Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Freescale Enhanced Local Bus Controller NAND driver
   3 *
   4 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   5 *
   6 * Authors: Nick Spence <nick.spence@freescale.com>,
   7 *          Scott Wood <scottwood@freescale.com>
   8 *          Jack Lan <jack.lan@freescale.com>
   9 *          Roy Zang <tie-fei.zang@freescale.com>
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/types.h>
  14#include <linux/kernel.h>
  15#include <linux/string.h>
  16#include <linux/ioport.h>
  17#include <linux/of_address.h>
  18#include <linux/of_platform.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/interrupt.h>
  22
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/rawnand.h>
  25#include <linux/mtd/partitions.h>
  26
  27#include <asm/io.h>
  28#include <asm/fsl_lbc.h>
  29
  30#define MAX_BANKS 8
  31#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  32#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  33
  34/* mtd information per set */
  35
  36struct fsl_elbc_mtd {
  37	struct nand_chip chip;
  38	struct fsl_lbc_ctrl *ctrl;
  39
  40	struct device *dev;
  41	int bank;               /* Chip select bank number           */
  42	u8 __iomem *vbase;      /* Chip select base virtual address  */
  43	int page_size;          /* NAND page size (0=512, 1=2048)    */
  44	unsigned int fmr;       /* FCM Flash Mode Register value     */
  45};
  46
  47/* Freescale eLBC FCM controller information */
  48
  49struct fsl_elbc_fcm_ctrl {
  50	struct nand_controller controller;
  51	struct fsl_elbc_mtd *chips[MAX_BANKS];
  52
  53	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  54	unsigned int page;       /* Last page written to / read from      */
  55	unsigned int read_bytes; /* Number of bytes read during command   */
  56	unsigned int column;     /* Saved column from SEQIN               */
  57	unsigned int index;      /* Pointer to next byte to 'read'        */
  58	unsigned int status;     /* status read from LTESR after last op  */
  59	unsigned int mdr;        /* UPM/FCM Data Register value           */
  60	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  61	unsigned int oob;        /* Non zero if operating on OOB data     */
  62	unsigned int counter;	 /* counter for the initializations	  */
  63	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
  64};
  65
  66/* These map to the positions used by the FCM hardware ECC generator */
  67
  68static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
  69				  struct mtd_oob_region *oobregion)
  70{
  71	struct nand_chip *chip = mtd_to_nand(mtd);
  72	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
  73
  74	if (section >= chip->ecc.steps)
  75		return -ERANGE;
  76
  77	oobregion->offset = (16 * section) + 6;
  78	if (priv->fmr & FMR_ECCM)
  79		oobregion->offset += 2;
  80
  81	oobregion->length = chip->ecc.bytes;
  82
  83	return 0;
  84}
  85
  86static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
  87				   struct mtd_oob_region *oobregion)
  88{
  89	struct nand_chip *chip = mtd_to_nand(mtd);
  90	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
  91
  92	if (section > chip->ecc.steps)
  93		return -ERANGE;
  94
  95	if (!section) {
  96		oobregion->offset = 0;
  97		if (mtd->writesize > 512)
  98			oobregion->offset++;
  99		oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
 100	} else {
 101		oobregion->offset = (16 * section) -
 102				    ((priv->fmr & FMR_ECCM) ? 5 : 7);
 103		if (section < chip->ecc.steps)
 104			oobregion->length = 13;
 105		else
 106			oobregion->length = mtd->oobsize - oobregion->offset;
 107	}
 108
 109	return 0;
 110}
 111
 112static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
 113	.ecc = fsl_elbc_ooblayout_ecc,
 114	.free = fsl_elbc_ooblayout_free,
 115};
 116
 117/*
 118 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 119 * interfere with ECC positions, that's why we implement our own descriptors.
 120 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 121 */
 122static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 123static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 124
 125static struct nand_bbt_descr bbt_main_descr = {
 126	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 127		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 128	.offs =	11,
 129	.len = 4,
 130	.veroffs = 15,
 131	.maxblocks = 4,
 132	.pattern = bbt_pattern,
 133};
 134
 135static struct nand_bbt_descr bbt_mirror_descr = {
 136	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 137		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 138	.offs =	11,
 139	.len = 4,
 140	.veroffs = 15,
 141	.maxblocks = 4,
 142	.pattern = mirror_pattern,
 143};
 144
 145/*=================================*/
 146
 147/*
 148 * Set up the FCM hardware block and page address fields, and the fcm
 149 * structure addr field to point to the correct FCM buffer in memory
 150 */
 151static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 152{
 153	struct nand_chip *chip = mtd_to_nand(mtd);
 154	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 155	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 156	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 157	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 158	int buf_num;
 159
 160	elbc_fcm_ctrl->page = page_addr;
 161
 162	if (priv->page_size) {
 163		/*
 164		 * large page size chip : FPAR[PI] save the lowest 6 bits,
 165		 *                        FBAR[BLK] save the other bits.
 166		 */
 167		out_be32(&lbc->fbar, page_addr >> 6);
 168		out_be32(&lbc->fpar,
 169		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 170		         (oob ? FPAR_LP_MS : 0) | column);
 171		buf_num = (page_addr & 1) << 2;
 172	} else {
 173		/*
 174		 * small page size chip : FPAR[PI] save the lowest 5 bits,
 175		 *                        FBAR[BLK] save the other bits.
 176		 */
 177		out_be32(&lbc->fbar, page_addr >> 5);
 178		out_be32(&lbc->fpar,
 179		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 180		         (oob ? FPAR_SP_MS : 0) | column);
 181		buf_num = page_addr & 7;
 182	}
 183
 184	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 185	elbc_fcm_ctrl->index = column;
 186
 187	/* for OOB data point to the second half of the buffer */
 188	if (oob)
 189		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 190
 191	dev_vdbg(priv->dev, "set_addr: bank=%d, "
 192			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 193	                    "index %x, pes %d ps %d\n",
 194		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 195		 elbc_fcm_ctrl->index,
 196	         chip->phys_erase_shift, chip->page_shift);
 197}
 198
 199/*
 200 * execute FCM command and wait for it to complete
 201 */
 202static int fsl_elbc_run_command(struct mtd_info *mtd)
 203{
 204	struct nand_chip *chip = mtd_to_nand(mtd);
 205	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 206	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 207	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 208	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 209
 210	/* Setup the FMR[OP] to execute without write protection */
 211	out_be32(&lbc->fmr, priv->fmr | 3);
 212	if (elbc_fcm_ctrl->use_mdr)
 213		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 214
 215	dev_vdbg(priv->dev,
 216	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 217	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 218	dev_vdbg(priv->dev,
 219	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 220	         "fbcr=%08x bank=%d\n",
 221	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 222	         in_be32(&lbc->fbcr), priv->bank);
 223
 224	ctrl->irq_status = 0;
 225	/* execute special operation */
 226	out_be32(&lbc->lsor, priv->bank);
 227
 228	/* wait for FCM complete flag or timeout */
 229	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 230	                   FCM_TIMEOUT_MSECS * HZ/1000);
 231	elbc_fcm_ctrl->status = ctrl->irq_status;
 232	/* store mdr value in case it was needed */
 233	if (elbc_fcm_ctrl->use_mdr)
 234		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 235
 236	elbc_fcm_ctrl->use_mdr = 0;
 237
 238	if (elbc_fcm_ctrl->status != LTESR_CC) {
 239		dev_info(priv->dev,
 240		         "command failed: fir %x fcr %x status %x mdr %x\n",
 241		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 242			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 243		return -EIO;
 244	}
 245
 246	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
 247		return 0;
 248
 249	elbc_fcm_ctrl->max_bitflips = 0;
 250
 251	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 252		uint32_t lteccr = in_be32(&lbc->lteccr);
 253		/*
 254		 * if command was a full page read and the ELBC
 255		 * has the LTECCR register, then bits 12-15 (ppc order) of
 256		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 257		 * bits 28-31 are uncorrectable errors, marked elsewhere.
 258		 * for small page nand only 1 bit is used.
 259		 * if the ELBC doesn't have the lteccr register it reads 0
 260		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 261		 * count the number of sub-pages with bitflips and update
 262		 * ecc_stats.corrected accordingly.
 263		 */
 264		if (lteccr & 0x000F000F)
 265			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 266		if (lteccr & 0x000F0000) {
 267			mtd->ecc_stats.corrected++;
 268			elbc_fcm_ctrl->max_bitflips = 1;
 269		}
 270	}
 271
 272	return 0;
 273}
 274
 275static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 276{
 277	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 278	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 279	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 280
 281	if (priv->page_size) {
 282		out_be32(&lbc->fir,
 283		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 284		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 285		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 286		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 287		         (FIR_OP_RBW << FIR_OP4_SHIFT));
 288
 289		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 290		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 291	} else {
 292		out_be32(&lbc->fir,
 293		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 294		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 295		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 296		         (FIR_OP_RBW << FIR_OP3_SHIFT));
 297
 298		if (oob)
 299			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 300		else
 301			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 302	}
 303}
 304
 305/* cmdfunc send commands to the FCM */
 306static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
 307                             int column, int page_addr)
 308{
 309	struct mtd_info *mtd = nand_to_mtd(chip);
 310	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 311	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 312	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 313	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 314
 315	elbc_fcm_ctrl->use_mdr = 0;
 316
 317	/* clear the read buffer */
 318	elbc_fcm_ctrl->read_bytes = 0;
 319	if (command != NAND_CMD_PAGEPROG)
 320		elbc_fcm_ctrl->index = 0;
 321
 322	switch (command) {
 323	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 324	case NAND_CMD_READ1:
 325		column += 256;
 326		fallthrough;
 327	case NAND_CMD_READ0:
 328		dev_dbg(priv->dev,
 329		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 330		        " 0x%x, column: 0x%x.\n", page_addr, column);
 331
 332
 333		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 334		set_addr(mtd, 0, page_addr, 0);
 335
 336		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 337		elbc_fcm_ctrl->index += column;
 338
 339		fsl_elbc_do_read(chip, 0);
 340		fsl_elbc_run_command(mtd);
 341		return;
 342
 343	/* RNDOUT moves the pointer inside the page */
 344	case NAND_CMD_RNDOUT:
 345		dev_dbg(priv->dev,
 346			"fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
 347			column);
 348
 349		elbc_fcm_ctrl->index = column;
 350		return;
 351
 352	/* READOOB reads only the OOB because no ECC is performed. */
 353	case NAND_CMD_READOOB:
 354		dev_vdbg(priv->dev,
 355		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 356			 " 0x%x, column: 0x%x.\n", page_addr, column);
 357
 358		out_be32(&lbc->fbcr, mtd->oobsize - column);
 359		set_addr(mtd, column, page_addr, 1);
 360
 361		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 362
 363		fsl_elbc_do_read(chip, 1);
 364		fsl_elbc_run_command(mtd);
 365		return;
 366
 367	case NAND_CMD_READID:
 368	case NAND_CMD_PARAM:
 369		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 370
 371		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 372		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 373		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 374		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 375		/*
 376		 * although currently it's 8 bytes for READID, we always read
 377		 * the maximum 256 bytes(for PARAM)
 378		 */
 379		out_be32(&lbc->fbcr, 256);
 380		elbc_fcm_ctrl->read_bytes = 256;
 381		elbc_fcm_ctrl->use_mdr = 1;
 382		elbc_fcm_ctrl->mdr = column;
 383		set_addr(mtd, 0, 0, 0);
 384		fsl_elbc_run_command(mtd);
 385		return;
 386
 387	/* ERASE1 stores the block and page address */
 388	case NAND_CMD_ERASE1:
 389		dev_vdbg(priv->dev,
 390		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 391		         "page_addr: 0x%x.\n", page_addr);
 392		set_addr(mtd, 0, page_addr, 0);
 393		return;
 394
 395	/* ERASE2 uses the block and page address from ERASE1 */
 396	case NAND_CMD_ERASE2:
 397		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 398
 399		out_be32(&lbc->fir,
 400		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 401		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 402		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 403		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 404		         (FIR_OP_RS  << FIR_OP4_SHIFT));
 405
 406		out_be32(&lbc->fcr,
 407		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 408		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 409		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 410
 411		out_be32(&lbc->fbcr, 0);
 412		elbc_fcm_ctrl->read_bytes = 0;
 413		elbc_fcm_ctrl->use_mdr = 1;
 414
 415		fsl_elbc_run_command(mtd);
 416		return;
 417
 418	/* SEQIN sets up the addr buffer and all registers except the length */
 419	case NAND_CMD_SEQIN: {
 420		__be32 fcr;
 421		dev_vdbg(priv->dev,
 422			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 423		         "page_addr: 0x%x, column: 0x%x.\n",
 424		         page_addr, column);
 425
 426		elbc_fcm_ctrl->column = column;
 427		elbc_fcm_ctrl->use_mdr = 1;
 428
 429		if (column >= mtd->writesize) {
 430			/* OOB area */
 431			column -= mtd->writesize;
 432			elbc_fcm_ctrl->oob = 1;
 433		} else {
 434			WARN_ON(column != 0);
 435			elbc_fcm_ctrl->oob = 0;
 436		}
 437
 438		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 439		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 440		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 441
 442		if (priv->page_size) {
 443			out_be32(&lbc->fir,
 444			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 445			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 446			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 447			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
 448			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 449			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 450			         (FIR_OP_RS  << FIR_OP6_SHIFT));
 451		} else {
 452			out_be32(&lbc->fir,
 453			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 454			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 455			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
 456			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
 457			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
 458			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 459			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 460			         (FIR_OP_RS  << FIR_OP7_SHIFT));
 461
 462			if (elbc_fcm_ctrl->oob)
 463				/* OOB area --> READOOB */
 464				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 465			else
 466				/* First 256 bytes --> READ0 */
 467				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 468		}
 469
 470		out_be32(&lbc->fcr, fcr);
 471		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 472		return;
 473	}
 474
 475	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 476	case NAND_CMD_PAGEPROG: {
 477		dev_vdbg(priv->dev,
 478		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 479			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
 480
 481		/* if the write did not start at 0 or is not a full page
 482		 * then set the exact length, otherwise use a full page
 483		 * write so the HW generates the ECC.
 484		 */
 485		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 486		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 487			out_be32(&lbc->fbcr,
 488				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 489		else
 490			out_be32(&lbc->fbcr, 0);
 491
 492		fsl_elbc_run_command(mtd);
 493		return;
 494	}
 495
 496	/* CMD_STATUS must read the status byte while CEB is active */
 497	/* Note - it does not wait for the ready line */
 498	case NAND_CMD_STATUS:
 499		out_be32(&lbc->fir,
 500		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 501		         (FIR_OP_RBW << FIR_OP1_SHIFT));
 502		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 503		out_be32(&lbc->fbcr, 1);
 504		set_addr(mtd, 0, 0, 0);
 505		elbc_fcm_ctrl->read_bytes = 1;
 506
 507		fsl_elbc_run_command(mtd);
 508
 509		/* The chip always seems to report that it is
 510		 * write-protected, even when it is not.
 511		 */
 512		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 513		return;
 514
 515	/* RESET without waiting for the ready line */
 516	case NAND_CMD_RESET:
 517		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 518		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 519		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 520		fsl_elbc_run_command(mtd);
 521		return;
 522
 523	default:
 524		dev_err(priv->dev,
 525		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 526		        command);
 527	}
 528}
 529
 530static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
 531{
 532	/* The hardware does not seem to support multiple
 533	 * chips per bank.
 534	 */
 535}
 536
 537/*
 538 * Write buf to the FCM Controller Data Buffer
 539 */
 540static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 541{
 542	struct mtd_info *mtd = nand_to_mtd(chip);
 543	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 544	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 545	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 546
 547	if (len <= 0) {
 548		dev_err(priv->dev, "write_buf of %d bytes", len);
 549		elbc_fcm_ctrl->status = 0;
 550		return;
 551	}
 552
 553	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 554		dev_err(priv->dev,
 555		        "write_buf beyond end of buffer "
 556		        "(%d requested, %u available)\n",
 557			len, bufsize - elbc_fcm_ctrl->index);
 558		len = bufsize - elbc_fcm_ctrl->index;
 559	}
 560
 561	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 562	/*
 563	 * This is workaround for the weird elbc hangs during nand write,
 564	 * Scott Wood says: "...perhaps difference in how long it takes a
 565	 * write to make it through the localbus compared to a write to IMMR
 566	 * is causing problems, and sync isn't helping for some reason."
 567	 * Reading back the last byte helps though.
 568	 */
 569	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 570
 571	elbc_fcm_ctrl->index += len;
 572}
 573
 574/*
 575 * read a byte from either the FCM hardware buffer if it has any data left
 576 * otherwise issue a command to read a single byte.
 577 */
 578static u8 fsl_elbc_read_byte(struct nand_chip *chip)
 579{
 580	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 581	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 582
 583	/* If there are still bytes in the FCM, then use the next byte. */
 584	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 585		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 586
 587	dev_err(priv->dev, "read_byte beyond end of buffer\n");
 588	return ERR_BYTE;
 589}
 590
 591/*
 592 * Read from the FCM Controller Data Buffer
 593 */
 594static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 595{
 596	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 597	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 598	int avail;
 599
 600	if (len < 0)
 601		return;
 602
 603	avail = min((unsigned int)len,
 604			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 605	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 606	elbc_fcm_ctrl->index += avail;
 607
 608	if (len > avail)
 609		dev_err(priv->dev,
 610		        "read_buf beyond end of buffer "
 611		        "(%d requested, %d available)\n",
 612		        len, avail);
 613}
 614
 615/* This function is called after Program and Erase Operations to
 616 * check for success or failure.
 617 */
 618static int fsl_elbc_wait(struct nand_chip *chip)
 619{
 620	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 621	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 622
 623	if (elbc_fcm_ctrl->status != LTESR_CC)
 624		return NAND_STATUS_FAIL;
 625
 626	/* The chip always seems to report that it is
 627	 * write-protected, even when it is not.
 628	 */
 629	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 630}
 631
 632static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
 633			      int oob_required, int page)
 634{
 635	struct mtd_info *mtd = nand_to_mtd(chip);
 636	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 637	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 638	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 639
 640	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 641	if (oob_required)
 642		fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 643
 644	if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
 645		mtd->ecc_stats.failed++;
 646
 647	return elbc_fcm_ctrl->max_bitflips;
 648}
 649
 650/* ECC will be calculated automatically, and errors will be detected in
 651 * waitfunc.
 652 */
 653static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
 654			       int oob_required, int page)
 655{
 656	struct mtd_info *mtd = nand_to_mtd(chip);
 657
 658	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 659	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 660
 661	return nand_prog_page_end_op(chip);
 662}
 663
 664/* ECC will be calculated automatically, and errors will be detected in
 665 * waitfunc.
 666 */
 667static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
 668				  uint32_t data_len, const uint8_t *buf,
 669				  int oob_required, int page)
 670{
 671	struct mtd_info *mtd = nand_to_mtd(chip);
 672
 673	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 674	fsl_elbc_write_buf(chip, buf, mtd->writesize);
 675	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 676	return nand_prog_page_end_op(chip);
 677}
 678
 679static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 680{
 681	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 682	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 683	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 684	struct nand_chip *chip = &priv->chip;
 685	struct mtd_info *mtd = nand_to_mtd(chip);
 686
 687	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 688
 689	/* Fill in fsl_elbc_mtd structure */
 690	mtd->dev.parent = priv->dev;
 691	nand_set_flash_node(chip, priv->dev->of_node);
 692
 693	/* set timeout to maximum */
 694	priv->fmr = 15 << FMR_CWTO_SHIFT;
 695	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 696		priv->fmr |= FMR_ECCM;
 697
 698	/* fill in nand_chip structure */
 699	/* set up function call table */
 700	chip->legacy.read_byte = fsl_elbc_read_byte;
 701	chip->legacy.write_buf = fsl_elbc_write_buf;
 702	chip->legacy.read_buf = fsl_elbc_read_buf;
 703	chip->legacy.select_chip = fsl_elbc_select_chip;
 704	chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
 705	chip->legacy.waitfunc = fsl_elbc_wait;
 706	chip->legacy.set_features = nand_get_set_features_notsupp;
 707	chip->legacy.get_features = nand_get_set_features_notsupp;
 708
 709	chip->bbt_td = &bbt_main_descr;
 710	chip->bbt_md = &bbt_mirror_descr;
 711
 712	/* set up nand options */
 713	chip->bbt_options = NAND_BBT_USE_FLASH;
 714
 715	chip->controller = &elbc_fcm_ctrl->controller;
 716	nand_set_controller_data(chip, priv);
 717
 718	return 0;
 719}
 720
 721static int fsl_elbc_attach_chip(struct nand_chip *chip)
 722{
 723	struct mtd_info *mtd = nand_to_mtd(chip);
 724	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 725	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 726	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 727	unsigned int al;
 728	u32 br;
 729
 730	/*
 731	 * if ECC was not chosen in DT, decide whether to use HW or SW ECC from
 732	 * CS Base Register
 733	 */
 734	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) {
 735		/* If CS Base Register selects full hardware ECC then use it */
 736		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 737		    BR_DECC_CHK_GEN) {
 738			chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
 739		} else {
 740			/* otherwise fall back to default software ECC */
 741			chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
 742			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
 743		}
 744	}
 745
 746	switch (chip->ecc.engine_type) {
 747	/* if HW ECC was chosen, setup ecc and oob layout */
 748	case NAND_ECC_ENGINE_TYPE_ON_HOST:
 749		chip->ecc.read_page = fsl_elbc_read_page;
 750		chip->ecc.write_page = fsl_elbc_write_page;
 751		chip->ecc.write_subpage = fsl_elbc_write_subpage;
 752		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
 753		chip->ecc.size = 512;
 754		chip->ecc.bytes = 3;
 755		chip->ecc.strength = 1;
 756		break;
 757
 758	/* if none or SW ECC was chosen, we do not need to set anything here */
 759	case NAND_ECC_ENGINE_TYPE_NONE:
 760	case NAND_ECC_ENGINE_TYPE_SOFT:
 761	case NAND_ECC_ENGINE_TYPE_ON_DIE:
 762		break;
 763
 764	default:
 765		return -EINVAL;
 766	}
 767
 768	/* enable/disable HW ECC checking and generating based on if HW ECC was chosen */
 769	br = in_be32(&lbc->bank[priv->bank].br) & ~BR_DECC;
 770	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
 771		out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_CHK_GEN);
 772	else
 773		out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_OFF);
 774
 775	/* calculate FMR Address Length field */
 776	al = 0;
 777	if (chip->pagemask & 0xffff0000)
 778		al++;
 779	if (chip->pagemask & 0xff000000)
 780		al++;
 781
 782	priv->fmr |= al << FMR_AL_SHIFT;
 783
 784	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 785	        nanddev_ntargets(&chip->base));
 786	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 787	        nanddev_target_size(&chip->base));
 788	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 789	        chip->pagemask);
 790	dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
 791	        chip->legacy.chip_delay);
 792	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 793	        chip->badblockpos);
 794	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 795	        chip->chip_shift);
 796	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 797	        chip->page_shift);
 798	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 799	        chip->phys_erase_shift);
 800	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.engine_type = %d\n",
 801		chip->ecc.engine_type);
 802	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 803	        chip->ecc.steps);
 804	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 805	        chip->ecc.bytes);
 806	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 807	        chip->ecc.total);
 808	dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
 809		mtd->ooblayout);
 810	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 811	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 812	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 813	        mtd->erasesize);
 814	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 815	        mtd->writesize);
 816	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 817	        mtd->oobsize);
 818
 819	/* adjust Option Register and ECC to match Flash page size */
 820	if (mtd->writesize == 512) {
 821		priv->page_size = 0;
 822		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 823	} else if (mtd->writesize == 2048) {
 824		priv->page_size = 1;
 825		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 826	} else {
 827		dev_err(priv->dev,
 828		        "fsl_elbc_init: page size %d is not supported\n",
 829		        mtd->writesize);
 830		return -ENOTSUPP;
 831	}
 832
 833	return 0;
 834}
 835
 836static const struct nand_controller_ops fsl_elbc_controller_ops = {
 837	.attach_chip = fsl_elbc_attach_chip,
 838};
 839
 840static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 841{
 842	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 843	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 844
 845	kfree(mtd->name);
 846
 847	if (priv->vbase)
 848		iounmap(priv->vbase);
 849
 850	elbc_fcm_ctrl->chips[priv->bank] = NULL;
 851	kfree(priv);
 852	return 0;
 853}
 854
 855static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 856
 857static int fsl_elbc_nand_probe(struct platform_device *pdev)
 858{
 859	struct fsl_lbc_regs __iomem *lbc;
 860	struct fsl_elbc_mtd *priv;
 861	struct resource res;
 862	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 863	static const char *part_probe_types[]
 864		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
 865	int ret;
 866	int bank;
 867	struct device *dev;
 868	struct device_node *node = pdev->dev.of_node;
 869	struct mtd_info *mtd;
 870
 871	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 872		return -ENODEV;
 
 873	lbc = fsl_lbc_ctrl_dev->regs;
 874	dev = fsl_lbc_ctrl_dev->dev;
 875
 876	/* get, allocate and map the memory resource */
 877	ret = of_address_to_resource(node, 0, &res);
 878	if (ret) {
 879		dev_err(dev, "failed to get resource\n");
 880		return ret;
 881	}
 882
 883	/* find which chip select it is connected to */
 884	for (bank = 0; bank < MAX_BANKS; bank++)
 885		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 886		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 887		    (in_be32(&lbc->bank[bank].br) &
 888		     in_be32(&lbc->bank[bank].or) & BR_BA)
 889		     == fsl_lbc_addr(res.start))
 890			break;
 891
 892	if (bank >= MAX_BANKS) {
 893		dev_err(dev, "address did not match any chip selects\n");
 894		return -ENODEV;
 895	}
 896
 897	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 898	if (!priv)
 899		return -ENOMEM;
 900
 901	mutex_lock(&fsl_elbc_nand_mutex);
 902	if (!fsl_lbc_ctrl_dev->nand) {
 903		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 904		if (!elbc_fcm_ctrl) {
 905			mutex_unlock(&fsl_elbc_nand_mutex);
 906			ret = -ENOMEM;
 907			goto err;
 908		}
 909		elbc_fcm_ctrl->counter++;
 910
 911		nand_controller_init(&elbc_fcm_ctrl->controller);
 912		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 913	} else {
 914		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 915	}
 916	mutex_unlock(&fsl_elbc_nand_mutex);
 917
 918	elbc_fcm_ctrl->chips[bank] = priv;
 919	priv->bank = bank;
 920	priv->ctrl = fsl_lbc_ctrl_dev;
 921	priv->dev = &pdev->dev;
 922	dev_set_drvdata(priv->dev, priv);
 923
 924	priv->vbase = ioremap(res.start, resource_size(&res));
 925	if (!priv->vbase) {
 926		dev_err(dev, "failed to map chip region\n");
 927		ret = -ENOMEM;
 928		goto err;
 929	}
 930
 931	mtd = nand_to_mtd(&priv->chip);
 932	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
 933	if (!nand_to_mtd(&priv->chip)->name) {
 934		ret = -ENOMEM;
 935		goto err;
 936	}
 937
 938	ret = fsl_elbc_chip_init(priv);
 939	if (ret)
 940		goto err;
 941
 942	priv->chip.controller->ops = &fsl_elbc_controller_ops;
 943	ret = nand_scan(&priv->chip, 1);
 944	if (ret)
 945		goto err;
 946
 947	/* First look for RedBoot table or partitions on the command
 948	 * line, these take precedence over device tree information */
 949	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
 950	if (ret)
 951		goto cleanup_nand;
 952
 953	pr_info("eLBC NAND device at 0x%llx, bank %d\n",
 954		(unsigned long long)res.start, priv->bank);
 955
 956	return 0;
 957
 958cleanup_nand:
 959	nand_cleanup(&priv->chip);
 960err:
 961	fsl_elbc_chip_remove(priv);
 962
 963	return ret;
 964}
 965
 966static void fsl_elbc_nand_remove(struct platform_device *pdev)
 967{
 968	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 969	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
 970	struct nand_chip *chip = &priv->chip;
 971	int ret;
 972
 973	ret = mtd_device_unregister(nand_to_mtd(chip));
 974	WARN_ON(ret);
 975	nand_cleanup(chip);
 976
 977	fsl_elbc_chip_remove(priv);
 978
 979	mutex_lock(&fsl_elbc_nand_mutex);
 980	elbc_fcm_ctrl->counter--;
 981	if (!elbc_fcm_ctrl->counter) {
 982		fsl_lbc_ctrl_dev->nand = NULL;
 983		kfree(elbc_fcm_ctrl);
 984	}
 985	mutex_unlock(&fsl_elbc_nand_mutex);
 986
 987}
 988
 989static const struct of_device_id fsl_elbc_nand_match[] = {
 990	{ .compatible = "fsl,elbc-fcm-nand", },
 991	{}
 992};
 993MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
 994
 995static struct platform_driver fsl_elbc_nand_driver = {
 996	.driver = {
 997		.name = "fsl,elbc-fcm-nand",
 998		.of_match_table = fsl_elbc_nand_match,
 999	},
1000	.probe = fsl_elbc_nand_probe,
1001	.remove_new = fsl_elbc_nand_remove,
1002};
1003
1004module_platform_driver(fsl_elbc_nand_driver);
1005
1006MODULE_LICENSE("GPL");
1007MODULE_AUTHOR("Freescale");
1008MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Freescale Enhanced Local Bus Controller NAND driver
   3 *
   4 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   5 *
   6 * Authors: Nick Spence <nick.spence@freescale.com>,
   7 *          Scott Wood <scottwood@freescale.com>
   8 *          Jack Lan <jack.lan@freescale.com>
   9 *          Roy Zang <tie-fei.zang@freescale.com>
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/types.h>
  14#include <linux/kernel.h>
  15#include <linux/string.h>
  16#include <linux/ioport.h>
  17#include <linux/of_address.h>
  18#include <linux/of_platform.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/interrupt.h>
  22
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/rawnand.h>
  25#include <linux/mtd/partitions.h>
  26
  27#include <asm/io.h>
  28#include <asm/fsl_lbc.h>
  29
  30#define MAX_BANKS 8
  31#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  32#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  33
  34/* mtd information per set */
  35
  36struct fsl_elbc_mtd {
  37	struct nand_chip chip;
  38	struct fsl_lbc_ctrl *ctrl;
  39
  40	struct device *dev;
  41	int bank;               /* Chip select bank number           */
  42	u8 __iomem *vbase;      /* Chip select base virtual address  */
  43	int page_size;          /* NAND page size (0=512, 1=2048)    */
  44	unsigned int fmr;       /* FCM Flash Mode Register value     */
  45};
  46
  47/* Freescale eLBC FCM controller information */
  48
  49struct fsl_elbc_fcm_ctrl {
  50	struct nand_controller controller;
  51	struct fsl_elbc_mtd *chips[MAX_BANKS];
  52
  53	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  54	unsigned int page;       /* Last page written to / read from      */
  55	unsigned int read_bytes; /* Number of bytes read during command   */
  56	unsigned int column;     /* Saved column from SEQIN               */
  57	unsigned int index;      /* Pointer to next byte to 'read'        */
  58	unsigned int status;     /* status read from LTESR after last op  */
  59	unsigned int mdr;        /* UPM/FCM Data Register value           */
  60	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  61	unsigned int oob;        /* Non zero if operating on OOB data     */
  62	unsigned int counter;	 /* counter for the initializations	  */
  63	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
  64};
  65
  66/* These map to the positions used by the FCM hardware ECC generator */
  67
  68static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
  69				  struct mtd_oob_region *oobregion)
  70{
  71	struct nand_chip *chip = mtd_to_nand(mtd);
  72	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
  73
  74	if (section >= chip->ecc.steps)
  75		return -ERANGE;
  76
  77	oobregion->offset = (16 * section) + 6;
  78	if (priv->fmr & FMR_ECCM)
  79		oobregion->offset += 2;
  80
  81	oobregion->length = chip->ecc.bytes;
  82
  83	return 0;
  84}
  85
  86static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
  87				   struct mtd_oob_region *oobregion)
  88{
  89	struct nand_chip *chip = mtd_to_nand(mtd);
  90	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
  91
  92	if (section > chip->ecc.steps)
  93		return -ERANGE;
  94
  95	if (!section) {
  96		oobregion->offset = 0;
  97		if (mtd->writesize > 512)
  98			oobregion->offset++;
  99		oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
 100	} else {
 101		oobregion->offset = (16 * section) -
 102				    ((priv->fmr & FMR_ECCM) ? 5 : 7);
 103		if (section < chip->ecc.steps)
 104			oobregion->length = 13;
 105		else
 106			oobregion->length = mtd->oobsize - oobregion->offset;
 107	}
 108
 109	return 0;
 110}
 111
 112static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
 113	.ecc = fsl_elbc_ooblayout_ecc,
 114	.free = fsl_elbc_ooblayout_free,
 115};
 116
 117/*
 118 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 119 * interfere with ECC positions, that's why we implement our own descriptors.
 120 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 121 */
 122static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 123static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 124
 125static struct nand_bbt_descr bbt_main_descr = {
 126	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 127		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 128	.offs =	11,
 129	.len = 4,
 130	.veroffs = 15,
 131	.maxblocks = 4,
 132	.pattern = bbt_pattern,
 133};
 134
 135static struct nand_bbt_descr bbt_mirror_descr = {
 136	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 137		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 138	.offs =	11,
 139	.len = 4,
 140	.veroffs = 15,
 141	.maxblocks = 4,
 142	.pattern = mirror_pattern,
 143};
 144
 145/*=================================*/
 146
 147/*
 148 * Set up the FCM hardware block and page address fields, and the fcm
 149 * structure addr field to point to the correct FCM buffer in memory
 150 */
 151static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 152{
 153	struct nand_chip *chip = mtd_to_nand(mtd);
 154	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 155	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 156	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 157	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 158	int buf_num;
 159
 160	elbc_fcm_ctrl->page = page_addr;
 161
 162	if (priv->page_size) {
 163		/*
 164		 * large page size chip : FPAR[PI] save the lowest 6 bits,
 165		 *                        FBAR[BLK] save the other bits.
 166		 */
 167		out_be32(&lbc->fbar, page_addr >> 6);
 168		out_be32(&lbc->fpar,
 169		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 170		         (oob ? FPAR_LP_MS : 0) | column);
 171		buf_num = (page_addr & 1) << 2;
 172	} else {
 173		/*
 174		 * small page size chip : FPAR[PI] save the lowest 5 bits,
 175		 *                        FBAR[BLK] save the other bits.
 176		 */
 177		out_be32(&lbc->fbar, page_addr >> 5);
 178		out_be32(&lbc->fpar,
 179		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 180		         (oob ? FPAR_SP_MS : 0) | column);
 181		buf_num = page_addr & 7;
 182	}
 183
 184	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 185	elbc_fcm_ctrl->index = column;
 186
 187	/* for OOB data point to the second half of the buffer */
 188	if (oob)
 189		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 190
 191	dev_vdbg(priv->dev, "set_addr: bank=%d, "
 192			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 193	                    "index %x, pes %d ps %d\n",
 194		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 195		 elbc_fcm_ctrl->index,
 196	         chip->phys_erase_shift, chip->page_shift);
 197}
 198
 199/*
 200 * execute FCM command and wait for it to complete
 201 */
 202static int fsl_elbc_run_command(struct mtd_info *mtd)
 203{
 204	struct nand_chip *chip = mtd_to_nand(mtd);
 205	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 206	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 207	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 208	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 209
 210	/* Setup the FMR[OP] to execute without write protection */
 211	out_be32(&lbc->fmr, priv->fmr | 3);
 212	if (elbc_fcm_ctrl->use_mdr)
 213		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 214
 215	dev_vdbg(priv->dev,
 216	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 217	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 218	dev_vdbg(priv->dev,
 219	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 220	         "fbcr=%08x bank=%d\n",
 221	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 222	         in_be32(&lbc->fbcr), priv->bank);
 223
 224	ctrl->irq_status = 0;
 225	/* execute special operation */
 226	out_be32(&lbc->lsor, priv->bank);
 227
 228	/* wait for FCM complete flag or timeout */
 229	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 230	                   FCM_TIMEOUT_MSECS * HZ/1000);
 231	elbc_fcm_ctrl->status = ctrl->irq_status;
 232	/* store mdr value in case it was needed */
 233	if (elbc_fcm_ctrl->use_mdr)
 234		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 235
 236	elbc_fcm_ctrl->use_mdr = 0;
 237
 238	if (elbc_fcm_ctrl->status != LTESR_CC) {
 239		dev_info(priv->dev,
 240		         "command failed: fir %x fcr %x status %x mdr %x\n",
 241		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 242			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 243		return -EIO;
 244	}
 245
 246	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
 247		return 0;
 248
 249	elbc_fcm_ctrl->max_bitflips = 0;
 250
 251	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 252		uint32_t lteccr = in_be32(&lbc->lteccr);
 253		/*
 254		 * if command was a full page read and the ELBC
 255		 * has the LTECCR register, then bits 12-15 (ppc order) of
 256		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 257		 * bits 28-31 are uncorrectable errors, marked elsewhere.
 258		 * for small page nand only 1 bit is used.
 259		 * if the ELBC doesn't have the lteccr register it reads 0
 260		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 261		 * count the number of sub-pages with bitflips and update
 262		 * ecc_stats.corrected accordingly.
 263		 */
 264		if (lteccr & 0x000F000F)
 265			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 266		if (lteccr & 0x000F0000) {
 267			mtd->ecc_stats.corrected++;
 268			elbc_fcm_ctrl->max_bitflips = 1;
 269		}
 270	}
 271
 272	return 0;
 273}
 274
 275static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 276{
 277	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 278	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 279	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 280
 281	if (priv->page_size) {
 282		out_be32(&lbc->fir,
 283		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 284		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 285		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 286		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 287		         (FIR_OP_RBW << FIR_OP4_SHIFT));
 288
 289		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 290		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 291	} else {
 292		out_be32(&lbc->fir,
 293		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 294		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 295		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 296		         (FIR_OP_RBW << FIR_OP3_SHIFT));
 297
 298		if (oob)
 299			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 300		else
 301			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 302	}
 303}
 304
 305/* cmdfunc send commands to the FCM */
 306static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
 307                             int column, int page_addr)
 308{
 309	struct mtd_info *mtd = nand_to_mtd(chip);
 310	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 311	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 312	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 313	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 314
 315	elbc_fcm_ctrl->use_mdr = 0;
 316
 317	/* clear the read buffer */
 318	elbc_fcm_ctrl->read_bytes = 0;
 319	if (command != NAND_CMD_PAGEPROG)
 320		elbc_fcm_ctrl->index = 0;
 321
 322	switch (command) {
 323	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 324	case NAND_CMD_READ1:
 325		column += 256;
 326		fallthrough;
 327	case NAND_CMD_READ0:
 328		dev_dbg(priv->dev,
 329		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 330		        " 0x%x, column: 0x%x.\n", page_addr, column);
 331
 332
 333		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 334		set_addr(mtd, 0, page_addr, 0);
 335
 336		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 337		elbc_fcm_ctrl->index += column;
 338
 339		fsl_elbc_do_read(chip, 0);
 340		fsl_elbc_run_command(mtd);
 341		return;
 342
 343	/* RNDOUT moves the pointer inside the page */
 344	case NAND_CMD_RNDOUT:
 345		dev_dbg(priv->dev,
 346			"fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
 347			column);
 348
 349		elbc_fcm_ctrl->index = column;
 350		return;
 351
 352	/* READOOB reads only the OOB because no ECC is performed. */
 353	case NAND_CMD_READOOB:
 354		dev_vdbg(priv->dev,
 355		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 356			 " 0x%x, column: 0x%x.\n", page_addr, column);
 357
 358		out_be32(&lbc->fbcr, mtd->oobsize - column);
 359		set_addr(mtd, column, page_addr, 1);
 360
 361		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 362
 363		fsl_elbc_do_read(chip, 1);
 364		fsl_elbc_run_command(mtd);
 365		return;
 366
 367	case NAND_CMD_READID:
 368	case NAND_CMD_PARAM:
 369		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 370
 371		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 372		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 373		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 374		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 375		/*
 376		 * although currently it's 8 bytes for READID, we always read
 377		 * the maximum 256 bytes(for PARAM)
 378		 */
 379		out_be32(&lbc->fbcr, 256);
 380		elbc_fcm_ctrl->read_bytes = 256;
 381		elbc_fcm_ctrl->use_mdr = 1;
 382		elbc_fcm_ctrl->mdr = column;
 383		set_addr(mtd, 0, 0, 0);
 384		fsl_elbc_run_command(mtd);
 385		return;
 386
 387	/* ERASE1 stores the block and page address */
 388	case NAND_CMD_ERASE1:
 389		dev_vdbg(priv->dev,
 390		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 391		         "page_addr: 0x%x.\n", page_addr);
 392		set_addr(mtd, 0, page_addr, 0);
 393		return;
 394
 395	/* ERASE2 uses the block and page address from ERASE1 */
 396	case NAND_CMD_ERASE2:
 397		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 398
 399		out_be32(&lbc->fir,
 400		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 401		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 402		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 403		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 404		         (FIR_OP_RS  << FIR_OP4_SHIFT));
 405
 406		out_be32(&lbc->fcr,
 407		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 408		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 409		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 410
 411		out_be32(&lbc->fbcr, 0);
 412		elbc_fcm_ctrl->read_bytes = 0;
 413		elbc_fcm_ctrl->use_mdr = 1;
 414
 415		fsl_elbc_run_command(mtd);
 416		return;
 417
 418	/* SEQIN sets up the addr buffer and all registers except the length */
 419	case NAND_CMD_SEQIN: {
 420		__be32 fcr;
 421		dev_vdbg(priv->dev,
 422			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 423		         "page_addr: 0x%x, column: 0x%x.\n",
 424		         page_addr, column);
 425
 426		elbc_fcm_ctrl->column = column;
 427		elbc_fcm_ctrl->use_mdr = 1;
 428
 429		if (column >= mtd->writesize) {
 430			/* OOB area */
 431			column -= mtd->writesize;
 432			elbc_fcm_ctrl->oob = 1;
 433		} else {
 434			WARN_ON(column != 0);
 435			elbc_fcm_ctrl->oob = 0;
 436		}
 437
 438		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 439		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 440		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 441
 442		if (priv->page_size) {
 443			out_be32(&lbc->fir,
 444			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 445			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 446			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 447			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
 448			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 449			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 450			         (FIR_OP_RS  << FIR_OP6_SHIFT));
 451		} else {
 452			out_be32(&lbc->fir,
 453			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 454			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 455			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
 456			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
 457			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
 458			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 459			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 460			         (FIR_OP_RS  << FIR_OP7_SHIFT));
 461
 462			if (elbc_fcm_ctrl->oob)
 463				/* OOB area --> READOOB */
 464				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 465			else
 466				/* First 256 bytes --> READ0 */
 467				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 468		}
 469
 470		out_be32(&lbc->fcr, fcr);
 471		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 472		return;
 473	}
 474
 475	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 476	case NAND_CMD_PAGEPROG: {
 477		dev_vdbg(priv->dev,
 478		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 479			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
 480
 481		/* if the write did not start at 0 or is not a full page
 482		 * then set the exact length, otherwise use a full page
 483		 * write so the HW generates the ECC.
 484		 */
 485		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 486		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 487			out_be32(&lbc->fbcr,
 488				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 489		else
 490			out_be32(&lbc->fbcr, 0);
 491
 492		fsl_elbc_run_command(mtd);
 493		return;
 494	}
 495
 496	/* CMD_STATUS must read the status byte while CEB is active */
 497	/* Note - it does not wait for the ready line */
 498	case NAND_CMD_STATUS:
 499		out_be32(&lbc->fir,
 500		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 501		         (FIR_OP_RBW << FIR_OP1_SHIFT));
 502		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 503		out_be32(&lbc->fbcr, 1);
 504		set_addr(mtd, 0, 0, 0);
 505		elbc_fcm_ctrl->read_bytes = 1;
 506
 507		fsl_elbc_run_command(mtd);
 508
 509		/* The chip always seems to report that it is
 510		 * write-protected, even when it is not.
 511		 */
 512		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 513		return;
 514
 515	/* RESET without waiting for the ready line */
 516	case NAND_CMD_RESET:
 517		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 518		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 519		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 520		fsl_elbc_run_command(mtd);
 521		return;
 522
 523	default:
 524		dev_err(priv->dev,
 525		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 526		        command);
 527	}
 528}
 529
 530static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
 531{
 532	/* The hardware does not seem to support multiple
 533	 * chips per bank.
 534	 */
 535}
 536
 537/*
 538 * Write buf to the FCM Controller Data Buffer
 539 */
 540static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 541{
 542	struct mtd_info *mtd = nand_to_mtd(chip);
 543	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 544	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 545	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 546
 547	if (len <= 0) {
 548		dev_err(priv->dev, "write_buf of %d bytes", len);
 549		elbc_fcm_ctrl->status = 0;
 550		return;
 551	}
 552
 553	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 554		dev_err(priv->dev,
 555		        "write_buf beyond end of buffer "
 556		        "(%d requested, %u available)\n",
 557			len, bufsize - elbc_fcm_ctrl->index);
 558		len = bufsize - elbc_fcm_ctrl->index;
 559	}
 560
 561	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 562	/*
 563	 * This is workaround for the weird elbc hangs during nand write,
 564	 * Scott Wood says: "...perhaps difference in how long it takes a
 565	 * write to make it through the localbus compared to a write to IMMR
 566	 * is causing problems, and sync isn't helping for some reason."
 567	 * Reading back the last byte helps though.
 568	 */
 569	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 570
 571	elbc_fcm_ctrl->index += len;
 572}
 573
 574/*
 575 * read a byte from either the FCM hardware buffer if it has any data left
 576 * otherwise issue a command to read a single byte.
 577 */
 578static u8 fsl_elbc_read_byte(struct nand_chip *chip)
 579{
 580	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 581	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 582
 583	/* If there are still bytes in the FCM, then use the next byte. */
 584	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 585		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 586
 587	dev_err(priv->dev, "read_byte beyond end of buffer\n");
 588	return ERR_BYTE;
 589}
 590
 591/*
 592 * Read from the FCM Controller Data Buffer
 593 */
 594static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 595{
 596	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 597	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 598	int avail;
 599
 600	if (len < 0)
 601		return;
 602
 603	avail = min((unsigned int)len,
 604			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 605	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 606	elbc_fcm_ctrl->index += avail;
 607
 608	if (len > avail)
 609		dev_err(priv->dev,
 610		        "read_buf beyond end of buffer "
 611		        "(%d requested, %d available)\n",
 612		        len, avail);
 613}
 614
 615/* This function is called after Program and Erase Operations to
 616 * check for success or failure.
 617 */
 618static int fsl_elbc_wait(struct nand_chip *chip)
 619{
 620	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 621	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 622
 623	if (elbc_fcm_ctrl->status != LTESR_CC)
 624		return NAND_STATUS_FAIL;
 625
 626	/* The chip always seems to report that it is
 627	 * write-protected, even when it is not.
 628	 */
 629	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 630}
 631
 632static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
 633			      int oob_required, int page)
 634{
 635	struct mtd_info *mtd = nand_to_mtd(chip);
 636	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 637	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 638	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 639
 640	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 641	if (oob_required)
 642		fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 643
 644	if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
 645		mtd->ecc_stats.failed++;
 646
 647	return elbc_fcm_ctrl->max_bitflips;
 648}
 649
 650/* ECC will be calculated automatically, and errors will be detected in
 651 * waitfunc.
 652 */
 653static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
 654			       int oob_required, int page)
 655{
 656	struct mtd_info *mtd = nand_to_mtd(chip);
 657
 658	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 659	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 660
 661	return nand_prog_page_end_op(chip);
 662}
 663
 664/* ECC will be calculated automatically, and errors will be detected in
 665 * waitfunc.
 666 */
 667static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
 668				  uint32_t data_len, const uint8_t *buf,
 669				  int oob_required, int page)
 670{
 671	struct mtd_info *mtd = nand_to_mtd(chip);
 672
 673	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 674	fsl_elbc_write_buf(chip, buf, mtd->writesize);
 675	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 676	return nand_prog_page_end_op(chip);
 677}
 678
 679static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 680{
 681	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 682	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 683	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 684	struct nand_chip *chip = &priv->chip;
 685	struct mtd_info *mtd = nand_to_mtd(chip);
 686
 687	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 688
 689	/* Fill in fsl_elbc_mtd structure */
 690	mtd->dev.parent = priv->dev;
 691	nand_set_flash_node(chip, priv->dev->of_node);
 692
 693	/* set timeout to maximum */
 694	priv->fmr = 15 << FMR_CWTO_SHIFT;
 695	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 696		priv->fmr |= FMR_ECCM;
 697
 698	/* fill in nand_chip structure */
 699	/* set up function call table */
 700	chip->legacy.read_byte = fsl_elbc_read_byte;
 701	chip->legacy.write_buf = fsl_elbc_write_buf;
 702	chip->legacy.read_buf = fsl_elbc_read_buf;
 703	chip->legacy.select_chip = fsl_elbc_select_chip;
 704	chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
 705	chip->legacy.waitfunc = fsl_elbc_wait;
 706	chip->legacy.set_features = nand_get_set_features_notsupp;
 707	chip->legacy.get_features = nand_get_set_features_notsupp;
 708
 709	chip->bbt_td = &bbt_main_descr;
 710	chip->bbt_md = &bbt_mirror_descr;
 711
 712	/* set up nand options */
 713	chip->bbt_options = NAND_BBT_USE_FLASH;
 714
 715	chip->controller = &elbc_fcm_ctrl->controller;
 716	nand_set_controller_data(chip, priv);
 717
 718	return 0;
 719}
 720
 721static int fsl_elbc_attach_chip(struct nand_chip *chip)
 722{
 723	struct mtd_info *mtd = nand_to_mtd(chip);
 724	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 725	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 726	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 727	unsigned int al;
 728	u32 br;
 729
 730	/*
 731	 * if ECC was not chosen in DT, decide whether to use HW or SW ECC from
 732	 * CS Base Register
 733	 */
 734	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) {
 735		/* If CS Base Register selects full hardware ECC then use it */
 736		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 737		    BR_DECC_CHK_GEN) {
 738			chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
 739		} else {
 740			/* otherwise fall back to default software ECC */
 741			chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
 742			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
 743		}
 744	}
 745
 746	switch (chip->ecc.engine_type) {
 747	/* if HW ECC was chosen, setup ecc and oob layout */
 748	case NAND_ECC_ENGINE_TYPE_ON_HOST:
 749		chip->ecc.read_page = fsl_elbc_read_page;
 750		chip->ecc.write_page = fsl_elbc_write_page;
 751		chip->ecc.write_subpage = fsl_elbc_write_subpage;
 752		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
 753		chip->ecc.size = 512;
 754		chip->ecc.bytes = 3;
 755		chip->ecc.strength = 1;
 756		break;
 757
 758	/* if none or SW ECC was chosen, we do not need to set anything here */
 759	case NAND_ECC_ENGINE_TYPE_NONE:
 760	case NAND_ECC_ENGINE_TYPE_SOFT:
 761	case NAND_ECC_ENGINE_TYPE_ON_DIE:
 762		break;
 763
 764	default:
 765		return -EINVAL;
 766	}
 767
 768	/* enable/disable HW ECC checking and generating based on if HW ECC was chosen */
 769	br = in_be32(&lbc->bank[priv->bank].br) & ~BR_DECC;
 770	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
 771		out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_CHK_GEN);
 772	else
 773		out_be32(&lbc->bank[priv->bank].br, br | BR_DECC_OFF);
 774
 775	/* calculate FMR Address Length field */
 776	al = 0;
 777	if (chip->pagemask & 0xffff0000)
 778		al++;
 779	if (chip->pagemask & 0xff000000)
 780		al++;
 781
 782	priv->fmr |= al << FMR_AL_SHIFT;
 783
 784	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 785	        nanddev_ntargets(&chip->base));
 786	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 787	        nanddev_target_size(&chip->base));
 788	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 789	        chip->pagemask);
 790	dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
 791	        chip->legacy.chip_delay);
 792	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 793	        chip->badblockpos);
 794	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 795	        chip->chip_shift);
 796	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 797	        chip->page_shift);
 798	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 799	        chip->phys_erase_shift);
 800	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.engine_type = %d\n",
 801		chip->ecc.engine_type);
 802	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 803	        chip->ecc.steps);
 804	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 805	        chip->ecc.bytes);
 806	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 807	        chip->ecc.total);
 808	dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
 809		mtd->ooblayout);
 810	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 811	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 812	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 813	        mtd->erasesize);
 814	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 815	        mtd->writesize);
 816	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 817	        mtd->oobsize);
 818
 819	/* adjust Option Register and ECC to match Flash page size */
 820	if (mtd->writesize == 512) {
 821		priv->page_size = 0;
 822		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 823	} else if (mtd->writesize == 2048) {
 824		priv->page_size = 1;
 825		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 826	} else {
 827		dev_err(priv->dev,
 828		        "fsl_elbc_init: page size %d is not supported\n",
 829		        mtd->writesize);
 830		return -ENOTSUPP;
 831	}
 832
 833	return 0;
 834}
 835
 836static const struct nand_controller_ops fsl_elbc_controller_ops = {
 837	.attach_chip = fsl_elbc_attach_chip,
 838};
 839
 840static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 841{
 842	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 843	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 844
 845	kfree(mtd->name);
 846
 847	if (priv->vbase)
 848		iounmap(priv->vbase);
 849
 850	elbc_fcm_ctrl->chips[priv->bank] = NULL;
 851	kfree(priv);
 852	return 0;
 853}
 854
 855static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 856
 857static int fsl_elbc_nand_probe(struct platform_device *pdev)
 858{
 859	struct fsl_lbc_regs __iomem *lbc;
 860	struct fsl_elbc_mtd *priv;
 861	struct resource res;
 862	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 863	static const char *part_probe_types[]
 864		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
 865	int ret;
 866	int bank;
 867	struct device *dev;
 868	struct device_node *node = pdev->dev.of_node;
 869	struct mtd_info *mtd;
 870
 871	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 872		return dev_err_probe(&pdev->dev, -EPROBE_DEFER, "lbc_ctrl_dev missing\n");
 873
 874	lbc = fsl_lbc_ctrl_dev->regs;
 875	dev = fsl_lbc_ctrl_dev->dev;
 876
 877	/* get, allocate and map the memory resource */
 878	ret = of_address_to_resource(node, 0, &res);
 879	if (ret) {
 880		dev_err(dev, "failed to get resource\n");
 881		return ret;
 882	}
 883
 884	/* find which chip select it is connected to */
 885	for (bank = 0; bank < MAX_BANKS; bank++)
 886		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 887		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 888		    (in_be32(&lbc->bank[bank].br) &
 889		     in_be32(&lbc->bank[bank].or) & BR_BA)
 890		     == fsl_lbc_addr(res.start))
 891			break;
 892
 893	if (bank >= MAX_BANKS) {
 894		dev_err(dev, "address did not match any chip selects\n");
 895		return -ENODEV;
 896	}
 897
 898	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 899	if (!priv)
 900		return -ENOMEM;
 901
 902	mutex_lock(&fsl_elbc_nand_mutex);
 903	if (!fsl_lbc_ctrl_dev->nand) {
 904		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 905		if (!elbc_fcm_ctrl) {
 906			mutex_unlock(&fsl_elbc_nand_mutex);
 907			ret = -ENOMEM;
 908			goto err;
 909		}
 910		elbc_fcm_ctrl->counter++;
 911
 912		nand_controller_init(&elbc_fcm_ctrl->controller);
 913		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 914	} else {
 915		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 916	}
 917	mutex_unlock(&fsl_elbc_nand_mutex);
 918
 919	elbc_fcm_ctrl->chips[bank] = priv;
 920	priv->bank = bank;
 921	priv->ctrl = fsl_lbc_ctrl_dev;
 922	priv->dev = &pdev->dev;
 923	dev_set_drvdata(priv->dev, priv);
 924
 925	priv->vbase = ioremap(res.start, resource_size(&res));
 926	if (!priv->vbase) {
 927		dev_err(dev, "failed to map chip region\n");
 928		ret = -ENOMEM;
 929		goto err;
 930	}
 931
 932	mtd = nand_to_mtd(&priv->chip);
 933	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
 934	if (!nand_to_mtd(&priv->chip)->name) {
 935		ret = -ENOMEM;
 936		goto err;
 937	}
 938
 939	ret = fsl_elbc_chip_init(priv);
 940	if (ret)
 941		goto err;
 942
 943	priv->chip.controller->ops = &fsl_elbc_controller_ops;
 944	ret = nand_scan(&priv->chip, 1);
 945	if (ret)
 946		goto err;
 947
 948	/* First look for RedBoot table or partitions on the command
 949	 * line, these take precedence over device tree information */
 950	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
 951	if (ret)
 952		goto cleanup_nand;
 953
 954	pr_info("eLBC NAND device at 0x%llx, bank %d\n",
 955		(unsigned long long)res.start, priv->bank);
 956
 957	return 0;
 958
 959cleanup_nand:
 960	nand_cleanup(&priv->chip);
 961err:
 962	fsl_elbc_chip_remove(priv);
 963
 964	return ret;
 965}
 966
 967static void fsl_elbc_nand_remove(struct platform_device *pdev)
 968{
 969	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 970	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
 971	struct nand_chip *chip = &priv->chip;
 972	int ret;
 973
 974	ret = mtd_device_unregister(nand_to_mtd(chip));
 975	WARN_ON(ret);
 976	nand_cleanup(chip);
 977
 978	fsl_elbc_chip_remove(priv);
 979
 980	mutex_lock(&fsl_elbc_nand_mutex);
 981	elbc_fcm_ctrl->counter--;
 982	if (!elbc_fcm_ctrl->counter) {
 983		fsl_lbc_ctrl_dev->nand = NULL;
 984		kfree(elbc_fcm_ctrl);
 985	}
 986	mutex_unlock(&fsl_elbc_nand_mutex);
 987
 988}
 989
 990static const struct of_device_id fsl_elbc_nand_match[] = {
 991	{ .compatible = "fsl,elbc-fcm-nand", },
 992	{}
 993};
 994MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
 995
 996static struct platform_driver fsl_elbc_nand_driver = {
 997	.driver = {
 998		.name = "fsl,elbc-fcm-nand",
 999		.of_match_table = fsl_elbc_nand_match,
1000	},
1001	.probe = fsl_elbc_nand_probe,
1002	.remove_new = fsl_elbc_nand_remove,
1003};
1004
1005module_platform_driver(fsl_elbc_nand_driver);
1006
1007MODULE_LICENSE("GPL");
1008MODULE_AUTHOR("Freescale");
1009MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");