Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
   8#include <crypto/aes.h>
   9#include <crypto/engine.h>
  10#include <crypto/internal/aead.h>
  11#include <crypto/internal/des.h>
  12#include <crypto/internal/skcipher.h>
  13#include <crypto/scatterwalk.h>
  14#include <linux/clk.h>
  15#include <linux/delay.h>
  16#include <linux/err.h>
  17#include <linux/iopoll.h>
  18#include <linux/interrupt.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/reset.h>
  25#include <linux/string.h>
  26
  27#define DRIVER_NAME             "stm32-cryp"
  28
  29/* Bit [0] encrypt / decrypt */
  30#define FLG_ENCRYPT             BIT(0)
  31/* Bit [8..1] algo & operation mode */
  32#define FLG_AES                 BIT(1)
  33#define FLG_DES                 BIT(2)
  34#define FLG_TDES                BIT(3)
  35#define FLG_ECB                 BIT(4)
  36#define FLG_CBC                 BIT(5)
  37#define FLG_CTR                 BIT(6)
  38#define FLG_GCM                 BIT(7)
  39#define FLG_CCM                 BIT(8)
  40/* Mode mask = bits [15..0] */
  41#define FLG_MODE_MASK           GENMASK(15, 0)
  42/* Bit [31..16] status  */
  43
  44/* Registers */
  45#define CRYP_CR                 0x00000000
  46#define CRYP_SR                 0x00000004
  47#define CRYP_DIN                0x00000008
  48#define CRYP_DOUT               0x0000000C
  49#define CRYP_DMACR              0x00000010
  50#define CRYP_IMSCR              0x00000014
  51#define CRYP_RISR               0x00000018
  52#define CRYP_MISR               0x0000001C
  53#define CRYP_K0LR               0x00000020
  54#define CRYP_K0RR               0x00000024
  55#define CRYP_K1LR               0x00000028
  56#define CRYP_K1RR               0x0000002C
  57#define CRYP_K2LR               0x00000030
  58#define CRYP_K2RR               0x00000034
  59#define CRYP_K3LR               0x00000038
  60#define CRYP_K3RR               0x0000003C
  61#define CRYP_IV0LR              0x00000040
  62#define CRYP_IV0RR              0x00000044
  63#define CRYP_IV1LR              0x00000048
  64#define CRYP_IV1RR              0x0000004C
  65#define CRYP_CSGCMCCM0R         0x00000050
  66#define CRYP_CSGCM0R            0x00000070
  67
  68#define UX500_CRYP_CR		0x00000000
  69#define UX500_CRYP_SR		0x00000004
  70#define UX500_CRYP_DIN		0x00000008
  71#define UX500_CRYP_DINSIZE	0x0000000C
  72#define UX500_CRYP_DOUT		0x00000010
  73#define UX500_CRYP_DOUSIZE	0x00000014
  74#define UX500_CRYP_DMACR	0x00000018
  75#define UX500_CRYP_IMSC		0x0000001C
  76#define UX500_CRYP_RIS		0x00000020
  77#define UX500_CRYP_MIS		0x00000024
  78#define UX500_CRYP_K1L		0x00000028
  79#define UX500_CRYP_K1R		0x0000002C
  80#define UX500_CRYP_K2L		0x00000030
  81#define UX500_CRYP_K2R		0x00000034
  82#define UX500_CRYP_K3L		0x00000038
  83#define UX500_CRYP_K3R		0x0000003C
  84#define UX500_CRYP_K4L		0x00000040
  85#define UX500_CRYP_K4R		0x00000044
  86#define UX500_CRYP_IV0L		0x00000048
  87#define UX500_CRYP_IV0R		0x0000004C
  88#define UX500_CRYP_IV1L		0x00000050
  89#define UX500_CRYP_IV1R		0x00000054
  90
  91/* Registers values */
  92#define CR_DEC_NOT_ENC          0x00000004
  93#define CR_TDES_ECB             0x00000000
  94#define CR_TDES_CBC             0x00000008
  95#define CR_DES_ECB              0x00000010
  96#define CR_DES_CBC              0x00000018
  97#define CR_AES_ECB              0x00000020
  98#define CR_AES_CBC              0x00000028
  99#define CR_AES_CTR              0x00000030
 100#define CR_AES_KP               0x00000038 /* Not on Ux500 */
 101#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 102#define CR_AES_GCM              0x00080000
 103#define CR_AES_CCM              0x00080008
 104#define CR_AES_UNKNOWN          0xFFFFFFFF
 105#define CR_ALGO_MASK            0x00080038
 106#define CR_DATA32               0x00000000
 107#define CR_DATA16               0x00000040
 108#define CR_DATA8                0x00000080
 109#define CR_DATA1                0x000000C0
 110#define CR_KEY128               0x00000000
 111#define CR_KEY192               0x00000100
 112#define CR_KEY256               0x00000200
 113#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 114#define CR_KSE                  0x00000800 /* Only on Ux500 */
 115#define CR_FFLUSH               0x00004000
 116#define CR_CRYPEN               0x00008000
 117#define CR_PH_INIT              0x00000000
 118#define CR_PH_HEADER            0x00010000
 119#define CR_PH_PAYLOAD           0x00020000
 120#define CR_PH_FINAL             0x00030000
 121#define CR_PH_MASK              0x00030000
 122#define CR_NBPBL_SHIFT          20
 123
 124#define SR_BUSY                 0x00000010
 125#define SR_OFNE                 0x00000004
 126
 127#define IMSCR_IN                BIT(0)
 128#define IMSCR_OUT               BIT(1)
 129
 130#define MISR_IN                 BIT(0)
 131#define MISR_OUT                BIT(1)
 132
 133/* Misc */
 134#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 135#define GCM_CTR_INIT            2
 136#define CRYP_AUTOSUSPEND_DELAY	50
 137
 138struct stm32_cryp_caps {
 139	bool			aeads_support;
 140	bool			linear_aes_key;
 141	bool			kp_mode;
 142	bool			iv_protection;
 143	bool			swap_final;
 144	bool			padding_wa;
 145	u32			cr;
 146	u32			sr;
 147	u32			din;
 148	u32			dout;
 149	u32			imsc;
 150	u32			mis;
 151	u32			k1l;
 152	u32			k1r;
 153	u32			k3r;
 154	u32			iv0l;
 155	u32			iv0r;
 156	u32			iv1l;
 157	u32			iv1r;
 158};
 159
 160struct stm32_cryp_ctx {
 161	struct stm32_cryp       *cryp;
 162	int                     keylen;
 163	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 164	unsigned long           flags;
 165};
 166
 167struct stm32_cryp_reqctx {
 168	unsigned long mode;
 169};
 170
 171struct stm32_cryp {
 172	struct list_head        list;
 173	struct device           *dev;
 174	void __iomem            *regs;
 175	struct clk              *clk;
 176	unsigned long           flags;
 177	u32                     irq_status;
 178	const struct stm32_cryp_caps *caps;
 179	struct stm32_cryp_ctx   *ctx;
 180
 181	struct crypto_engine    *engine;
 182
 183	struct skcipher_request *req;
 184	struct aead_request     *areq;
 185
 186	size_t                  authsize;
 187	size_t                  hw_blocksize;
 188
 189	size_t                  payload_in;
 190	size_t                  header_in;
 191	size_t                  payload_out;
 192
 193	struct scatterlist      *out_sg;
 194
 195	struct scatter_walk     in_walk;
 196	struct scatter_walk     out_walk;
 197
 198	__be32                  last_ctr[4];
 199	u32                     gcm_ctr;
 200};
 201
 202struct stm32_cryp_list {
 203	struct list_head        dev_list;
 204	spinlock_t              lock; /* protect dev_list */
 205};
 206
 207static struct stm32_cryp_list cryp_list = {
 208	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 209	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 210};
 211
 212static inline bool is_aes(struct stm32_cryp *cryp)
 213{
 214	return cryp->flags & FLG_AES;
 215}
 216
 217static inline bool is_des(struct stm32_cryp *cryp)
 218{
 219	return cryp->flags & FLG_DES;
 220}
 221
 222static inline bool is_tdes(struct stm32_cryp *cryp)
 223{
 224	return cryp->flags & FLG_TDES;
 225}
 226
 227static inline bool is_ecb(struct stm32_cryp *cryp)
 228{
 229	return cryp->flags & FLG_ECB;
 230}
 231
 232static inline bool is_cbc(struct stm32_cryp *cryp)
 233{
 234	return cryp->flags & FLG_CBC;
 235}
 236
 237static inline bool is_ctr(struct stm32_cryp *cryp)
 238{
 239	return cryp->flags & FLG_CTR;
 240}
 241
 242static inline bool is_gcm(struct stm32_cryp *cryp)
 243{
 244	return cryp->flags & FLG_GCM;
 245}
 246
 247static inline bool is_ccm(struct stm32_cryp *cryp)
 248{
 249	return cryp->flags & FLG_CCM;
 250}
 251
 252static inline bool is_encrypt(struct stm32_cryp *cryp)
 253{
 254	return cryp->flags & FLG_ENCRYPT;
 255}
 256
 257static inline bool is_decrypt(struct stm32_cryp *cryp)
 258{
 259	return !is_encrypt(cryp);
 260}
 261
 262static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 263{
 264	return readl_relaxed(cryp->regs + ofst);
 265}
 266
 267static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 268{
 269	writel_relaxed(val, cryp->regs + ofst);
 270}
 271
 272static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 273{
 274	u32 status;
 275
 276	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 277			!(status & SR_BUSY), 10, 100000);
 278}
 279
 280static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 281{
 282	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 283		       cryp->regs + cryp->caps->cr);
 284}
 285
 286static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 287{
 288	u32 status;
 289
 290	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 291			!(status & CR_CRYPEN), 10, 100000);
 292}
 293
 294static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 295{
 296	u32 status;
 297
 298	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 299			status & SR_OFNE, 10, 100000);
 300}
 301
 302static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 303{
 304	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 305		       cryp->regs + cryp->caps->cr);
 306}
 307
 308static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 309{
 310	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 311		       cryp->regs + cryp->caps->cr);
 312}
 313
 314static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 315static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 316
 317static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 318{
 319	struct stm32_cryp *tmp, *cryp = NULL;
 320
 321	spin_lock_bh(&cryp_list.lock);
 322	if (!ctx->cryp) {
 323		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 324			cryp = tmp;
 325			break;
 326		}
 327		ctx->cryp = cryp;
 328	} else {
 329		cryp = ctx->cryp;
 330	}
 331
 332	spin_unlock_bh(&cryp_list.lock);
 333
 334	return cryp;
 335}
 336
 337static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 338{
 339	if (!iv)
 340		return;
 341
 342	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 343	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 344
 345	if (is_aes(cryp)) {
 346		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 347		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 348	}
 349}
 350
 351static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 352{
 353	struct skcipher_request *req = cryp->req;
 354	__be32 *tmp = (void *)req->iv;
 355
 356	if (!tmp)
 357		return;
 358
 359	if (cryp->caps->iv_protection)
 360		stm32_cryp_key_read_enable(cryp);
 361
 362	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 363	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 364
 365	if (is_aes(cryp)) {
 366		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 367		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 368	}
 369
 370	if (cryp->caps->iv_protection)
 371		stm32_cryp_key_read_disable(cryp);
 372}
 373
 374/**
 375 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 376 * @b: the byte to be mirrored
 377 *
 378 * The bits are swapped the following way:
 379 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 380 *  nibble 2 (n2) bits 4-7.
 381 *
 382 *  Nibble 1 (n1):
 383 *  (The "old" (moved) bit is replaced with a zero)
 384 *  1. Move bit 6 and 7, 4 positions to the left.
 385 *  2. Move bit 3 and 5, 2 positions to the left.
 386 *  3. Move bit 1-4, 1 position to the left.
 387 *
 388 *  Nibble 2 (n2):
 389 *  1. Move bit 0 and 1, 4 positions to the right.
 390 *  2. Move bit 2 and 4, 2 positions to the right.
 391 *  3. Move bit 3-6, 1 position to the right.
 392 *
 393 *  Combine the two nibbles to a complete and swapped byte.
 394 */
 395static inline u8 ux500_swap_bits_in_byte(u8 b)
 396{
 397#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 398#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 399				  right shift 2 */
 400#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 401				  right shift 1 */
 402#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 403#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 404				  left shift 2 */
 405#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 406				  left shift 1 */
 407
 408	u8 n1;
 409	u8 n2;
 410
 411	/* Swap most significant nibble */
 412	/* Right shift 4, bits 6 and 7 */
 413	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 414	/* Right shift 2, bits 3 and 5 */
 415	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 416	/* Right shift 1, bits 1-4 */
 417	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 418
 419	/* Swap least significant nibble */
 420	/* Left shift 4, bits 0 and 1 */
 421	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 422	/* Left shift 2, bits 2 and 4 */
 423	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 424	/* Left shift 1, bits 3-6 */
 425	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 426
 427	return n1 | n2;
 428}
 429
 430/**
 431 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 432 * @in: key to swizzle
 433 * @out: swizzled key
 434 * @len: length of key, in bytes
 435 *
 436 * This "key swizzling procedure" is described in the examples in the
 437 * DB8500 design specification. There is no real description of why
 438 * the bits have been arranged like this in the hardware.
 439 */
 440static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 441{
 442	int i = 0;
 443	int bpw = sizeof(u32);
 444	int j;
 445	int index = 0;
 446
 447	j = len - bpw;
 448	while (j >= 0) {
 449		for (i = 0; i < bpw; i++) {
 450			index = len - j - bpw + i;
 451			out[j + i] =
 452				ux500_swap_bits_in_byte(in[index]);
 453		}
 454		j -= bpw;
 455	}
 456}
 457
 458static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 459{
 460	unsigned int i;
 461	int r_id;
 462
 463	if (is_des(c)) {
 464		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 465		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 466		return;
 467	}
 468
 469	/*
 470	 * On the Ux500 the AES key is considered as a single bit sequence
 471	 * of 128, 192 or 256 bits length. It is written linearly into the
 472	 * registers from K1L and down, and need to be processed to become
 473	 * a proper big-endian bit sequence.
 474	 */
 475	if (is_aes(c) && c->caps->linear_aes_key) {
 476		u32 tmpkey[8];
 477
 478		ux500_swizzle_key((u8 *)c->ctx->key,
 479				  (u8 *)tmpkey, c->ctx->keylen);
 480
 481		r_id = c->caps->k1l;
 482		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 483			stm32_cryp_write(c, r_id, tmpkey[i]);
 484
 485		return;
 486	}
 487
 488	r_id = c->caps->k3r;
 489	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 490		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 491}
 492
 493static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 494{
 495	if (is_aes(cryp) && is_ecb(cryp))
 496		return CR_AES_ECB;
 497
 498	if (is_aes(cryp) && is_cbc(cryp))
 499		return CR_AES_CBC;
 500
 501	if (is_aes(cryp) && is_ctr(cryp))
 502		return CR_AES_CTR;
 503
 504	if (is_aes(cryp) && is_gcm(cryp))
 505		return CR_AES_GCM;
 506
 507	if (is_aes(cryp) && is_ccm(cryp))
 508		return CR_AES_CCM;
 509
 510	if (is_des(cryp) && is_ecb(cryp))
 511		return CR_DES_ECB;
 512
 513	if (is_des(cryp) && is_cbc(cryp))
 514		return CR_DES_CBC;
 515
 516	if (is_tdes(cryp) && is_ecb(cryp))
 517		return CR_TDES_ECB;
 518
 519	if (is_tdes(cryp) && is_cbc(cryp))
 520		return CR_TDES_CBC;
 521
 522	dev_err(cryp->dev, "Unknown mode\n");
 523	return CR_AES_UNKNOWN;
 524}
 525
 526static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 527{
 528	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 529				  cryp->areq->cryptlen - cryp->authsize;
 530}
 531
 532static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 533{
 534	int ret;
 535	__be32 iv[4];
 536
 537	/* Phase 1 : init */
 538	memcpy(iv, cryp->areq->iv, 12);
 539	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 540	cryp->gcm_ctr = GCM_CTR_INIT;
 541	stm32_cryp_hw_write_iv(cryp, iv);
 542
 543	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 544
 545	/* Wait for end of processing */
 546	ret = stm32_cryp_wait_enable(cryp);
 547	if (ret) {
 548		dev_err(cryp->dev, "Timeout (gcm init)\n");
 549		return ret;
 550	}
 551
 552	/* Prepare next phase */
 553	if (cryp->areq->assoclen) {
 554		cfg |= CR_PH_HEADER;
 555		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 556	} else if (stm32_cryp_get_input_text_len(cryp)) {
 557		cfg |= CR_PH_PAYLOAD;
 558		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 559	}
 560
 561	return 0;
 562}
 563
 564static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 565{
 566	u32 cfg;
 567	int err;
 568
 569	/* Check if whole header written */
 570	if (!cryp->header_in) {
 571		/* Wait for completion */
 572		err = stm32_cryp_wait_busy(cryp);
 573		if (err) {
 574			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 575			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 576			stm32_cryp_finish_req(cryp, err);
 577			return;
 578		}
 579
 580		if (stm32_cryp_get_input_text_len(cryp)) {
 581			/* Phase 3 : payload */
 582			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 583			cfg &= ~CR_CRYPEN;
 584			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 585
 586			cfg &= ~CR_PH_MASK;
 587			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 588			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 589		} else {
 590			/*
 591			 * Phase 4 : tag.
 592			 * Nothing to read, nothing to write, caller have to
 593			 * end request
 594			 */
 595		}
 596	}
 597}
 598
 599static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 600{
 601	size_t written;
 602	size_t len;
 603	u32 alen = cryp->areq->assoclen;
 604	u32 block[AES_BLOCK_32] = {0};
 605	u8 *b8 = (u8 *)block;
 606
 607	if (alen <= 65280) {
 608		/* Write first u32 of B1 */
 609		b8[0] = (alen >> 8) & 0xFF;
 610		b8[1] = alen & 0xFF;
 611		len = 2;
 612	} else {
 613		/* Build the two first u32 of B1 */
 614		b8[0] = 0xFF;
 615		b8[1] = 0xFE;
 616		b8[2] = (alen & 0xFF000000) >> 24;
 617		b8[3] = (alen & 0x00FF0000) >> 16;
 618		b8[4] = (alen & 0x0000FF00) >> 8;
 619		b8[5] = alen & 0x000000FF;
 620		len = 6;
 621	}
 622
 623	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 624
 625	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 626
 627	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 628
 629	cryp->header_in -= written;
 630
 631	stm32_crypt_gcmccm_end_header(cryp);
 632}
 633
 634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 635{
 636	int ret;
 637	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 638	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 639	__be32 *bd;
 640	u32 *d;
 641	unsigned int i, textlen;
 642
 643	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 644	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 645	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 646	iv[AES_BLOCK_SIZE - 1] = 1;
 647	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 648
 649	/* Build B0 */
 650	memcpy(b0, iv, AES_BLOCK_SIZE);
 651
 652	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 653
 654	if (cryp->areq->assoclen)
 655		b0[0] |= 0x40;
 656
 657	textlen = stm32_cryp_get_input_text_len(cryp);
 658
 659	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 660	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 661
 662	/* Enable HW */
 663	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 664
 665	/* Write B0 */
 666	d = (u32 *)b0;
 667	bd = (__be32 *)b0;
 668
 669	for (i = 0; i < AES_BLOCK_32; i++) {
 670		u32 xd = d[i];
 671
 672		if (!cryp->caps->padding_wa)
 673			xd = be32_to_cpu(bd[i]);
 674		stm32_cryp_write(cryp, cryp->caps->din, xd);
 675	}
 676
 677	/* Wait for end of processing */
 678	ret = stm32_cryp_wait_enable(cryp);
 679	if (ret) {
 680		dev_err(cryp->dev, "Timeout (ccm init)\n");
 681		return ret;
 682	}
 683
 684	/* Prepare next phase */
 685	if (cryp->areq->assoclen) {
 686		cfg |= CR_PH_HEADER | CR_CRYPEN;
 687		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 688
 689		/* Write first (special) block (may move to next phase [payload]) */
 690		stm32_cryp_write_ccm_first_header(cryp);
 691	} else if (stm32_cryp_get_input_text_len(cryp)) {
 692		cfg |= CR_PH_PAYLOAD;
 693		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 694	}
 695
 696	return 0;
 697}
 698
 699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 700{
 701	int ret;
 702	u32 cfg, hw_mode;
 703
 704	pm_runtime_get_sync(cryp->dev);
 705
 706	/* Disable interrupt */
 707	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 708
 709	/* Set configuration */
 710	cfg = CR_DATA8 | CR_FFLUSH;
 711
 712	switch (cryp->ctx->keylen) {
 713	case AES_KEYSIZE_128:
 714		cfg |= CR_KEY128;
 715		break;
 716
 717	case AES_KEYSIZE_192:
 718		cfg |= CR_KEY192;
 719		break;
 720
 721	default:
 722	case AES_KEYSIZE_256:
 723		cfg |= CR_KEY256;
 724		break;
 725	}
 726
 727	hw_mode = stm32_cryp_get_hw_mode(cryp);
 728	if (hw_mode == CR_AES_UNKNOWN)
 729		return -EINVAL;
 730
 731	/* AES ECB/CBC decrypt: run key preparation first */
 732	if (is_decrypt(cryp) &&
 733	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 734		/* Configure in key preparation mode */
 735		if (cryp->caps->kp_mode)
 736			stm32_cryp_write(cryp, cryp->caps->cr,
 737				cfg | CR_AES_KP);
 738		else
 739			stm32_cryp_write(cryp,
 740				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 741
 742		/* Set key only after full configuration done */
 743		stm32_cryp_hw_write_key(cryp);
 744
 745		/* Start prepare key */
 746		stm32_cryp_enable(cryp);
 747		/* Wait for end of processing */
 748		ret = stm32_cryp_wait_busy(cryp);
 749		if (ret) {
 750			dev_err(cryp->dev, "Timeout (key preparation)\n");
 751			return ret;
 752		}
 753
 754		cfg |= hw_mode | CR_DEC_NOT_ENC;
 755
 756		/* Apply updated config (Decrypt + algo) and flush */
 757		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 758	} else {
 759		cfg |= hw_mode;
 760		if (is_decrypt(cryp))
 761			cfg |= CR_DEC_NOT_ENC;
 762
 763		/* Apply config and flush */
 764		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 765
 766		/* Set key only after configuration done */
 767		stm32_cryp_hw_write_key(cryp);
 768	}
 769
 770	switch (hw_mode) {
 771	case CR_AES_GCM:
 772	case CR_AES_CCM:
 773		/* Phase 1 : init */
 774		if (hw_mode == CR_AES_CCM)
 775			ret = stm32_cryp_ccm_init(cryp, cfg);
 776		else
 777			ret = stm32_cryp_gcm_init(cryp, cfg);
 778
 779		if (ret)
 780			return ret;
 781
 782		break;
 783
 784	case CR_DES_CBC:
 785	case CR_TDES_CBC:
 786	case CR_AES_CBC:
 787	case CR_AES_CTR:
 788		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 789		break;
 790
 791	default:
 792		break;
 793	}
 794
 795	/* Enable now */
 796	stm32_cryp_enable(cryp);
 797
 798	return 0;
 799}
 800
 801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 802{
 803	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 804		/* Phase 4 : output tag */
 805		err = stm32_cryp_read_auth_tag(cryp);
 806
 807	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 808		stm32_cryp_get_iv(cryp);
 809
 810	pm_runtime_mark_last_busy(cryp->dev);
 811	pm_runtime_put_autosuspend(cryp->dev);
 812
 813	if (is_gcm(cryp) || is_ccm(cryp))
 814		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 815	else
 816		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 817						   err);
 818}
 819
 820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 821{
 822	/* Enable interrupt and let the IRQ handler do everything */
 823	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 824
 825	return 0;
 826}
 827
 828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 829
 830static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 831{
 832	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 833
 834	return 0;
 835}
 836
 837static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 838
 839static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 840{
 841	crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 842
 843	return 0;
 844}
 845
 846static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 847{
 848	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 849			crypto_skcipher_reqtfm(req));
 850	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 851	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 852
 853	if (!cryp)
 854		return -ENODEV;
 855
 856	rctx->mode = mode;
 857
 858	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 859}
 860
 861static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 862{
 863	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 864	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 865	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 866
 867	if (!cryp)
 868		return -ENODEV;
 869
 870	rctx->mode = mode;
 871
 872	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 873}
 874
 875static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 876			     unsigned int keylen)
 877{
 878	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 879
 880	memcpy(ctx->key, key, keylen);
 881	ctx->keylen = keylen;
 882
 883	return 0;
 884}
 885
 886static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 887				 unsigned int keylen)
 888{
 889	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 890	    keylen != AES_KEYSIZE_256)
 891		return -EINVAL;
 892	else
 893		return stm32_cryp_setkey(tfm, key, keylen);
 894}
 895
 896static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 897				 unsigned int keylen)
 898{
 899	return verify_skcipher_des_key(tfm, key) ?:
 900	       stm32_cryp_setkey(tfm, key, keylen);
 901}
 902
 903static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 904				  unsigned int keylen)
 905{
 906	return verify_skcipher_des3_key(tfm, key) ?:
 907	       stm32_cryp_setkey(tfm, key, keylen);
 908}
 909
 910static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 911				      unsigned int keylen)
 912{
 913	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 914
 915	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 916	    keylen != AES_KEYSIZE_256)
 917		return -EINVAL;
 918
 919	memcpy(ctx->key, key, keylen);
 920	ctx->keylen = keylen;
 921
 922	return 0;
 923}
 924
 925static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 926					  unsigned int authsize)
 927{
 928	switch (authsize) {
 929	case 4:
 930	case 8:
 931	case 12:
 932	case 13:
 933	case 14:
 934	case 15:
 935	case 16:
 936		break;
 937	default:
 938		return -EINVAL;
 939	}
 940
 941	return 0;
 942}
 943
 944static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 945					  unsigned int authsize)
 946{
 947	switch (authsize) {
 948	case 4:
 949	case 6:
 950	case 8:
 951	case 10:
 952	case 12:
 953	case 14:
 954	case 16:
 955		break;
 956	default:
 957		return -EINVAL;
 958	}
 959
 960	return 0;
 961}
 962
 963static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 964{
 965	if (req->cryptlen % AES_BLOCK_SIZE)
 966		return -EINVAL;
 967
 968	if (req->cryptlen == 0)
 969		return 0;
 970
 971	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 972}
 973
 974static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 975{
 976	if (req->cryptlen % AES_BLOCK_SIZE)
 977		return -EINVAL;
 978
 979	if (req->cryptlen == 0)
 980		return 0;
 981
 982	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 983}
 984
 985static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 986{
 987	if (req->cryptlen % AES_BLOCK_SIZE)
 988		return -EINVAL;
 989
 990	if (req->cryptlen == 0)
 991		return 0;
 992
 993	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 994}
 995
 996static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 997{
 998	if (req->cryptlen % AES_BLOCK_SIZE)
 999		return -EINVAL;
1000
1001	if (req->cryptlen == 0)
1002		return 0;
1003
1004	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1005}
1006
1007static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1008{
1009	if (req->cryptlen == 0)
1010		return 0;
1011
1012	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1013}
1014
1015static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1016{
1017	if (req->cryptlen == 0)
1018		return 0;
1019
1020	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1021}
1022
1023static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1024{
1025	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1026}
1027
1028static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1029{
1030	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1031}
1032
1033static inline int crypto_ccm_check_iv(const u8 *iv)
1034{
1035	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1036	if (iv[0] < 1 || iv[0] > 7)
1037		return -EINVAL;
1038
1039	return 0;
1040}
1041
1042static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1043{
1044	int err;
1045
1046	err = crypto_ccm_check_iv(req->iv);
1047	if (err)
1048		return err;
1049
1050	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1051}
1052
1053static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1054{
1055	int err;
1056
1057	err = crypto_ccm_check_iv(req->iv);
1058	if (err)
1059		return err;
1060
1061	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1062}
1063
1064static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1065{
1066	if (req->cryptlen % DES_BLOCK_SIZE)
1067		return -EINVAL;
1068
1069	if (req->cryptlen == 0)
1070		return 0;
1071
1072	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1073}
1074
1075static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1076{
1077	if (req->cryptlen % DES_BLOCK_SIZE)
1078		return -EINVAL;
1079
1080	if (req->cryptlen == 0)
1081		return 0;
1082
1083	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1084}
1085
1086static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1087{
1088	if (req->cryptlen % DES_BLOCK_SIZE)
1089		return -EINVAL;
1090
1091	if (req->cryptlen == 0)
1092		return 0;
1093
1094	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1095}
1096
1097static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1098{
1099	if (req->cryptlen % DES_BLOCK_SIZE)
1100		return -EINVAL;
1101
1102	if (req->cryptlen == 0)
1103		return 0;
1104
1105	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1106}
1107
1108static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1109{
1110	if (req->cryptlen % DES_BLOCK_SIZE)
1111		return -EINVAL;
1112
1113	if (req->cryptlen == 0)
1114		return 0;
1115
1116	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1117}
1118
1119static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1120{
1121	if (req->cryptlen % DES_BLOCK_SIZE)
1122		return -EINVAL;
1123
1124	if (req->cryptlen == 0)
1125		return 0;
1126
1127	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1128}
1129
1130static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1131{
1132	if (req->cryptlen % DES_BLOCK_SIZE)
1133		return -EINVAL;
1134
1135	if (req->cryptlen == 0)
1136		return 0;
1137
1138	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1139}
1140
1141static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1142{
1143	if (req->cryptlen % DES_BLOCK_SIZE)
1144		return -EINVAL;
1145
1146	if (req->cryptlen == 0)
1147		return 0;
1148
1149	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1150}
1151
1152static int stm32_cryp_prepare_req(struct skcipher_request *req,
1153				  struct aead_request *areq)
1154{
1155	struct stm32_cryp_ctx *ctx;
1156	struct stm32_cryp *cryp;
1157	struct stm32_cryp_reqctx *rctx;
1158	struct scatterlist *in_sg;
1159	int ret;
1160
1161	if (!req && !areq)
1162		return -EINVAL;
1163
1164	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1165		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1166
1167	cryp = ctx->cryp;
1168
1169	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1170	rctx->mode &= FLG_MODE_MASK;
1171
1172	ctx->cryp = cryp;
1173
1174	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1175	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1176	cryp->ctx = ctx;
1177
1178	if (req) {
1179		cryp->req = req;
1180		cryp->areq = NULL;
1181		cryp->header_in = 0;
1182		cryp->payload_in = req->cryptlen;
1183		cryp->payload_out = req->cryptlen;
1184		cryp->authsize = 0;
1185	} else {
1186		/*
1187		 * Length of input and output data:
1188		 * Encryption case:
1189		 *  INPUT  = AssocData   ||     PlainText
1190		 *          <- assoclen ->  <- cryptlen ->
1191		 *
1192		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1193		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1194		 *
1195		 * Decryption case:
1196		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1197		 *          <- assoclen --->  <---------- cryptlen ---------->
1198		 *
1199		 *  OUTPUT = AssocData    ||               PlainText
1200		 *          <- assoclen ->  <- cryptlen - authsize ->
1201		 */
1202		cryp->areq = areq;
1203		cryp->req = NULL;
1204		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1205		if (is_encrypt(cryp)) {
1206			cryp->payload_in = areq->cryptlen;
1207			cryp->header_in = areq->assoclen;
1208			cryp->payload_out = areq->cryptlen;
1209		} else {
1210			cryp->payload_in = areq->cryptlen - cryp->authsize;
1211			cryp->header_in = areq->assoclen;
1212			cryp->payload_out = cryp->payload_in;
1213		}
1214	}
1215
1216	in_sg = req ? req->src : areq->src;
1217	scatterwalk_start(&cryp->in_walk, in_sg);
1218
1219	cryp->out_sg = req ? req->dst : areq->dst;
1220	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1221
1222	if (is_gcm(cryp) || is_ccm(cryp)) {
1223		/* In output, jump after assoc data */
1224		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1225	}
1226
1227	if (is_ctr(cryp))
1228		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1229
1230	ret = stm32_cryp_hw_init(cryp);
1231	return ret;
1232}
1233
1234static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1235{
1236	struct skcipher_request *req = container_of(areq,
1237						      struct skcipher_request,
1238						      base);
1239	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1240			crypto_skcipher_reqtfm(req));
1241	struct stm32_cryp *cryp = ctx->cryp;
1242
1243	if (!cryp)
1244		return -ENODEV;
1245
1246	return stm32_cryp_prepare_req(req, NULL) ?:
1247	       stm32_cryp_cpu_start(cryp);
1248}
1249
1250static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1251{
1252	struct aead_request *req = container_of(areq, struct aead_request,
1253						base);
1254	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1255	struct stm32_cryp *cryp = ctx->cryp;
1256	int err;
1257
1258	if (!cryp)
1259		return -ENODEV;
1260
1261	err = stm32_cryp_prepare_req(NULL, req);
1262	if (err)
1263		return err;
1264
1265	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1266		/* No input data to process: get tag and finish */
1267		stm32_cryp_finish_req(cryp, 0);
1268		return 0;
1269	}
1270
1271	return stm32_cryp_cpu_start(cryp);
1272}
1273
1274static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1275{
1276	u32 cfg, size_bit;
1277	unsigned int i;
1278	int ret = 0;
1279
1280	/* Update Config */
1281	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1282
1283	cfg &= ~CR_PH_MASK;
1284	cfg |= CR_PH_FINAL;
1285	cfg &= ~CR_DEC_NOT_ENC;
1286	cfg |= CR_CRYPEN;
1287
1288	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1289
1290	if (is_gcm(cryp)) {
1291		/* GCM: write aad and payload size (in bits) */
1292		size_bit = cryp->areq->assoclen * 8;
1293		if (cryp->caps->swap_final)
1294			size_bit = (__force u32)cpu_to_be32(size_bit);
1295
1296		stm32_cryp_write(cryp, cryp->caps->din, 0);
1297		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1298
1299		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1300				cryp->areq->cryptlen - cryp->authsize;
1301		size_bit *= 8;
1302		if (cryp->caps->swap_final)
1303			size_bit = (__force u32)cpu_to_be32(size_bit);
1304
1305		stm32_cryp_write(cryp, cryp->caps->din, 0);
1306		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1307	} else {
1308		/* CCM: write CTR0 */
1309		u32 iv32[AES_BLOCK_32];
1310		u8 *iv = (u8 *)iv32;
1311		__be32 *biv = (__be32 *)iv32;
1312
1313		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1314		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1315
1316		for (i = 0; i < AES_BLOCK_32; i++) {
1317			u32 xiv = iv32[i];
1318
1319			if (!cryp->caps->padding_wa)
1320				xiv = be32_to_cpu(biv[i]);
1321			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1322		}
1323	}
1324
1325	/* Wait for output data */
1326	ret = stm32_cryp_wait_output(cryp);
1327	if (ret) {
1328		dev_err(cryp->dev, "Timeout (read tag)\n");
1329		return ret;
1330	}
1331
1332	if (is_encrypt(cryp)) {
1333		u32 out_tag[AES_BLOCK_32];
1334
1335		/* Get and write tag */
1336		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1337		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1338	} else {
1339		/* Get and check tag */
1340		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1341
1342		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1343		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1344
1345		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1346			ret = -EBADMSG;
1347	}
1348
1349	/* Disable cryp */
1350	cfg &= ~CR_CRYPEN;
1351	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1352
1353	return ret;
1354}
1355
1356static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1357{
1358	u32 cr;
1359
1360	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1361		/*
1362		 * In this case, we need to increment manually the ctr counter,
1363		 * as HW doesn't handle the U32 carry.
1364		 */
1365		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1366
1367		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1368		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1369
1370		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1371
1372		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1373	}
1374
1375	/* The IV registers are BE  */
1376	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1377	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1378	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1379	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1380}
1381
1382static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1383{
1384	u32 block[AES_BLOCK_32];
1385
1386	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1387	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1388							     cryp->payload_out), 1);
1389	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1390				   cryp->payload_out);
1391}
1392
1393static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1394{
1395	u32 block[AES_BLOCK_32] = {0};
1396
1397	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1398							    cryp->payload_in), 0);
1399	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1400	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1401}
1402
1403static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1404{
1405	int err;
1406	u32 cfg, block[AES_BLOCK_32] = {0};
1407	unsigned int i;
1408
1409	/* 'Special workaround' procedure described in the datasheet */
1410
1411	/* a) disable ip */
1412	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1413	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1414	cfg &= ~CR_CRYPEN;
1415	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1416
1417	/* b) Update IV1R */
1418	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1419
1420	/* c) change mode to CTR */
1421	cfg &= ~CR_ALGO_MASK;
1422	cfg |= CR_AES_CTR;
1423	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1424
1425	/* a) enable IP */
1426	cfg |= CR_CRYPEN;
1427	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1428
1429	/* b) pad and write the last block */
1430	stm32_cryp_irq_write_block(cryp);
1431	/* wait end of process */
1432	err = stm32_cryp_wait_output(cryp);
1433	if (err) {
1434		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1435		return stm32_cryp_finish_req(cryp, err);
1436	}
1437
1438	/* c) get and store encrypted data */
1439	/*
1440	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1441	 * block value
1442	 */
1443	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1444
1445	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1446							     cryp->payload_out), 1);
1447	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1448				   cryp->payload_out);
1449
1450	/* d) change mode back to AES GCM */
1451	cfg &= ~CR_ALGO_MASK;
1452	cfg |= CR_AES_GCM;
1453	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1454
1455	/* e) change phase to Final */
1456	cfg &= ~CR_PH_MASK;
1457	cfg |= CR_PH_FINAL;
1458	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1459
1460	/* f) write padded data */
1461	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1462
1463	/* g) Empty fifo out */
1464	err = stm32_cryp_wait_output(cryp);
1465	if (err) {
1466		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1467		return stm32_cryp_finish_req(cryp, err);
1468	}
1469
1470	for (i = 0; i < AES_BLOCK_32; i++)
1471		stm32_cryp_read(cryp, cryp->caps->dout);
1472
1473	/* h) run the he normal Final phase */
1474	stm32_cryp_finish_req(cryp, 0);
1475}
1476
1477static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1478{
1479	u32 cfg;
1480
1481	/* disable ip, set NPBLB and reneable ip */
1482	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1483	cfg &= ~CR_CRYPEN;
1484	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1485
1486	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1487	cfg |= CR_CRYPEN;
1488	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1489}
1490
1491static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1492{
1493	int err = 0;
1494	u32 cfg, iv1tmp;
1495	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1496	u32 block[AES_BLOCK_32] = {0};
1497	unsigned int i;
1498
1499	/* 'Special workaround' procedure described in the datasheet */
1500
1501	/* a) disable ip */
1502	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1503
1504	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1505	cfg &= ~CR_CRYPEN;
1506	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1507
1508	/* b) get IV1 from CRYP_CSGCMCCM7 */
1509	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1510
1511	/* c) Load CRYP_CSGCMCCMxR */
1512	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1513		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1514
1515	/* d) Write IV1R */
1516	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1517
1518	/* e) change mode to CTR */
1519	cfg &= ~CR_ALGO_MASK;
1520	cfg |= CR_AES_CTR;
1521	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1522
1523	/* a) enable IP */
1524	cfg |= CR_CRYPEN;
1525	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1526
1527	/* b) pad and write the last block */
1528	stm32_cryp_irq_write_block(cryp);
1529	/* wait end of process */
1530	err = stm32_cryp_wait_output(cryp);
1531	if (err) {
1532		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1533		return stm32_cryp_finish_req(cryp, err);
1534	}
1535
1536	/* c) get and store decrypted data */
1537	/*
1538	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1539	 * block value
1540	 */
1541	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1542
1543	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1544							     cryp->payload_out), 1);
1545	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1546
1547	/* d) Load again CRYP_CSGCMCCMxR */
1548	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1549		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1550
1551	/* e) change mode back to AES CCM */
1552	cfg &= ~CR_ALGO_MASK;
1553	cfg |= CR_AES_CCM;
1554	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556	/* f) change phase to header */
1557	cfg &= ~CR_PH_MASK;
1558	cfg |= CR_PH_HEADER;
1559	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1560
1561	/* g) XOR and write padded data */
1562	for (i = 0; i < ARRAY_SIZE(block); i++) {
1563		block[i] ^= cstmp1[i];
1564		block[i] ^= cstmp2[i];
1565		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1566	}
1567
1568	/* h) wait for completion */
1569	err = stm32_cryp_wait_busy(cryp);
1570	if (err)
1571		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1572
1573	/* i) run the he normal Final phase */
1574	stm32_cryp_finish_req(cryp, err);
1575}
1576
1577static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1578{
1579	if (unlikely(!cryp->payload_in)) {
1580		dev_warn(cryp->dev, "No more data to process\n");
1581		return;
1582	}
1583
1584	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1585		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1586		     is_encrypt(cryp))) {
1587		/* Padding for AES GCM encryption */
1588		if (cryp->caps->padding_wa) {
1589			/* Special case 1 */
1590			stm32_cryp_irq_write_gcm_padded_data(cryp);
1591			return;
1592		}
1593
1594		/* Setting padding bytes (NBBLB) */
1595		stm32_cryp_irq_set_npblb(cryp);
1596	}
1597
1598	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1599		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1600		     is_decrypt(cryp))) {
1601		/* Padding for AES CCM decryption */
1602		if (cryp->caps->padding_wa) {
1603			/* Special case 2 */
1604			stm32_cryp_irq_write_ccm_padded_data(cryp);
1605			return;
1606		}
1607
1608		/* Setting padding bytes (NBBLB) */
1609		stm32_cryp_irq_set_npblb(cryp);
1610	}
1611
1612	if (is_aes(cryp) && is_ctr(cryp))
1613		stm32_cryp_check_ctr_counter(cryp);
1614
1615	stm32_cryp_irq_write_block(cryp);
1616}
1617
1618static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1619{
1620	u32 block[AES_BLOCK_32] = {0};
1621	size_t written;
1622
1623	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1624
1625	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1626
1627	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1628
1629	cryp->header_in -= written;
1630
1631	stm32_crypt_gcmccm_end_header(cryp);
1632}
1633
1634static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1635{
1636	struct stm32_cryp *cryp = arg;
1637	u32 ph;
1638	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1639
1640	if (cryp->irq_status & MISR_OUT)
1641		/* Output FIFO IRQ: read data */
1642		stm32_cryp_irq_read_data(cryp);
1643
1644	if (cryp->irq_status & MISR_IN) {
1645		if (is_gcm(cryp) || is_ccm(cryp)) {
1646			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1647			if (unlikely(ph == CR_PH_HEADER))
1648				/* Write Header */
1649				stm32_cryp_irq_write_gcmccm_header(cryp);
1650			else
1651				/* Input FIFO IRQ: write data */
1652				stm32_cryp_irq_write_data(cryp);
1653			if (is_gcm(cryp))
1654				cryp->gcm_ctr++;
1655		} else {
1656			/* Input FIFO IRQ: write data */
1657			stm32_cryp_irq_write_data(cryp);
1658		}
1659	}
1660
1661	/* Mask useless interrupts */
1662	if (!cryp->payload_in && !cryp->header_in)
1663		it_mask &= ~IMSCR_IN;
1664	if (!cryp->payload_out)
1665		it_mask &= ~IMSCR_OUT;
1666	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1667
1668	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1669		stm32_cryp_finish_req(cryp, 0);
1670
1671	return IRQ_HANDLED;
1672}
1673
1674static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1675{
1676	struct stm32_cryp *cryp = arg;
1677
1678	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1679
1680	return IRQ_WAKE_THREAD;
1681}
1682
1683static struct skcipher_engine_alg crypto_algs[] = {
1684{
1685	.base = {
1686		.base.cra_name		= "ecb(aes)",
1687		.base.cra_driver_name	= "stm32-ecb-aes",
1688		.base.cra_priority	= 200,
1689		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1690		.base.cra_blocksize	= AES_BLOCK_SIZE,
1691		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1692		.base.cra_alignmask	= 0,
1693		.base.cra_module	= THIS_MODULE,
1694
1695		.init			= stm32_cryp_init_tfm,
1696		.min_keysize		= AES_MIN_KEY_SIZE,
1697		.max_keysize		= AES_MAX_KEY_SIZE,
1698		.setkey			= stm32_cryp_aes_setkey,
1699		.encrypt		= stm32_cryp_aes_ecb_encrypt,
1700		.decrypt		= stm32_cryp_aes_ecb_decrypt,
1701	},
1702	.op = {
1703		.do_one_request = stm32_cryp_cipher_one_req,
1704	},
1705},
1706{
1707	.base = {
1708		.base.cra_name		= "cbc(aes)",
1709		.base.cra_driver_name	= "stm32-cbc-aes",
1710		.base.cra_priority	= 200,
1711		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1712		.base.cra_blocksize	= AES_BLOCK_SIZE,
1713		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1714		.base.cra_alignmask	= 0,
1715		.base.cra_module	= THIS_MODULE,
1716
1717		.init			= stm32_cryp_init_tfm,
1718		.min_keysize		= AES_MIN_KEY_SIZE,
1719		.max_keysize		= AES_MAX_KEY_SIZE,
1720		.ivsize			= AES_BLOCK_SIZE,
1721		.setkey			= stm32_cryp_aes_setkey,
1722		.encrypt		= stm32_cryp_aes_cbc_encrypt,
1723		.decrypt		= stm32_cryp_aes_cbc_decrypt,
1724	},
1725	.op = {
1726		.do_one_request = stm32_cryp_cipher_one_req,
1727	},
1728},
1729{
1730	.base = {
1731		.base.cra_name		= "ctr(aes)",
1732		.base.cra_driver_name	= "stm32-ctr-aes",
1733		.base.cra_priority	= 200,
1734		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1735		.base.cra_blocksize	= 1,
1736		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1737		.base.cra_alignmask	= 0,
1738		.base.cra_module	= THIS_MODULE,
1739
1740		.init			= stm32_cryp_init_tfm,
1741		.min_keysize		= AES_MIN_KEY_SIZE,
1742		.max_keysize		= AES_MAX_KEY_SIZE,
1743		.ivsize			= AES_BLOCK_SIZE,
1744		.setkey			= stm32_cryp_aes_setkey,
1745		.encrypt		= stm32_cryp_aes_ctr_encrypt,
1746		.decrypt		= stm32_cryp_aes_ctr_decrypt,
1747	},
1748	.op = {
1749		.do_one_request = stm32_cryp_cipher_one_req,
1750	},
1751},
1752{
1753	.base = {
1754		.base.cra_name		= "ecb(des)",
1755		.base.cra_driver_name	= "stm32-ecb-des",
1756		.base.cra_priority	= 200,
1757		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1758		.base.cra_blocksize	= DES_BLOCK_SIZE,
1759		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1760		.base.cra_alignmask	= 0,
1761		.base.cra_module	= THIS_MODULE,
1762
1763		.init			= stm32_cryp_init_tfm,
1764		.min_keysize		= DES_BLOCK_SIZE,
1765		.max_keysize		= DES_BLOCK_SIZE,
1766		.setkey			= stm32_cryp_des_setkey,
1767		.encrypt		= stm32_cryp_des_ecb_encrypt,
1768		.decrypt		= stm32_cryp_des_ecb_decrypt,
1769	},
1770	.op = {
1771		.do_one_request = stm32_cryp_cipher_one_req,
1772	},
1773},
1774{
1775	.base = {
1776		.base.cra_name		= "cbc(des)",
1777		.base.cra_driver_name	= "stm32-cbc-des",
1778		.base.cra_priority	= 200,
1779		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1780		.base.cra_blocksize	= DES_BLOCK_SIZE,
1781		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1782		.base.cra_alignmask	= 0,
1783		.base.cra_module	= THIS_MODULE,
1784
1785		.init			= stm32_cryp_init_tfm,
1786		.min_keysize		= DES_BLOCK_SIZE,
1787		.max_keysize		= DES_BLOCK_SIZE,
1788		.ivsize			= DES_BLOCK_SIZE,
1789		.setkey			= stm32_cryp_des_setkey,
1790		.encrypt		= stm32_cryp_des_cbc_encrypt,
1791		.decrypt		= stm32_cryp_des_cbc_decrypt,
1792	},
1793	.op = {
1794		.do_one_request = stm32_cryp_cipher_one_req,
1795	},
1796},
1797{
1798	.base = {
1799		.base.cra_name		= "ecb(des3_ede)",
1800		.base.cra_driver_name	= "stm32-ecb-des3",
1801		.base.cra_priority	= 200,
1802		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803		.base.cra_blocksize	= DES_BLOCK_SIZE,
1804		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805		.base.cra_alignmask	= 0,
1806		.base.cra_module	= THIS_MODULE,
1807
1808		.init			= stm32_cryp_init_tfm,
1809		.min_keysize		= 3 * DES_BLOCK_SIZE,
1810		.max_keysize		= 3 * DES_BLOCK_SIZE,
1811		.setkey			= stm32_cryp_tdes_setkey,
1812		.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1813		.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1814	},
1815	.op = {
1816		.do_one_request = stm32_cryp_cipher_one_req,
1817	},
1818},
1819{
1820	.base = {
1821		.base.cra_name		= "cbc(des3_ede)",
1822		.base.cra_driver_name	= "stm32-cbc-des3",
1823		.base.cra_priority	= 200,
1824		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1825		.base.cra_blocksize	= DES_BLOCK_SIZE,
1826		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1827		.base.cra_alignmask	= 0,
1828		.base.cra_module	= THIS_MODULE,
1829
1830		.init			= stm32_cryp_init_tfm,
1831		.min_keysize		= 3 * DES_BLOCK_SIZE,
1832		.max_keysize		= 3 * DES_BLOCK_SIZE,
1833		.ivsize			= DES_BLOCK_SIZE,
1834		.setkey			= stm32_cryp_tdes_setkey,
1835		.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1836		.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1837	},
1838	.op = {
1839		.do_one_request = stm32_cryp_cipher_one_req,
1840	},
1841},
1842};
1843
1844static struct aead_engine_alg aead_algs[] = {
1845{
1846	.base.setkey		= stm32_cryp_aes_aead_setkey,
1847	.base.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1848	.base.encrypt		= stm32_cryp_aes_gcm_encrypt,
1849	.base.decrypt		= stm32_cryp_aes_gcm_decrypt,
1850	.base.init		= stm32_cryp_aes_aead_init,
1851	.base.ivsize		= 12,
1852	.base.maxauthsize	= AES_BLOCK_SIZE,
1853
1854	.base.base = {
1855		.cra_name		= "gcm(aes)",
1856		.cra_driver_name	= "stm32-gcm-aes",
1857		.cra_priority		= 200,
1858		.cra_flags		= CRYPTO_ALG_ASYNC,
1859		.cra_blocksize		= 1,
1860		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1861		.cra_alignmask		= 0,
1862		.cra_module		= THIS_MODULE,
1863	},
1864	.op = {
1865		.do_one_request = stm32_cryp_aead_one_req,
1866	},
1867},
1868{
1869	.base.setkey		= stm32_cryp_aes_aead_setkey,
1870	.base.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1871	.base.encrypt		= stm32_cryp_aes_ccm_encrypt,
1872	.base.decrypt		= stm32_cryp_aes_ccm_decrypt,
1873	.base.init		= stm32_cryp_aes_aead_init,
1874	.base.ivsize		= AES_BLOCK_SIZE,
1875	.base.maxauthsize	= AES_BLOCK_SIZE,
1876
1877	.base.base = {
1878		.cra_name		= "ccm(aes)",
1879		.cra_driver_name	= "stm32-ccm-aes",
1880		.cra_priority		= 200,
1881		.cra_flags		= CRYPTO_ALG_ASYNC,
1882		.cra_blocksize		= 1,
1883		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1884		.cra_alignmask		= 0,
1885		.cra_module		= THIS_MODULE,
1886	},
1887	.op = {
1888		.do_one_request = stm32_cryp_aead_one_req,
1889	},
1890},
1891};
1892
1893static const struct stm32_cryp_caps ux500_data = {
1894	.aeads_support = false,
1895	.linear_aes_key = true,
1896	.kp_mode = false,
1897	.iv_protection = true,
1898	.swap_final = true,
1899	.padding_wa = true,
1900	.cr = UX500_CRYP_CR,
1901	.sr = UX500_CRYP_SR,
1902	.din = UX500_CRYP_DIN,
1903	.dout = UX500_CRYP_DOUT,
1904	.imsc = UX500_CRYP_IMSC,
1905	.mis = UX500_CRYP_MIS,
1906	.k1l = UX500_CRYP_K1L,
1907	.k1r = UX500_CRYP_K1R,
1908	.k3r = UX500_CRYP_K3R,
1909	.iv0l = UX500_CRYP_IV0L,
1910	.iv0r = UX500_CRYP_IV0R,
1911	.iv1l = UX500_CRYP_IV1L,
1912	.iv1r = UX500_CRYP_IV1R,
1913};
1914
1915static const struct stm32_cryp_caps f7_data = {
1916	.aeads_support = true,
1917	.linear_aes_key = false,
1918	.kp_mode = true,
1919	.iv_protection = false,
1920	.swap_final = true,
1921	.padding_wa = true,
1922	.cr = CRYP_CR,
1923	.sr = CRYP_SR,
1924	.din = CRYP_DIN,
1925	.dout = CRYP_DOUT,
1926	.imsc = CRYP_IMSCR,
1927	.mis = CRYP_MISR,
1928	.k1l = CRYP_K1LR,
1929	.k1r = CRYP_K1RR,
1930	.k3r = CRYP_K3RR,
1931	.iv0l = CRYP_IV0LR,
1932	.iv0r = CRYP_IV0RR,
1933	.iv1l = CRYP_IV1LR,
1934	.iv1r = CRYP_IV1RR,
1935};
1936
1937static const struct stm32_cryp_caps mp1_data = {
1938	.aeads_support = true,
1939	.linear_aes_key = false,
1940	.kp_mode = true,
1941	.iv_protection = false,
1942	.swap_final = false,
1943	.padding_wa = false,
1944	.cr = CRYP_CR,
1945	.sr = CRYP_SR,
1946	.din = CRYP_DIN,
1947	.dout = CRYP_DOUT,
1948	.imsc = CRYP_IMSCR,
1949	.mis = CRYP_MISR,
1950	.k1l = CRYP_K1LR,
1951	.k1r = CRYP_K1RR,
1952	.k3r = CRYP_K3RR,
1953	.iv0l = CRYP_IV0LR,
1954	.iv0r = CRYP_IV0RR,
1955	.iv1l = CRYP_IV1LR,
1956	.iv1r = CRYP_IV1RR,
1957};
1958
1959static const struct of_device_id stm32_dt_ids[] = {
1960	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1961	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1962	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1963	{},
1964};
1965MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1966
1967static int stm32_cryp_probe(struct platform_device *pdev)
1968{
1969	struct device *dev = &pdev->dev;
1970	struct stm32_cryp *cryp;
1971	struct reset_control *rst;
1972	int irq, ret;
1973
1974	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1975	if (!cryp)
1976		return -ENOMEM;
1977
1978	cryp->caps = of_device_get_match_data(dev);
1979	if (!cryp->caps)
1980		return -ENODEV;
1981
1982	cryp->dev = dev;
1983
1984	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1985	if (IS_ERR(cryp->regs))
1986		return PTR_ERR(cryp->regs);
1987
1988	irq = platform_get_irq(pdev, 0);
1989	if (irq < 0)
1990		return irq;
1991
1992	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1993					stm32_cryp_irq_thread, IRQF_ONESHOT,
1994					dev_name(dev), cryp);
1995	if (ret) {
1996		dev_err(dev, "Cannot grab IRQ\n");
1997		return ret;
1998	}
1999
2000	cryp->clk = devm_clk_get(dev, NULL);
2001	if (IS_ERR(cryp->clk)) {
2002		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2003
2004		return PTR_ERR(cryp->clk);
2005	}
2006
2007	ret = clk_prepare_enable(cryp->clk);
2008	if (ret) {
2009		dev_err(cryp->dev, "Failed to enable clock\n");
2010		return ret;
2011	}
2012
2013	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2014	pm_runtime_use_autosuspend(dev);
2015
2016	pm_runtime_get_noresume(dev);
2017	pm_runtime_set_active(dev);
2018	pm_runtime_enable(dev);
2019
2020	rst = devm_reset_control_get(dev, NULL);
2021	if (IS_ERR(rst)) {
2022		ret = PTR_ERR(rst);
2023		if (ret == -EPROBE_DEFER)
2024			goto err_rst;
2025	} else {
2026		reset_control_assert(rst);
2027		udelay(2);
2028		reset_control_deassert(rst);
2029	}
2030
2031	platform_set_drvdata(pdev, cryp);
2032
2033	spin_lock(&cryp_list.lock);
2034	list_add(&cryp->list, &cryp_list.dev_list);
2035	spin_unlock(&cryp_list.lock);
2036
2037	/* Initialize crypto engine */
2038	cryp->engine = crypto_engine_alloc_init(dev, 1);
2039	if (!cryp->engine) {
2040		dev_err(dev, "Could not init crypto engine\n");
2041		ret = -ENOMEM;
2042		goto err_engine1;
2043	}
2044
2045	ret = crypto_engine_start(cryp->engine);
2046	if (ret) {
2047		dev_err(dev, "Could not start crypto engine\n");
2048		goto err_engine2;
2049	}
2050
2051	ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052	if (ret) {
2053		dev_err(dev, "Could not register algs\n");
2054		goto err_algs;
2055	}
2056
2057	if (cryp->caps->aeads_support) {
2058		ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2059		if (ret)
2060			goto err_aead_algs;
2061	}
2062
2063	dev_info(dev, "Initialized\n");
2064
2065	pm_runtime_put_sync(dev);
2066
2067	return 0;
2068
2069err_aead_algs:
2070	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2071err_algs:
2072err_engine2:
2073	crypto_engine_exit(cryp->engine);
2074err_engine1:
2075	spin_lock(&cryp_list.lock);
2076	list_del(&cryp->list);
2077	spin_unlock(&cryp_list.lock);
2078err_rst:
2079	pm_runtime_disable(dev);
2080	pm_runtime_put_noidle(dev);
2081
2082	clk_disable_unprepare(cryp->clk);
2083
2084	return ret;
2085}
2086
2087static void stm32_cryp_remove(struct platform_device *pdev)
2088{
2089	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2090	int ret;
2091
2092	ret = pm_runtime_get_sync(cryp->dev);
2093
2094	if (cryp->caps->aeads_support)
2095		crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2096	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2097
2098	crypto_engine_exit(cryp->engine);
2099
2100	spin_lock(&cryp_list.lock);
2101	list_del(&cryp->list);
2102	spin_unlock(&cryp_list.lock);
2103
2104	pm_runtime_disable(cryp->dev);
2105	pm_runtime_put_noidle(cryp->dev);
2106
2107	if (ret >= 0)
2108		clk_disable_unprepare(cryp->clk);
2109}
2110
2111#ifdef CONFIG_PM
2112static int stm32_cryp_runtime_suspend(struct device *dev)
2113{
2114	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2115
2116	clk_disable_unprepare(cryp->clk);
2117
2118	return 0;
2119}
2120
2121static int stm32_cryp_runtime_resume(struct device *dev)
2122{
2123	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124	int ret;
2125
2126	ret = clk_prepare_enable(cryp->clk);
2127	if (ret) {
2128		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2129		return ret;
2130	}
2131
2132	return 0;
2133}
2134#endif
2135
2136static const struct dev_pm_ops stm32_cryp_pm_ops = {
2137	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2138				pm_runtime_force_resume)
2139	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2140			   stm32_cryp_runtime_resume, NULL)
2141};
2142
2143static struct platform_driver stm32_cryp_driver = {
2144	.probe  = stm32_cryp_probe,
2145	.remove_new = stm32_cryp_remove,
2146	.driver = {
2147		.name           = DRIVER_NAME,
2148		.pm		= &stm32_cryp_pm_ops,
2149		.of_match_table = stm32_dt_ids,
2150	},
2151};
2152
2153module_platform_driver(stm32_cryp_driver);
2154
2155MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2156MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2157MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
   8#include <crypto/aes.h>
   9#include <crypto/engine.h>
  10#include <crypto/internal/aead.h>
  11#include <crypto/internal/des.h>
  12#include <crypto/internal/skcipher.h>
  13#include <crypto/scatterwalk.h>
  14#include <linux/clk.h>
  15#include <linux/delay.h>
  16#include <linux/err.h>
  17#include <linux/iopoll.h>
  18#include <linux/interrupt.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/reset.h>
  25#include <linux/string.h>
  26
  27#define DRIVER_NAME             "stm32-cryp"
  28
  29/* Bit [0] encrypt / decrypt */
  30#define FLG_ENCRYPT             BIT(0)
  31/* Bit [8..1] algo & operation mode */
  32#define FLG_AES                 BIT(1)
  33#define FLG_DES                 BIT(2)
  34#define FLG_TDES                BIT(3)
  35#define FLG_ECB                 BIT(4)
  36#define FLG_CBC                 BIT(5)
  37#define FLG_CTR                 BIT(6)
  38#define FLG_GCM                 BIT(7)
  39#define FLG_CCM                 BIT(8)
  40/* Mode mask = bits [15..0] */
  41#define FLG_MODE_MASK           GENMASK(15, 0)
  42/* Bit [31..16] status  */
  43
  44/* Registers */
  45#define CRYP_CR                 0x00000000
  46#define CRYP_SR                 0x00000004
  47#define CRYP_DIN                0x00000008
  48#define CRYP_DOUT               0x0000000C
  49#define CRYP_DMACR              0x00000010
  50#define CRYP_IMSCR              0x00000014
  51#define CRYP_RISR               0x00000018
  52#define CRYP_MISR               0x0000001C
  53#define CRYP_K0LR               0x00000020
  54#define CRYP_K0RR               0x00000024
  55#define CRYP_K1LR               0x00000028
  56#define CRYP_K1RR               0x0000002C
  57#define CRYP_K2LR               0x00000030
  58#define CRYP_K2RR               0x00000034
  59#define CRYP_K3LR               0x00000038
  60#define CRYP_K3RR               0x0000003C
  61#define CRYP_IV0LR              0x00000040
  62#define CRYP_IV0RR              0x00000044
  63#define CRYP_IV1LR              0x00000048
  64#define CRYP_IV1RR              0x0000004C
  65#define CRYP_CSGCMCCM0R         0x00000050
  66#define CRYP_CSGCM0R            0x00000070
  67
  68#define UX500_CRYP_CR		0x00000000
  69#define UX500_CRYP_SR		0x00000004
  70#define UX500_CRYP_DIN		0x00000008
  71#define UX500_CRYP_DINSIZE	0x0000000C
  72#define UX500_CRYP_DOUT		0x00000010
  73#define UX500_CRYP_DOUSIZE	0x00000014
  74#define UX500_CRYP_DMACR	0x00000018
  75#define UX500_CRYP_IMSC		0x0000001C
  76#define UX500_CRYP_RIS		0x00000020
  77#define UX500_CRYP_MIS		0x00000024
  78#define UX500_CRYP_K1L		0x00000028
  79#define UX500_CRYP_K1R		0x0000002C
  80#define UX500_CRYP_K2L		0x00000030
  81#define UX500_CRYP_K2R		0x00000034
  82#define UX500_CRYP_K3L		0x00000038
  83#define UX500_CRYP_K3R		0x0000003C
  84#define UX500_CRYP_K4L		0x00000040
  85#define UX500_CRYP_K4R		0x00000044
  86#define UX500_CRYP_IV0L		0x00000048
  87#define UX500_CRYP_IV0R		0x0000004C
  88#define UX500_CRYP_IV1L		0x00000050
  89#define UX500_CRYP_IV1R		0x00000054
  90
  91/* Registers values */
  92#define CR_DEC_NOT_ENC          0x00000004
  93#define CR_TDES_ECB             0x00000000
  94#define CR_TDES_CBC             0x00000008
  95#define CR_DES_ECB              0x00000010
  96#define CR_DES_CBC              0x00000018
  97#define CR_AES_ECB              0x00000020
  98#define CR_AES_CBC              0x00000028
  99#define CR_AES_CTR              0x00000030
 100#define CR_AES_KP               0x00000038 /* Not on Ux500 */
 101#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 102#define CR_AES_GCM              0x00080000
 103#define CR_AES_CCM              0x00080008
 104#define CR_AES_UNKNOWN          0xFFFFFFFF
 105#define CR_ALGO_MASK            0x00080038
 106#define CR_DATA32               0x00000000
 107#define CR_DATA16               0x00000040
 108#define CR_DATA8                0x00000080
 109#define CR_DATA1                0x000000C0
 110#define CR_KEY128               0x00000000
 111#define CR_KEY192               0x00000100
 112#define CR_KEY256               0x00000200
 113#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 114#define CR_KSE                  0x00000800 /* Only on Ux500 */
 115#define CR_FFLUSH               0x00004000
 116#define CR_CRYPEN               0x00008000
 117#define CR_PH_INIT              0x00000000
 118#define CR_PH_HEADER            0x00010000
 119#define CR_PH_PAYLOAD           0x00020000
 120#define CR_PH_FINAL             0x00030000
 121#define CR_PH_MASK              0x00030000
 122#define CR_NBPBL_SHIFT          20
 123
 124#define SR_BUSY                 0x00000010
 125#define SR_OFNE                 0x00000004
 126
 127#define IMSCR_IN                BIT(0)
 128#define IMSCR_OUT               BIT(1)
 129
 130#define MISR_IN                 BIT(0)
 131#define MISR_OUT                BIT(1)
 132
 133/* Misc */
 134#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 135#define GCM_CTR_INIT            2
 136#define CRYP_AUTOSUSPEND_DELAY	50
 137
 138struct stm32_cryp_caps {
 139	bool			aeads_support;
 140	bool			linear_aes_key;
 141	bool			kp_mode;
 142	bool			iv_protection;
 143	bool			swap_final;
 144	bool			padding_wa;
 145	u32			cr;
 146	u32			sr;
 147	u32			din;
 148	u32			dout;
 149	u32			imsc;
 150	u32			mis;
 151	u32			k1l;
 152	u32			k1r;
 153	u32			k3r;
 154	u32			iv0l;
 155	u32			iv0r;
 156	u32			iv1l;
 157	u32			iv1r;
 158};
 159
 160struct stm32_cryp_ctx {
 161	struct stm32_cryp       *cryp;
 162	int                     keylen;
 163	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 164	unsigned long           flags;
 165};
 166
 167struct stm32_cryp_reqctx {
 168	unsigned long mode;
 169};
 170
 171struct stm32_cryp {
 172	struct list_head        list;
 173	struct device           *dev;
 174	void __iomem            *regs;
 175	struct clk              *clk;
 176	unsigned long           flags;
 177	u32                     irq_status;
 178	const struct stm32_cryp_caps *caps;
 179	struct stm32_cryp_ctx   *ctx;
 180
 181	struct crypto_engine    *engine;
 182
 183	struct skcipher_request *req;
 184	struct aead_request     *areq;
 185
 186	size_t                  authsize;
 187	size_t                  hw_blocksize;
 188
 189	size_t                  payload_in;
 190	size_t                  header_in;
 191	size_t                  payload_out;
 192
 193	struct scatterlist      *out_sg;
 194
 195	struct scatter_walk     in_walk;
 196	struct scatter_walk     out_walk;
 197
 198	__be32                  last_ctr[4];
 199	u32                     gcm_ctr;
 200};
 201
 202struct stm32_cryp_list {
 203	struct list_head        dev_list;
 204	spinlock_t              lock; /* protect dev_list */
 205};
 206
 207static struct stm32_cryp_list cryp_list = {
 208	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 209	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 210};
 211
 212static inline bool is_aes(struct stm32_cryp *cryp)
 213{
 214	return cryp->flags & FLG_AES;
 215}
 216
 217static inline bool is_des(struct stm32_cryp *cryp)
 218{
 219	return cryp->flags & FLG_DES;
 220}
 221
 222static inline bool is_tdes(struct stm32_cryp *cryp)
 223{
 224	return cryp->flags & FLG_TDES;
 225}
 226
 227static inline bool is_ecb(struct stm32_cryp *cryp)
 228{
 229	return cryp->flags & FLG_ECB;
 230}
 231
 232static inline bool is_cbc(struct stm32_cryp *cryp)
 233{
 234	return cryp->flags & FLG_CBC;
 235}
 236
 237static inline bool is_ctr(struct stm32_cryp *cryp)
 238{
 239	return cryp->flags & FLG_CTR;
 240}
 241
 242static inline bool is_gcm(struct stm32_cryp *cryp)
 243{
 244	return cryp->flags & FLG_GCM;
 245}
 246
 247static inline bool is_ccm(struct stm32_cryp *cryp)
 248{
 249	return cryp->flags & FLG_CCM;
 250}
 251
 252static inline bool is_encrypt(struct stm32_cryp *cryp)
 253{
 254	return cryp->flags & FLG_ENCRYPT;
 255}
 256
 257static inline bool is_decrypt(struct stm32_cryp *cryp)
 258{
 259	return !is_encrypt(cryp);
 260}
 261
 262static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 263{
 264	return readl_relaxed(cryp->regs + ofst);
 265}
 266
 267static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 268{
 269	writel_relaxed(val, cryp->regs + ofst);
 270}
 271
 272static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 273{
 274	u32 status;
 275
 276	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 277			!(status & SR_BUSY), 10, 100000);
 278}
 279
 280static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 281{
 282	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 283		       cryp->regs + cryp->caps->cr);
 284}
 285
 286static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 287{
 288	u32 status;
 289
 290	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 291			!(status & CR_CRYPEN), 10, 100000);
 292}
 293
 294static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 295{
 296	u32 status;
 297
 298	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 299			status & SR_OFNE, 10, 100000);
 300}
 301
 302static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 303{
 304	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 305		       cryp->regs + cryp->caps->cr);
 306}
 307
 308static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 309{
 310	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 311		       cryp->regs + cryp->caps->cr);
 312}
 313
 314static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 315static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 316
 317static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 318{
 319	struct stm32_cryp *tmp, *cryp = NULL;
 320
 321	spin_lock_bh(&cryp_list.lock);
 322	if (!ctx->cryp) {
 323		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 324			cryp = tmp;
 325			break;
 326		}
 327		ctx->cryp = cryp;
 328	} else {
 329		cryp = ctx->cryp;
 330	}
 331
 332	spin_unlock_bh(&cryp_list.lock);
 333
 334	return cryp;
 335}
 336
 337static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 338{
 339	if (!iv)
 340		return;
 341
 342	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 343	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 344
 345	if (is_aes(cryp)) {
 346		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 347		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 348	}
 349}
 350
 351static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 352{
 353	struct skcipher_request *req = cryp->req;
 354	__be32 *tmp = (void *)req->iv;
 355
 356	if (!tmp)
 357		return;
 358
 359	if (cryp->caps->iv_protection)
 360		stm32_cryp_key_read_enable(cryp);
 361
 362	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 363	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 364
 365	if (is_aes(cryp)) {
 366		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 367		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 368	}
 369
 370	if (cryp->caps->iv_protection)
 371		stm32_cryp_key_read_disable(cryp);
 372}
 373
 374/**
 375 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 376 * @b: the byte to be mirrored
 377 *
 378 * The bits are swapped the following way:
 379 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 380 *  nibble 2 (n2) bits 4-7.
 381 *
 382 *  Nibble 1 (n1):
 383 *  (The "old" (moved) bit is replaced with a zero)
 384 *  1. Move bit 6 and 7, 4 positions to the left.
 385 *  2. Move bit 3 and 5, 2 positions to the left.
 386 *  3. Move bit 1-4, 1 position to the left.
 387 *
 388 *  Nibble 2 (n2):
 389 *  1. Move bit 0 and 1, 4 positions to the right.
 390 *  2. Move bit 2 and 4, 2 positions to the right.
 391 *  3. Move bit 3-6, 1 position to the right.
 392 *
 393 *  Combine the two nibbles to a complete and swapped byte.
 394 */
 395static inline u8 ux500_swap_bits_in_byte(u8 b)
 396{
 397#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 398#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 399				  right shift 2 */
 400#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 401				  right shift 1 */
 402#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 403#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 404				  left shift 2 */
 405#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 406				  left shift 1 */
 407
 408	u8 n1;
 409	u8 n2;
 410
 411	/* Swap most significant nibble */
 412	/* Right shift 4, bits 6 and 7 */
 413	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 414	/* Right shift 2, bits 3 and 5 */
 415	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 416	/* Right shift 1, bits 1-4 */
 417	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 418
 419	/* Swap least significant nibble */
 420	/* Left shift 4, bits 0 and 1 */
 421	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 422	/* Left shift 2, bits 2 and 4 */
 423	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 424	/* Left shift 1, bits 3-6 */
 425	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 426
 427	return n1 | n2;
 428}
 429
 430/**
 431 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 432 * @in: key to swizzle
 433 * @out: swizzled key
 434 * @len: length of key, in bytes
 435 *
 436 * This "key swizzling procedure" is described in the examples in the
 437 * DB8500 design specification. There is no real description of why
 438 * the bits have been arranged like this in the hardware.
 439 */
 440static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 441{
 442	int i = 0;
 443	int bpw = sizeof(u32);
 444	int j;
 445	int index = 0;
 446
 447	j = len - bpw;
 448	while (j >= 0) {
 449		for (i = 0; i < bpw; i++) {
 450			index = len - j - bpw + i;
 451			out[j + i] =
 452				ux500_swap_bits_in_byte(in[index]);
 453		}
 454		j -= bpw;
 455	}
 456}
 457
 458static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 459{
 460	unsigned int i;
 461	int r_id;
 462
 463	if (is_des(c)) {
 464		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 465		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 466		return;
 467	}
 468
 469	/*
 470	 * On the Ux500 the AES key is considered as a single bit sequence
 471	 * of 128, 192 or 256 bits length. It is written linearly into the
 472	 * registers from K1L and down, and need to be processed to become
 473	 * a proper big-endian bit sequence.
 474	 */
 475	if (is_aes(c) && c->caps->linear_aes_key) {
 476		u32 tmpkey[8];
 477
 478		ux500_swizzle_key((u8 *)c->ctx->key,
 479				  (u8 *)tmpkey, c->ctx->keylen);
 480
 481		r_id = c->caps->k1l;
 482		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 483			stm32_cryp_write(c, r_id, tmpkey[i]);
 484
 485		return;
 486	}
 487
 488	r_id = c->caps->k3r;
 489	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 490		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 491}
 492
 493static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 494{
 495	if (is_aes(cryp) && is_ecb(cryp))
 496		return CR_AES_ECB;
 497
 498	if (is_aes(cryp) && is_cbc(cryp))
 499		return CR_AES_CBC;
 500
 501	if (is_aes(cryp) && is_ctr(cryp))
 502		return CR_AES_CTR;
 503
 504	if (is_aes(cryp) && is_gcm(cryp))
 505		return CR_AES_GCM;
 506
 507	if (is_aes(cryp) && is_ccm(cryp))
 508		return CR_AES_CCM;
 509
 510	if (is_des(cryp) && is_ecb(cryp))
 511		return CR_DES_ECB;
 512
 513	if (is_des(cryp) && is_cbc(cryp))
 514		return CR_DES_CBC;
 515
 516	if (is_tdes(cryp) && is_ecb(cryp))
 517		return CR_TDES_ECB;
 518
 519	if (is_tdes(cryp) && is_cbc(cryp))
 520		return CR_TDES_CBC;
 521
 522	dev_err(cryp->dev, "Unknown mode\n");
 523	return CR_AES_UNKNOWN;
 524}
 525
 526static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 527{
 528	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 529				  cryp->areq->cryptlen - cryp->authsize;
 530}
 531
 532static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 533{
 534	int ret;
 535	__be32 iv[4];
 536
 537	/* Phase 1 : init */
 538	memcpy(iv, cryp->areq->iv, 12);
 539	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 540	cryp->gcm_ctr = GCM_CTR_INIT;
 541	stm32_cryp_hw_write_iv(cryp, iv);
 542
 543	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 544
 545	/* Wait for end of processing */
 546	ret = stm32_cryp_wait_enable(cryp);
 547	if (ret) {
 548		dev_err(cryp->dev, "Timeout (gcm init)\n");
 549		return ret;
 550	}
 551
 552	/* Prepare next phase */
 553	if (cryp->areq->assoclen) {
 554		cfg |= CR_PH_HEADER;
 555		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 556	} else if (stm32_cryp_get_input_text_len(cryp)) {
 557		cfg |= CR_PH_PAYLOAD;
 558		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 559	}
 560
 561	return 0;
 562}
 563
 564static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 565{
 566	u32 cfg;
 567	int err;
 568
 569	/* Check if whole header written */
 570	if (!cryp->header_in) {
 571		/* Wait for completion */
 572		err = stm32_cryp_wait_busy(cryp);
 573		if (err) {
 574			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 575			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 576			stm32_cryp_finish_req(cryp, err);
 577			return;
 578		}
 579
 580		if (stm32_cryp_get_input_text_len(cryp)) {
 581			/* Phase 3 : payload */
 582			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 583			cfg &= ~CR_CRYPEN;
 584			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 585
 586			cfg &= ~CR_PH_MASK;
 587			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 588			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 589		} else {
 590			/*
 591			 * Phase 4 : tag.
 592			 * Nothing to read, nothing to write, caller have to
 593			 * end request
 594			 */
 595		}
 596	}
 597}
 598
 599static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 600{
 601	size_t written;
 602	size_t len;
 603	u32 alen = cryp->areq->assoclen;
 604	u32 block[AES_BLOCK_32] = {0};
 605	u8 *b8 = (u8 *)block;
 606
 607	if (alen <= 65280) {
 608		/* Write first u32 of B1 */
 609		b8[0] = (alen >> 8) & 0xFF;
 610		b8[1] = alen & 0xFF;
 611		len = 2;
 612	} else {
 613		/* Build the two first u32 of B1 */
 614		b8[0] = 0xFF;
 615		b8[1] = 0xFE;
 616		b8[2] = (alen & 0xFF000000) >> 24;
 617		b8[3] = (alen & 0x00FF0000) >> 16;
 618		b8[4] = (alen & 0x0000FF00) >> 8;
 619		b8[5] = alen & 0x000000FF;
 620		len = 6;
 621	}
 622
 623	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 624
 625	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 626
 627	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 628
 629	cryp->header_in -= written;
 630
 631	stm32_crypt_gcmccm_end_header(cryp);
 632}
 633
 634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 635{
 636	int ret;
 637	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 638	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 639	__be32 *bd;
 640	u32 *d;
 641	unsigned int i, textlen;
 642
 643	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 644	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 645	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 646	iv[AES_BLOCK_SIZE - 1] = 1;
 647	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 648
 649	/* Build B0 */
 650	memcpy(b0, iv, AES_BLOCK_SIZE);
 651
 652	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 653
 654	if (cryp->areq->assoclen)
 655		b0[0] |= 0x40;
 656
 657	textlen = stm32_cryp_get_input_text_len(cryp);
 658
 659	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 660	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 661
 662	/* Enable HW */
 663	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 664
 665	/* Write B0 */
 666	d = (u32 *)b0;
 667	bd = (__be32 *)b0;
 668
 669	for (i = 0; i < AES_BLOCK_32; i++) {
 670		u32 xd = d[i];
 671
 672		if (!cryp->caps->padding_wa)
 673			xd = be32_to_cpu(bd[i]);
 674		stm32_cryp_write(cryp, cryp->caps->din, xd);
 675	}
 676
 677	/* Wait for end of processing */
 678	ret = stm32_cryp_wait_enable(cryp);
 679	if (ret) {
 680		dev_err(cryp->dev, "Timeout (ccm init)\n");
 681		return ret;
 682	}
 683
 684	/* Prepare next phase */
 685	if (cryp->areq->assoclen) {
 686		cfg |= CR_PH_HEADER | CR_CRYPEN;
 687		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 688
 689		/* Write first (special) block (may move to next phase [payload]) */
 690		stm32_cryp_write_ccm_first_header(cryp);
 691	} else if (stm32_cryp_get_input_text_len(cryp)) {
 692		cfg |= CR_PH_PAYLOAD;
 693		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 694	}
 695
 696	return 0;
 697}
 698
 699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 700{
 701	int ret;
 702	u32 cfg, hw_mode;
 703
 704	pm_runtime_get_sync(cryp->dev);
 705
 706	/* Disable interrupt */
 707	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 708
 709	/* Set configuration */
 710	cfg = CR_DATA8 | CR_FFLUSH;
 711
 712	switch (cryp->ctx->keylen) {
 713	case AES_KEYSIZE_128:
 714		cfg |= CR_KEY128;
 715		break;
 716
 717	case AES_KEYSIZE_192:
 718		cfg |= CR_KEY192;
 719		break;
 720
 721	default:
 722	case AES_KEYSIZE_256:
 723		cfg |= CR_KEY256;
 724		break;
 725	}
 726
 727	hw_mode = stm32_cryp_get_hw_mode(cryp);
 728	if (hw_mode == CR_AES_UNKNOWN)
 729		return -EINVAL;
 730
 731	/* AES ECB/CBC decrypt: run key preparation first */
 732	if (is_decrypt(cryp) &&
 733	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 734		/* Configure in key preparation mode */
 735		if (cryp->caps->kp_mode)
 736			stm32_cryp_write(cryp, cryp->caps->cr,
 737				cfg | CR_AES_KP);
 738		else
 739			stm32_cryp_write(cryp,
 740				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 741
 742		/* Set key only after full configuration done */
 743		stm32_cryp_hw_write_key(cryp);
 744
 745		/* Start prepare key */
 746		stm32_cryp_enable(cryp);
 747		/* Wait for end of processing */
 748		ret = stm32_cryp_wait_busy(cryp);
 749		if (ret) {
 750			dev_err(cryp->dev, "Timeout (key preparation)\n");
 751			return ret;
 752		}
 753
 754		cfg |= hw_mode | CR_DEC_NOT_ENC;
 755
 756		/* Apply updated config (Decrypt + algo) and flush */
 757		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 758	} else {
 759		cfg |= hw_mode;
 760		if (is_decrypt(cryp))
 761			cfg |= CR_DEC_NOT_ENC;
 762
 763		/* Apply config and flush */
 764		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 765
 766		/* Set key only after configuration done */
 767		stm32_cryp_hw_write_key(cryp);
 768	}
 769
 770	switch (hw_mode) {
 771	case CR_AES_GCM:
 772	case CR_AES_CCM:
 773		/* Phase 1 : init */
 774		if (hw_mode == CR_AES_CCM)
 775			ret = stm32_cryp_ccm_init(cryp, cfg);
 776		else
 777			ret = stm32_cryp_gcm_init(cryp, cfg);
 778
 779		if (ret)
 780			return ret;
 781
 782		break;
 783
 784	case CR_DES_CBC:
 785	case CR_TDES_CBC:
 786	case CR_AES_CBC:
 787	case CR_AES_CTR:
 788		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 789		break;
 790
 791	default:
 792		break;
 793	}
 794
 795	/* Enable now */
 796	stm32_cryp_enable(cryp);
 797
 798	return 0;
 799}
 800
 801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 802{
 803	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 804		/* Phase 4 : output tag */
 805		err = stm32_cryp_read_auth_tag(cryp);
 806
 807	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 808		stm32_cryp_get_iv(cryp);
 809
 810	pm_runtime_mark_last_busy(cryp->dev);
 811	pm_runtime_put_autosuspend(cryp->dev);
 812
 813	if (is_gcm(cryp) || is_ccm(cryp))
 814		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 815	else
 816		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 817						   err);
 818}
 819
 820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 821{
 822	/* Enable interrupt and let the IRQ handler do everything */
 823	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 824
 825	return 0;
 826}
 827
 828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 829
 830static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 831{
 832	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 833
 834	return 0;
 835}
 836
 837static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 838
 839static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 840{
 841	crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 842
 843	return 0;
 844}
 845
 846static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 847{
 848	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 849			crypto_skcipher_reqtfm(req));
 850	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 851	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 852
 853	if (!cryp)
 854		return -ENODEV;
 855
 856	rctx->mode = mode;
 857
 858	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 859}
 860
 861static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 862{
 863	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 864	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 865	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 866
 867	if (!cryp)
 868		return -ENODEV;
 869
 870	rctx->mode = mode;
 871
 872	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 873}
 874
 875static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 876			     unsigned int keylen)
 877{
 878	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 879
 880	memcpy(ctx->key, key, keylen);
 881	ctx->keylen = keylen;
 882
 883	return 0;
 884}
 885
 886static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 887				 unsigned int keylen)
 888{
 889	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 890	    keylen != AES_KEYSIZE_256)
 891		return -EINVAL;
 892	else
 893		return stm32_cryp_setkey(tfm, key, keylen);
 894}
 895
 896static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 897				 unsigned int keylen)
 898{
 899	return verify_skcipher_des_key(tfm, key) ?:
 900	       stm32_cryp_setkey(tfm, key, keylen);
 901}
 902
 903static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 904				  unsigned int keylen)
 905{
 906	return verify_skcipher_des3_key(tfm, key) ?:
 907	       stm32_cryp_setkey(tfm, key, keylen);
 908}
 909
 910static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 911				      unsigned int keylen)
 912{
 913	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 914
 915	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 916	    keylen != AES_KEYSIZE_256)
 917		return -EINVAL;
 918
 919	memcpy(ctx->key, key, keylen);
 920	ctx->keylen = keylen;
 921
 922	return 0;
 923}
 924
 925static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 926					  unsigned int authsize)
 927{
 928	switch (authsize) {
 929	case 4:
 930	case 8:
 931	case 12:
 932	case 13:
 933	case 14:
 934	case 15:
 935	case 16:
 936		break;
 937	default:
 938		return -EINVAL;
 939	}
 940
 941	return 0;
 942}
 943
 944static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 945					  unsigned int authsize)
 946{
 947	switch (authsize) {
 948	case 4:
 949	case 6:
 950	case 8:
 951	case 10:
 952	case 12:
 953	case 14:
 954	case 16:
 955		break;
 956	default:
 957		return -EINVAL;
 958	}
 959
 960	return 0;
 961}
 962
 963static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 964{
 965	if (req->cryptlen % AES_BLOCK_SIZE)
 966		return -EINVAL;
 967
 968	if (req->cryptlen == 0)
 969		return 0;
 970
 971	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 972}
 973
 974static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 975{
 976	if (req->cryptlen % AES_BLOCK_SIZE)
 977		return -EINVAL;
 978
 979	if (req->cryptlen == 0)
 980		return 0;
 981
 982	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 983}
 984
 985static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 986{
 987	if (req->cryptlen % AES_BLOCK_SIZE)
 988		return -EINVAL;
 989
 990	if (req->cryptlen == 0)
 991		return 0;
 992
 993	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 994}
 995
 996static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 997{
 998	if (req->cryptlen % AES_BLOCK_SIZE)
 999		return -EINVAL;
1000
1001	if (req->cryptlen == 0)
1002		return 0;
1003
1004	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1005}
1006
1007static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1008{
1009	if (req->cryptlen == 0)
1010		return 0;
1011
1012	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1013}
1014
1015static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1016{
1017	if (req->cryptlen == 0)
1018		return 0;
1019
1020	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1021}
1022
1023static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1024{
1025	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1026}
1027
1028static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1029{
1030	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1031}
1032
1033static inline int crypto_ccm_check_iv(const u8 *iv)
1034{
1035	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1036	if (iv[0] < 1 || iv[0] > 7)
1037		return -EINVAL;
1038
1039	return 0;
1040}
1041
1042static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1043{
1044	int err;
1045
1046	err = crypto_ccm_check_iv(req->iv);
1047	if (err)
1048		return err;
1049
1050	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1051}
1052
1053static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1054{
1055	int err;
1056
1057	err = crypto_ccm_check_iv(req->iv);
1058	if (err)
1059		return err;
1060
1061	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1062}
1063
1064static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1065{
1066	if (req->cryptlen % DES_BLOCK_SIZE)
1067		return -EINVAL;
1068
1069	if (req->cryptlen == 0)
1070		return 0;
1071
1072	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1073}
1074
1075static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1076{
1077	if (req->cryptlen % DES_BLOCK_SIZE)
1078		return -EINVAL;
1079
1080	if (req->cryptlen == 0)
1081		return 0;
1082
1083	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1084}
1085
1086static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1087{
1088	if (req->cryptlen % DES_BLOCK_SIZE)
1089		return -EINVAL;
1090
1091	if (req->cryptlen == 0)
1092		return 0;
1093
1094	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1095}
1096
1097static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1098{
1099	if (req->cryptlen % DES_BLOCK_SIZE)
1100		return -EINVAL;
1101
1102	if (req->cryptlen == 0)
1103		return 0;
1104
1105	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1106}
1107
1108static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1109{
1110	if (req->cryptlen % DES_BLOCK_SIZE)
1111		return -EINVAL;
1112
1113	if (req->cryptlen == 0)
1114		return 0;
1115
1116	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1117}
1118
1119static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1120{
1121	if (req->cryptlen % DES_BLOCK_SIZE)
1122		return -EINVAL;
1123
1124	if (req->cryptlen == 0)
1125		return 0;
1126
1127	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1128}
1129
1130static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1131{
1132	if (req->cryptlen % DES_BLOCK_SIZE)
1133		return -EINVAL;
1134
1135	if (req->cryptlen == 0)
1136		return 0;
1137
1138	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1139}
1140
1141static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1142{
1143	if (req->cryptlen % DES_BLOCK_SIZE)
1144		return -EINVAL;
1145
1146	if (req->cryptlen == 0)
1147		return 0;
1148
1149	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1150}
1151
1152static int stm32_cryp_prepare_req(struct skcipher_request *req,
1153				  struct aead_request *areq)
1154{
1155	struct stm32_cryp_ctx *ctx;
1156	struct stm32_cryp *cryp;
1157	struct stm32_cryp_reqctx *rctx;
1158	struct scatterlist *in_sg;
1159	int ret;
1160
1161	if (!req && !areq)
1162		return -EINVAL;
1163
1164	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1165		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1166
1167	cryp = ctx->cryp;
1168
1169	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1170	rctx->mode &= FLG_MODE_MASK;
1171
1172	ctx->cryp = cryp;
1173
1174	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1175	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1176	cryp->ctx = ctx;
1177
1178	if (req) {
1179		cryp->req = req;
1180		cryp->areq = NULL;
1181		cryp->header_in = 0;
1182		cryp->payload_in = req->cryptlen;
1183		cryp->payload_out = req->cryptlen;
1184		cryp->authsize = 0;
1185	} else {
1186		/*
1187		 * Length of input and output data:
1188		 * Encryption case:
1189		 *  INPUT  = AssocData   ||     PlainText
1190		 *          <- assoclen ->  <- cryptlen ->
1191		 *
1192		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1193		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1194		 *
1195		 * Decryption case:
1196		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1197		 *          <- assoclen --->  <---------- cryptlen ---------->
1198		 *
1199		 *  OUTPUT = AssocData    ||               PlainText
1200		 *          <- assoclen ->  <- cryptlen - authsize ->
1201		 */
1202		cryp->areq = areq;
1203		cryp->req = NULL;
1204		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1205		if (is_encrypt(cryp)) {
1206			cryp->payload_in = areq->cryptlen;
1207			cryp->header_in = areq->assoclen;
1208			cryp->payload_out = areq->cryptlen;
1209		} else {
1210			cryp->payload_in = areq->cryptlen - cryp->authsize;
1211			cryp->header_in = areq->assoclen;
1212			cryp->payload_out = cryp->payload_in;
1213		}
1214	}
1215
1216	in_sg = req ? req->src : areq->src;
1217	scatterwalk_start(&cryp->in_walk, in_sg);
1218
1219	cryp->out_sg = req ? req->dst : areq->dst;
1220	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1221
1222	if (is_gcm(cryp) || is_ccm(cryp)) {
1223		/* In output, jump after assoc data */
1224		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1225	}
1226
1227	if (is_ctr(cryp))
1228		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1229
1230	ret = stm32_cryp_hw_init(cryp);
1231	return ret;
1232}
1233
1234static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1235{
1236	struct skcipher_request *req = container_of(areq,
1237						      struct skcipher_request,
1238						      base);
1239	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1240			crypto_skcipher_reqtfm(req));
1241	struct stm32_cryp *cryp = ctx->cryp;
1242
1243	if (!cryp)
1244		return -ENODEV;
1245
1246	return stm32_cryp_prepare_req(req, NULL) ?:
1247	       stm32_cryp_cpu_start(cryp);
1248}
1249
1250static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1251{
1252	struct aead_request *req = container_of(areq, struct aead_request,
1253						base);
1254	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1255	struct stm32_cryp *cryp = ctx->cryp;
1256	int err;
1257
1258	if (!cryp)
1259		return -ENODEV;
1260
1261	err = stm32_cryp_prepare_req(NULL, req);
1262	if (err)
1263		return err;
1264
1265	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1266		/* No input data to process: get tag and finish */
1267		stm32_cryp_finish_req(cryp, 0);
1268		return 0;
1269	}
1270
1271	return stm32_cryp_cpu_start(cryp);
1272}
1273
1274static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1275{
1276	u32 cfg, size_bit;
1277	unsigned int i;
1278	int ret = 0;
1279
1280	/* Update Config */
1281	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1282
1283	cfg &= ~CR_PH_MASK;
1284	cfg |= CR_PH_FINAL;
1285	cfg &= ~CR_DEC_NOT_ENC;
1286	cfg |= CR_CRYPEN;
1287
1288	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1289
1290	if (is_gcm(cryp)) {
1291		/* GCM: write aad and payload size (in bits) */
1292		size_bit = cryp->areq->assoclen * 8;
1293		if (cryp->caps->swap_final)
1294			size_bit = (__force u32)cpu_to_be32(size_bit);
1295
1296		stm32_cryp_write(cryp, cryp->caps->din, 0);
1297		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1298
1299		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1300				cryp->areq->cryptlen - cryp->authsize;
1301		size_bit *= 8;
1302		if (cryp->caps->swap_final)
1303			size_bit = (__force u32)cpu_to_be32(size_bit);
1304
1305		stm32_cryp_write(cryp, cryp->caps->din, 0);
1306		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1307	} else {
1308		/* CCM: write CTR0 */
1309		u32 iv32[AES_BLOCK_32];
1310		u8 *iv = (u8 *)iv32;
1311		__be32 *biv = (__be32 *)iv32;
1312
1313		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1314		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1315
1316		for (i = 0; i < AES_BLOCK_32; i++) {
1317			u32 xiv = iv32[i];
1318
1319			if (!cryp->caps->padding_wa)
1320				xiv = be32_to_cpu(biv[i]);
1321			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1322		}
1323	}
1324
1325	/* Wait for output data */
1326	ret = stm32_cryp_wait_output(cryp);
1327	if (ret) {
1328		dev_err(cryp->dev, "Timeout (read tag)\n");
1329		return ret;
1330	}
1331
1332	if (is_encrypt(cryp)) {
1333		u32 out_tag[AES_BLOCK_32];
1334
1335		/* Get and write tag */
1336		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1337		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1338	} else {
1339		/* Get and check tag */
1340		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1341
1342		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1343		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1344
1345		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1346			ret = -EBADMSG;
1347	}
1348
1349	/* Disable cryp */
1350	cfg &= ~CR_CRYPEN;
1351	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1352
1353	return ret;
1354}
1355
1356static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1357{
1358	u32 cr;
1359
1360	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1361		/*
1362		 * In this case, we need to increment manually the ctr counter,
1363		 * as HW doesn't handle the U32 carry.
1364		 */
1365		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1366
1367		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1368		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1369
1370		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1371
1372		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1373	}
1374
1375	/* The IV registers are BE  */
1376	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1377	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1378	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1379	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1380}
1381
1382static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1383{
1384	u32 block[AES_BLOCK_32];
1385
1386	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1387	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1388							     cryp->payload_out), 1);
1389	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1390				   cryp->payload_out);
1391}
1392
1393static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1394{
1395	u32 block[AES_BLOCK_32] = {0};
1396
1397	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1398							    cryp->payload_in), 0);
1399	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1400	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1401}
1402
1403static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1404{
1405	int err;
1406	u32 cfg, block[AES_BLOCK_32] = {0};
1407	unsigned int i;
1408
1409	/* 'Special workaround' procedure described in the datasheet */
1410
1411	/* a) disable ip */
1412	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1413	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1414	cfg &= ~CR_CRYPEN;
1415	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1416
1417	/* b) Update IV1R */
1418	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1419
1420	/* c) change mode to CTR */
1421	cfg &= ~CR_ALGO_MASK;
1422	cfg |= CR_AES_CTR;
1423	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1424
1425	/* a) enable IP */
1426	cfg |= CR_CRYPEN;
1427	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1428
1429	/* b) pad and write the last block */
1430	stm32_cryp_irq_write_block(cryp);
1431	/* wait end of process */
1432	err = stm32_cryp_wait_output(cryp);
1433	if (err) {
1434		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1435		return stm32_cryp_finish_req(cryp, err);
1436	}
1437
1438	/* c) get and store encrypted data */
1439	/*
1440	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1441	 * block value
1442	 */
1443	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1444
1445	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1446							     cryp->payload_out), 1);
1447	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1448				   cryp->payload_out);
1449
1450	/* d) change mode back to AES GCM */
1451	cfg &= ~CR_ALGO_MASK;
1452	cfg |= CR_AES_GCM;
1453	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1454
1455	/* e) change phase to Final */
1456	cfg &= ~CR_PH_MASK;
1457	cfg |= CR_PH_FINAL;
1458	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1459
1460	/* f) write padded data */
1461	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1462
1463	/* g) Empty fifo out */
1464	err = stm32_cryp_wait_output(cryp);
1465	if (err) {
1466		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1467		return stm32_cryp_finish_req(cryp, err);
1468	}
1469
1470	for (i = 0; i < AES_BLOCK_32; i++)
1471		stm32_cryp_read(cryp, cryp->caps->dout);
1472
1473	/* h) run the he normal Final phase */
1474	stm32_cryp_finish_req(cryp, 0);
1475}
1476
1477static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1478{
1479	u32 cfg;
1480
1481	/* disable ip, set NPBLB and reneable ip */
1482	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1483	cfg &= ~CR_CRYPEN;
1484	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1485
1486	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1487	cfg |= CR_CRYPEN;
1488	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1489}
1490
1491static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1492{
1493	int err = 0;
1494	u32 cfg, iv1tmp;
1495	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1496	u32 block[AES_BLOCK_32] = {0};
1497	unsigned int i;
1498
1499	/* 'Special workaround' procedure described in the datasheet */
1500
1501	/* a) disable ip */
1502	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1503
1504	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1505	cfg &= ~CR_CRYPEN;
1506	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1507
1508	/* b) get IV1 from CRYP_CSGCMCCM7 */
1509	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1510
1511	/* c) Load CRYP_CSGCMCCMxR */
1512	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1513		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1514
1515	/* d) Write IV1R */
1516	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1517
1518	/* e) change mode to CTR */
1519	cfg &= ~CR_ALGO_MASK;
1520	cfg |= CR_AES_CTR;
1521	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1522
1523	/* a) enable IP */
1524	cfg |= CR_CRYPEN;
1525	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1526
1527	/* b) pad and write the last block */
1528	stm32_cryp_irq_write_block(cryp);
1529	/* wait end of process */
1530	err = stm32_cryp_wait_output(cryp);
1531	if (err) {
1532		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1533		return stm32_cryp_finish_req(cryp, err);
1534	}
1535
1536	/* c) get and store decrypted data */
1537	/*
1538	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1539	 * block value
1540	 */
1541	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1542
1543	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1544							     cryp->payload_out), 1);
1545	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1546
1547	/* d) Load again CRYP_CSGCMCCMxR */
1548	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1549		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1550
1551	/* e) change mode back to AES CCM */
1552	cfg &= ~CR_ALGO_MASK;
1553	cfg |= CR_AES_CCM;
1554	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556	/* f) change phase to header */
1557	cfg &= ~CR_PH_MASK;
1558	cfg |= CR_PH_HEADER;
1559	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1560
1561	/* g) XOR and write padded data */
1562	for (i = 0; i < ARRAY_SIZE(block); i++) {
1563		block[i] ^= cstmp1[i];
1564		block[i] ^= cstmp2[i];
1565		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1566	}
1567
1568	/* h) wait for completion */
1569	err = stm32_cryp_wait_busy(cryp);
1570	if (err)
1571		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1572
1573	/* i) run the he normal Final phase */
1574	stm32_cryp_finish_req(cryp, err);
1575}
1576
1577static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1578{
1579	if (unlikely(!cryp->payload_in)) {
1580		dev_warn(cryp->dev, "No more data to process\n");
1581		return;
1582	}
1583
1584	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1585		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1586		     is_encrypt(cryp))) {
1587		/* Padding for AES GCM encryption */
1588		if (cryp->caps->padding_wa) {
1589			/* Special case 1 */
1590			stm32_cryp_irq_write_gcm_padded_data(cryp);
1591			return;
1592		}
1593
1594		/* Setting padding bytes (NBBLB) */
1595		stm32_cryp_irq_set_npblb(cryp);
1596	}
1597
1598	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1599		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1600		     is_decrypt(cryp))) {
1601		/* Padding for AES CCM decryption */
1602		if (cryp->caps->padding_wa) {
1603			/* Special case 2 */
1604			stm32_cryp_irq_write_ccm_padded_data(cryp);
1605			return;
1606		}
1607
1608		/* Setting padding bytes (NBBLB) */
1609		stm32_cryp_irq_set_npblb(cryp);
1610	}
1611
1612	if (is_aes(cryp) && is_ctr(cryp))
1613		stm32_cryp_check_ctr_counter(cryp);
1614
1615	stm32_cryp_irq_write_block(cryp);
1616}
1617
1618static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1619{
1620	u32 block[AES_BLOCK_32] = {0};
1621	size_t written;
1622
1623	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1624
1625	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1626
1627	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1628
1629	cryp->header_in -= written;
1630
1631	stm32_crypt_gcmccm_end_header(cryp);
1632}
1633
1634static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1635{
1636	struct stm32_cryp *cryp = arg;
1637	u32 ph;
1638	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1639
1640	if (cryp->irq_status & MISR_OUT)
1641		/* Output FIFO IRQ: read data */
1642		stm32_cryp_irq_read_data(cryp);
1643
1644	if (cryp->irq_status & MISR_IN) {
1645		if (is_gcm(cryp) || is_ccm(cryp)) {
1646			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1647			if (unlikely(ph == CR_PH_HEADER))
1648				/* Write Header */
1649				stm32_cryp_irq_write_gcmccm_header(cryp);
1650			else
1651				/* Input FIFO IRQ: write data */
1652				stm32_cryp_irq_write_data(cryp);
1653			if (is_gcm(cryp))
1654				cryp->gcm_ctr++;
1655		} else {
1656			/* Input FIFO IRQ: write data */
1657			stm32_cryp_irq_write_data(cryp);
1658		}
1659	}
1660
1661	/* Mask useless interrupts */
1662	if (!cryp->payload_in && !cryp->header_in)
1663		it_mask &= ~IMSCR_IN;
1664	if (!cryp->payload_out)
1665		it_mask &= ~IMSCR_OUT;
1666	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1667
1668	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1669		stm32_cryp_finish_req(cryp, 0);
1670
1671	return IRQ_HANDLED;
1672}
1673
1674static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1675{
1676	struct stm32_cryp *cryp = arg;
1677
1678	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1679
1680	return IRQ_WAKE_THREAD;
1681}
1682
1683static struct skcipher_engine_alg crypto_algs[] = {
1684{
1685	.base = {
1686		.base.cra_name		= "ecb(aes)",
1687		.base.cra_driver_name	= "stm32-ecb-aes",
1688		.base.cra_priority	= 200,
1689		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1690		.base.cra_blocksize	= AES_BLOCK_SIZE,
1691		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1692		.base.cra_alignmask	= 0,
1693		.base.cra_module	= THIS_MODULE,
1694
1695		.init			= stm32_cryp_init_tfm,
1696		.min_keysize		= AES_MIN_KEY_SIZE,
1697		.max_keysize		= AES_MAX_KEY_SIZE,
1698		.setkey			= stm32_cryp_aes_setkey,
1699		.encrypt		= stm32_cryp_aes_ecb_encrypt,
1700		.decrypt		= stm32_cryp_aes_ecb_decrypt,
1701	},
1702	.op = {
1703		.do_one_request = stm32_cryp_cipher_one_req,
1704	},
1705},
1706{
1707	.base = {
1708		.base.cra_name		= "cbc(aes)",
1709		.base.cra_driver_name	= "stm32-cbc-aes",
1710		.base.cra_priority	= 200,
1711		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1712		.base.cra_blocksize	= AES_BLOCK_SIZE,
1713		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1714		.base.cra_alignmask	= 0,
1715		.base.cra_module	= THIS_MODULE,
1716
1717		.init			= stm32_cryp_init_tfm,
1718		.min_keysize		= AES_MIN_KEY_SIZE,
1719		.max_keysize		= AES_MAX_KEY_SIZE,
1720		.ivsize			= AES_BLOCK_SIZE,
1721		.setkey			= stm32_cryp_aes_setkey,
1722		.encrypt		= stm32_cryp_aes_cbc_encrypt,
1723		.decrypt		= stm32_cryp_aes_cbc_decrypt,
1724	},
1725	.op = {
1726		.do_one_request = stm32_cryp_cipher_one_req,
1727	},
1728},
1729{
1730	.base = {
1731		.base.cra_name		= "ctr(aes)",
1732		.base.cra_driver_name	= "stm32-ctr-aes",
1733		.base.cra_priority	= 200,
1734		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1735		.base.cra_blocksize	= 1,
1736		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1737		.base.cra_alignmask	= 0,
1738		.base.cra_module	= THIS_MODULE,
1739
1740		.init			= stm32_cryp_init_tfm,
1741		.min_keysize		= AES_MIN_KEY_SIZE,
1742		.max_keysize		= AES_MAX_KEY_SIZE,
1743		.ivsize			= AES_BLOCK_SIZE,
1744		.setkey			= stm32_cryp_aes_setkey,
1745		.encrypt		= stm32_cryp_aes_ctr_encrypt,
1746		.decrypt		= stm32_cryp_aes_ctr_decrypt,
1747	},
1748	.op = {
1749		.do_one_request = stm32_cryp_cipher_one_req,
1750	},
1751},
1752{
1753	.base = {
1754		.base.cra_name		= "ecb(des)",
1755		.base.cra_driver_name	= "stm32-ecb-des",
1756		.base.cra_priority	= 200,
1757		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1758		.base.cra_blocksize	= DES_BLOCK_SIZE,
1759		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1760		.base.cra_alignmask	= 0,
1761		.base.cra_module	= THIS_MODULE,
1762
1763		.init			= stm32_cryp_init_tfm,
1764		.min_keysize		= DES_BLOCK_SIZE,
1765		.max_keysize		= DES_BLOCK_SIZE,
1766		.setkey			= stm32_cryp_des_setkey,
1767		.encrypt		= stm32_cryp_des_ecb_encrypt,
1768		.decrypt		= stm32_cryp_des_ecb_decrypt,
1769	},
1770	.op = {
1771		.do_one_request = stm32_cryp_cipher_one_req,
1772	},
1773},
1774{
1775	.base = {
1776		.base.cra_name		= "cbc(des)",
1777		.base.cra_driver_name	= "stm32-cbc-des",
1778		.base.cra_priority	= 200,
1779		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1780		.base.cra_blocksize	= DES_BLOCK_SIZE,
1781		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1782		.base.cra_alignmask	= 0,
1783		.base.cra_module	= THIS_MODULE,
1784
1785		.init			= stm32_cryp_init_tfm,
1786		.min_keysize		= DES_BLOCK_SIZE,
1787		.max_keysize		= DES_BLOCK_SIZE,
1788		.ivsize			= DES_BLOCK_SIZE,
1789		.setkey			= stm32_cryp_des_setkey,
1790		.encrypt		= stm32_cryp_des_cbc_encrypt,
1791		.decrypt		= stm32_cryp_des_cbc_decrypt,
1792	},
1793	.op = {
1794		.do_one_request = stm32_cryp_cipher_one_req,
1795	},
1796},
1797{
1798	.base = {
1799		.base.cra_name		= "ecb(des3_ede)",
1800		.base.cra_driver_name	= "stm32-ecb-des3",
1801		.base.cra_priority	= 200,
1802		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803		.base.cra_blocksize	= DES_BLOCK_SIZE,
1804		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805		.base.cra_alignmask	= 0,
1806		.base.cra_module	= THIS_MODULE,
1807
1808		.init			= stm32_cryp_init_tfm,
1809		.min_keysize		= 3 * DES_BLOCK_SIZE,
1810		.max_keysize		= 3 * DES_BLOCK_SIZE,
1811		.setkey			= stm32_cryp_tdes_setkey,
1812		.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1813		.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1814	},
1815	.op = {
1816		.do_one_request = stm32_cryp_cipher_one_req,
1817	},
1818},
1819{
1820	.base = {
1821		.base.cra_name		= "cbc(des3_ede)",
1822		.base.cra_driver_name	= "stm32-cbc-des3",
1823		.base.cra_priority	= 200,
1824		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1825		.base.cra_blocksize	= DES_BLOCK_SIZE,
1826		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1827		.base.cra_alignmask	= 0,
1828		.base.cra_module	= THIS_MODULE,
1829
1830		.init			= stm32_cryp_init_tfm,
1831		.min_keysize		= 3 * DES_BLOCK_SIZE,
1832		.max_keysize		= 3 * DES_BLOCK_SIZE,
1833		.ivsize			= DES_BLOCK_SIZE,
1834		.setkey			= stm32_cryp_tdes_setkey,
1835		.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1836		.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1837	},
1838	.op = {
1839		.do_one_request = stm32_cryp_cipher_one_req,
1840	},
1841},
1842};
1843
1844static struct aead_engine_alg aead_algs[] = {
1845{
1846	.base.setkey		= stm32_cryp_aes_aead_setkey,
1847	.base.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1848	.base.encrypt		= stm32_cryp_aes_gcm_encrypt,
1849	.base.decrypt		= stm32_cryp_aes_gcm_decrypt,
1850	.base.init		= stm32_cryp_aes_aead_init,
1851	.base.ivsize		= 12,
1852	.base.maxauthsize	= AES_BLOCK_SIZE,
1853
1854	.base.base = {
1855		.cra_name		= "gcm(aes)",
1856		.cra_driver_name	= "stm32-gcm-aes",
1857		.cra_priority		= 200,
1858		.cra_flags		= CRYPTO_ALG_ASYNC,
1859		.cra_blocksize		= 1,
1860		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1861		.cra_alignmask		= 0,
1862		.cra_module		= THIS_MODULE,
1863	},
1864	.op = {
1865		.do_one_request = stm32_cryp_aead_one_req,
1866	},
1867},
1868{
1869	.base.setkey		= stm32_cryp_aes_aead_setkey,
1870	.base.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1871	.base.encrypt		= stm32_cryp_aes_ccm_encrypt,
1872	.base.decrypt		= stm32_cryp_aes_ccm_decrypt,
1873	.base.init		= stm32_cryp_aes_aead_init,
1874	.base.ivsize		= AES_BLOCK_SIZE,
1875	.base.maxauthsize	= AES_BLOCK_SIZE,
1876
1877	.base.base = {
1878		.cra_name		= "ccm(aes)",
1879		.cra_driver_name	= "stm32-ccm-aes",
1880		.cra_priority		= 200,
1881		.cra_flags		= CRYPTO_ALG_ASYNC,
1882		.cra_blocksize		= 1,
1883		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1884		.cra_alignmask		= 0,
1885		.cra_module		= THIS_MODULE,
1886	},
1887	.op = {
1888		.do_one_request = stm32_cryp_aead_one_req,
1889	},
1890},
1891};
1892
1893static const struct stm32_cryp_caps ux500_data = {
1894	.aeads_support = false,
1895	.linear_aes_key = true,
1896	.kp_mode = false,
1897	.iv_protection = true,
1898	.swap_final = true,
1899	.padding_wa = true,
1900	.cr = UX500_CRYP_CR,
1901	.sr = UX500_CRYP_SR,
1902	.din = UX500_CRYP_DIN,
1903	.dout = UX500_CRYP_DOUT,
1904	.imsc = UX500_CRYP_IMSC,
1905	.mis = UX500_CRYP_MIS,
1906	.k1l = UX500_CRYP_K1L,
1907	.k1r = UX500_CRYP_K1R,
1908	.k3r = UX500_CRYP_K3R,
1909	.iv0l = UX500_CRYP_IV0L,
1910	.iv0r = UX500_CRYP_IV0R,
1911	.iv1l = UX500_CRYP_IV1L,
1912	.iv1r = UX500_CRYP_IV1R,
1913};
1914
1915static const struct stm32_cryp_caps f7_data = {
1916	.aeads_support = true,
1917	.linear_aes_key = false,
1918	.kp_mode = true,
1919	.iv_protection = false,
1920	.swap_final = true,
1921	.padding_wa = true,
1922	.cr = CRYP_CR,
1923	.sr = CRYP_SR,
1924	.din = CRYP_DIN,
1925	.dout = CRYP_DOUT,
1926	.imsc = CRYP_IMSCR,
1927	.mis = CRYP_MISR,
1928	.k1l = CRYP_K1LR,
1929	.k1r = CRYP_K1RR,
1930	.k3r = CRYP_K3RR,
1931	.iv0l = CRYP_IV0LR,
1932	.iv0r = CRYP_IV0RR,
1933	.iv1l = CRYP_IV1LR,
1934	.iv1r = CRYP_IV1RR,
1935};
1936
1937static const struct stm32_cryp_caps mp1_data = {
1938	.aeads_support = true,
1939	.linear_aes_key = false,
1940	.kp_mode = true,
1941	.iv_protection = false,
1942	.swap_final = false,
1943	.padding_wa = false,
1944	.cr = CRYP_CR,
1945	.sr = CRYP_SR,
1946	.din = CRYP_DIN,
1947	.dout = CRYP_DOUT,
1948	.imsc = CRYP_IMSCR,
1949	.mis = CRYP_MISR,
1950	.k1l = CRYP_K1LR,
1951	.k1r = CRYP_K1RR,
1952	.k3r = CRYP_K3RR,
1953	.iv0l = CRYP_IV0LR,
1954	.iv0r = CRYP_IV0RR,
1955	.iv1l = CRYP_IV1LR,
1956	.iv1r = CRYP_IV1RR,
1957};
1958
1959static const struct of_device_id stm32_dt_ids[] = {
1960	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1961	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1962	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1963	{},
1964};
1965MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1966
1967static int stm32_cryp_probe(struct platform_device *pdev)
1968{
1969	struct device *dev = &pdev->dev;
1970	struct stm32_cryp *cryp;
1971	struct reset_control *rst;
1972	int irq, ret;
1973
1974	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1975	if (!cryp)
1976		return -ENOMEM;
1977
1978	cryp->caps = of_device_get_match_data(dev);
1979	if (!cryp->caps)
1980		return -ENODEV;
1981
1982	cryp->dev = dev;
1983
1984	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1985	if (IS_ERR(cryp->regs))
1986		return PTR_ERR(cryp->regs);
1987
1988	irq = platform_get_irq(pdev, 0);
1989	if (irq < 0)
1990		return irq;
1991
1992	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1993					stm32_cryp_irq_thread, IRQF_ONESHOT,
1994					dev_name(dev), cryp);
1995	if (ret) {
1996		dev_err(dev, "Cannot grab IRQ\n");
1997		return ret;
1998	}
1999
2000	cryp->clk = devm_clk_get(dev, NULL);
2001	if (IS_ERR(cryp->clk)) {
2002		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2003
2004		return PTR_ERR(cryp->clk);
2005	}
2006
2007	ret = clk_prepare_enable(cryp->clk);
2008	if (ret) {
2009		dev_err(cryp->dev, "Failed to enable clock\n");
2010		return ret;
2011	}
2012
2013	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2014	pm_runtime_use_autosuspend(dev);
2015
2016	pm_runtime_get_noresume(dev);
2017	pm_runtime_set_active(dev);
2018	pm_runtime_enable(dev);
2019
2020	rst = devm_reset_control_get(dev, NULL);
2021	if (IS_ERR(rst)) {
2022		ret = PTR_ERR(rst);
2023		if (ret == -EPROBE_DEFER)
2024			goto err_rst;
2025	} else {
2026		reset_control_assert(rst);
2027		udelay(2);
2028		reset_control_deassert(rst);
2029	}
2030
2031	platform_set_drvdata(pdev, cryp);
2032
2033	spin_lock(&cryp_list.lock);
2034	list_add(&cryp->list, &cryp_list.dev_list);
2035	spin_unlock(&cryp_list.lock);
2036
2037	/* Initialize crypto engine */
2038	cryp->engine = crypto_engine_alloc_init(dev, 1);
2039	if (!cryp->engine) {
2040		dev_err(dev, "Could not init crypto engine\n");
2041		ret = -ENOMEM;
2042		goto err_engine1;
2043	}
2044
2045	ret = crypto_engine_start(cryp->engine);
2046	if (ret) {
2047		dev_err(dev, "Could not start crypto engine\n");
2048		goto err_engine2;
2049	}
2050
2051	ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052	if (ret) {
2053		dev_err(dev, "Could not register algs\n");
2054		goto err_algs;
2055	}
2056
2057	if (cryp->caps->aeads_support) {
2058		ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2059		if (ret)
2060			goto err_aead_algs;
2061	}
2062
2063	dev_info(dev, "Initialized\n");
2064
2065	pm_runtime_put_sync(dev);
2066
2067	return 0;
2068
2069err_aead_algs:
2070	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2071err_algs:
2072err_engine2:
2073	crypto_engine_exit(cryp->engine);
2074err_engine1:
2075	spin_lock(&cryp_list.lock);
2076	list_del(&cryp->list);
2077	spin_unlock(&cryp_list.lock);
2078err_rst:
2079	pm_runtime_disable(dev);
2080	pm_runtime_put_noidle(dev);
2081
2082	clk_disable_unprepare(cryp->clk);
2083
2084	return ret;
2085}
2086
2087static void stm32_cryp_remove(struct platform_device *pdev)
2088{
2089	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2090	int ret;
2091
2092	ret = pm_runtime_get_sync(cryp->dev);
2093
2094	if (cryp->caps->aeads_support)
2095		crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2096	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2097
2098	crypto_engine_exit(cryp->engine);
2099
2100	spin_lock(&cryp_list.lock);
2101	list_del(&cryp->list);
2102	spin_unlock(&cryp_list.lock);
2103
2104	pm_runtime_disable(cryp->dev);
2105	pm_runtime_put_noidle(cryp->dev);
2106
2107	if (ret >= 0)
2108		clk_disable_unprepare(cryp->clk);
2109}
2110
2111#ifdef CONFIG_PM
2112static int stm32_cryp_runtime_suspend(struct device *dev)
2113{
2114	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2115
2116	clk_disable_unprepare(cryp->clk);
2117
2118	return 0;
2119}
2120
2121static int stm32_cryp_runtime_resume(struct device *dev)
2122{
2123	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124	int ret;
2125
2126	ret = clk_prepare_enable(cryp->clk);
2127	if (ret) {
2128		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2129		return ret;
2130	}
2131
2132	return 0;
2133}
2134#endif
2135
2136static const struct dev_pm_ops stm32_cryp_pm_ops = {
2137	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2138				pm_runtime_force_resume)
2139	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2140			   stm32_cryp_runtime_resume, NULL)
2141};
2142
2143static struct platform_driver stm32_cryp_driver = {
2144	.probe  = stm32_cryp_probe,
2145	.remove_new = stm32_cryp_remove,
2146	.driver = {
2147		.name           = DRIVER_NAME,
2148		.pm		= &stm32_cryp_pm_ops,
2149		.of_match_table = stm32_dt_ids,
2150	},
2151};
2152
2153module_platform_driver(stm32_cryp_driver);
2154
2155MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2156MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2157MODULE_LICENSE("GPL");