Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		/*
 50		 * pte_offset_map() might apply user-specific validation.
 51		 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
 52		 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
 53		 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
 54		 */
 55		if (walk->mm == &init_mm || addr >= TASK_SIZE)
 56			pte = pte_offset_kernel(pmd, addr);
 57		else
 58			pte = pte_offset_map(pmd, addr);
 59		if (pte) {
 60			err = walk_pte_range_inner(pte, addr, end, walk);
 61			if (walk->mm != &init_mm && addr < TASK_SIZE)
 62				pte_unmap(pte);
 63		}
 64	} else {
 65		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 66		if (pte) {
 67			err = walk_pte_range_inner(pte, addr, end, walk);
 68			pte_unmap_unlock(pte, ptl);
 69		}
 70	}
 71	if (!pte)
 72		walk->action = ACTION_AGAIN;
 73	return err;
 74}
 75
 76#ifdef CONFIG_ARCH_HAS_HUGEPD
 77static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 78			     unsigned long end, struct mm_walk *walk, int pdshift)
 79{
 80	int err = 0;
 81	const struct mm_walk_ops *ops = walk->ops;
 82	int shift = hugepd_shift(*phpd);
 83	int page_size = 1 << shift;
 84
 85	if (!ops->pte_entry)
 86		return 0;
 87
 88	if (addr & (page_size - 1))
 89		return 0;
 90
 91	for (;;) {
 92		pte_t *pte;
 93
 94		spin_lock(&walk->mm->page_table_lock);
 95		pte = hugepte_offset(*phpd, addr, pdshift);
 96		err = ops->pte_entry(pte, addr, addr + page_size, walk);
 97		spin_unlock(&walk->mm->page_table_lock);
 98
 99		if (err)
100			break;
101		if (addr >= end - page_size)
102			break;
103		addr += page_size;
104	}
105	return err;
106}
107#else
108static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
109			     unsigned long end, struct mm_walk *walk, int pdshift)
110{
111	return 0;
112}
113#endif
114
115static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
116			  struct mm_walk *walk)
117{
118	pmd_t *pmd;
119	unsigned long next;
120	const struct mm_walk_ops *ops = walk->ops;
121	int err = 0;
122	int depth = real_depth(3);
123
124	pmd = pmd_offset(pud, addr);
125	do {
126again:
127		next = pmd_addr_end(addr, end);
128		if (pmd_none(*pmd)) {
129			if (ops->pte_hole)
130				err = ops->pte_hole(addr, next, depth, walk);
131			if (err)
132				break;
133			continue;
134		}
135
136		walk->action = ACTION_SUBTREE;
137
138		/*
139		 * This implies that each ->pmd_entry() handler
140		 * needs to know about pmd_trans_huge() pmds
141		 */
142		if (ops->pmd_entry)
143			err = ops->pmd_entry(pmd, addr, next, walk);
144		if (err)
145			break;
146
147		if (walk->action == ACTION_AGAIN)
148			goto again;
149
150		/*
151		 * Check this here so we only break down trans_huge
152		 * pages when we _need_ to
153		 */
154		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
155		    walk->action == ACTION_CONTINUE ||
156		    !(ops->pte_entry))
157			continue;
158
159		if (walk->vma)
160			split_huge_pmd(walk->vma, pmd, addr);
 
 
 
161
162		if (is_hugepd(__hugepd(pmd_val(*pmd))))
163			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
164		else
165			err = walk_pte_range(pmd, addr, next, walk);
166		if (err)
167			break;
168
169		if (walk->action == ACTION_AGAIN)
170			goto again;
171
172	} while (pmd++, addr = next, addr != end);
173
174	return err;
175}
176
177static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
178			  struct mm_walk *walk)
179{
180	pud_t *pud;
181	unsigned long next;
182	const struct mm_walk_ops *ops = walk->ops;
183	int err = 0;
184	int depth = real_depth(2);
185
186	pud = pud_offset(p4d, addr);
187	do {
188 again:
189		next = pud_addr_end(addr, end);
190		if (pud_none(*pud)) {
191			if (ops->pte_hole)
192				err = ops->pte_hole(addr, next, depth, walk);
193			if (err)
194				break;
195			continue;
196		}
197
198		walk->action = ACTION_SUBTREE;
199
200		if (ops->pud_entry)
201			err = ops->pud_entry(pud, addr, next, walk);
202		if (err)
203			break;
204
205		if (walk->action == ACTION_AGAIN)
206			goto again;
207
208		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
209		    walk->action == ACTION_CONTINUE ||
210		    !(ops->pmd_entry || ops->pte_entry))
211			continue;
212
213		if (walk->vma)
214			split_huge_pud(walk->vma, pud, addr);
215		if (pud_none(*pud))
216			goto again;
217
218		if (is_hugepd(__hugepd(pud_val(*pud))))
219			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
220		else
221			err = walk_pmd_range(pud, addr, next, walk);
222		if (err)
223			break;
224	} while (pud++, addr = next, addr != end);
225
226	return err;
227}
228
229static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
230			  struct mm_walk *walk)
231{
232	p4d_t *p4d;
233	unsigned long next;
234	const struct mm_walk_ops *ops = walk->ops;
235	int err = 0;
236	int depth = real_depth(1);
237
238	p4d = p4d_offset(pgd, addr);
239	do {
240		next = p4d_addr_end(addr, end);
241		if (p4d_none_or_clear_bad(p4d)) {
242			if (ops->pte_hole)
243				err = ops->pte_hole(addr, next, depth, walk);
244			if (err)
245				break;
246			continue;
247		}
248		if (ops->p4d_entry) {
249			err = ops->p4d_entry(p4d, addr, next, walk);
250			if (err)
251				break;
252		}
253		if (is_hugepd(__hugepd(p4d_val(*p4d))))
254			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
255		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
256			err = walk_pud_range(p4d, addr, next, walk);
257		if (err)
258			break;
259	} while (p4d++, addr = next, addr != end);
260
261	return err;
262}
263
264static int walk_pgd_range(unsigned long addr, unsigned long end,
265			  struct mm_walk *walk)
266{
267	pgd_t *pgd;
268	unsigned long next;
269	const struct mm_walk_ops *ops = walk->ops;
270	int err = 0;
271
272	if (walk->pgd)
273		pgd = walk->pgd + pgd_index(addr);
274	else
275		pgd = pgd_offset(walk->mm, addr);
276	do {
277		next = pgd_addr_end(addr, end);
278		if (pgd_none_or_clear_bad(pgd)) {
279			if (ops->pte_hole)
280				err = ops->pte_hole(addr, next, 0, walk);
281			if (err)
282				break;
283			continue;
284		}
285		if (ops->pgd_entry) {
286			err = ops->pgd_entry(pgd, addr, next, walk);
287			if (err)
288				break;
289		}
290		if (is_hugepd(__hugepd(pgd_val(*pgd))))
291			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
292		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
293			err = walk_p4d_range(pgd, addr, next, walk);
294		if (err)
295			break;
296	} while (pgd++, addr = next, addr != end);
297
298	return err;
299}
300
301#ifdef CONFIG_HUGETLB_PAGE
302static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
303				       unsigned long end)
304{
305	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
306	return boundary < end ? boundary : end;
307}
308
309static int walk_hugetlb_range(unsigned long addr, unsigned long end,
310			      struct mm_walk *walk)
311{
312	struct vm_area_struct *vma = walk->vma;
313	struct hstate *h = hstate_vma(vma);
314	unsigned long next;
315	unsigned long hmask = huge_page_mask(h);
316	unsigned long sz = huge_page_size(h);
317	pte_t *pte;
318	const struct mm_walk_ops *ops = walk->ops;
319	int err = 0;
320
321	hugetlb_vma_lock_read(vma);
322	do {
323		next = hugetlb_entry_end(h, addr, end);
324		pte = hugetlb_walk(vma, addr & hmask, sz);
 
325		if (pte)
326			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
327		else if (ops->pte_hole)
328			err = ops->pte_hole(addr, next, -1, walk);
 
329		if (err)
330			break;
331	} while (addr = next, addr != end);
332	hugetlb_vma_unlock_read(vma);
333
334	return err;
335}
336
337#else /* CONFIG_HUGETLB_PAGE */
338static int walk_hugetlb_range(unsigned long addr, unsigned long end,
339			      struct mm_walk *walk)
340{
341	return 0;
342}
343
344#endif /* CONFIG_HUGETLB_PAGE */
345
346/*
347 * Decide whether we really walk over the current vma on [@start, @end)
348 * or skip it via the returned value. Return 0 if we do walk over the
349 * current vma, and return 1 if we skip the vma. Negative values means
350 * error, where we abort the current walk.
351 */
352static int walk_page_test(unsigned long start, unsigned long end,
353			struct mm_walk *walk)
354{
355	struct vm_area_struct *vma = walk->vma;
356	const struct mm_walk_ops *ops = walk->ops;
357
358	if (ops->test_walk)
359		return ops->test_walk(start, end, walk);
360
361	/*
362	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
363	 * range, so we don't walk over it as we do for normal vmas. However,
364	 * Some callers are interested in handling hole range and they don't
365	 * want to just ignore any single address range. Such users certainly
366	 * define their ->pte_hole() callbacks, so let's delegate them to handle
367	 * vma(VM_PFNMAP).
368	 */
369	if (vma->vm_flags & VM_PFNMAP) {
370		int err = 1;
371		if (ops->pte_hole)
372			err = ops->pte_hole(start, end, -1, walk);
373		return err ? err : 1;
374	}
375	return 0;
376}
377
378static int __walk_page_range(unsigned long start, unsigned long end,
379			struct mm_walk *walk)
380{
381	int err = 0;
382	struct vm_area_struct *vma = walk->vma;
383	const struct mm_walk_ops *ops = walk->ops;
384
385	if (ops->pre_vma) {
386		err = ops->pre_vma(start, end, walk);
387		if (err)
388			return err;
389	}
390
391	if (is_vm_hugetlb_page(vma)) {
392		if (ops->hugetlb_entry)
393			err = walk_hugetlb_range(start, end, walk);
394	} else
395		err = walk_pgd_range(start, end, walk);
396
397	if (ops->post_vma)
398		ops->post_vma(walk);
399
400	return err;
401}
402
403static inline void process_mm_walk_lock(struct mm_struct *mm,
404					enum page_walk_lock walk_lock)
405{
406	if (walk_lock == PGWALK_RDLOCK)
407		mmap_assert_locked(mm);
408	else
409		mmap_assert_write_locked(mm);
410}
411
412static inline void process_vma_walk_lock(struct vm_area_struct *vma,
413					 enum page_walk_lock walk_lock)
414{
415#ifdef CONFIG_PER_VMA_LOCK
416	switch (walk_lock) {
417	case PGWALK_WRLOCK:
418		vma_start_write(vma);
419		break;
420	case PGWALK_WRLOCK_VERIFY:
421		vma_assert_write_locked(vma);
422		break;
423	case PGWALK_RDLOCK:
424		/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
425		break;
426	}
427#endif
428}
429
430/**
431 * walk_page_range - walk page table with caller specific callbacks
432 * @mm:		mm_struct representing the target process of page table walk
433 * @start:	start address of the virtual address range
434 * @end:	end address of the virtual address range
435 * @ops:	operation to call during the walk
436 * @private:	private data for callbacks' usage
437 *
438 * Recursively walk the page table tree of the process represented by @mm
439 * within the virtual address range [@start, @end). During walking, we can do
440 * some caller-specific works for each entry, by setting up pmd_entry(),
441 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
442 * callbacks, the associated entries/pages are just ignored.
443 * The return values of these callbacks are commonly defined like below:
444 *
445 *  - 0  : succeeded to handle the current entry, and if you don't reach the
446 *         end address yet, continue to walk.
447 *  - >0 : succeeded to handle the current entry, and return to the caller
448 *         with caller specific value.
449 *  - <0 : failed to handle the current entry, and return to the caller
450 *         with error code.
451 *
452 * Before starting to walk page table, some callers want to check whether
453 * they really want to walk over the current vma, typically by checking
454 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
455 * purpose.
456 *
457 * If operations need to be staged before and committed after a vma is walked,
458 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
459 * since it is intended to handle commit-type operations, can't return any
460 * errors.
461 *
462 * struct mm_walk keeps current values of some common data like vma and pmd,
463 * which are useful for the access from callbacks. If you want to pass some
464 * caller-specific data to callbacks, @private should be helpful.
465 *
466 * Locking:
467 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
468 *   because these function traverse vma list and/or access to vma's data.
469 */
470int walk_page_range(struct mm_struct *mm, unsigned long start,
471		unsigned long end, const struct mm_walk_ops *ops,
472		void *private)
473{
474	int err = 0;
475	unsigned long next;
476	struct vm_area_struct *vma;
477	struct mm_walk walk = {
478		.ops		= ops,
479		.mm		= mm,
480		.private	= private,
481	};
482
483	if (start >= end)
484		return -EINVAL;
485
486	if (!walk.mm)
487		return -EINVAL;
488
489	process_mm_walk_lock(walk.mm, ops->walk_lock);
490
491	vma = find_vma(walk.mm, start);
492	do {
493		if (!vma) { /* after the last vma */
494			walk.vma = NULL;
495			next = end;
496			if (ops->pte_hole)
497				err = ops->pte_hole(start, next, -1, &walk);
498		} else if (start < vma->vm_start) { /* outside vma */
499			walk.vma = NULL;
500			next = min(end, vma->vm_start);
501			if (ops->pte_hole)
502				err = ops->pte_hole(start, next, -1, &walk);
503		} else { /* inside vma */
504			process_vma_walk_lock(vma, ops->walk_lock);
505			walk.vma = vma;
506			next = min(end, vma->vm_end);
507			vma = find_vma(mm, vma->vm_end);
508
509			err = walk_page_test(start, next, &walk);
510			if (err > 0) {
511				/*
512				 * positive return values are purely for
513				 * controlling the pagewalk, so should never
514				 * be passed to the callers.
515				 */
516				err = 0;
517				continue;
518			}
519			if (err < 0)
520				break;
521			err = __walk_page_range(start, next, &walk);
522		}
523		if (err)
524			break;
525	} while (start = next, start < end);
526	return err;
527}
528
529/**
530 * walk_page_range_novma - walk a range of pagetables not backed by a vma
531 * @mm:		mm_struct representing the target process of page table walk
532 * @start:	start address of the virtual address range
533 * @end:	end address of the virtual address range
534 * @ops:	operation to call during the walk
535 * @pgd:	pgd to walk if different from mm->pgd
536 * @private:	private data for callbacks' usage
537 *
538 * Similar to walk_page_range() but can walk any page tables even if they are
539 * not backed by VMAs. Because 'unusual' entries may be walked this function
540 * will also not lock the PTEs for the pte_entry() callback. This is useful for
541 * walking the kernel pages tables or page tables for firmware.
542 *
543 * Note: Be careful to walk the kernel pages tables, the caller may be need to
544 * take other effective approache (mmap lock may be insufficient) to prevent
545 * the intermediate kernel page tables belonging to the specified address range
546 * from being freed (e.g. memory hot-remove).
547 */
548int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
549			  unsigned long end, const struct mm_walk_ops *ops,
550			  pgd_t *pgd,
551			  void *private)
552{
553	struct mm_walk walk = {
554		.ops		= ops,
555		.mm		= mm,
556		.pgd		= pgd,
557		.private	= private,
558		.no_vma		= true
559	};
560
561	if (start >= end || !walk.mm)
562		return -EINVAL;
563
564	/*
565	 * 1) For walking the user virtual address space:
566	 *
567	 * The mmap lock protects the page walker from changes to the page
568	 * tables during the walk.  However a read lock is insufficient to
569	 * protect those areas which don't have a VMA as munmap() detaches
570	 * the VMAs before downgrading to a read lock and actually tearing
571	 * down PTEs/page tables. In which case, the mmap write lock should
572	 * be hold.
573	 *
574	 * 2) For walking the kernel virtual address space:
575	 *
576	 * The kernel intermediate page tables usually do not be freed, so
577	 * the mmap map read lock is sufficient. But there are some exceptions.
578	 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
579	 * to prevent the intermediate kernel pages tables belonging to the
580	 * specified address range from being freed. The caller should take
581	 * other actions to prevent this race.
582	 */
583	if (mm == &init_mm)
584		mmap_assert_locked(walk.mm);
585	else
586		mmap_assert_write_locked(walk.mm);
587
588	return walk_pgd_range(start, end, &walk);
589}
590
591int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
592			unsigned long end, const struct mm_walk_ops *ops,
593			void *private)
594{
595	struct mm_walk walk = {
596		.ops		= ops,
597		.mm		= vma->vm_mm,
598		.vma		= vma,
599		.private	= private,
600	};
601
602	if (start >= end || !walk.mm)
603		return -EINVAL;
604	if (start < vma->vm_start || end > vma->vm_end)
605		return -EINVAL;
606
607	process_mm_walk_lock(walk.mm, ops->walk_lock);
608	process_vma_walk_lock(vma, ops->walk_lock);
609	return __walk_page_range(start, end, &walk);
610}
611
612int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
613		void *private)
614{
615	struct mm_walk walk = {
616		.ops		= ops,
617		.mm		= vma->vm_mm,
618		.vma		= vma,
619		.private	= private,
620	};
621
622	if (!walk.mm)
623		return -EINVAL;
624
625	process_mm_walk_lock(walk.mm, ops->walk_lock);
626	process_vma_walk_lock(vma, ops->walk_lock);
627	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
628}
629
630/**
631 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
632 * @mapping: Pointer to the struct address_space
633 * @first_index: First page offset in the address_space
634 * @nr: Number of incremental page offsets to cover
635 * @ops:	operation to call during the walk
636 * @private:	private data for callbacks' usage
637 *
638 * This function walks all memory areas mapped into a struct address_space.
639 * The walk is limited to only the given page-size index range, but if
640 * the index boundaries cross a huge page-table entry, that entry will be
641 * included.
642 *
643 * Also see walk_page_range() for additional information.
644 *
645 * Locking:
646 *   This function can't require that the struct mm_struct::mmap_lock is held,
647 *   since @mapping may be mapped by multiple processes. Instead
648 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
649 *   callbacks, and it's up tho the caller to ensure that the
650 *   struct mm_struct::mmap_lock is not needed.
651 *
652 *   Also this means that a caller can't rely on the struct
653 *   vm_area_struct::vm_flags to be constant across a call,
654 *   except for immutable flags. Callers requiring this shouldn't use
655 *   this function.
656 *
657 * Return: 0 on success, negative error code on failure, positive number on
658 * caller defined premature termination.
659 */
660int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
661		      pgoff_t nr, const struct mm_walk_ops *ops,
662		      void *private)
663{
664	struct mm_walk walk = {
665		.ops		= ops,
666		.private	= private,
667	};
668	struct vm_area_struct *vma;
669	pgoff_t vba, vea, cba, cea;
670	unsigned long start_addr, end_addr;
671	int err = 0;
672
673	lockdep_assert_held(&mapping->i_mmap_rwsem);
674	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
675				  first_index + nr - 1) {
676		/* Clip to the vma */
677		vba = vma->vm_pgoff;
678		vea = vba + vma_pages(vma);
679		cba = first_index;
680		cba = max(cba, vba);
681		cea = first_index + nr;
682		cea = min(cea, vea);
683
684		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
685		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
686		if (start_addr >= end_addr)
687			continue;
688
689		walk.vma = vma;
690		walk.mm = vma->vm_mm;
691
692		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
693		if (err > 0) {
694			err = 0;
695			break;
696		} else if (err < 0)
697			break;
698
699		err = __walk_page_range(start_addr, end_addr, &walk);
700		if (err)
701			break;
702	}
703
704	return err;
705}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 
 
 56	}
 57
 
 58	return err;
 59}
 60
 61#ifdef CONFIG_ARCH_HAS_HUGEPD
 62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 63			     unsigned long end, struct mm_walk *walk, int pdshift)
 64{
 65	int err = 0;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int shift = hugepd_shift(*phpd);
 68	int page_size = 1 << shift;
 69
 70	if (!ops->pte_entry)
 71		return 0;
 72
 73	if (addr & (page_size - 1))
 74		return 0;
 75
 76	for (;;) {
 77		pte_t *pte;
 78
 79		spin_lock(&walk->mm->page_table_lock);
 80		pte = hugepte_offset(*phpd, addr, pdshift);
 81		err = ops->pte_entry(pte, addr, addr + page_size, walk);
 82		spin_unlock(&walk->mm->page_table_lock);
 83
 84		if (err)
 85			break;
 86		if (addr >= end - page_size)
 87			break;
 88		addr += page_size;
 89	}
 90	return err;
 91}
 92#else
 93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 94			     unsigned long end, struct mm_walk *walk, int pdshift)
 95{
 96	return 0;
 97}
 98#endif
 99
100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101			  struct mm_walk *walk)
102{
103	pmd_t *pmd;
104	unsigned long next;
105	const struct mm_walk_ops *ops = walk->ops;
106	int err = 0;
107	int depth = real_depth(3);
108
109	pmd = pmd_offset(pud, addr);
110	do {
111again:
112		next = pmd_addr_end(addr, end);
113		if (pmd_none(*pmd)) {
114			if (ops->pte_hole)
115				err = ops->pte_hole(addr, next, depth, walk);
116			if (err)
117				break;
118			continue;
119		}
120
121		walk->action = ACTION_SUBTREE;
122
123		/*
124		 * This implies that each ->pmd_entry() handler
125		 * needs to know about pmd_trans_huge() pmds
126		 */
127		if (ops->pmd_entry)
128			err = ops->pmd_entry(pmd, addr, next, walk);
129		if (err)
130			break;
131
132		if (walk->action == ACTION_AGAIN)
133			goto again;
134
135		/*
136		 * Check this here so we only break down trans_huge
137		 * pages when we _need_ to
138		 */
139		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140		    walk->action == ACTION_CONTINUE ||
141		    !(ops->pte_entry))
142			continue;
143
144		if (walk->vma) {
145			split_huge_pmd(walk->vma, pmd, addr);
146			if (pmd_trans_unstable(pmd))
147				goto again;
148		}
149
150		if (is_hugepd(__hugepd(pmd_val(*pmd))))
151			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152		else
153			err = walk_pte_range(pmd, addr, next, walk);
154		if (err)
155			break;
 
 
 
 
156	} while (pmd++, addr = next, addr != end);
157
158	return err;
159}
160
161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162			  struct mm_walk *walk)
163{
164	pud_t *pud;
165	unsigned long next;
166	const struct mm_walk_ops *ops = walk->ops;
167	int err = 0;
168	int depth = real_depth(2);
169
170	pud = pud_offset(p4d, addr);
171	do {
172 again:
173		next = pud_addr_end(addr, end);
174		if (pud_none(*pud)) {
175			if (ops->pte_hole)
176				err = ops->pte_hole(addr, next, depth, walk);
177			if (err)
178				break;
179			continue;
180		}
181
182		walk->action = ACTION_SUBTREE;
183
184		if (ops->pud_entry)
185			err = ops->pud_entry(pud, addr, next, walk);
186		if (err)
187			break;
188
189		if (walk->action == ACTION_AGAIN)
190			goto again;
191
192		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193		    walk->action == ACTION_CONTINUE ||
194		    !(ops->pmd_entry || ops->pte_entry))
195			continue;
196
197		if (walk->vma)
198			split_huge_pud(walk->vma, pud, addr);
199		if (pud_none(*pud))
200			goto again;
201
202		if (is_hugepd(__hugepd(pud_val(*pud))))
203			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204		else
205			err = walk_pmd_range(pud, addr, next, walk);
206		if (err)
207			break;
208	} while (pud++, addr = next, addr != end);
209
210	return err;
211}
212
213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214			  struct mm_walk *walk)
215{
216	p4d_t *p4d;
217	unsigned long next;
218	const struct mm_walk_ops *ops = walk->ops;
219	int err = 0;
220	int depth = real_depth(1);
221
222	p4d = p4d_offset(pgd, addr);
223	do {
224		next = p4d_addr_end(addr, end);
225		if (p4d_none_or_clear_bad(p4d)) {
226			if (ops->pte_hole)
227				err = ops->pte_hole(addr, next, depth, walk);
228			if (err)
229				break;
230			continue;
231		}
232		if (ops->p4d_entry) {
233			err = ops->p4d_entry(p4d, addr, next, walk);
234			if (err)
235				break;
236		}
237		if (is_hugepd(__hugepd(p4d_val(*p4d))))
238			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240			err = walk_pud_range(p4d, addr, next, walk);
241		if (err)
242			break;
243	} while (p4d++, addr = next, addr != end);
244
245	return err;
246}
247
248static int walk_pgd_range(unsigned long addr, unsigned long end,
249			  struct mm_walk *walk)
250{
251	pgd_t *pgd;
252	unsigned long next;
253	const struct mm_walk_ops *ops = walk->ops;
254	int err = 0;
255
256	if (walk->pgd)
257		pgd = walk->pgd + pgd_index(addr);
258	else
259		pgd = pgd_offset(walk->mm, addr);
260	do {
261		next = pgd_addr_end(addr, end);
262		if (pgd_none_or_clear_bad(pgd)) {
263			if (ops->pte_hole)
264				err = ops->pte_hole(addr, next, 0, walk);
265			if (err)
266				break;
267			continue;
268		}
269		if (ops->pgd_entry) {
270			err = ops->pgd_entry(pgd, addr, next, walk);
271			if (err)
272				break;
273		}
274		if (is_hugepd(__hugepd(pgd_val(*pgd))))
275			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277			err = walk_p4d_range(pgd, addr, next, walk);
278		if (err)
279			break;
280	} while (pgd++, addr = next, addr != end);
281
282	return err;
283}
284
285#ifdef CONFIG_HUGETLB_PAGE
286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287				       unsigned long end)
288{
289	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290	return boundary < end ? boundary : end;
291}
292
293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
294			      struct mm_walk *walk)
295{
296	struct vm_area_struct *vma = walk->vma;
297	struct hstate *h = hstate_vma(vma);
298	unsigned long next;
299	unsigned long hmask = huge_page_mask(h);
300	unsigned long sz = huge_page_size(h);
301	pte_t *pte;
302	const struct mm_walk_ops *ops = walk->ops;
303	int err = 0;
304
 
305	do {
306		next = hugetlb_entry_end(h, addr, end);
307		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309		if (pte)
310			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311		else if (ops->pte_hole)
312			err = ops->pte_hole(addr, next, -1, walk);
313
314		if (err)
315			break;
316	} while (addr = next, addr != end);
 
317
318	return err;
319}
320
321#else /* CONFIG_HUGETLB_PAGE */
322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
323			      struct mm_walk *walk)
324{
325	return 0;
326}
327
328#endif /* CONFIG_HUGETLB_PAGE */
329
330/*
331 * Decide whether we really walk over the current vma on [@start, @end)
332 * or skip it via the returned value. Return 0 if we do walk over the
333 * current vma, and return 1 if we skip the vma. Negative values means
334 * error, where we abort the current walk.
335 */
336static int walk_page_test(unsigned long start, unsigned long end,
337			struct mm_walk *walk)
338{
339	struct vm_area_struct *vma = walk->vma;
340	const struct mm_walk_ops *ops = walk->ops;
341
342	if (ops->test_walk)
343		return ops->test_walk(start, end, walk);
344
345	/*
346	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347	 * range, so we don't walk over it as we do for normal vmas. However,
348	 * Some callers are interested in handling hole range and they don't
349	 * want to just ignore any single address range. Such users certainly
350	 * define their ->pte_hole() callbacks, so let's delegate them to handle
351	 * vma(VM_PFNMAP).
352	 */
353	if (vma->vm_flags & VM_PFNMAP) {
354		int err = 1;
355		if (ops->pte_hole)
356			err = ops->pte_hole(start, end, -1, walk);
357		return err ? err : 1;
358	}
359	return 0;
360}
361
362static int __walk_page_range(unsigned long start, unsigned long end,
363			struct mm_walk *walk)
364{
365	int err = 0;
366	struct vm_area_struct *vma = walk->vma;
367	const struct mm_walk_ops *ops = walk->ops;
368
369	if (ops->pre_vma) {
370		err = ops->pre_vma(start, end, walk);
371		if (err)
372			return err;
373	}
374
375	if (is_vm_hugetlb_page(vma)) {
376		if (ops->hugetlb_entry)
377			err = walk_hugetlb_range(start, end, walk);
378	} else
379		err = walk_pgd_range(start, end, walk);
380
381	if (ops->post_vma)
382		ops->post_vma(walk);
383
384	return err;
385}
386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387/**
388 * walk_page_range - walk page table with caller specific callbacks
389 * @mm:		mm_struct representing the target process of page table walk
390 * @start:	start address of the virtual address range
391 * @end:	end address of the virtual address range
392 * @ops:	operation to call during the walk
393 * @private:	private data for callbacks' usage
394 *
395 * Recursively walk the page table tree of the process represented by @mm
396 * within the virtual address range [@start, @end). During walking, we can do
397 * some caller-specific works for each entry, by setting up pmd_entry(),
398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399 * callbacks, the associated entries/pages are just ignored.
400 * The return values of these callbacks are commonly defined like below:
401 *
402 *  - 0  : succeeded to handle the current entry, and if you don't reach the
403 *         end address yet, continue to walk.
404 *  - >0 : succeeded to handle the current entry, and return to the caller
405 *         with caller specific value.
406 *  - <0 : failed to handle the current entry, and return to the caller
407 *         with error code.
408 *
409 * Before starting to walk page table, some callers want to check whether
410 * they really want to walk over the current vma, typically by checking
411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412 * purpose.
413 *
414 * If operations need to be staged before and committed after a vma is walked,
415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416 * since it is intended to handle commit-type operations, can't return any
417 * errors.
418 *
419 * struct mm_walk keeps current values of some common data like vma and pmd,
420 * which are useful for the access from callbacks. If you want to pass some
421 * caller-specific data to callbacks, @private should be helpful.
422 *
423 * Locking:
424 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425 *   because these function traverse vma list and/or access to vma's data.
426 */
427int walk_page_range(struct mm_struct *mm, unsigned long start,
428		unsigned long end, const struct mm_walk_ops *ops,
429		void *private)
430{
431	int err = 0;
432	unsigned long next;
433	struct vm_area_struct *vma;
434	struct mm_walk walk = {
435		.ops		= ops,
436		.mm		= mm,
437		.private	= private,
438	};
439
440	if (start >= end)
441		return -EINVAL;
442
443	if (!walk.mm)
444		return -EINVAL;
445
446	mmap_assert_locked(walk.mm);
447
448	vma = find_vma(walk.mm, start);
449	do {
450		if (!vma) { /* after the last vma */
451			walk.vma = NULL;
452			next = end;
453			if (ops->pte_hole)
454				err = ops->pte_hole(start, next, -1, &walk);
455		} else if (start < vma->vm_start) { /* outside vma */
456			walk.vma = NULL;
457			next = min(end, vma->vm_start);
458			if (ops->pte_hole)
459				err = ops->pte_hole(start, next, -1, &walk);
460		} else { /* inside vma */
 
461			walk.vma = vma;
462			next = min(end, vma->vm_end);
463			vma = find_vma(mm, vma->vm_end);
464
465			err = walk_page_test(start, next, &walk);
466			if (err > 0) {
467				/*
468				 * positive return values are purely for
469				 * controlling the pagewalk, so should never
470				 * be passed to the callers.
471				 */
472				err = 0;
473				continue;
474			}
475			if (err < 0)
476				break;
477			err = __walk_page_range(start, next, &walk);
478		}
479		if (err)
480			break;
481	} while (start = next, start < end);
482	return err;
483}
484
485/**
486 * walk_page_range_novma - walk a range of pagetables not backed by a vma
487 * @mm:		mm_struct representing the target process of page table walk
488 * @start:	start address of the virtual address range
489 * @end:	end address of the virtual address range
490 * @ops:	operation to call during the walk
491 * @pgd:	pgd to walk if different from mm->pgd
492 * @private:	private data for callbacks' usage
493 *
494 * Similar to walk_page_range() but can walk any page tables even if they are
495 * not backed by VMAs. Because 'unusual' entries may be walked this function
496 * will also not lock the PTEs for the pte_entry() callback. This is useful for
497 * walking the kernel pages tables or page tables for firmware.
 
 
 
 
 
498 */
499int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500			  unsigned long end, const struct mm_walk_ops *ops,
501			  pgd_t *pgd,
502			  void *private)
503{
504	struct mm_walk walk = {
505		.ops		= ops,
506		.mm		= mm,
507		.pgd		= pgd,
508		.private	= private,
509		.no_vma		= true
510	};
511
512	if (start >= end || !walk.mm)
513		return -EINVAL;
514
515	mmap_assert_write_locked(walk.mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
517	return walk_pgd_range(start, end, &walk);
518}
519
520int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
521			unsigned long end, const struct mm_walk_ops *ops,
522			void *private)
523{
524	struct mm_walk walk = {
525		.ops		= ops,
526		.mm		= vma->vm_mm,
527		.vma		= vma,
528		.private	= private,
529	};
530
531	if (start >= end || !walk.mm)
532		return -EINVAL;
533	if (start < vma->vm_start || end > vma->vm_end)
534		return -EINVAL;
535
536	mmap_assert_locked(walk.mm);
 
537	return __walk_page_range(start, end, &walk);
538}
539
540int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
541		void *private)
542{
543	struct mm_walk walk = {
544		.ops		= ops,
545		.mm		= vma->vm_mm,
546		.vma		= vma,
547		.private	= private,
548	};
549
550	if (!walk.mm)
551		return -EINVAL;
552
553	mmap_assert_locked(walk.mm);
 
554	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
555}
556
557/**
558 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
559 * @mapping: Pointer to the struct address_space
560 * @first_index: First page offset in the address_space
561 * @nr: Number of incremental page offsets to cover
562 * @ops:	operation to call during the walk
563 * @private:	private data for callbacks' usage
564 *
565 * This function walks all memory areas mapped into a struct address_space.
566 * The walk is limited to only the given page-size index range, but if
567 * the index boundaries cross a huge page-table entry, that entry will be
568 * included.
569 *
570 * Also see walk_page_range() for additional information.
571 *
572 * Locking:
573 *   This function can't require that the struct mm_struct::mmap_lock is held,
574 *   since @mapping may be mapped by multiple processes. Instead
575 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
576 *   callbacks, and it's up tho the caller to ensure that the
577 *   struct mm_struct::mmap_lock is not needed.
578 *
579 *   Also this means that a caller can't rely on the struct
580 *   vm_area_struct::vm_flags to be constant across a call,
581 *   except for immutable flags. Callers requiring this shouldn't use
582 *   this function.
583 *
584 * Return: 0 on success, negative error code on failure, positive number on
585 * caller defined premature termination.
586 */
587int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
588		      pgoff_t nr, const struct mm_walk_ops *ops,
589		      void *private)
590{
591	struct mm_walk walk = {
592		.ops		= ops,
593		.private	= private,
594	};
595	struct vm_area_struct *vma;
596	pgoff_t vba, vea, cba, cea;
597	unsigned long start_addr, end_addr;
598	int err = 0;
599
600	lockdep_assert_held(&mapping->i_mmap_rwsem);
601	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
602				  first_index + nr - 1) {
603		/* Clip to the vma */
604		vba = vma->vm_pgoff;
605		vea = vba + vma_pages(vma);
606		cba = first_index;
607		cba = max(cba, vba);
608		cea = first_index + nr;
609		cea = min(cea, vea);
610
611		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
612		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
613		if (start_addr >= end_addr)
614			continue;
615
616		walk.vma = vma;
617		walk.mm = vma->vm_mm;
618
619		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
620		if (err > 0) {
621			err = 0;
622			break;
623		} else if (err < 0)
624			break;
625
626		err = __walk_page_range(start_addr, end_addr, &walk);
627		if (err)
628			break;
629	}
630
631	return err;
632}