Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation (includes suggestions from
   9 *		Rusty Russell).
  10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  11 *		hlists and exceptions notifier as suggested by Andi Kleen.
  12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  13 *		interface to access function arguments.
  14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  15 *		exceptions notifier to be first on the priority list.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 */
  20
  21#define pr_fmt(fmt) "kprobes: " fmt
  22
  23#include <linux/kprobes.h>
  24#include <linux/hash.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/stddef.h>
  28#include <linux/export.h>
  29#include <linux/moduleloader.h>
  30#include <linux/kallsyms.h>
  31#include <linux/freezer.h>
  32#include <linux/seq_file.h>
  33#include <linux/debugfs.h>
  34#include <linux/sysctl.h>
  35#include <linux/kdebug.h>
  36#include <linux/memory.h>
  37#include <linux/ftrace.h>
  38#include <linux/cpu.h>
  39#include <linux/jump_label.h>
  40#include <linux/static_call.h>
  41#include <linux/perf_event.h>
  42
  43#include <asm/sections.h>
  44#include <asm/cacheflush.h>
  45#include <asm/errno.h>
  46#include <linux/uaccess.h>
  47
  48#define KPROBE_HASH_BITS 6
  49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  50
  51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
  52#define kprobe_sysctls_init() do { } while (0)
  53#endif
  54
  55static int kprobes_initialized;
  56/* kprobe_table can be accessed by
  57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
  58 * Or
  59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  60 */
  61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  62
  63/* NOTE: change this value only with 'kprobe_mutex' held */
  64static bool kprobes_all_disarmed;
  65
  66/* This protects 'kprobe_table' and 'optimizing_list' */
  67static DEFINE_MUTEX(kprobe_mutex);
  68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
  69
  70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  71					unsigned int __unused)
  72{
  73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  74}
  75
  76/*
  77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
  78 * kprobes can not probe.
  79 */
  80static LIST_HEAD(kprobe_blacklist);
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	/*
 116	 * Use module_alloc() so this page is within +/- 2GB of where the
 117	 * kernel image and loaded module images reside. This is required
 118	 * for most of the architectures.
 119	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
 120	 */
 121	return module_alloc(PAGE_SIZE);
 122}
 123
 124static void free_insn_page(void *page)
 125{
 126	module_memfree(page);
 127}
 128
 129struct kprobe_insn_cache kprobe_insn_slots = {
 130	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 131	.alloc = alloc_insn_page,
 132	.free = free_insn_page,
 133	.sym = KPROBE_INSN_PAGE_SYM,
 134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135	.insn_size = MAX_INSN_SIZE,
 136	.nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146	struct kprobe_insn_page *kip;
 147	kprobe_opcode_t *slot = NULL;
 148
 149	/* Since the slot array is not protected by rcu, we need a mutex */
 150	mutex_lock(&c->mutex);
 151 retry:
 152	rcu_read_lock();
 153	list_for_each_entry_rcu(kip, &c->pages, list) {
 154		if (kip->nused < slots_per_page(c)) {
 155			int i;
 156
 157			for (i = 0; i < slots_per_page(c); i++) {
 158				if (kip->slot_used[i] == SLOT_CLEAN) {
 159					kip->slot_used[i] = SLOT_USED;
 160					kip->nused++;
 161					slot = kip->insns + (i * c->insn_size);
 162					rcu_read_unlock();
 163					goto out;
 164				}
 165			}
 166			/* kip->nused is broken. Fix it. */
 167			kip->nused = slots_per_page(c);
 168			WARN_ON(1);
 169		}
 170	}
 171	rcu_read_unlock();
 172
 173	/* If there are any garbage slots, collect it and try again. */
 174	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 175		goto retry;
 176
 177	/* All out of space.  Need to allocate a new page. */
 178	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 179	if (!kip)
 180		goto out;
 181
 182	kip->insns = c->alloc();
 183	if (!kip->insns) {
 184		kfree(kip);
 185		goto out;
 186	}
 187	INIT_LIST_HEAD(&kip->list);
 188	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 189	kip->slot_used[0] = SLOT_USED;
 190	kip->nused = 1;
 191	kip->ngarbage = 0;
 192	kip->cache = c;
 193	list_add_rcu(&kip->list, &c->pages);
 194	slot = kip->insns;
 195
 196	/* Record the perf ksymbol register event after adding the page */
 197	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 198			   PAGE_SIZE, false, c->sym);
 199out:
 200	mutex_unlock(&c->mutex);
 201	return slot;
 202}
 203
 204/* Return true if all garbages are collected, otherwise false. */
 205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207	kip->slot_used[idx] = SLOT_CLEAN;
 208	kip->nused--;
 209	if (kip->nused == 0) {
 210		/*
 211		 * Page is no longer in use.  Free it unless
 212		 * it's the last one.  We keep the last one
 213		 * so as not to have to set it up again the
 214		 * next time somebody inserts a probe.
 215		 */
 216		if (!list_is_singular(&kip->list)) {
 217			/*
 218			 * Record perf ksymbol unregister event before removing
 219			 * the page.
 220			 */
 221			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 222					   (unsigned long)kip->insns, PAGE_SIZE, true,
 223					   kip->cache->sym);
 224			list_del_rcu(&kip->list);
 225			synchronize_rcu();
 226			kip->cache->free(kip->insns);
 227			kfree(kip);
 228		}
 229		return true;
 230	}
 231	return false;
 232}
 233
 234static int collect_garbage_slots(struct kprobe_insn_cache *c)
 235{
 236	struct kprobe_insn_page *kip, *next;
 237
 238	/* Ensure no-one is interrupted on the garbages */
 239	synchronize_rcu();
 240
 241	list_for_each_entry_safe(kip, next, &c->pages, list) {
 242		int i;
 243
 244		if (kip->ngarbage == 0)
 245			continue;
 246		kip->ngarbage = 0;	/* we will collect all garbages */
 247		for (i = 0; i < slots_per_page(c); i++) {
 248			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 249				break;
 250		}
 251	}
 252	c->nr_garbage = 0;
 253	return 0;
 254}
 255
 256void __free_insn_slot(struct kprobe_insn_cache *c,
 257		      kprobe_opcode_t *slot, int dirty)
 258{
 259	struct kprobe_insn_page *kip;
 260	long idx;
 261
 262	mutex_lock(&c->mutex);
 263	rcu_read_lock();
 264	list_for_each_entry_rcu(kip, &c->pages, list) {
 265		idx = ((long)slot - (long)kip->insns) /
 266			(c->insn_size * sizeof(kprobe_opcode_t));
 267		if (idx >= 0 && idx < slots_per_page(c))
 268			goto out;
 269	}
 270	/* Could not find this slot. */
 271	WARN_ON(1);
 272	kip = NULL;
 273out:
 274	rcu_read_unlock();
 275	/* Mark and sweep: this may sleep */
 276	if (kip) {
 277		/* Check double free */
 278		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 279		if (dirty) {
 280			kip->slot_used[idx] = SLOT_DIRTY;
 281			kip->ngarbage++;
 282			if (++c->nr_garbage > slots_per_page(c))
 283				collect_garbage_slots(c);
 284		} else {
 285			collect_one_slot(kip, idx);
 286		}
 287	}
 288	mutex_unlock(&c->mutex);
 289}
 290
 291/*
 292 * Check given address is on the page of kprobe instruction slots.
 293 * This will be used for checking whether the address on a stack
 294 * is on a text area or not.
 295 */
 296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 297{
 298	struct kprobe_insn_page *kip;
 299	bool ret = false;
 300
 301	rcu_read_lock();
 302	list_for_each_entry_rcu(kip, &c->pages, list) {
 303		if (addr >= (unsigned long)kip->insns &&
 304		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 305			ret = true;
 306			break;
 307		}
 308	}
 309	rcu_read_unlock();
 310
 311	return ret;
 312}
 313
 314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 315			     unsigned long *value, char *type, char *sym)
 316{
 317	struct kprobe_insn_page *kip;
 318	int ret = -ERANGE;
 319
 320	rcu_read_lock();
 321	list_for_each_entry_rcu(kip, &c->pages, list) {
 322		if ((*symnum)--)
 323			continue;
 324		strscpy(sym, c->sym, KSYM_NAME_LEN);
 325		*type = 't';
 326		*value = (unsigned long)kip->insns;
 327		ret = 0;
 328		break;
 329	}
 330	rcu_read_unlock();
 331
 332	return ret;
 333}
 334
 335#ifdef CONFIG_OPTPROBES
 336void __weak *alloc_optinsn_page(void)
 337{
 338	return alloc_insn_page();
 339}
 340
 341void __weak free_optinsn_page(void *page)
 342{
 343	free_insn_page(page);
 344}
 345
 346/* For optimized_kprobe buffer */
 347struct kprobe_insn_cache kprobe_optinsn_slots = {
 348	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 349	.alloc = alloc_optinsn_page,
 350	.free = free_optinsn_page,
 351	.sym = KPROBE_OPTINSN_PAGE_SYM,
 352	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 353	/* .insn_size is initialized later */
 354	.nr_garbage = 0,
 355};
 356#endif
 357#endif
 358
 359/* We have preemption disabled.. so it is safe to use __ versions */
 360static inline void set_kprobe_instance(struct kprobe *kp)
 361{
 362	__this_cpu_write(kprobe_instance, kp);
 363}
 364
 365static inline void reset_kprobe_instance(void)
 366{
 367	__this_cpu_write(kprobe_instance, NULL);
 368}
 369
 370/*
 371 * This routine is called either:
 372 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
 373 *				OR
 374 *	- with preemption disabled - from architecture specific code.
 375 */
 376struct kprobe *get_kprobe(void *addr)
 377{
 378	struct hlist_head *head;
 379	struct kprobe *p;
 380
 381	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 382	hlist_for_each_entry_rcu(p, head, hlist,
 383				 lockdep_is_held(&kprobe_mutex)) {
 384		if (p->addr == addr)
 385			return p;
 386	}
 387
 388	return NULL;
 389}
 390NOKPROBE_SYMBOL(get_kprobe);
 391
 392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 393
 394/* Return true if 'p' is an aggregator */
 395static inline bool kprobe_aggrprobe(struct kprobe *p)
 396{
 397	return p->pre_handler == aggr_pre_handler;
 398}
 399
 400/* Return true if 'p' is unused */
 401static inline bool kprobe_unused(struct kprobe *p)
 402{
 403	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 404	       list_empty(&p->list);
 405}
 406
 407/* Keep all fields in the kprobe consistent. */
 408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 409{
 410	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 411	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 412}
 413
 414#ifdef CONFIG_OPTPROBES
 415/* NOTE: This is protected by 'kprobe_mutex'. */
 416static bool kprobes_allow_optimization;
 417
 418/*
 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
 420 * This must be called from arch-dep optimized caller.
 421 */
 422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 423{
 424	struct kprobe *kp;
 425
 426	list_for_each_entry_rcu(kp, &p->list, list) {
 427		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 428			set_kprobe_instance(kp);
 429			kp->pre_handler(kp, regs);
 430		}
 431		reset_kprobe_instance();
 432	}
 433}
 434NOKPROBE_SYMBOL(opt_pre_handler);
 435
 436/* Free optimized instructions and optimized_kprobe */
 437static void free_aggr_kprobe(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	op = container_of(p, struct optimized_kprobe, kp);
 442	arch_remove_optimized_kprobe(op);
 443	arch_remove_kprobe(p);
 444	kfree(op);
 445}
 446
 447/* Return true if the kprobe is ready for optimization. */
 448static inline int kprobe_optready(struct kprobe *p)
 449{
 450	struct optimized_kprobe *op;
 451
 452	if (kprobe_aggrprobe(p)) {
 453		op = container_of(p, struct optimized_kprobe, kp);
 454		return arch_prepared_optinsn(&op->optinsn);
 455	}
 456
 457	return 0;
 458}
 459
 460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
 461bool kprobe_disarmed(struct kprobe *p)
 462{
 463	struct optimized_kprobe *op;
 464
 465	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 466	if (!kprobe_aggrprobe(p))
 467		return kprobe_disabled(p);
 468
 469	op = container_of(p, struct optimized_kprobe, kp);
 470
 471	return kprobe_disabled(p) && list_empty(&op->list);
 472}
 473
 474/* Return true if the probe is queued on (un)optimizing lists */
 475static bool kprobe_queued(struct kprobe *p)
 476{
 477	struct optimized_kprobe *op;
 478
 479	if (kprobe_aggrprobe(p)) {
 480		op = container_of(p, struct optimized_kprobe, kp);
 481		if (!list_empty(&op->list))
 482			return true;
 483	}
 484	return false;
 485}
 486
 487/*
 488 * Return an optimized kprobe whose optimizing code replaces
 489 * instructions including 'addr' (exclude breakpoint).
 490 */
 491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
 492{
 493	int i;
 494	struct kprobe *p = NULL;
 495	struct optimized_kprobe *op;
 496
 497	/* Don't check i == 0, since that is a breakpoint case. */
 498	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
 499		p = get_kprobe(addr - i);
 500
 501	if (p && kprobe_optready(p)) {
 502		op = container_of(p, struct optimized_kprobe, kp);
 503		if (arch_within_optimized_kprobe(op, addr))
 504			return p;
 505	}
 506
 507	return NULL;
 508}
 509
 510/* Optimization staging list, protected by 'kprobe_mutex' */
 511static LIST_HEAD(optimizing_list);
 512static LIST_HEAD(unoptimizing_list);
 513static LIST_HEAD(freeing_list);
 514
 515static void kprobe_optimizer(struct work_struct *work);
 516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 517#define OPTIMIZE_DELAY 5
 518
 519/*
 520 * Optimize (replace a breakpoint with a jump) kprobes listed on
 521 * 'optimizing_list'.
 522 */
 523static void do_optimize_kprobes(void)
 524{
 525	lockdep_assert_held(&text_mutex);
 526	/*
 527	 * The optimization/unoptimization refers 'online_cpus' via
 528	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
 529	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
 530	 * This combination can cause a deadlock (cpu-hotplug tries to lock
 531	 * 'text_mutex' but stop_machine() can not be done because
 532	 * the 'online_cpus' has been changed)
 533	 * To avoid this deadlock, caller must have locked cpu-hotplug
 534	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
 535	 */
 536	lockdep_assert_cpus_held();
 537
 538	/* Optimization never be done when disarmed */
 539	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 540	    list_empty(&optimizing_list))
 541		return;
 542
 543	arch_optimize_kprobes(&optimizing_list);
 544}
 545
 546/*
 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 548 * if need) kprobes listed on 'unoptimizing_list'.
 549 */
 550static void do_unoptimize_kprobes(void)
 551{
 552	struct optimized_kprobe *op, *tmp;
 553
 554	lockdep_assert_held(&text_mutex);
 555	/* See comment in do_optimize_kprobes() */
 556	lockdep_assert_cpus_held();
 557
 558	if (!list_empty(&unoptimizing_list))
 559		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 560
 561	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
 562	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 563		/* Switching from detour code to origin */
 564		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 565		/* Disarm probes if marked disabled and not gone */
 566		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
 567			arch_disarm_kprobe(&op->kp);
 568		if (kprobe_unused(&op->kp)) {
 569			/*
 570			 * Remove unused probes from hash list. After waiting
 571			 * for synchronization, these probes are reclaimed.
 572			 * (reclaiming is done by do_free_cleaned_kprobes().)
 573			 */
 574			hlist_del_rcu(&op->kp.hlist);
 575		} else
 576			list_del_init(&op->list);
 577	}
 578}
 579
 580/* Reclaim all kprobes on the 'freeing_list' */
 581static void do_free_cleaned_kprobes(void)
 582{
 583	struct optimized_kprobe *op, *tmp;
 584
 585	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 586		list_del_init(&op->list);
 587		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 588			/*
 589			 * This must not happen, but if there is a kprobe
 590			 * still in use, keep it on kprobes hash list.
 591			 */
 592			continue;
 593		}
 594		free_aggr_kprobe(&op->kp);
 595	}
 596}
 597
 598/* Start optimizer after OPTIMIZE_DELAY passed */
 599static void kick_kprobe_optimizer(void)
 600{
 601	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 602}
 603
 604/* Kprobe jump optimizer */
 605static void kprobe_optimizer(struct work_struct *work)
 606{
 607	mutex_lock(&kprobe_mutex);
 608	cpus_read_lock();
 609	mutex_lock(&text_mutex);
 610
 611	/*
 612	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 613	 * kprobes before waiting for quiesence period.
 614	 */
 615	do_unoptimize_kprobes();
 616
 617	/*
 618	 * Step 2: Wait for quiesence period to ensure all potentially
 619	 * preempted tasks to have normally scheduled. Because optprobe
 620	 * may modify multiple instructions, there is a chance that Nth
 621	 * instruction is preempted. In that case, such tasks can return
 622	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 623	 * Note that on non-preemptive kernel, this is transparently converted
 624	 * to synchronoze_sched() to wait for all interrupts to have completed.
 625	 */
 626	synchronize_rcu_tasks();
 627
 628	/* Step 3: Optimize kprobes after quiesence period */
 629	do_optimize_kprobes();
 630
 631	/* Step 4: Free cleaned kprobes after quiesence period */
 632	do_free_cleaned_kprobes();
 633
 634	mutex_unlock(&text_mutex);
 635	cpus_read_unlock();
 636
 637	/* Step 5: Kick optimizer again if needed */
 638	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 639		kick_kprobe_optimizer();
 640
 641	mutex_unlock(&kprobe_mutex);
 642}
 643
 644/* Wait for completing optimization and unoptimization */
 645void wait_for_kprobe_optimizer(void)
 646{
 647	mutex_lock(&kprobe_mutex);
 648
 649	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 650		mutex_unlock(&kprobe_mutex);
 651
 652		/* This will also make 'optimizing_work' execute immmediately */
 653		flush_delayed_work(&optimizing_work);
 654		/* 'optimizing_work' might not have been queued yet, relax */
 655		cpu_relax();
 656
 657		mutex_lock(&kprobe_mutex);
 658	}
 659
 660	mutex_unlock(&kprobe_mutex);
 661}
 662
 663bool optprobe_queued_unopt(struct optimized_kprobe *op)
 664{
 665	struct optimized_kprobe *_op;
 666
 667	list_for_each_entry(_op, &unoptimizing_list, list) {
 668		if (op == _op)
 669			return true;
 670	}
 671
 672	return false;
 673}
 674
 675/* Optimize kprobe if p is ready to be optimized */
 676static void optimize_kprobe(struct kprobe *p)
 677{
 678	struct optimized_kprobe *op;
 679
 680	/* Check if the kprobe is disabled or not ready for optimization. */
 681	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 682	    (kprobe_disabled(p) || kprobes_all_disarmed))
 683		return;
 684
 685	/* kprobes with 'post_handler' can not be optimized */
 686	if (p->post_handler)
 687		return;
 688
 689	op = container_of(p, struct optimized_kprobe, kp);
 690
 691	/* Check there is no other kprobes at the optimized instructions */
 692	if (arch_check_optimized_kprobe(op) < 0)
 693		return;
 694
 695	/* Check if it is already optimized. */
 696	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 697		if (optprobe_queued_unopt(op)) {
 698			/* This is under unoptimizing. Just dequeue the probe */
 699			list_del_init(&op->list);
 700		}
 701		return;
 702	}
 703	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 704
 705	/*
 706	 * On the 'unoptimizing_list' and 'optimizing_list',
 707	 * 'op' must have OPTIMIZED flag
 708	 */
 709	if (WARN_ON_ONCE(!list_empty(&op->list)))
 710		return;
 711
 712	list_add(&op->list, &optimizing_list);
 713	kick_kprobe_optimizer();
 714}
 715
 716/* Short cut to direct unoptimizing */
 717static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 718{
 719	lockdep_assert_cpus_held();
 720	arch_unoptimize_kprobe(op);
 721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 722}
 723
 724/* Unoptimize a kprobe if p is optimized */
 725static void unoptimize_kprobe(struct kprobe *p, bool force)
 726{
 727	struct optimized_kprobe *op;
 728
 729	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 730		return; /* This is not an optprobe nor optimized */
 731
 732	op = container_of(p, struct optimized_kprobe, kp);
 733	if (!kprobe_optimized(p))
 734		return;
 735
 736	if (!list_empty(&op->list)) {
 737		if (optprobe_queued_unopt(op)) {
 738			/* Queued in unoptimizing queue */
 739			if (force) {
 740				/*
 741				 * Forcibly unoptimize the kprobe here, and queue it
 742				 * in the freeing list for release afterwards.
 743				 */
 744				force_unoptimize_kprobe(op);
 745				list_move(&op->list, &freeing_list);
 746			}
 747		} else {
 748			/* Dequeue from the optimizing queue */
 749			list_del_init(&op->list);
 750			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 751		}
 752		return;
 753	}
 754
 755	/* Optimized kprobe case */
 756	if (force) {
 757		/* Forcibly update the code: this is a special case */
 758		force_unoptimize_kprobe(op);
 759	} else {
 760		list_add(&op->list, &unoptimizing_list);
 761		kick_kprobe_optimizer();
 762	}
 763}
 764
 765/* Cancel unoptimizing for reusing */
 766static int reuse_unused_kprobe(struct kprobe *ap)
 767{
 768	struct optimized_kprobe *op;
 769
 770	/*
 771	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 772	 * there is still a relative jump) and disabled.
 773	 */
 774	op = container_of(ap, struct optimized_kprobe, kp);
 775	WARN_ON_ONCE(list_empty(&op->list));
 776	/* Enable the probe again */
 777	ap->flags &= ~KPROBE_FLAG_DISABLED;
 778	/* Optimize it again. (remove from 'op->list') */
 779	if (!kprobe_optready(ap))
 780		return -EINVAL;
 781
 782	optimize_kprobe(ap);
 783	return 0;
 784}
 785
 786/* Remove optimized instructions */
 787static void kill_optimized_kprobe(struct kprobe *p)
 788{
 789	struct optimized_kprobe *op;
 790
 791	op = container_of(p, struct optimized_kprobe, kp);
 792	if (!list_empty(&op->list))
 793		/* Dequeue from the (un)optimization queue */
 794		list_del_init(&op->list);
 795	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 796
 797	if (kprobe_unused(p)) {
 798		/*
 799		 * Unused kprobe is on unoptimizing or freeing list. We move it
 800		 * to freeing_list and let the kprobe_optimizer() remove it from
 801		 * the kprobe hash list and free it.
 802		 */
 803		if (optprobe_queued_unopt(op))
 804			list_move(&op->list, &freeing_list);
 805	}
 806
 807	/* Don't touch the code, because it is already freed. */
 808	arch_remove_optimized_kprobe(op);
 809}
 810
 811static inline
 812void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 813{
 814	if (!kprobe_ftrace(p))
 815		arch_prepare_optimized_kprobe(op, p);
 816}
 817
 818/* Try to prepare optimized instructions */
 819static void prepare_optimized_kprobe(struct kprobe *p)
 820{
 821	struct optimized_kprobe *op;
 822
 823	op = container_of(p, struct optimized_kprobe, kp);
 824	__prepare_optimized_kprobe(op, p);
 825}
 826
 827/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
 828static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 829{
 830	struct optimized_kprobe *op;
 831
 832	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 833	if (!op)
 834		return NULL;
 835
 836	INIT_LIST_HEAD(&op->list);
 837	op->kp.addr = p->addr;
 838	__prepare_optimized_kprobe(op, p);
 839
 840	return &op->kp;
 841}
 842
 843static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 844
 845/*
 846 * Prepare an optimized_kprobe and optimize it.
 847 * NOTE: 'p' must be a normal registered kprobe.
 848 */
 849static void try_to_optimize_kprobe(struct kprobe *p)
 850{
 851	struct kprobe *ap;
 852	struct optimized_kprobe *op;
 853
 854	/* Impossible to optimize ftrace-based kprobe. */
 855	if (kprobe_ftrace(p))
 856		return;
 857
 858	/* For preparing optimization, jump_label_text_reserved() is called. */
 859	cpus_read_lock();
 860	jump_label_lock();
 861	mutex_lock(&text_mutex);
 862
 863	ap = alloc_aggr_kprobe(p);
 864	if (!ap)
 865		goto out;
 866
 867	op = container_of(ap, struct optimized_kprobe, kp);
 868	if (!arch_prepared_optinsn(&op->optinsn)) {
 869		/* If failed to setup optimizing, fallback to kprobe. */
 870		arch_remove_optimized_kprobe(op);
 871		kfree(op);
 872		goto out;
 873	}
 874
 875	init_aggr_kprobe(ap, p);
 876	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
 877
 878out:
 879	mutex_unlock(&text_mutex);
 880	jump_label_unlock();
 881	cpus_read_unlock();
 882}
 883
 884static void optimize_all_kprobes(void)
 885{
 886	struct hlist_head *head;
 887	struct kprobe *p;
 888	unsigned int i;
 889
 890	mutex_lock(&kprobe_mutex);
 891	/* If optimization is already allowed, just return. */
 892	if (kprobes_allow_optimization)
 893		goto out;
 894
 895	cpus_read_lock();
 896	kprobes_allow_optimization = true;
 897	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 898		head = &kprobe_table[i];
 899		hlist_for_each_entry(p, head, hlist)
 900			if (!kprobe_disabled(p))
 901				optimize_kprobe(p);
 902	}
 903	cpus_read_unlock();
 904	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
 905out:
 906	mutex_unlock(&kprobe_mutex);
 907}
 908
 909#ifdef CONFIG_SYSCTL
 910static void unoptimize_all_kprobes(void)
 911{
 912	struct hlist_head *head;
 913	struct kprobe *p;
 914	unsigned int i;
 915
 916	mutex_lock(&kprobe_mutex);
 917	/* If optimization is already prohibited, just return. */
 918	if (!kprobes_allow_optimization) {
 919		mutex_unlock(&kprobe_mutex);
 920		return;
 921	}
 922
 923	cpus_read_lock();
 924	kprobes_allow_optimization = false;
 925	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 926		head = &kprobe_table[i];
 927		hlist_for_each_entry(p, head, hlist) {
 928			if (!kprobe_disabled(p))
 929				unoptimize_kprobe(p, false);
 930		}
 931	}
 932	cpus_read_unlock();
 933	mutex_unlock(&kprobe_mutex);
 934
 935	/* Wait for unoptimizing completion. */
 936	wait_for_kprobe_optimizer();
 937	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
 938}
 939
 940static DEFINE_MUTEX(kprobe_sysctl_mutex);
 941static int sysctl_kprobes_optimization;
 942static int proc_kprobes_optimization_handler(struct ctl_table *table,
 943					     int write, void *buffer,
 944					     size_t *length, loff_t *ppos)
 945{
 946	int ret;
 947
 948	mutex_lock(&kprobe_sysctl_mutex);
 949	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 950	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 951
 952	if (sysctl_kprobes_optimization)
 953		optimize_all_kprobes();
 954	else
 955		unoptimize_all_kprobes();
 956	mutex_unlock(&kprobe_sysctl_mutex);
 957
 958	return ret;
 959}
 960
 961static struct ctl_table kprobe_sysctls[] = {
 962	{
 963		.procname	= "kprobes-optimization",
 964		.data		= &sysctl_kprobes_optimization,
 965		.maxlen		= sizeof(int),
 966		.mode		= 0644,
 967		.proc_handler	= proc_kprobes_optimization_handler,
 968		.extra1		= SYSCTL_ZERO,
 969		.extra2		= SYSCTL_ONE,
 970	},
 971	{}
 972};
 973
 974static void __init kprobe_sysctls_init(void)
 975{
 976	register_sysctl_init("debug", kprobe_sysctls);
 977}
 978#endif /* CONFIG_SYSCTL */
 979
 980/* Put a breakpoint for a probe. */
 981static void __arm_kprobe(struct kprobe *p)
 982{
 983	struct kprobe *_p;
 984
 985	lockdep_assert_held(&text_mutex);
 986
 987	/* Find the overlapping optimized kprobes. */
 988	_p = get_optimized_kprobe(p->addr);
 989	if (unlikely(_p))
 990		/* Fallback to unoptimized kprobe */
 991		unoptimize_kprobe(_p, true);
 992
 993	arch_arm_kprobe(p);
 994	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 995}
 996
 997/* Remove the breakpoint of a probe. */
 998static void __disarm_kprobe(struct kprobe *p, bool reopt)
 999{
1000	struct kprobe *_p;
1001
1002	lockdep_assert_held(&text_mutex);
1003
1004	/* Try to unoptimize */
1005	unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007	if (!kprobe_queued(p)) {
1008		arch_disarm_kprobe(p);
1009		/* If another kprobe was blocked, re-optimize it. */
1010		_p = get_optimized_kprobe(p->addr);
1011		if (unlikely(_p) && reopt)
1012			optimize_kprobe(_p);
1013	}
1014	/*
1015	 * TODO: Since unoptimization and real disarming will be done by
1016	 * the worker thread, we can not check whether another probe are
1017	 * unoptimized because of this probe here. It should be re-optimized
1018	 * by the worker thread.
1019	 */
1020}
1021
1022#else /* !CONFIG_OPTPROBES */
1023
1024#define optimize_kprobe(p)			do {} while (0)
1025#define unoptimize_kprobe(p, f)			do {} while (0)
1026#define kill_optimized_kprobe(p)		do {} while (0)
1027#define prepare_optimized_kprobe(p)		do {} while (0)
1028#define try_to_optimize_kprobe(p)		do {} while (0)
1029#define __arm_kprobe(p)				arch_arm_kprobe(p)
1030#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1031#define kprobe_disarmed(p)			kprobe_disabled(p)
1032#define wait_for_kprobe_optimizer()		do {} while (0)
1033
1034static int reuse_unused_kprobe(struct kprobe *ap)
1035{
1036	/*
1037	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038	 * released at the same time that the last aggregated kprobe is
1039	 * unregistered.
1040	 * Thus there should be no chance to reuse unused kprobe.
1041	 */
1042	WARN_ON_ONCE(1);
1043	return -EINVAL;
1044}
1045
1046static void free_aggr_kprobe(struct kprobe *p)
1047{
1048	arch_remove_kprobe(p);
1049	kfree(p);
1050}
1051
1052static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053{
1054	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055}
1056#endif /* CONFIG_OPTPROBES */
1057
1058#ifdef CONFIG_KPROBES_ON_FTRACE
1059static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060	.func = kprobe_ftrace_handler,
1061	.flags = FTRACE_OPS_FL_SAVE_REGS,
1062};
1063
1064static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065	.func = kprobe_ftrace_handler,
1066	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067};
1068
1069static int kprobe_ipmodify_enabled;
1070static int kprobe_ftrace_enabled;
1071
1072static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073			       int *cnt)
1074{
1075	int ret;
1076
1077	lockdep_assert_held(&kprobe_mutex);
1078
1079	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081		return ret;
1082
1083	if (*cnt == 0) {
1084		ret = register_ftrace_function(ops);
1085		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086			goto err_ftrace;
1087	}
1088
1089	(*cnt)++;
1090	return ret;
1091
1092err_ftrace:
1093	/*
1094	 * At this point, sinec ops is not registered, we should be sefe from
1095	 * registering empty filter.
1096	 */
1097	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098	return ret;
1099}
1100
1101static int arm_kprobe_ftrace(struct kprobe *p)
1102{
1103	bool ipmodify = (p->post_handler != NULL);
1104
1105	return __arm_kprobe_ftrace(p,
1106		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108}
1109
1110static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111				  int *cnt)
1112{
1113	int ret;
1114
1115	lockdep_assert_held(&kprobe_mutex);
1116
1117	if (*cnt == 1) {
1118		ret = unregister_ftrace_function(ops);
1119		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120			return ret;
1121	}
1122
1123	(*cnt)--;
1124
1125	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127		  p->addr, ret);
1128	return ret;
1129}
1130
1131static int disarm_kprobe_ftrace(struct kprobe *p)
1132{
1133	bool ipmodify = (p->post_handler != NULL);
1134
1135	return __disarm_kprobe_ftrace(p,
1136		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138}
1139#else	/* !CONFIG_KPROBES_ON_FTRACE */
1140static inline int arm_kprobe_ftrace(struct kprobe *p)
1141{
1142	return -ENODEV;
1143}
1144
1145static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146{
1147	return -ENODEV;
1148}
1149#endif
1150
1151static int prepare_kprobe(struct kprobe *p)
1152{
1153	/* Must ensure p->addr is really on ftrace */
1154	if (kprobe_ftrace(p))
1155		return arch_prepare_kprobe_ftrace(p);
1156
1157	return arch_prepare_kprobe(p);
1158}
1159
1160static int arm_kprobe(struct kprobe *kp)
1161{
1162	if (unlikely(kprobe_ftrace(kp)))
1163		return arm_kprobe_ftrace(kp);
1164
1165	cpus_read_lock();
1166	mutex_lock(&text_mutex);
1167	__arm_kprobe(kp);
1168	mutex_unlock(&text_mutex);
1169	cpus_read_unlock();
1170
1171	return 0;
1172}
1173
1174static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175{
1176	if (unlikely(kprobe_ftrace(kp)))
1177		return disarm_kprobe_ftrace(kp);
1178
1179	cpus_read_lock();
1180	mutex_lock(&text_mutex);
1181	__disarm_kprobe(kp, reopt);
1182	mutex_unlock(&text_mutex);
1183	cpus_read_unlock();
1184
1185	return 0;
1186}
1187
1188/*
1189 * Aggregate handlers for multiple kprobes support - these handlers
1190 * take care of invoking the individual kprobe handlers on p->list
1191 */
1192static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193{
1194	struct kprobe *kp;
1195
1196	list_for_each_entry_rcu(kp, &p->list, list) {
1197		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198			set_kprobe_instance(kp);
1199			if (kp->pre_handler(kp, regs))
1200				return 1;
1201		}
1202		reset_kprobe_instance();
1203	}
1204	return 0;
1205}
1206NOKPROBE_SYMBOL(aggr_pre_handler);
1207
1208static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209			      unsigned long flags)
1210{
1211	struct kprobe *kp;
1212
1213	list_for_each_entry_rcu(kp, &p->list, list) {
1214		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215			set_kprobe_instance(kp);
1216			kp->post_handler(kp, regs, flags);
1217			reset_kprobe_instance();
1218		}
1219	}
1220}
1221NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224void kprobes_inc_nmissed_count(struct kprobe *p)
1225{
1226	struct kprobe *kp;
1227
1228	if (!kprobe_aggrprobe(p)) {
1229		p->nmissed++;
1230	} else {
1231		list_for_each_entry_rcu(kp, &p->list, list)
1232			kp->nmissed++;
1233	}
1234}
1235NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237static struct kprobe kprobe_busy = {
1238	.addr = (void *) get_kprobe,
1239};
1240
1241void kprobe_busy_begin(void)
1242{
1243	struct kprobe_ctlblk *kcb;
1244
1245	preempt_disable();
1246	__this_cpu_write(current_kprobe, &kprobe_busy);
1247	kcb = get_kprobe_ctlblk();
1248	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249}
1250
1251void kprobe_busy_end(void)
1252{
1253	__this_cpu_write(current_kprobe, NULL);
1254	preempt_enable();
1255}
1256
1257/* Add the new probe to 'ap->list'. */
1258static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259{
1260	if (p->post_handler)
1261		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1262
1263	list_add_rcu(&p->list, &ap->list);
1264	if (p->post_handler && !ap->post_handler)
1265		ap->post_handler = aggr_post_handler;
1266
1267	return 0;
1268}
1269
1270/*
1271 * Fill in the required fields of the aggregator kprobe. Replace the
1272 * earlier kprobe in the hlist with the aggregator kprobe.
1273 */
1274static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275{
1276	/* Copy the insn slot of 'p' to 'ap'. */
1277	copy_kprobe(p, ap);
1278	flush_insn_slot(ap);
1279	ap->addr = p->addr;
1280	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281	ap->pre_handler = aggr_pre_handler;
1282	/* We don't care the kprobe which has gone. */
1283	if (p->post_handler && !kprobe_gone(p))
1284		ap->post_handler = aggr_post_handler;
1285
1286	INIT_LIST_HEAD(&ap->list);
1287	INIT_HLIST_NODE(&ap->hlist);
1288
1289	list_add_rcu(&p->list, &ap->list);
1290	hlist_replace_rcu(&p->hlist, &ap->hlist);
1291}
1292
1293/*
1294 * This registers the second or subsequent kprobe at the same address.
1295 */
1296static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297{
1298	int ret = 0;
1299	struct kprobe *ap = orig_p;
1300
1301	cpus_read_lock();
1302
1303	/* For preparing optimization, jump_label_text_reserved() is called */
1304	jump_label_lock();
1305	mutex_lock(&text_mutex);
1306
1307	if (!kprobe_aggrprobe(orig_p)) {
1308		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309		ap = alloc_aggr_kprobe(orig_p);
1310		if (!ap) {
1311			ret = -ENOMEM;
1312			goto out;
1313		}
1314		init_aggr_kprobe(ap, orig_p);
1315	} else if (kprobe_unused(ap)) {
1316		/* This probe is going to die. Rescue it */
1317		ret = reuse_unused_kprobe(ap);
1318		if (ret)
1319			goto out;
1320	}
1321
1322	if (kprobe_gone(ap)) {
1323		/*
1324		 * Attempting to insert new probe at the same location that
1325		 * had a probe in the module vaddr area which already
1326		 * freed. So, the instruction slot has already been
1327		 * released. We need a new slot for the new probe.
1328		 */
1329		ret = arch_prepare_kprobe(ap);
1330		if (ret)
1331			/*
1332			 * Even if fail to allocate new slot, don't need to
1333			 * free the 'ap'. It will be used next time, or
1334			 * freed by unregister_kprobe().
1335			 */
1336			goto out;
1337
1338		/* Prepare optimized instructions if possible. */
1339		prepare_optimized_kprobe(ap);
1340
1341		/*
1342		 * Clear gone flag to prevent allocating new slot again, and
1343		 * set disabled flag because it is not armed yet.
1344		 */
1345		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346			    | KPROBE_FLAG_DISABLED;
1347	}
1348
1349	/* Copy the insn slot of 'p' to 'ap'. */
1350	copy_kprobe(ap, p);
1351	ret = add_new_kprobe(ap, p);
1352
1353out:
1354	mutex_unlock(&text_mutex);
1355	jump_label_unlock();
1356	cpus_read_unlock();
1357
1358	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359		ap->flags &= ~KPROBE_FLAG_DISABLED;
1360		if (!kprobes_all_disarmed) {
1361			/* Arm the breakpoint again. */
1362			ret = arm_kprobe(ap);
1363			if (ret) {
1364				ap->flags |= KPROBE_FLAG_DISABLED;
1365				list_del_rcu(&p->list);
1366				synchronize_rcu();
1367			}
1368		}
1369	}
1370	return ret;
1371}
1372
1373bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374{
1375	/* The '__kprobes' functions and entry code must not be probed. */
1376	return addr >= (unsigned long)__kprobes_text_start &&
1377	       addr < (unsigned long)__kprobes_text_end;
1378}
1379
1380static bool __within_kprobe_blacklist(unsigned long addr)
1381{
1382	struct kprobe_blacklist_entry *ent;
1383
1384	if (arch_within_kprobe_blacklist(addr))
1385		return true;
1386	/*
1387	 * If 'kprobe_blacklist' is defined, check the address and
1388	 * reject any probe registration in the prohibited area.
1389	 */
1390	list_for_each_entry(ent, &kprobe_blacklist, list) {
1391		if (addr >= ent->start_addr && addr < ent->end_addr)
1392			return true;
1393	}
1394	return false;
1395}
1396
1397bool within_kprobe_blacklist(unsigned long addr)
1398{
1399	char symname[KSYM_NAME_LEN], *p;
1400
1401	if (__within_kprobe_blacklist(addr))
1402		return true;
1403
1404	/* Check if the address is on a suffixed-symbol */
1405	if (!lookup_symbol_name(addr, symname)) {
1406		p = strchr(symname, '.');
1407		if (!p)
1408			return false;
1409		*p = '\0';
1410		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411		if (addr)
1412			return __within_kprobe_blacklist(addr);
1413	}
1414	return false;
1415}
1416
1417/*
1418 * arch_adjust_kprobe_addr - adjust the address
1419 * @addr: symbol base address
1420 * @offset: offset within the symbol
1421 * @on_func_entry: was this @addr+@offset on the function entry
1422 *
1423 * Typically returns @addr + @offset, except for special cases where the
1424 * function might be prefixed by a CFI landing pad, in that case any offset
1425 * inside the landing pad is mapped to the first 'real' instruction of the
1426 * symbol.
1427 *
1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429 * instruction at +0.
1430 */
1431kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432						unsigned long offset,
1433						bool *on_func_entry)
1434{
1435	*on_func_entry = !offset;
1436	return (kprobe_opcode_t *)(addr + offset);
1437}
1438
1439/*
1440 * If 'symbol_name' is specified, look it up and add the 'offset'
1441 * to it. This way, we can specify a relative address to a symbol.
1442 * This returns encoded errors if it fails to look up symbol or invalid
1443 * combination of parameters.
1444 */
1445static kprobe_opcode_t *
1446_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447	     unsigned long offset, bool *on_func_entry)
1448{
1449	if ((symbol_name && addr) || (!symbol_name && !addr))
1450		goto invalid;
1451
1452	if (symbol_name) {
1453		/*
1454		 * Input: @sym + @offset
1455		 * Output: @addr + @offset
1456		 *
1457		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458		 *       argument into it's output!
1459		 */
1460		addr = kprobe_lookup_name(symbol_name, offset);
1461		if (!addr)
1462			return ERR_PTR(-ENOENT);
1463	}
1464
1465	/*
1466	 * So here we have @addr + @offset, displace it into a new
1467	 * @addr' + @offset' where @addr' is the symbol start address.
1468	 */
1469	addr = (void *)addr + offset;
1470	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471		return ERR_PTR(-ENOENT);
1472	addr = (void *)addr - offset;
1473
1474	/*
1475	 * Then ask the architecture to re-combine them, taking care of
1476	 * magical function entry details while telling us if this was indeed
1477	 * at the start of the function.
1478	 */
1479	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480	if (addr)
1481		return addr;
1482
1483invalid:
1484	return ERR_PTR(-EINVAL);
1485}
1486
1487static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488{
1489	bool on_func_entry;
1490	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491}
1492
1493/*
1494 * Check the 'p' is valid and return the aggregator kprobe
1495 * at the same address.
1496 */
1497static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498{
1499	struct kprobe *ap, *list_p;
1500
1501	lockdep_assert_held(&kprobe_mutex);
1502
1503	ap = get_kprobe(p->addr);
1504	if (unlikely(!ap))
1505		return NULL;
1506
1507	if (p != ap) {
1508		list_for_each_entry(list_p, &ap->list, list)
1509			if (list_p == p)
1510			/* kprobe p is a valid probe */
1511				goto valid;
1512		return NULL;
1513	}
1514valid:
1515	return ap;
1516}
1517
1518/*
1519 * Warn and return error if the kprobe is being re-registered since
1520 * there must be a software bug.
1521 */
1522static inline int warn_kprobe_rereg(struct kprobe *p)
1523{
1524	int ret = 0;
1525
1526	mutex_lock(&kprobe_mutex);
1527	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528		ret = -EINVAL;
1529	mutex_unlock(&kprobe_mutex);
1530
1531	return ret;
1532}
1533
1534static int check_ftrace_location(struct kprobe *p)
1535{
1536	unsigned long addr = (unsigned long)p->addr;
1537
1538	if (ftrace_location(addr) == addr) {
1539#ifdef CONFIG_KPROBES_ON_FTRACE
1540		p->flags |= KPROBE_FLAG_FTRACE;
1541#else	/* !CONFIG_KPROBES_ON_FTRACE */
1542		return -EINVAL;
1543#endif
1544	}
1545	return 0;
1546}
1547
1548static bool is_cfi_preamble_symbol(unsigned long addr)
1549{
1550	char symbuf[KSYM_NAME_LEN];
1551
1552	if (lookup_symbol_name(addr, symbuf))
1553		return false;
1554
1555	return str_has_prefix("__cfi_", symbuf) ||
1556		str_has_prefix("__pfx_", symbuf);
1557}
1558
1559static int check_kprobe_address_safe(struct kprobe *p,
1560				     struct module **probed_mod)
1561{
1562	int ret;
1563
1564	ret = check_ftrace_location(p);
1565	if (ret)
1566		return ret;
1567	jump_label_lock();
1568	preempt_disable();
1569
1570	/* Ensure it is not in reserved area nor out of text */
1571	if (!(core_kernel_text((unsigned long) p->addr) ||
1572	    is_module_text_address((unsigned long) p->addr)) ||
1573	    in_gate_area_no_mm((unsigned long) p->addr) ||
 
 
 
 
 
 
 
1574	    within_kprobe_blacklist((unsigned long) p->addr) ||
1575	    jump_label_text_reserved(p->addr, p->addr) ||
1576	    static_call_text_reserved(p->addr, p->addr) ||
1577	    find_bug((unsigned long)p->addr) ||
1578	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1579		ret = -EINVAL;
1580		goto out;
1581	}
1582
1583	/* Check if 'p' is probing a module. */
1584	*probed_mod = __module_text_address((unsigned long) p->addr);
1585	if (*probed_mod) {
1586		/*
1587		 * We must hold a refcount of the probed module while updating
1588		 * its code to prohibit unexpected unloading.
1589		 */
1590		if (unlikely(!try_module_get(*probed_mod))) {
1591			ret = -ENOENT;
1592			goto out;
1593		}
1594
1595		/*
1596		 * If the module freed '.init.text', we couldn't insert
1597		 * kprobes in there.
1598		 */
1599		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1600		    (*probed_mod)->state != MODULE_STATE_COMING) {
1601			module_put(*probed_mod);
1602			*probed_mod = NULL;
1603			ret = -ENOENT;
1604		}
1605	}
1606out:
1607	preempt_enable();
1608	jump_label_unlock();
1609
1610	return ret;
1611}
1612
1613int register_kprobe(struct kprobe *p)
1614{
1615	int ret;
1616	struct kprobe *old_p;
1617	struct module *probed_mod;
1618	kprobe_opcode_t *addr;
1619	bool on_func_entry;
1620
1621	/* Adjust probe address from symbol */
1622	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1623	if (IS_ERR(addr))
1624		return PTR_ERR(addr);
1625	p->addr = addr;
1626
1627	ret = warn_kprobe_rereg(p);
1628	if (ret)
1629		return ret;
1630
1631	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1632	p->flags &= KPROBE_FLAG_DISABLED;
1633	p->nmissed = 0;
1634	INIT_LIST_HEAD(&p->list);
1635
1636	ret = check_kprobe_address_safe(p, &probed_mod);
1637	if (ret)
1638		return ret;
1639
1640	mutex_lock(&kprobe_mutex);
1641
1642	if (on_func_entry)
1643		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1644
1645	old_p = get_kprobe(p->addr);
1646	if (old_p) {
1647		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1648		ret = register_aggr_kprobe(old_p, p);
1649		goto out;
1650	}
1651
1652	cpus_read_lock();
1653	/* Prevent text modification */
1654	mutex_lock(&text_mutex);
1655	ret = prepare_kprobe(p);
1656	mutex_unlock(&text_mutex);
1657	cpus_read_unlock();
1658	if (ret)
1659		goto out;
1660
1661	INIT_HLIST_NODE(&p->hlist);
1662	hlist_add_head_rcu(&p->hlist,
1663		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1664
1665	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1666		ret = arm_kprobe(p);
1667		if (ret) {
1668			hlist_del_rcu(&p->hlist);
1669			synchronize_rcu();
1670			goto out;
1671		}
1672	}
1673
1674	/* Try to optimize kprobe */
1675	try_to_optimize_kprobe(p);
1676out:
1677	mutex_unlock(&kprobe_mutex);
1678
1679	if (probed_mod)
1680		module_put(probed_mod);
1681
1682	return ret;
1683}
1684EXPORT_SYMBOL_GPL(register_kprobe);
1685
1686/* Check if all probes on the 'ap' are disabled. */
1687static bool aggr_kprobe_disabled(struct kprobe *ap)
1688{
1689	struct kprobe *kp;
1690
1691	lockdep_assert_held(&kprobe_mutex);
1692
1693	list_for_each_entry(kp, &ap->list, list)
1694		if (!kprobe_disabled(kp))
1695			/*
1696			 * Since there is an active probe on the list,
1697			 * we can't disable this 'ap'.
1698			 */
1699			return false;
1700
1701	return true;
1702}
1703
1704static struct kprobe *__disable_kprobe(struct kprobe *p)
1705{
1706	struct kprobe *orig_p;
1707	int ret;
1708
1709	lockdep_assert_held(&kprobe_mutex);
1710
1711	/* Get an original kprobe for return */
1712	orig_p = __get_valid_kprobe(p);
1713	if (unlikely(orig_p == NULL))
1714		return ERR_PTR(-EINVAL);
1715
1716	if (!kprobe_disabled(p)) {
1717		/* Disable probe if it is a child probe */
1718		if (p != orig_p)
1719			p->flags |= KPROBE_FLAG_DISABLED;
1720
1721		/* Try to disarm and disable this/parent probe */
1722		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1723			/*
1724			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1725			 * is false, 'orig_p' might not have been armed yet.
1726			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1727			 * on the best effort basis.
1728			 */
1729			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1730				ret = disarm_kprobe(orig_p, true);
1731				if (ret) {
1732					p->flags &= ~KPROBE_FLAG_DISABLED;
1733					return ERR_PTR(ret);
1734				}
1735			}
1736			orig_p->flags |= KPROBE_FLAG_DISABLED;
1737		}
1738	}
1739
1740	return orig_p;
1741}
1742
1743/*
1744 * Unregister a kprobe without a scheduler synchronization.
1745 */
1746static int __unregister_kprobe_top(struct kprobe *p)
1747{
1748	struct kprobe *ap, *list_p;
1749
1750	/* Disable kprobe. This will disarm it if needed. */
1751	ap = __disable_kprobe(p);
1752	if (IS_ERR(ap))
1753		return PTR_ERR(ap);
1754
1755	if (ap == p)
1756		/*
1757		 * This probe is an independent(and non-optimized) kprobe
1758		 * (not an aggrprobe). Remove from the hash list.
1759		 */
1760		goto disarmed;
1761
1762	/* Following process expects this probe is an aggrprobe */
1763	WARN_ON(!kprobe_aggrprobe(ap));
1764
1765	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1766		/*
1767		 * !disarmed could be happen if the probe is under delayed
1768		 * unoptimizing.
1769		 */
1770		goto disarmed;
1771	else {
1772		/* If disabling probe has special handlers, update aggrprobe */
1773		if (p->post_handler && !kprobe_gone(p)) {
1774			list_for_each_entry(list_p, &ap->list, list) {
1775				if ((list_p != p) && (list_p->post_handler))
1776					goto noclean;
1777			}
1778			/*
1779			 * For the kprobe-on-ftrace case, we keep the
1780			 * post_handler setting to identify this aggrprobe
1781			 * armed with kprobe_ipmodify_ops.
1782			 */
1783			if (!kprobe_ftrace(ap))
1784				ap->post_handler = NULL;
1785		}
1786noclean:
1787		/*
1788		 * Remove from the aggrprobe: this path will do nothing in
1789		 * __unregister_kprobe_bottom().
1790		 */
1791		list_del_rcu(&p->list);
1792		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1793			/*
1794			 * Try to optimize this probe again, because post
1795			 * handler may have been changed.
1796			 */
1797			optimize_kprobe(ap);
1798	}
1799	return 0;
1800
1801disarmed:
1802	hlist_del_rcu(&ap->hlist);
1803	return 0;
1804}
1805
1806static void __unregister_kprobe_bottom(struct kprobe *p)
1807{
1808	struct kprobe *ap;
1809
1810	if (list_empty(&p->list))
1811		/* This is an independent kprobe */
1812		arch_remove_kprobe(p);
1813	else if (list_is_singular(&p->list)) {
1814		/* This is the last child of an aggrprobe */
1815		ap = list_entry(p->list.next, struct kprobe, list);
1816		list_del(&p->list);
1817		free_aggr_kprobe(ap);
1818	}
1819	/* Otherwise, do nothing. */
1820}
1821
1822int register_kprobes(struct kprobe **kps, int num)
1823{
1824	int i, ret = 0;
1825
1826	if (num <= 0)
1827		return -EINVAL;
1828	for (i = 0; i < num; i++) {
1829		ret = register_kprobe(kps[i]);
1830		if (ret < 0) {
1831			if (i > 0)
1832				unregister_kprobes(kps, i);
1833			break;
1834		}
1835	}
1836	return ret;
1837}
1838EXPORT_SYMBOL_GPL(register_kprobes);
1839
1840void unregister_kprobe(struct kprobe *p)
1841{
1842	unregister_kprobes(&p, 1);
1843}
1844EXPORT_SYMBOL_GPL(unregister_kprobe);
1845
1846void unregister_kprobes(struct kprobe **kps, int num)
1847{
1848	int i;
1849
1850	if (num <= 0)
1851		return;
1852	mutex_lock(&kprobe_mutex);
1853	for (i = 0; i < num; i++)
1854		if (__unregister_kprobe_top(kps[i]) < 0)
1855			kps[i]->addr = NULL;
1856	mutex_unlock(&kprobe_mutex);
1857
1858	synchronize_rcu();
1859	for (i = 0; i < num; i++)
1860		if (kps[i]->addr)
1861			__unregister_kprobe_bottom(kps[i]);
1862}
1863EXPORT_SYMBOL_GPL(unregister_kprobes);
1864
1865int __weak kprobe_exceptions_notify(struct notifier_block *self,
1866					unsigned long val, void *data)
1867{
1868	return NOTIFY_DONE;
1869}
1870NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1871
1872static struct notifier_block kprobe_exceptions_nb = {
1873	.notifier_call = kprobe_exceptions_notify,
1874	.priority = 0x7fffffff /* we need to be notified first */
1875};
1876
1877#ifdef CONFIG_KRETPROBES
1878
1879#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1880
1881/* callbacks for objpool of kretprobe instances */
1882static int kretprobe_init_inst(void *nod, void *context)
1883{
1884	struct kretprobe_instance *ri = nod;
1885
1886	ri->rph = context;
1887	return 0;
1888}
1889static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1890{
1891	kfree(context);
1892	return 0;
1893}
1894
1895static void free_rp_inst_rcu(struct rcu_head *head)
1896{
1897	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1898	struct kretprobe_holder *rph = ri->rph;
1899
1900	objpool_drop(ri, &rph->pool);
1901}
1902NOKPROBE_SYMBOL(free_rp_inst_rcu);
1903
1904static void recycle_rp_inst(struct kretprobe_instance *ri)
1905{
1906	struct kretprobe *rp = get_kretprobe(ri);
1907
1908	if (likely(rp))
1909		objpool_push(ri, &rp->rph->pool);
1910	else
1911		call_rcu(&ri->rcu, free_rp_inst_rcu);
1912}
1913NOKPROBE_SYMBOL(recycle_rp_inst);
1914
1915/*
1916 * This function is called from delayed_put_task_struct() when a task is
1917 * dead and cleaned up to recycle any kretprobe instances associated with
1918 * this task. These left over instances represent probed functions that
1919 * have been called but will never return.
1920 */
1921void kprobe_flush_task(struct task_struct *tk)
1922{
1923	struct kretprobe_instance *ri;
1924	struct llist_node *node;
1925
1926	/* Early boot, not yet initialized. */
1927	if (unlikely(!kprobes_initialized))
1928		return;
1929
1930	kprobe_busy_begin();
1931
1932	node = __llist_del_all(&tk->kretprobe_instances);
1933	while (node) {
1934		ri = container_of(node, struct kretprobe_instance, llist);
1935		node = node->next;
1936
1937		recycle_rp_inst(ri);
1938	}
1939
1940	kprobe_busy_end();
1941}
1942NOKPROBE_SYMBOL(kprobe_flush_task);
1943
1944static inline void free_rp_inst(struct kretprobe *rp)
1945{
1946	struct kretprobe_holder *rph = rp->rph;
1947
1948	if (!rph)
1949		return;
1950	rp->rph = NULL;
1951	objpool_fini(&rph->pool);
1952}
1953
1954/* This assumes the 'tsk' is the current task or the is not running. */
1955static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1956						  struct llist_node **cur)
1957{
1958	struct kretprobe_instance *ri = NULL;
1959	struct llist_node *node = *cur;
1960
1961	if (!node)
1962		node = tsk->kretprobe_instances.first;
1963	else
1964		node = node->next;
1965
1966	while (node) {
1967		ri = container_of(node, struct kretprobe_instance, llist);
1968		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1969			*cur = node;
1970			return ri->ret_addr;
1971		}
1972		node = node->next;
1973	}
1974	return NULL;
1975}
1976NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1977
1978/**
1979 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1980 * @tsk: Target task
1981 * @fp: A frame pointer
1982 * @cur: a storage of the loop cursor llist_node pointer for next call
1983 *
1984 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1985 * long type. If it finds the return address, this returns that address value,
1986 * or this returns 0.
1987 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1988 * to get the currect return address - which is compared with the
1989 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1990 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1991 * first call, but '@cur' itself must NOT NULL.
1992 */
1993unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1994				      struct llist_node **cur)
1995{
1996	struct kretprobe_instance *ri;
1997	kprobe_opcode_t *ret;
1998
1999	if (WARN_ON_ONCE(!cur))
2000		return 0;
2001
2002	do {
2003		ret = __kretprobe_find_ret_addr(tsk, cur);
2004		if (!ret)
2005			break;
2006		ri = container_of(*cur, struct kretprobe_instance, llist);
2007	} while (ri->fp != fp);
2008
2009	return (unsigned long)ret;
2010}
2011NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2012
2013void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2014					kprobe_opcode_t *correct_ret_addr)
2015{
2016	/*
2017	 * Do nothing by default. Please fill this to update the fake return
2018	 * address on the stack with the correct one on each arch if possible.
2019	 */
2020}
2021
2022unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2023					     void *frame_pointer)
2024{
2025	struct kretprobe_instance *ri = NULL;
2026	struct llist_node *first, *node = NULL;
2027	kprobe_opcode_t *correct_ret_addr;
2028	struct kretprobe *rp;
2029
2030	/* Find correct address and all nodes for this frame. */
2031	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2032	if (!correct_ret_addr) {
2033		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2034		BUG_ON(1);
2035	}
2036
2037	/*
2038	 * Set the return address as the instruction pointer, because if the
2039	 * user handler calls stack_trace_save_regs() with this 'regs',
2040	 * the stack trace will start from the instruction pointer.
2041	 */
2042	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2043
2044	/* Run the user handler of the nodes. */
2045	first = current->kretprobe_instances.first;
2046	while (first) {
2047		ri = container_of(first, struct kretprobe_instance, llist);
2048
2049		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2050			break;
2051
2052		rp = get_kretprobe(ri);
2053		if (rp && rp->handler) {
2054			struct kprobe *prev = kprobe_running();
2055
2056			__this_cpu_write(current_kprobe, &rp->kp);
2057			ri->ret_addr = correct_ret_addr;
2058			rp->handler(ri, regs);
2059			__this_cpu_write(current_kprobe, prev);
2060		}
2061		if (first == node)
2062			break;
2063
2064		first = first->next;
2065	}
2066
2067	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2068
2069	/* Unlink all nodes for this frame. */
2070	first = current->kretprobe_instances.first;
2071	current->kretprobe_instances.first = node->next;
2072	node->next = NULL;
2073
2074	/* Recycle free instances. */
2075	while (first) {
2076		ri = container_of(first, struct kretprobe_instance, llist);
2077		first = first->next;
2078
2079		recycle_rp_inst(ri);
2080	}
2081
2082	return (unsigned long)correct_ret_addr;
2083}
2084NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2085
2086/*
2087 * This kprobe pre_handler is registered with every kretprobe. When probe
2088 * hits it will set up the return probe.
2089 */
2090static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2091{
2092	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2093	struct kretprobe_holder *rph = rp->rph;
2094	struct kretprobe_instance *ri;
2095
2096	ri = objpool_pop(&rph->pool);
2097	if (!ri) {
2098		rp->nmissed++;
2099		return 0;
2100	}
2101
2102	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2103		objpool_push(ri, &rph->pool);
2104		return 0;
2105	}
2106
2107	arch_prepare_kretprobe(ri, regs);
2108
2109	__llist_add(&ri->llist, &current->kretprobe_instances);
2110
2111	return 0;
2112}
2113NOKPROBE_SYMBOL(pre_handler_kretprobe);
2114#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2115/*
2116 * This kprobe pre_handler is registered with every kretprobe. When probe
2117 * hits it will set up the return probe.
2118 */
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2122	struct kretprobe_instance *ri;
2123	struct rethook_node *rhn;
2124
2125	rhn = rethook_try_get(rp->rh);
2126	if (!rhn) {
2127		rp->nmissed++;
2128		return 0;
2129	}
2130
2131	ri = container_of(rhn, struct kretprobe_instance, node);
2132
2133	if (rp->entry_handler && rp->entry_handler(ri, regs))
2134		rethook_recycle(rhn);
2135	else
2136		rethook_hook(rhn, regs, kprobe_ftrace(p));
2137
2138	return 0;
2139}
2140NOKPROBE_SYMBOL(pre_handler_kretprobe);
2141
2142static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2143				      unsigned long ret_addr,
2144				      struct pt_regs *regs)
2145{
2146	struct kretprobe *rp = (struct kretprobe *)data;
2147	struct kretprobe_instance *ri;
2148	struct kprobe_ctlblk *kcb;
2149
2150	/* The data must NOT be null. This means rethook data structure is broken. */
2151	if (WARN_ON_ONCE(!data) || !rp->handler)
2152		return;
2153
2154	__this_cpu_write(current_kprobe, &rp->kp);
2155	kcb = get_kprobe_ctlblk();
2156	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2157
2158	ri = container_of(rh, struct kretprobe_instance, node);
2159	rp->handler(ri, regs);
2160
2161	__this_cpu_write(current_kprobe, NULL);
2162}
2163NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2164
2165#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2166
2167/**
2168 * kprobe_on_func_entry() -- check whether given address is function entry
2169 * @addr: Target address
2170 * @sym:  Target symbol name
2171 * @offset: The offset from the symbol or the address
2172 *
2173 * This checks whether the given @addr+@offset or @sym+@offset is on the
2174 * function entry address or not.
2175 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2176 * And also it returns -ENOENT if it fails the symbol or address lookup.
2177 * Caller must pass @addr or @sym (either one must be NULL), or this
2178 * returns -EINVAL.
2179 */
2180int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2181{
2182	bool on_func_entry;
2183	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2184
2185	if (IS_ERR(kp_addr))
2186		return PTR_ERR(kp_addr);
2187
2188	if (!on_func_entry)
2189		return -EINVAL;
2190
2191	return 0;
2192}
2193
2194int register_kretprobe(struct kretprobe *rp)
2195{
2196	int ret;
2197	int i;
2198	void *addr;
2199
2200	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2201	if (ret)
2202		return ret;
2203
2204	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2205	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2206		return -EINVAL;
2207
2208	if (kretprobe_blacklist_size) {
2209		addr = kprobe_addr(&rp->kp);
2210		if (IS_ERR(addr))
2211			return PTR_ERR(addr);
2212
2213		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2214			if (kretprobe_blacklist[i].addr == addr)
2215				return -EINVAL;
2216		}
2217	}
2218
2219	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2220		return -E2BIG;
2221
2222	rp->kp.pre_handler = pre_handler_kretprobe;
2223	rp->kp.post_handler = NULL;
2224
2225	/* Pre-allocate memory for max kretprobe instances */
2226	if (rp->maxactive <= 0)
2227		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2228
2229#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2230	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2231				sizeof(struct kretprobe_instance) +
2232				rp->data_size, rp->maxactive);
2233	if (IS_ERR(rp->rh))
2234		return PTR_ERR(rp->rh);
2235
2236	rp->nmissed = 0;
2237	/* Establish function entry probe point */
2238	ret = register_kprobe(&rp->kp);
2239	if (ret != 0) {
2240		rethook_free(rp->rh);
2241		rp->rh = NULL;
2242	}
2243#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2244	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2245	if (!rp->rph)
2246		return -ENOMEM;
2247
2248	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2249			sizeof(struct kretprobe_instance), GFP_KERNEL,
2250			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2251		kfree(rp->rph);
2252		rp->rph = NULL;
2253		return -ENOMEM;
2254	}
2255	rcu_assign_pointer(rp->rph->rp, rp);
2256	rp->nmissed = 0;
2257	/* Establish function entry probe point */
2258	ret = register_kprobe(&rp->kp);
2259	if (ret != 0)
2260		free_rp_inst(rp);
2261#endif
2262	return ret;
2263}
2264EXPORT_SYMBOL_GPL(register_kretprobe);
2265
2266int register_kretprobes(struct kretprobe **rps, int num)
2267{
2268	int ret = 0, i;
2269
2270	if (num <= 0)
2271		return -EINVAL;
2272	for (i = 0; i < num; i++) {
2273		ret = register_kretprobe(rps[i]);
2274		if (ret < 0) {
2275			if (i > 0)
2276				unregister_kretprobes(rps, i);
2277			break;
2278		}
2279	}
2280	return ret;
2281}
2282EXPORT_SYMBOL_GPL(register_kretprobes);
2283
2284void unregister_kretprobe(struct kretprobe *rp)
2285{
2286	unregister_kretprobes(&rp, 1);
2287}
2288EXPORT_SYMBOL_GPL(unregister_kretprobe);
2289
2290void unregister_kretprobes(struct kretprobe **rps, int num)
2291{
2292	int i;
2293
2294	if (num <= 0)
2295		return;
2296	mutex_lock(&kprobe_mutex);
2297	for (i = 0; i < num; i++) {
2298		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2299			rps[i]->kp.addr = NULL;
2300#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2301		rethook_free(rps[i]->rh);
2302#else
2303		rcu_assign_pointer(rps[i]->rph->rp, NULL);
2304#endif
2305	}
2306	mutex_unlock(&kprobe_mutex);
2307
2308	synchronize_rcu();
2309	for (i = 0; i < num; i++) {
2310		if (rps[i]->kp.addr) {
2311			__unregister_kprobe_bottom(&rps[i]->kp);
2312#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2313			free_rp_inst(rps[i]);
2314#endif
2315		}
2316	}
2317}
2318EXPORT_SYMBOL_GPL(unregister_kretprobes);
2319
2320#else /* CONFIG_KRETPROBES */
2321int register_kretprobe(struct kretprobe *rp)
2322{
2323	return -EOPNOTSUPP;
2324}
2325EXPORT_SYMBOL_GPL(register_kretprobe);
2326
2327int register_kretprobes(struct kretprobe **rps, int num)
2328{
2329	return -EOPNOTSUPP;
2330}
2331EXPORT_SYMBOL_GPL(register_kretprobes);
2332
2333void unregister_kretprobe(struct kretprobe *rp)
2334{
2335}
2336EXPORT_SYMBOL_GPL(unregister_kretprobe);
2337
2338void unregister_kretprobes(struct kretprobe **rps, int num)
2339{
2340}
2341EXPORT_SYMBOL_GPL(unregister_kretprobes);
2342
2343static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2344{
2345	return 0;
2346}
2347NOKPROBE_SYMBOL(pre_handler_kretprobe);
2348
2349#endif /* CONFIG_KRETPROBES */
2350
2351/* Set the kprobe gone and remove its instruction buffer. */
2352static void kill_kprobe(struct kprobe *p)
2353{
2354	struct kprobe *kp;
2355
2356	lockdep_assert_held(&kprobe_mutex);
2357
2358	/*
2359	 * The module is going away. We should disarm the kprobe which
2360	 * is using ftrace, because ftrace framework is still available at
2361	 * 'MODULE_STATE_GOING' notification.
2362	 */
2363	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2364		disarm_kprobe_ftrace(p);
2365
2366	p->flags |= KPROBE_FLAG_GONE;
2367	if (kprobe_aggrprobe(p)) {
2368		/*
2369		 * If this is an aggr_kprobe, we have to list all the
2370		 * chained probes and mark them GONE.
2371		 */
2372		list_for_each_entry(kp, &p->list, list)
2373			kp->flags |= KPROBE_FLAG_GONE;
2374		p->post_handler = NULL;
2375		kill_optimized_kprobe(p);
2376	}
2377	/*
2378	 * Here, we can remove insn_slot safely, because no thread calls
2379	 * the original probed function (which will be freed soon) any more.
2380	 */
2381	arch_remove_kprobe(p);
2382}
2383
2384/* Disable one kprobe */
2385int disable_kprobe(struct kprobe *kp)
2386{
2387	int ret = 0;
2388	struct kprobe *p;
2389
2390	mutex_lock(&kprobe_mutex);
2391
2392	/* Disable this kprobe */
2393	p = __disable_kprobe(kp);
2394	if (IS_ERR(p))
2395		ret = PTR_ERR(p);
2396
2397	mutex_unlock(&kprobe_mutex);
2398	return ret;
2399}
2400EXPORT_SYMBOL_GPL(disable_kprobe);
2401
2402/* Enable one kprobe */
2403int enable_kprobe(struct kprobe *kp)
2404{
2405	int ret = 0;
2406	struct kprobe *p;
2407
2408	mutex_lock(&kprobe_mutex);
2409
2410	/* Check whether specified probe is valid. */
2411	p = __get_valid_kprobe(kp);
2412	if (unlikely(p == NULL)) {
2413		ret = -EINVAL;
2414		goto out;
2415	}
2416
2417	if (kprobe_gone(kp)) {
2418		/* This kprobe has gone, we couldn't enable it. */
2419		ret = -EINVAL;
2420		goto out;
2421	}
2422
2423	if (p != kp)
2424		kp->flags &= ~KPROBE_FLAG_DISABLED;
2425
2426	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2427		p->flags &= ~KPROBE_FLAG_DISABLED;
2428		ret = arm_kprobe(p);
2429		if (ret) {
2430			p->flags |= KPROBE_FLAG_DISABLED;
2431			if (p != kp)
2432				kp->flags |= KPROBE_FLAG_DISABLED;
2433		}
2434	}
2435out:
2436	mutex_unlock(&kprobe_mutex);
2437	return ret;
2438}
2439EXPORT_SYMBOL_GPL(enable_kprobe);
2440
2441/* Caller must NOT call this in usual path. This is only for critical case */
2442void dump_kprobe(struct kprobe *kp)
2443{
2444	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2445	       kp->symbol_name, kp->offset, kp->addr);
2446}
2447NOKPROBE_SYMBOL(dump_kprobe);
2448
2449int kprobe_add_ksym_blacklist(unsigned long entry)
2450{
2451	struct kprobe_blacklist_entry *ent;
2452	unsigned long offset = 0, size = 0;
2453
2454	if (!kernel_text_address(entry) ||
2455	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2456		return -EINVAL;
2457
2458	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2459	if (!ent)
2460		return -ENOMEM;
2461	ent->start_addr = entry;
2462	ent->end_addr = entry + size;
2463	INIT_LIST_HEAD(&ent->list);
2464	list_add_tail(&ent->list, &kprobe_blacklist);
2465
2466	return (int)size;
2467}
2468
2469/* Add all symbols in given area into kprobe blacklist */
2470int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2471{
2472	unsigned long entry;
2473	int ret = 0;
2474
2475	for (entry = start; entry < end; entry += ret) {
2476		ret = kprobe_add_ksym_blacklist(entry);
2477		if (ret < 0)
2478			return ret;
2479		if (ret == 0)	/* In case of alias symbol */
2480			ret = 1;
2481	}
2482	return 0;
2483}
2484
2485/* Remove all symbols in given area from kprobe blacklist */
2486static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2487{
2488	struct kprobe_blacklist_entry *ent, *n;
2489
2490	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2491		if (ent->start_addr < start || ent->start_addr >= end)
2492			continue;
2493		list_del(&ent->list);
2494		kfree(ent);
2495	}
2496}
2497
2498static void kprobe_remove_ksym_blacklist(unsigned long entry)
2499{
2500	kprobe_remove_area_blacklist(entry, entry + 1);
2501}
2502
2503int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2504				   char *type, char *sym)
2505{
2506	return -ERANGE;
2507}
2508
2509int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2510		       char *sym)
2511{
2512#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2513	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2514		return 0;
2515#ifdef CONFIG_OPTPROBES
2516	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2517		return 0;
2518#endif
2519#endif
2520	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2521		return 0;
2522	return -ERANGE;
2523}
2524
2525int __init __weak arch_populate_kprobe_blacklist(void)
2526{
2527	return 0;
2528}
2529
2530/*
2531 * Lookup and populate the kprobe_blacklist.
2532 *
2533 * Unlike the kretprobe blacklist, we'll need to determine
2534 * the range of addresses that belong to the said functions,
2535 * since a kprobe need not necessarily be at the beginning
2536 * of a function.
2537 */
2538static int __init populate_kprobe_blacklist(unsigned long *start,
2539					     unsigned long *end)
2540{
2541	unsigned long entry;
2542	unsigned long *iter;
2543	int ret;
2544
2545	for (iter = start; iter < end; iter++) {
2546		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2547		ret = kprobe_add_ksym_blacklist(entry);
2548		if (ret == -EINVAL)
2549			continue;
2550		if (ret < 0)
2551			return ret;
2552	}
2553
2554	/* Symbols in '__kprobes_text' are blacklisted */
2555	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2556					(unsigned long)__kprobes_text_end);
2557	if (ret)
2558		return ret;
2559
2560	/* Symbols in 'noinstr' section are blacklisted */
2561	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2562					(unsigned long)__noinstr_text_end);
2563
2564	return ret ? : arch_populate_kprobe_blacklist();
2565}
2566
2567static void add_module_kprobe_blacklist(struct module *mod)
2568{
2569	unsigned long start, end;
2570	int i;
2571
2572	if (mod->kprobe_blacklist) {
2573		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2574			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2575	}
2576
2577	start = (unsigned long)mod->kprobes_text_start;
2578	if (start) {
2579		end = start + mod->kprobes_text_size;
2580		kprobe_add_area_blacklist(start, end);
2581	}
2582
2583	start = (unsigned long)mod->noinstr_text_start;
2584	if (start) {
2585		end = start + mod->noinstr_text_size;
2586		kprobe_add_area_blacklist(start, end);
2587	}
2588}
2589
2590static void remove_module_kprobe_blacklist(struct module *mod)
2591{
2592	unsigned long start, end;
2593	int i;
2594
2595	if (mod->kprobe_blacklist) {
2596		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2597			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2598	}
2599
2600	start = (unsigned long)mod->kprobes_text_start;
2601	if (start) {
2602		end = start + mod->kprobes_text_size;
2603		kprobe_remove_area_blacklist(start, end);
2604	}
2605
2606	start = (unsigned long)mod->noinstr_text_start;
2607	if (start) {
2608		end = start + mod->noinstr_text_size;
2609		kprobe_remove_area_blacklist(start, end);
2610	}
2611}
2612
2613/* Module notifier call back, checking kprobes on the module */
2614static int kprobes_module_callback(struct notifier_block *nb,
2615				   unsigned long val, void *data)
2616{
2617	struct module *mod = data;
2618	struct hlist_head *head;
2619	struct kprobe *p;
2620	unsigned int i;
2621	int checkcore = (val == MODULE_STATE_GOING);
2622
2623	if (val == MODULE_STATE_COMING) {
2624		mutex_lock(&kprobe_mutex);
2625		add_module_kprobe_blacklist(mod);
2626		mutex_unlock(&kprobe_mutex);
2627	}
2628	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2629		return NOTIFY_DONE;
2630
2631	/*
2632	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2633	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2634	 * notified, only '.init.text' section would be freed. We need to
2635	 * disable kprobes which have been inserted in the sections.
2636	 */
2637	mutex_lock(&kprobe_mutex);
2638	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2639		head = &kprobe_table[i];
2640		hlist_for_each_entry(p, head, hlist)
2641			if (within_module_init((unsigned long)p->addr, mod) ||
2642			    (checkcore &&
2643			     within_module_core((unsigned long)p->addr, mod))) {
2644				/*
2645				 * The vaddr this probe is installed will soon
2646				 * be vfreed buy not synced to disk. Hence,
2647				 * disarming the breakpoint isn't needed.
2648				 *
2649				 * Note, this will also move any optimized probes
2650				 * that are pending to be removed from their
2651				 * corresponding lists to the 'freeing_list' and
2652				 * will not be touched by the delayed
2653				 * kprobe_optimizer() work handler.
2654				 */
2655				kill_kprobe(p);
2656			}
2657	}
2658	if (val == MODULE_STATE_GOING)
2659		remove_module_kprobe_blacklist(mod);
2660	mutex_unlock(&kprobe_mutex);
2661	return NOTIFY_DONE;
2662}
2663
2664static struct notifier_block kprobe_module_nb = {
2665	.notifier_call = kprobes_module_callback,
2666	.priority = 0
2667};
2668
2669void kprobe_free_init_mem(void)
2670{
2671	void *start = (void *)(&__init_begin);
2672	void *end = (void *)(&__init_end);
2673	struct hlist_head *head;
2674	struct kprobe *p;
2675	int i;
2676
2677	mutex_lock(&kprobe_mutex);
2678
2679	/* Kill all kprobes on initmem because the target code has been freed. */
2680	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2681		head = &kprobe_table[i];
2682		hlist_for_each_entry(p, head, hlist) {
2683			if (start <= (void *)p->addr && (void *)p->addr < end)
2684				kill_kprobe(p);
2685		}
2686	}
2687
2688	mutex_unlock(&kprobe_mutex);
2689}
2690
2691static int __init init_kprobes(void)
2692{
2693	int i, err;
2694
2695	/* FIXME allocate the probe table, currently defined statically */
2696	/* initialize all list heads */
2697	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2698		INIT_HLIST_HEAD(&kprobe_table[i]);
2699
2700	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2701					__stop_kprobe_blacklist);
2702	if (err)
2703		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2704
2705	if (kretprobe_blacklist_size) {
2706		/* lookup the function address from its name */
2707		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2708			kretprobe_blacklist[i].addr =
2709				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2710			if (!kretprobe_blacklist[i].addr)
2711				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2712				       kretprobe_blacklist[i].name);
2713		}
2714	}
2715
2716	/* By default, kprobes are armed */
2717	kprobes_all_disarmed = false;
2718
2719#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2720	/* Init 'kprobe_optinsn_slots' for allocation */
2721	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2722#endif
2723
2724	err = arch_init_kprobes();
2725	if (!err)
2726		err = register_die_notifier(&kprobe_exceptions_nb);
2727	if (!err)
2728		err = register_module_notifier(&kprobe_module_nb);
2729
2730	kprobes_initialized = (err == 0);
2731	kprobe_sysctls_init();
2732	return err;
2733}
2734early_initcall(init_kprobes);
2735
2736#if defined(CONFIG_OPTPROBES)
2737static int __init init_optprobes(void)
2738{
2739	/*
2740	 * Enable kprobe optimization - this kicks the optimizer which
2741	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2742	 * not spawned in early initcall. So delay the optimization.
2743	 */
2744	optimize_all_kprobes();
2745
2746	return 0;
2747}
2748subsys_initcall(init_optprobes);
2749#endif
2750
2751#ifdef CONFIG_DEBUG_FS
2752static void report_probe(struct seq_file *pi, struct kprobe *p,
2753		const char *sym, int offset, char *modname, struct kprobe *pp)
2754{
2755	char *kprobe_type;
2756	void *addr = p->addr;
2757
2758	if (p->pre_handler == pre_handler_kretprobe)
2759		kprobe_type = "r";
2760	else
2761		kprobe_type = "k";
2762
2763	if (!kallsyms_show_value(pi->file->f_cred))
2764		addr = NULL;
2765
2766	if (sym)
2767		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2768			addr, kprobe_type, sym, offset,
2769			(modname ? modname : " "));
2770	else	/* try to use %pS */
2771		seq_printf(pi, "%px  %s  %pS ",
2772			addr, kprobe_type, p->addr);
2773
2774	if (!pp)
2775		pp = p;
2776	seq_printf(pi, "%s%s%s%s\n",
2777		(kprobe_gone(p) ? "[GONE]" : ""),
2778		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2779		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2780		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2781}
2782
2783static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2784{
2785	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2786}
2787
2788static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2789{
2790	(*pos)++;
2791	if (*pos >= KPROBE_TABLE_SIZE)
2792		return NULL;
2793	return pos;
2794}
2795
2796static void kprobe_seq_stop(struct seq_file *f, void *v)
2797{
2798	/* Nothing to do */
2799}
2800
2801static int show_kprobe_addr(struct seq_file *pi, void *v)
2802{
2803	struct hlist_head *head;
2804	struct kprobe *p, *kp;
2805	const char *sym;
2806	unsigned int i = *(loff_t *) v;
2807	unsigned long offset = 0;
2808	char *modname, namebuf[KSYM_NAME_LEN];
2809
2810	head = &kprobe_table[i];
2811	preempt_disable();
2812	hlist_for_each_entry_rcu(p, head, hlist) {
2813		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2814					&offset, &modname, namebuf);
2815		if (kprobe_aggrprobe(p)) {
2816			list_for_each_entry_rcu(kp, &p->list, list)
2817				report_probe(pi, kp, sym, offset, modname, p);
2818		} else
2819			report_probe(pi, p, sym, offset, modname, NULL);
2820	}
2821	preempt_enable();
2822	return 0;
2823}
2824
2825static const struct seq_operations kprobes_sops = {
2826	.start = kprobe_seq_start,
2827	.next  = kprobe_seq_next,
2828	.stop  = kprobe_seq_stop,
2829	.show  = show_kprobe_addr
2830};
2831
2832DEFINE_SEQ_ATTRIBUTE(kprobes);
2833
2834/* kprobes/blacklist -- shows which functions can not be probed */
2835static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2836{
2837	mutex_lock(&kprobe_mutex);
2838	return seq_list_start(&kprobe_blacklist, *pos);
2839}
2840
2841static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2842{
2843	return seq_list_next(v, &kprobe_blacklist, pos);
2844}
2845
2846static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2847{
2848	struct kprobe_blacklist_entry *ent =
2849		list_entry(v, struct kprobe_blacklist_entry, list);
2850
2851	/*
2852	 * If '/proc/kallsyms' is not showing kernel address, we won't
2853	 * show them here either.
2854	 */
2855	if (!kallsyms_show_value(m->file->f_cred))
2856		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2857			   (void *)ent->start_addr);
2858	else
2859		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2860			   (void *)ent->end_addr, (void *)ent->start_addr);
2861	return 0;
2862}
2863
2864static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2865{
2866	mutex_unlock(&kprobe_mutex);
2867}
2868
2869static const struct seq_operations kprobe_blacklist_sops = {
2870	.start = kprobe_blacklist_seq_start,
2871	.next  = kprobe_blacklist_seq_next,
2872	.stop  = kprobe_blacklist_seq_stop,
2873	.show  = kprobe_blacklist_seq_show,
2874};
2875DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2876
2877static int arm_all_kprobes(void)
2878{
2879	struct hlist_head *head;
2880	struct kprobe *p;
2881	unsigned int i, total = 0, errors = 0;
2882	int err, ret = 0;
2883
2884	mutex_lock(&kprobe_mutex);
2885
2886	/* If kprobes are armed, just return */
2887	if (!kprobes_all_disarmed)
2888		goto already_enabled;
2889
2890	/*
2891	 * optimize_kprobe() called by arm_kprobe() checks
2892	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2893	 * arm_kprobe.
2894	 */
2895	kprobes_all_disarmed = false;
2896	/* Arming kprobes doesn't optimize kprobe itself */
2897	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2898		head = &kprobe_table[i];
2899		/* Arm all kprobes on a best-effort basis */
2900		hlist_for_each_entry(p, head, hlist) {
2901			if (!kprobe_disabled(p)) {
2902				err = arm_kprobe(p);
2903				if (err)  {
2904					errors++;
2905					ret = err;
2906				}
2907				total++;
2908			}
2909		}
2910	}
2911
2912	if (errors)
2913		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2914			errors, total);
2915	else
2916		pr_info("Kprobes globally enabled\n");
2917
2918already_enabled:
2919	mutex_unlock(&kprobe_mutex);
2920	return ret;
2921}
2922
2923static int disarm_all_kprobes(void)
2924{
2925	struct hlist_head *head;
2926	struct kprobe *p;
2927	unsigned int i, total = 0, errors = 0;
2928	int err, ret = 0;
2929
2930	mutex_lock(&kprobe_mutex);
2931
2932	/* If kprobes are already disarmed, just return */
2933	if (kprobes_all_disarmed) {
2934		mutex_unlock(&kprobe_mutex);
2935		return 0;
2936	}
2937
2938	kprobes_all_disarmed = true;
2939
2940	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2941		head = &kprobe_table[i];
2942		/* Disarm all kprobes on a best-effort basis */
2943		hlist_for_each_entry(p, head, hlist) {
2944			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2945				err = disarm_kprobe(p, false);
2946				if (err) {
2947					errors++;
2948					ret = err;
2949				}
2950				total++;
2951			}
2952		}
2953	}
2954
2955	if (errors)
2956		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2957			errors, total);
2958	else
2959		pr_info("Kprobes globally disabled\n");
2960
2961	mutex_unlock(&kprobe_mutex);
2962
2963	/* Wait for disarming all kprobes by optimizer */
2964	wait_for_kprobe_optimizer();
2965
2966	return ret;
2967}
2968
2969/*
2970 * XXX: The debugfs bool file interface doesn't allow for callbacks
2971 * when the bool state is switched. We can reuse that facility when
2972 * available
2973 */
2974static ssize_t read_enabled_file_bool(struct file *file,
2975	       char __user *user_buf, size_t count, loff_t *ppos)
2976{
2977	char buf[3];
2978
2979	if (!kprobes_all_disarmed)
2980		buf[0] = '1';
2981	else
2982		buf[0] = '0';
2983	buf[1] = '\n';
2984	buf[2] = 0x00;
2985	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2986}
2987
2988static ssize_t write_enabled_file_bool(struct file *file,
2989	       const char __user *user_buf, size_t count, loff_t *ppos)
2990{
2991	bool enable;
2992	int ret;
2993
2994	ret = kstrtobool_from_user(user_buf, count, &enable);
2995	if (ret)
2996		return ret;
2997
2998	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2999	if (ret)
3000		return ret;
3001
3002	return count;
3003}
3004
3005static const struct file_operations fops_kp = {
3006	.read =         read_enabled_file_bool,
3007	.write =        write_enabled_file_bool,
3008	.llseek =	default_llseek,
3009};
3010
3011static int __init debugfs_kprobe_init(void)
3012{
3013	struct dentry *dir;
3014
3015	dir = debugfs_create_dir("kprobes", NULL);
3016
3017	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3018
3019	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3020
3021	debugfs_create_file("blacklist", 0400, dir, NULL,
3022			    &kprobe_blacklist_fops);
3023
3024	return 0;
3025}
3026
3027late_initcall(debugfs_kprobe_init);
3028#endif /* CONFIG_DEBUG_FS */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation (includes suggestions from
   9 *		Rusty Russell).
  10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  11 *		hlists and exceptions notifier as suggested by Andi Kleen.
  12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  13 *		interface to access function arguments.
  14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  15 *		exceptions notifier to be first on the priority list.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 */
  20
  21#define pr_fmt(fmt) "kprobes: " fmt
  22
  23#include <linux/kprobes.h>
  24#include <linux/hash.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/stddef.h>
  28#include <linux/export.h>
  29#include <linux/moduleloader.h>
  30#include <linux/kallsyms.h>
  31#include <linux/freezer.h>
  32#include <linux/seq_file.h>
  33#include <linux/debugfs.h>
  34#include <linux/sysctl.h>
  35#include <linux/kdebug.h>
  36#include <linux/memory.h>
  37#include <linux/ftrace.h>
  38#include <linux/cpu.h>
  39#include <linux/jump_label.h>
  40#include <linux/static_call.h>
  41#include <linux/perf_event.h>
  42
  43#include <asm/sections.h>
  44#include <asm/cacheflush.h>
  45#include <asm/errno.h>
  46#include <linux/uaccess.h>
  47
  48#define KPROBE_HASH_BITS 6
  49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  50
  51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
  52#define kprobe_sysctls_init() do { } while (0)
  53#endif
  54
  55static int kprobes_initialized;
  56/* kprobe_table can be accessed by
  57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
  58 * Or
  59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  60 */
  61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  62
  63/* NOTE: change this value only with 'kprobe_mutex' held */
  64static bool kprobes_all_disarmed;
  65
  66/* This protects 'kprobe_table' and 'optimizing_list' */
  67static DEFINE_MUTEX(kprobe_mutex);
  68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
  69
  70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  71					unsigned int __unused)
  72{
  73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  74}
  75
  76/*
  77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
  78 * kprobes can not probe.
  79 */
  80static LIST_HEAD(kprobe_blacklist);
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	/*
 116	 * Use module_alloc() so this page is within +/- 2GB of where the
 117	 * kernel image and loaded module images reside. This is required
 118	 * for most of the architectures.
 119	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
 120	 */
 121	return module_alloc(PAGE_SIZE);
 122}
 123
 124static void free_insn_page(void *page)
 125{
 126	module_memfree(page);
 127}
 128
 129struct kprobe_insn_cache kprobe_insn_slots = {
 130	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 131	.alloc = alloc_insn_page,
 132	.free = free_insn_page,
 133	.sym = KPROBE_INSN_PAGE_SYM,
 134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135	.insn_size = MAX_INSN_SIZE,
 136	.nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146	struct kprobe_insn_page *kip;
 147	kprobe_opcode_t *slot = NULL;
 148
 149	/* Since the slot array is not protected by rcu, we need a mutex */
 150	mutex_lock(&c->mutex);
 151 retry:
 152	rcu_read_lock();
 153	list_for_each_entry_rcu(kip, &c->pages, list) {
 154		if (kip->nused < slots_per_page(c)) {
 155			int i;
 156
 157			for (i = 0; i < slots_per_page(c); i++) {
 158				if (kip->slot_used[i] == SLOT_CLEAN) {
 159					kip->slot_used[i] = SLOT_USED;
 160					kip->nused++;
 161					slot = kip->insns + (i * c->insn_size);
 162					rcu_read_unlock();
 163					goto out;
 164				}
 165			}
 166			/* kip->nused is broken. Fix it. */
 167			kip->nused = slots_per_page(c);
 168			WARN_ON(1);
 169		}
 170	}
 171	rcu_read_unlock();
 172
 173	/* If there are any garbage slots, collect it and try again. */
 174	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 175		goto retry;
 176
 177	/* All out of space.  Need to allocate a new page. */
 178	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 179	if (!kip)
 180		goto out;
 181
 182	kip->insns = c->alloc();
 183	if (!kip->insns) {
 184		kfree(kip);
 185		goto out;
 186	}
 187	INIT_LIST_HEAD(&kip->list);
 188	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 189	kip->slot_used[0] = SLOT_USED;
 190	kip->nused = 1;
 191	kip->ngarbage = 0;
 192	kip->cache = c;
 193	list_add_rcu(&kip->list, &c->pages);
 194	slot = kip->insns;
 195
 196	/* Record the perf ksymbol register event after adding the page */
 197	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 198			   PAGE_SIZE, false, c->sym);
 199out:
 200	mutex_unlock(&c->mutex);
 201	return slot;
 202}
 203
 204/* Return true if all garbages are collected, otherwise false. */
 205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207	kip->slot_used[idx] = SLOT_CLEAN;
 208	kip->nused--;
 209	if (kip->nused == 0) {
 210		/*
 211		 * Page is no longer in use.  Free it unless
 212		 * it's the last one.  We keep the last one
 213		 * so as not to have to set it up again the
 214		 * next time somebody inserts a probe.
 215		 */
 216		if (!list_is_singular(&kip->list)) {
 217			/*
 218			 * Record perf ksymbol unregister event before removing
 219			 * the page.
 220			 */
 221			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 222					   (unsigned long)kip->insns, PAGE_SIZE, true,
 223					   kip->cache->sym);
 224			list_del_rcu(&kip->list);
 225			synchronize_rcu();
 226			kip->cache->free(kip->insns);
 227			kfree(kip);
 228		}
 229		return true;
 230	}
 231	return false;
 232}
 233
 234static int collect_garbage_slots(struct kprobe_insn_cache *c)
 235{
 236	struct kprobe_insn_page *kip, *next;
 237
 238	/* Ensure no-one is interrupted on the garbages */
 239	synchronize_rcu();
 240
 241	list_for_each_entry_safe(kip, next, &c->pages, list) {
 242		int i;
 243
 244		if (kip->ngarbage == 0)
 245			continue;
 246		kip->ngarbage = 0;	/* we will collect all garbages */
 247		for (i = 0; i < slots_per_page(c); i++) {
 248			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 249				break;
 250		}
 251	}
 252	c->nr_garbage = 0;
 253	return 0;
 254}
 255
 256void __free_insn_slot(struct kprobe_insn_cache *c,
 257		      kprobe_opcode_t *slot, int dirty)
 258{
 259	struct kprobe_insn_page *kip;
 260	long idx;
 261
 262	mutex_lock(&c->mutex);
 263	rcu_read_lock();
 264	list_for_each_entry_rcu(kip, &c->pages, list) {
 265		idx = ((long)slot - (long)kip->insns) /
 266			(c->insn_size * sizeof(kprobe_opcode_t));
 267		if (idx >= 0 && idx < slots_per_page(c))
 268			goto out;
 269	}
 270	/* Could not find this slot. */
 271	WARN_ON(1);
 272	kip = NULL;
 273out:
 274	rcu_read_unlock();
 275	/* Mark and sweep: this may sleep */
 276	if (kip) {
 277		/* Check double free */
 278		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 279		if (dirty) {
 280			kip->slot_used[idx] = SLOT_DIRTY;
 281			kip->ngarbage++;
 282			if (++c->nr_garbage > slots_per_page(c))
 283				collect_garbage_slots(c);
 284		} else {
 285			collect_one_slot(kip, idx);
 286		}
 287	}
 288	mutex_unlock(&c->mutex);
 289}
 290
 291/*
 292 * Check given address is on the page of kprobe instruction slots.
 293 * This will be used for checking whether the address on a stack
 294 * is on a text area or not.
 295 */
 296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 297{
 298	struct kprobe_insn_page *kip;
 299	bool ret = false;
 300
 301	rcu_read_lock();
 302	list_for_each_entry_rcu(kip, &c->pages, list) {
 303		if (addr >= (unsigned long)kip->insns &&
 304		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 305			ret = true;
 306			break;
 307		}
 308	}
 309	rcu_read_unlock();
 310
 311	return ret;
 312}
 313
 314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 315			     unsigned long *value, char *type, char *sym)
 316{
 317	struct kprobe_insn_page *kip;
 318	int ret = -ERANGE;
 319
 320	rcu_read_lock();
 321	list_for_each_entry_rcu(kip, &c->pages, list) {
 322		if ((*symnum)--)
 323			continue;
 324		strscpy(sym, c->sym, KSYM_NAME_LEN);
 325		*type = 't';
 326		*value = (unsigned long)kip->insns;
 327		ret = 0;
 328		break;
 329	}
 330	rcu_read_unlock();
 331
 332	return ret;
 333}
 334
 335#ifdef CONFIG_OPTPROBES
 336void __weak *alloc_optinsn_page(void)
 337{
 338	return alloc_insn_page();
 339}
 340
 341void __weak free_optinsn_page(void *page)
 342{
 343	free_insn_page(page);
 344}
 345
 346/* For optimized_kprobe buffer */
 347struct kprobe_insn_cache kprobe_optinsn_slots = {
 348	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 349	.alloc = alloc_optinsn_page,
 350	.free = free_optinsn_page,
 351	.sym = KPROBE_OPTINSN_PAGE_SYM,
 352	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 353	/* .insn_size is initialized later */
 354	.nr_garbage = 0,
 355};
 356#endif
 357#endif
 358
 359/* We have preemption disabled.. so it is safe to use __ versions */
 360static inline void set_kprobe_instance(struct kprobe *kp)
 361{
 362	__this_cpu_write(kprobe_instance, kp);
 363}
 364
 365static inline void reset_kprobe_instance(void)
 366{
 367	__this_cpu_write(kprobe_instance, NULL);
 368}
 369
 370/*
 371 * This routine is called either:
 372 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
 373 *				OR
 374 *	- with preemption disabled - from architecture specific code.
 375 */
 376struct kprobe *get_kprobe(void *addr)
 377{
 378	struct hlist_head *head;
 379	struct kprobe *p;
 380
 381	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 382	hlist_for_each_entry_rcu(p, head, hlist,
 383				 lockdep_is_held(&kprobe_mutex)) {
 384		if (p->addr == addr)
 385			return p;
 386	}
 387
 388	return NULL;
 389}
 390NOKPROBE_SYMBOL(get_kprobe);
 391
 392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 393
 394/* Return true if 'p' is an aggregator */
 395static inline bool kprobe_aggrprobe(struct kprobe *p)
 396{
 397	return p->pre_handler == aggr_pre_handler;
 398}
 399
 400/* Return true if 'p' is unused */
 401static inline bool kprobe_unused(struct kprobe *p)
 402{
 403	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 404	       list_empty(&p->list);
 405}
 406
 407/* Keep all fields in the kprobe consistent. */
 408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 409{
 410	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 411	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 412}
 413
 414#ifdef CONFIG_OPTPROBES
 415/* NOTE: This is protected by 'kprobe_mutex'. */
 416static bool kprobes_allow_optimization;
 417
 418/*
 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
 420 * This must be called from arch-dep optimized caller.
 421 */
 422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 423{
 424	struct kprobe *kp;
 425
 426	list_for_each_entry_rcu(kp, &p->list, list) {
 427		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 428			set_kprobe_instance(kp);
 429			kp->pre_handler(kp, regs);
 430		}
 431		reset_kprobe_instance();
 432	}
 433}
 434NOKPROBE_SYMBOL(opt_pre_handler);
 435
 436/* Free optimized instructions and optimized_kprobe */
 437static void free_aggr_kprobe(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	op = container_of(p, struct optimized_kprobe, kp);
 442	arch_remove_optimized_kprobe(op);
 443	arch_remove_kprobe(p);
 444	kfree(op);
 445}
 446
 447/* Return true if the kprobe is ready for optimization. */
 448static inline int kprobe_optready(struct kprobe *p)
 449{
 450	struct optimized_kprobe *op;
 451
 452	if (kprobe_aggrprobe(p)) {
 453		op = container_of(p, struct optimized_kprobe, kp);
 454		return arch_prepared_optinsn(&op->optinsn);
 455	}
 456
 457	return 0;
 458}
 459
 460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
 461bool kprobe_disarmed(struct kprobe *p)
 462{
 463	struct optimized_kprobe *op;
 464
 465	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 466	if (!kprobe_aggrprobe(p))
 467		return kprobe_disabled(p);
 468
 469	op = container_of(p, struct optimized_kprobe, kp);
 470
 471	return kprobe_disabled(p) && list_empty(&op->list);
 472}
 473
 474/* Return true if the probe is queued on (un)optimizing lists */
 475static bool kprobe_queued(struct kprobe *p)
 476{
 477	struct optimized_kprobe *op;
 478
 479	if (kprobe_aggrprobe(p)) {
 480		op = container_of(p, struct optimized_kprobe, kp);
 481		if (!list_empty(&op->list))
 482			return true;
 483	}
 484	return false;
 485}
 486
 487/*
 488 * Return an optimized kprobe whose optimizing code replaces
 489 * instructions including 'addr' (exclude breakpoint).
 490 */
 491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
 492{
 493	int i;
 494	struct kprobe *p = NULL;
 495	struct optimized_kprobe *op;
 496
 497	/* Don't check i == 0, since that is a breakpoint case. */
 498	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
 499		p = get_kprobe(addr - i);
 500
 501	if (p && kprobe_optready(p)) {
 502		op = container_of(p, struct optimized_kprobe, kp);
 503		if (arch_within_optimized_kprobe(op, addr))
 504			return p;
 505	}
 506
 507	return NULL;
 508}
 509
 510/* Optimization staging list, protected by 'kprobe_mutex' */
 511static LIST_HEAD(optimizing_list);
 512static LIST_HEAD(unoptimizing_list);
 513static LIST_HEAD(freeing_list);
 514
 515static void kprobe_optimizer(struct work_struct *work);
 516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 517#define OPTIMIZE_DELAY 5
 518
 519/*
 520 * Optimize (replace a breakpoint with a jump) kprobes listed on
 521 * 'optimizing_list'.
 522 */
 523static void do_optimize_kprobes(void)
 524{
 525	lockdep_assert_held(&text_mutex);
 526	/*
 527	 * The optimization/unoptimization refers 'online_cpus' via
 528	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
 529	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
 530	 * This combination can cause a deadlock (cpu-hotplug tries to lock
 531	 * 'text_mutex' but stop_machine() can not be done because
 532	 * the 'online_cpus' has been changed)
 533	 * To avoid this deadlock, caller must have locked cpu-hotplug
 534	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
 535	 */
 536	lockdep_assert_cpus_held();
 537
 538	/* Optimization never be done when disarmed */
 539	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 540	    list_empty(&optimizing_list))
 541		return;
 542
 543	arch_optimize_kprobes(&optimizing_list);
 544}
 545
 546/*
 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 548 * if need) kprobes listed on 'unoptimizing_list'.
 549 */
 550static void do_unoptimize_kprobes(void)
 551{
 552	struct optimized_kprobe *op, *tmp;
 553
 554	lockdep_assert_held(&text_mutex);
 555	/* See comment in do_optimize_kprobes() */
 556	lockdep_assert_cpus_held();
 557
 558	if (!list_empty(&unoptimizing_list))
 559		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 560
 561	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
 562	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 563		/* Switching from detour code to origin */
 564		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 565		/* Disarm probes if marked disabled and not gone */
 566		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
 567			arch_disarm_kprobe(&op->kp);
 568		if (kprobe_unused(&op->kp)) {
 569			/*
 570			 * Remove unused probes from hash list. After waiting
 571			 * for synchronization, these probes are reclaimed.
 572			 * (reclaiming is done by do_free_cleaned_kprobes().)
 573			 */
 574			hlist_del_rcu(&op->kp.hlist);
 575		} else
 576			list_del_init(&op->list);
 577	}
 578}
 579
 580/* Reclaim all kprobes on the 'freeing_list' */
 581static void do_free_cleaned_kprobes(void)
 582{
 583	struct optimized_kprobe *op, *tmp;
 584
 585	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 586		list_del_init(&op->list);
 587		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 588			/*
 589			 * This must not happen, but if there is a kprobe
 590			 * still in use, keep it on kprobes hash list.
 591			 */
 592			continue;
 593		}
 594		free_aggr_kprobe(&op->kp);
 595	}
 596}
 597
 598/* Start optimizer after OPTIMIZE_DELAY passed */
 599static void kick_kprobe_optimizer(void)
 600{
 601	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 602}
 603
 604/* Kprobe jump optimizer */
 605static void kprobe_optimizer(struct work_struct *work)
 606{
 607	mutex_lock(&kprobe_mutex);
 608	cpus_read_lock();
 609	mutex_lock(&text_mutex);
 610
 611	/*
 612	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 613	 * kprobes before waiting for quiesence period.
 614	 */
 615	do_unoptimize_kprobes();
 616
 617	/*
 618	 * Step 2: Wait for quiesence period to ensure all potentially
 619	 * preempted tasks to have normally scheduled. Because optprobe
 620	 * may modify multiple instructions, there is a chance that Nth
 621	 * instruction is preempted. In that case, such tasks can return
 622	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 623	 * Note that on non-preemptive kernel, this is transparently converted
 624	 * to synchronoze_sched() to wait for all interrupts to have completed.
 625	 */
 626	synchronize_rcu_tasks();
 627
 628	/* Step 3: Optimize kprobes after quiesence period */
 629	do_optimize_kprobes();
 630
 631	/* Step 4: Free cleaned kprobes after quiesence period */
 632	do_free_cleaned_kprobes();
 633
 634	mutex_unlock(&text_mutex);
 635	cpus_read_unlock();
 636
 637	/* Step 5: Kick optimizer again if needed */
 638	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 639		kick_kprobe_optimizer();
 640
 641	mutex_unlock(&kprobe_mutex);
 642}
 643
 644/* Wait for completing optimization and unoptimization */
 645void wait_for_kprobe_optimizer(void)
 646{
 647	mutex_lock(&kprobe_mutex);
 648
 649	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 650		mutex_unlock(&kprobe_mutex);
 651
 652		/* This will also make 'optimizing_work' execute immmediately */
 653		flush_delayed_work(&optimizing_work);
 654		/* 'optimizing_work' might not have been queued yet, relax */
 655		cpu_relax();
 656
 657		mutex_lock(&kprobe_mutex);
 658	}
 659
 660	mutex_unlock(&kprobe_mutex);
 661}
 662
 663bool optprobe_queued_unopt(struct optimized_kprobe *op)
 664{
 665	struct optimized_kprobe *_op;
 666
 667	list_for_each_entry(_op, &unoptimizing_list, list) {
 668		if (op == _op)
 669			return true;
 670	}
 671
 672	return false;
 673}
 674
 675/* Optimize kprobe if p is ready to be optimized */
 676static void optimize_kprobe(struct kprobe *p)
 677{
 678	struct optimized_kprobe *op;
 679
 680	/* Check if the kprobe is disabled or not ready for optimization. */
 681	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 682	    (kprobe_disabled(p) || kprobes_all_disarmed))
 683		return;
 684
 685	/* kprobes with 'post_handler' can not be optimized */
 686	if (p->post_handler)
 687		return;
 688
 689	op = container_of(p, struct optimized_kprobe, kp);
 690
 691	/* Check there is no other kprobes at the optimized instructions */
 692	if (arch_check_optimized_kprobe(op) < 0)
 693		return;
 694
 695	/* Check if it is already optimized. */
 696	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 697		if (optprobe_queued_unopt(op)) {
 698			/* This is under unoptimizing. Just dequeue the probe */
 699			list_del_init(&op->list);
 700		}
 701		return;
 702	}
 703	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 704
 705	/*
 706	 * On the 'unoptimizing_list' and 'optimizing_list',
 707	 * 'op' must have OPTIMIZED flag
 708	 */
 709	if (WARN_ON_ONCE(!list_empty(&op->list)))
 710		return;
 711
 712	list_add(&op->list, &optimizing_list);
 713	kick_kprobe_optimizer();
 714}
 715
 716/* Short cut to direct unoptimizing */
 717static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 718{
 719	lockdep_assert_cpus_held();
 720	arch_unoptimize_kprobe(op);
 721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 722}
 723
 724/* Unoptimize a kprobe if p is optimized */
 725static void unoptimize_kprobe(struct kprobe *p, bool force)
 726{
 727	struct optimized_kprobe *op;
 728
 729	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 730		return; /* This is not an optprobe nor optimized */
 731
 732	op = container_of(p, struct optimized_kprobe, kp);
 733	if (!kprobe_optimized(p))
 734		return;
 735
 736	if (!list_empty(&op->list)) {
 737		if (optprobe_queued_unopt(op)) {
 738			/* Queued in unoptimizing queue */
 739			if (force) {
 740				/*
 741				 * Forcibly unoptimize the kprobe here, and queue it
 742				 * in the freeing list for release afterwards.
 743				 */
 744				force_unoptimize_kprobe(op);
 745				list_move(&op->list, &freeing_list);
 746			}
 747		} else {
 748			/* Dequeue from the optimizing queue */
 749			list_del_init(&op->list);
 750			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 751		}
 752		return;
 753	}
 754
 755	/* Optimized kprobe case */
 756	if (force) {
 757		/* Forcibly update the code: this is a special case */
 758		force_unoptimize_kprobe(op);
 759	} else {
 760		list_add(&op->list, &unoptimizing_list);
 761		kick_kprobe_optimizer();
 762	}
 763}
 764
 765/* Cancel unoptimizing for reusing */
 766static int reuse_unused_kprobe(struct kprobe *ap)
 767{
 768	struct optimized_kprobe *op;
 769
 770	/*
 771	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 772	 * there is still a relative jump) and disabled.
 773	 */
 774	op = container_of(ap, struct optimized_kprobe, kp);
 775	WARN_ON_ONCE(list_empty(&op->list));
 776	/* Enable the probe again */
 777	ap->flags &= ~KPROBE_FLAG_DISABLED;
 778	/* Optimize it again. (remove from 'op->list') */
 779	if (!kprobe_optready(ap))
 780		return -EINVAL;
 781
 782	optimize_kprobe(ap);
 783	return 0;
 784}
 785
 786/* Remove optimized instructions */
 787static void kill_optimized_kprobe(struct kprobe *p)
 788{
 789	struct optimized_kprobe *op;
 790
 791	op = container_of(p, struct optimized_kprobe, kp);
 792	if (!list_empty(&op->list))
 793		/* Dequeue from the (un)optimization queue */
 794		list_del_init(&op->list);
 795	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 796
 797	if (kprobe_unused(p)) {
 798		/*
 799		 * Unused kprobe is on unoptimizing or freeing list. We move it
 800		 * to freeing_list and let the kprobe_optimizer() remove it from
 801		 * the kprobe hash list and free it.
 802		 */
 803		if (optprobe_queued_unopt(op))
 804			list_move(&op->list, &freeing_list);
 805	}
 806
 807	/* Don't touch the code, because it is already freed. */
 808	arch_remove_optimized_kprobe(op);
 809}
 810
 811static inline
 812void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 813{
 814	if (!kprobe_ftrace(p))
 815		arch_prepare_optimized_kprobe(op, p);
 816}
 817
 818/* Try to prepare optimized instructions */
 819static void prepare_optimized_kprobe(struct kprobe *p)
 820{
 821	struct optimized_kprobe *op;
 822
 823	op = container_of(p, struct optimized_kprobe, kp);
 824	__prepare_optimized_kprobe(op, p);
 825}
 826
 827/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
 828static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 829{
 830	struct optimized_kprobe *op;
 831
 832	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 833	if (!op)
 834		return NULL;
 835
 836	INIT_LIST_HEAD(&op->list);
 837	op->kp.addr = p->addr;
 838	__prepare_optimized_kprobe(op, p);
 839
 840	return &op->kp;
 841}
 842
 843static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 844
 845/*
 846 * Prepare an optimized_kprobe and optimize it.
 847 * NOTE: 'p' must be a normal registered kprobe.
 848 */
 849static void try_to_optimize_kprobe(struct kprobe *p)
 850{
 851	struct kprobe *ap;
 852	struct optimized_kprobe *op;
 853
 854	/* Impossible to optimize ftrace-based kprobe. */
 855	if (kprobe_ftrace(p))
 856		return;
 857
 858	/* For preparing optimization, jump_label_text_reserved() is called. */
 859	cpus_read_lock();
 860	jump_label_lock();
 861	mutex_lock(&text_mutex);
 862
 863	ap = alloc_aggr_kprobe(p);
 864	if (!ap)
 865		goto out;
 866
 867	op = container_of(ap, struct optimized_kprobe, kp);
 868	if (!arch_prepared_optinsn(&op->optinsn)) {
 869		/* If failed to setup optimizing, fallback to kprobe. */
 870		arch_remove_optimized_kprobe(op);
 871		kfree(op);
 872		goto out;
 873	}
 874
 875	init_aggr_kprobe(ap, p);
 876	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
 877
 878out:
 879	mutex_unlock(&text_mutex);
 880	jump_label_unlock();
 881	cpus_read_unlock();
 882}
 883
 884static void optimize_all_kprobes(void)
 885{
 886	struct hlist_head *head;
 887	struct kprobe *p;
 888	unsigned int i;
 889
 890	mutex_lock(&kprobe_mutex);
 891	/* If optimization is already allowed, just return. */
 892	if (kprobes_allow_optimization)
 893		goto out;
 894
 895	cpus_read_lock();
 896	kprobes_allow_optimization = true;
 897	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 898		head = &kprobe_table[i];
 899		hlist_for_each_entry(p, head, hlist)
 900			if (!kprobe_disabled(p))
 901				optimize_kprobe(p);
 902	}
 903	cpus_read_unlock();
 904	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
 905out:
 906	mutex_unlock(&kprobe_mutex);
 907}
 908
 909#ifdef CONFIG_SYSCTL
 910static void unoptimize_all_kprobes(void)
 911{
 912	struct hlist_head *head;
 913	struct kprobe *p;
 914	unsigned int i;
 915
 916	mutex_lock(&kprobe_mutex);
 917	/* If optimization is already prohibited, just return. */
 918	if (!kprobes_allow_optimization) {
 919		mutex_unlock(&kprobe_mutex);
 920		return;
 921	}
 922
 923	cpus_read_lock();
 924	kprobes_allow_optimization = false;
 925	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 926		head = &kprobe_table[i];
 927		hlist_for_each_entry(p, head, hlist) {
 928			if (!kprobe_disabled(p))
 929				unoptimize_kprobe(p, false);
 930		}
 931	}
 932	cpus_read_unlock();
 933	mutex_unlock(&kprobe_mutex);
 934
 935	/* Wait for unoptimizing completion. */
 936	wait_for_kprobe_optimizer();
 937	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
 938}
 939
 940static DEFINE_MUTEX(kprobe_sysctl_mutex);
 941static int sysctl_kprobes_optimization;
 942static int proc_kprobes_optimization_handler(struct ctl_table *table,
 943					     int write, void *buffer,
 944					     size_t *length, loff_t *ppos)
 945{
 946	int ret;
 947
 948	mutex_lock(&kprobe_sysctl_mutex);
 949	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 950	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 951
 952	if (sysctl_kprobes_optimization)
 953		optimize_all_kprobes();
 954	else
 955		unoptimize_all_kprobes();
 956	mutex_unlock(&kprobe_sysctl_mutex);
 957
 958	return ret;
 959}
 960
 961static struct ctl_table kprobe_sysctls[] = {
 962	{
 963		.procname	= "kprobes-optimization",
 964		.data		= &sysctl_kprobes_optimization,
 965		.maxlen		= sizeof(int),
 966		.mode		= 0644,
 967		.proc_handler	= proc_kprobes_optimization_handler,
 968		.extra1		= SYSCTL_ZERO,
 969		.extra2		= SYSCTL_ONE,
 970	},
 971	{}
 972};
 973
 974static void __init kprobe_sysctls_init(void)
 975{
 976	register_sysctl_init("debug", kprobe_sysctls);
 977}
 978#endif /* CONFIG_SYSCTL */
 979
 980/* Put a breakpoint for a probe. */
 981static void __arm_kprobe(struct kprobe *p)
 982{
 983	struct kprobe *_p;
 984
 985	lockdep_assert_held(&text_mutex);
 986
 987	/* Find the overlapping optimized kprobes. */
 988	_p = get_optimized_kprobe(p->addr);
 989	if (unlikely(_p))
 990		/* Fallback to unoptimized kprobe */
 991		unoptimize_kprobe(_p, true);
 992
 993	arch_arm_kprobe(p);
 994	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 995}
 996
 997/* Remove the breakpoint of a probe. */
 998static void __disarm_kprobe(struct kprobe *p, bool reopt)
 999{
1000	struct kprobe *_p;
1001
1002	lockdep_assert_held(&text_mutex);
1003
1004	/* Try to unoptimize */
1005	unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007	if (!kprobe_queued(p)) {
1008		arch_disarm_kprobe(p);
1009		/* If another kprobe was blocked, re-optimize it. */
1010		_p = get_optimized_kprobe(p->addr);
1011		if (unlikely(_p) && reopt)
1012			optimize_kprobe(_p);
1013	}
1014	/*
1015	 * TODO: Since unoptimization and real disarming will be done by
1016	 * the worker thread, we can not check whether another probe are
1017	 * unoptimized because of this probe here. It should be re-optimized
1018	 * by the worker thread.
1019	 */
1020}
1021
1022#else /* !CONFIG_OPTPROBES */
1023
1024#define optimize_kprobe(p)			do {} while (0)
1025#define unoptimize_kprobe(p, f)			do {} while (0)
1026#define kill_optimized_kprobe(p)		do {} while (0)
1027#define prepare_optimized_kprobe(p)		do {} while (0)
1028#define try_to_optimize_kprobe(p)		do {} while (0)
1029#define __arm_kprobe(p)				arch_arm_kprobe(p)
1030#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1031#define kprobe_disarmed(p)			kprobe_disabled(p)
1032#define wait_for_kprobe_optimizer()		do {} while (0)
1033
1034static int reuse_unused_kprobe(struct kprobe *ap)
1035{
1036	/*
1037	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038	 * released at the same time that the last aggregated kprobe is
1039	 * unregistered.
1040	 * Thus there should be no chance to reuse unused kprobe.
1041	 */
1042	WARN_ON_ONCE(1);
1043	return -EINVAL;
1044}
1045
1046static void free_aggr_kprobe(struct kprobe *p)
1047{
1048	arch_remove_kprobe(p);
1049	kfree(p);
1050}
1051
1052static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053{
1054	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055}
1056#endif /* CONFIG_OPTPROBES */
1057
1058#ifdef CONFIG_KPROBES_ON_FTRACE
1059static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060	.func = kprobe_ftrace_handler,
1061	.flags = FTRACE_OPS_FL_SAVE_REGS,
1062};
1063
1064static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065	.func = kprobe_ftrace_handler,
1066	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067};
1068
1069static int kprobe_ipmodify_enabled;
1070static int kprobe_ftrace_enabled;
1071
1072static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073			       int *cnt)
1074{
1075	int ret;
1076
1077	lockdep_assert_held(&kprobe_mutex);
1078
1079	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081		return ret;
1082
1083	if (*cnt == 0) {
1084		ret = register_ftrace_function(ops);
1085		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086			goto err_ftrace;
1087	}
1088
1089	(*cnt)++;
1090	return ret;
1091
1092err_ftrace:
1093	/*
1094	 * At this point, sinec ops is not registered, we should be sefe from
1095	 * registering empty filter.
1096	 */
1097	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098	return ret;
1099}
1100
1101static int arm_kprobe_ftrace(struct kprobe *p)
1102{
1103	bool ipmodify = (p->post_handler != NULL);
1104
1105	return __arm_kprobe_ftrace(p,
1106		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108}
1109
1110static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111				  int *cnt)
1112{
1113	int ret;
1114
1115	lockdep_assert_held(&kprobe_mutex);
1116
1117	if (*cnt == 1) {
1118		ret = unregister_ftrace_function(ops);
1119		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120			return ret;
1121	}
1122
1123	(*cnt)--;
1124
1125	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127		  p->addr, ret);
1128	return ret;
1129}
1130
1131static int disarm_kprobe_ftrace(struct kprobe *p)
1132{
1133	bool ipmodify = (p->post_handler != NULL);
1134
1135	return __disarm_kprobe_ftrace(p,
1136		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138}
1139#else	/* !CONFIG_KPROBES_ON_FTRACE */
1140static inline int arm_kprobe_ftrace(struct kprobe *p)
1141{
1142	return -ENODEV;
1143}
1144
1145static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146{
1147	return -ENODEV;
1148}
1149#endif
1150
1151static int prepare_kprobe(struct kprobe *p)
1152{
1153	/* Must ensure p->addr is really on ftrace */
1154	if (kprobe_ftrace(p))
1155		return arch_prepare_kprobe_ftrace(p);
1156
1157	return arch_prepare_kprobe(p);
1158}
1159
1160static int arm_kprobe(struct kprobe *kp)
1161{
1162	if (unlikely(kprobe_ftrace(kp)))
1163		return arm_kprobe_ftrace(kp);
1164
1165	cpus_read_lock();
1166	mutex_lock(&text_mutex);
1167	__arm_kprobe(kp);
1168	mutex_unlock(&text_mutex);
1169	cpus_read_unlock();
1170
1171	return 0;
1172}
1173
1174static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175{
1176	if (unlikely(kprobe_ftrace(kp)))
1177		return disarm_kprobe_ftrace(kp);
1178
1179	cpus_read_lock();
1180	mutex_lock(&text_mutex);
1181	__disarm_kprobe(kp, reopt);
1182	mutex_unlock(&text_mutex);
1183	cpus_read_unlock();
1184
1185	return 0;
1186}
1187
1188/*
1189 * Aggregate handlers for multiple kprobes support - these handlers
1190 * take care of invoking the individual kprobe handlers on p->list
1191 */
1192static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193{
1194	struct kprobe *kp;
1195
1196	list_for_each_entry_rcu(kp, &p->list, list) {
1197		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198			set_kprobe_instance(kp);
1199			if (kp->pre_handler(kp, regs))
1200				return 1;
1201		}
1202		reset_kprobe_instance();
1203	}
1204	return 0;
1205}
1206NOKPROBE_SYMBOL(aggr_pre_handler);
1207
1208static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209			      unsigned long flags)
1210{
1211	struct kprobe *kp;
1212
1213	list_for_each_entry_rcu(kp, &p->list, list) {
1214		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215			set_kprobe_instance(kp);
1216			kp->post_handler(kp, regs, flags);
1217			reset_kprobe_instance();
1218		}
1219	}
1220}
1221NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224void kprobes_inc_nmissed_count(struct kprobe *p)
1225{
1226	struct kprobe *kp;
1227
1228	if (!kprobe_aggrprobe(p)) {
1229		p->nmissed++;
1230	} else {
1231		list_for_each_entry_rcu(kp, &p->list, list)
1232			kp->nmissed++;
1233	}
1234}
1235NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237static struct kprobe kprobe_busy = {
1238	.addr = (void *) get_kprobe,
1239};
1240
1241void kprobe_busy_begin(void)
1242{
1243	struct kprobe_ctlblk *kcb;
1244
1245	preempt_disable();
1246	__this_cpu_write(current_kprobe, &kprobe_busy);
1247	kcb = get_kprobe_ctlblk();
1248	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249}
1250
1251void kprobe_busy_end(void)
1252{
1253	__this_cpu_write(current_kprobe, NULL);
1254	preempt_enable();
1255}
1256
1257/* Add the new probe to 'ap->list'. */
1258static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259{
1260	if (p->post_handler)
1261		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1262
1263	list_add_rcu(&p->list, &ap->list);
1264	if (p->post_handler && !ap->post_handler)
1265		ap->post_handler = aggr_post_handler;
1266
1267	return 0;
1268}
1269
1270/*
1271 * Fill in the required fields of the aggregator kprobe. Replace the
1272 * earlier kprobe in the hlist with the aggregator kprobe.
1273 */
1274static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275{
1276	/* Copy the insn slot of 'p' to 'ap'. */
1277	copy_kprobe(p, ap);
1278	flush_insn_slot(ap);
1279	ap->addr = p->addr;
1280	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281	ap->pre_handler = aggr_pre_handler;
1282	/* We don't care the kprobe which has gone. */
1283	if (p->post_handler && !kprobe_gone(p))
1284		ap->post_handler = aggr_post_handler;
1285
1286	INIT_LIST_HEAD(&ap->list);
1287	INIT_HLIST_NODE(&ap->hlist);
1288
1289	list_add_rcu(&p->list, &ap->list);
1290	hlist_replace_rcu(&p->hlist, &ap->hlist);
1291}
1292
1293/*
1294 * This registers the second or subsequent kprobe at the same address.
1295 */
1296static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297{
1298	int ret = 0;
1299	struct kprobe *ap = orig_p;
1300
1301	cpus_read_lock();
1302
1303	/* For preparing optimization, jump_label_text_reserved() is called */
1304	jump_label_lock();
1305	mutex_lock(&text_mutex);
1306
1307	if (!kprobe_aggrprobe(orig_p)) {
1308		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309		ap = alloc_aggr_kprobe(orig_p);
1310		if (!ap) {
1311			ret = -ENOMEM;
1312			goto out;
1313		}
1314		init_aggr_kprobe(ap, orig_p);
1315	} else if (kprobe_unused(ap)) {
1316		/* This probe is going to die. Rescue it */
1317		ret = reuse_unused_kprobe(ap);
1318		if (ret)
1319			goto out;
1320	}
1321
1322	if (kprobe_gone(ap)) {
1323		/*
1324		 * Attempting to insert new probe at the same location that
1325		 * had a probe in the module vaddr area which already
1326		 * freed. So, the instruction slot has already been
1327		 * released. We need a new slot for the new probe.
1328		 */
1329		ret = arch_prepare_kprobe(ap);
1330		if (ret)
1331			/*
1332			 * Even if fail to allocate new slot, don't need to
1333			 * free the 'ap'. It will be used next time, or
1334			 * freed by unregister_kprobe().
1335			 */
1336			goto out;
1337
1338		/* Prepare optimized instructions if possible. */
1339		prepare_optimized_kprobe(ap);
1340
1341		/*
1342		 * Clear gone flag to prevent allocating new slot again, and
1343		 * set disabled flag because it is not armed yet.
1344		 */
1345		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346			    | KPROBE_FLAG_DISABLED;
1347	}
1348
1349	/* Copy the insn slot of 'p' to 'ap'. */
1350	copy_kprobe(ap, p);
1351	ret = add_new_kprobe(ap, p);
1352
1353out:
1354	mutex_unlock(&text_mutex);
1355	jump_label_unlock();
1356	cpus_read_unlock();
1357
1358	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359		ap->flags &= ~KPROBE_FLAG_DISABLED;
1360		if (!kprobes_all_disarmed) {
1361			/* Arm the breakpoint again. */
1362			ret = arm_kprobe(ap);
1363			if (ret) {
1364				ap->flags |= KPROBE_FLAG_DISABLED;
1365				list_del_rcu(&p->list);
1366				synchronize_rcu();
1367			}
1368		}
1369	}
1370	return ret;
1371}
1372
1373bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374{
1375	/* The '__kprobes' functions and entry code must not be probed. */
1376	return addr >= (unsigned long)__kprobes_text_start &&
1377	       addr < (unsigned long)__kprobes_text_end;
1378}
1379
1380static bool __within_kprobe_blacklist(unsigned long addr)
1381{
1382	struct kprobe_blacklist_entry *ent;
1383
1384	if (arch_within_kprobe_blacklist(addr))
1385		return true;
1386	/*
1387	 * If 'kprobe_blacklist' is defined, check the address and
1388	 * reject any probe registration in the prohibited area.
1389	 */
1390	list_for_each_entry(ent, &kprobe_blacklist, list) {
1391		if (addr >= ent->start_addr && addr < ent->end_addr)
1392			return true;
1393	}
1394	return false;
1395}
1396
1397bool within_kprobe_blacklist(unsigned long addr)
1398{
1399	char symname[KSYM_NAME_LEN], *p;
1400
1401	if (__within_kprobe_blacklist(addr))
1402		return true;
1403
1404	/* Check if the address is on a suffixed-symbol */
1405	if (!lookup_symbol_name(addr, symname)) {
1406		p = strchr(symname, '.');
1407		if (!p)
1408			return false;
1409		*p = '\0';
1410		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411		if (addr)
1412			return __within_kprobe_blacklist(addr);
1413	}
1414	return false;
1415}
1416
1417/*
1418 * arch_adjust_kprobe_addr - adjust the address
1419 * @addr: symbol base address
1420 * @offset: offset within the symbol
1421 * @on_func_entry: was this @addr+@offset on the function entry
1422 *
1423 * Typically returns @addr + @offset, except for special cases where the
1424 * function might be prefixed by a CFI landing pad, in that case any offset
1425 * inside the landing pad is mapped to the first 'real' instruction of the
1426 * symbol.
1427 *
1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429 * instruction at +0.
1430 */
1431kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432						unsigned long offset,
1433						bool *on_func_entry)
1434{
1435	*on_func_entry = !offset;
1436	return (kprobe_opcode_t *)(addr + offset);
1437}
1438
1439/*
1440 * If 'symbol_name' is specified, look it up and add the 'offset'
1441 * to it. This way, we can specify a relative address to a symbol.
1442 * This returns encoded errors if it fails to look up symbol or invalid
1443 * combination of parameters.
1444 */
1445static kprobe_opcode_t *
1446_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447	     unsigned long offset, bool *on_func_entry)
1448{
1449	if ((symbol_name && addr) || (!symbol_name && !addr))
1450		goto invalid;
1451
1452	if (symbol_name) {
1453		/*
1454		 * Input: @sym + @offset
1455		 * Output: @addr + @offset
1456		 *
1457		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458		 *       argument into it's output!
1459		 */
1460		addr = kprobe_lookup_name(symbol_name, offset);
1461		if (!addr)
1462			return ERR_PTR(-ENOENT);
1463	}
1464
1465	/*
1466	 * So here we have @addr + @offset, displace it into a new
1467	 * @addr' + @offset' where @addr' is the symbol start address.
1468	 */
1469	addr = (void *)addr + offset;
1470	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471		return ERR_PTR(-ENOENT);
1472	addr = (void *)addr - offset;
1473
1474	/*
1475	 * Then ask the architecture to re-combine them, taking care of
1476	 * magical function entry details while telling us if this was indeed
1477	 * at the start of the function.
1478	 */
1479	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480	if (addr)
1481		return addr;
1482
1483invalid:
1484	return ERR_PTR(-EINVAL);
1485}
1486
1487static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488{
1489	bool on_func_entry;
1490	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491}
1492
1493/*
1494 * Check the 'p' is valid and return the aggregator kprobe
1495 * at the same address.
1496 */
1497static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498{
1499	struct kprobe *ap, *list_p;
1500
1501	lockdep_assert_held(&kprobe_mutex);
1502
1503	ap = get_kprobe(p->addr);
1504	if (unlikely(!ap))
1505		return NULL;
1506
1507	if (p != ap) {
1508		list_for_each_entry(list_p, &ap->list, list)
1509			if (list_p == p)
1510			/* kprobe p is a valid probe */
1511				goto valid;
1512		return NULL;
1513	}
1514valid:
1515	return ap;
1516}
1517
1518/*
1519 * Warn and return error if the kprobe is being re-registered since
1520 * there must be a software bug.
1521 */
1522static inline int warn_kprobe_rereg(struct kprobe *p)
1523{
1524	int ret = 0;
1525
1526	mutex_lock(&kprobe_mutex);
1527	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528		ret = -EINVAL;
1529	mutex_unlock(&kprobe_mutex);
1530
1531	return ret;
1532}
1533
1534static int check_ftrace_location(struct kprobe *p)
1535{
1536	unsigned long addr = (unsigned long)p->addr;
1537
1538	if (ftrace_location(addr) == addr) {
1539#ifdef CONFIG_KPROBES_ON_FTRACE
1540		p->flags |= KPROBE_FLAG_FTRACE;
1541#else	/* !CONFIG_KPROBES_ON_FTRACE */
1542		return -EINVAL;
1543#endif
1544	}
1545	return 0;
1546}
1547
1548static bool is_cfi_preamble_symbol(unsigned long addr)
1549{
1550	char symbuf[KSYM_NAME_LEN];
1551
1552	if (lookup_symbol_name(addr, symbuf))
1553		return false;
1554
1555	return str_has_prefix("__cfi_", symbuf) ||
1556		str_has_prefix("__pfx_", symbuf);
1557}
1558
1559static int check_kprobe_address_safe(struct kprobe *p,
1560				     struct module **probed_mod)
1561{
1562	int ret;
1563
1564	ret = check_ftrace_location(p);
1565	if (ret)
1566		return ret;
1567	jump_label_lock();
1568	preempt_disable();
1569
1570	/* Ensure the address is in a text area, and find a module if exists. */
1571	*probed_mod = NULL;
1572	if (!core_kernel_text((unsigned long) p->addr)) {
1573		*probed_mod = __module_text_address((unsigned long) p->addr);
1574		if (!(*probed_mod)) {
1575			ret = -EINVAL;
1576			goto out;
1577		}
1578	}
1579	/* Ensure it is not in reserved area. */
1580	if (in_gate_area_no_mm((unsigned long) p->addr) ||
1581	    within_kprobe_blacklist((unsigned long) p->addr) ||
1582	    jump_label_text_reserved(p->addr, p->addr) ||
1583	    static_call_text_reserved(p->addr, p->addr) ||
1584	    find_bug((unsigned long)p->addr) ||
1585	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1586		ret = -EINVAL;
1587		goto out;
1588	}
1589
1590	/* Get module refcount and reject __init functions for loaded modules. */
 
1591	if (*probed_mod) {
1592		/*
1593		 * We must hold a refcount of the probed module while updating
1594		 * its code to prohibit unexpected unloading.
1595		 */
1596		if (unlikely(!try_module_get(*probed_mod))) {
1597			ret = -ENOENT;
1598			goto out;
1599		}
1600
1601		/*
1602		 * If the module freed '.init.text', we couldn't insert
1603		 * kprobes in there.
1604		 */
1605		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1606		    (*probed_mod)->state != MODULE_STATE_COMING) {
1607			module_put(*probed_mod);
1608			*probed_mod = NULL;
1609			ret = -ENOENT;
1610		}
1611	}
1612out:
1613	preempt_enable();
1614	jump_label_unlock();
1615
1616	return ret;
1617}
1618
1619int register_kprobe(struct kprobe *p)
1620{
1621	int ret;
1622	struct kprobe *old_p;
1623	struct module *probed_mod;
1624	kprobe_opcode_t *addr;
1625	bool on_func_entry;
1626
1627	/* Adjust probe address from symbol */
1628	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1629	if (IS_ERR(addr))
1630		return PTR_ERR(addr);
1631	p->addr = addr;
1632
1633	ret = warn_kprobe_rereg(p);
1634	if (ret)
1635		return ret;
1636
1637	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1638	p->flags &= KPROBE_FLAG_DISABLED;
1639	p->nmissed = 0;
1640	INIT_LIST_HEAD(&p->list);
1641
1642	ret = check_kprobe_address_safe(p, &probed_mod);
1643	if (ret)
1644		return ret;
1645
1646	mutex_lock(&kprobe_mutex);
1647
1648	if (on_func_entry)
1649		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1650
1651	old_p = get_kprobe(p->addr);
1652	if (old_p) {
1653		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1654		ret = register_aggr_kprobe(old_p, p);
1655		goto out;
1656	}
1657
1658	cpus_read_lock();
1659	/* Prevent text modification */
1660	mutex_lock(&text_mutex);
1661	ret = prepare_kprobe(p);
1662	mutex_unlock(&text_mutex);
1663	cpus_read_unlock();
1664	if (ret)
1665		goto out;
1666
1667	INIT_HLIST_NODE(&p->hlist);
1668	hlist_add_head_rcu(&p->hlist,
1669		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1670
1671	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1672		ret = arm_kprobe(p);
1673		if (ret) {
1674			hlist_del_rcu(&p->hlist);
1675			synchronize_rcu();
1676			goto out;
1677		}
1678	}
1679
1680	/* Try to optimize kprobe */
1681	try_to_optimize_kprobe(p);
1682out:
1683	mutex_unlock(&kprobe_mutex);
1684
1685	if (probed_mod)
1686		module_put(probed_mod);
1687
1688	return ret;
1689}
1690EXPORT_SYMBOL_GPL(register_kprobe);
1691
1692/* Check if all probes on the 'ap' are disabled. */
1693static bool aggr_kprobe_disabled(struct kprobe *ap)
1694{
1695	struct kprobe *kp;
1696
1697	lockdep_assert_held(&kprobe_mutex);
1698
1699	list_for_each_entry(kp, &ap->list, list)
1700		if (!kprobe_disabled(kp))
1701			/*
1702			 * Since there is an active probe on the list,
1703			 * we can't disable this 'ap'.
1704			 */
1705			return false;
1706
1707	return true;
1708}
1709
1710static struct kprobe *__disable_kprobe(struct kprobe *p)
1711{
1712	struct kprobe *orig_p;
1713	int ret;
1714
1715	lockdep_assert_held(&kprobe_mutex);
1716
1717	/* Get an original kprobe for return */
1718	orig_p = __get_valid_kprobe(p);
1719	if (unlikely(orig_p == NULL))
1720		return ERR_PTR(-EINVAL);
1721
1722	if (!kprobe_disabled(p)) {
1723		/* Disable probe if it is a child probe */
1724		if (p != orig_p)
1725			p->flags |= KPROBE_FLAG_DISABLED;
1726
1727		/* Try to disarm and disable this/parent probe */
1728		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1729			/*
1730			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1731			 * is false, 'orig_p' might not have been armed yet.
1732			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1733			 * on the best effort basis.
1734			 */
1735			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1736				ret = disarm_kprobe(orig_p, true);
1737				if (ret) {
1738					p->flags &= ~KPROBE_FLAG_DISABLED;
1739					return ERR_PTR(ret);
1740				}
1741			}
1742			orig_p->flags |= KPROBE_FLAG_DISABLED;
1743		}
1744	}
1745
1746	return orig_p;
1747}
1748
1749/*
1750 * Unregister a kprobe without a scheduler synchronization.
1751 */
1752static int __unregister_kprobe_top(struct kprobe *p)
1753{
1754	struct kprobe *ap, *list_p;
1755
1756	/* Disable kprobe. This will disarm it if needed. */
1757	ap = __disable_kprobe(p);
1758	if (IS_ERR(ap))
1759		return PTR_ERR(ap);
1760
1761	if (ap == p)
1762		/*
1763		 * This probe is an independent(and non-optimized) kprobe
1764		 * (not an aggrprobe). Remove from the hash list.
1765		 */
1766		goto disarmed;
1767
1768	/* Following process expects this probe is an aggrprobe */
1769	WARN_ON(!kprobe_aggrprobe(ap));
1770
1771	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1772		/*
1773		 * !disarmed could be happen if the probe is under delayed
1774		 * unoptimizing.
1775		 */
1776		goto disarmed;
1777	else {
1778		/* If disabling probe has special handlers, update aggrprobe */
1779		if (p->post_handler && !kprobe_gone(p)) {
1780			list_for_each_entry(list_p, &ap->list, list) {
1781				if ((list_p != p) && (list_p->post_handler))
1782					goto noclean;
1783			}
1784			/*
1785			 * For the kprobe-on-ftrace case, we keep the
1786			 * post_handler setting to identify this aggrprobe
1787			 * armed with kprobe_ipmodify_ops.
1788			 */
1789			if (!kprobe_ftrace(ap))
1790				ap->post_handler = NULL;
1791		}
1792noclean:
1793		/*
1794		 * Remove from the aggrprobe: this path will do nothing in
1795		 * __unregister_kprobe_bottom().
1796		 */
1797		list_del_rcu(&p->list);
1798		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1799			/*
1800			 * Try to optimize this probe again, because post
1801			 * handler may have been changed.
1802			 */
1803			optimize_kprobe(ap);
1804	}
1805	return 0;
1806
1807disarmed:
1808	hlist_del_rcu(&ap->hlist);
1809	return 0;
1810}
1811
1812static void __unregister_kprobe_bottom(struct kprobe *p)
1813{
1814	struct kprobe *ap;
1815
1816	if (list_empty(&p->list))
1817		/* This is an independent kprobe */
1818		arch_remove_kprobe(p);
1819	else if (list_is_singular(&p->list)) {
1820		/* This is the last child of an aggrprobe */
1821		ap = list_entry(p->list.next, struct kprobe, list);
1822		list_del(&p->list);
1823		free_aggr_kprobe(ap);
1824	}
1825	/* Otherwise, do nothing. */
1826}
1827
1828int register_kprobes(struct kprobe **kps, int num)
1829{
1830	int i, ret = 0;
1831
1832	if (num <= 0)
1833		return -EINVAL;
1834	for (i = 0; i < num; i++) {
1835		ret = register_kprobe(kps[i]);
1836		if (ret < 0) {
1837			if (i > 0)
1838				unregister_kprobes(kps, i);
1839			break;
1840		}
1841	}
1842	return ret;
1843}
1844EXPORT_SYMBOL_GPL(register_kprobes);
1845
1846void unregister_kprobe(struct kprobe *p)
1847{
1848	unregister_kprobes(&p, 1);
1849}
1850EXPORT_SYMBOL_GPL(unregister_kprobe);
1851
1852void unregister_kprobes(struct kprobe **kps, int num)
1853{
1854	int i;
1855
1856	if (num <= 0)
1857		return;
1858	mutex_lock(&kprobe_mutex);
1859	for (i = 0; i < num; i++)
1860		if (__unregister_kprobe_top(kps[i]) < 0)
1861			kps[i]->addr = NULL;
1862	mutex_unlock(&kprobe_mutex);
1863
1864	synchronize_rcu();
1865	for (i = 0; i < num; i++)
1866		if (kps[i]->addr)
1867			__unregister_kprobe_bottom(kps[i]);
1868}
1869EXPORT_SYMBOL_GPL(unregister_kprobes);
1870
1871int __weak kprobe_exceptions_notify(struct notifier_block *self,
1872					unsigned long val, void *data)
1873{
1874	return NOTIFY_DONE;
1875}
1876NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1877
1878static struct notifier_block kprobe_exceptions_nb = {
1879	.notifier_call = kprobe_exceptions_notify,
1880	.priority = 0x7fffffff /* we need to be notified first */
1881};
1882
1883#ifdef CONFIG_KRETPROBES
1884
1885#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1886
1887/* callbacks for objpool of kretprobe instances */
1888static int kretprobe_init_inst(void *nod, void *context)
1889{
1890	struct kretprobe_instance *ri = nod;
1891
1892	ri->rph = context;
1893	return 0;
1894}
1895static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1896{
1897	kfree(context);
1898	return 0;
1899}
1900
1901static void free_rp_inst_rcu(struct rcu_head *head)
1902{
1903	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1904	struct kretprobe_holder *rph = ri->rph;
1905
1906	objpool_drop(ri, &rph->pool);
1907}
1908NOKPROBE_SYMBOL(free_rp_inst_rcu);
1909
1910static void recycle_rp_inst(struct kretprobe_instance *ri)
1911{
1912	struct kretprobe *rp = get_kretprobe(ri);
1913
1914	if (likely(rp))
1915		objpool_push(ri, &rp->rph->pool);
1916	else
1917		call_rcu(&ri->rcu, free_rp_inst_rcu);
1918}
1919NOKPROBE_SYMBOL(recycle_rp_inst);
1920
1921/*
1922 * This function is called from delayed_put_task_struct() when a task is
1923 * dead and cleaned up to recycle any kretprobe instances associated with
1924 * this task. These left over instances represent probed functions that
1925 * have been called but will never return.
1926 */
1927void kprobe_flush_task(struct task_struct *tk)
1928{
1929	struct kretprobe_instance *ri;
1930	struct llist_node *node;
1931
1932	/* Early boot, not yet initialized. */
1933	if (unlikely(!kprobes_initialized))
1934		return;
1935
1936	kprobe_busy_begin();
1937
1938	node = __llist_del_all(&tk->kretprobe_instances);
1939	while (node) {
1940		ri = container_of(node, struct kretprobe_instance, llist);
1941		node = node->next;
1942
1943		recycle_rp_inst(ri);
1944	}
1945
1946	kprobe_busy_end();
1947}
1948NOKPROBE_SYMBOL(kprobe_flush_task);
1949
1950static inline void free_rp_inst(struct kretprobe *rp)
1951{
1952	struct kretprobe_holder *rph = rp->rph;
1953
1954	if (!rph)
1955		return;
1956	rp->rph = NULL;
1957	objpool_fini(&rph->pool);
1958}
1959
1960/* This assumes the 'tsk' is the current task or the is not running. */
1961static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1962						  struct llist_node **cur)
1963{
1964	struct kretprobe_instance *ri = NULL;
1965	struct llist_node *node = *cur;
1966
1967	if (!node)
1968		node = tsk->kretprobe_instances.first;
1969	else
1970		node = node->next;
1971
1972	while (node) {
1973		ri = container_of(node, struct kretprobe_instance, llist);
1974		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1975			*cur = node;
1976			return ri->ret_addr;
1977		}
1978		node = node->next;
1979	}
1980	return NULL;
1981}
1982NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1983
1984/**
1985 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1986 * @tsk: Target task
1987 * @fp: A frame pointer
1988 * @cur: a storage of the loop cursor llist_node pointer for next call
1989 *
1990 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1991 * long type. If it finds the return address, this returns that address value,
1992 * or this returns 0.
1993 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1994 * to get the currect return address - which is compared with the
1995 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1996 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1997 * first call, but '@cur' itself must NOT NULL.
1998 */
1999unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2000				      struct llist_node **cur)
2001{
2002	struct kretprobe_instance *ri;
2003	kprobe_opcode_t *ret;
2004
2005	if (WARN_ON_ONCE(!cur))
2006		return 0;
2007
2008	do {
2009		ret = __kretprobe_find_ret_addr(tsk, cur);
2010		if (!ret)
2011			break;
2012		ri = container_of(*cur, struct kretprobe_instance, llist);
2013	} while (ri->fp != fp);
2014
2015	return (unsigned long)ret;
2016}
2017NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2018
2019void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2020					kprobe_opcode_t *correct_ret_addr)
2021{
2022	/*
2023	 * Do nothing by default. Please fill this to update the fake return
2024	 * address on the stack with the correct one on each arch if possible.
2025	 */
2026}
2027
2028unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2029					     void *frame_pointer)
2030{
2031	struct kretprobe_instance *ri = NULL;
2032	struct llist_node *first, *node = NULL;
2033	kprobe_opcode_t *correct_ret_addr;
2034	struct kretprobe *rp;
2035
2036	/* Find correct address and all nodes for this frame. */
2037	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2038	if (!correct_ret_addr) {
2039		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2040		BUG_ON(1);
2041	}
2042
2043	/*
2044	 * Set the return address as the instruction pointer, because if the
2045	 * user handler calls stack_trace_save_regs() with this 'regs',
2046	 * the stack trace will start from the instruction pointer.
2047	 */
2048	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2049
2050	/* Run the user handler of the nodes. */
2051	first = current->kretprobe_instances.first;
2052	while (first) {
2053		ri = container_of(first, struct kretprobe_instance, llist);
2054
2055		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2056			break;
2057
2058		rp = get_kretprobe(ri);
2059		if (rp && rp->handler) {
2060			struct kprobe *prev = kprobe_running();
2061
2062			__this_cpu_write(current_kprobe, &rp->kp);
2063			ri->ret_addr = correct_ret_addr;
2064			rp->handler(ri, regs);
2065			__this_cpu_write(current_kprobe, prev);
2066		}
2067		if (first == node)
2068			break;
2069
2070		first = first->next;
2071	}
2072
2073	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2074
2075	/* Unlink all nodes for this frame. */
2076	first = current->kretprobe_instances.first;
2077	current->kretprobe_instances.first = node->next;
2078	node->next = NULL;
2079
2080	/* Recycle free instances. */
2081	while (first) {
2082		ri = container_of(first, struct kretprobe_instance, llist);
2083		first = first->next;
2084
2085		recycle_rp_inst(ri);
2086	}
2087
2088	return (unsigned long)correct_ret_addr;
2089}
2090NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2091
2092/*
2093 * This kprobe pre_handler is registered with every kretprobe. When probe
2094 * hits it will set up the return probe.
2095 */
2096static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2097{
2098	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2099	struct kretprobe_holder *rph = rp->rph;
2100	struct kretprobe_instance *ri;
2101
2102	ri = objpool_pop(&rph->pool);
2103	if (!ri) {
2104		rp->nmissed++;
2105		return 0;
2106	}
2107
2108	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2109		objpool_push(ri, &rph->pool);
2110		return 0;
2111	}
2112
2113	arch_prepare_kretprobe(ri, regs);
2114
2115	__llist_add(&ri->llist, &current->kretprobe_instances);
2116
2117	return 0;
2118}
2119NOKPROBE_SYMBOL(pre_handler_kretprobe);
2120#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2121/*
2122 * This kprobe pre_handler is registered with every kretprobe. When probe
2123 * hits it will set up the return probe.
2124 */
2125static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2126{
2127	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2128	struct kretprobe_instance *ri;
2129	struct rethook_node *rhn;
2130
2131	rhn = rethook_try_get(rp->rh);
2132	if (!rhn) {
2133		rp->nmissed++;
2134		return 0;
2135	}
2136
2137	ri = container_of(rhn, struct kretprobe_instance, node);
2138
2139	if (rp->entry_handler && rp->entry_handler(ri, regs))
2140		rethook_recycle(rhn);
2141	else
2142		rethook_hook(rhn, regs, kprobe_ftrace(p));
2143
2144	return 0;
2145}
2146NOKPROBE_SYMBOL(pre_handler_kretprobe);
2147
2148static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2149				      unsigned long ret_addr,
2150				      struct pt_regs *regs)
2151{
2152	struct kretprobe *rp = (struct kretprobe *)data;
2153	struct kretprobe_instance *ri;
2154	struct kprobe_ctlblk *kcb;
2155
2156	/* The data must NOT be null. This means rethook data structure is broken. */
2157	if (WARN_ON_ONCE(!data) || !rp->handler)
2158		return;
2159
2160	__this_cpu_write(current_kprobe, &rp->kp);
2161	kcb = get_kprobe_ctlblk();
2162	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2163
2164	ri = container_of(rh, struct kretprobe_instance, node);
2165	rp->handler(ri, regs);
2166
2167	__this_cpu_write(current_kprobe, NULL);
2168}
2169NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2170
2171#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2172
2173/**
2174 * kprobe_on_func_entry() -- check whether given address is function entry
2175 * @addr: Target address
2176 * @sym:  Target symbol name
2177 * @offset: The offset from the symbol or the address
2178 *
2179 * This checks whether the given @addr+@offset or @sym+@offset is on the
2180 * function entry address or not.
2181 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2182 * And also it returns -ENOENT if it fails the symbol or address lookup.
2183 * Caller must pass @addr or @sym (either one must be NULL), or this
2184 * returns -EINVAL.
2185 */
2186int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2187{
2188	bool on_func_entry;
2189	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2190
2191	if (IS_ERR(kp_addr))
2192		return PTR_ERR(kp_addr);
2193
2194	if (!on_func_entry)
2195		return -EINVAL;
2196
2197	return 0;
2198}
2199
2200int register_kretprobe(struct kretprobe *rp)
2201{
2202	int ret;
2203	int i;
2204	void *addr;
2205
2206	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2207	if (ret)
2208		return ret;
2209
2210	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2211	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2212		return -EINVAL;
2213
2214	if (kretprobe_blacklist_size) {
2215		addr = kprobe_addr(&rp->kp);
2216		if (IS_ERR(addr))
2217			return PTR_ERR(addr);
2218
2219		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2220			if (kretprobe_blacklist[i].addr == addr)
2221				return -EINVAL;
2222		}
2223	}
2224
2225	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2226		return -E2BIG;
2227
2228	rp->kp.pre_handler = pre_handler_kretprobe;
2229	rp->kp.post_handler = NULL;
2230
2231	/* Pre-allocate memory for max kretprobe instances */
2232	if (rp->maxactive <= 0)
2233		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2234
2235#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2236	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2237				sizeof(struct kretprobe_instance) +
2238				rp->data_size, rp->maxactive);
2239	if (IS_ERR(rp->rh))
2240		return PTR_ERR(rp->rh);
2241
2242	rp->nmissed = 0;
2243	/* Establish function entry probe point */
2244	ret = register_kprobe(&rp->kp);
2245	if (ret != 0) {
2246		rethook_free(rp->rh);
2247		rp->rh = NULL;
2248	}
2249#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2250	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2251	if (!rp->rph)
2252		return -ENOMEM;
2253
2254	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2255			sizeof(struct kretprobe_instance), GFP_KERNEL,
2256			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2257		kfree(rp->rph);
2258		rp->rph = NULL;
2259		return -ENOMEM;
2260	}
2261	rcu_assign_pointer(rp->rph->rp, rp);
2262	rp->nmissed = 0;
2263	/* Establish function entry probe point */
2264	ret = register_kprobe(&rp->kp);
2265	if (ret != 0)
2266		free_rp_inst(rp);
2267#endif
2268	return ret;
2269}
2270EXPORT_SYMBOL_GPL(register_kretprobe);
2271
2272int register_kretprobes(struct kretprobe **rps, int num)
2273{
2274	int ret = 0, i;
2275
2276	if (num <= 0)
2277		return -EINVAL;
2278	for (i = 0; i < num; i++) {
2279		ret = register_kretprobe(rps[i]);
2280		if (ret < 0) {
2281			if (i > 0)
2282				unregister_kretprobes(rps, i);
2283			break;
2284		}
2285	}
2286	return ret;
2287}
2288EXPORT_SYMBOL_GPL(register_kretprobes);
2289
2290void unregister_kretprobe(struct kretprobe *rp)
2291{
2292	unregister_kretprobes(&rp, 1);
2293}
2294EXPORT_SYMBOL_GPL(unregister_kretprobe);
2295
2296void unregister_kretprobes(struct kretprobe **rps, int num)
2297{
2298	int i;
2299
2300	if (num <= 0)
2301		return;
2302	mutex_lock(&kprobe_mutex);
2303	for (i = 0; i < num; i++) {
2304		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2305			rps[i]->kp.addr = NULL;
2306#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2307		rethook_free(rps[i]->rh);
2308#else
2309		rcu_assign_pointer(rps[i]->rph->rp, NULL);
2310#endif
2311	}
2312	mutex_unlock(&kprobe_mutex);
2313
2314	synchronize_rcu();
2315	for (i = 0; i < num; i++) {
2316		if (rps[i]->kp.addr) {
2317			__unregister_kprobe_bottom(&rps[i]->kp);
2318#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2319			free_rp_inst(rps[i]);
2320#endif
2321		}
2322	}
2323}
2324EXPORT_SYMBOL_GPL(unregister_kretprobes);
2325
2326#else /* CONFIG_KRETPROBES */
2327int register_kretprobe(struct kretprobe *rp)
2328{
2329	return -EOPNOTSUPP;
2330}
2331EXPORT_SYMBOL_GPL(register_kretprobe);
2332
2333int register_kretprobes(struct kretprobe **rps, int num)
2334{
2335	return -EOPNOTSUPP;
2336}
2337EXPORT_SYMBOL_GPL(register_kretprobes);
2338
2339void unregister_kretprobe(struct kretprobe *rp)
2340{
2341}
2342EXPORT_SYMBOL_GPL(unregister_kretprobe);
2343
2344void unregister_kretprobes(struct kretprobe **rps, int num)
2345{
2346}
2347EXPORT_SYMBOL_GPL(unregister_kretprobes);
2348
2349static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2350{
2351	return 0;
2352}
2353NOKPROBE_SYMBOL(pre_handler_kretprobe);
2354
2355#endif /* CONFIG_KRETPROBES */
2356
2357/* Set the kprobe gone and remove its instruction buffer. */
2358static void kill_kprobe(struct kprobe *p)
2359{
2360	struct kprobe *kp;
2361
2362	lockdep_assert_held(&kprobe_mutex);
2363
2364	/*
2365	 * The module is going away. We should disarm the kprobe which
2366	 * is using ftrace, because ftrace framework is still available at
2367	 * 'MODULE_STATE_GOING' notification.
2368	 */
2369	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2370		disarm_kprobe_ftrace(p);
2371
2372	p->flags |= KPROBE_FLAG_GONE;
2373	if (kprobe_aggrprobe(p)) {
2374		/*
2375		 * If this is an aggr_kprobe, we have to list all the
2376		 * chained probes and mark them GONE.
2377		 */
2378		list_for_each_entry(kp, &p->list, list)
2379			kp->flags |= KPROBE_FLAG_GONE;
2380		p->post_handler = NULL;
2381		kill_optimized_kprobe(p);
2382	}
2383	/*
2384	 * Here, we can remove insn_slot safely, because no thread calls
2385	 * the original probed function (which will be freed soon) any more.
2386	 */
2387	arch_remove_kprobe(p);
2388}
2389
2390/* Disable one kprobe */
2391int disable_kprobe(struct kprobe *kp)
2392{
2393	int ret = 0;
2394	struct kprobe *p;
2395
2396	mutex_lock(&kprobe_mutex);
2397
2398	/* Disable this kprobe */
2399	p = __disable_kprobe(kp);
2400	if (IS_ERR(p))
2401		ret = PTR_ERR(p);
2402
2403	mutex_unlock(&kprobe_mutex);
2404	return ret;
2405}
2406EXPORT_SYMBOL_GPL(disable_kprobe);
2407
2408/* Enable one kprobe */
2409int enable_kprobe(struct kprobe *kp)
2410{
2411	int ret = 0;
2412	struct kprobe *p;
2413
2414	mutex_lock(&kprobe_mutex);
2415
2416	/* Check whether specified probe is valid. */
2417	p = __get_valid_kprobe(kp);
2418	if (unlikely(p == NULL)) {
2419		ret = -EINVAL;
2420		goto out;
2421	}
2422
2423	if (kprobe_gone(kp)) {
2424		/* This kprobe has gone, we couldn't enable it. */
2425		ret = -EINVAL;
2426		goto out;
2427	}
2428
2429	if (p != kp)
2430		kp->flags &= ~KPROBE_FLAG_DISABLED;
2431
2432	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2433		p->flags &= ~KPROBE_FLAG_DISABLED;
2434		ret = arm_kprobe(p);
2435		if (ret) {
2436			p->flags |= KPROBE_FLAG_DISABLED;
2437			if (p != kp)
2438				kp->flags |= KPROBE_FLAG_DISABLED;
2439		}
2440	}
2441out:
2442	mutex_unlock(&kprobe_mutex);
2443	return ret;
2444}
2445EXPORT_SYMBOL_GPL(enable_kprobe);
2446
2447/* Caller must NOT call this in usual path. This is only for critical case */
2448void dump_kprobe(struct kprobe *kp)
2449{
2450	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2451	       kp->symbol_name, kp->offset, kp->addr);
2452}
2453NOKPROBE_SYMBOL(dump_kprobe);
2454
2455int kprobe_add_ksym_blacklist(unsigned long entry)
2456{
2457	struct kprobe_blacklist_entry *ent;
2458	unsigned long offset = 0, size = 0;
2459
2460	if (!kernel_text_address(entry) ||
2461	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2462		return -EINVAL;
2463
2464	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2465	if (!ent)
2466		return -ENOMEM;
2467	ent->start_addr = entry;
2468	ent->end_addr = entry + size;
2469	INIT_LIST_HEAD(&ent->list);
2470	list_add_tail(&ent->list, &kprobe_blacklist);
2471
2472	return (int)size;
2473}
2474
2475/* Add all symbols in given area into kprobe blacklist */
2476int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2477{
2478	unsigned long entry;
2479	int ret = 0;
2480
2481	for (entry = start; entry < end; entry += ret) {
2482		ret = kprobe_add_ksym_blacklist(entry);
2483		if (ret < 0)
2484			return ret;
2485		if (ret == 0)	/* In case of alias symbol */
2486			ret = 1;
2487	}
2488	return 0;
2489}
2490
2491/* Remove all symbols in given area from kprobe blacklist */
2492static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2493{
2494	struct kprobe_blacklist_entry *ent, *n;
2495
2496	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2497		if (ent->start_addr < start || ent->start_addr >= end)
2498			continue;
2499		list_del(&ent->list);
2500		kfree(ent);
2501	}
2502}
2503
2504static void kprobe_remove_ksym_blacklist(unsigned long entry)
2505{
2506	kprobe_remove_area_blacklist(entry, entry + 1);
2507}
2508
2509int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2510				   char *type, char *sym)
2511{
2512	return -ERANGE;
2513}
2514
2515int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2516		       char *sym)
2517{
2518#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2519	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2520		return 0;
2521#ifdef CONFIG_OPTPROBES
2522	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2523		return 0;
2524#endif
2525#endif
2526	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2527		return 0;
2528	return -ERANGE;
2529}
2530
2531int __init __weak arch_populate_kprobe_blacklist(void)
2532{
2533	return 0;
2534}
2535
2536/*
2537 * Lookup and populate the kprobe_blacklist.
2538 *
2539 * Unlike the kretprobe blacklist, we'll need to determine
2540 * the range of addresses that belong to the said functions,
2541 * since a kprobe need not necessarily be at the beginning
2542 * of a function.
2543 */
2544static int __init populate_kprobe_blacklist(unsigned long *start,
2545					     unsigned long *end)
2546{
2547	unsigned long entry;
2548	unsigned long *iter;
2549	int ret;
2550
2551	for (iter = start; iter < end; iter++) {
2552		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2553		ret = kprobe_add_ksym_blacklist(entry);
2554		if (ret == -EINVAL)
2555			continue;
2556		if (ret < 0)
2557			return ret;
2558	}
2559
2560	/* Symbols in '__kprobes_text' are blacklisted */
2561	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2562					(unsigned long)__kprobes_text_end);
2563	if (ret)
2564		return ret;
2565
2566	/* Symbols in 'noinstr' section are blacklisted */
2567	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2568					(unsigned long)__noinstr_text_end);
2569
2570	return ret ? : arch_populate_kprobe_blacklist();
2571}
2572
2573static void add_module_kprobe_blacklist(struct module *mod)
2574{
2575	unsigned long start, end;
2576	int i;
2577
2578	if (mod->kprobe_blacklist) {
2579		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2580			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2581	}
2582
2583	start = (unsigned long)mod->kprobes_text_start;
2584	if (start) {
2585		end = start + mod->kprobes_text_size;
2586		kprobe_add_area_blacklist(start, end);
2587	}
2588
2589	start = (unsigned long)mod->noinstr_text_start;
2590	if (start) {
2591		end = start + mod->noinstr_text_size;
2592		kprobe_add_area_blacklist(start, end);
2593	}
2594}
2595
2596static void remove_module_kprobe_blacklist(struct module *mod)
2597{
2598	unsigned long start, end;
2599	int i;
2600
2601	if (mod->kprobe_blacklist) {
2602		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2603			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2604	}
2605
2606	start = (unsigned long)mod->kprobes_text_start;
2607	if (start) {
2608		end = start + mod->kprobes_text_size;
2609		kprobe_remove_area_blacklist(start, end);
2610	}
2611
2612	start = (unsigned long)mod->noinstr_text_start;
2613	if (start) {
2614		end = start + mod->noinstr_text_size;
2615		kprobe_remove_area_blacklist(start, end);
2616	}
2617}
2618
2619/* Module notifier call back, checking kprobes on the module */
2620static int kprobes_module_callback(struct notifier_block *nb,
2621				   unsigned long val, void *data)
2622{
2623	struct module *mod = data;
2624	struct hlist_head *head;
2625	struct kprobe *p;
2626	unsigned int i;
2627	int checkcore = (val == MODULE_STATE_GOING);
2628
2629	if (val == MODULE_STATE_COMING) {
2630		mutex_lock(&kprobe_mutex);
2631		add_module_kprobe_blacklist(mod);
2632		mutex_unlock(&kprobe_mutex);
2633	}
2634	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2635		return NOTIFY_DONE;
2636
2637	/*
2638	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2639	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2640	 * notified, only '.init.text' section would be freed. We need to
2641	 * disable kprobes which have been inserted in the sections.
2642	 */
2643	mutex_lock(&kprobe_mutex);
2644	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2645		head = &kprobe_table[i];
2646		hlist_for_each_entry(p, head, hlist)
2647			if (within_module_init((unsigned long)p->addr, mod) ||
2648			    (checkcore &&
2649			     within_module_core((unsigned long)p->addr, mod))) {
2650				/*
2651				 * The vaddr this probe is installed will soon
2652				 * be vfreed buy not synced to disk. Hence,
2653				 * disarming the breakpoint isn't needed.
2654				 *
2655				 * Note, this will also move any optimized probes
2656				 * that are pending to be removed from their
2657				 * corresponding lists to the 'freeing_list' and
2658				 * will not be touched by the delayed
2659				 * kprobe_optimizer() work handler.
2660				 */
2661				kill_kprobe(p);
2662			}
2663	}
2664	if (val == MODULE_STATE_GOING)
2665		remove_module_kprobe_blacklist(mod);
2666	mutex_unlock(&kprobe_mutex);
2667	return NOTIFY_DONE;
2668}
2669
2670static struct notifier_block kprobe_module_nb = {
2671	.notifier_call = kprobes_module_callback,
2672	.priority = 0
2673};
2674
2675void kprobe_free_init_mem(void)
2676{
2677	void *start = (void *)(&__init_begin);
2678	void *end = (void *)(&__init_end);
2679	struct hlist_head *head;
2680	struct kprobe *p;
2681	int i;
2682
2683	mutex_lock(&kprobe_mutex);
2684
2685	/* Kill all kprobes on initmem because the target code has been freed. */
2686	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2687		head = &kprobe_table[i];
2688		hlist_for_each_entry(p, head, hlist) {
2689			if (start <= (void *)p->addr && (void *)p->addr < end)
2690				kill_kprobe(p);
2691		}
2692	}
2693
2694	mutex_unlock(&kprobe_mutex);
2695}
2696
2697static int __init init_kprobes(void)
2698{
2699	int i, err;
2700
2701	/* FIXME allocate the probe table, currently defined statically */
2702	/* initialize all list heads */
2703	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2704		INIT_HLIST_HEAD(&kprobe_table[i]);
2705
2706	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2707					__stop_kprobe_blacklist);
2708	if (err)
2709		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2710
2711	if (kretprobe_blacklist_size) {
2712		/* lookup the function address from its name */
2713		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2714			kretprobe_blacklist[i].addr =
2715				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2716			if (!kretprobe_blacklist[i].addr)
2717				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2718				       kretprobe_blacklist[i].name);
2719		}
2720	}
2721
2722	/* By default, kprobes are armed */
2723	kprobes_all_disarmed = false;
2724
2725#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2726	/* Init 'kprobe_optinsn_slots' for allocation */
2727	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2728#endif
2729
2730	err = arch_init_kprobes();
2731	if (!err)
2732		err = register_die_notifier(&kprobe_exceptions_nb);
2733	if (!err)
2734		err = register_module_notifier(&kprobe_module_nb);
2735
2736	kprobes_initialized = (err == 0);
2737	kprobe_sysctls_init();
2738	return err;
2739}
2740early_initcall(init_kprobes);
2741
2742#if defined(CONFIG_OPTPROBES)
2743static int __init init_optprobes(void)
2744{
2745	/*
2746	 * Enable kprobe optimization - this kicks the optimizer which
2747	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2748	 * not spawned in early initcall. So delay the optimization.
2749	 */
2750	optimize_all_kprobes();
2751
2752	return 0;
2753}
2754subsys_initcall(init_optprobes);
2755#endif
2756
2757#ifdef CONFIG_DEBUG_FS
2758static void report_probe(struct seq_file *pi, struct kprobe *p,
2759		const char *sym, int offset, char *modname, struct kprobe *pp)
2760{
2761	char *kprobe_type;
2762	void *addr = p->addr;
2763
2764	if (p->pre_handler == pre_handler_kretprobe)
2765		kprobe_type = "r";
2766	else
2767		kprobe_type = "k";
2768
2769	if (!kallsyms_show_value(pi->file->f_cred))
2770		addr = NULL;
2771
2772	if (sym)
2773		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2774			addr, kprobe_type, sym, offset,
2775			(modname ? modname : " "));
2776	else	/* try to use %pS */
2777		seq_printf(pi, "%px  %s  %pS ",
2778			addr, kprobe_type, p->addr);
2779
2780	if (!pp)
2781		pp = p;
2782	seq_printf(pi, "%s%s%s%s\n",
2783		(kprobe_gone(p) ? "[GONE]" : ""),
2784		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2785		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2786		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2787}
2788
2789static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2790{
2791	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2792}
2793
2794static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2795{
2796	(*pos)++;
2797	if (*pos >= KPROBE_TABLE_SIZE)
2798		return NULL;
2799	return pos;
2800}
2801
2802static void kprobe_seq_stop(struct seq_file *f, void *v)
2803{
2804	/* Nothing to do */
2805}
2806
2807static int show_kprobe_addr(struct seq_file *pi, void *v)
2808{
2809	struct hlist_head *head;
2810	struct kprobe *p, *kp;
2811	const char *sym;
2812	unsigned int i = *(loff_t *) v;
2813	unsigned long offset = 0;
2814	char *modname, namebuf[KSYM_NAME_LEN];
2815
2816	head = &kprobe_table[i];
2817	preempt_disable();
2818	hlist_for_each_entry_rcu(p, head, hlist) {
2819		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2820					&offset, &modname, namebuf);
2821		if (kprobe_aggrprobe(p)) {
2822			list_for_each_entry_rcu(kp, &p->list, list)
2823				report_probe(pi, kp, sym, offset, modname, p);
2824		} else
2825			report_probe(pi, p, sym, offset, modname, NULL);
2826	}
2827	preempt_enable();
2828	return 0;
2829}
2830
2831static const struct seq_operations kprobes_sops = {
2832	.start = kprobe_seq_start,
2833	.next  = kprobe_seq_next,
2834	.stop  = kprobe_seq_stop,
2835	.show  = show_kprobe_addr
2836};
2837
2838DEFINE_SEQ_ATTRIBUTE(kprobes);
2839
2840/* kprobes/blacklist -- shows which functions can not be probed */
2841static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2842{
2843	mutex_lock(&kprobe_mutex);
2844	return seq_list_start(&kprobe_blacklist, *pos);
2845}
2846
2847static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2848{
2849	return seq_list_next(v, &kprobe_blacklist, pos);
2850}
2851
2852static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2853{
2854	struct kprobe_blacklist_entry *ent =
2855		list_entry(v, struct kprobe_blacklist_entry, list);
2856
2857	/*
2858	 * If '/proc/kallsyms' is not showing kernel address, we won't
2859	 * show them here either.
2860	 */
2861	if (!kallsyms_show_value(m->file->f_cred))
2862		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2863			   (void *)ent->start_addr);
2864	else
2865		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2866			   (void *)ent->end_addr, (void *)ent->start_addr);
2867	return 0;
2868}
2869
2870static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2871{
2872	mutex_unlock(&kprobe_mutex);
2873}
2874
2875static const struct seq_operations kprobe_blacklist_sops = {
2876	.start = kprobe_blacklist_seq_start,
2877	.next  = kprobe_blacklist_seq_next,
2878	.stop  = kprobe_blacklist_seq_stop,
2879	.show  = kprobe_blacklist_seq_show,
2880};
2881DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2882
2883static int arm_all_kprobes(void)
2884{
2885	struct hlist_head *head;
2886	struct kprobe *p;
2887	unsigned int i, total = 0, errors = 0;
2888	int err, ret = 0;
2889
2890	mutex_lock(&kprobe_mutex);
2891
2892	/* If kprobes are armed, just return */
2893	if (!kprobes_all_disarmed)
2894		goto already_enabled;
2895
2896	/*
2897	 * optimize_kprobe() called by arm_kprobe() checks
2898	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2899	 * arm_kprobe.
2900	 */
2901	kprobes_all_disarmed = false;
2902	/* Arming kprobes doesn't optimize kprobe itself */
2903	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2904		head = &kprobe_table[i];
2905		/* Arm all kprobes on a best-effort basis */
2906		hlist_for_each_entry(p, head, hlist) {
2907			if (!kprobe_disabled(p)) {
2908				err = arm_kprobe(p);
2909				if (err)  {
2910					errors++;
2911					ret = err;
2912				}
2913				total++;
2914			}
2915		}
2916	}
2917
2918	if (errors)
2919		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2920			errors, total);
2921	else
2922		pr_info("Kprobes globally enabled\n");
2923
2924already_enabled:
2925	mutex_unlock(&kprobe_mutex);
2926	return ret;
2927}
2928
2929static int disarm_all_kprobes(void)
2930{
2931	struct hlist_head *head;
2932	struct kprobe *p;
2933	unsigned int i, total = 0, errors = 0;
2934	int err, ret = 0;
2935
2936	mutex_lock(&kprobe_mutex);
2937
2938	/* If kprobes are already disarmed, just return */
2939	if (kprobes_all_disarmed) {
2940		mutex_unlock(&kprobe_mutex);
2941		return 0;
2942	}
2943
2944	kprobes_all_disarmed = true;
2945
2946	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2947		head = &kprobe_table[i];
2948		/* Disarm all kprobes on a best-effort basis */
2949		hlist_for_each_entry(p, head, hlist) {
2950			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2951				err = disarm_kprobe(p, false);
2952				if (err) {
2953					errors++;
2954					ret = err;
2955				}
2956				total++;
2957			}
2958		}
2959	}
2960
2961	if (errors)
2962		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2963			errors, total);
2964	else
2965		pr_info("Kprobes globally disabled\n");
2966
2967	mutex_unlock(&kprobe_mutex);
2968
2969	/* Wait for disarming all kprobes by optimizer */
2970	wait_for_kprobe_optimizer();
2971
2972	return ret;
2973}
2974
2975/*
2976 * XXX: The debugfs bool file interface doesn't allow for callbacks
2977 * when the bool state is switched. We can reuse that facility when
2978 * available
2979 */
2980static ssize_t read_enabled_file_bool(struct file *file,
2981	       char __user *user_buf, size_t count, loff_t *ppos)
2982{
2983	char buf[3];
2984
2985	if (!kprobes_all_disarmed)
2986		buf[0] = '1';
2987	else
2988		buf[0] = '0';
2989	buf[1] = '\n';
2990	buf[2] = 0x00;
2991	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2992}
2993
2994static ssize_t write_enabled_file_bool(struct file *file,
2995	       const char __user *user_buf, size_t count, loff_t *ppos)
2996{
2997	bool enable;
2998	int ret;
2999
3000	ret = kstrtobool_from_user(user_buf, count, &enable);
3001	if (ret)
3002		return ret;
3003
3004	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3005	if (ret)
3006		return ret;
3007
3008	return count;
3009}
3010
3011static const struct file_operations fops_kp = {
3012	.read =         read_enabled_file_bool,
3013	.write =        write_enabled_file_bool,
3014	.llseek =	default_llseek,
3015};
3016
3017static int __init debugfs_kprobe_init(void)
3018{
3019	struct dentry *dir;
3020
3021	dir = debugfs_create_dir("kprobes", NULL);
3022
3023	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3024
3025	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3026
3027	debugfs_create_file("blacklist", 0400, dir, NULL,
3028			    &kprobe_blacklist_fops);
3029
3030	return 0;
3031}
3032
3033late_initcall(debugfs_kprobe_init);
3034#endif /* CONFIG_DEBUG_FS */