Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
  4 *
  5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
  6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
  7 *
  8 * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
  9 * better) at the expense of stack usage and much larger code to avoid
 10 * quicksort's O(n^2) worst case.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/types.h>
 16#include <linux/export.h>
 17#include <linux/sort.h>
 18
 19/**
 20 * is_aligned - is this pointer & size okay for word-wide copying?
 21 * @base: pointer to data
 22 * @size: size of each element
 23 * @align: required alignment (typically 4 or 8)
 24 *
 25 * Returns true if elements can be copied using word loads and stores.
 26 * The size must be a multiple of the alignment, and the base address must
 27 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 28 *
 29 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 30 * to "if ((a | b) & mask)", so we do that by hand.
 31 */
 32__attribute_const__ __always_inline
 33static bool is_aligned(const void *base, size_t size, unsigned char align)
 34{
 35	unsigned char lsbits = (unsigned char)size;
 36
 37	(void)base;
 38#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 39	lsbits |= (unsigned char)(uintptr_t)base;
 40#endif
 41	return (lsbits & (align - 1)) == 0;
 42}
 43
 44/**
 45 * swap_words_32 - swap two elements in 32-bit chunks
 46 * @a: pointer to the first element to swap
 47 * @b: pointer to the second element to swap
 48 * @n: element size (must be a multiple of 4)
 49 *
 50 * Exchange the two objects in memory.  This exploits base+index addressing,
 51 * which basically all CPUs have, to minimize loop overhead computations.
 52 *
 53 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 54 * bottom of the loop, even though the zero flag is still valid from the
 55 * subtract (since the intervening mov instructions don't alter the flags).
 56 * Gcc 8.1.0 doesn't have that problem.
 57 */
 58static void swap_words_32(void *a, void *b, size_t n)
 59{
 60	do {
 61		u32 t = *(u32 *)(a + (n -= 4));
 62		*(u32 *)(a + n) = *(u32 *)(b + n);
 63		*(u32 *)(b + n) = t;
 64	} while (n);
 65}
 66
 67/**
 68 * swap_words_64 - swap two elements in 64-bit chunks
 69 * @a: pointer to the first element to swap
 70 * @b: pointer to the second element to swap
 71 * @n: element size (must be a multiple of 8)
 72 *
 73 * Exchange the two objects in memory.  This exploits base+index
 74 * addressing, which basically all CPUs have, to minimize loop overhead
 75 * computations.
 76 *
 77 * We'd like to use 64-bit loads if possible.  If they're not, emulating
 78 * one requires base+index+4 addressing which x86 has but most other
 79 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 80 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 81 * x32 ABI).  Are there any cases the kernel needs to worry about?
 82 */
 83static void swap_words_64(void *a, void *b, size_t n)
 84{
 85	do {
 86#ifdef CONFIG_64BIT
 87		u64 t = *(u64 *)(a + (n -= 8));
 88		*(u64 *)(a + n) = *(u64 *)(b + n);
 89		*(u64 *)(b + n) = t;
 90#else
 91		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 92		u32 t = *(u32 *)(a + (n -= 4));
 93		*(u32 *)(a + n) = *(u32 *)(b + n);
 94		*(u32 *)(b + n) = t;
 95
 96		t = *(u32 *)(a + (n -= 4));
 97		*(u32 *)(a + n) = *(u32 *)(b + n);
 98		*(u32 *)(b + n) = t;
 99#endif
100	} while (n);
101}
102
103/**
104 * swap_bytes - swap two elements a byte at a time
105 * @a: pointer to the first element to swap
106 * @b: pointer to the second element to swap
107 * @n: element size
108 *
109 * This is the fallback if alignment doesn't allow using larger chunks.
110 */
111static void swap_bytes(void *a, void *b, size_t n)
112{
113	do {
114		char t = ((char *)a)[--n];
115		((char *)a)[n] = ((char *)b)[n];
116		((char *)b)[n] = t;
117	} while (n);
118}
119
120/*
121 * The values are arbitrary as long as they can't be confused with
122 * a pointer, but small integers make for the smallest compare
123 * instructions.
124 */
125#define SWAP_WORDS_64 (swap_r_func_t)0
126#define SWAP_WORDS_32 (swap_r_func_t)1
127#define SWAP_BYTES    (swap_r_func_t)2
128#define SWAP_WRAPPER  (swap_r_func_t)3
129
130struct wrapper {
131	cmp_func_t cmp;
132	swap_func_t swap;
133};
134
135/*
136 * The function pointer is last to make tail calls most efficient if the
137 * compiler decides not to inline this function.
138 */
139static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
140{
141	if (swap_func == SWAP_WRAPPER) {
142		((const struct wrapper *)priv)->swap(a, b, (int)size);
143		return;
144	}
145
146	if (swap_func == SWAP_WORDS_64)
147		swap_words_64(a, b, size);
148	else if (swap_func == SWAP_WORDS_32)
149		swap_words_32(a, b, size);
150	else if (swap_func == SWAP_BYTES)
151		swap_bytes(a, b, size);
152	else
153		swap_func(a, b, (int)size, priv);
154}
155
156#define _CMP_WRAPPER ((cmp_r_func_t)0L)
157
158static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
159{
160	if (cmp == _CMP_WRAPPER)
161		return ((const struct wrapper *)priv)->cmp(a, b);
162	return cmp(a, b, priv);
163}
164
165/**
166 * parent - given the offset of the child, find the offset of the parent.
167 * @i: the offset of the heap element whose parent is sought.  Non-zero.
168 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
169 * @size: size of each element
170 *
171 * In terms of array indexes, the parent of element j = @i/@size is simply
172 * (j-1)/2.  But when working in byte offsets, we can't use implicit
173 * truncation of integer divides.
174 *
175 * Fortunately, we only need one bit of the quotient, not the full divide.
176 * @size has a least significant bit.  That bit will be clear if @i is
177 * an even multiple of @size, and set if it's an odd multiple.
178 *
179 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
180 * branch is unpredictable, it's done with a bit of clever branch-free
181 * code instead.
182 */
183__attribute_const__ __always_inline
184static size_t parent(size_t i, unsigned int lsbit, size_t size)
185{
186	i -= size;
187	i -= size & -(i & lsbit);
188	return i / 2;
189}
190
191/**
192 * sort_r - sort an array of elements
193 * @base: pointer to data to sort
194 * @num: number of elements
195 * @size: size of each element
196 * @cmp_func: pointer to comparison function
197 * @swap_func: pointer to swap function or NULL
198 * @priv: third argument passed to comparison function
199 *
200 * This function does a heapsort on the given array.  You may provide
201 * a swap_func function if you need to do something more than a memory
202 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
203 * avoids a slow retpoline and so is significantly faster.
204 *
205 * Sorting time is O(n log n) both on average and worst-case. While
206 * quicksort is slightly faster on average, it suffers from exploitable
207 * O(n*n) worst-case behavior and extra memory requirements that make
208 * it less suitable for kernel use.
209 */
210void sort_r(void *base, size_t num, size_t size,
211	    cmp_r_func_t cmp_func,
212	    swap_r_func_t swap_func,
213	    const void *priv)
214{
215	/* pre-scale counters for performance */
216	size_t n = num * size, a = (num/2) * size;
217	const unsigned int lsbit = size & -size;  /* Used to find parent */
218
219	if (!a)		/* num < 2 || size == 0 */
220		return;
221
222	/* called from 'sort' without swap function, let's pick the default */
223	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
224		swap_func = NULL;
225
226	if (!swap_func) {
227		if (is_aligned(base, size, 8))
228			swap_func = SWAP_WORDS_64;
229		else if (is_aligned(base, size, 4))
230			swap_func = SWAP_WORDS_32;
231		else
232			swap_func = SWAP_BYTES;
233	}
234
235	/*
236	 * Loop invariants:
237	 * 1. elements [a,n) satisfy the heap property (compare greater than
238	 *    all of their children),
239	 * 2. elements [n,num*size) are sorted, and
240	 * 3. a <= b <= c <= d <= n (whenever they are valid).
241	 */
242	for (;;) {
243		size_t b, c, d;
244
245		if (a)			/* Building heap: sift down --a */
246			a -= size;
247		else if (n -= size)	/* Sorting: Extract root to --n */
248			do_swap(base, base + n, size, swap_func, priv);
249		else			/* Sort complete */
250			break;
251
252		/*
253		 * Sift element at "a" down into heap.  This is the
254		 * "bottom-up" variant, which significantly reduces
255		 * calls to cmp_func(): we find the sift-down path all
256		 * the way to the leaves (one compare per level), then
257		 * backtrack to find where to insert the target element.
258		 *
259		 * Because elements tend to sift down close to the leaves,
260		 * this uses fewer compares than doing two per level
261		 * on the way down.  (A bit more than half as many on
262		 * average, 3/4 worst-case.)
263		 */
264		for (b = a; c = 2*b + size, (d = c + size) < n;)
265			b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
266		if (d == n)	/* Special case last leaf with no sibling */
267			b = c;
268
269		/* Now backtrack from "b" to the correct location for "a" */
270		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
271			b = parent(b, lsbit, size);
272		c = b;			/* Where "a" belongs */
273		while (b != a) {	/* Shift it into place */
274			b = parent(b, lsbit, size);
275			do_swap(base + b, base + c, size, swap_func, priv);
276		}
277	}
278}
279EXPORT_SYMBOL(sort_r);
280
281void sort(void *base, size_t num, size_t size,
282	  cmp_func_t cmp_func,
283	  swap_func_t swap_func)
284{
285	struct wrapper w = {
286		.cmp  = cmp_func,
287		.swap = swap_func,
288	};
289
290	return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
291}
292EXPORT_SYMBOL(sort);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
  4 *
  5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
  6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
  7 *
  8 * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
  9 * better) at the expense of stack usage and much larger code to avoid
 10 * quicksort's O(n^2) worst case.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/types.h>
 16#include <linux/export.h>
 17#include <linux/sort.h>
 18
 19/**
 20 * is_aligned - is this pointer & size okay for word-wide copying?
 21 * @base: pointer to data
 22 * @size: size of each element
 23 * @align: required alignment (typically 4 or 8)
 24 *
 25 * Returns true if elements can be copied using word loads and stores.
 26 * The size must be a multiple of the alignment, and the base address must
 27 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 28 *
 29 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 30 * to "if ((a | b) & mask)", so we do that by hand.
 31 */
 32__attribute_const__ __always_inline
 33static bool is_aligned(const void *base, size_t size, unsigned char align)
 34{
 35	unsigned char lsbits = (unsigned char)size;
 36
 37	(void)base;
 38#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 39	lsbits |= (unsigned char)(uintptr_t)base;
 40#endif
 41	return (lsbits & (align - 1)) == 0;
 42}
 43
 44/**
 45 * swap_words_32 - swap two elements in 32-bit chunks
 46 * @a: pointer to the first element to swap
 47 * @b: pointer to the second element to swap
 48 * @n: element size (must be a multiple of 4)
 49 *
 50 * Exchange the two objects in memory.  This exploits base+index addressing,
 51 * which basically all CPUs have, to minimize loop overhead computations.
 52 *
 53 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 54 * bottom of the loop, even though the zero flag is still valid from the
 55 * subtract (since the intervening mov instructions don't alter the flags).
 56 * Gcc 8.1.0 doesn't have that problem.
 57 */
 58static void swap_words_32(void *a, void *b, size_t n)
 59{
 60	do {
 61		u32 t = *(u32 *)(a + (n -= 4));
 62		*(u32 *)(a + n) = *(u32 *)(b + n);
 63		*(u32 *)(b + n) = t;
 64	} while (n);
 65}
 66
 67/**
 68 * swap_words_64 - swap two elements in 64-bit chunks
 69 * @a: pointer to the first element to swap
 70 * @b: pointer to the second element to swap
 71 * @n: element size (must be a multiple of 8)
 72 *
 73 * Exchange the two objects in memory.  This exploits base+index
 74 * addressing, which basically all CPUs have, to minimize loop overhead
 75 * computations.
 76 *
 77 * We'd like to use 64-bit loads if possible.  If they're not, emulating
 78 * one requires base+index+4 addressing which x86 has but most other
 79 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 80 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 81 * x32 ABI).  Are there any cases the kernel needs to worry about?
 82 */
 83static void swap_words_64(void *a, void *b, size_t n)
 84{
 85	do {
 86#ifdef CONFIG_64BIT
 87		u64 t = *(u64 *)(a + (n -= 8));
 88		*(u64 *)(a + n) = *(u64 *)(b + n);
 89		*(u64 *)(b + n) = t;
 90#else
 91		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 92		u32 t = *(u32 *)(a + (n -= 4));
 93		*(u32 *)(a + n) = *(u32 *)(b + n);
 94		*(u32 *)(b + n) = t;
 95
 96		t = *(u32 *)(a + (n -= 4));
 97		*(u32 *)(a + n) = *(u32 *)(b + n);
 98		*(u32 *)(b + n) = t;
 99#endif
100	} while (n);
101}
102
103/**
104 * swap_bytes - swap two elements a byte at a time
105 * @a: pointer to the first element to swap
106 * @b: pointer to the second element to swap
107 * @n: element size
108 *
109 * This is the fallback if alignment doesn't allow using larger chunks.
110 */
111static void swap_bytes(void *a, void *b, size_t n)
112{
113	do {
114		char t = ((char *)a)[--n];
115		((char *)a)[n] = ((char *)b)[n];
116		((char *)b)[n] = t;
117	} while (n);
118}
119
120/*
121 * The values are arbitrary as long as they can't be confused with
122 * a pointer, but small integers make for the smallest compare
123 * instructions.
124 */
125#define SWAP_WORDS_64 (swap_r_func_t)0
126#define SWAP_WORDS_32 (swap_r_func_t)1
127#define SWAP_BYTES    (swap_r_func_t)2
128#define SWAP_WRAPPER  (swap_r_func_t)3
129
130struct wrapper {
131	cmp_func_t cmp;
132	swap_func_t swap;
133};
134
135/*
136 * The function pointer is last to make tail calls most efficient if the
137 * compiler decides not to inline this function.
138 */
139static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
140{
141	if (swap_func == SWAP_WRAPPER) {
142		((const struct wrapper *)priv)->swap(a, b, (int)size);
143		return;
144	}
145
146	if (swap_func == SWAP_WORDS_64)
147		swap_words_64(a, b, size);
148	else if (swap_func == SWAP_WORDS_32)
149		swap_words_32(a, b, size);
150	else if (swap_func == SWAP_BYTES)
151		swap_bytes(a, b, size);
152	else
153		swap_func(a, b, (int)size, priv);
154}
155
156#define _CMP_WRAPPER ((cmp_r_func_t)0L)
157
158static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
159{
160	if (cmp == _CMP_WRAPPER)
161		return ((const struct wrapper *)priv)->cmp(a, b);
162	return cmp(a, b, priv);
163}
164
165/**
166 * parent - given the offset of the child, find the offset of the parent.
167 * @i: the offset of the heap element whose parent is sought.  Non-zero.
168 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
169 * @size: size of each element
170 *
171 * In terms of array indexes, the parent of element j = @i/@size is simply
172 * (j-1)/2.  But when working in byte offsets, we can't use implicit
173 * truncation of integer divides.
174 *
175 * Fortunately, we only need one bit of the quotient, not the full divide.
176 * @size has a least significant bit.  That bit will be clear if @i is
177 * an even multiple of @size, and set if it's an odd multiple.
178 *
179 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
180 * branch is unpredictable, it's done with a bit of clever branch-free
181 * code instead.
182 */
183__attribute_const__ __always_inline
184static size_t parent(size_t i, unsigned int lsbit, size_t size)
185{
186	i -= size;
187	i -= size & -(i & lsbit);
188	return i / 2;
189}
190
191/**
192 * sort_r - sort an array of elements
193 * @base: pointer to data to sort
194 * @num: number of elements
195 * @size: size of each element
196 * @cmp_func: pointer to comparison function
197 * @swap_func: pointer to swap function or NULL
198 * @priv: third argument passed to comparison function
199 *
200 * This function does a heapsort on the given array.  You may provide
201 * a swap_func function if you need to do something more than a memory
202 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
203 * avoids a slow retpoline and so is significantly faster.
204 *
205 * Sorting time is O(n log n) both on average and worst-case. While
206 * quicksort is slightly faster on average, it suffers from exploitable
207 * O(n*n) worst-case behavior and extra memory requirements that make
208 * it less suitable for kernel use.
209 */
210void sort_r(void *base, size_t num, size_t size,
211	    cmp_r_func_t cmp_func,
212	    swap_r_func_t swap_func,
213	    const void *priv)
214{
215	/* pre-scale counters for performance */
216	size_t n = num * size, a = (num/2) * size;
217	const unsigned int lsbit = size & -size;  /* Used to find parent */
218
219	if (!a)		/* num < 2 || size == 0 */
220		return;
221
222	/* called from 'sort' without swap function, let's pick the default */
223	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
224		swap_func = NULL;
225
226	if (!swap_func) {
227		if (is_aligned(base, size, 8))
228			swap_func = SWAP_WORDS_64;
229		else if (is_aligned(base, size, 4))
230			swap_func = SWAP_WORDS_32;
231		else
232			swap_func = SWAP_BYTES;
233	}
234
235	/*
236	 * Loop invariants:
237	 * 1. elements [a,n) satisfy the heap property (compare greater than
238	 *    all of their children),
239	 * 2. elements [n,num*size) are sorted, and
240	 * 3. a <= b <= c <= d <= n (whenever they are valid).
241	 */
242	for (;;) {
243		size_t b, c, d;
244
245		if (a)			/* Building heap: sift down --a */
246			a -= size;
247		else if (n -= size)	/* Sorting: Extract root to --n */
248			do_swap(base, base + n, size, swap_func, priv);
249		else			/* Sort complete */
250			break;
251
252		/*
253		 * Sift element at "a" down into heap.  This is the
254		 * "bottom-up" variant, which significantly reduces
255		 * calls to cmp_func(): we find the sift-down path all
256		 * the way to the leaves (one compare per level), then
257		 * backtrack to find where to insert the target element.
258		 *
259		 * Because elements tend to sift down close to the leaves,
260		 * this uses fewer compares than doing two per level
261		 * on the way down.  (A bit more than half as many on
262		 * average, 3/4 worst-case.)
263		 */
264		for (b = a; c = 2*b + size, (d = c + size) < n;)
265			b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
266		if (d == n)	/* Special case last leaf with no sibling */
267			b = c;
268
269		/* Now backtrack from "b" to the correct location for "a" */
270		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
271			b = parent(b, lsbit, size);
272		c = b;			/* Where "a" belongs */
273		while (b != a) {	/* Shift it into place */
274			b = parent(b, lsbit, size);
275			do_swap(base + b, base + c, size, swap_func, priv);
276		}
277	}
278}
279EXPORT_SYMBOL(sort_r);
280
281void sort(void *base, size_t num, size_t size,
282	  cmp_func_t cmp_func,
283	  swap_func_t swap_func)
284{
285	struct wrapper w = {
286		.cmp  = cmp_func,
287		.swap = swap_func,
288	};
289
290	return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
291}
292EXPORT_SYMBOL(sort);