Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Data verification functions, i.e. hooks for ->readahead()
  4 *
  5 * Copyright 2019 Google LLC
  6 */
  7
  8#include "fsverity_private.h"
  9
 10#include <crypto/hash.h>
 11#include <linux/bio.h>
 
 12
 13static struct workqueue_struct *fsverity_read_workqueue;
 14
 15/*
 16 * Returns true if the hash block with index @hblock_idx in the tree, located in
 17 * @hpage, has already been verified.
 
 
 
 
 
 18 */
 19static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
 20				   unsigned long hblock_idx)
 
 21{
 22	bool verified;
 23	unsigned int blocks_per_page;
 24	unsigned int i;
 25
 26	/*
 27	 * When the Merkle tree block size and page size are the same, then the
 28	 * ->hash_block_verified bitmap isn't allocated, and we use PG_checked
 29	 * to directly indicate whether the page's block has been verified.
 30	 *
 31	 * Using PG_checked also guarantees that we re-verify hash pages that
 32	 * get evicted and re-instantiated from the backing storage, as new
 33	 * pages always start out with PG_checked cleared.
 34	 */
 35	if (!vi->hash_block_verified)
 36		return PageChecked(hpage);
 37
 38	/*
 39	 * When the Merkle tree block size and page size differ, we use a bitmap
 40	 * to indicate whether each hash block has been verified.
 41	 *
 42	 * However, we still need to ensure that hash pages that get evicted and
 43	 * re-instantiated from the backing storage are re-verified.  To do
 44	 * this, we use PG_checked again, but now it doesn't really mean
 45	 * "checked".  Instead, now it just serves as an indicator for whether
 46	 * the hash page is newly instantiated or not.
 47	 *
 48	 * The first thread that sees PG_checked=0 must clear the corresponding
 49	 * bitmap bits, then set PG_checked=1.  This requires a spinlock.  To
 50	 * avoid having to take this spinlock in the common case of
 51	 * PG_checked=1, we start with an opportunistic lockless read.
 52	 */
 53	if (PageChecked(hpage)) {
 54		/*
 55		 * A read memory barrier is needed here to give ACQUIRE
 56		 * semantics to the above PageChecked() test.
 57		 */
 58		smp_rmb();
 59		return test_bit(hblock_idx, vi->hash_block_verified);
 60	}
 61	spin_lock(&vi->hash_page_init_lock);
 62	if (PageChecked(hpage)) {
 63		verified = test_bit(hblock_idx, vi->hash_block_verified);
 64	} else {
 65		blocks_per_page = vi->tree_params.blocks_per_page;
 66		hblock_idx = round_down(hblock_idx, blocks_per_page);
 67		for (i = 0; i < blocks_per_page; i++)
 68			clear_bit(hblock_idx + i, vi->hash_block_verified);
 69		/*
 70		 * A write memory barrier is needed here to give RELEASE
 71		 * semantics to the below SetPageChecked() operation.
 72		 */
 73		smp_wmb();
 74		SetPageChecked(hpage);
 75		verified = false;
 76	}
 77	spin_unlock(&vi->hash_page_init_lock);
 78	return verified;
 79}
 80
 81/*
 82 * Verify a single data block against the file's Merkle tree.
 83 *
 84 * In principle, we need to verify the entire path to the root node.  However,
 85 * for efficiency the filesystem may cache the hash blocks.  Therefore we need
 86 * only ascend the tree until an already-verified hash block is seen, and then
 87 * verify the path to that block.
 
 
 
 
 88 *
 89 * Return: %true if the data block is valid, else %false.
 
 
 
 90 */
 91static bool
 92verify_data_block(struct inode *inode, struct fsverity_info *vi,
 93		  const void *data, u64 data_pos, unsigned long max_ra_pages)
 94{
 95	const struct merkle_tree_params *params = &vi->tree_params;
 96	const unsigned int hsize = params->digest_size;
 
 97	int level;
 98	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
 99	const u8 *want_hash;
100	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
101	/* The hash blocks that are traversed, indexed by level */
102	struct {
103		/* Page containing the hash block */
104		struct page *page;
105		/* Mapped address of the hash block (will be within @page) */
106		const void *addr;
107		/* Index of the hash block in the tree overall */
108		unsigned long index;
109		/* Byte offset of the wanted hash relative to @addr */
110		unsigned int hoffset;
111	} hblocks[FS_VERITY_MAX_LEVELS];
112	/*
113	 * The index of the previous level's block within that level; also the
114	 * index of that block's hash within the current level.
115	 */
116	u64 hidx = data_pos >> params->log_blocksize;
117
118	/* Up to 1 + FS_VERITY_MAX_LEVELS pages may be mapped at once */
119	BUILD_BUG_ON(1 + FS_VERITY_MAX_LEVELS > KM_MAX_IDX);
120
121	if (unlikely(data_pos >= inode->i_size)) {
122		/*
123		 * This can happen in the data page spanning EOF when the Merkle
124		 * tree block size is less than the page size.  The Merkle tree
125		 * doesn't cover data blocks fully past EOF.  But the entire
126		 * page spanning EOF can be visible to userspace via a mmap, and
127		 * any part past EOF should be all zeroes.  Therefore, we need
128		 * to verify that any data blocks fully past EOF are all zeroes.
129		 */
130		if (memchr_inv(data, 0, params->block_size)) {
131			fsverity_err(inode,
132				     "FILE CORRUPTED!  Data past EOF is not zeroed");
133			return false;
134		}
135		return true;
136	}
137
138	/*
139	 * Starting at the leaf level, ascend the tree saving hash blocks along
140	 * the way until we find a hash block that has already been verified, or
141	 * until we reach the root.
142	 */
143	for (level = 0; level < params->num_levels; level++) {
144		unsigned long next_hidx;
145		unsigned long hblock_idx;
146		pgoff_t hpage_idx;
147		unsigned int hblock_offset_in_page;
148		unsigned int hoffset;
149		struct page *hpage;
150		const void *haddr;
151
152		/*
153		 * The index of the block in the current level; also the index
154		 * of that block's hash within the next level.
155		 */
156		next_hidx = hidx >> params->log_arity;
157
158		/* Index of the hash block in the tree overall */
159		hblock_idx = params->level_start[level] + next_hidx;
160
161		/* Index of the hash page in the tree overall */
162		hpage_idx = hblock_idx >> params->log_blocks_per_page;
163
164		/* Byte offset of the hash block within the page */
165		hblock_offset_in_page =
166			(hblock_idx << params->log_blocksize) & ~PAGE_MASK;
167
168		/* Byte offset of the hash within the block */
169		hoffset = (hidx << params->log_digestsize) &
170			  (params->block_size - 1);
171
172		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode,
173				hpage_idx, level == 0 ? min(max_ra_pages,
174					params->tree_pages - hpage_idx) : 0);
175		if (IS_ERR(hpage)) {
 
176			fsverity_err(inode,
177				     "Error %ld reading Merkle tree page %lu",
178				     PTR_ERR(hpage), hpage_idx);
179			goto error;
180		}
181		haddr = kmap_local_page(hpage) + hblock_offset_in_page;
182		if (is_hash_block_verified(vi, hpage, hblock_idx)) {
183			memcpy(_want_hash, haddr + hoffset, hsize);
184			want_hash = _want_hash;
185			kunmap_local(haddr);
186			put_page(hpage);
 
 
 
187			goto descend;
188		}
189		hblocks[level].page = hpage;
190		hblocks[level].addr = haddr;
191		hblocks[level].index = hblock_idx;
192		hblocks[level].hoffset = hoffset;
193		hidx = next_hidx;
194	}
195
196	want_hash = vi->root_hash;
 
 
197descend:
198	/* Descend the tree verifying hash blocks. */
199	for (; level > 0; level--) {
200		struct page *hpage = hblocks[level - 1].page;
201		const void *haddr = hblocks[level - 1].addr;
202		unsigned long hblock_idx = hblocks[level - 1].index;
203		unsigned int hoffset = hblocks[level - 1].hoffset;
204
205		if (fsverity_hash_block(params, inode, haddr, real_hash) != 0)
206			goto error;
207		if (memcmp(want_hash, real_hash, hsize) != 0)
208			goto corrupted;
209		/*
210		 * Mark the hash block as verified.  This must be atomic and
211		 * idempotent, as the same hash block might be verified by
212		 * multiple threads concurrently.
213		 */
214		if (vi->hash_block_verified)
215			set_bit(hblock_idx, vi->hash_block_verified);
216		else
217			SetPageChecked(hpage);
218		memcpy(_want_hash, haddr + hoffset, hsize);
219		want_hash = _want_hash;
220		kunmap_local(haddr);
221		put_page(hpage);
 
 
222	}
223
224	/* Finally, verify the data block. */
225	if (fsverity_hash_block(params, inode, data, real_hash) != 0)
226		goto error;
227	if (memcmp(want_hash, real_hash, hsize) != 0)
228		goto corrupted;
229	return true;
230
231corrupted:
232	fsverity_err(inode,
233		     "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
234		     data_pos, level - 1,
235		     params->hash_alg->name, hsize, want_hash,
236		     params->hash_alg->name, hsize, real_hash);
237error:
238	for (; level > 0; level--) {
239		kunmap_local(hblocks[level - 1].addr);
240		put_page(hblocks[level - 1].page);
241	}
242	return false;
243}
244
245static bool
246verify_data_blocks(struct folio *data_folio, size_t len, size_t offset,
247		   unsigned long max_ra_pages)
248{
249	struct inode *inode = data_folio->mapping->host;
250	struct fsverity_info *vi = inode->i_verity_info;
251	const unsigned int block_size = vi->tree_params.block_size;
252	u64 pos = (u64)data_folio->index << PAGE_SHIFT;
253
254	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
255		return false;
256	if (WARN_ON_ONCE(!folio_test_locked(data_folio) ||
257			 folio_test_uptodate(data_folio)))
258		return false;
259	do {
260		void *data;
261		bool valid;
262
263		data = kmap_local_folio(data_folio, offset);
264		valid = verify_data_block(inode, vi, data, pos + offset,
265					  max_ra_pages);
266		kunmap_local(data);
267		if (!valid)
268			return false;
269		offset += block_size;
270		len -= block_size;
271	} while (len);
272	return true;
273}
274
275/**
276 * fsverity_verify_blocks() - verify data in a folio
277 * @folio: the folio containing the data to verify
278 * @len: the length of the data to verify in the folio
279 * @offset: the offset of the data to verify in the folio
280 *
281 * Verify data that has just been read from a verity file.  The data must be
282 * located in a pagecache folio that is still locked and not yet uptodate.  The
283 * length and offset of the data must be Merkle tree block size aligned.
284 *
285 * Return: %true if the data is valid, else %false.
286 */
287bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset)
288{
289	return verify_data_blocks(folio, len, offset, 0);
 
 
 
 
 
 
 
 
 
 
 
 
290}
291EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
292
293#ifdef CONFIG_BLOCK
294/**
295 * fsverity_verify_bio() - verify a 'read' bio that has just completed
296 * @bio: the bio to verify
297 *
298 * Verify the bio's data against the file's Merkle tree.  All bio data segments
299 * must be aligned to the file's Merkle tree block size.  If any data fails
300 * verification, then bio->bi_status is set to an error status.
301 *
302 * This is a helper function for use by the ->readahead() method of filesystems
303 * that issue bios to read data directly into the page cache.  Filesystems that
304 * populate the page cache without issuing bios (e.g. non block-based
305 * filesystems) must instead call fsverity_verify_page() directly on each page.
306 * All filesystems must also call fsverity_verify_page() on holes.
307 */
308void fsverity_verify_bio(struct bio *bio)
309{
310	struct folio_iter fi;
 
 
 
 
 
311	unsigned long max_ra_pages = 0;
312
 
 
 
313	if (bio->bi_opf & REQ_RAHEAD) {
314		/*
315		 * If this bio is for data readahead, then we also do readahead
316		 * of the first (largest) level of the Merkle tree.  Namely,
317		 * when a Merkle tree page is read, we also try to piggy-back on
318		 * some additional pages -- up to 1/4 the number of data pages.
319		 *
320		 * This improves sequential read performance, as it greatly
321		 * reduces the number of I/O requests made to the Merkle tree.
322		 */
323		max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
 
 
324	}
325
326	bio_for_each_folio_all(fi, bio) {
327		if (!verify_data_blocks(fi.folio, fi.length, fi.offset,
328					max_ra_pages)) {
 
 
 
 
329			bio->bi_status = BLK_STS_IOERR;
330			break;
331		}
332	}
 
 
333}
334EXPORT_SYMBOL_GPL(fsverity_verify_bio);
335#endif /* CONFIG_BLOCK */
336
337/**
338 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
339 * @work: the work to enqueue
340 *
341 * Enqueue verification work for asynchronous processing.
342 */
343void fsverity_enqueue_verify_work(struct work_struct *work)
344{
345	queue_work(fsverity_read_workqueue, work);
346}
347EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
348
349void __init fsverity_init_workqueue(void)
350{
351	/*
352	 * Use a high-priority workqueue to prioritize verification work, which
353	 * blocks reads from completing, over regular application tasks.
 
354	 *
355	 * For performance reasons, don't use an unbound workqueue.  Using an
356	 * unbound workqueue for crypto operations causes excessive scheduler
357	 * latency on ARM64.
358	 */
359	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
360						  WQ_HIGHPRI,
361						  num_online_cpus());
362	if (!fsverity_read_workqueue)
363		panic("failed to allocate fsverity_read_queue");
 
 
 
 
 
 
 
364}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Data verification functions, i.e. hooks for ->readahead()
  4 *
  5 * Copyright 2019 Google LLC
  6 */
  7
  8#include "fsverity_private.h"
  9
 10#include <crypto/hash.h>
 11#include <linux/bio.h>
 12#include <linux/ratelimit.h>
 13
 14static struct workqueue_struct *fsverity_read_workqueue;
 15
 16/**
 17 * hash_at_level() - compute the location of the block's hash at the given level
 18 *
 19 * @params:	(in) the Merkle tree parameters
 20 * @dindex:	(in) the index of the data block being verified
 21 * @level:	(in) the level of hash we want (0 is leaf level)
 22 * @hindex:	(out) the index of the hash block containing the wanted hash
 23 * @hoffset:	(out) the byte offset to the wanted hash within the hash block
 24 */
 25static void hash_at_level(const struct merkle_tree_params *params,
 26			  pgoff_t dindex, unsigned int level, pgoff_t *hindex,
 27			  unsigned int *hoffset)
 28{
 29	pgoff_t position;
 
 
 30
 31	/* Offset of the hash within the level's region, in hashes */
 32	position = dindex >> (level * params->log_arity);
 
 
 
 
 
 
 
 
 
 33
 34	/* Index of the hash block in the tree overall */
 35	*hindex = params->level_start[level] + (position >> params->log_arity);
 36
 37	/* Offset of the wanted hash (in bytes) within the hash block */
 38	*hoffset = (position & ((1 << params->log_arity) - 1)) <<
 39		   (params->log_blocksize - params->log_arity);
 40}
 41
 42static inline int cmp_hashes(const struct fsverity_info *vi,
 43			     const u8 *want_hash, const u8 *real_hash,
 44			     pgoff_t index, int level)
 45{
 46	const unsigned int hsize = vi->tree_params.digest_size;
 47
 48	if (memcmp(want_hash, real_hash, hsize) == 0)
 49		return 0;
 50
 51	fsverity_err(vi->inode,
 52		     "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
 53		     index, level,
 54		     vi->tree_params.hash_alg->name, hsize, want_hash,
 55		     vi->tree_params.hash_alg->name, hsize, real_hash);
 56	return -EBADMSG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57}
 58
 59/*
 60 * Verify a single data page against the file's Merkle tree.
 61 *
 62 * In principle, we need to verify the entire path to the root node.  However,
 63 * for efficiency the filesystem may cache the hash pages.  Therefore we need
 64 * only ascend the tree until an already-verified page is seen, as indicated by
 65 * the PageChecked bit being set; then verify the path to that page.
 66 *
 67 * This code currently only supports the case where the verity block size is
 68 * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we
 69 * wouldn't be able to use the PageChecked bit.
 70 *
 71 * Note that multiple processes may race to verify a hash page and mark it
 72 * Checked, but it doesn't matter; the result will be the same either way.
 73 *
 74 * Return: true if the page is valid, else false.
 75 */
 76static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
 77			struct ahash_request *req, struct page *data_page,
 78			unsigned long level0_ra_pages)
 79{
 80	const struct merkle_tree_params *params = &vi->tree_params;
 81	const unsigned int hsize = params->digest_size;
 82	const pgoff_t index = data_page->index;
 83	int level;
 84	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
 85	const u8 *want_hash;
 86	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
 87	struct page *hpages[FS_VERITY_MAX_LEVELS];
 88	unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
 89	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 90
 91	if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
 92		return false;
 93
 94	pr_debug_ratelimited("Verifying data page %lu...\n", index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95
 96	/*
 97	 * Starting at the leaf level, ascend the tree saving hash pages along
 98	 * the way until we find a verified hash page, indicated by PageChecked;
 99	 * or until we reach the root.
100	 */
101	for (level = 0; level < params->num_levels; level++) {
102		pgoff_t hindex;
 
 
 
103		unsigned int hoffset;
104		struct page *hpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
105
106		hash_at_level(params, index, level, &hindex, &hoffset);
 
 
107
108		pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n",
109				     level, hindex, hoffset);
 
110
111		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
112				level == 0 ? level0_ra_pages : 0);
 
113		if (IS_ERR(hpage)) {
114			err = PTR_ERR(hpage);
115			fsverity_err(inode,
116				     "Error %d reading Merkle tree page %lu",
117				     err, hindex);
118			goto out;
119		}
120
121		if (PageChecked(hpage)) {
122			memcpy_from_page(_want_hash, hpage, hoffset, hsize);
123			want_hash = _want_hash;
 
124			put_page(hpage);
125			pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n",
126					     params->hash_alg->name,
127					     hsize, want_hash);
128			goto descend;
129		}
130		pr_debug_ratelimited("Hash page not yet checked\n");
131		hpages[level] = hpage;
132		hoffsets[level] = hoffset;
 
 
133	}
134
135	want_hash = vi->root_hash;
136	pr_debug("Want root hash: %s:%*phN\n",
137		 params->hash_alg->name, hsize, want_hash);
138descend:
139	/* Descend the tree verifying hash pages */
140	for (; level > 0; level--) {
141		struct page *hpage = hpages[level - 1];
142		unsigned int hoffset = hoffsets[level - 1];
143
144		err = fsverity_hash_page(params, inode, req, hpage, real_hash);
145		if (err)
146			goto out;
147		err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
148		if (err)
149			goto out;
150		SetPageChecked(hpage);
151		memcpy_from_page(_want_hash, hpage, hoffset, hsize);
 
 
 
 
 
 
 
 
152		want_hash = _want_hash;
 
153		put_page(hpage);
154		pr_debug("Verified hash page at level %d, now want %s:%*phN\n",
155			 level - 1, params->hash_alg->name, hsize, want_hash);
156	}
157
158	/* Finally, verify the data page */
159	err = fsverity_hash_page(params, inode, req, data_page, real_hash);
160	if (err)
161		goto out;
162	err = cmp_hashes(vi, want_hash, real_hash, index, -1);
163out:
164	for (; level > 0; level--)
165		put_page(hpages[level - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
166
167	return err == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168}
169
170/**
171 * fsverity_verify_page() - verify a data page
172 * @page: the page to verity
 
 
173 *
174 * Verify a page that has just been read from a verity file.  The page must be a
175 * pagecache page that is still locked and not yet uptodate.
 
176 *
177 * Return: true if the page is valid, else false.
178 */
179bool fsverity_verify_page(struct page *page)
180{
181	struct inode *inode = page->mapping->host;
182	const struct fsverity_info *vi = inode->i_verity_info;
183	struct ahash_request *req;
184	bool valid;
185
186	/* This allocation never fails, since it's mempool-backed. */
187	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
188
189	valid = verify_page(inode, vi, req, page, 0);
190
191	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
192
193	return valid;
194}
195EXPORT_SYMBOL_GPL(fsverity_verify_page);
196
197#ifdef CONFIG_BLOCK
198/**
199 * fsverity_verify_bio() - verify a 'read' bio that has just completed
200 * @bio: the bio to verify
201 *
202 * Verify a set of pages that have just been read from a verity file.  The pages
203 * must be pagecache pages that are still locked and not yet uptodate.  If a
204 * page fails verification, then bio->bi_status is set to an error status.
205 *
206 * This is a helper function for use by the ->readahead() method of filesystems
207 * that issue bios to read data directly into the page cache.  Filesystems that
208 * populate the page cache without issuing bios (e.g. non block-based
209 * filesystems) must instead call fsverity_verify_page() directly on each page.
210 * All filesystems must also call fsverity_verify_page() on holes.
211 */
212void fsverity_verify_bio(struct bio *bio)
213{
214	struct inode *inode = bio_first_page_all(bio)->mapping->host;
215	const struct fsverity_info *vi = inode->i_verity_info;
216	const struct merkle_tree_params *params = &vi->tree_params;
217	struct ahash_request *req;
218	struct bio_vec *bv;
219	struct bvec_iter_all iter_all;
220	unsigned long max_ra_pages = 0;
221
222	/* This allocation never fails, since it's mempool-backed. */
223	req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS);
224
225	if (bio->bi_opf & REQ_RAHEAD) {
226		/*
227		 * If this bio is for data readahead, then we also do readahead
228		 * of the first (largest) level of the Merkle tree.  Namely,
229		 * when a Merkle tree page is read, we also try to piggy-back on
230		 * some additional pages -- up to 1/4 the number of data pages.
231		 *
232		 * This improves sequential read performance, as it greatly
233		 * reduces the number of I/O requests made to the Merkle tree.
234		 */
235		bio_for_each_segment_all(bv, bio, iter_all)
236			max_ra_pages++;
237		max_ra_pages /= 4;
238	}
239
240	bio_for_each_segment_all(bv, bio, iter_all) {
241		struct page *page = bv->bv_page;
242		unsigned long level0_index = page->index >> params->log_arity;
243		unsigned long level0_ra_pages =
244			min(max_ra_pages, params->level0_blocks - level0_index);
245
246		if (!verify_page(inode, vi, req, page, level0_ra_pages)) {
247			bio->bi_status = BLK_STS_IOERR;
248			break;
249		}
250	}
251
252	fsverity_free_hash_request(params->hash_alg, req);
253}
254EXPORT_SYMBOL_GPL(fsverity_verify_bio);
255#endif /* CONFIG_BLOCK */
256
257/**
258 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
259 * @work: the work to enqueue
260 *
261 * Enqueue verification work for asynchronous processing.
262 */
263void fsverity_enqueue_verify_work(struct work_struct *work)
264{
265	queue_work(fsverity_read_workqueue, work);
266}
267EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
268
269int __init fsverity_init_workqueue(void)
270{
271	/*
272	 * Use an unbound workqueue to allow bios to be verified in parallel
273	 * even when they happen to complete on the same CPU.  This sacrifices
274	 * locality, but it's worthwhile since hashing is CPU-intensive.
275	 *
276	 * Also use a high-priority workqueue to prioritize verification work,
277	 * which blocks reads from completing, over regular application tasks.
 
278	 */
279	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
280						  WQ_UNBOUND | WQ_HIGHPRI,
281						  num_online_cpus());
282	if (!fsverity_read_workqueue)
283		return -ENOMEM;
284	return 0;
285}
286
287void __init fsverity_exit_workqueue(void)
288{
289	destroy_workqueue(fsverity_read_workqueue);
290	fsverity_read_workqueue = NULL;
291}