Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Simple file system for zoned block devices exposing zones as files.
  4 *
  5 * Copyright (C) 2022 Western Digital Corporation or its affiliates.
  6 */
  7#include <linux/module.h>
  8#include <linux/pagemap.h>
  9#include <linux/iomap.h>
 10#include <linux/init.h>
 11#include <linux/slab.h>
 12#include <linux/blkdev.h>
 13#include <linux/statfs.h>
 14#include <linux/writeback.h>
 15#include <linux/quotaops.h>
 16#include <linux/seq_file.h>
 17#include <linux/parser.h>
 18#include <linux/uio.h>
 19#include <linux/mman.h>
 20#include <linux/sched/mm.h>
 21#include <linux/task_io_accounting_ops.h>
 22
 23#include "zonefs.h"
 24
 25#include "trace.h"
 26
 27static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
 28				   loff_t length, unsigned int flags,
 29				   struct iomap *iomap, struct iomap *srcmap)
 30{
 31	struct zonefs_inode_info *zi = ZONEFS_I(inode);
 32	struct zonefs_zone *z = zonefs_inode_zone(inode);
 33	struct super_block *sb = inode->i_sb;
 34	loff_t isize;
 35
 36	/*
 37	 * All blocks are always mapped below EOF. If reading past EOF,
 38	 * act as if there is a hole up to the file maximum size.
 39	 */
 40	mutex_lock(&zi->i_truncate_mutex);
 41	iomap->bdev = inode->i_sb->s_bdev;
 42	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
 43	isize = i_size_read(inode);
 44	if (iomap->offset >= isize) {
 45		iomap->type = IOMAP_HOLE;
 46		iomap->addr = IOMAP_NULL_ADDR;
 47		iomap->length = length;
 48	} else {
 49		iomap->type = IOMAP_MAPPED;
 50		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
 51		iomap->length = isize - iomap->offset;
 52	}
 53	mutex_unlock(&zi->i_truncate_mutex);
 54
 55	trace_zonefs_iomap_begin(inode, iomap);
 56
 57	return 0;
 58}
 59
 60static const struct iomap_ops zonefs_read_iomap_ops = {
 61	.iomap_begin	= zonefs_read_iomap_begin,
 62};
 63
 64static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
 65				    loff_t length, unsigned int flags,
 66				    struct iomap *iomap, struct iomap *srcmap)
 67{
 68	struct zonefs_inode_info *zi = ZONEFS_I(inode);
 69	struct zonefs_zone *z = zonefs_inode_zone(inode);
 70	struct super_block *sb = inode->i_sb;
 71	loff_t isize;
 72
 73	/* All write I/Os should always be within the file maximum size */
 74	if (WARN_ON_ONCE(offset + length > z->z_capacity))
 75		return -EIO;
 76
 77	/*
 78	 * Sequential zones can only accept direct writes. This is already
 79	 * checked when writes are issued, so warn if we see a page writeback
 80	 * operation.
 81	 */
 82	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
 83		return -EIO;
 84
 85	/*
 86	 * For conventional zones, all blocks are always mapped. For sequential
 87	 * zones, all blocks after always mapped below the inode size (zone
 88	 * write pointer) and unwriten beyond.
 89	 */
 90	mutex_lock(&zi->i_truncate_mutex);
 91	iomap->bdev = inode->i_sb->s_bdev;
 92	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
 93	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
 94	isize = i_size_read(inode);
 95	if (iomap->offset >= isize) {
 96		iomap->type = IOMAP_UNWRITTEN;
 97		iomap->length = z->z_capacity - iomap->offset;
 98	} else {
 99		iomap->type = IOMAP_MAPPED;
100		iomap->length = isize - iomap->offset;
101	}
102	mutex_unlock(&zi->i_truncate_mutex);
103
104	trace_zonefs_iomap_begin(inode, iomap);
105
106	return 0;
107}
108
109static const struct iomap_ops zonefs_write_iomap_ops = {
110	.iomap_begin	= zonefs_write_iomap_begin,
111};
112
113static int zonefs_read_folio(struct file *unused, struct folio *folio)
114{
115	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116}
117
118static void zonefs_readahead(struct readahead_control *rac)
119{
120	iomap_readahead(rac, &zonefs_read_iomap_ops);
121}
122
123/*
124 * Map blocks for page writeback. This is used only on conventional zone files,
125 * which implies that the page range can only be within the fixed inode size.
126 */
127static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128				   struct inode *inode, loff_t offset)
 
129{
130	struct zonefs_zone *z = zonefs_inode_zone(inode);
131
132	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133		return -EIO;
134	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135		return -EIO;
136
137	/* If the mapping is already OK, nothing needs to be done */
138	if (offset >= wpc->iomap.offset &&
139	    offset < wpc->iomap.offset + wpc->iomap.length)
140		return 0;
141
142	return zonefs_write_iomap_begin(inode, offset,
143					z->z_capacity - offset,
144					IOMAP_WRITE, &wpc->iomap, NULL);
145}
146
147static const struct iomap_writeback_ops zonefs_writeback_ops = {
148	.map_blocks		= zonefs_write_map_blocks,
149};
150
151static int zonefs_writepages(struct address_space *mapping,
152			     struct writeback_control *wbc)
153{
154	struct iomap_writepage_ctx wpc = { };
155
156	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157}
158
159static int zonefs_swap_activate(struct swap_info_struct *sis,
160				struct file *swap_file, sector_t *span)
161{
162	struct inode *inode = file_inode(swap_file);
163
164	if (zonefs_inode_is_seq(inode)) {
165		zonefs_err(inode->i_sb,
166			   "swap file: not a conventional zone file\n");
167		return -EINVAL;
168	}
169
170	return iomap_swapfile_activate(sis, swap_file, span,
171				       &zonefs_read_iomap_ops);
172}
173
174const struct address_space_operations zonefs_file_aops = {
175	.read_folio		= zonefs_read_folio,
176	.readahead		= zonefs_readahead,
177	.writepages		= zonefs_writepages,
178	.dirty_folio		= iomap_dirty_folio,
179	.release_folio		= iomap_release_folio,
180	.invalidate_folio	= iomap_invalidate_folio,
181	.migrate_folio		= filemap_migrate_folio,
182	.is_partially_uptodate	= iomap_is_partially_uptodate,
183	.error_remove_folio	= generic_error_remove_folio,
184	.swap_activate		= zonefs_swap_activate,
185};
186
187int zonefs_file_truncate(struct inode *inode, loff_t isize)
188{
189	struct zonefs_inode_info *zi = ZONEFS_I(inode);
190	struct zonefs_zone *z = zonefs_inode_zone(inode);
191	loff_t old_isize;
192	enum req_op op;
193	int ret = 0;
194
195	/*
196	 * Only sequential zone files can be truncated and truncation is allowed
197	 * only down to a 0 size, which is equivalent to a zone reset, and to
198	 * the maximum file size, which is equivalent to a zone finish.
199	 */
200	if (!zonefs_zone_is_seq(z))
201		return -EPERM;
202
203	if (!isize)
204		op = REQ_OP_ZONE_RESET;
205	else if (isize == z->z_capacity)
206		op = REQ_OP_ZONE_FINISH;
207	else
208		return -EPERM;
209
210	inode_dio_wait(inode);
211
212	/* Serialize against page faults */
213	filemap_invalidate_lock(inode->i_mapping);
214
215	/* Serialize against zonefs_iomap_begin() */
216	mutex_lock(&zi->i_truncate_mutex);
217
218	old_isize = i_size_read(inode);
219	if (isize == old_isize)
220		goto unlock;
221
222	ret = zonefs_inode_zone_mgmt(inode, op);
223	if (ret)
224		goto unlock;
225
226	/*
227	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
228	 * take care of open zones.
229	 */
230	if (z->z_flags & ZONEFS_ZONE_OPEN) {
231		/*
232		 * Truncating a zone to EMPTY or FULL is the equivalent of
233		 * closing the zone. For a truncation to 0, we need to
234		 * re-open the zone to ensure new writes can be processed.
235		 * For a truncation to the maximum file size, the zone is
236		 * closed and writes cannot be accepted anymore, so clear
237		 * the open flag.
238		 */
239		if (!isize)
240			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
241		else
242			z->z_flags &= ~ZONEFS_ZONE_OPEN;
243	}
244
245	zonefs_update_stats(inode, isize);
246	truncate_setsize(inode, isize);
247	z->z_wpoffset = isize;
248	zonefs_inode_account_active(inode);
249
250unlock:
251	mutex_unlock(&zi->i_truncate_mutex);
252	filemap_invalidate_unlock(inode->i_mapping);
253
254	return ret;
255}
256
257static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
258			     int datasync)
259{
260	struct inode *inode = file_inode(file);
261	int ret = 0;
262
263	if (unlikely(IS_IMMUTABLE(inode)))
264		return -EPERM;
265
266	/*
267	 * Since only direct writes are allowed in sequential files, page cache
268	 * flush is needed only for conventional zone files.
269	 */
270	if (zonefs_inode_is_cnv(inode))
271		ret = file_write_and_wait_range(file, start, end);
272	if (!ret)
273		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
274
275	if (ret)
276		zonefs_io_error(inode, true);
277
278	return ret;
279}
280
281static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
282{
283	struct inode *inode = file_inode(vmf->vma->vm_file);
284	vm_fault_t ret;
285
286	if (unlikely(IS_IMMUTABLE(inode)))
287		return VM_FAULT_SIGBUS;
288
289	/*
290	 * Sanity check: only conventional zone files can have shared
291	 * writeable mappings.
292	 */
293	if (zonefs_inode_is_seq(inode))
294		return VM_FAULT_NOPAGE;
295
296	sb_start_pagefault(inode->i_sb);
297	file_update_time(vmf->vma->vm_file);
298
299	/* Serialize against truncates */
300	filemap_invalidate_lock_shared(inode->i_mapping);
301	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
302	filemap_invalidate_unlock_shared(inode->i_mapping);
303
304	sb_end_pagefault(inode->i_sb);
305	return ret;
306}
307
308static const struct vm_operations_struct zonefs_file_vm_ops = {
309	.fault		= filemap_fault,
310	.map_pages	= filemap_map_pages,
311	.page_mkwrite	= zonefs_filemap_page_mkwrite,
312};
313
314static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
315{
316	/*
317	 * Conventional zones accept random writes, so their files can support
318	 * shared writable mappings. For sequential zone files, only read
319	 * mappings are possible since there are no guarantees for write
320	 * ordering between msync() and page cache writeback.
321	 */
322	if (zonefs_inode_is_seq(file_inode(file)) &&
323	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
324		return -EINVAL;
325
326	file_accessed(file);
327	vma->vm_ops = &zonefs_file_vm_ops;
328
329	return 0;
330}
331
332static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
333{
334	loff_t isize = i_size_read(file_inode(file));
335
336	/*
337	 * Seeks are limited to below the zone size for conventional zones
338	 * and below the zone write pointer for sequential zones. In both
339	 * cases, this limit is the inode size.
340	 */
341	return generic_file_llseek_size(file, offset, whence, isize, isize);
342}
343
344static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
345					int error, unsigned int flags)
346{
347	struct inode *inode = file_inode(iocb->ki_filp);
348	struct zonefs_inode_info *zi = ZONEFS_I(inode);
349
350	if (error) {
351		/*
352		 * For Sync IOs, error recovery is called from
353		 * zonefs_file_dio_write().
354		 */
355		if (!is_sync_kiocb(iocb))
356			zonefs_io_error(inode, true);
357		return error;
358	}
359
360	if (size && zonefs_inode_is_seq(inode)) {
361		/*
362		 * Note that we may be seeing completions out of order,
363		 * but that is not a problem since a write completed
364		 * successfully necessarily means that all preceding writes
365		 * were also successful. So we can safely increase the inode
366		 * size to the write end location.
367		 */
368		mutex_lock(&zi->i_truncate_mutex);
369		if (i_size_read(inode) < iocb->ki_pos + size) {
370			zonefs_update_stats(inode, iocb->ki_pos + size);
371			zonefs_i_size_write(inode, iocb->ki_pos + size);
372		}
373		mutex_unlock(&zi->i_truncate_mutex);
374	}
375
376	return 0;
377}
378
379static const struct iomap_dio_ops zonefs_write_dio_ops = {
380	.end_io		= zonefs_file_write_dio_end_io,
381};
382
383/*
384 * Do not exceed the LFS limits nor the file zone size. If pos is under the
385 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
386 */
387static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
388					loff_t count)
389{
390	struct inode *inode = file_inode(file);
391	struct zonefs_zone *z = zonefs_inode_zone(inode);
392	loff_t limit = rlimit(RLIMIT_FSIZE);
393	loff_t max_size = z->z_capacity;
394
395	if (limit != RLIM_INFINITY) {
396		if (pos >= limit) {
397			send_sig(SIGXFSZ, current, 0);
398			return -EFBIG;
399		}
400		count = min(count, limit - pos);
401	}
402
403	if (!(file->f_flags & O_LARGEFILE))
404		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
405
406	if (unlikely(pos >= max_size))
407		return -EFBIG;
408
409	return min(count, max_size - pos);
410}
411
412static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
413{
414	struct file *file = iocb->ki_filp;
415	struct inode *inode = file_inode(file);
416	struct zonefs_inode_info *zi = ZONEFS_I(inode);
417	struct zonefs_zone *z = zonefs_inode_zone(inode);
418	loff_t count;
419
420	if (IS_SWAPFILE(inode))
421		return -ETXTBSY;
422
423	if (!iov_iter_count(from))
424		return 0;
425
426	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
427		return -EINVAL;
428
429	if (iocb->ki_flags & IOCB_APPEND) {
430		if (zonefs_zone_is_cnv(z))
431			return -EINVAL;
432		mutex_lock(&zi->i_truncate_mutex);
433		iocb->ki_pos = z->z_wpoffset;
434		mutex_unlock(&zi->i_truncate_mutex);
435	}
436
437	count = zonefs_write_check_limits(file, iocb->ki_pos,
438					  iov_iter_count(from));
439	if (count < 0)
440		return count;
441
442	iov_iter_truncate(from, count);
443	return iov_iter_count(from);
444}
445
446/*
447 * Handle direct writes. For sequential zone files, this is the only possible
448 * write path. For these files, check that the user is issuing writes
449 * sequentially from the end of the file. This code assumes that the block layer
450 * delivers write requests to the device in sequential order. This is always the
451 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
452 * elevator feature is being used (e.g. mq-deadline). The block layer always
453 * automatically select such an elevator for zoned block devices during the
454 * device initialization.
455 */
456static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
457{
458	struct inode *inode = file_inode(iocb->ki_filp);
459	struct zonefs_inode_info *zi = ZONEFS_I(inode);
460	struct zonefs_zone *z = zonefs_inode_zone(inode);
461	struct super_block *sb = inode->i_sb;
462	ssize_t ret, count;
463
464	/*
465	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
466	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
467	 * on the inode lock but the second goes through but is now unaligned).
468	 */
469	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
470	    (iocb->ki_flags & IOCB_NOWAIT))
471		return -EOPNOTSUPP;
472
473	if (iocb->ki_flags & IOCB_NOWAIT) {
474		if (!inode_trylock(inode))
475			return -EAGAIN;
476	} else {
477		inode_lock(inode);
478	}
479
480	count = zonefs_write_checks(iocb, from);
481	if (count <= 0) {
482		ret = count;
483		goto inode_unlock;
484	}
485
486	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
487		ret = -EINVAL;
488		goto inode_unlock;
489	}
490
491	/* Enforce sequential writes (append only) in sequential zones */
492	if (zonefs_zone_is_seq(z)) {
493		mutex_lock(&zi->i_truncate_mutex);
494		if (iocb->ki_pos != z->z_wpoffset) {
495			mutex_unlock(&zi->i_truncate_mutex);
496			ret = -EINVAL;
497			goto inode_unlock;
498		}
499		/*
500		 * Advance the zone write pointer offset. This assumes that the
501		 * IO will succeed, which is OK to do because we do not allow
502		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
503		 * fails, the error path will correct the write pointer offset.
504		 */
505		z->z_wpoffset += count;
506		zonefs_inode_account_active(inode);
507		mutex_unlock(&zi->i_truncate_mutex);
508	}
509
510	/*
511	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
512	 * page invalidation. Overwrite that error code with EBUSY so that
513	 * the user can make sense of the error.
514	 */
515	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
516			   &zonefs_write_dio_ops, 0, NULL, 0);
517	if (ret == -ENOTBLK)
518		ret = -EBUSY;
519
520	/*
521	 * For a failed IO or partial completion, trigger error recovery
522	 * to update the zone write pointer offset to a correct value.
523	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
524	 * have executed error recovery if the IO already completed when we
525	 * reach here. However, we cannot know that and execute error recovery
526	 * again (that will not change anything).
527	 */
528	if (zonefs_zone_is_seq(z)) {
529		if (ret > 0 && ret != count)
530			ret = -EIO;
531		if (ret < 0 && ret != -EIOCBQUEUED)
532			zonefs_io_error(inode, true);
533	}
534
535inode_unlock:
536	inode_unlock(inode);
537
538	return ret;
539}
540
541static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
542					  struct iov_iter *from)
543{
544	struct inode *inode = file_inode(iocb->ki_filp);
545	ssize_t ret;
546
547	/*
548	 * Direct IO writes are mandatory for sequential zone files so that the
549	 * write IO issuing order is preserved.
550	 */
551	if (zonefs_inode_is_seq(inode))
552		return -EIO;
553
554	if (iocb->ki_flags & IOCB_NOWAIT) {
555		if (!inode_trylock(inode))
556			return -EAGAIN;
557	} else {
558		inode_lock(inode);
559	}
560
561	ret = zonefs_write_checks(iocb, from);
562	if (ret <= 0)
563		goto inode_unlock;
564
565	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
566	if (ret == -EIO)
567		zonefs_io_error(inode, true);
568
569inode_unlock:
570	inode_unlock(inode);
571	if (ret > 0)
572		ret = generic_write_sync(iocb, ret);
573
574	return ret;
575}
576
577static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
578{
579	struct inode *inode = file_inode(iocb->ki_filp);
580	struct zonefs_zone *z = zonefs_inode_zone(inode);
581
582	if (unlikely(IS_IMMUTABLE(inode)))
583		return -EPERM;
584
585	if (sb_rdonly(inode->i_sb))
586		return -EROFS;
587
588	/* Write operations beyond the zone capacity are not allowed */
589	if (iocb->ki_pos >= z->z_capacity)
590		return -EFBIG;
591
592	if (iocb->ki_flags & IOCB_DIRECT) {
593		ssize_t ret = zonefs_file_dio_write(iocb, from);
594
595		if (ret != -ENOTBLK)
596			return ret;
597	}
598
599	return zonefs_file_buffered_write(iocb, from);
600}
601
602static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
603				       int error, unsigned int flags)
604{
605	if (error) {
606		zonefs_io_error(file_inode(iocb->ki_filp), false);
607		return error;
608	}
609
610	return 0;
611}
612
613static const struct iomap_dio_ops zonefs_read_dio_ops = {
614	.end_io			= zonefs_file_read_dio_end_io,
615};
616
617static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
618{
619	struct inode *inode = file_inode(iocb->ki_filp);
620	struct zonefs_inode_info *zi = ZONEFS_I(inode);
621	struct zonefs_zone *z = zonefs_inode_zone(inode);
622	struct super_block *sb = inode->i_sb;
623	loff_t isize;
624	ssize_t ret;
625
626	/* Offline zones cannot be read */
627	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
628		return -EPERM;
629
630	if (iocb->ki_pos >= z->z_capacity)
631		return 0;
632
633	if (iocb->ki_flags & IOCB_NOWAIT) {
634		if (!inode_trylock_shared(inode))
635			return -EAGAIN;
636	} else {
637		inode_lock_shared(inode);
638	}
639
640	/* Limit read operations to written data */
641	mutex_lock(&zi->i_truncate_mutex);
642	isize = i_size_read(inode);
643	if (iocb->ki_pos >= isize) {
644		mutex_unlock(&zi->i_truncate_mutex);
645		ret = 0;
646		goto inode_unlock;
647	}
648	iov_iter_truncate(to, isize - iocb->ki_pos);
649	mutex_unlock(&zi->i_truncate_mutex);
650
651	if (iocb->ki_flags & IOCB_DIRECT) {
652		size_t count = iov_iter_count(to);
653
654		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
655			ret = -EINVAL;
656			goto inode_unlock;
657		}
658		file_accessed(iocb->ki_filp);
659		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
660				   &zonefs_read_dio_ops, 0, NULL, 0);
661	} else {
662		ret = generic_file_read_iter(iocb, to);
663		if (ret == -EIO)
664			zonefs_io_error(inode, false);
665	}
666
667inode_unlock:
668	inode_unlock_shared(inode);
669
670	return ret;
671}
672
673static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
674				       struct pipe_inode_info *pipe,
675				       size_t len, unsigned int flags)
676{
677	struct inode *inode = file_inode(in);
678	struct zonefs_inode_info *zi = ZONEFS_I(inode);
679	struct zonefs_zone *z = zonefs_inode_zone(inode);
680	loff_t isize;
681	ssize_t ret = 0;
682
683	/* Offline zones cannot be read */
684	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
685		return -EPERM;
686
687	if (*ppos >= z->z_capacity)
688		return 0;
689
690	inode_lock_shared(inode);
691
692	/* Limit read operations to written data */
693	mutex_lock(&zi->i_truncate_mutex);
694	isize = i_size_read(inode);
695	if (*ppos >= isize)
696		len = 0;
697	else
698		len = min_t(loff_t, len, isize - *ppos);
699	mutex_unlock(&zi->i_truncate_mutex);
700
701	if (len > 0) {
702		ret = filemap_splice_read(in, ppos, pipe, len, flags);
703		if (ret == -EIO)
704			zonefs_io_error(inode, false);
705	}
706
707	inode_unlock_shared(inode);
708	return ret;
709}
710
711/*
712 * Write open accounting is done only for sequential files.
713 */
714static inline bool zonefs_seq_file_need_wro(struct inode *inode,
715					    struct file *file)
716{
717	if (zonefs_inode_is_cnv(inode))
718		return false;
719
720	if (!(file->f_mode & FMODE_WRITE))
721		return false;
722
723	return true;
724}
725
726static int zonefs_seq_file_write_open(struct inode *inode)
727{
728	struct zonefs_inode_info *zi = ZONEFS_I(inode);
729	struct zonefs_zone *z = zonefs_inode_zone(inode);
730	int ret = 0;
731
732	mutex_lock(&zi->i_truncate_mutex);
733
734	if (!zi->i_wr_refcnt) {
735		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
736		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
737
738		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
739
740			if (sbi->s_max_wro_seq_files
741			    && wro > sbi->s_max_wro_seq_files) {
742				atomic_dec(&sbi->s_wro_seq_files);
743				ret = -EBUSY;
744				goto unlock;
745			}
746
747			if (i_size_read(inode) < z->z_capacity) {
748				ret = zonefs_inode_zone_mgmt(inode,
749							     REQ_OP_ZONE_OPEN);
750				if (ret) {
751					atomic_dec(&sbi->s_wro_seq_files);
752					goto unlock;
753				}
754				z->z_flags |= ZONEFS_ZONE_OPEN;
755				zonefs_inode_account_active(inode);
756			}
757		}
758	}
759
760	zi->i_wr_refcnt++;
761
762unlock:
763	mutex_unlock(&zi->i_truncate_mutex);
764
765	return ret;
766}
767
768static int zonefs_file_open(struct inode *inode, struct file *file)
769{
770	int ret;
771
772	file->f_mode |= FMODE_CAN_ODIRECT;
773	ret = generic_file_open(inode, file);
774	if (ret)
775		return ret;
776
777	if (zonefs_seq_file_need_wro(inode, file))
778		return zonefs_seq_file_write_open(inode);
779
780	return 0;
781}
782
783static void zonefs_seq_file_write_close(struct inode *inode)
784{
785	struct zonefs_inode_info *zi = ZONEFS_I(inode);
786	struct zonefs_zone *z = zonefs_inode_zone(inode);
787	struct super_block *sb = inode->i_sb;
788	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
789	int ret = 0;
790
791	mutex_lock(&zi->i_truncate_mutex);
792
793	zi->i_wr_refcnt--;
794	if (zi->i_wr_refcnt)
795		goto unlock;
796
797	/*
798	 * The file zone may not be open anymore (e.g. the file was truncated to
799	 * its maximum size or it was fully written). For this case, we only
800	 * need to decrement the write open count.
801	 */
802	if (z->z_flags & ZONEFS_ZONE_OPEN) {
803		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
804		if (ret) {
805			__zonefs_io_error(inode, false);
806			/*
807			 * Leaving zones explicitly open may lead to a state
808			 * where most zones cannot be written (zone resources
809			 * exhausted). So take preventive action by remounting
810			 * read-only.
811			 */
812			if (z->z_flags & ZONEFS_ZONE_OPEN &&
813			    !(sb->s_flags & SB_RDONLY)) {
814				zonefs_warn(sb,
815					"closing zone at %llu failed %d\n",
816					z->z_sector, ret);
817				zonefs_warn(sb,
818					"remounting filesystem read-only\n");
819				sb->s_flags |= SB_RDONLY;
820			}
821			goto unlock;
822		}
823
824		z->z_flags &= ~ZONEFS_ZONE_OPEN;
825		zonefs_inode_account_active(inode);
826	}
827
828	atomic_dec(&sbi->s_wro_seq_files);
829
830unlock:
831	mutex_unlock(&zi->i_truncate_mutex);
832}
833
834static int zonefs_file_release(struct inode *inode, struct file *file)
835{
836	/*
837	 * If we explicitly open a zone we must close it again as well, but the
838	 * zone management operation can fail (either due to an IO error or as
839	 * the zone has gone offline or read-only). Make sure we don't fail the
840	 * close(2) for user-space.
841	 */
842	if (zonefs_seq_file_need_wro(inode, file))
843		zonefs_seq_file_write_close(inode);
844
845	return 0;
846}
847
848const struct file_operations zonefs_file_operations = {
849	.open		= zonefs_file_open,
850	.release	= zonefs_file_release,
851	.fsync		= zonefs_file_fsync,
852	.mmap		= zonefs_file_mmap,
853	.llseek		= zonefs_file_llseek,
854	.read_iter	= zonefs_file_read_iter,
855	.write_iter	= zonefs_file_write_iter,
856	.splice_read	= zonefs_file_splice_read,
857	.splice_write	= iter_file_splice_write,
858	.iopoll		= iocb_bio_iopoll,
859};
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Simple file system for zoned block devices exposing zones as files.
  4 *
  5 * Copyright (C) 2022 Western Digital Corporation or its affiliates.
  6 */
  7#include <linux/module.h>
  8#include <linux/pagemap.h>
  9#include <linux/iomap.h>
 10#include <linux/init.h>
 11#include <linux/slab.h>
 12#include <linux/blkdev.h>
 13#include <linux/statfs.h>
 14#include <linux/writeback.h>
 15#include <linux/quotaops.h>
 16#include <linux/seq_file.h>
 17#include <linux/parser.h>
 18#include <linux/uio.h>
 19#include <linux/mman.h>
 20#include <linux/sched/mm.h>
 21#include <linux/task_io_accounting_ops.h>
 22
 23#include "zonefs.h"
 24
 25#include "trace.h"
 26
 27static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
 28				   loff_t length, unsigned int flags,
 29				   struct iomap *iomap, struct iomap *srcmap)
 30{
 31	struct zonefs_inode_info *zi = ZONEFS_I(inode);
 32	struct zonefs_zone *z = zonefs_inode_zone(inode);
 33	struct super_block *sb = inode->i_sb;
 34	loff_t isize;
 35
 36	/*
 37	 * All blocks are always mapped below EOF. If reading past EOF,
 38	 * act as if there is a hole up to the file maximum size.
 39	 */
 40	mutex_lock(&zi->i_truncate_mutex);
 41	iomap->bdev = inode->i_sb->s_bdev;
 42	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
 43	isize = i_size_read(inode);
 44	if (iomap->offset >= isize) {
 45		iomap->type = IOMAP_HOLE;
 46		iomap->addr = IOMAP_NULL_ADDR;
 47		iomap->length = length;
 48	} else {
 49		iomap->type = IOMAP_MAPPED;
 50		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
 51		iomap->length = isize - iomap->offset;
 52	}
 53	mutex_unlock(&zi->i_truncate_mutex);
 54
 55	trace_zonefs_iomap_begin(inode, iomap);
 56
 57	return 0;
 58}
 59
 60static const struct iomap_ops zonefs_read_iomap_ops = {
 61	.iomap_begin	= zonefs_read_iomap_begin,
 62};
 63
 64static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
 65				    loff_t length, unsigned int flags,
 66				    struct iomap *iomap, struct iomap *srcmap)
 67{
 68	struct zonefs_inode_info *zi = ZONEFS_I(inode);
 69	struct zonefs_zone *z = zonefs_inode_zone(inode);
 70	struct super_block *sb = inode->i_sb;
 71	loff_t isize;
 72
 73	/* All write I/Os should always be within the file maximum size */
 74	if (WARN_ON_ONCE(offset + length > z->z_capacity))
 75		return -EIO;
 76
 77	/*
 78	 * Sequential zones can only accept direct writes. This is already
 79	 * checked when writes are issued, so warn if we see a page writeback
 80	 * operation.
 81	 */
 82	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
 83		return -EIO;
 84
 85	/*
 86	 * For conventional zones, all blocks are always mapped. For sequential
 87	 * zones, all blocks after always mapped below the inode size (zone
 88	 * write pointer) and unwriten beyond.
 89	 */
 90	mutex_lock(&zi->i_truncate_mutex);
 91	iomap->bdev = inode->i_sb->s_bdev;
 92	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
 93	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
 94	isize = i_size_read(inode);
 95	if (iomap->offset >= isize) {
 96		iomap->type = IOMAP_UNWRITTEN;
 97		iomap->length = z->z_capacity - iomap->offset;
 98	} else {
 99		iomap->type = IOMAP_MAPPED;
100		iomap->length = isize - iomap->offset;
101	}
102	mutex_unlock(&zi->i_truncate_mutex);
103
104	trace_zonefs_iomap_begin(inode, iomap);
105
106	return 0;
107}
108
109static const struct iomap_ops zonefs_write_iomap_ops = {
110	.iomap_begin	= zonefs_write_iomap_begin,
111};
112
113static int zonefs_read_folio(struct file *unused, struct folio *folio)
114{
115	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116}
117
118static void zonefs_readahead(struct readahead_control *rac)
119{
120	iomap_readahead(rac, &zonefs_read_iomap_ops);
121}
122
123/*
124 * Map blocks for page writeback. This is used only on conventional zone files,
125 * which implies that the page range can only be within the fixed inode size.
126 */
127static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128				   struct inode *inode, loff_t offset,
129				   unsigned int len)
130{
131	struct zonefs_zone *z = zonefs_inode_zone(inode);
132
133	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
134		return -EIO;
135	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
136		return -EIO;
137
138	/* If the mapping is already OK, nothing needs to be done */
139	if (offset >= wpc->iomap.offset &&
140	    offset < wpc->iomap.offset + wpc->iomap.length)
141		return 0;
142
143	return zonefs_write_iomap_begin(inode, offset,
144					z->z_capacity - offset,
145					IOMAP_WRITE, &wpc->iomap, NULL);
146}
147
148static const struct iomap_writeback_ops zonefs_writeback_ops = {
149	.map_blocks		= zonefs_write_map_blocks,
150};
151
152static int zonefs_writepages(struct address_space *mapping,
153			     struct writeback_control *wbc)
154{
155	struct iomap_writepage_ctx wpc = { };
156
157	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
158}
159
160static int zonefs_swap_activate(struct swap_info_struct *sis,
161				struct file *swap_file, sector_t *span)
162{
163	struct inode *inode = file_inode(swap_file);
164
165	if (zonefs_inode_is_seq(inode)) {
166		zonefs_err(inode->i_sb,
167			   "swap file: not a conventional zone file\n");
168		return -EINVAL;
169	}
170
171	return iomap_swapfile_activate(sis, swap_file, span,
172				       &zonefs_read_iomap_ops);
173}
174
175const struct address_space_operations zonefs_file_aops = {
176	.read_folio		= zonefs_read_folio,
177	.readahead		= zonefs_readahead,
178	.writepages		= zonefs_writepages,
179	.dirty_folio		= iomap_dirty_folio,
180	.release_folio		= iomap_release_folio,
181	.invalidate_folio	= iomap_invalidate_folio,
182	.migrate_folio		= filemap_migrate_folio,
183	.is_partially_uptodate	= iomap_is_partially_uptodate,
184	.error_remove_folio	= generic_error_remove_folio,
185	.swap_activate		= zonefs_swap_activate,
186};
187
188int zonefs_file_truncate(struct inode *inode, loff_t isize)
189{
190	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191	struct zonefs_zone *z = zonefs_inode_zone(inode);
192	loff_t old_isize;
193	enum req_op op;
194	int ret = 0;
195
196	/*
197	 * Only sequential zone files can be truncated and truncation is allowed
198	 * only down to a 0 size, which is equivalent to a zone reset, and to
199	 * the maximum file size, which is equivalent to a zone finish.
200	 */
201	if (!zonefs_zone_is_seq(z))
202		return -EPERM;
203
204	if (!isize)
205		op = REQ_OP_ZONE_RESET;
206	else if (isize == z->z_capacity)
207		op = REQ_OP_ZONE_FINISH;
208	else
209		return -EPERM;
210
211	inode_dio_wait(inode);
212
213	/* Serialize against page faults */
214	filemap_invalidate_lock(inode->i_mapping);
215
216	/* Serialize against zonefs_iomap_begin() */
217	mutex_lock(&zi->i_truncate_mutex);
218
219	old_isize = i_size_read(inode);
220	if (isize == old_isize)
221		goto unlock;
222
223	ret = zonefs_inode_zone_mgmt(inode, op);
224	if (ret)
225		goto unlock;
226
227	/*
228	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229	 * take care of open zones.
230	 */
231	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232		/*
233		 * Truncating a zone to EMPTY or FULL is the equivalent of
234		 * closing the zone. For a truncation to 0, we need to
235		 * re-open the zone to ensure new writes can be processed.
236		 * For a truncation to the maximum file size, the zone is
237		 * closed and writes cannot be accepted anymore, so clear
238		 * the open flag.
239		 */
240		if (!isize)
241			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242		else
243			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244	}
245
246	zonefs_update_stats(inode, isize);
247	truncate_setsize(inode, isize);
248	z->z_wpoffset = isize;
249	zonefs_inode_account_active(inode);
250
251unlock:
252	mutex_unlock(&zi->i_truncate_mutex);
253	filemap_invalidate_unlock(inode->i_mapping);
254
255	return ret;
256}
257
258static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259			     int datasync)
260{
261	struct inode *inode = file_inode(file);
262	int ret = 0;
263
264	if (unlikely(IS_IMMUTABLE(inode)))
265		return -EPERM;
266
267	/*
268	 * Since only direct writes are allowed in sequential files, page cache
269	 * flush is needed only for conventional zone files.
270	 */
271	if (zonefs_inode_is_cnv(inode))
272		ret = file_write_and_wait_range(file, start, end);
273	if (!ret)
274		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275
276	if (ret)
277		zonefs_io_error(inode, true);
278
279	return ret;
280}
281
282static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283{
284	struct inode *inode = file_inode(vmf->vma->vm_file);
285	vm_fault_t ret;
286
287	if (unlikely(IS_IMMUTABLE(inode)))
288		return VM_FAULT_SIGBUS;
289
290	/*
291	 * Sanity check: only conventional zone files can have shared
292	 * writeable mappings.
293	 */
294	if (zonefs_inode_is_seq(inode))
295		return VM_FAULT_NOPAGE;
296
297	sb_start_pagefault(inode->i_sb);
298	file_update_time(vmf->vma->vm_file);
299
300	/* Serialize against truncates */
301	filemap_invalidate_lock_shared(inode->i_mapping);
302	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303	filemap_invalidate_unlock_shared(inode->i_mapping);
304
305	sb_end_pagefault(inode->i_sb);
306	return ret;
307}
308
309static const struct vm_operations_struct zonefs_file_vm_ops = {
310	.fault		= filemap_fault,
311	.map_pages	= filemap_map_pages,
312	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313};
314
315static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316{
317	/*
318	 * Conventional zones accept random writes, so their files can support
319	 * shared writable mappings. For sequential zone files, only read
320	 * mappings are possible since there are no guarantees for write
321	 * ordering between msync() and page cache writeback.
322	 */
323	if (zonefs_inode_is_seq(file_inode(file)) &&
324	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325		return -EINVAL;
326
327	file_accessed(file);
328	vma->vm_ops = &zonefs_file_vm_ops;
329
330	return 0;
331}
332
333static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334{
335	loff_t isize = i_size_read(file_inode(file));
336
337	/*
338	 * Seeks are limited to below the zone size for conventional zones
339	 * and below the zone write pointer for sequential zones. In both
340	 * cases, this limit is the inode size.
341	 */
342	return generic_file_llseek_size(file, offset, whence, isize, isize);
343}
344
345static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346					int error, unsigned int flags)
347{
348	struct inode *inode = file_inode(iocb->ki_filp);
349	struct zonefs_inode_info *zi = ZONEFS_I(inode);
350
351	if (error) {
352		/*
353		 * For Sync IOs, error recovery is called from
354		 * zonefs_file_dio_write().
355		 */
356		if (!is_sync_kiocb(iocb))
357			zonefs_io_error(inode, true);
358		return error;
359	}
360
361	if (size && zonefs_inode_is_seq(inode)) {
362		/*
363		 * Note that we may be seeing completions out of order,
364		 * but that is not a problem since a write completed
365		 * successfully necessarily means that all preceding writes
366		 * were also successful. So we can safely increase the inode
367		 * size to the write end location.
368		 */
369		mutex_lock(&zi->i_truncate_mutex);
370		if (i_size_read(inode) < iocb->ki_pos + size) {
371			zonefs_update_stats(inode, iocb->ki_pos + size);
372			zonefs_i_size_write(inode, iocb->ki_pos + size);
373		}
374		mutex_unlock(&zi->i_truncate_mutex);
375	}
376
377	return 0;
378}
379
380static const struct iomap_dio_ops zonefs_write_dio_ops = {
381	.end_io		= zonefs_file_write_dio_end_io,
382};
383
384/*
385 * Do not exceed the LFS limits nor the file zone size. If pos is under the
386 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
387 */
388static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
389					loff_t count)
390{
391	struct inode *inode = file_inode(file);
392	struct zonefs_zone *z = zonefs_inode_zone(inode);
393	loff_t limit = rlimit(RLIMIT_FSIZE);
394	loff_t max_size = z->z_capacity;
395
396	if (limit != RLIM_INFINITY) {
397		if (pos >= limit) {
398			send_sig(SIGXFSZ, current, 0);
399			return -EFBIG;
400		}
401		count = min(count, limit - pos);
402	}
403
404	if (!(file->f_flags & O_LARGEFILE))
405		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
406
407	if (unlikely(pos >= max_size))
408		return -EFBIG;
409
410	return min(count, max_size - pos);
411}
412
413static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
414{
415	struct file *file = iocb->ki_filp;
416	struct inode *inode = file_inode(file);
417	struct zonefs_inode_info *zi = ZONEFS_I(inode);
418	struct zonefs_zone *z = zonefs_inode_zone(inode);
419	loff_t count;
420
421	if (IS_SWAPFILE(inode))
422		return -ETXTBSY;
423
424	if (!iov_iter_count(from))
425		return 0;
426
427	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
428		return -EINVAL;
429
430	if (iocb->ki_flags & IOCB_APPEND) {
431		if (zonefs_zone_is_cnv(z))
432			return -EINVAL;
433		mutex_lock(&zi->i_truncate_mutex);
434		iocb->ki_pos = z->z_wpoffset;
435		mutex_unlock(&zi->i_truncate_mutex);
436	}
437
438	count = zonefs_write_check_limits(file, iocb->ki_pos,
439					  iov_iter_count(from));
440	if (count < 0)
441		return count;
442
443	iov_iter_truncate(from, count);
444	return iov_iter_count(from);
445}
446
447/*
448 * Handle direct writes. For sequential zone files, this is the only possible
449 * write path. For these files, check that the user is issuing writes
450 * sequentially from the end of the file. This code assumes that the block layer
451 * delivers write requests to the device in sequential order. This is always the
452 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
453 * elevator feature is being used (e.g. mq-deadline). The block layer always
454 * automatically select such an elevator for zoned block devices during the
455 * device initialization.
456 */
457static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
458{
459	struct inode *inode = file_inode(iocb->ki_filp);
460	struct zonefs_inode_info *zi = ZONEFS_I(inode);
461	struct zonefs_zone *z = zonefs_inode_zone(inode);
462	struct super_block *sb = inode->i_sb;
463	ssize_t ret, count;
464
465	/*
466	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
467	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
468	 * on the inode lock but the second goes through but is now unaligned).
469	 */
470	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
471	    (iocb->ki_flags & IOCB_NOWAIT))
472		return -EOPNOTSUPP;
473
474	if (iocb->ki_flags & IOCB_NOWAIT) {
475		if (!inode_trylock(inode))
476			return -EAGAIN;
477	} else {
478		inode_lock(inode);
479	}
480
481	count = zonefs_write_checks(iocb, from);
482	if (count <= 0) {
483		ret = count;
484		goto inode_unlock;
485	}
486
487	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
488		ret = -EINVAL;
489		goto inode_unlock;
490	}
491
492	/* Enforce sequential writes (append only) in sequential zones */
493	if (zonefs_zone_is_seq(z)) {
494		mutex_lock(&zi->i_truncate_mutex);
495		if (iocb->ki_pos != z->z_wpoffset) {
496			mutex_unlock(&zi->i_truncate_mutex);
497			ret = -EINVAL;
498			goto inode_unlock;
499		}
500		/*
501		 * Advance the zone write pointer offset. This assumes that the
502		 * IO will succeed, which is OK to do because we do not allow
503		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
504		 * fails, the error path will correct the write pointer offset.
505		 */
506		z->z_wpoffset += count;
507		zonefs_inode_account_active(inode);
508		mutex_unlock(&zi->i_truncate_mutex);
509	}
510
511	/*
512	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
513	 * page invalidation. Overwrite that error code with EBUSY so that
514	 * the user can make sense of the error.
515	 */
516	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
517			   &zonefs_write_dio_ops, 0, NULL, 0);
518	if (ret == -ENOTBLK)
519		ret = -EBUSY;
520
521	/*
522	 * For a failed IO or partial completion, trigger error recovery
523	 * to update the zone write pointer offset to a correct value.
524	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
525	 * have executed error recovery if the IO already completed when we
526	 * reach here. However, we cannot know that and execute error recovery
527	 * again (that will not change anything).
528	 */
529	if (zonefs_zone_is_seq(z)) {
530		if (ret > 0 && ret != count)
531			ret = -EIO;
532		if (ret < 0 && ret != -EIOCBQUEUED)
533			zonefs_io_error(inode, true);
534	}
535
536inode_unlock:
537	inode_unlock(inode);
538
539	return ret;
540}
541
542static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
543					  struct iov_iter *from)
544{
545	struct inode *inode = file_inode(iocb->ki_filp);
546	ssize_t ret;
547
548	/*
549	 * Direct IO writes are mandatory for sequential zone files so that the
550	 * write IO issuing order is preserved.
551	 */
552	if (zonefs_inode_is_seq(inode))
553		return -EIO;
554
555	if (iocb->ki_flags & IOCB_NOWAIT) {
556		if (!inode_trylock(inode))
557			return -EAGAIN;
558	} else {
559		inode_lock(inode);
560	}
561
562	ret = zonefs_write_checks(iocb, from);
563	if (ret <= 0)
564		goto inode_unlock;
565
566	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
567	if (ret == -EIO)
568		zonefs_io_error(inode, true);
569
570inode_unlock:
571	inode_unlock(inode);
572	if (ret > 0)
573		ret = generic_write_sync(iocb, ret);
574
575	return ret;
576}
577
578static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
579{
580	struct inode *inode = file_inode(iocb->ki_filp);
581	struct zonefs_zone *z = zonefs_inode_zone(inode);
582
583	if (unlikely(IS_IMMUTABLE(inode)))
584		return -EPERM;
585
586	if (sb_rdonly(inode->i_sb))
587		return -EROFS;
588
589	/* Write operations beyond the zone capacity are not allowed */
590	if (iocb->ki_pos >= z->z_capacity)
591		return -EFBIG;
592
593	if (iocb->ki_flags & IOCB_DIRECT) {
594		ssize_t ret = zonefs_file_dio_write(iocb, from);
595
596		if (ret != -ENOTBLK)
597			return ret;
598	}
599
600	return zonefs_file_buffered_write(iocb, from);
601}
602
603static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
604				       int error, unsigned int flags)
605{
606	if (error) {
607		zonefs_io_error(file_inode(iocb->ki_filp), false);
608		return error;
609	}
610
611	return 0;
612}
613
614static const struct iomap_dio_ops zonefs_read_dio_ops = {
615	.end_io			= zonefs_file_read_dio_end_io,
616};
617
618static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
619{
620	struct inode *inode = file_inode(iocb->ki_filp);
621	struct zonefs_inode_info *zi = ZONEFS_I(inode);
622	struct zonefs_zone *z = zonefs_inode_zone(inode);
623	struct super_block *sb = inode->i_sb;
624	loff_t isize;
625	ssize_t ret;
626
627	/* Offline zones cannot be read */
628	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
629		return -EPERM;
630
631	if (iocb->ki_pos >= z->z_capacity)
632		return 0;
633
634	if (iocb->ki_flags & IOCB_NOWAIT) {
635		if (!inode_trylock_shared(inode))
636			return -EAGAIN;
637	} else {
638		inode_lock_shared(inode);
639	}
640
641	/* Limit read operations to written data */
642	mutex_lock(&zi->i_truncate_mutex);
643	isize = i_size_read(inode);
644	if (iocb->ki_pos >= isize) {
645		mutex_unlock(&zi->i_truncate_mutex);
646		ret = 0;
647		goto inode_unlock;
648	}
649	iov_iter_truncate(to, isize - iocb->ki_pos);
650	mutex_unlock(&zi->i_truncate_mutex);
651
652	if (iocb->ki_flags & IOCB_DIRECT) {
653		size_t count = iov_iter_count(to);
654
655		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
656			ret = -EINVAL;
657			goto inode_unlock;
658		}
659		file_accessed(iocb->ki_filp);
660		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
661				   &zonefs_read_dio_ops, 0, NULL, 0);
662	} else {
663		ret = generic_file_read_iter(iocb, to);
664		if (ret == -EIO)
665			zonefs_io_error(inode, false);
666	}
667
668inode_unlock:
669	inode_unlock_shared(inode);
670
671	return ret;
672}
673
674static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
675				       struct pipe_inode_info *pipe,
676				       size_t len, unsigned int flags)
677{
678	struct inode *inode = file_inode(in);
679	struct zonefs_inode_info *zi = ZONEFS_I(inode);
680	struct zonefs_zone *z = zonefs_inode_zone(inode);
681	loff_t isize;
682	ssize_t ret = 0;
683
684	/* Offline zones cannot be read */
685	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
686		return -EPERM;
687
688	if (*ppos >= z->z_capacity)
689		return 0;
690
691	inode_lock_shared(inode);
692
693	/* Limit read operations to written data */
694	mutex_lock(&zi->i_truncate_mutex);
695	isize = i_size_read(inode);
696	if (*ppos >= isize)
697		len = 0;
698	else
699		len = min_t(loff_t, len, isize - *ppos);
700	mutex_unlock(&zi->i_truncate_mutex);
701
702	if (len > 0) {
703		ret = filemap_splice_read(in, ppos, pipe, len, flags);
704		if (ret == -EIO)
705			zonefs_io_error(inode, false);
706	}
707
708	inode_unlock_shared(inode);
709	return ret;
710}
711
712/*
713 * Write open accounting is done only for sequential files.
714 */
715static inline bool zonefs_seq_file_need_wro(struct inode *inode,
716					    struct file *file)
717{
718	if (zonefs_inode_is_cnv(inode))
719		return false;
720
721	if (!(file->f_mode & FMODE_WRITE))
722		return false;
723
724	return true;
725}
726
727static int zonefs_seq_file_write_open(struct inode *inode)
728{
729	struct zonefs_inode_info *zi = ZONEFS_I(inode);
730	struct zonefs_zone *z = zonefs_inode_zone(inode);
731	int ret = 0;
732
733	mutex_lock(&zi->i_truncate_mutex);
734
735	if (!zi->i_wr_refcnt) {
736		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
737		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
738
739		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
740
741			if (sbi->s_max_wro_seq_files
742			    && wro > sbi->s_max_wro_seq_files) {
743				atomic_dec(&sbi->s_wro_seq_files);
744				ret = -EBUSY;
745				goto unlock;
746			}
747
748			if (i_size_read(inode) < z->z_capacity) {
749				ret = zonefs_inode_zone_mgmt(inode,
750							     REQ_OP_ZONE_OPEN);
751				if (ret) {
752					atomic_dec(&sbi->s_wro_seq_files);
753					goto unlock;
754				}
755				z->z_flags |= ZONEFS_ZONE_OPEN;
756				zonefs_inode_account_active(inode);
757			}
758		}
759	}
760
761	zi->i_wr_refcnt++;
762
763unlock:
764	mutex_unlock(&zi->i_truncate_mutex);
765
766	return ret;
767}
768
769static int zonefs_file_open(struct inode *inode, struct file *file)
770{
771	int ret;
772
773	file->f_mode |= FMODE_CAN_ODIRECT;
774	ret = generic_file_open(inode, file);
775	if (ret)
776		return ret;
777
778	if (zonefs_seq_file_need_wro(inode, file))
779		return zonefs_seq_file_write_open(inode);
780
781	return 0;
782}
783
784static void zonefs_seq_file_write_close(struct inode *inode)
785{
786	struct zonefs_inode_info *zi = ZONEFS_I(inode);
787	struct zonefs_zone *z = zonefs_inode_zone(inode);
788	struct super_block *sb = inode->i_sb;
789	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
790	int ret = 0;
791
792	mutex_lock(&zi->i_truncate_mutex);
793
794	zi->i_wr_refcnt--;
795	if (zi->i_wr_refcnt)
796		goto unlock;
797
798	/*
799	 * The file zone may not be open anymore (e.g. the file was truncated to
800	 * its maximum size or it was fully written). For this case, we only
801	 * need to decrement the write open count.
802	 */
803	if (z->z_flags & ZONEFS_ZONE_OPEN) {
804		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
805		if (ret) {
806			__zonefs_io_error(inode, false);
807			/*
808			 * Leaving zones explicitly open may lead to a state
809			 * where most zones cannot be written (zone resources
810			 * exhausted). So take preventive action by remounting
811			 * read-only.
812			 */
813			if (z->z_flags & ZONEFS_ZONE_OPEN &&
814			    !(sb->s_flags & SB_RDONLY)) {
815				zonefs_warn(sb,
816					"closing zone at %llu failed %d\n",
817					z->z_sector, ret);
818				zonefs_warn(sb,
819					"remounting filesystem read-only\n");
820				sb->s_flags |= SB_RDONLY;
821			}
822			goto unlock;
823		}
824
825		z->z_flags &= ~ZONEFS_ZONE_OPEN;
826		zonefs_inode_account_active(inode);
827	}
828
829	atomic_dec(&sbi->s_wro_seq_files);
830
831unlock:
832	mutex_unlock(&zi->i_truncate_mutex);
833}
834
835static int zonefs_file_release(struct inode *inode, struct file *file)
836{
837	/*
838	 * If we explicitly open a zone we must close it again as well, but the
839	 * zone management operation can fail (either due to an IO error or as
840	 * the zone has gone offline or read-only). Make sure we don't fail the
841	 * close(2) for user-space.
842	 */
843	if (zonefs_seq_file_need_wro(inode, file))
844		zonefs_seq_file_write_close(inode);
845
846	return 0;
847}
848
849const struct file_operations zonefs_file_operations = {
850	.open		= zonefs_file_open,
851	.release	= zonefs_file_release,
852	.fsync		= zonefs_file_fsync,
853	.mmap		= zonefs_file_mmap,
854	.llseek		= zonefs_file_llseek,
855	.read_iter	= zonefs_file_read_iter,
856	.write_iter	= zonefs_file_write_iter,
857	.splice_read	= zonefs_file_splice_read,
858	.splice_write	= iter_file_splice_write,
859	.iopoll		= iocb_bio_iopoll,
860};