error counter */
  67	XCAN_RXFIFO_ECC_OFFSET	= 0xD4, /* RX FIFO ECC error counter */
  68
  69	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  70	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  71	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  72	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  73	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  74	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  75	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  76};
  77
  78#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  79#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  80#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  81#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  82#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  83
  84#define XCAN_CANFD_FRAME_SIZE		0x48
  85#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  86					 XCAN_CANFD_FRAME_SIZE * (n))
  87#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  88					 XCAN_CANFD_FRAME_SIZE * (n))
  89#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  90					 XCAN_CANFD_FRAME_SIZE * (n))
  91
  92/* the single TX mailbox used by this driver on CAN FD HW */
  93#define XCAN_TX_MAILBOX_IDX		0
  94
  95/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  96#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  97#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  98#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  99#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
 100#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
 101#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
 102#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
 103#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
 104#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
 105#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
 106#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
 107#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
 108#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
 109#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 110#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 111#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 112#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 113#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 114#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 115#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 116#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 117#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 118#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 119#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 120#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 121#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 122#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 123#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 124#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 125#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 126#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 127#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 128#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 129#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 130#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 131#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 132#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 133#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 134#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 135#define XCAN_IXR_E2BERX_MASK		BIT(23) /* RX FIFO two bit ECC error */
 136#define XCAN_IXR_E1BERX_MASK		BIT(22) /* RX FIFO one bit ECC error */
 137#define XCAN_IXR_E2BETXOL_MASK		BIT(21) /* TXOL FIFO two bit ECC error */
 138#define XCAN_IXR_E1BETXOL_MASK		BIT(20) /* TXOL FIFO One bit ECC error */
 139#define XCAN_IXR_E2BETXTL_MASK		BIT(19) /* TXTL FIFO Two bit ECC error */
 140#define XCAN_IXR_E1BETXTL_MASK		BIT(18) /* TXTL FIFO One bit ECC error */
 141#define XCAN_IXR_ECC_MASK		(XCAN_IXR_E2BERX_MASK | \
 142					XCAN_IXR_E1BERX_MASK | \
 143					XCAN_IXR_E2BETXOL_MASK | \
 144					XCAN_IXR_E1BETXOL_MASK | \
 145					XCAN_IXR_E2BETXTL_MASK | \
 146					XCAN_IXR_E1BETXTL_MASK)
 147#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 148#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 149#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 150#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 151#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 152#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 153#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 154#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 155#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 156#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 157#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 158#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 159#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 160#define XCAN_ECC_CFG_REECRX_MASK	BIT(2) /* Reset RX FIFO ECC error counters */
 161#define XCAN_ECC_CFG_REECTXOL_MASK	BIT(1) /* Reset TXOL FIFO ECC error counters */
 162#define XCAN_ECC_CFG_REECTXTL_MASK	BIT(0) /* Reset TXTL FIFO ECC error counters */
 163#define XCAN_ECC_1BIT_CNT_MASK		GENMASK(15, 0) /* FIFO ECC 1bit count mask */
 164#define XCAN_ECC_2BIT_CNT_MASK		GENMASK(31, 16) /* FIFO ECC 2bit count mask */
 165
 166/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 167#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 168#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 169#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 170#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 171#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 172#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 173#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 174#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 175#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 176
 177/* CAN frame length constants */
 178#define XCAN_FRAME_MAX_DATA_LEN		8
 179#define XCANFD_DW_BYTES			4
 180#define XCAN_TIMEOUT			(1 * HZ)
 181
 182/* TX-FIFO-empty interrupt available */
 183#define XCAN_FLAG_TXFEMP	0x0001
 184/* RX Match Not Finished interrupt available */
 185#define XCAN_FLAG_RXMNF		0x0002
 186/* Extended acceptance filters with control at 0xE0 */
 187#define XCAN_FLAG_EXT_FILTERS	0x0004
 188/* TX mailboxes instead of TX FIFO */
 189#define XCAN_FLAG_TX_MAILBOXES	0x0008
 190/* RX FIFO with each buffer in separate registers at 0x1100
 191 * instead of the regular FIFO at 0x50
 192 */
 193#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 194#define XCAN_FLAG_CANFD_2	0x0020
 195
 196enum xcan_ip_type {
 197	XAXI_CAN = 0,
 198	XZYNQ_CANPS,
 199	XAXI_CANFD,
 200	XAXI_CANFD_2_0,
 201};
 202
 203struct xcan_devtype_data {
 204	enum xcan_ip_type cantype;
 205	unsigned int flags;
 206	const struct can_bittiming_const *bittiming_const;
 207	const char *bus_clk_name;
 208	unsigned int btr_ts2_shift;
 209	unsigned int btr_sjw_shift;
 210};
 211
 212/**
 213 * struct xcan_priv - This definition define CAN driver instance
 214 * @can:			CAN private data structure.
 215 * @tx_lock:			Lock for synchronizing TX interrupt handling
 216 * @tx_head:			Tx CAN packets ready to send on the queue
 217 * @tx_tail:			Tx CAN packets successfully sended on the queue
 218 * @tx_max:			Maximum number packets the driver can send
 219 * @napi:			NAPI structure
 220 * @read_reg:			For reading data from CAN registers
 221 * @write_reg:			For writing data to CAN registers
 222 * @dev:			Network device data structure
 223 * @reg_base:			Ioremapped address to registers
 224 * @irq_flags:			For request_irq()
 225 * @bus_clk:			Pointer to struct clk
 226 * @can_clk:			Pointer to struct clk
 227 * @devtype:			Device type specific constants
 228 * @transceiver:		Optional pointer to associated CAN transceiver
 229 * @rstc:			Pointer to reset control
 230 * @ecc_enable:			ECC enable flag
 231 * @syncp:			synchronization for ECC error stats
 232 * @ecc_rx_2_bit_errors:	RXFIFO 2bit ECC count
 233 * @ecc_rx_1_bit_errors:	RXFIFO 1bit ECC count
 234 * @ecc_txol_2_bit_errors:	TXOLFIFO 2bit ECC count
 235 * @ecc_txol_1_bit_errors:	TXOLFIFO 1bit ECC count
 236 * @ecc_txtl_2_bit_errors:	TXTLFIFO 2bit ECC count
 237 * @ecc_txtl_1_bit_errors:	TXTLFIFO 1bit ECC count
 238 */
 239struct xcan_priv {
 240	struct can_priv can;
 241	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 242	unsigned int tx_head;
 243	unsigned int tx_tail;
 244	unsigned int tx_max;
 245	struct napi_struct napi;
 246	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 247	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 248			  u32 val);
 249	struct device *dev;
 250	void __iomem *reg_base;
 251	unsigned long irq_flags;
 252	struct clk *bus_clk;
 253	struct clk *can_clk;
 254	struct xcan_devtype_data devtype;
 255	struct phy *transceiver;
 256	struct reset_control *rstc;
 257	bool ecc_enable;
 258	struct u64_stats_sync syncp;
 259	u64_stats_t ecc_rx_2_bit_errors;
 260	u64_stats_t ecc_rx_1_bit_errors;
 261	u64_stats_t ecc_txol_2_bit_errors;
 262	u64_stats_t ecc_txol_1_bit_errors;
 263	u64_stats_t ecc_txtl_2_bit_errors;
 264	u64_stats_t ecc_txtl_1_bit_errors;
 265};
 266
 267/* CAN Bittiming constants as per Xilinx CAN specs */
 268static const struct can_bittiming_const xcan_bittiming_const = {
 269	.name = DRIVER_NAME,
 270	.tseg1_min = 1,
 271	.tseg1_max = 16,
 272	.tseg2_min = 1,
 273	.tseg2_max = 8,
 274	.sjw_max = 4,
 275	.brp_min = 1,
 276	.brp_max = 256,
 277	.brp_inc = 1,
 278};
 279
 280/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 281static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 282	.name = DRIVER_NAME,
 283	.tseg1_min = 1,
 284	.tseg1_max = 64,
 285	.tseg2_min = 1,
 286	.tseg2_max = 16,
 287	.sjw_max = 16,
 288	.brp_min = 1,
 289	.brp_max = 256,
 290	.brp_inc = 1,
 291};
 292
 293/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 294static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 295	.name = DRIVER_NAME,
 296	.tseg1_min = 1,
 297	.tseg1_max = 16,
 298	.tseg2_min = 1,
 299	.tseg2_max = 8,
 300	.sjw_max = 8,
 301	.brp_min = 1,
 302	.brp_max = 256,
 303	.brp_inc = 1,
 304};
 305
 306/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 307static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 308	.name = DRIVER_NAME,
 309	.tseg1_min = 1,
 310	.tseg1_max = 256,
 311	.tseg2_min = 1,
 312	.tseg2_max = 128,
 313	.sjw_max = 128,
 314	.brp_min = 1,
 315	.brp_max = 256,
 316	.brp_inc = 1,
 317};
 318
 319/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 320static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 321	.name = DRIVER_NAME,
 322	.tseg1_min = 1,
 323	.tseg1_max = 32,
 324	.tseg2_min = 1,
 325	.tseg2_max = 16,
 326	.sjw_max = 16,
 327	.brp_min = 1,
 328	.brp_max = 256,
 329	.brp_inc = 1,
 330};
 331
 332/* Transmission Delay Compensation constants for CANFD 1.0 */
 333static const struct can_tdc_const xcan_tdc_const_canfd = {
 334	.tdcv_min = 0,
 335	.tdcv_max = 0, /* Manual mode not supported. */
 336	.tdco_min = 0,
 337	.tdco_max = 32,
 338	.tdcf_min = 0, /* Filter window not supported */
 339	.tdcf_max = 0,
 340};
 341
 342/* Transmission Delay Compensation constants for CANFD 2.0 */
 343static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 344	.tdcv_min = 0,
 345	.tdcv_max = 0, /* Manual mode not supported. */
 346	.tdco_min = 0,
 347	.tdco_max = 64,
 348	.tdcf_min = 0, /* Filter window not supported */
 349	.tdcf_max = 0,
 350};
 351
 352enum xcan_stats_type {
 353	XCAN_ECC_RX_2_BIT_ERRORS,
 354	XCAN_ECC_RX_1_BIT_ERRORS,
 355	XCAN_ECC_TXOL_2_BIT_ERRORS,
 356	XCAN_ECC_TXOL_1_BIT_ERRORS,
 357	XCAN_ECC_TXTL_2_BIT_ERRORS,
 358	XCAN_ECC_TXTL_1_BIT_ERRORS,
 359};
 360
 361static const char xcan_priv_flags_strings[][ETH_GSTRING_LEN] = {
 362	[XCAN_ECC_RX_2_BIT_ERRORS] = "ecc_rx_2_bit_errors",
 363	[XCAN_ECC_RX_1_BIT_ERRORS] = "ecc_rx_1_bit_errors",
 364	[XCAN_ECC_TXOL_2_BIT_ERRORS] = "ecc_txol_2_bit_errors",
 365	[XCAN_ECC_TXOL_1_BIT_ERRORS] = "ecc_txol_1_bit_errors",
 366	[XCAN_ECC_TXTL_2_BIT_ERRORS] = "ecc_txtl_2_bit_errors",
 367	[XCAN_ECC_TXTL_1_BIT_ERRORS] = "ecc_txtl_1_bit_errors",
 368};
 369
 370/**
 371 * xcan_write_reg_le - Write a value to the device register little endian
 372 * @priv:	Driver private data structure
 373 * @reg:	Register offset
 374 * @val:	Value to write at the Register offset
 375 *
 376 * Write data to the paricular CAN register
 377 */
 378static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 379			      u32 val)
 380{
 381	iowrite32(val, priv->reg_base + reg);
 382}
 383
 384/**
 385 * xcan_read_reg_le - Read a value from the device register little endian
 386 * @priv:	Driver private data structure
 387 * @reg:	Register offset
 388 *
 389 * Read data from the particular CAN register
 390 * Return: value read from the CAN register
 391 */
 392static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 393{
 394	return ioread32(priv->reg_base + reg);
 395}
 396
 397/**
 398 * xcan_write_reg_be - Write a value to the device register big endian
 399 * @priv:	Driver private data structure
 400 * @reg:	Register offset
 401 * @val:	Value to write at the Register offset
 402 *
 403 * Write data to the paricular CAN register
 404 */
 405static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 406			      u32 val)
 407{
 408	iowrite32be(val, priv->reg_base + reg);
 409}
 410
 411/**
 412 * xcan_read_reg_be - Read a value from the device register big endian
 413 * @priv:	Driver private data structure
 414 * @reg:	Register offset
 415 *
 416 * Read data from the particular CAN register
 417 * Return: value read from the CAN register
 418 */
 419static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 420{
 421	return ioread32be(priv->reg_base + reg);
 422}
 423
 424/**
 425 * xcan_rx_int_mask - Get the mask for the receive interrupt
 426 * @priv:	Driver private data structure
 427 *
 428 * Return: The receive interrupt mask used by the driver on this HW
 429 */
 430static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 431{
 432	/* RXNEMP is better suited for our use case as it cannot be cleared
 433	 * while the FIFO is non-empty, but CAN FD HW does not have it
 434	 */
 435	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 436		return XCAN_IXR_RXOK_MASK;
 437	else
 438		return XCAN_IXR_RXNEMP_MASK;
 439}
 440
 441/**
 442 * set_reset_mode - Resets the CAN device mode
 443 * @ndev:	Pointer to net_device structure
 444 *
 445 * This is the driver reset mode routine.The driver
 446 * enters into configuration mode.
 447 *
 448 * Return: 0 on success and failure value on error
 449 */
 450static int set_reset_mode(struct net_device *ndev)
 451{
 452	struct xcan_priv *priv = netdev_priv(ndev);
 453	unsigned long timeout;
 454
 455	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 456
 457	timeout = jiffies + XCAN_TIMEOUT;
 458	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 459		if (time_after(jiffies, timeout)) {
 460			netdev_warn(ndev, "timed out for config mode\n");
 461			return -ETIMEDOUT;
 462		}
 463		usleep_range(500, 10000);
 464	}
 465
 466	/* reset clears FIFOs */
 467	priv->tx_head = 0;
 468	priv->tx_tail = 0;
 469
 470	return 0;
 471}
 472
 473/**
 474 * xcan_set_bittiming - CAN set bit timing routine
 475 * @ndev:	Pointer to net_device structure
 476 *
 477 * This is the driver set bittiming  routine.
 478 * Return: 0 on success and failure value on error
 479 */
 480static int xcan_set_bittiming(struct net_device *ndev)
 481{
 482	struct xcan_priv *priv = netdev_priv(ndev);
 483	struct can_bittiming *bt = &priv->can.bittiming;
 484	struct can_bittiming *dbt = &priv->can.data_bittiming;
 485	u32 btr0, btr1;
 486	u32 is_config_mode;
 487
 488	/* Check whether Xilinx CAN is in configuration mode.
 489	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 490	 */
 491	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 492				XCAN_SR_CONFIG_MASK;
 493	if (!is_config_mode) {
 494		netdev_alert(ndev,
 495			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 496		return -EPERM;
 497	}
 498
 499	/* Setting Baud Rate prescaler value in BRPR Register */
 500	btr0 = (bt->brp - 1);
 501
 502	/* Setting Time Segment 1 in BTR Register */
 503	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 504
 505	/* Setting Time Segment 2 in BTR Register */
 506	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 507
 508	/* Setting Synchronous jump width in BTR Register */
 509	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 510
 511	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 512	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 513
 514	if (priv->devtype.cantype == XAXI_CANFD ||
 515	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 516		/* Setting Baud Rate prescaler value in F_BRPR Register */
 517		btr0 = dbt->brp - 1;
 518		if (can_tdc_is_enabled(&priv->can)) {
 519			if (priv->devtype.cantype == XAXI_CANFD)
 520				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 521					XCAN_BRPR_TDC_ENABLE;
 522			else
 523				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 524					XCAN_BRPR_TDC_ENABLE;
 525		}
 526
 527		/* Setting Time Segment 1 in BTR Register */
 528		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 529
 530		/* Setting Time Segment 2 in BTR Register */
 531		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 532
 533		/* Setting Synchronous jump width in BTR Register */
 534		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 535
 536		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 537		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 538	}
 539
 540	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 541		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 542		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 543
 544	return 0;
 545}
 546
 547/**
 548 * xcan_chip_start - This the drivers start routine
 549 * @ndev:	Pointer to net_device structure
 550 *
 551 * This is the drivers start routine.
 552 * Based on the State of the CAN device it puts
 553 * the CAN device into a proper mode.
 554 *
 555 * Return: 0 on success and failure value on error
 556 */
 557static int xcan_chip_start(struct net_device *ndev)
 558{
 559	struct xcan_priv *priv = netdev_priv(ndev);
 560	u32 reg_msr;
 561	int err;
 562	u32 ier;
 563
 564	/* Check if it is in reset mode */
 565	err = set_reset_mode(ndev);
 566	if (err < 0)
 567		return err;
 568
 569	err = xcan_set_bittiming(ndev);
 570	if (err < 0)
 571		return err;
 572
 573	/* Enable interrupts
 574	 *
 575	 * We enable the ERROR interrupt even with
 576	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 577	 * dedicated interrupt for a state change to
 578	 * ERROR_WARNING/ERROR_PASSIVE.
 579	 */
 580	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 581		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 582		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 583		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 584
 585	if (priv->ecc_enable)
 586		ier |= XCAN_IXR_ECC_MASK;
 587
 588	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 589		ier |= XCAN_IXR_RXMNF_MASK;
 590
 591	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 592
 593	/* Check whether it is loopback mode or normal mode  */
 594	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 595		reg_msr = XCAN_MSR_LBACK_MASK;
 596	else
 597		reg_msr = 0x0;
 598
 599	/* enable the first extended filter, if any, as cores with extended
 600	 * filtering default to non-receipt if all filters are disabled
 601	 */
 602	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 603		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 604
 605	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 606	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 607
 608	netdev_dbg(ndev, "status:#x%08x\n",
 609		   priv->read_reg(priv, XCAN_SR_OFFSET));
 610
 611	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 612	return 0;
 613}
 614
 615/**
 616 * xcan_do_set_mode - This sets the mode of the driver
 617 * @ndev:	Pointer to net_device structure
 618 * @mode:	Tells the mode of the driver
 619 *
 620 * This check the drivers state and calls the corresponding modes to set.
 621 *
 622 * Return: 0 on success and failure value on error
 623 */
 624static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 625{
 626	int ret;
 627
 628	switch (mode) {
 629	case CAN_MODE_START:
 630		ret = xcan_chip_start(ndev);
 631		if (ret < 0) {
 632			netdev_err(ndev, "xcan_chip_start failed!\n");
 633			return ret;
 634		}
 635		netif_wake_queue(ndev);
 636		break;
 637	default:
 638		ret = -EOPNOTSUPP;
 639		break;
 640	}
 641
 642	return ret;
 643}
 644
 645/**
 646 * xcan_write_frame - Write a frame to HW
 647 * @ndev:		Pointer to net_device structure
 648 * @skb:		sk_buff pointer that contains data to be Txed
 649 * @frame_offset:	Register offset to write the frame to
 650 */
 651static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 652			     int frame_offset)
 653{
 654	u32 id, dlc, data[2] = {0, 0};
 655	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 656	u32 ramoff, dwindex = 0, i;
 657	struct xcan_priv *priv = netdev_priv(ndev);
 658
 659	/* Watch carefully on the bit sequence */
 660	if (cf->can_id & CAN_EFF_FLAG) {
 661		/* Extended CAN ID format */
 662		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 663			XCAN_IDR_ID2_MASK;
 664		id |= (((cf->can_id & CAN_EFF_MASK) >>
 665			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 666			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 667
 668		/* The substibute remote TX request bit should be "1"
 669		 * for extended frames as in the Xilinx CAN datasheet
 670		 */
 671		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 672
 673		if (cf->can_id & CAN_RTR_FLAG)
 674			/* Extended frames remote TX request */
 675			id |= XCAN_IDR_RTR_MASK;
 676	} else {
 677		/* Standard CAN ID format */
 678		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 679			XCAN_IDR_ID1_MASK;
 680
 681		if (cf->can_id & CAN_RTR_FLAG)
 682			/* Standard frames remote TX request */
 683			id |= XCAN_IDR_SRR_MASK;
 684	}
 685
 686	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 687	if (can_is_canfd_skb(skb)) {
 688		if (cf->flags & CANFD_BRS)
 689			dlc |= XCAN_DLCR_BRS_MASK;
 690		dlc |= XCAN_DLCR_EDL_MASK;
 691	}
 692
 693	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 694	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 695		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 696	else
 697		can_put_echo_skb(skb, ndev, 0, 0);
 698
 699	priv->tx_head++;
 700
 701	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 702	/* If the CAN frame is RTR frame this write triggers transmission
 703	 * (not on CAN FD)
 704	 */
 705	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 706	if (priv->devtype.cantype == XAXI_CANFD ||
 707	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 708		for (i = 0; i < cf->len; i += 4) {
 709			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 710					(dwindex * XCANFD_DW_BYTES);
 711			priv->write_reg(priv, ramoff,
 712					be32_to_cpup((__be32 *)(cf->data + i)));
 713			dwindex++;
 714		}
 715	} else {
 716		if (cf->len > 0)
 717			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 718		if (cf->len > 4)
 719			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 720
 721		if (!(cf->can_id & CAN_RTR_FLAG)) {
 722			priv->write_reg(priv,
 723					XCAN_FRAME_DW1_OFFSET(frame_offset),
 724					data[0]);
 725			/* If the CAN frame is Standard/Extended frame this
 726			 * write triggers transmission (not on CAN FD)
 727			 */
 728			priv->write_reg(priv,
 729					XCAN_FRAME_DW2_OFFSET(frame_offset),
 730					data[1]);
 731		}
 732	}
 733}
 734
 735/**
 736 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 737 * @skb:	sk_buff pointer that contains data to be Txed
 738 * @ndev:	Pointer to net_device structure
 739 *
 740 * Return: 0 on success, -ENOSPC if FIFO is full.
 741 */
 742static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 743{
 744	struct xcan_priv *priv = netdev_priv(ndev);
 745	unsigned long flags;
 746
 747	/* Check if the TX buffer is full */
 748	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 749			XCAN_SR_TXFLL_MASK))
 750		return -ENOSPC;
 751
 752	spin_lock_irqsave(&priv->tx_lock, flags);
 753
 754	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 755
 756	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 757	if (priv->tx_max > 1)
 758		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 759
 760	/* Check if the TX buffer is full */
 761	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 762		netif_stop_queue(ndev);
 763
 764	spin_unlock_irqrestore(&priv->tx_lock, flags);
 765
 766	return 0;
 767}
 768
 769/**
 770 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 771 * @skb:	sk_buff pointer that contains data to be Txed
 772 * @ndev:	Pointer to net_device structure
 773 *
 774 * Return: 0 on success, -ENOSPC if there is no space
 775 */
 776static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 777{
 778	struct xcan_priv *priv = netdev_priv(ndev);
 779	unsigned long flags;
 780
 781	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 782		     BIT(XCAN_TX_MAILBOX_IDX)))
 783		return -ENOSPC;
 784
 785	spin_lock_irqsave(&priv->tx_lock, flags);
 786
 787	xcan_write_frame(ndev, skb,
 788			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 789
 790	/* Mark buffer as ready for transmit */
 791	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 792
 793	netif_stop_queue(ndev);
 794
 795	spin_unlock_irqrestore(&priv->tx_lock, flags);
 796
 797	return 0;
 798}
 799
 800/**
 801 * xcan_start_xmit - Starts the transmission
 802 * @skb:	sk_buff pointer that contains data to be Txed
 803 * @ndev:	Pointer to net_device structure
 804 *
 805 * This function is invoked from upper layers to initiate transmission.
 806 *
 807 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 808 */
 809static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 810{
 811	struct xcan_priv *priv = netdev_priv(ndev);
 812	int ret;
 813
 814	if (can_dev_dropped_skb(ndev, skb))
 815		return NETDEV_TX_OK;
 816
 817	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 818		ret = xcan_start_xmit_mailbox(skb, ndev);
 819	else
 820		ret = xcan_start_xmit_fifo(skb, ndev);
 821
 822	if (ret < 0) {
 823		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 824		netif_stop_queue(ndev);
 825		return NETDEV_TX_BUSY;
 826	}
 827
 828	return NETDEV_TX_OK;
 829}
 830
 831/**
 832 * xcan_rx -  Is called from CAN isr to complete the received
 833 *		frame  processing
 834 * @ndev:	Pointer to net_device structure
 835 * @frame_base:	Register offset to the frame to be read
 836 *
 837 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 838 * does minimal processing and invokes "netif_receive_skb" to complete further
 839 * processing.
 840 * Return: 1 on success and 0 on failure.
 841 */
 842static int xcan_rx(struct net_device *ndev, int frame_base)
 843{
 844	struct xcan_priv *priv = netdev_priv(ndev);
 845	struct net_device_stats *stats = &ndev->stats;
 846	struct can_frame *cf;
 847	struct sk_buff *skb;
 848	u32 id_xcan, dlc, data[2] = {0, 0};
 849
 850	skb = alloc_can_skb(ndev, &cf);
 851	if (unlikely(!skb)) {
 852		stats->rx_dropped++;
 853		return 0;
 854	}
 855
 856	/* Read a frame from Xilinx zynq CANPS */
 857	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 858	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 859				   XCAN_DLCR_DLC_SHIFT;
 860
 861	/* Change Xilinx CAN data length format to socketCAN data format */
 862	cf->len = can_cc_dlc2len(dlc);
 863
 864	/* Change Xilinx CAN ID format to socketCAN ID format */
 865	if (id_xcan & XCAN_IDR_IDE_MASK) {
 866		/* The received frame is an Extended format frame */
 867		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 868		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 869				XCAN_IDR_ID2_SHIFT;
 870		cf->can_id |= CAN_EFF_FLAG;
 871		if (id_xcan & XCAN_IDR_RTR_MASK)
 872			cf->can_id |= CAN_RTR_FLAG;
 873	} else {
 874		/* The received frame is a standard format frame */
 875		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 876				XCAN_IDR_ID1_SHIFT;
 877		if (id_xcan & XCAN_IDR_SRR_MASK)
 878			cf->can_id |= CAN_RTR_FLAG;
 879	}
 880
 881	/* DW1/DW2 must always be read to remove message from RXFIFO */
 882	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 883	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 884
 885	if (!(cf->can_id & CAN_RTR_FLAG)) {
 886		/* Change Xilinx CAN data format to socketCAN data format */
 887		if (cf->len > 0)
 888			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 889		if (cf->len > 4)
 890			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 891
 892		stats->rx_bytes += cf->len;
 893	}
 894	stats->rx_packets++;
 895
 896	netif_receive_skb(skb);
 897
 898	return 1;
 899}
 900
 901/**
 902 * xcanfd_rx -  Is called from CAN isr to complete the received
 903 *		frame  processing
 904 * @ndev:	Pointer to net_device structure
 905 * @frame_base:	Register offset to the frame to be read
 906 *
 907 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 908 * does minimal processing and invokes "netif_receive_skb" to complete further
 909 * processing.
 910 * Return: 1 on success and 0 on failure.
 911 */
 912static int xcanfd_rx(struct net_device *ndev, int frame_base)
 913{
 914	struct xcan_priv *priv = netdev_priv(ndev);
 915	struct net_device_stats *stats = &ndev->stats;
 916	struct canfd_frame *cf;
 917	struct sk_buff *skb;
 918	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 919
 920	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 921	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 922	if (dlc & XCAN_DLCR_EDL_MASK)
 923		skb = alloc_canfd_skb(ndev, &cf);
 924	else
 925		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 926
 927	if (unlikely(!skb)) {
 928		stats->rx_dropped++;
 929		return 0;
 930	}
 931
 932	/* Change Xilinx CANFD data length format to socketCAN data
 933	 * format
 934	 */
 935	if (dlc & XCAN_DLCR_EDL_MASK)
 936		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 937				  XCAN_DLCR_DLC_SHIFT);
 938	else
 939		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 940					  XCAN_DLCR_DLC_SHIFT);
 941
 942	/* Change Xilinx CAN ID format to socketCAN ID format */
 943	if (id_xcan & XCAN_IDR_IDE_MASK) {
 944		/* The received frame is an Extended format frame */
 945		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 946		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 947				XCAN_IDR_ID2_SHIFT;
 948		cf->can_id |= CAN_EFF_FLAG;
 949		if (id_xcan & XCAN_IDR_RTR_MASK)
 950			cf->can_id |= CAN_RTR_FLAG;
 951	} else {
 952		/* The received frame is a standard format frame */
 953		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 954				XCAN_IDR_ID1_SHIFT;
 955		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 956					XCAN_IDR_SRR_MASK))
 957			cf->can_id |= CAN_RTR_FLAG;
 958	}
 959
 960	/* Check the frame received is FD or not*/
 961	if (dlc & XCAN_DLCR_EDL_MASK) {
 962		for (i = 0; i < cf->len; i += 4) {
 963			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 964					(dwindex * XCANFD_DW_BYTES);
 965			data[0] = priv->read_reg(priv, dw_offset);
 966			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 967			dwindex++;
 968		}
 969	} else {
 970		for (i = 0; i < cf->len; i += 4) {
 971			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 972			data[0] = priv->read_reg(priv, dw_offset + i);
 973			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 974		}
 975	}
 976
 977	if (!(cf->can_id & CAN_RTR_FLAG))
 978		stats->rx_bytes += cf->len;
 979	stats->rx_packets++;
 980
 981	netif_receive_skb(skb);
 982
 983	return 1;
 984}
 985
 986/**
 987 * xcan_current_error_state - Get current error state from HW
 988 * @ndev:	Pointer to net_device structure
 989 *
 990 * Checks the current CAN error state from the HW. Note that this
 991 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 992 *
 993 * Return:
 994 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 995 * otherwise.
 996 */
 997static enum can_state xcan_current_error_state(struct net_device *ndev)
 998{
 999	struct xcan_priv *priv = netdev_priv(ndev);
1000	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
1001
1002	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
1003		return CAN_STATE_ERROR_PASSIVE;
1004	else if (status & XCAN_SR_ERRWRN_MASK)
1005		return CAN_STATE_ERROR_WARNING;
1006	else
1007		return CAN_STATE_ERROR_ACTIVE;
1008}
1009
1010/**
1011 * xcan_set_error_state - Set new CAN error state
1012 * @ndev:	Pointer to net_device structure
1013 * @new_state:	The new CAN state to be set
1014 * @cf:		Error frame to be populated or NULL
1015 *
1016 * Set new CAN error state for the device, updating statistics and
1017 * populating the error frame if given.
1018 */
1019static void xcan_set_error_state(struct net_device *ndev,
1020				 enum can_state new_state,
1021				 struct can_frame *cf)
1022{
1023	struct xcan_priv *priv = netdev_priv(ndev);
1024	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
1025	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
1026	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
1027	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
1028	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
1029
1030	/* non-ERROR states are handled elsewhere */
1031	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
1032		return;
1033
1034	can_change_state(ndev, cf, tx_state, rx_state);
1035
1036	if (cf) {
1037		cf->can_id |= CAN_ERR_CNT;
1038		cf->data[6] = txerr;
1039		cf->data[7] = rxerr;
1040	}
1041}
1042
1043/**
1044 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
1045 * @ndev:	Pointer to net_device structure
1046 *
1047 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
1048 * the performed RX/TX has caused it to drop to a lesser state and set
1049 * the interface state accordingly.
1050 */
1051static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
1052{
1053	struct xcan_priv *priv = netdev_priv(ndev);
1054	enum can_state old_state = priv->can.state;
1055	enum can_state new_state;
1056
1057	/* changing error state due to successful frame RX/TX can only
1058	 * occur from these states
1059	 */
1060	if (old_state != CAN_STATE_ERROR_WARNING &&
1061	    old_state != CAN_STATE_ERROR_PASSIVE)
1062		return;
1063
1064	new_state = xcan_current_error_state(ndev);
1065
1066	if (new_state != old_state) {
1067		struct sk_buff *skb;
1068		struct can_frame *cf;
1069
1070		skb = alloc_can_err_skb(ndev, &cf);
1071
1072		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1073
1074		if (skb)
1075			netif_rx(skb);
1076	}
1077}
1078
1079/**
1080 * xcan_err_interrupt - error frame Isr
1081 * @ndev:	net_device pointer
1082 * @isr:	interrupt status register value
1083 *
1084 * This is the CAN error interrupt and it will
1085 * check the type of error and forward the error
1086 * frame to upper layers.
1087 */
1088static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1089{
1090	struct xcan_priv *priv = netdev_priv(ndev);
1091	struct net_device_stats *stats = &ndev->stats;
1092	struct can_frame cf = { };
1093	u32 err_status;
1094
1095	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1096	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1097
1098	if (isr & XCAN_IXR_BSOFF_MASK) {
1099		priv->can.state = CAN_STATE_BUS_OFF;
1100		priv->can.can_stats.bus_off++;
1101		/* Leave device in Config Mode in bus-off state */
1102		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1103		can_bus_off(ndev);
1104		cf.can_id |= CAN_ERR_BUSOFF;
1105	} else {
1106		enum can_state new_state = xcan_current_error_state(ndev);
1107
1108		if (new_state != priv->can.state)
1109			xcan_set_error_state(ndev, new_state, &cf);
1110	}
1111
1112	/* Check for Arbitration lost interrupt */
1113	if (isr & XCAN_IXR_ARBLST_MASK) {
1114		priv->can.can_stats.arbitration_lost++;
1115		cf.can_id |= CAN_ERR_LOSTARB;
1116		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1117	}
1118
1119	/* Check for RX FIFO Overflow interrupt */
1120	if (isr & XCAN_IXR_RXOFLW_MASK) {
1121		stats->rx_over_errors++;
1122		stats->rx_errors++;
1123		cf.can_id |= CAN_ERR_CRTL;
1124		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1125	}
1126
1127	/* Check for RX Match Not Finished interrupt */
1128	if (isr & XCAN_IXR_RXMNF_MASK) {
1129		stats->rx_dropped++;
1130		stats->rx_errors++;
1131		netdev_err(ndev, "RX match not finished, frame discarded\n");
1132		cf.can_id |= CAN_ERR_CRTL;
1133		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1134	}
1135
1136	/* Check for error interrupt */
1137	if (isr & XCAN_IXR_ERROR_MASK) {
1138		bool berr_reporting = false;
1139
1140		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1141			berr_reporting = true;
1142			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1143		}
1144
1145		/* Check for Ack error interrupt */
1146		if (err_status & XCAN_ESR_ACKER_MASK) {
1147			stats->tx_errors++;
1148			if (berr_reporting) {
1149				cf.can_id |= CAN_ERR_ACK;
1150				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1151			}
1152		}
1153
1154		/* Check for Bit error interrupt */
1155		if (err_status & XCAN_ESR_BERR_MASK) {
1156			stats->tx_errors++;
1157			if (berr_reporting) {
1158				cf.can_id |= CAN_ERR_PROT;
1159				cf.data[2] = CAN_ERR_PROT_BIT;
1160			}
1161		}
1162
1163		/* Check for Stuff error interrupt */
1164		if (err_status & XCAN_ESR_STER_MASK) {
1165			stats->rx_errors++;
1166			if (berr_reporting) {
1167				cf.can_id |= CAN_ERR_PROT;
1168				cf.data[2] = CAN_ERR_PROT_STUFF;
1169			}
1170		}
1171
1172		/* Check for Form error interrupt */
1173		if (err_status & XCAN_ESR_FMER_MASK) {
1174			stats->rx_errors++;
1175			if (berr_reporting) {
1176				cf.can_id |= CAN_ERR_PROT;
1177				cf.data[2] = CAN_ERR_PROT_FORM;
1178			}
1179		}
1180
1181		/* Check for CRC error interrupt */
1182		if (err_status & XCAN_ESR_CRCER_MASK) {
1183			stats->rx_errors++;
1184			if (berr_reporting) {
1185				cf.can_id |= CAN_ERR_PROT;
1186				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1187			}
1188		}
1189		priv->can.can_stats.bus_error++;
1190	}
1191
1192	if (priv->ecc_enable && isr & XCAN_IXR_ECC_MASK) {
1193		u32 reg_rx_ecc, reg_txol_ecc, reg_txtl_ecc;
1194
1195		reg_rx_ecc = priv->read_reg(priv, XCAN_RXFIFO_ECC_OFFSET);
1196		reg_txol_ecc = priv->read_reg(priv, XCAN_TXOLFIFO_ECC_OFFSET);
1197		reg_txtl_ecc = priv->read_reg(priv, XCAN_TXTLFIFO_ECC_OFFSET);
1198
1199		/* The counter reaches its maximum at 0xffff and does not overflow.
1200		 * Accept the small race window between reading and resetting ECC counters.
1201		 */
1202		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
1203				XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
1204
1205		u64_stats_update_begin(&priv->syncp);
1206
1207		if (isr & XCAN_IXR_E2BERX_MASK) {
1208			u64_stats_add(&priv->ecc_rx_2_bit_errors,
1209				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_rx_ecc));
1210		}
1211
1212		if (isr & XCAN_IXR_E1BERX_MASK) {
1213			u64_stats_add(&priv->ecc_rx_1_bit_errors,
1214				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_rx_ecc));
1215		}
1216
1217		if (isr & XCAN_IXR_E2BETXOL_MASK) {
1218			u64_stats_add(&priv->ecc_txol_2_bit_errors,
1219				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txol_ecc));
1220		}
1221
1222		if (isr & XCAN_IXR_E1BETXOL_MASK) {
1223			u64_stats_add(&priv->ecc_txol_1_bit_errors,
1224				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txol_ecc));
1225		}
1226
1227		if (isr & XCAN_IXR_E2BETXTL_MASK) {
1228			u64_stats_add(&priv->ecc_txtl_2_bit_errors,
1229				      FIELD_GET(XCAN_ECC_2BIT_CNT_MASK, reg_txtl_ecc));
1230		}
1231
1232		if (isr & XCAN_IXR_E1BETXTL_MASK) {
1233			u64_stats_add(&priv->ecc_txtl_1_bit_errors,
1234				      FIELD_GET(XCAN_ECC_1BIT_CNT_MASK, reg_txtl_ecc));
1235		}
1236
1237		u64_stats_update_end(&priv->syncp);
1238	}
1239
1240	if (cf.can_id) {
1241		struct can_frame *skb_cf;
1242		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1243
1244		if (skb) {
1245			skb_cf->can_id |= cf.can_id;
1246			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1247			netif_rx(skb);
1248		}
1249	}
1250
1251	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1252		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1253}
1254
1255/**
1256 * xcan_state_interrupt - It will check the state of the CAN device
1257 * @ndev:	net_device pointer
1258 * @isr:	interrupt status register value
1259 *
1260 * This will checks the state of the CAN device
1261 * and puts the device into appropriate state.
1262 */
1263static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1264{
1265	struct xcan_priv *priv = netdev_priv(ndev);
1266
1267	/* Check for Sleep interrupt if set put CAN device in sleep state */
1268	if (isr & XCAN_IXR_SLP_MASK)
1269		priv->can.state = CAN_STATE_SLEEPING;
1270
1271	/* Check for Wake up interrupt if set put CAN device in Active state */
1272	if (isr & XCAN_IXR_WKUP_MASK)
1273		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1274}
1275
1276/**
1277 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1278 * @priv:	Driver private data structure
1279 *
1280 * Return: Register offset of the next frame in RX FIFO.
1281 */
1282static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1283{
1284	int offset;
1285
1286	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1287		u32 fsr, mask;
1288
1289		/* clear RXOK before the is-empty check so that any newly
1290		 * received frame will reassert it without a race
1291		 */
1292		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1293
1294		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1295
1296		/* check if RX FIFO is empty */
1297		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1298			mask = XCAN_2_FSR_FL_MASK;
1299		else
1300			mask = XCAN_FSR_FL_MASK;
1301
1302		if (!(fsr & mask))
1303			return -ENOENT;
1304
1305		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1306			offset =
1307			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1308		else
1309			offset =
1310			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1311
1312	} else {
1313		/* check if RX FIFO is empty */
1314		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1315		      XCAN_IXR_RXNEMP_MASK))
1316			return -ENOENT;
1317
1318		/* frames are read from a static offset */
1319		offset = XCAN_RXFIFO_OFFSET;
1320	}
1321
1322	return offset;
1323}
1324
1325/**
1326 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1327 * @napi:	napi structure pointer
1328 * @quota:	Max number of rx packets to be processed.
1329 *
1330 * This is the poll routine for rx part.
1331 * It will process the packets maximux quota value.
1332 *
1333 * Return: number of packets received
1334 */
1335static int xcan_rx_poll(struct napi_struct *napi, int quota)
1336{
1337	struct net_device *ndev = napi->dev;
1338	struct xcan_priv *priv = netdev_priv(ndev);
1339	u32 ier;
1340	int work_done = 0;
1341	int frame_offset;
1342
1343	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1344	       (work_done < quota)) {
1345		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1346			work_done += xcanfd_rx(ndev, frame_offset);
1347		else
1348			work_done += xcan_rx(ndev, frame_offset);
1349
1350		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1351			/* increment read index */
1352			priv->write_reg(priv, XCAN_FSR_OFFSET,
1353					XCAN_FSR_IRI_MASK);
1354		else
1355			/* clear rx-not-empty (will actually clear only if
1356			 * empty)
1357			 */
1358			priv->write_reg(priv, XCAN_ICR_OFFSET,
1359					XCAN_IXR_RXNEMP_MASK);
1360	}
1361
1362	if (work_done)
1363		xcan_update_error_state_after_rxtx(ndev);
1364
1365	if (work_done < quota) {
1366		if (napi_complete_done(napi, work_done)) {
1367			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1368			ier |= xcan_rx_int_mask(priv);
1369			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1370		}
1371	}
1372	return work_done;
1373}
1374
1375/**
1376 * xcan_tx_interrupt - Tx Done Isr
1377 * @ndev:	net_device pointer
1378 * @isr:	Interrupt status register value
1379 */
1380static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1381{
1382	struct xcan_priv *priv = netdev_priv(ndev);
1383	struct net_device_stats *stats = &ndev->stats;
1384	unsigned int frames_in_fifo;
1385	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1386	unsigned long flags;
1387	int retries = 0;
1388
1389	/* Synchronize with xmit as we need to know the exact number
1390	 * of frames in the FIFO to stay in sync due to the TXFEMP
1391	 * handling.
1392	 * This also prevents a race between netif_wake_queue() and
1393	 * netif_stop_queue().
1394	 */
1395	spin_lock_irqsave(&priv->tx_lock, flags);
1396
1397	frames_in_fifo = priv->tx_head - priv->tx_tail;
1398
1399	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1400		/* clear TXOK anyway to avoid getting back here */
1401		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1402		spin_unlock_irqrestore(&priv->tx_lock, flags);
1403		return;
1404	}
1405
1406	/* Check if 2 frames were sent (TXOK only means that at least 1
1407	 * frame was sent).
1408	 */
1409	if (frames_in_fifo > 1) {
1410		WARN_ON(frames_in_fifo > priv->tx_max);
1411
1412		/* Synchronize TXOK and isr so that after the loop:
1413		 * (1) isr variable is up-to-date at least up to TXOK clear
1414		 *     time. This avoids us clearing a TXOK of a second frame
1415		 *     but not noticing that the FIFO is now empty and thus
1416		 *     marking only a single frame as sent.
1417		 * (2) No TXOK is left. Having one could mean leaving a
1418		 *     stray TXOK as we might process the associated frame
1419		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1420		 *     clear to satisfy (1).
1421		 */
1422		while ((isr & XCAN_IXR_TXOK_MASK) &&
1423		       !WARN_ON(++retries == 100)) {
1424			priv->write_reg(priv, XCAN_ICR_OFFSET,
1425					XCAN_IXR_TXOK_MASK);
1426			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1427		}
1428
1429		if (isr & XCAN_IXR_TXFEMP_MASK) {
1430			/* nothing in FIFO anymore */
1431			frames_sent = frames_in_fifo;
1432		}
1433	} else {
1434		/* single frame in fifo, just clear TXOK */
1435		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1436	}
1437
1438	while (frames_sent--) {
1439		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1440						    priv->tx_max, NULL);
1441		priv->tx_tail++;
1442		stats->tx_packets++;
1443	}
1444
1445	netif_wake_queue(ndev);
1446
1447	spin_unlock_irqrestore(&priv->tx_lock, flags);
1448
1449	xcan_update_error_state_after_rxtx(ndev);
1450}
1451
1452/**
1453 * xcan_interrupt - CAN Isr
1454 * @irq:	irq number
1455 * @dev_id:	device id pointer
1456 *
1457 * This is the xilinx CAN Isr. It checks for the type of interrupt
1458 * and invokes the corresponding ISR.
1459 *
1460 * Return:
1461 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1462 */
1463static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1464{
1465	struct net_device *ndev = (struct net_device *)dev_id;
1466	struct xcan_priv *priv = netdev_priv(ndev);
1467	u32 isr_errors, mask;
1468	u32 isr, ier;
 
1469	u32 rx_int_mask = xcan_rx_int_mask(priv);
1470
1471	/* Get the interrupt status from Xilinx CAN */
1472	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1473	if (!isr)
1474		return IRQ_NONE;
1475
1476	/* Check for the type of interrupt and Processing it */
1477	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1478		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1479				XCAN_IXR_WKUP_MASK));
1480		xcan_state_interrupt(ndev, isr);
1481	}
1482
1483	/* Check for Tx interrupt and Processing it */
1484	if (isr & XCAN_IXR_TXOK_MASK)
1485		xcan_tx_interrupt(ndev, isr);
1486
1487	mask = XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1488		XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1489		XCAN_IXR_RXMNF_MASK;
1490
1491	if (priv->ecc_enable)
1492		mask |= XCAN_IXR_ECC_MASK;
1493
1494	/* Check for the type of error interrupt and Processing it */
1495	isr_errors = isr & mask;
 
 
1496	if (isr_errors) {
1497		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1498		xcan_err_interrupt(ndev, isr);
1499	}
1500
1501	/* Check for the type of receive interrupt and Processing it */
1502	if (isr & rx_int_mask) {
1503		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1504		ier &= ~rx_int_mask;
1505		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1506		napi_schedule(&priv->napi);
1507	}
1508	return IRQ_HANDLED;
1509}
1510
1511/**
1512 * xcan_chip_stop - Driver stop routine
1513 * @ndev:	Pointer to net_device structure
1514 *
1515 * This is the drivers stop routine. It will disable the
1516 * interrupts and put the device into configuration mode.
1517 */
1518static void xcan_chip_stop(struct net_device *ndev)
1519{
1520	struct xcan_priv *priv = netdev_priv(ndev);
1521	int ret;
1522
1523	/* Disable interrupts and leave the can in configuration mode */
1524	ret = set_reset_mode(ndev);
1525	if (ret < 0)
1526		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1527
1528	priv->can.state = CAN_STATE_STOPPED;
1529}
1530
1531/**
1532 * xcan_open - Driver open routine
1533 * @ndev:	Pointer to net_device structure
1534 *
1535 * This is the driver open routine.
1536 * Return: 0 on success and failure value on error
1537 */
1538static int xcan_open(struct net_device *ndev)
1539{
1540	struct xcan_priv *priv = netdev_priv(ndev);
1541	int ret;
1542
1543	ret = phy_power_on(priv->transceiver);
1544	if (ret)
1545		return ret;
1546
1547	ret = pm_runtime_get_sync(priv->dev);
1548	if (ret < 0) {
1549		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1550			   __func__, ret);
1551		goto err;
1552	}
1553
1554	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1555			  ndev->name, ndev);
1556	if (ret < 0) {
1557		netdev_err(ndev, "irq allocation for CAN failed\n");
1558		goto err;
1559	}
1560
1561	/* Set chip into reset mode */
1562	ret = set_reset_mode(ndev);
1563	if (ret < 0) {
1564		netdev_err(ndev, "mode resetting failed!\n");
1565		goto err_irq;
1566	}
1567
1568	/* Common open */
1569	ret = open_candev(ndev);
1570	if (ret)
1571		goto err_irq;
1572
1573	ret = xcan_chip_start(ndev);
1574	if (ret < 0) {
1575		netdev_err(ndev, "xcan_chip_start failed!\n");
1576		goto err_candev;
1577	}
1578
1579	napi_enable(&priv->napi);
1580	netif_start_queue(ndev);
1581
1582	return 0;
1583
1584err_candev:
1585	close_candev(ndev);
1586err_irq:
1587	free_irq(ndev->irq, ndev);
1588err:
1589	pm_runtime_put(priv->dev);
1590	phy_power_off(priv->transceiver);
1591
1592	return ret;
1593}
1594
1595/**
1596 * xcan_close - Driver close routine
1597 * @ndev:	Pointer to net_device structure
1598 *
1599 * Return: 0 always
1600 */
1601static int xcan_close(struct net_device *ndev)
1602{
1603	struct xcan_priv *priv = netdev_priv(ndev);
1604
1605	netif_stop_queue(ndev);
1606	napi_disable(&priv->napi);
1607	xcan_chip_stop(ndev);
1608	free_irq(ndev->irq, ndev);
1609	close_candev(ndev);
1610
1611	pm_runtime_put(priv->dev);
1612	phy_power_off(priv->transceiver);
1613
1614	return 0;
1615}
1616
1617/**
1618 * xcan_get_berr_counter - error counter routine
1619 * @ndev:	Pointer to net_device structure
1620 * @bec:	Pointer to can_berr_counter structure
1621 *
1622 * This is the driver error counter routine.
1623 * Return: 0 on success and failure value on error
1624 */
1625static int xcan_get_berr_counter(const struct net_device *ndev,
1626				 struct can_berr_counter *bec)
1627{
1628	struct xcan_priv *priv = netdev_priv(ndev);
1629	int ret;
1630
1631	ret = pm_runtime_get_sync(priv->dev);
1632	if (ret < 0) {
1633		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1634			   __func__, ret);
1635		pm_runtime_put(priv->dev);
1636		return ret;
1637	}
1638
1639	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1640	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1641			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1642
1643	pm_runtime_put(priv->dev);
1644
1645	return 0;
1646}
1647
1648/**
1649 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1650 * @ndev:	Pointer to net_device structure
1651 * @tdcv:	Pointer to TDCV value
1652 *
1653 * Return: 0 on success
1654 */
1655static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1656{
1657	struct xcan_priv *priv = netdev_priv(ndev);
1658
1659	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1660
1661	return 0;
1662}
1663
1664static void xcan_get_strings(struct net_device *ndev, u32 stringset, u8 *buf)
1665{
1666	switch (stringset) {
1667	case ETH_SS_STATS:
1668		memcpy(buf, &xcan_priv_flags_strings,
1669		       sizeof(xcan_priv_flags_strings));
1670	}
1671}
1672
1673static int xcan_get_sset_count(struct net_device *netdev, int sset)
1674{
1675	switch (sset) {
1676	case ETH_SS_STATS:
1677		return ARRAY_SIZE(xcan_priv_flags_strings);
1678	default:
1679		return -EOPNOTSUPP;
1680	}
1681}
1682
1683static void xcan_get_ethtool_stats(struct net_device *ndev,
1684				   struct ethtool_stats *stats, u64 *data)
1685{
1686	struct xcan_priv *priv = netdev_priv(ndev);
1687	unsigned int start;
1688
1689	do {
1690		start = u64_stats_fetch_begin(&priv->syncp);
1691
1692		data[XCAN_ECC_RX_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_2_bit_errors);
1693		data[XCAN_ECC_RX_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_rx_1_bit_errors);
1694		data[XCAN_ECC_TXOL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_2_bit_errors);
1695		data[XCAN_ECC_TXOL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txol_1_bit_errors);
1696		data[XCAN_ECC_TXTL_2_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_2_bit_errors);
1697		data[XCAN_ECC_TXTL_1_BIT_ERRORS] = u64_stats_read(&priv->ecc_txtl_1_bit_errors);
1698	} while (u64_stats_fetch_retry(&priv->syncp, start));
1699}
1700
1701static const struct net_device_ops xcan_netdev_ops = {
1702	.ndo_open	= xcan_open,
1703	.ndo_stop	= xcan_close,
1704	.ndo_start_xmit	= xcan_start_xmit,
1705	.ndo_change_mtu	= can_change_mtu,
1706};
1707
1708static const struct ethtool_ops xcan_ethtool_ops = {
1709	.get_ts_info = ethtool_op_get_ts_info,
1710	.get_strings = xcan_get_strings,
1711	.get_sset_count = xcan_get_sset_count,
1712	.get_ethtool_stats = xcan_get_ethtool_stats,
1713};
1714
1715/**
1716 * xcan_suspend - Suspend method for the driver
1717 * @dev:	Address of the device structure
1718 *
1719 * Put the driver into low power mode.
1720 * Return: 0 on success and failure value on error
1721 */
1722static int __maybe_unused xcan_suspend(struct device *dev)
1723{
1724	struct net_device *ndev = dev_get_drvdata(dev);
1725
1726	if (netif_running(ndev)) {
1727		netif_stop_queue(ndev);
1728		netif_device_detach(ndev);
1729		xcan_chip_stop(ndev);
1730	}
1731
1732	return pm_runtime_force_suspend(dev);
1733}
1734
1735/**
1736 * xcan_resume - Resume from suspend
1737 * @dev:	Address of the device structure
1738 *
1739 * Resume operation after suspend.
1740 * Return: 0 on success and failure value on error
1741 */
1742static int __maybe_unused xcan_resume(struct device *dev)
1743{
1744	struct net_device *ndev = dev_get_drvdata(dev);
1745	int ret;
1746
1747	ret = pm_runtime_force_resume(dev);
1748	if (ret) {
1749		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1750		return ret;
1751	}
1752
1753	if (netif_running(ndev)) {
1754		ret = xcan_chip_start(ndev);
1755		if (ret) {
1756			dev_err(dev, "xcan_chip_start failed on resume\n");
1757			return ret;
1758		}
1759
1760		netif_device_attach(ndev);
1761		netif_start_queue(ndev);
1762	}
1763
1764	return 0;
1765}
1766
1767/**
1768 * xcan_runtime_suspend - Runtime suspend method for the driver
1769 * @dev:	Address of the device structure
1770 *
1771 * Put the driver into low power mode.
1772 * Return: 0 always
1773 */
1774static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1775{
1776	struct net_device *ndev = dev_get_drvdata(dev);
1777	struct xcan_priv *priv = netdev_priv(ndev);
1778
1779	clk_disable_unprepare(priv->bus_clk);
1780	clk_disable_unprepare(priv->can_clk);
1781
1782	return 0;
1783}
1784
1785/**
1786 * xcan_runtime_resume - Runtime resume from suspend
1787 * @dev:	Address of the device structure
1788 *
1789 * Resume operation after suspend.
1790 * Return: 0 on success and failure value on error
1791 */
1792static int __maybe_unused xcan_runtime_resume(struct device *dev)
1793{
1794	struct net_device *ndev = dev_get_drvdata(dev);
1795	struct xcan_priv *priv = netdev_priv(ndev);
1796	int ret;
1797
1798	ret = clk_prepare_enable(priv->bus_clk);
1799	if (ret) {
1800		dev_err(dev, "Cannot enable clock.\n");
1801		return ret;
1802	}
1803	ret = clk_prepare_enable(priv->can_clk);
1804	if (ret) {
1805		dev_err(dev, "Cannot enable clock.\n");
1806		clk_disable_unprepare(priv->bus_clk);
1807		return ret;
1808	}
1809
1810	return 0;
1811}
1812
1813static const struct dev_pm_ops xcan_dev_pm_ops = {
1814	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1815	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1816};
1817
1818static const struct xcan_devtype_data xcan_zynq_data = {
1819	.cantype = XZYNQ_CANPS,
1820	.flags = XCAN_FLAG_TXFEMP,
1821	.bittiming_const = &xcan_bittiming_const,
1822	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1823	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1824	.bus_clk_name = "pclk",
1825};
1826
1827static const struct xcan_devtype_data xcan_axi_data = {
1828	.cantype = XAXI_CAN,
1829	.bittiming_const = &xcan_bittiming_const,
1830	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1831	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1832	.bus_clk_name = "s_axi_aclk",
1833};
1834
1835static const struct xcan_devtype_data xcan_canfd_data = {
1836	.cantype = XAXI_CANFD,
1837	.flags = XCAN_FLAG_EXT_FILTERS |
1838		 XCAN_FLAG_RXMNF |
1839		 XCAN_FLAG_TX_MAILBOXES |
1840		 XCAN_FLAG_RX_FIFO_MULTI,
1841	.bittiming_const = &xcan_bittiming_const_canfd,
1842	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1843	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1844	.bus_clk_name = "s_axi_aclk",
1845};
1846
1847static const struct xcan_devtype_data xcan_canfd2_data = {
1848	.cantype = XAXI_CANFD_2_0,
1849	.flags = XCAN_FLAG_EXT_FILTERS |
1850		 XCAN_FLAG_RXMNF |
1851		 XCAN_FLAG_TX_MAILBOXES |
1852		 XCAN_FLAG_CANFD_2 |
1853		 XCAN_FLAG_RX_FIFO_MULTI,
1854	.bittiming_const = &xcan_bittiming_const_canfd2,
1855	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1856	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1857	.bus_clk_name = "s_axi_aclk",
1858};
1859
1860/* Match table for OF platform binding */
1861static const struct of_device_id xcan_of_match[] = {
1862	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1863	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1864	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1865	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1866	{ /* end of list */ },
1867};
1868MODULE_DEVICE_TABLE(of, xcan_of_match);
1869
1870/**
1871 * xcan_probe - Platform registration call
1872 * @pdev:	Handle to the platform device structure
1873 *
1874 * This function does all the memory allocation and registration for the CAN
1875 * device.
1876 *
1877 * Return: 0 on success and failure value on error
1878 */
1879static int xcan_probe(struct platform_device *pdev)
1880{
1881	struct net_device *ndev;
1882	struct xcan_priv *priv;
1883	struct phy *transceiver;
1884	const struct xcan_devtype_data *devtype;
1885	void __iomem *addr;
1886	int ret;
1887	int rx_max, tx_max;
1888	u32 hw_tx_max = 0, hw_rx_max = 0;
1889	const char *hw_tx_max_property;
1890
1891	/* Get the virtual base address for the device */
1892	addr = devm_platform_ioremap_resource(pdev, 0);
1893	if (IS_ERR(addr)) {
1894		ret = PTR_ERR(addr);
1895		goto err;
1896	}
1897
1898	devtype = device_get_match_data(&pdev->dev);
1899
1900	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1901			     "tx-mailbox-count" : "tx-fifo-depth";
1902
1903	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1904				   &hw_tx_max);
1905	if (ret < 0) {
1906		dev_err(&pdev->dev, "missing %s property\n",
1907			hw_tx_max_property);
1908		goto err;
1909	}
1910
1911	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1912				   &hw_rx_max);
1913	if (ret < 0) {
1914		dev_err(&pdev->dev,
1915			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1916		goto err;
1917	}
1918
1919	/* With TX FIFO:
1920	 *
1921	 * There is no way to directly figure out how many frames have been
1922	 * sent when the TXOK interrupt is processed. If TXFEMP
1923	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1924	 * to determine if 1 or 2 frames have been sent.
1925	 * Theoretically we should be able to use TXFWMEMP to determine up
1926	 * to 3 frames, but it seems that after putting a second frame in the
1927	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1928	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1929	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1930	 * completely synchronized with the rest of the bits?
1931	 *
1932	 * With TX mailboxes:
1933	 *
1934	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1935	 * we submit frames one at a time.
1936	 */
1937	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1938	    (devtype->flags & XCAN_FLAG_TXFEMP))
1939		tx_max = min(hw_tx_max, 2U);
1940	else
1941		tx_max = 1;
1942
1943	rx_max = hw_rx_max;
1944
1945	/* Create a CAN device instance */
1946	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1947	if (!ndev)
1948		return -ENOMEM;
1949
1950	priv = netdev_priv(ndev);
1951	priv->ecc_enable = of_property_read_bool(pdev->dev.of_node, "xlnx,has-ecc");
1952	priv->dev = &pdev->dev;
1953	priv->can.bittiming_const = devtype->bittiming_const;
1954	priv->can.do_set_mode = xcan_do_set_mode;
1955	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1956	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1957					CAN_CTRLMODE_BERR_REPORTING;
1958	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1959	if (IS_ERR(priv->rstc)) {
1960		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1961		ret = PTR_ERR(priv->rstc);
1962		goto err_free;
1963	}
1964
1965	ret = reset_control_reset(priv->rstc);
1966	if (ret)
1967		goto err_free;
1968
1969	if (devtype->cantype == XAXI_CANFD) {
1970		priv->can.data_bittiming_const =
1971			&xcan_data_bittiming_const_canfd;
1972		priv->can.tdc_const = &xcan_tdc_const_canfd;
1973	}
1974
1975	if (devtype->cantype == XAXI_CANFD_2_0) {
1976		priv->can.data_bittiming_const =
1977			&xcan_data_bittiming_const_canfd2;
1978		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1979	}
1980
1981	if (devtype->cantype == XAXI_CANFD ||
1982	    devtype->cantype == XAXI_CANFD_2_0) {
1983		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1984						CAN_CTRLMODE_TDC_AUTO;
1985		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1986	}
1987
1988	priv->reg_base = addr;
1989	priv->tx_max = tx_max;
1990	priv->devtype = *devtype;
1991	spin_lock_init(&priv->tx_lock);
1992
1993	/* Get IRQ for the device */
1994	ret = platform_get_irq(pdev, 0);
1995	if (ret < 0)
1996		goto err_reset;
1997
1998	ndev->irq = ret;
1999
2000	ndev->flags |= IFF_ECHO;	/* We support local echo */
2001
2002	platform_set_drvdata(pdev, ndev);
2003	SET_NETDEV_DEV(ndev, &pdev->dev);
2004	ndev->netdev_ops = &xcan_netdev_ops;
2005	ndev->ethtool_ops = &xcan_ethtool_ops;
2006
2007	/* Getting the CAN can_clk info */
2008	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
2009	if (IS_ERR(priv->can_clk)) {
2010		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
2011				    "device clock not found\n");
2012		goto err_reset;
2013	}
2014
2015	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
2016	if (IS_ERR(priv->bus_clk)) {
2017		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
2018				    "bus clock not found\n");
2019		goto err_reset;
2020	}
2021
2022	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
2023	if (IS_ERR(transceiver)) {
2024		ret = PTR_ERR(transceiver);
2025		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
2026		goto err_reset;
2027	}
2028	priv->transceiver = transceiver;
2029
2030	priv->write_reg = xcan_write_reg_le;
2031	priv->read_reg = xcan_read_reg_le;
2032
2033	pm_runtime_enable(&pdev->dev);
2034	ret = pm_runtime_get_sync(&pdev->dev);
2035	if (ret < 0) {
2036		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
2037			   __func__, ret);
2038		goto err_disableclks;
2039	}
2040
2041	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
2042		priv->write_reg = xcan_write_reg_be;
2043		priv->read_reg = xcan_read_reg_be;
2044	}
2045
2046	priv->can.clock.freq = clk_get_rate(priv->can_clk);
2047
2048	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
2049
2050	ret = register_candev(ndev);
2051	if (ret) {
2052		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
2053		goto err_disableclks;
2054	}
2055
2056	of_can_transceiver(ndev);
2057	pm_runtime_put(&pdev->dev);
2058
2059	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
2060		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
2061		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
2062	}
2063
2064	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
2065		   priv->reg_base, ndev->irq, priv->can.clock.freq,
2066		   hw_tx_max, priv->tx_max);
2067
2068	if (priv->ecc_enable) {
2069		/* Reset FIFO ECC counters */
2070		priv->write_reg(priv, XCAN_ECC_CFG_OFFSET, XCAN_ECC_CFG_REECRX_MASK |
2071			XCAN_ECC_CFG_REECTXOL_MASK | XCAN_ECC_CFG_REECTXTL_MASK);
2072	}
2073	return 0;
2074
2075err_disableclks:
2076	pm_runtime_put(priv->dev);
2077	pm_runtime_disable(&pdev->dev);
2078err_reset:
2079	reset_control_assert(priv->rstc);
2080err_free:
2081	free_candev(ndev);
2082err:
2083	return ret;
2084}
2085
2086/**
2087 * xcan_remove - Unregister the device after releasing the resources
2088 * @pdev:	Handle to the platform device structure
2089 *
2090 * This function frees all the resources allocated to the device.
2091 * Return: 0 always
2092 */
2093static void xcan_remove(struct platform_device *pdev)
2094{
2095	struct net_device *ndev = platform_get_drvdata(pdev);
2096	struct xcan_priv *priv = netdev_priv(ndev);
2097
2098	unregister_candev(ndev);
2099	pm_runtime_disable(&pdev->dev);
2100	reset_control_assert(priv->rstc);
2101	free_candev(ndev);
2102}
2103
2104static struct platform_driver xcan_driver = {
2105	.probe = xcan_probe,
2106	.remove_new = xcan_remove,
2107	.driver	= {
2108		.name = DRIVER_NAME,
2109		.pm = &xcan_dev_pm_ops,
2110		.of_match_table	= xcan_of_match,
2111	},
2112};
2113
2114module_platform_driver(xcan_driver);
2115
2116MODULE_LICENSE("GPL");
2117MODULE_AUTHOR("Xilinx Inc");
2118MODULE_DESCRIPTION("Xilinx CAN interface");