Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "maps.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-cxx.h"
16#include "demangle-ocaml.h"
17#include "demangle-java.h"
18#include "demangle-rust.h"
19#include "machine.h"
20#include "vdso.h"
21#include "debug.h"
22#include "util/copyfile.h"
23#include <linux/ctype.h>
24#include <linux/kernel.h>
25#include <linux/zalloc.h>
26#include <symbol/kallsyms.h>
27#include <internal/lib.h>
28
29#ifdef HAVE_LIBBFD_SUPPORT
30#define PACKAGE 'perf'
31#include <bfd.h>
32#endif
33
34#if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
35#ifndef DMGL_PARAMS
36#define DMGL_PARAMS (1 << 0) /* Include function args */
37#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
38#endif
39#endif
40
41#ifndef EM_AARCH64
42#define EM_AARCH64 183 /* ARM 64 bit */
43#endif
44
45#ifndef EM_LOONGARCH
46#define EM_LOONGARCH 258
47#endif
48
49#ifndef ELF32_ST_VISIBILITY
50#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
51#endif
52
53/* For ELF64 the definitions are the same. */
54#ifndef ELF64_ST_VISIBILITY
55#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
56#endif
57
58/* How to extract information held in the st_other field. */
59#ifndef GELF_ST_VISIBILITY
60#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
61#endif
62
63typedef Elf64_Nhdr GElf_Nhdr;
64
65
66#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
67static int elf_getphdrnum(Elf *elf, size_t *dst)
68{
69 GElf_Ehdr gehdr;
70 GElf_Ehdr *ehdr;
71
72 ehdr = gelf_getehdr(elf, &gehdr);
73 if (!ehdr)
74 return -1;
75
76 *dst = ehdr->e_phnum;
77
78 return 0;
79}
80#endif
81
82#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
83static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
84{
85 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
86 return -1;
87}
88#endif
89
90#ifndef NT_GNU_BUILD_ID
91#define NT_GNU_BUILD_ID 3
92#endif
93
94/**
95 * elf_symtab__for_each_symbol - iterate thru all the symbols
96 *
97 * @syms: struct elf_symtab instance to iterate
98 * @idx: uint32_t idx
99 * @sym: GElf_Sym iterator
100 */
101#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
102 for (idx = 0, gelf_getsym(syms, idx, &sym);\
103 idx < nr_syms; \
104 idx++, gelf_getsym(syms, idx, &sym))
105
106static inline uint8_t elf_sym__type(const GElf_Sym *sym)
107{
108 return GELF_ST_TYPE(sym->st_info);
109}
110
111static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
112{
113 return GELF_ST_VISIBILITY(sym->st_other);
114}
115
116#ifndef STT_GNU_IFUNC
117#define STT_GNU_IFUNC 10
118#endif
119
120static inline int elf_sym__is_function(const GElf_Sym *sym)
121{
122 return (elf_sym__type(sym) == STT_FUNC ||
123 elf_sym__type(sym) == STT_GNU_IFUNC) &&
124 sym->st_name != 0 &&
125 sym->st_shndx != SHN_UNDEF;
126}
127
128static inline bool elf_sym__is_object(const GElf_Sym *sym)
129{
130 return elf_sym__type(sym) == STT_OBJECT &&
131 sym->st_name != 0 &&
132 sym->st_shndx != SHN_UNDEF;
133}
134
135static inline int elf_sym__is_label(const GElf_Sym *sym)
136{
137 return elf_sym__type(sym) == STT_NOTYPE &&
138 sym->st_name != 0 &&
139 sym->st_shndx != SHN_UNDEF &&
140 sym->st_shndx != SHN_ABS &&
141 elf_sym__visibility(sym) != STV_HIDDEN &&
142 elf_sym__visibility(sym) != STV_INTERNAL;
143}
144
145static bool elf_sym__filter(GElf_Sym *sym)
146{
147 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
148}
149
150static inline const char *elf_sym__name(const GElf_Sym *sym,
151 const Elf_Data *symstrs)
152{
153 return symstrs->d_buf + sym->st_name;
154}
155
156static inline const char *elf_sec__name(const GElf_Shdr *shdr,
157 const Elf_Data *secstrs)
158{
159 return secstrs->d_buf + shdr->sh_name;
160}
161
162static inline int elf_sec__is_text(const GElf_Shdr *shdr,
163 const Elf_Data *secstrs)
164{
165 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
166}
167
168static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
169 const Elf_Data *secstrs)
170{
171 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
172}
173
174static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
175{
176 return elf_sec__is_text(shdr, secstrs) ||
177 elf_sec__is_data(shdr, secstrs);
178}
179
180static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
181{
182 Elf_Scn *sec = NULL;
183 GElf_Shdr shdr;
184 size_t cnt = 1;
185
186 while ((sec = elf_nextscn(elf, sec)) != NULL) {
187 gelf_getshdr(sec, &shdr);
188
189 if ((addr >= shdr.sh_addr) &&
190 (addr < (shdr.sh_addr + shdr.sh_size)))
191 return cnt;
192
193 ++cnt;
194 }
195
196 return -1;
197}
198
199Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
200 GElf_Shdr *shp, const char *name, size_t *idx)
201{
202 Elf_Scn *sec = NULL;
203 size_t cnt = 1;
204
205 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
206 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
207 return NULL;
208
209 while ((sec = elf_nextscn(elf, sec)) != NULL) {
210 char *str;
211
212 gelf_getshdr(sec, shp);
213 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
214 if (str && !strcmp(name, str)) {
215 if (idx)
216 *idx = cnt;
217 return sec;
218 }
219 ++cnt;
220 }
221
222 return NULL;
223}
224
225bool filename__has_section(const char *filename, const char *sec)
226{
227 int fd;
228 Elf *elf;
229 GElf_Ehdr ehdr;
230 GElf_Shdr shdr;
231 bool found = false;
232
233 fd = open(filename, O_RDONLY);
234 if (fd < 0)
235 return false;
236
237 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
238 if (elf == NULL)
239 goto out;
240
241 if (gelf_getehdr(elf, &ehdr) == NULL)
242 goto elf_out;
243
244 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
245
246elf_out:
247 elf_end(elf);
248out:
249 close(fd);
250 return found;
251}
252
253static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
254{
255 size_t i, phdrnum;
256 u64 sz;
257
258 if (elf_getphdrnum(elf, &phdrnum))
259 return -1;
260
261 for (i = 0; i < phdrnum; i++) {
262 if (gelf_getphdr(elf, i, phdr) == NULL)
263 return -1;
264
265 if (phdr->p_type != PT_LOAD)
266 continue;
267
268 sz = max(phdr->p_memsz, phdr->p_filesz);
269 if (!sz)
270 continue;
271
272 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
273 return 0;
274 }
275
276 /* Not found any valid program header */
277 return -1;
278}
279
280static bool want_demangle(bool is_kernel_sym)
281{
282 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
283}
284
285/*
286 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp
287 * version.
288 */
289__weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused,
290 bool modifiers __maybe_unused)
291{
292#ifdef HAVE_LIBBFD_SUPPORT
293 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
294
295 return bfd_demangle(NULL, str, flags);
296#elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
297 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
298
299 return cplus_demangle(str, flags);
300#else
301 return NULL;
302#endif
303}
304
305static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
306{
307 char *demangled = NULL;
308
309 /*
310 * We need to figure out if the object was created from C++ sources
311 * DWARF DW_compile_unit has this, but we don't always have access
312 * to it...
313 */
314 if (!want_demangle(dso->kernel || kmodule))
315 return demangled;
316
317 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0);
318 if (demangled == NULL) {
319 demangled = ocaml_demangle_sym(elf_name);
320 if (demangled == NULL) {
321 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
322 }
323 }
324 else if (rust_is_mangled(demangled))
325 /*
326 * Input to Rust demangling is the BFD-demangled
327 * name which it Rust-demangles in place.
328 */
329 rust_demangle_sym(demangled);
330
331 return demangled;
332}
333
334struct rel_info {
335 u32 nr_entries;
336 u32 *sorted;
337 bool is_rela;
338 Elf_Data *reldata;
339 GElf_Rela rela;
340 GElf_Rel rel;
341};
342
343static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
344{
345 idx = ri->sorted ? ri->sorted[idx] : idx;
346 if (ri->is_rela) {
347 gelf_getrela(ri->reldata, idx, &ri->rela);
348 return GELF_R_SYM(ri->rela.r_info);
349 }
350 gelf_getrel(ri->reldata, idx, &ri->rel);
351 return GELF_R_SYM(ri->rel.r_info);
352}
353
354static u64 get_rel_offset(struct rel_info *ri, u32 x)
355{
356 if (ri->is_rela) {
357 GElf_Rela rela;
358
359 gelf_getrela(ri->reldata, x, &rela);
360 return rela.r_offset;
361 } else {
362 GElf_Rel rel;
363
364 gelf_getrel(ri->reldata, x, &rel);
365 return rel.r_offset;
366 }
367}
368
369static int rel_cmp(const void *a, const void *b, void *r)
370{
371 struct rel_info *ri = r;
372 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
373 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
374
375 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
376}
377
378static int sort_rel(struct rel_info *ri)
379{
380 size_t sz = sizeof(ri->sorted[0]);
381 u32 i;
382
383 ri->sorted = calloc(ri->nr_entries, sz);
384 if (!ri->sorted)
385 return -1;
386 for (i = 0; i < ri->nr_entries; i++)
387 ri->sorted[i] = i;
388 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
389 return 0;
390}
391
392/*
393 * For x86_64, the GNU linker is putting IFUNC information in the relocation
394 * addend.
395 */
396static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
397{
398 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
399 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
400}
401
402static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
403 struct rel_info *ri, char *buf, size_t buf_sz)
404{
405 u64 addr = ri->rela.r_addend;
406 struct symbol *sym;
407 GElf_Phdr phdr;
408
409 if (!addend_may_be_ifunc(ehdr, ri))
410 return false;
411
412 if (elf_read_program_header(elf, addr, &phdr))
413 return false;
414
415 addr -= phdr.p_vaddr - phdr.p_offset;
416
417 sym = dso__find_symbol_nocache(dso, addr);
418
419 /* Expecting the address to be an IFUNC or IFUNC alias */
420 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
421 return false;
422
423 snprintf(buf, buf_sz, "%s@plt", sym->name);
424
425 return true;
426}
427
428static void exit_rel(struct rel_info *ri)
429{
430 zfree(&ri->sorted);
431}
432
433static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
434 u64 *plt_header_size, u64 *plt_entry_size)
435{
436 switch (ehdr->e_machine) {
437 case EM_ARM:
438 *plt_header_size = 20;
439 *plt_entry_size = 12;
440 return true;
441 case EM_AARCH64:
442 *plt_header_size = 32;
443 *plt_entry_size = 16;
444 return true;
445 case EM_LOONGARCH:
446 *plt_header_size = 32;
447 *plt_entry_size = 16;
448 return true;
449 case EM_SPARC:
450 *plt_header_size = 48;
451 *plt_entry_size = 12;
452 return true;
453 case EM_SPARCV9:
454 *plt_header_size = 128;
455 *plt_entry_size = 32;
456 return true;
457 case EM_386:
458 case EM_X86_64:
459 *plt_entry_size = shdr_plt->sh_entsize;
460 /* Size is 8 or 16, if not, assume alignment indicates size */
461 if (*plt_entry_size != 8 && *plt_entry_size != 16)
462 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
463 *plt_header_size = *plt_entry_size;
464 break;
465 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
466 *plt_header_size = shdr_plt->sh_entsize;
467 *plt_entry_size = shdr_plt->sh_entsize;
468 break;
469 }
470 if (*plt_entry_size)
471 return true;
472 pr_debug("Missing PLT entry size for %s\n", dso->long_name);
473 return false;
474}
475
476static bool machine_is_x86(GElf_Half e_machine)
477{
478 return e_machine == EM_386 || e_machine == EM_X86_64;
479}
480
481struct rela_dyn {
482 GElf_Addr offset;
483 u32 sym_idx;
484};
485
486struct rela_dyn_info {
487 struct dso *dso;
488 Elf_Data *plt_got_data;
489 u32 nr_entries;
490 struct rela_dyn *sorted;
491 Elf_Data *dynsym_data;
492 Elf_Data *dynstr_data;
493 Elf_Data *rela_dyn_data;
494};
495
496static void exit_rela_dyn(struct rela_dyn_info *di)
497{
498 zfree(&di->sorted);
499}
500
501static int cmp_offset(const void *a, const void *b)
502{
503 const struct rela_dyn *va = a;
504 const struct rela_dyn *vb = b;
505
506 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
507}
508
509static int sort_rela_dyn(struct rela_dyn_info *di)
510{
511 u32 i, n;
512
513 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
514 if (!di->sorted)
515 return -1;
516
517 /* Get data for sorting: the offset and symbol index */
518 for (i = 0, n = 0; i < di->nr_entries; i++) {
519 GElf_Rela rela;
520 u32 sym_idx;
521
522 gelf_getrela(di->rela_dyn_data, i, &rela);
523 sym_idx = GELF_R_SYM(rela.r_info);
524 if (sym_idx) {
525 di->sorted[n].sym_idx = sym_idx;
526 di->sorted[n].offset = rela.r_offset;
527 n += 1;
528 }
529 }
530
531 /* Sort by offset */
532 di->nr_entries = n;
533 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
534
535 return 0;
536}
537
538static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
539{
540 GElf_Shdr rela_dyn_shdr;
541 GElf_Shdr shdr;
542
543 di->plt_got_data = elf_getdata(scn, NULL);
544
545 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
546 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
547 return;
548
549 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
550 di->rela_dyn_data = elf_getdata(scn, NULL);
551
552 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
553 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
554 return;
555
556 di->dynsym_data = elf_getdata(scn, NULL);
557 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
558
559 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
560 return;
561
562 /* Sort into offset order */
563 sort_rela_dyn(di);
564}
565
566/* Get instruction displacement from a plt entry for x86_64 */
567static u32 get_x86_64_plt_disp(const u8 *p)
568{
569 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
570 int n = 0;
571
572 /* Skip endbr64 */
573 if (!memcmp(p, endbr64, sizeof(endbr64)))
574 n += sizeof(endbr64);
575 /* Skip bnd prefix */
576 if (p[n] == 0xf2)
577 n += 1;
578 /* jmp with 4-byte displacement */
579 if (p[n] == 0xff && p[n + 1] == 0x25) {
580 u32 disp;
581
582 n += 2;
583 /* Also add offset from start of entry to end of instruction */
584 memcpy(&disp, p + n, sizeof(disp));
585 return n + 4 + le32toh(disp);
586 }
587 return 0;
588}
589
590static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
591 struct rela_dyn_info *di,
592 char *buf, size_t buf_sz)
593{
594 struct rela_dyn vi, *vr;
595 const char *sym_name;
596 char *demangled;
597 GElf_Sym sym;
598 bool result;
599 u32 disp;
600
601 if (!di->sorted)
602 return false;
603
604 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
605 if (!disp)
606 return false;
607
608 /* Compute target offset of the .plt.got entry */
609 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
610
611 /* Find that offset in .rela.dyn (sorted by offset) */
612 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
613 if (!vr)
614 return false;
615
616 /* Get the associated symbol */
617 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
618 sym_name = elf_sym__name(&sym, di->dynstr_data);
619 demangled = demangle_sym(di->dso, 0, sym_name);
620 if (demangled != NULL)
621 sym_name = demangled;
622
623 snprintf(buf, buf_sz, "%s@plt", sym_name);
624
625 result = *sym_name;
626
627 free(demangled);
628
629 return result;
630}
631
632static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
633 GElf_Ehdr *ehdr,
634 char *buf, size_t buf_sz)
635{
636 struct rela_dyn_info di = { .dso = dso };
637 struct symbol *sym;
638 GElf_Shdr shdr;
639 Elf_Scn *scn;
640 int err = -1;
641 size_t i;
642
643 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
644 if (!scn || !shdr.sh_entsize)
645 return 0;
646
647 if (ehdr->e_machine == EM_X86_64)
648 get_rela_dyn_info(elf, ehdr, &di, scn);
649
650 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
651 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
652 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
653 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
654 if (!sym)
655 goto out;
656 symbols__insert(&dso->symbols, sym);
657 }
658 err = 0;
659out:
660 exit_rela_dyn(&di);
661 return err;
662}
663
664/*
665 * We need to check if we have a .dynsym, so that we can handle the
666 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
667 * .dynsym or .symtab).
668 * And always look at the original dso, not at debuginfo packages, that
669 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
670 */
671int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
672{
673 uint32_t idx;
674 GElf_Sym sym;
675 u64 plt_offset, plt_header_size, plt_entry_size;
676 GElf_Shdr shdr_plt, plt_sec_shdr;
677 struct symbol *f, *plt_sym;
678 GElf_Shdr shdr_rel_plt, shdr_dynsym;
679 Elf_Data *syms, *symstrs;
680 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
681 GElf_Ehdr ehdr;
682 char sympltname[1024];
683 Elf *elf;
684 int nr = 0, err = -1;
685 struct rel_info ri = { .is_rela = false };
686 bool lazy_plt;
687
688 elf = ss->elf;
689 ehdr = ss->ehdr;
690
691 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
692 return 0;
693
694 /*
695 * A symbol from a previous section (e.g. .init) can have been expanded
696 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
697 * a symbol for .plt header.
698 */
699 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
700 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
701 f->end = shdr_plt.sh_offset;
702
703 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
704 return 0;
705
706 /* Add a symbol for .plt header */
707 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
708 if (!plt_sym)
709 goto out_elf_end;
710 symbols__insert(&dso->symbols, plt_sym);
711
712 /* Only x86 has .plt.got */
713 if (machine_is_x86(ehdr.e_machine) &&
714 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
715 goto out_elf_end;
716
717 /* Only x86 has .plt.sec */
718 if (machine_is_x86(ehdr.e_machine) &&
719 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
720 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
721 return 0;
722 /* Extend .plt symbol to entire .plt */
723 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
724 /* Use .plt.sec offset */
725 plt_offset = plt_sec_shdr.sh_offset;
726 lazy_plt = false;
727 } else {
728 plt_offset = shdr_plt.sh_offset;
729 lazy_plt = true;
730 }
731
732 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
733 ".rela.plt", NULL);
734 if (scn_plt_rel == NULL) {
735 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
736 ".rel.plt", NULL);
737 if (scn_plt_rel == NULL)
738 return 0;
739 }
740
741 if (shdr_rel_plt.sh_type != SHT_RELA &&
742 shdr_rel_plt.sh_type != SHT_REL)
743 return 0;
744
745 if (!shdr_rel_plt.sh_link)
746 return 0;
747
748 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
749 scn_dynsym = ss->dynsym;
750 shdr_dynsym = ss->dynshdr;
751 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
752 /*
753 * A static executable can have a .plt due to IFUNCs, in which
754 * case .symtab is used not .dynsym.
755 */
756 scn_dynsym = ss->symtab;
757 shdr_dynsym = ss->symshdr;
758 } else {
759 goto out_elf_end;
760 }
761
762 if (!scn_dynsym)
763 return 0;
764
765 /*
766 * Fetch the relocation section to find the idxes to the GOT
767 * and the symbols in the .dynsym they refer to.
768 */
769 ri.reldata = elf_getdata(scn_plt_rel, NULL);
770 if (!ri.reldata)
771 goto out_elf_end;
772
773 syms = elf_getdata(scn_dynsym, NULL);
774 if (syms == NULL)
775 goto out_elf_end;
776
777 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
778 if (scn_symstrs == NULL)
779 goto out_elf_end;
780
781 symstrs = elf_getdata(scn_symstrs, NULL);
782 if (symstrs == NULL)
783 goto out_elf_end;
784
785 if (symstrs->d_size == 0)
786 goto out_elf_end;
787
788 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
789
790 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
791
792 if (lazy_plt) {
793 /*
794 * Assume a .plt with the same number of entries as the number
795 * of relocation entries is not lazy and does not have a header.
796 */
797 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
798 dso__delete_symbol(dso, plt_sym);
799 else
800 plt_offset += plt_header_size;
801 }
802
803 /*
804 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
805 * back in order.
806 */
807 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
808 goto out_elf_end;
809
810 for (idx = 0; idx < ri.nr_entries; idx++) {
811 const char *elf_name = NULL;
812 char *demangled = NULL;
813
814 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
815
816 elf_name = elf_sym__name(&sym, symstrs);
817 demangled = demangle_sym(dso, 0, elf_name);
818 if (demangled)
819 elf_name = demangled;
820 if (*elf_name)
821 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
822 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
823 snprintf(sympltname, sizeof(sympltname),
824 "offset_%#" PRIx64 "@plt", plt_offset);
825 free(demangled);
826
827 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
828 if (!f)
829 goto out_elf_end;
830
831 plt_offset += plt_entry_size;
832 symbols__insert(&dso->symbols, f);
833 ++nr;
834 }
835
836 err = 0;
837out_elf_end:
838 exit_rel(&ri);
839 if (err == 0)
840 return nr;
841 pr_debug("%s: problems reading %s PLT info.\n",
842 __func__, dso->long_name);
843 return 0;
844}
845
846char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
847{
848 return demangle_sym(dso, kmodule, elf_name);
849}
850
851/*
852 * Align offset to 4 bytes as needed for note name and descriptor data.
853 */
854#define NOTE_ALIGN(n) (((n) + 3) & -4U)
855
856static int elf_read_build_id(Elf *elf, void *bf, size_t size)
857{
858 int err = -1;
859 GElf_Ehdr ehdr;
860 GElf_Shdr shdr;
861 Elf_Data *data;
862 Elf_Scn *sec;
863 Elf_Kind ek;
864 void *ptr;
865
866 if (size < BUILD_ID_SIZE)
867 goto out;
868
869 ek = elf_kind(elf);
870 if (ek != ELF_K_ELF)
871 goto out;
872
873 if (gelf_getehdr(elf, &ehdr) == NULL) {
874 pr_err("%s: cannot get elf header.\n", __func__);
875 goto out;
876 }
877
878 /*
879 * Check following sections for notes:
880 * '.note.gnu.build-id'
881 * '.notes'
882 * '.note' (VDSO specific)
883 */
884 do {
885 sec = elf_section_by_name(elf, &ehdr, &shdr,
886 ".note.gnu.build-id", NULL);
887 if (sec)
888 break;
889
890 sec = elf_section_by_name(elf, &ehdr, &shdr,
891 ".notes", NULL);
892 if (sec)
893 break;
894
895 sec = elf_section_by_name(elf, &ehdr, &shdr,
896 ".note", NULL);
897 if (sec)
898 break;
899
900 return err;
901
902 } while (0);
903
904 data = elf_getdata(sec, NULL);
905 if (data == NULL)
906 goto out;
907
908 ptr = data->d_buf;
909 while (ptr < (data->d_buf + data->d_size)) {
910 GElf_Nhdr *nhdr = ptr;
911 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
912 descsz = NOTE_ALIGN(nhdr->n_descsz);
913 const char *name;
914
915 ptr += sizeof(*nhdr);
916 name = ptr;
917 ptr += namesz;
918 if (nhdr->n_type == NT_GNU_BUILD_ID &&
919 nhdr->n_namesz == sizeof("GNU")) {
920 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
921 size_t sz = min(size, descsz);
922 memcpy(bf, ptr, sz);
923 memset(bf + sz, 0, size - sz);
924 err = sz;
925 break;
926 }
927 }
928 ptr += descsz;
929 }
930
931out:
932 return err;
933}
934
935#ifdef HAVE_LIBBFD_BUILDID_SUPPORT
936
937static int read_build_id(const char *filename, struct build_id *bid)
938{
939 size_t size = sizeof(bid->data);
940 int err = -1;
941 bfd *abfd;
942
943 abfd = bfd_openr(filename, NULL);
944 if (!abfd)
945 return -1;
946
947 if (!bfd_check_format(abfd, bfd_object)) {
948 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
949 goto out_close;
950 }
951
952 if (!abfd->build_id || abfd->build_id->size > size)
953 goto out_close;
954
955 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
956 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
957 err = bid->size = abfd->build_id->size;
958
959out_close:
960 bfd_close(abfd);
961 return err;
962}
963
964#else // HAVE_LIBBFD_BUILDID_SUPPORT
965
966static int read_build_id(const char *filename, struct build_id *bid)
967{
968 size_t size = sizeof(bid->data);
969 int fd, err = -1;
970 Elf *elf;
971
972 if (size < BUILD_ID_SIZE)
973 goto out;
974
975 fd = open(filename, O_RDONLY);
976 if (fd < 0)
977 goto out;
978
979 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
980 if (elf == NULL) {
981 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
982 goto out_close;
983 }
984
985 err = elf_read_build_id(elf, bid->data, size);
986 if (err > 0)
987 bid->size = err;
988
989 elf_end(elf);
990out_close:
991 close(fd);
992out:
993 return err;
994}
995
996#endif // HAVE_LIBBFD_BUILDID_SUPPORT
997
998int filename__read_build_id(const char *filename, struct build_id *bid)
999{
1000 struct kmod_path m = { .name = NULL, };
1001 char path[PATH_MAX];
1002 int err;
1003
1004 if (!filename)
1005 return -EFAULT;
1006
1007 err = kmod_path__parse(&m, filename);
1008 if (err)
1009 return -1;
1010
1011 if (m.comp) {
1012 int error = 0, fd;
1013
1014 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
1015 if (fd < 0) {
1016 pr_debug("Failed to decompress (error %d) %s\n",
1017 error, filename);
1018 return -1;
1019 }
1020 close(fd);
1021 filename = path;
1022 }
1023
1024 err = read_build_id(filename, bid);
1025
1026 if (m.comp)
1027 unlink(filename);
1028 return err;
1029}
1030
1031int sysfs__read_build_id(const char *filename, struct build_id *bid)
1032{
1033 size_t size = sizeof(bid->data);
1034 int fd, err = -1;
1035
1036 fd = open(filename, O_RDONLY);
1037 if (fd < 0)
1038 goto out;
1039
1040 while (1) {
1041 char bf[BUFSIZ];
1042 GElf_Nhdr nhdr;
1043 size_t namesz, descsz;
1044
1045 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
1046 break;
1047
1048 namesz = NOTE_ALIGN(nhdr.n_namesz);
1049 descsz = NOTE_ALIGN(nhdr.n_descsz);
1050 if (nhdr.n_type == NT_GNU_BUILD_ID &&
1051 nhdr.n_namesz == sizeof("GNU")) {
1052 if (read(fd, bf, namesz) != (ssize_t)namesz)
1053 break;
1054 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
1055 size_t sz = min(descsz, size);
1056 if (read(fd, bid->data, sz) == (ssize_t)sz) {
1057 memset(bid->data + sz, 0, size - sz);
1058 bid->size = sz;
1059 err = 0;
1060 break;
1061 }
1062 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
1063 break;
1064 } else {
1065 int n = namesz + descsz;
1066
1067 if (n > (int)sizeof(bf)) {
1068 n = sizeof(bf);
1069 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
1070 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
1071 }
1072 if (read(fd, bf, n) != n)
1073 break;
1074 }
1075 }
1076 close(fd);
1077out:
1078 return err;
1079}
1080
1081#ifdef HAVE_LIBBFD_SUPPORT
1082
1083int filename__read_debuglink(const char *filename, char *debuglink,
1084 size_t size)
1085{
1086 int err = -1;
1087 asection *section;
1088 bfd *abfd;
1089
1090 abfd = bfd_openr(filename, NULL);
1091 if (!abfd)
1092 return -1;
1093
1094 if (!bfd_check_format(abfd, bfd_object)) {
1095 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
1096 goto out_close;
1097 }
1098
1099 section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
1100 if (!section)
1101 goto out_close;
1102
1103 if (section->size > size)
1104 goto out_close;
1105
1106 if (!bfd_get_section_contents(abfd, section, debuglink, 0,
1107 section->size))
1108 goto out_close;
1109
1110 err = 0;
1111
1112out_close:
1113 bfd_close(abfd);
1114 return err;
1115}
1116
1117#else
1118
1119int filename__read_debuglink(const char *filename, char *debuglink,
1120 size_t size)
1121{
1122 int fd, err = -1;
1123 Elf *elf;
1124 GElf_Ehdr ehdr;
1125 GElf_Shdr shdr;
1126 Elf_Data *data;
1127 Elf_Scn *sec;
1128 Elf_Kind ek;
1129
1130 fd = open(filename, O_RDONLY);
1131 if (fd < 0)
1132 goto out;
1133
1134 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1135 if (elf == NULL) {
1136 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1137 goto out_close;
1138 }
1139
1140 ek = elf_kind(elf);
1141 if (ek != ELF_K_ELF)
1142 goto out_elf_end;
1143
1144 if (gelf_getehdr(elf, &ehdr) == NULL) {
1145 pr_err("%s: cannot get elf header.\n", __func__);
1146 goto out_elf_end;
1147 }
1148
1149 sec = elf_section_by_name(elf, &ehdr, &shdr,
1150 ".gnu_debuglink", NULL);
1151 if (sec == NULL)
1152 goto out_elf_end;
1153
1154 data = elf_getdata(sec, NULL);
1155 if (data == NULL)
1156 goto out_elf_end;
1157
1158 /* the start of this section is a zero-terminated string */
1159 strncpy(debuglink, data->d_buf, size);
1160
1161 err = 0;
1162
1163out_elf_end:
1164 elf_end(elf);
1165out_close:
1166 close(fd);
1167out:
1168 return err;
1169}
1170
1171#endif
1172
1173static int dso__swap_init(struct dso *dso, unsigned char eidata)
1174{
1175 static unsigned int const endian = 1;
1176
1177 dso->needs_swap = DSO_SWAP__NO;
1178
1179 switch (eidata) {
1180 case ELFDATA2LSB:
1181 /* We are big endian, DSO is little endian. */
1182 if (*(unsigned char const *)&endian != 1)
1183 dso->needs_swap = DSO_SWAP__YES;
1184 break;
1185
1186 case ELFDATA2MSB:
1187 /* We are little endian, DSO is big endian. */
1188 if (*(unsigned char const *)&endian != 0)
1189 dso->needs_swap = DSO_SWAP__YES;
1190 break;
1191
1192 default:
1193 pr_err("unrecognized DSO data encoding %d\n", eidata);
1194 return -EINVAL;
1195 }
1196
1197 return 0;
1198}
1199
1200bool symsrc__possibly_runtime(struct symsrc *ss)
1201{
1202 return ss->dynsym || ss->opdsec;
1203}
1204
1205bool symsrc__has_symtab(struct symsrc *ss)
1206{
1207 return ss->symtab != NULL;
1208}
1209
1210void symsrc__destroy(struct symsrc *ss)
1211{
1212 zfree(&ss->name);
1213 elf_end(ss->elf);
1214 close(ss->fd);
1215}
1216
1217bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1218{
1219 /*
1220 * Usually vmlinux is an ELF file with type ET_EXEC for most
1221 * architectures; except Arm64 kernel is linked with option
1222 * '-share', so need to check type ET_DYN.
1223 */
1224 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1225 ehdr.e_type == ET_DYN;
1226}
1227
1228int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1229 enum dso_binary_type type)
1230{
1231 GElf_Ehdr ehdr;
1232 Elf *elf;
1233 int fd;
1234
1235 if (dso__needs_decompress(dso)) {
1236 fd = dso__decompress_kmodule_fd(dso, name);
1237 if (fd < 0)
1238 return -1;
1239
1240 type = dso->symtab_type;
1241 } else {
1242 fd = open(name, O_RDONLY);
1243 if (fd < 0) {
1244 dso->load_errno = errno;
1245 return -1;
1246 }
1247 }
1248
1249 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1250 if (elf == NULL) {
1251 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1252 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1253 goto out_close;
1254 }
1255
1256 if (gelf_getehdr(elf, &ehdr) == NULL) {
1257 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1258 pr_debug("%s: cannot get elf header.\n", __func__);
1259 goto out_elf_end;
1260 }
1261
1262 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1263 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1264 goto out_elf_end;
1265 }
1266
1267 /* Always reject images with a mismatched build-id: */
1268 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
1269 u8 build_id[BUILD_ID_SIZE];
1270 struct build_id bid;
1271 int size;
1272
1273 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1274 if (size <= 0) {
1275 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1276 goto out_elf_end;
1277 }
1278
1279 build_id__init(&bid, build_id, size);
1280 if (!dso__build_id_equal(dso, &bid)) {
1281 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1282 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1283 goto out_elf_end;
1284 }
1285 }
1286
1287 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1288
1289 ss->symtab_idx = 0;
1290 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1291 &ss->symtab_idx);
1292 if (ss->symshdr.sh_type != SHT_SYMTAB)
1293 ss->symtab = NULL;
1294
1295 ss->dynsym_idx = 0;
1296 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1297 &ss->dynsym_idx);
1298 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1299 ss->dynsym = NULL;
1300
1301 ss->opdidx = 0;
1302 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1303 &ss->opdidx);
1304 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1305 ss->opdsec = NULL;
1306
1307 if (dso->kernel == DSO_SPACE__USER)
1308 ss->adjust_symbols = true;
1309 else
1310 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1311
1312 ss->name = strdup(name);
1313 if (!ss->name) {
1314 dso->load_errno = errno;
1315 goto out_elf_end;
1316 }
1317
1318 ss->elf = elf;
1319 ss->fd = fd;
1320 ss->ehdr = ehdr;
1321 ss->type = type;
1322
1323 return 0;
1324
1325out_elf_end:
1326 elf_end(elf);
1327out_close:
1328 close(fd);
1329 return -1;
1330}
1331
1332/**
1333 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1334 * @kmap: kernel maps and relocation reference symbol
1335 *
1336 * This function returns %true if we are dealing with the kernel maps and the
1337 * relocation reference symbol has not yet been found. Otherwise %false is
1338 * returned.
1339 */
1340static bool ref_reloc_sym_not_found(struct kmap *kmap)
1341{
1342 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1343 !kmap->ref_reloc_sym->unrelocated_addr;
1344}
1345
1346/**
1347 * ref_reloc - kernel relocation offset.
1348 * @kmap: kernel maps and relocation reference symbol
1349 *
1350 * This function returns the offset of kernel addresses as determined by using
1351 * the relocation reference symbol i.e. if the kernel has not been relocated
1352 * then the return value is zero.
1353 */
1354static u64 ref_reloc(struct kmap *kmap)
1355{
1356 if (kmap && kmap->ref_reloc_sym &&
1357 kmap->ref_reloc_sym->unrelocated_addr)
1358 return kmap->ref_reloc_sym->addr -
1359 kmap->ref_reloc_sym->unrelocated_addr;
1360 return 0;
1361}
1362
1363void __weak arch__sym_update(struct symbol *s __maybe_unused,
1364 GElf_Sym *sym __maybe_unused) { }
1365
1366static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1367 GElf_Sym *sym, GElf_Shdr *shdr,
1368 struct maps *kmaps, struct kmap *kmap,
1369 struct dso **curr_dsop, struct map **curr_mapp,
1370 const char *section_name,
1371 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1372{
1373 struct dso *curr_dso = *curr_dsop;
1374 struct map *curr_map;
1375 char dso_name[PATH_MAX];
1376
1377 /* Adjust symbol to map to file offset */
1378 if (adjust_kernel_syms)
1379 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1380
1381 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1382 return 0;
1383
1384 if (strcmp(section_name, ".text") == 0) {
1385 /*
1386 * The initial kernel mapping is based on
1387 * kallsyms and identity maps. Overwrite it to
1388 * map to the kernel dso.
1389 */
1390 if (*remap_kernel && dso->kernel && !kmodule) {
1391 *remap_kernel = false;
1392 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1393 map__set_end(map, map__start(map) + shdr->sh_size);
1394 map__set_pgoff(map, shdr->sh_offset);
1395 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1396 /* Ensure maps are correctly ordered */
1397 if (kmaps) {
1398 int err;
1399 struct map *tmp = map__get(map);
1400
1401 maps__remove(kmaps, map);
1402 err = maps__insert(kmaps, map);
1403 map__put(tmp);
1404 if (err)
1405 return err;
1406 }
1407 }
1408
1409 /*
1410 * The initial module mapping is based on
1411 * /proc/modules mapped to offset zero.
1412 * Overwrite it to map to the module dso.
1413 */
1414 if (*remap_kernel && kmodule) {
1415 *remap_kernel = false;
1416 map__set_pgoff(map, shdr->sh_offset);
1417 }
1418
1419 *curr_mapp = map;
1420 *curr_dsop = dso;
1421 return 0;
1422 }
1423
1424 if (!kmap)
1425 return 0;
1426
1427 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1428
1429 curr_map = maps__find_by_name(kmaps, dso_name);
1430 if (curr_map == NULL) {
1431 u64 start = sym->st_value;
1432
1433 if (kmodule)
1434 start += map__start(map) + shdr->sh_offset;
1435
1436 curr_dso = dso__new(dso_name);
1437 if (curr_dso == NULL)
1438 return -1;
1439 curr_dso->kernel = dso->kernel;
1440 curr_dso->long_name = dso->long_name;
1441 curr_dso->long_name_len = dso->long_name_len;
1442 curr_dso->binary_type = dso->binary_type;
1443 curr_dso->adjust_symbols = dso->adjust_symbols;
1444 curr_map = map__new2(start, curr_dso);
1445 dso__put(curr_dso);
1446 if (curr_map == NULL)
1447 return -1;
1448
1449 if (curr_dso->kernel)
1450 map__kmap(curr_map)->kmaps = kmaps;
1451
1452 if (adjust_kernel_syms) {
1453 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1454 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1455 map__set_pgoff(curr_map, shdr->sh_offset);
1456 } else {
1457 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1458 }
1459 curr_dso->symtab_type = dso->symtab_type;
1460 if (maps__insert(kmaps, curr_map))
1461 return -1;
1462 /*
1463 * Add it before we drop the reference to curr_map, i.e. while
1464 * we still are sure to have a reference to this DSO via
1465 * *curr_map->dso.
1466 */
1467 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1468 /* kmaps already got it */
1469 map__put(curr_map);
1470 dso__set_loaded(curr_dso);
1471 *curr_mapp = curr_map;
1472 *curr_dsop = curr_dso;
1473 } else
1474 *curr_dsop = map__dso(curr_map);
1475
1476 return 0;
1477}
1478
1479static int
1480dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1481 struct symsrc *runtime_ss, int kmodule, int dynsym)
1482{
1483 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1484 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1485 struct map *curr_map = map;
1486 struct dso *curr_dso = dso;
1487 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1488 uint32_t nr_syms;
1489 int err = -1;
1490 uint32_t idx;
1491 GElf_Ehdr ehdr;
1492 GElf_Shdr shdr;
1493 GElf_Shdr tshdr;
1494 Elf_Data *syms, *opddata = NULL;
1495 GElf_Sym sym;
1496 Elf_Scn *sec, *sec_strndx;
1497 Elf *elf;
1498 int nr = 0;
1499 bool remap_kernel = false, adjust_kernel_syms = false;
1500
1501 if (kmap && !kmaps)
1502 return -1;
1503
1504 elf = syms_ss->elf;
1505 ehdr = syms_ss->ehdr;
1506 if (dynsym) {
1507 sec = syms_ss->dynsym;
1508 shdr = syms_ss->dynshdr;
1509 } else {
1510 sec = syms_ss->symtab;
1511 shdr = syms_ss->symshdr;
1512 }
1513
1514 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1515 ".text", NULL)) {
1516 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1517 dso->text_end = tshdr.sh_offset + tshdr.sh_size;
1518 }
1519
1520 if (runtime_ss->opdsec)
1521 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1522
1523 syms = elf_getdata(sec, NULL);
1524 if (syms == NULL)
1525 goto out_elf_end;
1526
1527 sec = elf_getscn(elf, shdr.sh_link);
1528 if (sec == NULL)
1529 goto out_elf_end;
1530
1531 symstrs = elf_getdata(sec, NULL);
1532 if (symstrs == NULL)
1533 goto out_elf_end;
1534
1535 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1536 if (sec_strndx == NULL)
1537 goto out_elf_end;
1538
1539 secstrs_run = elf_getdata(sec_strndx, NULL);
1540 if (secstrs_run == NULL)
1541 goto out_elf_end;
1542
1543 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1544 if (sec_strndx == NULL)
1545 goto out_elf_end;
1546
1547 secstrs_sym = elf_getdata(sec_strndx, NULL);
1548 if (secstrs_sym == NULL)
1549 goto out_elf_end;
1550
1551 nr_syms = shdr.sh_size / shdr.sh_entsize;
1552
1553 memset(&sym, 0, sizeof(sym));
1554
1555 /*
1556 * The kernel relocation symbol is needed in advance in order to adjust
1557 * kernel maps correctly.
1558 */
1559 if (ref_reloc_sym_not_found(kmap)) {
1560 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1561 const char *elf_name = elf_sym__name(&sym, symstrs);
1562
1563 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1564 continue;
1565 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1566 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1567 break;
1568 }
1569 }
1570
1571 /*
1572 * Handle any relocation of vdso necessary because older kernels
1573 * attempted to prelink vdso to its virtual address.
1574 */
1575 if (dso__is_vdso(dso))
1576 map__set_reloc(map, map__start(map) - dso->text_offset);
1577
1578 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1579 /*
1580 * Initial kernel and module mappings do not map to the dso.
1581 * Flag the fixups.
1582 */
1583 if (dso->kernel) {
1584 remap_kernel = true;
1585 adjust_kernel_syms = dso->adjust_symbols;
1586 }
1587 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1588 struct symbol *f;
1589 const char *elf_name = elf_sym__name(&sym, symstrs);
1590 char *demangled = NULL;
1591 int is_label = elf_sym__is_label(&sym);
1592 const char *section_name;
1593 bool used_opd = false;
1594
1595 if (!is_label && !elf_sym__filter(&sym))
1596 continue;
1597
1598 /* Reject ARM ELF "mapping symbols": these aren't unique and
1599 * don't identify functions, so will confuse the profile
1600 * output: */
1601 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1602 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1603 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1604 continue;
1605 }
1606
1607 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1608 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1609 u64 *opd = opddata->d_buf + offset;
1610 sym.st_value = DSO__SWAP(dso, u64, *opd);
1611 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1612 sym.st_value);
1613 used_opd = true;
1614 }
1615
1616 /*
1617 * When loading symbols in a data mapping, ABS symbols (which
1618 * has a value of SHN_ABS in its st_shndx) failed at
1619 * elf_getscn(). And it marks the loading as a failure so
1620 * already loaded symbols cannot be fixed up.
1621 *
1622 * I'm not sure what should be done. Just ignore them for now.
1623 * - Namhyung Kim
1624 */
1625 if (sym.st_shndx == SHN_ABS)
1626 continue;
1627
1628 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1629 if (!sec)
1630 goto out_elf_end;
1631
1632 gelf_getshdr(sec, &shdr);
1633
1634 /*
1635 * If the attribute bit SHF_ALLOC is not set, the section
1636 * doesn't occupy memory during process execution.
1637 * E.g. ".gnu.warning.*" section is used by linker to generate
1638 * warnings when calling deprecated functions, the symbols in
1639 * the section aren't loaded to memory during process execution,
1640 * so skip them.
1641 */
1642 if (!(shdr.sh_flags & SHF_ALLOC))
1643 continue;
1644
1645 secstrs = secstrs_sym;
1646
1647 /*
1648 * We have to fallback to runtime when syms' section header has
1649 * NOBITS set. NOBITS results in file offset (sh_offset) not
1650 * being incremented. So sh_offset used below has different
1651 * values for syms (invalid) and runtime (valid).
1652 */
1653 if (shdr.sh_type == SHT_NOBITS) {
1654 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1655 if (!sec)
1656 goto out_elf_end;
1657
1658 gelf_getshdr(sec, &shdr);
1659 secstrs = secstrs_run;
1660 }
1661
1662 if (is_label && !elf_sec__filter(&shdr, secstrs))
1663 continue;
1664
1665 section_name = elf_sec__name(&shdr, secstrs);
1666
1667 /* On ARM, symbols for thumb functions have 1 added to
1668 * the symbol address as a flag - remove it */
1669 if ((ehdr.e_machine == EM_ARM) &&
1670 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1671 (sym.st_value & 1))
1672 --sym.st_value;
1673
1674 if (dso->kernel) {
1675 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1676 section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1677 goto out_elf_end;
1678 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1679 (!used_opd && syms_ss->adjust_symbols)) {
1680 GElf_Phdr phdr;
1681
1682 if (elf_read_program_header(runtime_ss->elf,
1683 (u64)sym.st_value, &phdr)) {
1684 pr_debug4("%s: failed to find program header for "
1685 "symbol: %s st_value: %#" PRIx64 "\n",
1686 __func__, elf_name, (u64)sym.st_value);
1687 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1688 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1689 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1690 (u64)shdr.sh_offset);
1691 /*
1692 * Fail to find program header, let's rollback
1693 * to use shdr.sh_addr and shdr.sh_offset to
1694 * calibrate symbol's file address, though this
1695 * is not necessary for normal C ELF file, we
1696 * still need to handle java JIT symbols in this
1697 * case.
1698 */
1699 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1700 } else {
1701 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1702 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1703 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1704 (u64)phdr.p_offset);
1705 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1706 }
1707 }
1708
1709 demangled = demangle_sym(dso, kmodule, elf_name);
1710 if (demangled != NULL)
1711 elf_name = demangled;
1712
1713 f = symbol__new(sym.st_value, sym.st_size,
1714 GELF_ST_BIND(sym.st_info),
1715 GELF_ST_TYPE(sym.st_info), elf_name);
1716 free(demangled);
1717 if (!f)
1718 goto out_elf_end;
1719
1720 arch__sym_update(f, &sym);
1721
1722 __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1723 nr++;
1724 }
1725
1726 /*
1727 * For misannotated, zeroed, ASM function sizes.
1728 */
1729 if (nr > 0) {
1730 symbols__fixup_end(&dso->symbols, false);
1731 symbols__fixup_duplicate(&dso->symbols);
1732 if (kmap) {
1733 /*
1734 * We need to fixup this here too because we create new
1735 * maps here, for things like vsyscall sections.
1736 */
1737 maps__fixup_end(kmaps);
1738 }
1739 }
1740 err = nr;
1741out_elf_end:
1742 return err;
1743}
1744
1745int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1746 struct symsrc *runtime_ss, int kmodule)
1747{
1748 int nr = 0;
1749 int err = -1;
1750
1751 dso->symtab_type = syms_ss->type;
1752 dso->is_64_bit = syms_ss->is_64_bit;
1753 dso->rel = syms_ss->ehdr.e_type == ET_REL;
1754
1755 /*
1756 * Modules may already have symbols from kallsyms, but those symbols
1757 * have the wrong values for the dso maps, so remove them.
1758 */
1759 if (kmodule && syms_ss->symtab)
1760 symbols__delete(&dso->symbols);
1761
1762 if (!syms_ss->symtab) {
1763 /*
1764 * If the vmlinux is stripped, fail so we will fall back
1765 * to using kallsyms. The vmlinux runtime symbols aren't
1766 * of much use.
1767 */
1768 if (dso->kernel)
1769 return err;
1770 } else {
1771 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1772 kmodule, 0);
1773 if (err < 0)
1774 return err;
1775 nr = err;
1776 }
1777
1778 if (syms_ss->dynsym) {
1779 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1780 kmodule, 1);
1781 if (err < 0)
1782 return err;
1783 err += nr;
1784 }
1785
1786 return err;
1787}
1788
1789static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1790{
1791 GElf_Phdr phdr;
1792 size_t i, phdrnum;
1793 int err;
1794 u64 sz;
1795
1796 if (elf_getphdrnum(elf, &phdrnum))
1797 return -1;
1798
1799 for (i = 0; i < phdrnum; i++) {
1800 if (gelf_getphdr(elf, i, &phdr) == NULL)
1801 return -1;
1802 if (phdr.p_type != PT_LOAD)
1803 continue;
1804 if (exe) {
1805 if (!(phdr.p_flags & PF_X))
1806 continue;
1807 } else {
1808 if (!(phdr.p_flags & PF_R))
1809 continue;
1810 }
1811 sz = min(phdr.p_memsz, phdr.p_filesz);
1812 if (!sz)
1813 continue;
1814 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1815 if (err)
1816 return err;
1817 }
1818 return 0;
1819}
1820
1821int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1822 bool *is_64_bit)
1823{
1824 int err;
1825 Elf *elf;
1826
1827 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1828 if (elf == NULL)
1829 return -1;
1830
1831 if (is_64_bit)
1832 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1833
1834 err = elf_read_maps(elf, exe, mapfn, data);
1835
1836 elf_end(elf);
1837 return err;
1838}
1839
1840enum dso_type dso__type_fd(int fd)
1841{
1842 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1843 GElf_Ehdr ehdr;
1844 Elf_Kind ek;
1845 Elf *elf;
1846
1847 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1848 if (elf == NULL)
1849 goto out;
1850
1851 ek = elf_kind(elf);
1852 if (ek != ELF_K_ELF)
1853 goto out_end;
1854
1855 if (gelf_getclass(elf) == ELFCLASS64) {
1856 dso_type = DSO__TYPE_64BIT;
1857 goto out_end;
1858 }
1859
1860 if (gelf_getehdr(elf, &ehdr) == NULL)
1861 goto out_end;
1862
1863 if (ehdr.e_machine == EM_X86_64)
1864 dso_type = DSO__TYPE_X32BIT;
1865 else
1866 dso_type = DSO__TYPE_32BIT;
1867out_end:
1868 elf_end(elf);
1869out:
1870 return dso_type;
1871}
1872
1873static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1874{
1875 ssize_t r;
1876 size_t n;
1877 int err = -1;
1878 char *buf = malloc(page_size);
1879
1880 if (buf == NULL)
1881 return -1;
1882
1883 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1884 goto out;
1885
1886 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1887 goto out;
1888
1889 while (len) {
1890 n = page_size;
1891 if (len < n)
1892 n = len;
1893 /* Use read because mmap won't work on proc files */
1894 r = read(from, buf, n);
1895 if (r < 0)
1896 goto out;
1897 if (!r)
1898 break;
1899 n = r;
1900 r = write(to, buf, n);
1901 if (r < 0)
1902 goto out;
1903 if ((size_t)r != n)
1904 goto out;
1905 len -= n;
1906 }
1907
1908 err = 0;
1909out:
1910 free(buf);
1911 return err;
1912}
1913
1914struct kcore {
1915 int fd;
1916 int elfclass;
1917 Elf *elf;
1918 GElf_Ehdr ehdr;
1919};
1920
1921static int kcore__open(struct kcore *kcore, const char *filename)
1922{
1923 GElf_Ehdr *ehdr;
1924
1925 kcore->fd = open(filename, O_RDONLY);
1926 if (kcore->fd == -1)
1927 return -1;
1928
1929 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1930 if (!kcore->elf)
1931 goto out_close;
1932
1933 kcore->elfclass = gelf_getclass(kcore->elf);
1934 if (kcore->elfclass == ELFCLASSNONE)
1935 goto out_end;
1936
1937 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1938 if (!ehdr)
1939 goto out_end;
1940
1941 return 0;
1942
1943out_end:
1944 elf_end(kcore->elf);
1945out_close:
1946 close(kcore->fd);
1947 return -1;
1948}
1949
1950static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1951 bool temp)
1952{
1953 kcore->elfclass = elfclass;
1954
1955 if (temp)
1956 kcore->fd = mkstemp(filename);
1957 else
1958 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1959 if (kcore->fd == -1)
1960 return -1;
1961
1962 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1963 if (!kcore->elf)
1964 goto out_close;
1965
1966 if (!gelf_newehdr(kcore->elf, elfclass))
1967 goto out_end;
1968
1969 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1970
1971 return 0;
1972
1973out_end:
1974 elf_end(kcore->elf);
1975out_close:
1976 close(kcore->fd);
1977 unlink(filename);
1978 return -1;
1979}
1980
1981static void kcore__close(struct kcore *kcore)
1982{
1983 elf_end(kcore->elf);
1984 close(kcore->fd);
1985}
1986
1987static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1988{
1989 GElf_Ehdr *ehdr = &to->ehdr;
1990 GElf_Ehdr *kehdr = &from->ehdr;
1991
1992 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1993 ehdr->e_type = kehdr->e_type;
1994 ehdr->e_machine = kehdr->e_machine;
1995 ehdr->e_version = kehdr->e_version;
1996 ehdr->e_entry = 0;
1997 ehdr->e_shoff = 0;
1998 ehdr->e_flags = kehdr->e_flags;
1999 ehdr->e_phnum = count;
2000 ehdr->e_shentsize = 0;
2001 ehdr->e_shnum = 0;
2002 ehdr->e_shstrndx = 0;
2003
2004 if (from->elfclass == ELFCLASS32) {
2005 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2006 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2007 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2008 } else {
2009 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2010 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2011 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2012 }
2013
2014 if (!gelf_update_ehdr(to->elf, ehdr))
2015 return -1;
2016
2017 if (!gelf_newphdr(to->elf, count))
2018 return -1;
2019
2020 return 0;
2021}
2022
2023static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2024 u64 addr, u64 len)
2025{
2026 GElf_Phdr phdr = {
2027 .p_type = PT_LOAD,
2028 .p_flags = PF_R | PF_W | PF_X,
2029 .p_offset = offset,
2030 .p_vaddr = addr,
2031 .p_paddr = 0,
2032 .p_filesz = len,
2033 .p_memsz = len,
2034 .p_align = page_size,
2035 };
2036
2037 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2038 return -1;
2039
2040 return 0;
2041}
2042
2043static off_t kcore__write(struct kcore *kcore)
2044{
2045 return elf_update(kcore->elf, ELF_C_WRITE);
2046}
2047
2048struct phdr_data {
2049 off_t offset;
2050 off_t rel;
2051 u64 addr;
2052 u64 len;
2053 struct list_head node;
2054 struct phdr_data *remaps;
2055};
2056
2057struct sym_data {
2058 u64 addr;
2059 struct list_head node;
2060};
2061
2062struct kcore_copy_info {
2063 u64 stext;
2064 u64 etext;
2065 u64 first_symbol;
2066 u64 last_symbol;
2067 u64 first_module;
2068 u64 first_module_symbol;
2069 u64 last_module_symbol;
2070 size_t phnum;
2071 struct list_head phdrs;
2072 struct list_head syms;
2073};
2074
2075#define kcore_copy__for_each_phdr(k, p) \
2076 list_for_each_entry((p), &(k)->phdrs, node)
2077
2078static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2079{
2080 struct phdr_data *p = zalloc(sizeof(*p));
2081
2082 if (p) {
2083 p->addr = addr;
2084 p->len = len;
2085 p->offset = offset;
2086 }
2087
2088 return p;
2089}
2090
2091static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2092 u64 addr, u64 len,
2093 off_t offset)
2094{
2095 struct phdr_data *p = phdr_data__new(addr, len, offset);
2096
2097 if (p)
2098 list_add_tail(&p->node, &kci->phdrs);
2099
2100 return p;
2101}
2102
2103static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2104{
2105 struct phdr_data *p, *tmp;
2106
2107 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2108 list_del_init(&p->node);
2109 free(p);
2110 }
2111}
2112
2113static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2114 u64 addr)
2115{
2116 struct sym_data *s = zalloc(sizeof(*s));
2117
2118 if (s) {
2119 s->addr = addr;
2120 list_add_tail(&s->node, &kci->syms);
2121 }
2122
2123 return s;
2124}
2125
2126static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2127{
2128 struct sym_data *s, *tmp;
2129
2130 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2131 list_del_init(&s->node);
2132 free(s);
2133 }
2134}
2135
2136static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2137 u64 start)
2138{
2139 struct kcore_copy_info *kci = arg;
2140
2141 if (!kallsyms__is_function(type))
2142 return 0;
2143
2144 if (strchr(name, '[')) {
2145 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2146 kci->first_module_symbol = start;
2147 if (start > kci->last_module_symbol)
2148 kci->last_module_symbol = start;
2149 return 0;
2150 }
2151
2152 if (!kci->first_symbol || start < kci->first_symbol)
2153 kci->first_symbol = start;
2154
2155 if (!kci->last_symbol || start > kci->last_symbol)
2156 kci->last_symbol = start;
2157
2158 if (!strcmp(name, "_stext")) {
2159 kci->stext = start;
2160 return 0;
2161 }
2162
2163 if (!strcmp(name, "_etext")) {
2164 kci->etext = start;
2165 return 0;
2166 }
2167
2168 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2169 return -1;
2170
2171 return 0;
2172}
2173
2174static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2175 const char *dir)
2176{
2177 char kallsyms_filename[PATH_MAX];
2178
2179 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2180
2181 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2182 return -1;
2183
2184 if (kallsyms__parse(kallsyms_filename, kci,
2185 kcore_copy__process_kallsyms) < 0)
2186 return -1;
2187
2188 return 0;
2189}
2190
2191static int kcore_copy__process_modules(void *arg,
2192 const char *name __maybe_unused,
2193 u64 start, u64 size __maybe_unused)
2194{
2195 struct kcore_copy_info *kci = arg;
2196
2197 if (!kci->first_module || start < kci->first_module)
2198 kci->first_module = start;
2199
2200 return 0;
2201}
2202
2203static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2204 const char *dir)
2205{
2206 char modules_filename[PATH_MAX];
2207
2208 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2209
2210 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2211 return -1;
2212
2213 if (modules__parse(modules_filename, kci,
2214 kcore_copy__process_modules) < 0)
2215 return -1;
2216
2217 return 0;
2218}
2219
2220static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2221 u64 pgoff, u64 s, u64 e)
2222{
2223 u64 len, offset;
2224
2225 if (s < start || s >= end)
2226 return 0;
2227
2228 offset = (s - start) + pgoff;
2229 len = e < end ? e - s : end - s;
2230
2231 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2232}
2233
2234static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2235{
2236 struct kcore_copy_info *kci = data;
2237 u64 end = start + len;
2238 struct sym_data *sdat;
2239
2240 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2241 return -1;
2242
2243 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2244 kci->last_module_symbol))
2245 return -1;
2246
2247 list_for_each_entry(sdat, &kci->syms, node) {
2248 u64 s = round_down(sdat->addr, page_size);
2249
2250 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2251 return -1;
2252 }
2253
2254 return 0;
2255}
2256
2257static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2258{
2259 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2260 return -1;
2261
2262 return 0;
2263}
2264
2265static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2266{
2267 struct phdr_data *p, *k = NULL;
2268 u64 kend;
2269
2270 if (!kci->stext)
2271 return;
2272
2273 /* Find phdr that corresponds to the kernel map (contains stext) */
2274 kcore_copy__for_each_phdr(kci, p) {
2275 u64 pend = p->addr + p->len - 1;
2276
2277 if (p->addr <= kci->stext && pend >= kci->stext) {
2278 k = p;
2279 break;
2280 }
2281 }
2282
2283 if (!k)
2284 return;
2285
2286 kend = k->offset + k->len;
2287
2288 /* Find phdrs that remap the kernel */
2289 kcore_copy__for_each_phdr(kci, p) {
2290 u64 pend = p->offset + p->len;
2291
2292 if (p == k)
2293 continue;
2294
2295 if (p->offset >= k->offset && pend <= kend)
2296 p->remaps = k;
2297 }
2298}
2299
2300static void kcore_copy__layout(struct kcore_copy_info *kci)
2301{
2302 struct phdr_data *p;
2303 off_t rel = 0;
2304
2305 kcore_copy__find_remaps(kci);
2306
2307 kcore_copy__for_each_phdr(kci, p) {
2308 if (!p->remaps) {
2309 p->rel = rel;
2310 rel += p->len;
2311 }
2312 kci->phnum += 1;
2313 }
2314
2315 kcore_copy__for_each_phdr(kci, p) {
2316 struct phdr_data *k = p->remaps;
2317
2318 if (k)
2319 p->rel = p->offset - k->offset + k->rel;
2320 }
2321}
2322
2323static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2324 Elf *elf)
2325{
2326 if (kcore_copy__parse_kallsyms(kci, dir))
2327 return -1;
2328
2329 if (kcore_copy__parse_modules(kci, dir))
2330 return -1;
2331
2332 if (kci->stext)
2333 kci->stext = round_down(kci->stext, page_size);
2334 else
2335 kci->stext = round_down(kci->first_symbol, page_size);
2336
2337 if (kci->etext) {
2338 kci->etext = round_up(kci->etext, page_size);
2339 } else if (kci->last_symbol) {
2340 kci->etext = round_up(kci->last_symbol, page_size);
2341 kci->etext += page_size;
2342 }
2343
2344 if (kci->first_module_symbol &&
2345 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2346 kci->first_module = kci->first_module_symbol;
2347
2348 kci->first_module = round_down(kci->first_module, page_size);
2349
2350 if (kci->last_module_symbol) {
2351 kci->last_module_symbol = round_up(kci->last_module_symbol,
2352 page_size);
2353 kci->last_module_symbol += page_size;
2354 }
2355
2356 if (!kci->stext || !kci->etext)
2357 return -1;
2358
2359 if (kci->first_module && !kci->last_module_symbol)
2360 return -1;
2361
2362 if (kcore_copy__read_maps(kci, elf))
2363 return -1;
2364
2365 kcore_copy__layout(kci);
2366
2367 return 0;
2368}
2369
2370static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2371 const char *name)
2372{
2373 char from_filename[PATH_MAX];
2374 char to_filename[PATH_MAX];
2375
2376 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2377 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2378
2379 return copyfile_mode(from_filename, to_filename, 0400);
2380}
2381
2382static int kcore_copy__unlink(const char *dir, const char *name)
2383{
2384 char filename[PATH_MAX];
2385
2386 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2387
2388 return unlink(filename);
2389}
2390
2391static int kcore_copy__compare_fds(int from, int to)
2392{
2393 char *buf_from;
2394 char *buf_to;
2395 ssize_t ret;
2396 size_t len;
2397 int err = -1;
2398
2399 buf_from = malloc(page_size);
2400 buf_to = malloc(page_size);
2401 if (!buf_from || !buf_to)
2402 goto out;
2403
2404 while (1) {
2405 /* Use read because mmap won't work on proc files */
2406 ret = read(from, buf_from, page_size);
2407 if (ret < 0)
2408 goto out;
2409
2410 if (!ret)
2411 break;
2412
2413 len = ret;
2414
2415 if (readn(to, buf_to, len) != (int)len)
2416 goto out;
2417
2418 if (memcmp(buf_from, buf_to, len))
2419 goto out;
2420 }
2421
2422 err = 0;
2423out:
2424 free(buf_to);
2425 free(buf_from);
2426 return err;
2427}
2428
2429static int kcore_copy__compare_files(const char *from_filename,
2430 const char *to_filename)
2431{
2432 int from, to, err = -1;
2433
2434 from = open(from_filename, O_RDONLY);
2435 if (from < 0)
2436 return -1;
2437
2438 to = open(to_filename, O_RDONLY);
2439 if (to < 0)
2440 goto out_close_from;
2441
2442 err = kcore_copy__compare_fds(from, to);
2443
2444 close(to);
2445out_close_from:
2446 close(from);
2447 return err;
2448}
2449
2450static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2451 const char *name)
2452{
2453 char from_filename[PATH_MAX];
2454 char to_filename[PATH_MAX];
2455
2456 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2457 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2458
2459 return kcore_copy__compare_files(from_filename, to_filename);
2460}
2461
2462/**
2463 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2464 * @from_dir: from directory
2465 * @to_dir: to directory
2466 *
2467 * This function copies kallsyms, modules and kcore files from one directory to
2468 * another. kallsyms and modules are copied entirely. Only code segments are
2469 * copied from kcore. It is assumed that two segments suffice: one for the
2470 * kernel proper and one for all the modules. The code segments are determined
2471 * from kallsyms and modules files. The kernel map starts at _stext or the
2472 * lowest function symbol, and ends at _etext or the highest function symbol.
2473 * The module map starts at the lowest module address and ends at the highest
2474 * module symbol. Start addresses are rounded down to the nearest page. End
2475 * addresses are rounded up to the nearest page. An extra page is added to the
2476 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2477 * symbol too. Because it contains only code sections, the resulting kcore is
2478 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2479 * is not the same for the kernel map and the modules map. That happens because
2480 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2481 * kallsyms file is compared with its copy to check that modules have not been
2482 * loaded or unloaded while the copies were taking place.
2483 *
2484 * Return: %0 on success, %-1 on failure.
2485 */
2486int kcore_copy(const char *from_dir, const char *to_dir)
2487{
2488 struct kcore kcore;
2489 struct kcore extract;
2490 int idx = 0, err = -1;
2491 off_t offset, sz;
2492 struct kcore_copy_info kci = { .stext = 0, };
2493 char kcore_filename[PATH_MAX];
2494 char extract_filename[PATH_MAX];
2495 struct phdr_data *p;
2496
2497 INIT_LIST_HEAD(&kci.phdrs);
2498 INIT_LIST_HEAD(&kci.syms);
2499
2500 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2501 return -1;
2502
2503 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2504 goto out_unlink_kallsyms;
2505
2506 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2507 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2508
2509 if (kcore__open(&kcore, kcore_filename))
2510 goto out_unlink_modules;
2511
2512 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2513 goto out_kcore_close;
2514
2515 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2516 goto out_kcore_close;
2517
2518 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2519 goto out_extract_close;
2520
2521 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2522 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2523 offset = round_up(offset, page_size);
2524
2525 kcore_copy__for_each_phdr(&kci, p) {
2526 off_t offs = p->rel + offset;
2527
2528 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2529 goto out_extract_close;
2530 }
2531
2532 sz = kcore__write(&extract);
2533 if (sz < 0 || sz > offset)
2534 goto out_extract_close;
2535
2536 kcore_copy__for_each_phdr(&kci, p) {
2537 off_t offs = p->rel + offset;
2538
2539 if (p->remaps)
2540 continue;
2541 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2542 goto out_extract_close;
2543 }
2544
2545 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2546 goto out_extract_close;
2547
2548 err = 0;
2549
2550out_extract_close:
2551 kcore__close(&extract);
2552 if (err)
2553 unlink(extract_filename);
2554out_kcore_close:
2555 kcore__close(&kcore);
2556out_unlink_modules:
2557 if (err)
2558 kcore_copy__unlink(to_dir, "modules");
2559out_unlink_kallsyms:
2560 if (err)
2561 kcore_copy__unlink(to_dir, "kallsyms");
2562
2563 kcore_copy__free_phdrs(&kci);
2564 kcore_copy__free_syms(&kci);
2565
2566 return err;
2567}
2568
2569int kcore_extract__create(struct kcore_extract *kce)
2570{
2571 struct kcore kcore;
2572 struct kcore extract;
2573 size_t count = 1;
2574 int idx = 0, err = -1;
2575 off_t offset = page_size, sz;
2576
2577 if (kcore__open(&kcore, kce->kcore_filename))
2578 return -1;
2579
2580 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2581 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2582 goto out_kcore_close;
2583
2584 if (kcore__copy_hdr(&kcore, &extract, count))
2585 goto out_extract_close;
2586
2587 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2588 goto out_extract_close;
2589
2590 sz = kcore__write(&extract);
2591 if (sz < 0 || sz > offset)
2592 goto out_extract_close;
2593
2594 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2595 goto out_extract_close;
2596
2597 err = 0;
2598
2599out_extract_close:
2600 kcore__close(&extract);
2601 if (err)
2602 unlink(kce->extract_filename);
2603out_kcore_close:
2604 kcore__close(&kcore);
2605
2606 return err;
2607}
2608
2609void kcore_extract__delete(struct kcore_extract *kce)
2610{
2611 unlink(kce->extract_filename);
2612}
2613
2614#ifdef HAVE_GELF_GETNOTE_SUPPORT
2615
2616static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2617{
2618 if (!base_off)
2619 return;
2620
2621 if (tmp->bit32)
2622 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2623 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2624 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2625 else
2626 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2627 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2628 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2629}
2630
2631static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2632 GElf_Addr base_off)
2633{
2634 if (!base_off)
2635 return;
2636
2637 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2638 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2639 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2640 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2641}
2642
2643/**
2644 * populate_sdt_note : Parse raw data and identify SDT note
2645 * @elf: elf of the opened file
2646 * @data: raw data of a section with description offset applied
2647 * @len: note description size
2648 * @type: type of the note
2649 * @sdt_notes: List to add the SDT note
2650 *
2651 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2652 * if its an SDT note, it appends to @sdt_notes list.
2653 */
2654static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2655 struct list_head *sdt_notes)
2656{
2657 const char *provider, *name, *args;
2658 struct sdt_note *tmp = NULL;
2659 GElf_Ehdr ehdr;
2660 GElf_Shdr shdr;
2661 int ret = -EINVAL;
2662
2663 union {
2664 Elf64_Addr a64[NR_ADDR];
2665 Elf32_Addr a32[NR_ADDR];
2666 } buf;
2667
2668 Elf_Data dst = {
2669 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2670 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2671 .d_off = 0, .d_align = 0
2672 };
2673 Elf_Data src = {
2674 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2675 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2676 .d_align = 0
2677 };
2678
2679 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2680 if (!tmp) {
2681 ret = -ENOMEM;
2682 goto out_err;
2683 }
2684
2685 INIT_LIST_HEAD(&tmp->note_list);
2686
2687 if (len < dst.d_size + 3)
2688 goto out_free_note;
2689
2690 /* Translation from file representation to memory representation */
2691 if (gelf_xlatetom(*elf, &dst, &src,
2692 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2693 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2694 goto out_free_note;
2695 }
2696
2697 /* Populate the fields of sdt_note */
2698 provider = data + dst.d_size;
2699
2700 name = (const char *)memchr(provider, '\0', data + len - provider);
2701 if (name++ == NULL)
2702 goto out_free_note;
2703
2704 tmp->provider = strdup(provider);
2705 if (!tmp->provider) {
2706 ret = -ENOMEM;
2707 goto out_free_note;
2708 }
2709 tmp->name = strdup(name);
2710 if (!tmp->name) {
2711 ret = -ENOMEM;
2712 goto out_free_prov;
2713 }
2714
2715 args = memchr(name, '\0', data + len - name);
2716
2717 /*
2718 * There is no argument if:
2719 * - We reached the end of the note;
2720 * - There is not enough room to hold a potential string;
2721 * - The argument string is empty or just contains ':'.
2722 */
2723 if (args == NULL || data + len - args < 2 ||
2724 args[1] == ':' || args[1] == '\0')
2725 tmp->args = NULL;
2726 else {
2727 tmp->args = strdup(++args);
2728 if (!tmp->args) {
2729 ret = -ENOMEM;
2730 goto out_free_name;
2731 }
2732 }
2733
2734 if (gelf_getclass(*elf) == ELFCLASS32) {
2735 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2736 tmp->bit32 = true;
2737 } else {
2738 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2739 tmp->bit32 = false;
2740 }
2741
2742 if (!gelf_getehdr(*elf, &ehdr)) {
2743 pr_debug("%s : cannot get elf header.\n", __func__);
2744 ret = -EBADF;
2745 goto out_free_args;
2746 }
2747
2748 /* Adjust the prelink effect :
2749 * Find out the .stapsdt.base section.
2750 * This scn will help us to handle prelinking (if present).
2751 * Compare the retrieved file offset of the base section with the
2752 * base address in the description of the SDT note. If its different,
2753 * then accordingly, adjust the note location.
2754 */
2755 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2756 sdt_adjust_loc(tmp, shdr.sh_offset);
2757
2758 /* Adjust reference counter offset */
2759 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2760 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2761
2762 list_add_tail(&tmp->note_list, sdt_notes);
2763 return 0;
2764
2765out_free_args:
2766 zfree(&tmp->args);
2767out_free_name:
2768 zfree(&tmp->name);
2769out_free_prov:
2770 zfree(&tmp->provider);
2771out_free_note:
2772 free(tmp);
2773out_err:
2774 return ret;
2775}
2776
2777/**
2778 * construct_sdt_notes_list : constructs a list of SDT notes
2779 * @elf : elf to look into
2780 * @sdt_notes : empty list_head
2781 *
2782 * Scans the sections in 'elf' for the section
2783 * .note.stapsdt. It, then calls populate_sdt_note to find
2784 * out the SDT events and populates the 'sdt_notes'.
2785 */
2786static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2787{
2788 GElf_Ehdr ehdr;
2789 Elf_Scn *scn = NULL;
2790 Elf_Data *data;
2791 GElf_Shdr shdr;
2792 size_t shstrndx, next;
2793 GElf_Nhdr nhdr;
2794 size_t name_off, desc_off, offset;
2795 int ret = 0;
2796
2797 if (gelf_getehdr(elf, &ehdr) == NULL) {
2798 ret = -EBADF;
2799 goto out_ret;
2800 }
2801 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2802 ret = -EBADF;
2803 goto out_ret;
2804 }
2805
2806 /* Look for the required section */
2807 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2808 if (!scn) {
2809 ret = -ENOENT;
2810 goto out_ret;
2811 }
2812
2813 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2814 ret = -ENOENT;
2815 goto out_ret;
2816 }
2817
2818 data = elf_getdata(scn, NULL);
2819
2820 /* Get the SDT notes */
2821 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2822 &desc_off)) > 0; offset = next) {
2823 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2824 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2825 sizeof(SDT_NOTE_NAME))) {
2826 /* Check the type of the note */
2827 if (nhdr.n_type != SDT_NOTE_TYPE)
2828 goto out_ret;
2829
2830 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2831 nhdr.n_descsz, sdt_notes);
2832 if (ret < 0)
2833 goto out_ret;
2834 }
2835 }
2836 if (list_empty(sdt_notes))
2837 ret = -ENOENT;
2838
2839out_ret:
2840 return ret;
2841}
2842
2843/**
2844 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2845 * @head : empty list_head
2846 * @target : file to find SDT notes from
2847 *
2848 * This opens the file, initializes
2849 * the ELF and then calls construct_sdt_notes_list.
2850 */
2851int get_sdt_note_list(struct list_head *head, const char *target)
2852{
2853 Elf *elf;
2854 int fd, ret;
2855
2856 fd = open(target, O_RDONLY);
2857 if (fd < 0)
2858 return -EBADF;
2859
2860 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2861 if (!elf) {
2862 ret = -EBADF;
2863 goto out_close;
2864 }
2865 ret = construct_sdt_notes_list(elf, head);
2866 elf_end(elf);
2867out_close:
2868 close(fd);
2869 return ret;
2870}
2871
2872/**
2873 * cleanup_sdt_note_list : free the sdt notes' list
2874 * @sdt_notes: sdt notes' list
2875 *
2876 * Free up the SDT notes in @sdt_notes.
2877 * Returns the number of SDT notes free'd.
2878 */
2879int cleanup_sdt_note_list(struct list_head *sdt_notes)
2880{
2881 struct sdt_note *tmp, *pos;
2882 int nr_free = 0;
2883
2884 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2885 list_del_init(&pos->note_list);
2886 zfree(&pos->args);
2887 zfree(&pos->name);
2888 zfree(&pos->provider);
2889 free(pos);
2890 nr_free++;
2891 }
2892 return nr_free;
2893}
2894
2895/**
2896 * sdt_notes__get_count: Counts the number of sdt events
2897 * @start: list_head to sdt_notes list
2898 *
2899 * Returns the number of SDT notes in a list
2900 */
2901int sdt_notes__get_count(struct list_head *start)
2902{
2903 struct sdt_note *sdt_ptr;
2904 int count = 0;
2905
2906 list_for_each_entry(sdt_ptr, start, note_list)
2907 count++;
2908 return count;
2909}
2910#endif
2911
2912void symbol__elf_init(void)
2913{
2914 elf_version(EV_CURRENT);
2915}
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "maps.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-ocaml.h"
16#include "demangle-java.h"
17#include "demangle-rust.h"
18#include "machine.h"
19#include "vdso.h"
20#include "debug.h"
21#include "util/copyfile.h"
22#include <linux/ctype.h>
23#include <linux/kernel.h>
24#include <linux/zalloc.h>
25#include <symbol/kallsyms.h>
26#include <internal/lib.h>
27
28#ifndef EM_AARCH64
29#define EM_AARCH64 183 /* ARM 64 bit */
30#endif
31
32#ifndef ELF32_ST_VISIBILITY
33#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
34#endif
35
36/* For ELF64 the definitions are the same. */
37#ifndef ELF64_ST_VISIBILITY
38#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
39#endif
40
41/* How to extract information held in the st_other field. */
42#ifndef GELF_ST_VISIBILITY
43#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
44#endif
45
46typedef Elf64_Nhdr GElf_Nhdr;
47
48#ifndef DMGL_PARAMS
49#define DMGL_NO_OPTS 0 /* For readability... */
50#define DMGL_PARAMS (1 << 0) /* Include function args */
51#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
52#endif
53
54#ifdef HAVE_LIBBFD_SUPPORT
55#define PACKAGE 'perf'
56#include <bfd.h>
57#else
58#ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
59extern char *cplus_demangle(const char *, int);
60
61static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
62{
63 return cplus_demangle(c, i);
64}
65#else
66#ifdef NO_DEMANGLE
67static inline char *bfd_demangle(void __maybe_unused *v,
68 const char __maybe_unused *c,
69 int __maybe_unused i)
70{
71 return NULL;
72}
73#endif
74#endif
75#endif
76
77#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
78static int elf_getphdrnum(Elf *elf, size_t *dst)
79{
80 GElf_Ehdr gehdr;
81 GElf_Ehdr *ehdr;
82
83 ehdr = gelf_getehdr(elf, &gehdr);
84 if (!ehdr)
85 return -1;
86
87 *dst = ehdr->e_phnum;
88
89 return 0;
90}
91#endif
92
93#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
94static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
95{
96 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
97 return -1;
98}
99#endif
100
101#ifndef NT_GNU_BUILD_ID
102#define NT_GNU_BUILD_ID 3
103#endif
104
105/**
106 * elf_symtab__for_each_symbol - iterate thru all the symbols
107 *
108 * @syms: struct elf_symtab instance to iterate
109 * @idx: uint32_t idx
110 * @sym: GElf_Sym iterator
111 */
112#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
113 for (idx = 0, gelf_getsym(syms, idx, &sym);\
114 idx < nr_syms; \
115 idx++, gelf_getsym(syms, idx, &sym))
116
117static inline uint8_t elf_sym__type(const GElf_Sym *sym)
118{
119 return GELF_ST_TYPE(sym->st_info);
120}
121
122static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
123{
124 return GELF_ST_VISIBILITY(sym->st_other);
125}
126
127#ifndef STT_GNU_IFUNC
128#define STT_GNU_IFUNC 10
129#endif
130
131static inline int elf_sym__is_function(const GElf_Sym *sym)
132{
133 return (elf_sym__type(sym) == STT_FUNC ||
134 elf_sym__type(sym) == STT_GNU_IFUNC) &&
135 sym->st_name != 0 &&
136 sym->st_shndx != SHN_UNDEF;
137}
138
139static inline bool elf_sym__is_object(const GElf_Sym *sym)
140{
141 return elf_sym__type(sym) == STT_OBJECT &&
142 sym->st_name != 0 &&
143 sym->st_shndx != SHN_UNDEF;
144}
145
146static inline int elf_sym__is_label(const GElf_Sym *sym)
147{
148 return elf_sym__type(sym) == STT_NOTYPE &&
149 sym->st_name != 0 &&
150 sym->st_shndx != SHN_UNDEF &&
151 sym->st_shndx != SHN_ABS &&
152 elf_sym__visibility(sym) != STV_HIDDEN &&
153 elf_sym__visibility(sym) != STV_INTERNAL;
154}
155
156static bool elf_sym__filter(GElf_Sym *sym)
157{
158 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
159}
160
161static inline const char *elf_sym__name(const GElf_Sym *sym,
162 const Elf_Data *symstrs)
163{
164 return symstrs->d_buf + sym->st_name;
165}
166
167static inline const char *elf_sec__name(const GElf_Shdr *shdr,
168 const Elf_Data *secstrs)
169{
170 return secstrs->d_buf + shdr->sh_name;
171}
172
173static inline int elf_sec__is_text(const GElf_Shdr *shdr,
174 const Elf_Data *secstrs)
175{
176 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
177}
178
179static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
180 const Elf_Data *secstrs)
181{
182 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
183}
184
185static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
186{
187 return elf_sec__is_text(shdr, secstrs) ||
188 elf_sec__is_data(shdr, secstrs);
189}
190
191static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
192{
193 Elf_Scn *sec = NULL;
194 GElf_Shdr shdr;
195 size_t cnt = 1;
196
197 while ((sec = elf_nextscn(elf, sec)) != NULL) {
198 gelf_getshdr(sec, &shdr);
199
200 if ((addr >= shdr.sh_addr) &&
201 (addr < (shdr.sh_addr + shdr.sh_size)))
202 return cnt;
203
204 ++cnt;
205 }
206
207 return -1;
208}
209
210Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
211 GElf_Shdr *shp, const char *name, size_t *idx)
212{
213 Elf_Scn *sec = NULL;
214 size_t cnt = 1;
215
216 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
217 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
218 return NULL;
219
220 while ((sec = elf_nextscn(elf, sec)) != NULL) {
221 char *str;
222
223 gelf_getshdr(sec, shp);
224 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
225 if (str && !strcmp(name, str)) {
226 if (idx)
227 *idx = cnt;
228 return sec;
229 }
230 ++cnt;
231 }
232
233 return NULL;
234}
235
236bool filename__has_section(const char *filename, const char *sec)
237{
238 int fd;
239 Elf *elf;
240 GElf_Ehdr ehdr;
241 GElf_Shdr shdr;
242 bool found = false;
243
244 fd = open(filename, O_RDONLY);
245 if (fd < 0)
246 return false;
247
248 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
249 if (elf == NULL)
250 goto out;
251
252 if (gelf_getehdr(elf, &ehdr) == NULL)
253 goto elf_out;
254
255 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
256
257elf_out:
258 elf_end(elf);
259out:
260 close(fd);
261 return found;
262}
263
264static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
265{
266 size_t i, phdrnum;
267 u64 sz;
268
269 if (elf_getphdrnum(elf, &phdrnum))
270 return -1;
271
272 for (i = 0; i < phdrnum; i++) {
273 if (gelf_getphdr(elf, i, phdr) == NULL)
274 return -1;
275
276 if (phdr->p_type != PT_LOAD)
277 continue;
278
279 sz = max(phdr->p_memsz, phdr->p_filesz);
280 if (!sz)
281 continue;
282
283 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
284 return 0;
285 }
286
287 /* Not found any valid program header */
288 return -1;
289}
290
291static bool want_demangle(bool is_kernel_sym)
292{
293 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
294}
295
296static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
297{
298 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
299 char *demangled = NULL;
300
301 /*
302 * We need to figure out if the object was created from C++ sources
303 * DWARF DW_compile_unit has this, but we don't always have access
304 * to it...
305 */
306 if (!want_demangle(dso->kernel || kmodule))
307 return demangled;
308
309 demangled = bfd_demangle(NULL, elf_name, demangle_flags);
310 if (demangled == NULL) {
311 demangled = ocaml_demangle_sym(elf_name);
312 if (demangled == NULL) {
313 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
314 }
315 }
316 else if (rust_is_mangled(demangled))
317 /*
318 * Input to Rust demangling is the BFD-demangled
319 * name which it Rust-demangles in place.
320 */
321 rust_demangle_sym(demangled);
322
323 return demangled;
324}
325
326#define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
327 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
328 idx < nr_entries; \
329 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
330
331#define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
332 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
333 idx < nr_entries; \
334 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
335
336/*
337 * We need to check if we have a .dynsym, so that we can handle the
338 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
339 * .dynsym or .symtab).
340 * And always look at the original dso, not at debuginfo packages, that
341 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
342 */
343int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
344{
345 uint32_t nr_rel_entries, idx;
346 GElf_Sym sym;
347 u64 plt_offset, plt_header_size, plt_entry_size;
348 GElf_Shdr shdr_plt;
349 struct symbol *f;
350 GElf_Shdr shdr_rel_plt, shdr_dynsym;
351 Elf_Data *reldata, *syms, *symstrs;
352 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
353 size_t dynsym_idx;
354 GElf_Ehdr ehdr;
355 char sympltname[1024];
356 Elf *elf;
357 int nr = 0, symidx, err = 0;
358
359 if (!ss->dynsym)
360 return 0;
361
362 elf = ss->elf;
363 ehdr = ss->ehdr;
364
365 scn_dynsym = ss->dynsym;
366 shdr_dynsym = ss->dynshdr;
367 dynsym_idx = ss->dynsym_idx;
368
369 if (scn_dynsym == NULL)
370 goto out_elf_end;
371
372 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
373 ".rela.plt", NULL);
374 if (scn_plt_rel == NULL) {
375 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
376 ".rel.plt", NULL);
377 if (scn_plt_rel == NULL)
378 goto out_elf_end;
379 }
380
381 err = -1;
382
383 if (shdr_rel_plt.sh_link != dynsym_idx)
384 goto out_elf_end;
385
386 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
387 goto out_elf_end;
388
389 /*
390 * Fetch the relocation section to find the idxes to the GOT
391 * and the symbols in the .dynsym they refer to.
392 */
393 reldata = elf_getdata(scn_plt_rel, NULL);
394 if (reldata == NULL)
395 goto out_elf_end;
396
397 syms = elf_getdata(scn_dynsym, NULL);
398 if (syms == NULL)
399 goto out_elf_end;
400
401 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
402 if (scn_symstrs == NULL)
403 goto out_elf_end;
404
405 symstrs = elf_getdata(scn_symstrs, NULL);
406 if (symstrs == NULL)
407 goto out_elf_end;
408
409 if (symstrs->d_size == 0)
410 goto out_elf_end;
411
412 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
413 plt_offset = shdr_plt.sh_offset;
414 switch (ehdr.e_machine) {
415 case EM_ARM:
416 plt_header_size = 20;
417 plt_entry_size = 12;
418 break;
419
420 case EM_AARCH64:
421 plt_header_size = 32;
422 plt_entry_size = 16;
423 break;
424
425 case EM_SPARC:
426 plt_header_size = 48;
427 plt_entry_size = 12;
428 break;
429
430 case EM_SPARCV9:
431 plt_header_size = 128;
432 plt_entry_size = 32;
433 break;
434
435 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
436 plt_header_size = shdr_plt.sh_entsize;
437 plt_entry_size = shdr_plt.sh_entsize;
438 break;
439 }
440 plt_offset += plt_header_size;
441
442 if (shdr_rel_plt.sh_type == SHT_RELA) {
443 GElf_Rela pos_mem, *pos;
444
445 elf_section__for_each_rela(reldata, pos, pos_mem, idx,
446 nr_rel_entries) {
447 const char *elf_name = NULL;
448 char *demangled = NULL;
449 symidx = GELF_R_SYM(pos->r_info);
450 gelf_getsym(syms, symidx, &sym);
451
452 elf_name = elf_sym__name(&sym, symstrs);
453 demangled = demangle_sym(dso, 0, elf_name);
454 if (demangled != NULL)
455 elf_name = demangled;
456 snprintf(sympltname, sizeof(sympltname),
457 "%s@plt", elf_name);
458 free(demangled);
459
460 f = symbol__new(plt_offset, plt_entry_size,
461 STB_GLOBAL, STT_FUNC, sympltname);
462 if (!f)
463 goto out_elf_end;
464
465 plt_offset += plt_entry_size;
466 symbols__insert(&dso->symbols, f);
467 ++nr;
468 }
469 } else if (shdr_rel_plt.sh_type == SHT_REL) {
470 GElf_Rel pos_mem, *pos;
471 elf_section__for_each_rel(reldata, pos, pos_mem, idx,
472 nr_rel_entries) {
473 const char *elf_name = NULL;
474 char *demangled = NULL;
475 symidx = GELF_R_SYM(pos->r_info);
476 gelf_getsym(syms, symidx, &sym);
477
478 elf_name = elf_sym__name(&sym, symstrs);
479 demangled = demangle_sym(dso, 0, elf_name);
480 if (demangled != NULL)
481 elf_name = demangled;
482 snprintf(sympltname, sizeof(sympltname),
483 "%s@plt", elf_name);
484 free(demangled);
485
486 f = symbol__new(plt_offset, plt_entry_size,
487 STB_GLOBAL, STT_FUNC, sympltname);
488 if (!f)
489 goto out_elf_end;
490
491 plt_offset += plt_entry_size;
492 symbols__insert(&dso->symbols, f);
493 ++nr;
494 }
495 }
496
497 err = 0;
498out_elf_end:
499 if (err == 0)
500 return nr;
501 pr_debug("%s: problems reading %s PLT info.\n",
502 __func__, dso->long_name);
503 return 0;
504}
505
506char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
507{
508 return demangle_sym(dso, kmodule, elf_name);
509}
510
511/*
512 * Align offset to 4 bytes as needed for note name and descriptor data.
513 */
514#define NOTE_ALIGN(n) (((n) + 3) & -4U)
515
516static int elf_read_build_id(Elf *elf, void *bf, size_t size)
517{
518 int err = -1;
519 GElf_Ehdr ehdr;
520 GElf_Shdr shdr;
521 Elf_Data *data;
522 Elf_Scn *sec;
523 Elf_Kind ek;
524 void *ptr;
525
526 if (size < BUILD_ID_SIZE)
527 goto out;
528
529 ek = elf_kind(elf);
530 if (ek != ELF_K_ELF)
531 goto out;
532
533 if (gelf_getehdr(elf, &ehdr) == NULL) {
534 pr_err("%s: cannot get elf header.\n", __func__);
535 goto out;
536 }
537
538 /*
539 * Check following sections for notes:
540 * '.note.gnu.build-id'
541 * '.notes'
542 * '.note' (VDSO specific)
543 */
544 do {
545 sec = elf_section_by_name(elf, &ehdr, &shdr,
546 ".note.gnu.build-id", NULL);
547 if (sec)
548 break;
549
550 sec = elf_section_by_name(elf, &ehdr, &shdr,
551 ".notes", NULL);
552 if (sec)
553 break;
554
555 sec = elf_section_by_name(elf, &ehdr, &shdr,
556 ".note", NULL);
557 if (sec)
558 break;
559
560 return err;
561
562 } while (0);
563
564 data = elf_getdata(sec, NULL);
565 if (data == NULL)
566 goto out;
567
568 ptr = data->d_buf;
569 while (ptr < (data->d_buf + data->d_size)) {
570 GElf_Nhdr *nhdr = ptr;
571 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
572 descsz = NOTE_ALIGN(nhdr->n_descsz);
573 const char *name;
574
575 ptr += sizeof(*nhdr);
576 name = ptr;
577 ptr += namesz;
578 if (nhdr->n_type == NT_GNU_BUILD_ID &&
579 nhdr->n_namesz == sizeof("GNU")) {
580 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
581 size_t sz = min(size, descsz);
582 memcpy(bf, ptr, sz);
583 memset(bf + sz, 0, size - sz);
584 err = descsz;
585 break;
586 }
587 }
588 ptr += descsz;
589 }
590
591out:
592 return err;
593}
594
595#ifdef HAVE_LIBBFD_BUILDID_SUPPORT
596
597static int read_build_id(const char *filename, struct build_id *bid)
598{
599 size_t size = sizeof(bid->data);
600 int err = -1;
601 bfd *abfd;
602
603 abfd = bfd_openr(filename, NULL);
604 if (!abfd)
605 return -1;
606
607 if (!bfd_check_format(abfd, bfd_object)) {
608 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
609 goto out_close;
610 }
611
612 if (!abfd->build_id || abfd->build_id->size > size)
613 goto out_close;
614
615 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
616 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
617 err = bid->size = abfd->build_id->size;
618
619out_close:
620 bfd_close(abfd);
621 return err;
622}
623
624#else // HAVE_LIBBFD_BUILDID_SUPPORT
625
626static int read_build_id(const char *filename, struct build_id *bid)
627{
628 size_t size = sizeof(bid->data);
629 int fd, err = -1;
630 Elf *elf;
631
632 if (size < BUILD_ID_SIZE)
633 goto out;
634
635 fd = open(filename, O_RDONLY);
636 if (fd < 0)
637 goto out;
638
639 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
640 if (elf == NULL) {
641 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
642 goto out_close;
643 }
644
645 err = elf_read_build_id(elf, bid->data, size);
646 if (err > 0)
647 bid->size = err;
648
649 elf_end(elf);
650out_close:
651 close(fd);
652out:
653 return err;
654}
655
656#endif // HAVE_LIBBFD_BUILDID_SUPPORT
657
658int filename__read_build_id(const char *filename, struct build_id *bid)
659{
660 struct kmod_path m = { .name = NULL, };
661 char path[PATH_MAX];
662 int err;
663
664 if (!filename)
665 return -EFAULT;
666
667 err = kmod_path__parse(&m, filename);
668 if (err)
669 return -1;
670
671 if (m.comp) {
672 int error = 0, fd;
673
674 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
675 if (fd < 0) {
676 pr_debug("Failed to decompress (error %d) %s\n",
677 error, filename);
678 return -1;
679 }
680 close(fd);
681 filename = path;
682 }
683
684 err = read_build_id(filename, bid);
685
686 if (m.comp)
687 unlink(filename);
688 return err;
689}
690
691int sysfs__read_build_id(const char *filename, struct build_id *bid)
692{
693 size_t size = sizeof(bid->data);
694 int fd, err = -1;
695
696 fd = open(filename, O_RDONLY);
697 if (fd < 0)
698 goto out;
699
700 while (1) {
701 char bf[BUFSIZ];
702 GElf_Nhdr nhdr;
703 size_t namesz, descsz;
704
705 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
706 break;
707
708 namesz = NOTE_ALIGN(nhdr.n_namesz);
709 descsz = NOTE_ALIGN(nhdr.n_descsz);
710 if (nhdr.n_type == NT_GNU_BUILD_ID &&
711 nhdr.n_namesz == sizeof("GNU")) {
712 if (read(fd, bf, namesz) != (ssize_t)namesz)
713 break;
714 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
715 size_t sz = min(descsz, size);
716 if (read(fd, bid->data, sz) == (ssize_t)sz) {
717 memset(bid->data + sz, 0, size - sz);
718 bid->size = sz;
719 err = 0;
720 break;
721 }
722 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
723 break;
724 } else {
725 int n = namesz + descsz;
726
727 if (n > (int)sizeof(bf)) {
728 n = sizeof(bf);
729 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
730 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
731 }
732 if (read(fd, bf, n) != n)
733 break;
734 }
735 }
736 close(fd);
737out:
738 return err;
739}
740
741#ifdef HAVE_LIBBFD_SUPPORT
742
743int filename__read_debuglink(const char *filename, char *debuglink,
744 size_t size)
745{
746 int err = -1;
747 asection *section;
748 bfd *abfd;
749
750 abfd = bfd_openr(filename, NULL);
751 if (!abfd)
752 return -1;
753
754 if (!bfd_check_format(abfd, bfd_object)) {
755 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
756 goto out_close;
757 }
758
759 section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
760 if (!section)
761 goto out_close;
762
763 if (section->size > size)
764 goto out_close;
765
766 if (!bfd_get_section_contents(abfd, section, debuglink, 0,
767 section->size))
768 goto out_close;
769
770 err = 0;
771
772out_close:
773 bfd_close(abfd);
774 return err;
775}
776
777#else
778
779int filename__read_debuglink(const char *filename, char *debuglink,
780 size_t size)
781{
782 int fd, err = -1;
783 Elf *elf;
784 GElf_Ehdr ehdr;
785 GElf_Shdr shdr;
786 Elf_Data *data;
787 Elf_Scn *sec;
788 Elf_Kind ek;
789
790 fd = open(filename, O_RDONLY);
791 if (fd < 0)
792 goto out;
793
794 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
795 if (elf == NULL) {
796 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
797 goto out_close;
798 }
799
800 ek = elf_kind(elf);
801 if (ek != ELF_K_ELF)
802 goto out_elf_end;
803
804 if (gelf_getehdr(elf, &ehdr) == NULL) {
805 pr_err("%s: cannot get elf header.\n", __func__);
806 goto out_elf_end;
807 }
808
809 sec = elf_section_by_name(elf, &ehdr, &shdr,
810 ".gnu_debuglink", NULL);
811 if (sec == NULL)
812 goto out_elf_end;
813
814 data = elf_getdata(sec, NULL);
815 if (data == NULL)
816 goto out_elf_end;
817
818 /* the start of this section is a zero-terminated string */
819 strncpy(debuglink, data->d_buf, size);
820
821 err = 0;
822
823out_elf_end:
824 elf_end(elf);
825out_close:
826 close(fd);
827out:
828 return err;
829}
830
831#endif
832
833static int dso__swap_init(struct dso *dso, unsigned char eidata)
834{
835 static unsigned int const endian = 1;
836
837 dso->needs_swap = DSO_SWAP__NO;
838
839 switch (eidata) {
840 case ELFDATA2LSB:
841 /* We are big endian, DSO is little endian. */
842 if (*(unsigned char const *)&endian != 1)
843 dso->needs_swap = DSO_SWAP__YES;
844 break;
845
846 case ELFDATA2MSB:
847 /* We are little endian, DSO is big endian. */
848 if (*(unsigned char const *)&endian != 0)
849 dso->needs_swap = DSO_SWAP__YES;
850 break;
851
852 default:
853 pr_err("unrecognized DSO data encoding %d\n", eidata);
854 return -EINVAL;
855 }
856
857 return 0;
858}
859
860bool symsrc__possibly_runtime(struct symsrc *ss)
861{
862 return ss->dynsym || ss->opdsec;
863}
864
865bool symsrc__has_symtab(struct symsrc *ss)
866{
867 return ss->symtab != NULL;
868}
869
870void symsrc__destroy(struct symsrc *ss)
871{
872 zfree(&ss->name);
873 elf_end(ss->elf);
874 close(ss->fd);
875}
876
877bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
878{
879 /*
880 * Usually vmlinux is an ELF file with type ET_EXEC for most
881 * architectures; except Arm64 kernel is linked with option
882 * '-share', so need to check type ET_DYN.
883 */
884 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
885 ehdr.e_type == ET_DYN;
886}
887
888int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
889 enum dso_binary_type type)
890{
891 GElf_Ehdr ehdr;
892 Elf *elf;
893 int fd;
894
895 if (dso__needs_decompress(dso)) {
896 fd = dso__decompress_kmodule_fd(dso, name);
897 if (fd < 0)
898 return -1;
899
900 type = dso->symtab_type;
901 } else {
902 fd = open(name, O_RDONLY);
903 if (fd < 0) {
904 dso->load_errno = errno;
905 return -1;
906 }
907 }
908
909 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
910 if (elf == NULL) {
911 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
912 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
913 goto out_close;
914 }
915
916 if (gelf_getehdr(elf, &ehdr) == NULL) {
917 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
918 pr_debug("%s: cannot get elf header.\n", __func__);
919 goto out_elf_end;
920 }
921
922 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
923 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
924 goto out_elf_end;
925 }
926
927 /* Always reject images with a mismatched build-id: */
928 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
929 u8 build_id[BUILD_ID_SIZE];
930 struct build_id bid;
931 int size;
932
933 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
934 if (size <= 0) {
935 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
936 goto out_elf_end;
937 }
938
939 build_id__init(&bid, build_id, size);
940 if (!dso__build_id_equal(dso, &bid)) {
941 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
942 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
943 goto out_elf_end;
944 }
945 }
946
947 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
948
949 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
950 NULL);
951 if (ss->symshdr.sh_type != SHT_SYMTAB)
952 ss->symtab = NULL;
953
954 ss->dynsym_idx = 0;
955 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
956 &ss->dynsym_idx);
957 if (ss->dynshdr.sh_type != SHT_DYNSYM)
958 ss->dynsym = NULL;
959
960 ss->opdidx = 0;
961 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
962 &ss->opdidx);
963 if (ss->opdshdr.sh_type != SHT_PROGBITS)
964 ss->opdsec = NULL;
965
966 if (dso->kernel == DSO_SPACE__USER)
967 ss->adjust_symbols = true;
968 else
969 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
970
971 ss->name = strdup(name);
972 if (!ss->name) {
973 dso->load_errno = errno;
974 goto out_elf_end;
975 }
976
977 ss->elf = elf;
978 ss->fd = fd;
979 ss->ehdr = ehdr;
980 ss->type = type;
981
982 return 0;
983
984out_elf_end:
985 elf_end(elf);
986out_close:
987 close(fd);
988 return -1;
989}
990
991/**
992 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
993 * @kmap: kernel maps and relocation reference symbol
994 *
995 * This function returns %true if we are dealing with the kernel maps and the
996 * relocation reference symbol has not yet been found. Otherwise %false is
997 * returned.
998 */
999static bool ref_reloc_sym_not_found(struct kmap *kmap)
1000{
1001 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1002 !kmap->ref_reloc_sym->unrelocated_addr;
1003}
1004
1005/**
1006 * ref_reloc - kernel relocation offset.
1007 * @kmap: kernel maps and relocation reference symbol
1008 *
1009 * This function returns the offset of kernel addresses as determined by using
1010 * the relocation reference symbol i.e. if the kernel has not been relocated
1011 * then the return value is zero.
1012 */
1013static u64 ref_reloc(struct kmap *kmap)
1014{
1015 if (kmap && kmap->ref_reloc_sym &&
1016 kmap->ref_reloc_sym->unrelocated_addr)
1017 return kmap->ref_reloc_sym->addr -
1018 kmap->ref_reloc_sym->unrelocated_addr;
1019 return 0;
1020}
1021
1022void __weak arch__sym_update(struct symbol *s __maybe_unused,
1023 GElf_Sym *sym __maybe_unused) { }
1024
1025static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1026 GElf_Sym *sym, GElf_Shdr *shdr,
1027 struct maps *kmaps, struct kmap *kmap,
1028 struct dso **curr_dsop, struct map **curr_mapp,
1029 const char *section_name,
1030 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1031{
1032 struct dso *curr_dso = *curr_dsop;
1033 struct map *curr_map;
1034 char dso_name[PATH_MAX];
1035
1036 /* Adjust symbol to map to file offset */
1037 if (adjust_kernel_syms)
1038 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1039
1040 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1041 return 0;
1042
1043 if (strcmp(section_name, ".text") == 0) {
1044 /*
1045 * The initial kernel mapping is based on
1046 * kallsyms and identity maps. Overwrite it to
1047 * map to the kernel dso.
1048 */
1049 if (*remap_kernel && dso->kernel && !kmodule) {
1050 *remap_kernel = false;
1051 map->start = shdr->sh_addr + ref_reloc(kmap);
1052 map->end = map->start + shdr->sh_size;
1053 map->pgoff = shdr->sh_offset;
1054 map->map_ip = map__map_ip;
1055 map->unmap_ip = map__unmap_ip;
1056 /* Ensure maps are correctly ordered */
1057 if (kmaps) {
1058 map__get(map);
1059 maps__remove(kmaps, map);
1060 maps__insert(kmaps, map);
1061 map__put(map);
1062 }
1063 }
1064
1065 /*
1066 * The initial module mapping is based on
1067 * /proc/modules mapped to offset zero.
1068 * Overwrite it to map to the module dso.
1069 */
1070 if (*remap_kernel && kmodule) {
1071 *remap_kernel = false;
1072 map->pgoff = shdr->sh_offset;
1073 }
1074
1075 *curr_mapp = map;
1076 *curr_dsop = dso;
1077 return 0;
1078 }
1079
1080 if (!kmap)
1081 return 0;
1082
1083 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1084
1085 curr_map = maps__find_by_name(kmaps, dso_name);
1086 if (curr_map == NULL) {
1087 u64 start = sym->st_value;
1088
1089 if (kmodule)
1090 start += map->start + shdr->sh_offset;
1091
1092 curr_dso = dso__new(dso_name);
1093 if (curr_dso == NULL)
1094 return -1;
1095 curr_dso->kernel = dso->kernel;
1096 curr_dso->long_name = dso->long_name;
1097 curr_dso->long_name_len = dso->long_name_len;
1098 curr_map = map__new2(start, curr_dso);
1099 dso__put(curr_dso);
1100 if (curr_map == NULL)
1101 return -1;
1102
1103 if (curr_dso->kernel)
1104 map__kmap(curr_map)->kmaps = kmaps;
1105
1106 if (adjust_kernel_syms) {
1107 curr_map->start = shdr->sh_addr + ref_reloc(kmap);
1108 curr_map->end = curr_map->start + shdr->sh_size;
1109 curr_map->pgoff = shdr->sh_offset;
1110 } else {
1111 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1112 }
1113 curr_dso->symtab_type = dso->symtab_type;
1114 maps__insert(kmaps, curr_map);
1115 /*
1116 * Add it before we drop the reference to curr_map, i.e. while
1117 * we still are sure to have a reference to this DSO via
1118 * *curr_map->dso.
1119 */
1120 dsos__add(&kmaps->machine->dsos, curr_dso);
1121 /* kmaps already got it */
1122 map__put(curr_map);
1123 dso__set_loaded(curr_dso);
1124 *curr_mapp = curr_map;
1125 *curr_dsop = curr_dso;
1126 } else
1127 *curr_dsop = curr_map->dso;
1128
1129 return 0;
1130}
1131
1132static int
1133dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1134 struct symsrc *runtime_ss, int kmodule, int dynsym)
1135{
1136 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1137 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1138 struct map *curr_map = map;
1139 struct dso *curr_dso = dso;
1140 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1141 uint32_t nr_syms;
1142 int err = -1;
1143 uint32_t idx;
1144 GElf_Ehdr ehdr;
1145 GElf_Shdr shdr;
1146 GElf_Shdr tshdr;
1147 Elf_Data *syms, *opddata = NULL;
1148 GElf_Sym sym;
1149 Elf_Scn *sec, *sec_strndx;
1150 Elf *elf;
1151 int nr = 0;
1152 bool remap_kernel = false, adjust_kernel_syms = false;
1153
1154 if (kmap && !kmaps)
1155 return -1;
1156
1157 elf = syms_ss->elf;
1158 ehdr = syms_ss->ehdr;
1159 if (dynsym) {
1160 sec = syms_ss->dynsym;
1161 shdr = syms_ss->dynshdr;
1162 } else {
1163 sec = syms_ss->symtab;
1164 shdr = syms_ss->symshdr;
1165 }
1166
1167 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1168 ".text", NULL))
1169 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1170
1171 if (runtime_ss->opdsec)
1172 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1173
1174 syms = elf_getdata(sec, NULL);
1175 if (syms == NULL)
1176 goto out_elf_end;
1177
1178 sec = elf_getscn(elf, shdr.sh_link);
1179 if (sec == NULL)
1180 goto out_elf_end;
1181
1182 symstrs = elf_getdata(sec, NULL);
1183 if (symstrs == NULL)
1184 goto out_elf_end;
1185
1186 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1187 if (sec_strndx == NULL)
1188 goto out_elf_end;
1189
1190 secstrs_run = elf_getdata(sec_strndx, NULL);
1191 if (secstrs_run == NULL)
1192 goto out_elf_end;
1193
1194 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1195 if (sec_strndx == NULL)
1196 goto out_elf_end;
1197
1198 secstrs_sym = elf_getdata(sec_strndx, NULL);
1199 if (secstrs_sym == NULL)
1200 goto out_elf_end;
1201
1202 nr_syms = shdr.sh_size / shdr.sh_entsize;
1203
1204 memset(&sym, 0, sizeof(sym));
1205
1206 /*
1207 * The kernel relocation symbol is needed in advance in order to adjust
1208 * kernel maps correctly.
1209 */
1210 if (ref_reloc_sym_not_found(kmap)) {
1211 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1212 const char *elf_name = elf_sym__name(&sym, symstrs);
1213
1214 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1215 continue;
1216 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1217 map->reloc = kmap->ref_reloc_sym->addr -
1218 kmap->ref_reloc_sym->unrelocated_addr;
1219 break;
1220 }
1221 }
1222
1223 /*
1224 * Handle any relocation of vdso necessary because older kernels
1225 * attempted to prelink vdso to its virtual address.
1226 */
1227 if (dso__is_vdso(dso))
1228 map->reloc = map->start - dso->text_offset;
1229
1230 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1231 /*
1232 * Initial kernel and module mappings do not map to the dso.
1233 * Flag the fixups.
1234 */
1235 if (dso->kernel) {
1236 remap_kernel = true;
1237 adjust_kernel_syms = dso->adjust_symbols;
1238 }
1239 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1240 struct symbol *f;
1241 const char *elf_name = elf_sym__name(&sym, symstrs);
1242 char *demangled = NULL;
1243 int is_label = elf_sym__is_label(&sym);
1244 const char *section_name;
1245 bool used_opd = false;
1246
1247 if (!is_label && !elf_sym__filter(&sym))
1248 continue;
1249
1250 /* Reject ARM ELF "mapping symbols": these aren't unique and
1251 * don't identify functions, so will confuse the profile
1252 * output: */
1253 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1254 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1255 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1256 continue;
1257 }
1258
1259 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1260 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1261 u64 *opd = opddata->d_buf + offset;
1262 sym.st_value = DSO__SWAP(dso, u64, *opd);
1263 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1264 sym.st_value);
1265 used_opd = true;
1266 }
1267
1268 /*
1269 * When loading symbols in a data mapping, ABS symbols (which
1270 * has a value of SHN_ABS in its st_shndx) failed at
1271 * elf_getscn(). And it marks the loading as a failure so
1272 * already loaded symbols cannot be fixed up.
1273 *
1274 * I'm not sure what should be done. Just ignore them for now.
1275 * - Namhyung Kim
1276 */
1277 if (sym.st_shndx == SHN_ABS)
1278 continue;
1279
1280 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1281 if (!sec)
1282 goto out_elf_end;
1283
1284 gelf_getshdr(sec, &shdr);
1285
1286 /*
1287 * If the attribute bit SHF_ALLOC is not set, the section
1288 * doesn't occupy memory during process execution.
1289 * E.g. ".gnu.warning.*" section is used by linker to generate
1290 * warnings when calling deprecated functions, the symbols in
1291 * the section aren't loaded to memory during process execution,
1292 * so skip them.
1293 */
1294 if (!(shdr.sh_flags & SHF_ALLOC))
1295 continue;
1296
1297 secstrs = secstrs_sym;
1298
1299 /*
1300 * We have to fallback to runtime when syms' section header has
1301 * NOBITS set. NOBITS results in file offset (sh_offset) not
1302 * being incremented. So sh_offset used below has different
1303 * values for syms (invalid) and runtime (valid).
1304 */
1305 if (shdr.sh_type == SHT_NOBITS) {
1306 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1307 if (!sec)
1308 goto out_elf_end;
1309
1310 gelf_getshdr(sec, &shdr);
1311 secstrs = secstrs_run;
1312 }
1313
1314 if (is_label && !elf_sec__filter(&shdr, secstrs))
1315 continue;
1316
1317 section_name = elf_sec__name(&shdr, secstrs);
1318
1319 /* On ARM, symbols for thumb functions have 1 added to
1320 * the symbol address as a flag - remove it */
1321 if ((ehdr.e_machine == EM_ARM) &&
1322 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1323 (sym.st_value & 1))
1324 --sym.st_value;
1325
1326 if (dso->kernel) {
1327 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1328 section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1329 goto out_elf_end;
1330 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1331 (!used_opd && syms_ss->adjust_symbols)) {
1332 GElf_Phdr phdr;
1333
1334 if (elf_read_program_header(runtime_ss->elf,
1335 (u64)sym.st_value, &phdr)) {
1336 pr_debug4("%s: failed to find program header for "
1337 "symbol: %s st_value: %#" PRIx64 "\n",
1338 __func__, elf_name, (u64)sym.st_value);
1339 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1340 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1341 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1342 (u64)shdr.sh_offset);
1343 /*
1344 * Fail to find program header, let's rollback
1345 * to use shdr.sh_addr and shdr.sh_offset to
1346 * calibrate symbol's file address, though this
1347 * is not necessary for normal C ELF file, we
1348 * still need to handle java JIT symbols in this
1349 * case.
1350 */
1351 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1352 } else {
1353 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1354 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1355 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1356 (u64)phdr.p_offset);
1357 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1358 }
1359 }
1360
1361 demangled = demangle_sym(dso, kmodule, elf_name);
1362 if (demangled != NULL)
1363 elf_name = demangled;
1364
1365 f = symbol__new(sym.st_value, sym.st_size,
1366 GELF_ST_BIND(sym.st_info),
1367 GELF_ST_TYPE(sym.st_info), elf_name);
1368 free(demangled);
1369 if (!f)
1370 goto out_elf_end;
1371
1372 arch__sym_update(f, &sym);
1373
1374 __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1375 nr++;
1376 }
1377
1378 /*
1379 * For misannotated, zeroed, ASM function sizes.
1380 */
1381 if (nr > 0) {
1382 symbols__fixup_end(&dso->symbols, false);
1383 symbols__fixup_duplicate(&dso->symbols);
1384 if (kmap) {
1385 /*
1386 * We need to fixup this here too because we create new
1387 * maps here, for things like vsyscall sections.
1388 */
1389 maps__fixup_end(kmaps);
1390 }
1391 }
1392 err = nr;
1393out_elf_end:
1394 return err;
1395}
1396
1397int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1398 struct symsrc *runtime_ss, int kmodule)
1399{
1400 int nr = 0;
1401 int err = -1;
1402
1403 dso->symtab_type = syms_ss->type;
1404 dso->is_64_bit = syms_ss->is_64_bit;
1405 dso->rel = syms_ss->ehdr.e_type == ET_REL;
1406
1407 /*
1408 * Modules may already have symbols from kallsyms, but those symbols
1409 * have the wrong values for the dso maps, so remove them.
1410 */
1411 if (kmodule && syms_ss->symtab)
1412 symbols__delete(&dso->symbols);
1413
1414 if (!syms_ss->symtab) {
1415 /*
1416 * If the vmlinux is stripped, fail so we will fall back
1417 * to using kallsyms. The vmlinux runtime symbols aren't
1418 * of much use.
1419 */
1420 if (dso->kernel)
1421 return err;
1422 } else {
1423 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1424 kmodule, 0);
1425 if (err < 0)
1426 return err;
1427 nr = err;
1428 }
1429
1430 if (syms_ss->dynsym) {
1431 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1432 kmodule, 1);
1433 if (err < 0)
1434 return err;
1435 err += nr;
1436 }
1437
1438 return err;
1439}
1440
1441static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1442{
1443 GElf_Phdr phdr;
1444 size_t i, phdrnum;
1445 int err;
1446 u64 sz;
1447
1448 if (elf_getphdrnum(elf, &phdrnum))
1449 return -1;
1450
1451 for (i = 0; i < phdrnum; i++) {
1452 if (gelf_getphdr(elf, i, &phdr) == NULL)
1453 return -1;
1454 if (phdr.p_type != PT_LOAD)
1455 continue;
1456 if (exe) {
1457 if (!(phdr.p_flags & PF_X))
1458 continue;
1459 } else {
1460 if (!(phdr.p_flags & PF_R))
1461 continue;
1462 }
1463 sz = min(phdr.p_memsz, phdr.p_filesz);
1464 if (!sz)
1465 continue;
1466 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1467 if (err)
1468 return err;
1469 }
1470 return 0;
1471}
1472
1473int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1474 bool *is_64_bit)
1475{
1476 int err;
1477 Elf *elf;
1478
1479 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1480 if (elf == NULL)
1481 return -1;
1482
1483 if (is_64_bit)
1484 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1485
1486 err = elf_read_maps(elf, exe, mapfn, data);
1487
1488 elf_end(elf);
1489 return err;
1490}
1491
1492enum dso_type dso__type_fd(int fd)
1493{
1494 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1495 GElf_Ehdr ehdr;
1496 Elf_Kind ek;
1497 Elf *elf;
1498
1499 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1500 if (elf == NULL)
1501 goto out;
1502
1503 ek = elf_kind(elf);
1504 if (ek != ELF_K_ELF)
1505 goto out_end;
1506
1507 if (gelf_getclass(elf) == ELFCLASS64) {
1508 dso_type = DSO__TYPE_64BIT;
1509 goto out_end;
1510 }
1511
1512 if (gelf_getehdr(elf, &ehdr) == NULL)
1513 goto out_end;
1514
1515 if (ehdr.e_machine == EM_X86_64)
1516 dso_type = DSO__TYPE_X32BIT;
1517 else
1518 dso_type = DSO__TYPE_32BIT;
1519out_end:
1520 elf_end(elf);
1521out:
1522 return dso_type;
1523}
1524
1525static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1526{
1527 ssize_t r;
1528 size_t n;
1529 int err = -1;
1530 char *buf = malloc(page_size);
1531
1532 if (buf == NULL)
1533 return -1;
1534
1535 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1536 goto out;
1537
1538 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1539 goto out;
1540
1541 while (len) {
1542 n = page_size;
1543 if (len < n)
1544 n = len;
1545 /* Use read because mmap won't work on proc files */
1546 r = read(from, buf, n);
1547 if (r < 0)
1548 goto out;
1549 if (!r)
1550 break;
1551 n = r;
1552 r = write(to, buf, n);
1553 if (r < 0)
1554 goto out;
1555 if ((size_t)r != n)
1556 goto out;
1557 len -= n;
1558 }
1559
1560 err = 0;
1561out:
1562 free(buf);
1563 return err;
1564}
1565
1566struct kcore {
1567 int fd;
1568 int elfclass;
1569 Elf *elf;
1570 GElf_Ehdr ehdr;
1571};
1572
1573static int kcore__open(struct kcore *kcore, const char *filename)
1574{
1575 GElf_Ehdr *ehdr;
1576
1577 kcore->fd = open(filename, O_RDONLY);
1578 if (kcore->fd == -1)
1579 return -1;
1580
1581 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1582 if (!kcore->elf)
1583 goto out_close;
1584
1585 kcore->elfclass = gelf_getclass(kcore->elf);
1586 if (kcore->elfclass == ELFCLASSNONE)
1587 goto out_end;
1588
1589 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1590 if (!ehdr)
1591 goto out_end;
1592
1593 return 0;
1594
1595out_end:
1596 elf_end(kcore->elf);
1597out_close:
1598 close(kcore->fd);
1599 return -1;
1600}
1601
1602static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1603 bool temp)
1604{
1605 kcore->elfclass = elfclass;
1606
1607 if (temp)
1608 kcore->fd = mkstemp(filename);
1609 else
1610 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1611 if (kcore->fd == -1)
1612 return -1;
1613
1614 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1615 if (!kcore->elf)
1616 goto out_close;
1617
1618 if (!gelf_newehdr(kcore->elf, elfclass))
1619 goto out_end;
1620
1621 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1622
1623 return 0;
1624
1625out_end:
1626 elf_end(kcore->elf);
1627out_close:
1628 close(kcore->fd);
1629 unlink(filename);
1630 return -1;
1631}
1632
1633static void kcore__close(struct kcore *kcore)
1634{
1635 elf_end(kcore->elf);
1636 close(kcore->fd);
1637}
1638
1639static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1640{
1641 GElf_Ehdr *ehdr = &to->ehdr;
1642 GElf_Ehdr *kehdr = &from->ehdr;
1643
1644 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1645 ehdr->e_type = kehdr->e_type;
1646 ehdr->e_machine = kehdr->e_machine;
1647 ehdr->e_version = kehdr->e_version;
1648 ehdr->e_entry = 0;
1649 ehdr->e_shoff = 0;
1650 ehdr->e_flags = kehdr->e_flags;
1651 ehdr->e_phnum = count;
1652 ehdr->e_shentsize = 0;
1653 ehdr->e_shnum = 0;
1654 ehdr->e_shstrndx = 0;
1655
1656 if (from->elfclass == ELFCLASS32) {
1657 ehdr->e_phoff = sizeof(Elf32_Ehdr);
1658 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
1659 ehdr->e_phentsize = sizeof(Elf32_Phdr);
1660 } else {
1661 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1662 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1663 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1664 }
1665
1666 if (!gelf_update_ehdr(to->elf, ehdr))
1667 return -1;
1668
1669 if (!gelf_newphdr(to->elf, count))
1670 return -1;
1671
1672 return 0;
1673}
1674
1675static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1676 u64 addr, u64 len)
1677{
1678 GElf_Phdr phdr = {
1679 .p_type = PT_LOAD,
1680 .p_flags = PF_R | PF_W | PF_X,
1681 .p_offset = offset,
1682 .p_vaddr = addr,
1683 .p_paddr = 0,
1684 .p_filesz = len,
1685 .p_memsz = len,
1686 .p_align = page_size,
1687 };
1688
1689 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1690 return -1;
1691
1692 return 0;
1693}
1694
1695static off_t kcore__write(struct kcore *kcore)
1696{
1697 return elf_update(kcore->elf, ELF_C_WRITE);
1698}
1699
1700struct phdr_data {
1701 off_t offset;
1702 off_t rel;
1703 u64 addr;
1704 u64 len;
1705 struct list_head node;
1706 struct phdr_data *remaps;
1707};
1708
1709struct sym_data {
1710 u64 addr;
1711 struct list_head node;
1712};
1713
1714struct kcore_copy_info {
1715 u64 stext;
1716 u64 etext;
1717 u64 first_symbol;
1718 u64 last_symbol;
1719 u64 first_module;
1720 u64 first_module_symbol;
1721 u64 last_module_symbol;
1722 size_t phnum;
1723 struct list_head phdrs;
1724 struct list_head syms;
1725};
1726
1727#define kcore_copy__for_each_phdr(k, p) \
1728 list_for_each_entry((p), &(k)->phdrs, node)
1729
1730static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1731{
1732 struct phdr_data *p = zalloc(sizeof(*p));
1733
1734 if (p) {
1735 p->addr = addr;
1736 p->len = len;
1737 p->offset = offset;
1738 }
1739
1740 return p;
1741}
1742
1743static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1744 u64 addr, u64 len,
1745 off_t offset)
1746{
1747 struct phdr_data *p = phdr_data__new(addr, len, offset);
1748
1749 if (p)
1750 list_add_tail(&p->node, &kci->phdrs);
1751
1752 return p;
1753}
1754
1755static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1756{
1757 struct phdr_data *p, *tmp;
1758
1759 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1760 list_del_init(&p->node);
1761 free(p);
1762 }
1763}
1764
1765static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1766 u64 addr)
1767{
1768 struct sym_data *s = zalloc(sizeof(*s));
1769
1770 if (s) {
1771 s->addr = addr;
1772 list_add_tail(&s->node, &kci->syms);
1773 }
1774
1775 return s;
1776}
1777
1778static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1779{
1780 struct sym_data *s, *tmp;
1781
1782 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1783 list_del_init(&s->node);
1784 free(s);
1785 }
1786}
1787
1788static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1789 u64 start)
1790{
1791 struct kcore_copy_info *kci = arg;
1792
1793 if (!kallsyms__is_function(type))
1794 return 0;
1795
1796 if (strchr(name, '[')) {
1797 if (!kci->first_module_symbol || start < kci->first_module_symbol)
1798 kci->first_module_symbol = start;
1799 if (start > kci->last_module_symbol)
1800 kci->last_module_symbol = start;
1801 return 0;
1802 }
1803
1804 if (!kci->first_symbol || start < kci->first_symbol)
1805 kci->first_symbol = start;
1806
1807 if (!kci->last_symbol || start > kci->last_symbol)
1808 kci->last_symbol = start;
1809
1810 if (!strcmp(name, "_stext")) {
1811 kci->stext = start;
1812 return 0;
1813 }
1814
1815 if (!strcmp(name, "_etext")) {
1816 kci->etext = start;
1817 return 0;
1818 }
1819
1820 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1821 return -1;
1822
1823 return 0;
1824}
1825
1826static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1827 const char *dir)
1828{
1829 char kallsyms_filename[PATH_MAX];
1830
1831 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1832
1833 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1834 return -1;
1835
1836 if (kallsyms__parse(kallsyms_filename, kci,
1837 kcore_copy__process_kallsyms) < 0)
1838 return -1;
1839
1840 return 0;
1841}
1842
1843static int kcore_copy__process_modules(void *arg,
1844 const char *name __maybe_unused,
1845 u64 start, u64 size __maybe_unused)
1846{
1847 struct kcore_copy_info *kci = arg;
1848
1849 if (!kci->first_module || start < kci->first_module)
1850 kci->first_module = start;
1851
1852 return 0;
1853}
1854
1855static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1856 const char *dir)
1857{
1858 char modules_filename[PATH_MAX];
1859
1860 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1861
1862 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1863 return -1;
1864
1865 if (modules__parse(modules_filename, kci,
1866 kcore_copy__process_modules) < 0)
1867 return -1;
1868
1869 return 0;
1870}
1871
1872static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1873 u64 pgoff, u64 s, u64 e)
1874{
1875 u64 len, offset;
1876
1877 if (s < start || s >= end)
1878 return 0;
1879
1880 offset = (s - start) + pgoff;
1881 len = e < end ? e - s : end - s;
1882
1883 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1884}
1885
1886static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1887{
1888 struct kcore_copy_info *kci = data;
1889 u64 end = start + len;
1890 struct sym_data *sdat;
1891
1892 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1893 return -1;
1894
1895 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1896 kci->last_module_symbol))
1897 return -1;
1898
1899 list_for_each_entry(sdat, &kci->syms, node) {
1900 u64 s = round_down(sdat->addr, page_size);
1901
1902 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1903 return -1;
1904 }
1905
1906 return 0;
1907}
1908
1909static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1910{
1911 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1912 return -1;
1913
1914 return 0;
1915}
1916
1917static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1918{
1919 struct phdr_data *p, *k = NULL;
1920 u64 kend;
1921
1922 if (!kci->stext)
1923 return;
1924
1925 /* Find phdr that corresponds to the kernel map (contains stext) */
1926 kcore_copy__for_each_phdr(kci, p) {
1927 u64 pend = p->addr + p->len - 1;
1928
1929 if (p->addr <= kci->stext && pend >= kci->stext) {
1930 k = p;
1931 break;
1932 }
1933 }
1934
1935 if (!k)
1936 return;
1937
1938 kend = k->offset + k->len;
1939
1940 /* Find phdrs that remap the kernel */
1941 kcore_copy__for_each_phdr(kci, p) {
1942 u64 pend = p->offset + p->len;
1943
1944 if (p == k)
1945 continue;
1946
1947 if (p->offset >= k->offset && pend <= kend)
1948 p->remaps = k;
1949 }
1950}
1951
1952static void kcore_copy__layout(struct kcore_copy_info *kci)
1953{
1954 struct phdr_data *p;
1955 off_t rel = 0;
1956
1957 kcore_copy__find_remaps(kci);
1958
1959 kcore_copy__for_each_phdr(kci, p) {
1960 if (!p->remaps) {
1961 p->rel = rel;
1962 rel += p->len;
1963 }
1964 kci->phnum += 1;
1965 }
1966
1967 kcore_copy__for_each_phdr(kci, p) {
1968 struct phdr_data *k = p->remaps;
1969
1970 if (k)
1971 p->rel = p->offset - k->offset + k->rel;
1972 }
1973}
1974
1975static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1976 Elf *elf)
1977{
1978 if (kcore_copy__parse_kallsyms(kci, dir))
1979 return -1;
1980
1981 if (kcore_copy__parse_modules(kci, dir))
1982 return -1;
1983
1984 if (kci->stext)
1985 kci->stext = round_down(kci->stext, page_size);
1986 else
1987 kci->stext = round_down(kci->first_symbol, page_size);
1988
1989 if (kci->etext) {
1990 kci->etext = round_up(kci->etext, page_size);
1991 } else if (kci->last_symbol) {
1992 kci->etext = round_up(kci->last_symbol, page_size);
1993 kci->etext += page_size;
1994 }
1995
1996 if (kci->first_module_symbol &&
1997 (!kci->first_module || kci->first_module_symbol < kci->first_module))
1998 kci->first_module = kci->first_module_symbol;
1999
2000 kci->first_module = round_down(kci->first_module, page_size);
2001
2002 if (kci->last_module_symbol) {
2003 kci->last_module_symbol = round_up(kci->last_module_symbol,
2004 page_size);
2005 kci->last_module_symbol += page_size;
2006 }
2007
2008 if (!kci->stext || !kci->etext)
2009 return -1;
2010
2011 if (kci->first_module && !kci->last_module_symbol)
2012 return -1;
2013
2014 if (kcore_copy__read_maps(kci, elf))
2015 return -1;
2016
2017 kcore_copy__layout(kci);
2018
2019 return 0;
2020}
2021
2022static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2023 const char *name)
2024{
2025 char from_filename[PATH_MAX];
2026 char to_filename[PATH_MAX];
2027
2028 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2029 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2030
2031 return copyfile_mode(from_filename, to_filename, 0400);
2032}
2033
2034static int kcore_copy__unlink(const char *dir, const char *name)
2035{
2036 char filename[PATH_MAX];
2037
2038 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2039
2040 return unlink(filename);
2041}
2042
2043static int kcore_copy__compare_fds(int from, int to)
2044{
2045 char *buf_from;
2046 char *buf_to;
2047 ssize_t ret;
2048 size_t len;
2049 int err = -1;
2050
2051 buf_from = malloc(page_size);
2052 buf_to = malloc(page_size);
2053 if (!buf_from || !buf_to)
2054 goto out;
2055
2056 while (1) {
2057 /* Use read because mmap won't work on proc files */
2058 ret = read(from, buf_from, page_size);
2059 if (ret < 0)
2060 goto out;
2061
2062 if (!ret)
2063 break;
2064
2065 len = ret;
2066
2067 if (readn(to, buf_to, len) != (int)len)
2068 goto out;
2069
2070 if (memcmp(buf_from, buf_to, len))
2071 goto out;
2072 }
2073
2074 err = 0;
2075out:
2076 free(buf_to);
2077 free(buf_from);
2078 return err;
2079}
2080
2081static int kcore_copy__compare_files(const char *from_filename,
2082 const char *to_filename)
2083{
2084 int from, to, err = -1;
2085
2086 from = open(from_filename, O_RDONLY);
2087 if (from < 0)
2088 return -1;
2089
2090 to = open(to_filename, O_RDONLY);
2091 if (to < 0)
2092 goto out_close_from;
2093
2094 err = kcore_copy__compare_fds(from, to);
2095
2096 close(to);
2097out_close_from:
2098 close(from);
2099 return err;
2100}
2101
2102static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2103 const char *name)
2104{
2105 char from_filename[PATH_MAX];
2106 char to_filename[PATH_MAX];
2107
2108 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2109 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2110
2111 return kcore_copy__compare_files(from_filename, to_filename);
2112}
2113
2114/**
2115 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2116 * @from_dir: from directory
2117 * @to_dir: to directory
2118 *
2119 * This function copies kallsyms, modules and kcore files from one directory to
2120 * another. kallsyms and modules are copied entirely. Only code segments are
2121 * copied from kcore. It is assumed that two segments suffice: one for the
2122 * kernel proper and one for all the modules. The code segments are determined
2123 * from kallsyms and modules files. The kernel map starts at _stext or the
2124 * lowest function symbol, and ends at _etext or the highest function symbol.
2125 * The module map starts at the lowest module address and ends at the highest
2126 * module symbol. Start addresses are rounded down to the nearest page. End
2127 * addresses are rounded up to the nearest page. An extra page is added to the
2128 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2129 * symbol too. Because it contains only code sections, the resulting kcore is
2130 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2131 * is not the same for the kernel map and the modules map. That happens because
2132 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2133 * kallsyms file is compared with its copy to check that modules have not been
2134 * loaded or unloaded while the copies were taking place.
2135 *
2136 * Return: %0 on success, %-1 on failure.
2137 */
2138int kcore_copy(const char *from_dir, const char *to_dir)
2139{
2140 struct kcore kcore;
2141 struct kcore extract;
2142 int idx = 0, err = -1;
2143 off_t offset, sz;
2144 struct kcore_copy_info kci = { .stext = 0, };
2145 char kcore_filename[PATH_MAX];
2146 char extract_filename[PATH_MAX];
2147 struct phdr_data *p;
2148
2149 INIT_LIST_HEAD(&kci.phdrs);
2150 INIT_LIST_HEAD(&kci.syms);
2151
2152 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2153 return -1;
2154
2155 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2156 goto out_unlink_kallsyms;
2157
2158 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2159 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2160
2161 if (kcore__open(&kcore, kcore_filename))
2162 goto out_unlink_modules;
2163
2164 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2165 goto out_kcore_close;
2166
2167 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2168 goto out_kcore_close;
2169
2170 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2171 goto out_extract_close;
2172
2173 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2174 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2175 offset = round_up(offset, page_size);
2176
2177 kcore_copy__for_each_phdr(&kci, p) {
2178 off_t offs = p->rel + offset;
2179
2180 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2181 goto out_extract_close;
2182 }
2183
2184 sz = kcore__write(&extract);
2185 if (sz < 0 || sz > offset)
2186 goto out_extract_close;
2187
2188 kcore_copy__for_each_phdr(&kci, p) {
2189 off_t offs = p->rel + offset;
2190
2191 if (p->remaps)
2192 continue;
2193 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2194 goto out_extract_close;
2195 }
2196
2197 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2198 goto out_extract_close;
2199
2200 err = 0;
2201
2202out_extract_close:
2203 kcore__close(&extract);
2204 if (err)
2205 unlink(extract_filename);
2206out_kcore_close:
2207 kcore__close(&kcore);
2208out_unlink_modules:
2209 if (err)
2210 kcore_copy__unlink(to_dir, "modules");
2211out_unlink_kallsyms:
2212 if (err)
2213 kcore_copy__unlink(to_dir, "kallsyms");
2214
2215 kcore_copy__free_phdrs(&kci);
2216 kcore_copy__free_syms(&kci);
2217
2218 return err;
2219}
2220
2221int kcore_extract__create(struct kcore_extract *kce)
2222{
2223 struct kcore kcore;
2224 struct kcore extract;
2225 size_t count = 1;
2226 int idx = 0, err = -1;
2227 off_t offset = page_size, sz;
2228
2229 if (kcore__open(&kcore, kce->kcore_filename))
2230 return -1;
2231
2232 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2233 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2234 goto out_kcore_close;
2235
2236 if (kcore__copy_hdr(&kcore, &extract, count))
2237 goto out_extract_close;
2238
2239 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2240 goto out_extract_close;
2241
2242 sz = kcore__write(&extract);
2243 if (sz < 0 || sz > offset)
2244 goto out_extract_close;
2245
2246 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2247 goto out_extract_close;
2248
2249 err = 0;
2250
2251out_extract_close:
2252 kcore__close(&extract);
2253 if (err)
2254 unlink(kce->extract_filename);
2255out_kcore_close:
2256 kcore__close(&kcore);
2257
2258 return err;
2259}
2260
2261void kcore_extract__delete(struct kcore_extract *kce)
2262{
2263 unlink(kce->extract_filename);
2264}
2265
2266#ifdef HAVE_GELF_GETNOTE_SUPPORT
2267
2268static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2269{
2270 if (!base_off)
2271 return;
2272
2273 if (tmp->bit32)
2274 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2275 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2276 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2277 else
2278 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2279 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2280 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2281}
2282
2283static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2284 GElf_Addr base_off)
2285{
2286 if (!base_off)
2287 return;
2288
2289 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2290 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2291 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2292 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2293}
2294
2295/**
2296 * populate_sdt_note : Parse raw data and identify SDT note
2297 * @elf: elf of the opened file
2298 * @data: raw data of a section with description offset applied
2299 * @len: note description size
2300 * @type: type of the note
2301 * @sdt_notes: List to add the SDT note
2302 *
2303 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2304 * if its an SDT note, it appends to @sdt_notes list.
2305 */
2306static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2307 struct list_head *sdt_notes)
2308{
2309 const char *provider, *name, *args;
2310 struct sdt_note *tmp = NULL;
2311 GElf_Ehdr ehdr;
2312 GElf_Shdr shdr;
2313 int ret = -EINVAL;
2314
2315 union {
2316 Elf64_Addr a64[NR_ADDR];
2317 Elf32_Addr a32[NR_ADDR];
2318 } buf;
2319
2320 Elf_Data dst = {
2321 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2322 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2323 .d_off = 0, .d_align = 0
2324 };
2325 Elf_Data src = {
2326 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2327 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2328 .d_align = 0
2329 };
2330
2331 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2332 if (!tmp) {
2333 ret = -ENOMEM;
2334 goto out_err;
2335 }
2336
2337 INIT_LIST_HEAD(&tmp->note_list);
2338
2339 if (len < dst.d_size + 3)
2340 goto out_free_note;
2341
2342 /* Translation from file representation to memory representation */
2343 if (gelf_xlatetom(*elf, &dst, &src,
2344 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2345 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2346 goto out_free_note;
2347 }
2348
2349 /* Populate the fields of sdt_note */
2350 provider = data + dst.d_size;
2351
2352 name = (const char *)memchr(provider, '\0', data + len - provider);
2353 if (name++ == NULL)
2354 goto out_free_note;
2355
2356 tmp->provider = strdup(provider);
2357 if (!tmp->provider) {
2358 ret = -ENOMEM;
2359 goto out_free_note;
2360 }
2361 tmp->name = strdup(name);
2362 if (!tmp->name) {
2363 ret = -ENOMEM;
2364 goto out_free_prov;
2365 }
2366
2367 args = memchr(name, '\0', data + len - name);
2368
2369 /*
2370 * There is no argument if:
2371 * - We reached the end of the note;
2372 * - There is not enough room to hold a potential string;
2373 * - The argument string is empty or just contains ':'.
2374 */
2375 if (args == NULL || data + len - args < 2 ||
2376 args[1] == ':' || args[1] == '\0')
2377 tmp->args = NULL;
2378 else {
2379 tmp->args = strdup(++args);
2380 if (!tmp->args) {
2381 ret = -ENOMEM;
2382 goto out_free_name;
2383 }
2384 }
2385
2386 if (gelf_getclass(*elf) == ELFCLASS32) {
2387 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2388 tmp->bit32 = true;
2389 } else {
2390 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2391 tmp->bit32 = false;
2392 }
2393
2394 if (!gelf_getehdr(*elf, &ehdr)) {
2395 pr_debug("%s : cannot get elf header.\n", __func__);
2396 ret = -EBADF;
2397 goto out_free_args;
2398 }
2399
2400 /* Adjust the prelink effect :
2401 * Find out the .stapsdt.base section.
2402 * This scn will help us to handle prelinking (if present).
2403 * Compare the retrieved file offset of the base section with the
2404 * base address in the description of the SDT note. If its different,
2405 * then accordingly, adjust the note location.
2406 */
2407 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2408 sdt_adjust_loc(tmp, shdr.sh_offset);
2409
2410 /* Adjust reference counter offset */
2411 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2412 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2413
2414 list_add_tail(&tmp->note_list, sdt_notes);
2415 return 0;
2416
2417out_free_args:
2418 zfree(&tmp->args);
2419out_free_name:
2420 zfree(&tmp->name);
2421out_free_prov:
2422 zfree(&tmp->provider);
2423out_free_note:
2424 free(tmp);
2425out_err:
2426 return ret;
2427}
2428
2429/**
2430 * construct_sdt_notes_list : constructs a list of SDT notes
2431 * @elf : elf to look into
2432 * @sdt_notes : empty list_head
2433 *
2434 * Scans the sections in 'elf' for the section
2435 * .note.stapsdt. It, then calls populate_sdt_note to find
2436 * out the SDT events and populates the 'sdt_notes'.
2437 */
2438static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2439{
2440 GElf_Ehdr ehdr;
2441 Elf_Scn *scn = NULL;
2442 Elf_Data *data;
2443 GElf_Shdr shdr;
2444 size_t shstrndx, next;
2445 GElf_Nhdr nhdr;
2446 size_t name_off, desc_off, offset;
2447 int ret = 0;
2448
2449 if (gelf_getehdr(elf, &ehdr) == NULL) {
2450 ret = -EBADF;
2451 goto out_ret;
2452 }
2453 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2454 ret = -EBADF;
2455 goto out_ret;
2456 }
2457
2458 /* Look for the required section */
2459 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2460 if (!scn) {
2461 ret = -ENOENT;
2462 goto out_ret;
2463 }
2464
2465 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2466 ret = -ENOENT;
2467 goto out_ret;
2468 }
2469
2470 data = elf_getdata(scn, NULL);
2471
2472 /* Get the SDT notes */
2473 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2474 &desc_off)) > 0; offset = next) {
2475 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2476 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2477 sizeof(SDT_NOTE_NAME))) {
2478 /* Check the type of the note */
2479 if (nhdr.n_type != SDT_NOTE_TYPE)
2480 goto out_ret;
2481
2482 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2483 nhdr.n_descsz, sdt_notes);
2484 if (ret < 0)
2485 goto out_ret;
2486 }
2487 }
2488 if (list_empty(sdt_notes))
2489 ret = -ENOENT;
2490
2491out_ret:
2492 return ret;
2493}
2494
2495/**
2496 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2497 * @head : empty list_head
2498 * @target : file to find SDT notes from
2499 *
2500 * This opens the file, initializes
2501 * the ELF and then calls construct_sdt_notes_list.
2502 */
2503int get_sdt_note_list(struct list_head *head, const char *target)
2504{
2505 Elf *elf;
2506 int fd, ret;
2507
2508 fd = open(target, O_RDONLY);
2509 if (fd < 0)
2510 return -EBADF;
2511
2512 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2513 if (!elf) {
2514 ret = -EBADF;
2515 goto out_close;
2516 }
2517 ret = construct_sdt_notes_list(elf, head);
2518 elf_end(elf);
2519out_close:
2520 close(fd);
2521 return ret;
2522}
2523
2524/**
2525 * cleanup_sdt_note_list : free the sdt notes' list
2526 * @sdt_notes: sdt notes' list
2527 *
2528 * Free up the SDT notes in @sdt_notes.
2529 * Returns the number of SDT notes free'd.
2530 */
2531int cleanup_sdt_note_list(struct list_head *sdt_notes)
2532{
2533 struct sdt_note *tmp, *pos;
2534 int nr_free = 0;
2535
2536 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2537 list_del_init(&pos->note_list);
2538 zfree(&pos->args);
2539 zfree(&pos->name);
2540 zfree(&pos->provider);
2541 free(pos);
2542 nr_free++;
2543 }
2544 return nr_free;
2545}
2546
2547/**
2548 * sdt_notes__get_count: Counts the number of sdt events
2549 * @start: list_head to sdt_notes list
2550 *
2551 * Returns the number of SDT notes in a list
2552 */
2553int sdt_notes__get_count(struct list_head *start)
2554{
2555 struct sdt_note *sdt_ptr;
2556 int count = 0;
2557
2558 list_for_each_entry(sdt_ptr, start, note_list)
2559 count++;
2560 return count;
2561}
2562#endif
2563
2564void symbol__elf_init(void)
2565{
2566 elf_version(EV_CURRENT);
2567}