Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC fault.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/extable.h>
 17#include <linux/sched/signal.h>
 18#include <linux/perf_event.h>
 19
 20#include <linux/uaccess.h>
 21#include <asm/bug.h>
 22#include <asm/mmu_context.h>
 23#include <asm/siginfo.h>
 24#include <asm/signal.h>
 25
 26#define NUM_TLB_ENTRIES 64
 27#define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
 28
 29/* __PHX__ :: - check the vmalloc_fault in do_page_fault()
 30 *            - also look into include/asm/mmu_context.h
 31 */
 32volatile pgd_t *current_pgd[NR_CPUS];
 33
 34asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 35			      unsigned long vector, int write_acc);
 36
 37/*
 38 * This routine handles page faults.  It determines the address,
 39 * and the problem, and then passes it off to one of the appropriate
 40 * routines.
 41 *
 42 * If this routine detects a bad access, it returns 1, otherwise it
 43 * returns 0.
 44 */
 45
 46asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 47			      unsigned long vector, int write_acc)
 48{
 49	struct task_struct *tsk;
 50	struct mm_struct *mm;
 51	struct vm_area_struct *vma;
 52	int si_code;
 53	vm_fault_t fault;
 54	unsigned int flags = FAULT_FLAG_DEFAULT;
 55
 56	tsk = current;
 57
 58	/*
 59	 * We fault-in kernel-space virtual memory on-demand. The
 60	 * 'reference' page table is init_mm.pgd.
 61	 *
 62	 * NOTE! We MUST NOT take any locks for this case. We may
 63	 * be in an interrupt or a critical region, and should
 64	 * only copy the information from the master page table,
 65	 * nothing more.
 66	 *
 67	 * NOTE2: This is done so that, when updating the vmalloc
 68	 * mappings we don't have to walk all processes pgdirs and
 69	 * add the high mappings all at once. Instead we do it as they
 70	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
 71	 * bit set so sometimes the TLB can use a lingering entry.
 72	 *
 73	 * This verifies that the fault happens in kernel space
 74	 * and that the fault was not a protection error.
 75	 */
 76
 77	if (address >= VMALLOC_START &&
 78	    (vector != 0x300 && vector != 0x400) &&
 79	    !user_mode(regs))
 80		goto vmalloc_fault;
 81
 82	/* If exceptions were enabled, we can reenable them here */
 83	if (user_mode(regs)) {
 84		/* Exception was in userspace: reenable interrupts */
 85		local_irq_enable();
 86		flags |= FAULT_FLAG_USER;
 87	} else {
 88		/* If exception was in a syscall, then IRQ's may have
 89		 * been enabled or disabled.  If they were enabled,
 90		 * reenable them.
 91		 */
 92		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
 93			local_irq_enable();
 94	}
 95
 96	mm = tsk->mm;
 97	si_code = SEGV_MAPERR;
 98
 99	/*
100	 * If we're in an interrupt or have no user
101	 * context, we must not take the fault..
102	 */
103
104	if (in_interrupt() || !mm)
105		goto no_context;
106
107	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
108
109retry:
110	mmap_read_lock(mm);
111	vma = find_vma(mm, address);
112
113	if (!vma)
114		goto bad_area;
115
116	if (vma->vm_start <= address)
117		goto good_area;
118
119	if (!(vma->vm_flags & VM_GROWSDOWN))
120		goto bad_area;
121
122	if (user_mode(regs)) {
123		/*
124		 * accessing the stack below usp is always a bug.
125		 * we get page-aligned addresses so we can only check
126		 * if we're within a page from usp, but that might be
127		 * enough to catch brutal errors at least.
128		 */
129		if (address + PAGE_SIZE < regs->sp)
130			goto bad_area;
131	}
132	vma = expand_stack(mm, address);
133	if (!vma)
134		goto bad_area_nosemaphore;
135
136	/*
137	 * Ok, we have a good vm_area for this memory access, so
138	 * we can handle it..
139	 */
140
141good_area:
142	si_code = SEGV_ACCERR;
143
144	/* first do some preliminary protection checks */
145
146	if (write_acc) {
147		if (!(vma->vm_flags & VM_WRITE))
148			goto bad_area;
149		flags |= FAULT_FLAG_WRITE;
150	} else {
151		/* not present */
152		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
153			goto bad_area;
154	}
155
156	/* are we trying to execute nonexecutable area */
157	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
158		goto bad_area;
159
160	/*
161	 * If for any reason at all we couldn't handle the fault,
162	 * make sure we exit gracefully rather than endlessly redo
163	 * the fault.
164	 */
165
166	fault = handle_mm_fault(vma, address, flags, regs);
167
168	if (fault_signal_pending(fault, regs)) {
169		if (!user_mode(regs))
170			goto no_context;
171		return;
172	}
173
174	/* The fault is fully completed (including releasing mmap lock) */
175	if (fault & VM_FAULT_COMPLETED)
176		return;
177
178	if (unlikely(fault & VM_FAULT_ERROR)) {
179		if (fault & VM_FAULT_OOM)
180			goto out_of_memory;
181		else if (fault & VM_FAULT_SIGSEGV)
182			goto bad_area;
183		else if (fault & VM_FAULT_SIGBUS)
184			goto do_sigbus;
185		BUG();
186	}
187
188	/*RGD modeled on Cris */
189	if (fault & VM_FAULT_RETRY) {
190		flags |= FAULT_FLAG_TRIED;
191
192		/* No need to mmap_read_unlock(mm) as we would
193		 * have already released it in __lock_page_or_retry
194		 * in mm/filemap.c.
195		 */
196
197		goto retry;
198	}
199
200	mmap_read_unlock(mm);
201	return;
202
203	/*
204	 * Something tried to access memory that isn't in our memory map..
205	 * Fix it, but check if it's kernel or user first..
206	 */
207
208bad_area:
209	mmap_read_unlock(mm);
210
211bad_area_nosemaphore:
212
213	/* User mode accesses just cause a SIGSEGV */
214
215	if (user_mode(regs)) {
216		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
217		return;
218	}
219
220no_context:
221
222	/* Are we prepared to handle this kernel fault?
223	 *
224	 * (The kernel has valid exception-points in the source
225	 *  when it acesses user-memory. When it fails in one
226	 *  of those points, we find it in a table and do a jump
227	 *  to some fixup code that loads an appropriate error
228	 *  code)
229	 */
230
231	{
232		const struct exception_table_entry *entry;
233
234		if ((entry = search_exception_tables(regs->pc)) != NULL) {
235			/* Adjust the instruction pointer in the stackframe */
236			regs->pc = entry->fixup;
237			return;
238		}
239	}
240
241	/*
242	 * Oops. The kernel tried to access some bad page. We'll have to
243	 * terminate things with extreme prejudice.
244	 */
245
246	if ((unsigned long)(address) < PAGE_SIZE)
247		printk(KERN_ALERT
248		       "Unable to handle kernel NULL pointer dereference");
249	else
250		printk(KERN_ALERT "Unable to handle kernel access");
251	printk(" at virtual address 0x%08lx\n", address);
252
253	die("Oops", regs, write_acc);
254
255	/*
256	 * We ran out of memory, or some other thing happened to us that made
257	 * us unable to handle the page fault gracefully.
258	 */
259
260out_of_memory:
261	mmap_read_unlock(mm);
262	if (!user_mode(regs))
263		goto no_context;
264	pagefault_out_of_memory();
265	return;
266
267do_sigbus:
268	mmap_read_unlock(mm);
269
270	/*
271	 * Send a sigbus, regardless of whether we were in kernel
272	 * or user mode.
273	 */
274	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
275
276	/* Kernel mode? Handle exceptions or die */
277	if (!user_mode(regs))
278		goto no_context;
279	return;
280
281vmalloc_fault:
282	{
283		/*
284		 * Synchronize this task's top level page-table
285		 * with the 'reference' page table.
286		 *
287		 * Use current_pgd instead of tsk->active_mm->pgd
288		 * since the latter might be unavailable if this
289		 * code is executed in a misfortunately run irq
290		 * (like inside schedule() between switch_mm and
291		 *  switch_to...).
292		 */
293
294		int offset = pgd_index(address);
295		pgd_t *pgd, *pgd_k;
296		p4d_t *p4d, *p4d_k;
297		pud_t *pud, *pud_k;
298		pmd_t *pmd, *pmd_k;
299		pte_t *pte_k;
300
301/*
302		phx_warn("do_page_fault(): vmalloc_fault will not work, "
303			 "since current_pgd assign a proper value somewhere\n"
304			 "anyhow we don't need this at the moment\n");
305
306		phx_mmu("vmalloc_fault");
307*/
308		pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset;
309		pgd_k = init_mm.pgd + offset;
310
311		/* Since we're two-level, we don't need to do both
312		 * set_pgd and set_pmd (they do the same thing). If
313		 * we go three-level at some point, do the right thing
314		 * with pgd_present and set_pgd here.
315		 *
316		 * Also, since the vmalloc area is global, we don't
317		 * need to copy individual PTE's, it is enough to
318		 * copy the pgd pointer into the pte page of the
319		 * root task. If that is there, we'll find our pte if
320		 * it exists.
321		 */
322
323		p4d = p4d_offset(pgd, address);
324		p4d_k = p4d_offset(pgd_k, address);
325		if (!p4d_present(*p4d_k))
326			goto no_context;
327
328		pud = pud_offset(p4d, address);
329		pud_k = pud_offset(p4d_k, address);
330		if (!pud_present(*pud_k))
331			goto no_context;
332
333		pmd = pmd_offset(pud, address);
334		pmd_k = pmd_offset(pud_k, address);
335
336		if (!pmd_present(*pmd_k))
337			goto bad_area_nosemaphore;
338
339		set_pmd(pmd, *pmd_k);
340
341		/* Make sure the actual PTE exists as well to
342		 * catch kernel vmalloc-area accesses to non-mapped
343		 * addresses. If we don't do this, this will just
344		 * silently loop forever.
345		 */
346
347		pte_k = pte_offset_kernel(pmd_k, address);
348		if (!pte_present(*pte_k))
349			goto no_context;
350
351		return;
352	}
353}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC fault.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/extable.h>
 17#include <linux/sched/signal.h>
 18#include <linux/perf_event.h>
 19
 20#include <linux/uaccess.h>
 21#include <asm/bug.h>
 22#include <asm/mmu_context.h>
 23#include <asm/siginfo.h>
 24#include <asm/signal.h>
 25
 26#define NUM_TLB_ENTRIES 64
 27#define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
 28
 29/* __PHX__ :: - check the vmalloc_fault in do_page_fault()
 30 *            - also look into include/asm/mmu_context.h
 31 */
 32volatile pgd_t *current_pgd[NR_CPUS];
 33
 34asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 35			      unsigned long vector, int write_acc);
 36
 37/*
 38 * This routine handles page faults.  It determines the address,
 39 * and the problem, and then passes it off to one of the appropriate
 40 * routines.
 41 *
 42 * If this routine detects a bad access, it returns 1, otherwise it
 43 * returns 0.
 44 */
 45
 46asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
 47			      unsigned long vector, int write_acc)
 48{
 49	struct task_struct *tsk;
 50	struct mm_struct *mm;
 51	struct vm_area_struct *vma;
 52	int si_code;
 53	vm_fault_t fault;
 54	unsigned int flags = FAULT_FLAG_DEFAULT;
 55
 56	tsk = current;
 57
 58	/*
 59	 * We fault-in kernel-space virtual memory on-demand. The
 60	 * 'reference' page table is init_mm.pgd.
 61	 *
 62	 * NOTE! We MUST NOT take any locks for this case. We may
 63	 * be in an interrupt or a critical region, and should
 64	 * only copy the information from the master page table,
 65	 * nothing more.
 66	 *
 67	 * NOTE2: This is done so that, when updating the vmalloc
 68	 * mappings we don't have to walk all processes pgdirs and
 69	 * add the high mappings all at once. Instead we do it as they
 70	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
 71	 * bit set so sometimes the TLB can use a lingering entry.
 72	 *
 73	 * This verifies that the fault happens in kernel space
 74	 * and that the fault was not a protection error.
 75	 */
 76
 77	if (address >= VMALLOC_START &&
 78	    (vector != 0x300 && vector != 0x400) &&
 79	    !user_mode(regs))
 80		goto vmalloc_fault;
 81
 82	/* If exceptions were enabled, we can reenable them here */
 83	if (user_mode(regs)) {
 84		/* Exception was in userspace: reenable interrupts */
 85		local_irq_enable();
 86		flags |= FAULT_FLAG_USER;
 87	} else {
 88		/* If exception was in a syscall, then IRQ's may have
 89		 * been enabled or disabled.  If they were enabled,
 90		 * reenable them.
 91		 */
 92		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
 93			local_irq_enable();
 94	}
 95
 96	mm = tsk->mm;
 97	si_code = SEGV_MAPERR;
 98
 99	/*
100	 * If we're in an interrupt or have no user
101	 * context, we must not take the fault..
102	 */
103
104	if (in_interrupt() || !mm)
105		goto no_context;
106
107	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
108
109retry:
110	mmap_read_lock(mm);
111	vma = find_vma(mm, address);
112
113	if (!vma)
114		goto bad_area;
115
116	if (vma->vm_start <= address)
117		goto good_area;
118
119	if (!(vma->vm_flags & VM_GROWSDOWN))
120		goto bad_area;
121
122	if (user_mode(regs)) {
123		/*
124		 * accessing the stack below usp is always a bug.
125		 * we get page-aligned addresses so we can only check
126		 * if we're within a page from usp, but that might be
127		 * enough to catch brutal errors at least.
128		 */
129		if (address + PAGE_SIZE < regs->sp)
130			goto bad_area;
131	}
132	vma = expand_stack(mm, address);
133	if (!vma)
134		goto bad_area_nosemaphore;
135
136	/*
137	 * Ok, we have a good vm_area for this memory access, so
138	 * we can handle it..
139	 */
140
141good_area:
142	si_code = SEGV_ACCERR;
143
144	/* first do some preliminary protection checks */
145
146	if (write_acc) {
147		if (!(vma->vm_flags & VM_WRITE))
148			goto bad_area;
149		flags |= FAULT_FLAG_WRITE;
150	} else {
151		/* not present */
152		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
153			goto bad_area;
154	}
155
156	/* are we trying to execute nonexecutable area */
157	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
158		goto bad_area;
159
160	/*
161	 * If for any reason at all we couldn't handle the fault,
162	 * make sure we exit gracefully rather than endlessly redo
163	 * the fault.
164	 */
165
166	fault = handle_mm_fault(vma, address, flags, regs);
167
168	if (fault_signal_pending(fault, regs)) {
169		if (!user_mode(regs))
170			goto no_context;
171		return;
172	}
173
174	/* The fault is fully completed (including releasing mmap lock) */
175	if (fault & VM_FAULT_COMPLETED)
176		return;
177
178	if (unlikely(fault & VM_FAULT_ERROR)) {
179		if (fault & VM_FAULT_OOM)
180			goto out_of_memory;
181		else if (fault & VM_FAULT_SIGSEGV)
182			goto bad_area;
183		else if (fault & VM_FAULT_SIGBUS)
184			goto do_sigbus;
185		BUG();
186	}
187
188	/*RGD modeled on Cris */
189	if (fault & VM_FAULT_RETRY) {
190		flags |= FAULT_FLAG_TRIED;
191
192		/* No need to mmap_read_unlock(mm) as we would
193		 * have already released it in __lock_page_or_retry
194		 * in mm/filemap.c.
195		 */
196
197		goto retry;
198	}
199
200	mmap_read_unlock(mm);
201	return;
202
203	/*
204	 * Something tried to access memory that isn't in our memory map..
205	 * Fix it, but check if it's kernel or user first..
206	 */
207
208bad_area:
209	mmap_read_unlock(mm);
210
211bad_area_nosemaphore:
212
213	/* User mode accesses just cause a SIGSEGV */
214
215	if (user_mode(regs)) {
216		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
217		return;
218	}
219
220no_context:
221
222	/* Are we prepared to handle this kernel fault?
223	 *
224	 * (The kernel has valid exception-points in the source
225	 *  when it acesses user-memory. When it fails in one
226	 *  of those points, we find it in a table and do a jump
227	 *  to some fixup code that loads an appropriate error
228	 *  code)
229	 */
230
231	{
232		const struct exception_table_entry *entry;
233
234		if ((entry = search_exception_tables(regs->pc)) != NULL) {
235			/* Adjust the instruction pointer in the stackframe */
236			regs->pc = entry->fixup;
237			return;
238		}
239	}
240
241	/*
242	 * Oops. The kernel tried to access some bad page. We'll have to
243	 * terminate things with extreme prejudice.
244	 */
245
246	if ((unsigned long)(address) < PAGE_SIZE)
247		printk(KERN_ALERT
248		       "Unable to handle kernel NULL pointer dereference");
249	else
250		printk(KERN_ALERT "Unable to handle kernel access");
251	printk(" at virtual address 0x%08lx\n", address);
252
253	die("Oops", regs, write_acc);
254
255	/*
256	 * We ran out of memory, or some other thing happened to us that made
257	 * us unable to handle the page fault gracefully.
258	 */
259
260out_of_memory:
261	mmap_read_unlock(mm);
262	if (!user_mode(regs))
263		goto no_context;
264	pagefault_out_of_memory();
265	return;
266
267do_sigbus:
268	mmap_read_unlock(mm);
269
270	/*
271	 * Send a sigbus, regardless of whether we were in kernel
272	 * or user mode.
273	 */
274	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
275
276	/* Kernel mode? Handle exceptions or die */
277	if (!user_mode(regs))
278		goto no_context;
279	return;
280
281vmalloc_fault:
282	{
283		/*
284		 * Synchronize this task's top level page-table
285		 * with the 'reference' page table.
286		 *
287		 * Use current_pgd instead of tsk->active_mm->pgd
288		 * since the latter might be unavailable if this
289		 * code is executed in a misfortunately run irq
290		 * (like inside schedule() between switch_mm and
291		 *  switch_to...).
292		 */
293
294		int offset = pgd_index(address);
295		pgd_t *pgd, *pgd_k;
296		p4d_t *p4d, *p4d_k;
297		pud_t *pud, *pud_k;
298		pmd_t *pmd, *pmd_k;
299		pte_t *pte_k;
300
301/*
302		phx_warn("do_page_fault(): vmalloc_fault will not work, "
303			 "since current_pgd assign a proper value somewhere\n"
304			 "anyhow we don't need this at the moment\n");
305
306		phx_mmu("vmalloc_fault");
307*/
308		pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset;
309		pgd_k = init_mm.pgd + offset;
310
311		/* Since we're two-level, we don't need to do both
312		 * set_pgd and set_pmd (they do the same thing). If
313		 * we go three-level at some point, do the right thing
314		 * with pgd_present and set_pgd here.
315		 *
316		 * Also, since the vmalloc area is global, we don't
317		 * need to copy individual PTE's, it is enough to
318		 * copy the pgd pointer into the pte page of the
319		 * root task. If that is there, we'll find our pte if
320		 * it exists.
321		 */
322
323		p4d = p4d_offset(pgd, address);
324		p4d_k = p4d_offset(pgd_k, address);
325		if (!p4d_present(*p4d_k))
326			goto no_context;
327
328		pud = pud_offset(p4d, address);
329		pud_k = pud_offset(p4d_k, address);
330		if (!pud_present(*pud_k))
331			goto no_context;
332
333		pmd = pmd_offset(pud, address);
334		pmd_k = pmd_offset(pud_k, address);
335
336		if (!pmd_present(*pmd_k))
337			goto bad_area_nosemaphore;
338
339		set_pmd(pmd, *pmd_k);
340
341		/* Make sure the actual PTE exists as well to
342		 * catch kernel vmalloc-area accesses to non-mapped
343		 * addresses. If we don't do this, this will just
344		 * silently loop forever.
345		 */
346
347		pte_k = pte_offset_kernel(pmd_k, address);
348		if (!pte_present(*pte_k))
349			goto no_context;
350
351		return;
352	}
353}