Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   4 * (host mode only)
   5 *
   6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/firmware/xlnx-zynqmp.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
 
 
  18#include <linux/platform_device.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/spi/spi.h>
  21#include <linux/spinlock.h>
  22#include <linux/workqueue.h>
  23#include <linux/spi/spi-mem.h>
  24
  25/* Generic QSPI register offsets */
  26#define GQSPI_CONFIG_OFST		0x00000100
  27#define GQSPI_ISR_OFST			0x00000104
  28#define GQSPI_IDR_OFST			0x0000010C
  29#define GQSPI_IER_OFST			0x00000108
  30#define GQSPI_IMASK_OFST		0x00000110
  31#define GQSPI_EN_OFST			0x00000114
  32#define GQSPI_TXD_OFST			0x0000011C
  33#define GQSPI_RXD_OFST			0x00000120
  34#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  35#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
  36#define IOU_TAPDLY_BYPASS_OFST		0x0000003C
  37#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  38#define GQSPI_GEN_FIFO_OFST		0x00000140
  39#define GQSPI_SEL_OFST			0x00000144
  40#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  41#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  42#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  43#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  44#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  45#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  46#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  47#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  48#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  49#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  50#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
  51#define GQSPI_DATA_DLY_ADJ_OFST         0x000001F8
  52
  53/* GQSPI register bit masks */
  54#define GQSPI_SEL_MASK				0x00000001
  55#define GQSPI_EN_MASK				0x00000001
  56#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  57#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  58#define GQSPI_IDR_ALL_MASK			0x00000FBE
  59#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  60#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  61#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  62#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  63#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  64#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  65#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  66#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  67#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  68#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  69#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  70#define GQSPI_GENFIFO_EXP			0x00000200
  71#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  72#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  73#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  74#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  75#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  76#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  77#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  78#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  79#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  80#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  81#define GQSPI_GENFIFO_TX			0x00010000
  82#define GQSPI_GENFIFO_RX			0x00020000
  83#define GQSPI_GENFIFO_STRIPE			0x00040000
  84#define GQSPI_GENFIFO_POLL			0x00080000
  85#define GQSPI_GENFIFO_EXP_START			0x00000100
  86#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  87#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  88#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  89#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  90#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  91#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  92#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  93#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  94#define GQSPI_ISR_RXFULL_MASK			0x00000020
  95#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  96#define GQSPI_ISR_TXFULL_MASK			0x00000008
  97#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
  98#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
  99#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
 100#define GQSPI_IER_RXEMPTY_MASK			0x00000800
 101#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 102#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 103#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 104#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 105#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 106#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 107#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 108#define GQSPI_ISR_IDR_MASK			0x00000994
 109#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 110#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 111#define GQSPI_IRQ_MASK				0x00000980
 112
 113#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 114#define GQSPI_GENFIFO_CS_SETUP			0x4
 115#define GQSPI_GENFIFO_CS_HOLD			0x3
 116#define GQSPI_TXD_DEPTH				64
 117#define GQSPI_RX_FIFO_THRESHOLD			32
 118#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 119#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 120#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 121				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 122#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 123#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 124#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 125#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 126#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 127#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 128#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 129#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 130#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 131#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 132#define GQSPI_SELECT_MODE_SPI		0x1
 133#define GQSPI_SELECT_MODE_DUALSPI	0x2
 134#define GQSPI_SELECT_MODE_QUADSPI	0x4
 135#define GQSPI_DMA_UNALIGN		0x3
 136#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 137
 138#define GQSPI_MAX_NUM_CS	2	/* Maximum number of chip selects */
 139
 140#define GQSPI_USE_DATA_DLY		0x1
 141#define GQSPI_USE_DATA_DLY_SHIFT	31
 142#define GQSPI_DATA_DLY_ADJ_VALUE	0x2
 143#define GQSPI_DATA_DLY_ADJ_SHIFT	28
 144#define GQSPI_LPBK_DLY_ADJ_DLY_1	0x1
 145#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT	0x3
 146#define TAP_DLY_BYPASS_LQSPI_RX_VALUE	0x1
 147#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT	0x2
 148
 149/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
 150#define QSPI_QUIRK_HAS_TAPDELAY		BIT(0)
 151
 152#define GQSPI_FREQ_37_5MHZ	37500000
 153#define GQSPI_FREQ_40MHZ	40000000
 154#define GQSPI_FREQ_100MHZ	100000000
 155#define GQSPI_FREQ_150MHZ	150000000
 156
 157#define SPI_AUTOSUSPEND_TIMEOUT		3000
 158enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 159
 160/**
 161 * struct qspi_platform_data - zynqmp qspi platform data structure
 162 * @quirks:    Flags is used to identify the platform
 163 */
 164struct qspi_platform_data {
 165	u32 quirks;
 166};
 167
 168/**
 169 * struct zynqmp_qspi - Defines qspi driver instance
 170 * @ctlr:		Pointer to the spi controller information
 171 * @regs:		Virtual address of the QSPI controller registers
 172 * @refclk:		Pointer to the peripheral clock
 173 * @pclk:		Pointer to the APB clock
 174 * @irq:		IRQ number
 175 * @dev:		Pointer to struct device
 176 * @txbuf:		Pointer to the TX buffer
 177 * @rxbuf:		Pointer to the RX buffer
 178 * @bytes_to_transfer:	Number of bytes left to transfer
 179 * @bytes_to_receive:	Number of bytes left to receive
 180 * @genfifocs:		Used for chip select
 181 * @genfifobus:		Used to select the upper or lower bus
 182 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 183 * @dma_addr:		DMA address after mapping the kernel buffer
 184 * @genfifoentry:	Used for storing the genfifoentry instruction.
 185 * @mode:		Defines the mode in which QSPI is operating
 186 * @data_completion:	completion structure
 187 * @op_lock:		Operational lock
 188 * @speed_hz:          Current SPI bus clock speed in hz
 189 * @has_tapdelay:	Used for tapdelay register available in qspi
 190 */
 191struct zynqmp_qspi {
 192	struct spi_controller *ctlr;
 193	void __iomem *regs;
 194	struct clk *refclk;
 195	struct clk *pclk;
 196	int irq;
 197	struct device *dev;
 198	const void *txbuf;
 199	void *rxbuf;
 200	int bytes_to_transfer;
 201	int bytes_to_receive;
 202	u32 genfifocs;
 203	u32 genfifobus;
 204	u32 dma_rx_bytes;
 205	dma_addr_t dma_addr;
 206	u32 genfifoentry;
 207	enum mode_type mode;
 208	struct completion data_completion;
 209	struct mutex op_lock;
 210	u32 speed_hz;
 211	bool has_tapdelay;
 212};
 213
 214/**
 215 * zynqmp_gqspi_read - For GQSPI controller read operation
 216 * @xqspi:	Pointer to the zynqmp_qspi structure
 217 * @offset:	Offset from where to read
 218 * Return:      Value at the offset
 219 */
 220static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 221{
 222	return readl_relaxed(xqspi->regs + offset);
 223}
 224
 225/**
 226 * zynqmp_gqspi_write - For GQSPI controller write operation
 227 * @xqspi:	Pointer to the zynqmp_qspi structure
 228 * @offset:	Offset where to write
 229 * @val:	Value to be written
 230 */
 231static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 232				      u32 val)
 233{
 234	writel_relaxed(val, (xqspi->regs + offset));
 235}
 236
 237/**
 238 * zynqmp_gqspi_selecttarget - For selection of target device
 239 * @instanceptr:	Pointer to the zynqmp_qspi structure
 240 * @targetcs:	For chip select
 241 * @targetbus:	To check which bus is selected- upper or lower
 242 */
 243static void zynqmp_gqspi_selecttarget(struct zynqmp_qspi *instanceptr,
 244				      u8 targetcs, u8 targetbus)
 245{
 246	/*
 247	 * Bus and CS lines selected here will be updated in the instance and
 248	 * used for subsequent GENFIFO entries during transfer.
 249	 */
 250
 251	/* Choose target select line */
 252	switch (targetcs) {
 253	case GQSPI_SELECT_FLASH_CS_BOTH:
 254		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 255			GQSPI_GENFIFO_CS_UPPER;
 256		break;
 257	case GQSPI_SELECT_FLASH_CS_UPPER:
 258		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 259		break;
 260	case GQSPI_SELECT_FLASH_CS_LOWER:
 261		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 262		break;
 263	default:
 264		dev_warn(instanceptr->dev, "Invalid target select\n");
 265	}
 266
 267	/* Choose the bus */
 268	switch (targetbus) {
 269	case GQSPI_SELECT_FLASH_BUS_BOTH:
 270		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 271			GQSPI_GENFIFO_BUS_UPPER;
 272		break;
 273	case GQSPI_SELECT_FLASH_BUS_UPPER:
 274		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 275		break;
 276	case GQSPI_SELECT_FLASH_BUS_LOWER:
 277		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 278		break;
 279	default:
 280		dev_warn(instanceptr->dev, "Invalid target bus\n");
 281	}
 282}
 283
 284/**
 285 * zynqmp_qspi_set_tapdelay:   To configure qspi tap delays
 286 * @xqspi:             Pointer to the zynqmp_qspi structure
 287 * @baudrateval:       Buadrate to configure
 288 */
 289static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
 290{
 291	u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
 292	u32 reqhz = 0;
 293
 294	clk_rate = clk_get_rate(xqspi->refclk);
 295	reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
 296
 297	if (!xqspi->has_tapdelay) {
 298		if (reqhz <= GQSPI_FREQ_40MHZ) {
 299			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 300						      PM_TAPDELAY_BYPASS_ENABLE);
 301		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 302			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 303						      PM_TAPDELAY_BYPASS_ENABLE);
 304			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 305			datadlyadj |= ((GQSPI_USE_DATA_DLY <<
 306					GQSPI_USE_DATA_DLY_SHIFT)
 307					| (GQSPI_DATA_DLY_ADJ_VALUE <<
 308						GQSPI_DATA_DLY_ADJ_SHIFT));
 309		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 310			lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
 311		}
 312	} else {
 313		if (reqhz <= GQSPI_FREQ_37_5MHZ) {
 314			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 315					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 316		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 317			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 318					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 319			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 320			datadlyadj |= (GQSPI_USE_DATA_DLY <<
 321					GQSPI_USE_DATA_DLY_SHIFT);
 322		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 323			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
 324				       | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
 325					       GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
 326		}
 327		zynqmp_gqspi_write(xqspi,
 328				   IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
 329	}
 330	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
 331	zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
 332}
 333
 334/**
 335 * zynqmp_qspi_init_hw - Initialize the hardware
 336 * @xqspi:	Pointer to the zynqmp_qspi structure
 337 *
 338 * The default settings of the QSPI controller's configurable parameters on
 339 * reset are
 340 *	- Host mode
 341 *	- TX threshold set to 1
 342 *	- RX threshold set to 1
 343 *	- Flash memory interface mode enabled
 344 * This function performs the following actions
 345 *	- Disable and clear all the interrupts
 346 *	- Enable manual target select
 347 *	- Enable manual start
 348 *	- Deselect all the chip select lines
 349 *	- Set the little endian mode of TX FIFO
 350 *	- Set clock phase
 351 *	- Set clock polarity and
 352 *	- Enable the QSPI controller
 353 */
 354static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 355{
 356	u32 config_reg, baud_rate_val = 0;
 357	ulong clk_rate;
 358
 359	/* Select the GQSPI mode */
 360	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 361	/* Clear and disable interrupts */
 362	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 363			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 364			   GQSPI_ISR_WR_TO_CLR_MASK);
 365	/* Clear the DMA STS */
 366	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 367			   zynqmp_gqspi_read(xqspi,
 368					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 369	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 370			   zynqmp_gqspi_read(xqspi,
 371					     GQSPI_QSPIDMA_DST_STS_OFST) |
 372					     GQSPI_QSPIDMA_DST_STS_WTC);
 373	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 374	zynqmp_gqspi_write(xqspi,
 375			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 376			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 377	/* Disable the GQSPI */
 378	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 379	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 380	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 381	/* Manual start */
 382	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 383	/* Little endian by default */
 384	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 385	/* Disable poll time out */
 386	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 387	/* Set hold bit */
 388	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 389	/* Clear pre-scalar by default */
 390	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 391	/* Set CPHA */
 392	if (xqspi->ctlr->mode_bits & SPI_CPHA)
 393		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 394	else
 395		config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 396	/* Set CPOL */
 397	if (xqspi->ctlr->mode_bits & SPI_CPOL)
 398		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 399	else
 400		config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 401
 402	/* Set the clock frequency */
 403	clk_rate = clk_get_rate(xqspi->refclk);
 404	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 405	       (clk_rate /
 406		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
 407		baud_rate_val++;
 408
 409	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 410	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 411
 412	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 413
 414	/* Set the tapdelay for clock frequency */
 415	zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 416
 417	/* Clear the TX and RX FIFO */
 418	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 419			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 420			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 421			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 422	/* Reset thresholds */
 423	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 424			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 425	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 426			   GQSPI_RX_FIFO_THRESHOLD);
 427	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 428			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 429	zynqmp_gqspi_selecttarget(xqspi,
 430				  GQSPI_SELECT_FLASH_CS_LOWER,
 431				  GQSPI_SELECT_FLASH_BUS_LOWER);
 432	/* Initialize DMA */
 433	zynqmp_gqspi_write(xqspi,
 434			   GQSPI_QSPIDMA_DST_CTRL_OFST,
 435			   GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 436
 437	/* Enable the GQSPI */
 438	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 439}
 440
 441/**
 442 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
 443 * @xqspi:	Pointer to the zynqmp_qspi structure
 444 * @data:	The variable where data is stored
 445 * @size:	Number of bytes to be copied from data to RX buffer
 446 */
 447static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 448				       ulong data, u8 size)
 449{
 450	memcpy(xqspi->rxbuf, &data, size);
 451	xqspi->rxbuf += size;
 452	xqspi->bytes_to_receive -= size;
 453}
 454
 455/**
 456 * zynqmp_qspi_chipselect - Select or deselect the chip select line
 457 * @qspi:	Pointer to the spi_device structure
 458 * @is_high:	Select(0) or deselect (1) the chip select line
 459 */
 460static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 461{
 462	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(qspi->controller);
 463	ulong timeout;
 464	u32 genfifoentry = 0, statusreg;
 465
 466	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 467
 468	if (!is_high) {
 469		if (!spi_get_chipselect(qspi, 0)) {
 470			xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 471			xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 472		} else {
 473			xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 474			xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 475		}
 476		genfifoentry |= xqspi->genfifobus;
 477		genfifoentry |= xqspi->genfifocs;
 478		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 479	} else {
 480		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 481	}
 482
 483	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 484
 485	/* Manually start the generic FIFO command */
 486	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 487			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 488			   GQSPI_CFG_START_GEN_FIFO_MASK);
 489
 490	timeout = jiffies + msecs_to_jiffies(1000);
 491
 492	/* Wait until the generic FIFO command is empty */
 493	do {
 494		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 495
 496		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 497		    (statusreg & GQSPI_ISR_TXEMPTY_MASK))
 498			break;
 499		cpu_relax();
 500	} while (!time_after_eq(jiffies, timeout));
 501
 502	if (time_after_eq(jiffies, timeout))
 503		dev_err(xqspi->dev, "Chip select timed out\n");
 504}
 505
 506/**
 507 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
 508 * @xqspi:	xqspi is a pointer to the GQSPI instance
 509 * @spimode:	spimode - SPI or DUAL or QUAD.
 510 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 511 */
 512static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 513					    u8 spimode)
 514{
 515	u32 mask = 0;
 516
 517	switch (spimode) {
 518	case GQSPI_SELECT_MODE_DUALSPI:
 519		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 520		break;
 521	case GQSPI_SELECT_MODE_QUADSPI:
 522		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 523		break;
 524	case GQSPI_SELECT_MODE_SPI:
 525		mask = GQSPI_GENFIFO_MODE_SPI;
 526		break;
 527	default:
 528		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 529	}
 530
 531	return mask;
 532}
 533
 534/**
 535 * zynqmp_qspi_config_op - Configure QSPI controller for specified
 536 *				transfer
 537 * @xqspi:	Pointer to the zynqmp_qspi structure
 538 * @qspi:	Pointer to the spi_device structure
 539 *
 540 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 541 * sets the requested clock frequency.
 542 *
 543 * Return:	Always 0
 544 *
 545 * Note:
 546 *	If the requested frequency is not an exact match with what can be
 547 *	obtained using the pre-scalar value, the driver sets the clock
 548 *	frequency which is lower than the requested frequency (maximum lower)
 549 *	for the transfer.
 550 *
 551 *	If the requested frequency is higher or lower than that is supported
 552 *	by the QSPI controller the driver will set the highest or lowest
 553 *	frequency supported by controller.
 554 */
 555static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
 556				 struct spi_device *qspi)
 557{
 558	ulong clk_rate;
 559	u32 config_reg, req_speed_hz, baud_rate_val = 0;
 560
 561	req_speed_hz = qspi->max_speed_hz;
 562
 563	if (xqspi->speed_hz != req_speed_hz) {
 564		xqspi->speed_hz = req_speed_hz;
 565
 566		/* Set the clock frequency */
 567		/* If req_speed_hz == 0, default to lowest speed */
 568		clk_rate = clk_get_rate(xqspi->refclk);
 569
 570		while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 571		       (clk_rate /
 572			(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
 573		       req_speed_hz)
 574			baud_rate_val++;
 575
 576		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 577
 578		config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 579		config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 580		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 581		zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 582	}
 583	return 0;
 584}
 585
 586/**
 587 * zynqmp_qspi_setup_op - Configure the QSPI controller
 588 * @qspi:	Pointer to the spi_device structure
 589 *
 590 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 591 * baud rate and divisor value to setup the requested qspi clock.
 592 *
 593 * Return:	0 on success; error value otherwise.
 594 */
 595static int zynqmp_qspi_setup_op(struct spi_device *qspi)
 596{
 597	struct spi_controller *ctlr = qspi->controller;
 598	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
 599
 600	if (ctlr->busy)
 601		return -EBUSY;
 602
 603	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 604
 605	return 0;
 606}
 607
 608/**
 609 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
 610 *				the FIFO or the bytes required to be
 611 *				transmitted.
 612 * @xqspi:	Pointer to the zynqmp_qspi structure
 613 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 614 */
 615static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 616{
 617	u32 count = 0, intermediate;
 618
 619	while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
 620		if (xqspi->bytes_to_transfer >= 4) {
 621			memcpy(&intermediate, xqspi->txbuf, 4);
 622			xqspi->txbuf += 4;
 623			xqspi->bytes_to_transfer -= 4;
 624			count += 4;
 625		} else {
 626			memcpy(&intermediate, xqspi->txbuf,
 627			       xqspi->bytes_to_transfer);
 628			xqspi->txbuf += xqspi->bytes_to_transfer;
 629			xqspi->bytes_to_transfer = 0;
 630			count += xqspi->bytes_to_transfer;
 631		}
 632		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 633	}
 634}
 635
 636/**
 637 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
 638 *				the FIFO.
 639 * @xqspi:	Pointer to the zynqmp_qspi structure
 640 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 641 */
 642static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 643{
 644	ulong data;
 645	int count = 0;
 646
 647	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 648		if (xqspi->bytes_to_receive >= 4) {
 649			(*(u32 *)xqspi->rxbuf) =
 650			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 651			xqspi->rxbuf += 4;
 652			xqspi->bytes_to_receive -= 4;
 653			count += 4;
 654		} else {
 655			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 656			count += xqspi->bytes_to_receive;
 657			zynqmp_qspi_copy_read_data(xqspi, data,
 658						   xqspi->bytes_to_receive);
 659			xqspi->bytes_to_receive = 0;
 660		}
 661	}
 662}
 663
 664/**
 665 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
 666 * @xqspi:	Pointer to the zynqmp_qspi structure
 667 * @nbits:	Transfer/Receive buswidth.
 668 * @genfifoentry:       Variable in which GENFIFO mask is saved
 669 */
 670static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
 671				    u32 genfifoentry)
 672{
 673	u32 transfer_len = 0;
 674
 675	if (xqspi->txbuf) {
 676		genfifoentry &= ~GQSPI_GENFIFO_RX;
 677		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 678		genfifoentry |= GQSPI_GENFIFO_TX;
 679		transfer_len = xqspi->bytes_to_transfer;
 680	} else if (xqspi->rxbuf) {
 681		genfifoentry &= ~GQSPI_GENFIFO_TX;
 682		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 683		genfifoentry |= GQSPI_GENFIFO_RX;
 684		if (xqspi->mode == GQSPI_MODE_DMA)
 685			transfer_len = xqspi->dma_rx_bytes;
 686		else
 687			transfer_len = xqspi->bytes_to_receive;
 688	} else {
 689		/* Sending dummy circles here */
 690		genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
 691		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 692		transfer_len = xqspi->bytes_to_transfer;
 693	}
 694	genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
 695	xqspi->genfifoentry = genfifoentry;
 696
 697	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 698		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 699		genfifoentry |= transfer_len;
 700		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 701	} else {
 702		int tempcount = transfer_len;
 703		u32 exponent = 8;	/* 2^8 = 256 */
 704		u8 imm_data = tempcount & 0xFF;
 705
 706		tempcount &= ~(tempcount & 0xFF);
 707		/* Immediate entry */
 708		if (tempcount != 0) {
 709			/* Exponent entries */
 710			genfifoentry |= GQSPI_GENFIFO_EXP;
 711			while (tempcount != 0) {
 712				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 713					genfifoentry &=
 714						~GQSPI_GENFIFO_IMM_DATA_MASK;
 715					genfifoentry |= exponent;
 716					zynqmp_gqspi_write(xqspi,
 717							   GQSPI_GEN_FIFO_OFST,
 718							   genfifoentry);
 719				}
 720				tempcount = tempcount >> 1;
 721				exponent++;
 722			}
 723		}
 724		if (imm_data != 0) {
 725			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 726			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 727			genfifoentry |= (u8)(imm_data & 0xFF);
 728			zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
 729					   genfifoentry);
 730		}
 731	}
 732	if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
 733		/* Dummy generic FIFO entry */
 734		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 735	}
 736}
 737
 738/**
 739 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
 740 *				controller
 741 * @xqspi:	zynqmp_qspi instance pointer
 742 *
 743 * This function handles DMA interrupt only.
 744 */
 745static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 746{
 747	u32 config_reg, genfifoentry;
 748
 749	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 750			 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 751	xqspi->rxbuf += xqspi->dma_rx_bytes;
 752	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 753	xqspi->dma_rx_bytes = 0;
 754
 755	/* Disabling the DMA interrupts */
 756	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 757			   GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 758
 759	if (xqspi->bytes_to_receive > 0) {
 760		/* Switch to IO mode,for remaining bytes to receive */
 761		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 762		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 763		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 764
 765		/* Initiate the transfer of remaining bytes */
 766		genfifoentry = xqspi->genfifoentry;
 767		genfifoentry |= xqspi->bytes_to_receive;
 768		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 769
 770		/* Dummy generic FIFO entry */
 771		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 772
 773		/* Manual start */
 774		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 775				   (zynqmp_gqspi_read(xqspi,
 776						      GQSPI_CONFIG_OFST) |
 777				   GQSPI_CFG_START_GEN_FIFO_MASK));
 778
 779		/* Enable the RX interrupts for IO mode */
 780		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 781				   GQSPI_IER_GENFIFOEMPTY_MASK |
 782				   GQSPI_IER_RXNEMPTY_MASK |
 783				   GQSPI_IER_RXEMPTY_MASK);
 784	}
 785}
 786
 787/**
 788 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
 789 * @irq:	IRQ number
 790 * @dev_id:	Pointer to the xqspi structure
 791 *
 792 * This function handles TX empty only.
 793 * On TX empty interrupt this function reads the received data from RX FIFO
 794 * and fills the TX FIFO if there is any data remaining to be transferred.
 795 *
 796 * Return:	IRQ_HANDLED when interrupt is handled
 797 *		IRQ_NONE otherwise.
 798 */
 799static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 800{
 801	struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
 802	irqreturn_t ret = IRQ_NONE;
 803	u32 status, mask, dma_status = 0;
 804
 805	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 806	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 807	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 808
 809	/* Read and clear DMA status */
 810	if (xqspi->mode == GQSPI_MODE_DMA) {
 811		dma_status =
 812			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 813		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 814				   dma_status);
 815	}
 816
 817	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 818		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 819		ret = IRQ_HANDLED;
 820	}
 821
 822	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 823		zynqmp_process_dma_irq(xqspi);
 824		ret = IRQ_HANDLED;
 825	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 826			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 827		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 828		ret = IRQ_HANDLED;
 829	}
 830
 831	if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
 832	    ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 833		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 834		complete(&xqspi->data_completion);
 835		ret = IRQ_HANDLED;
 836	}
 837	return ret;
 838}
 839
 840/**
 841 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
 842 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 843 *
 844 * Return:	0 on success; error value otherwise.
 845 */
 846static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 847{
 848	u32 rx_bytes, rx_rem, config_reg;
 849	dma_addr_t addr;
 850	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 851
 852	if (xqspi->bytes_to_receive < 8 ||
 853	    ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 854		/* Setting to IO mode */
 855		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 856		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 857		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 858		xqspi->mode = GQSPI_MODE_IO;
 859		xqspi->dma_rx_bytes = 0;
 860		return 0;
 861	}
 862
 863	rx_rem = xqspi->bytes_to_receive % 4;
 864	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 865
 866	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 867			      rx_bytes, DMA_FROM_DEVICE);
 868	if (dma_mapping_error(xqspi->dev, addr)) {
 869		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 870		return -ENOMEM;
 871	}
 872
 873	xqspi->dma_rx_bytes = rx_bytes;
 874	xqspi->dma_addr = addr;
 875	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 876			   (u32)(addr & 0xffffffff));
 877	addr = ((addr >> 16) >> 16);
 878	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 879			   ((u32)addr) & 0xfff);
 880
 881	/* Enabling the DMA mode */
 882	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 883	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 884	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 885	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 886
 887	/* Switch to DMA mode */
 888	xqspi->mode = GQSPI_MODE_DMA;
 889
 890	/* Write the number of bytes to transfer */
 891	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 892
 893	return 0;
 894}
 895
 896/**
 897 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
 898 *			TX FIFO, and fills the TX FIFO with as many
 899 *			bytes as possible.
 900 * @xqspi:	Pointer to the GQSPI instance.
 901 * @tx_nbits:	Transfer buswidth.
 902 * @genfifoentry:	Variable in which GENFIFO mask is returned
 903 *			to calling function
 904 */
 905static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
 906				 u32 genfifoentry)
 907{
 908	u32 config_reg;
 909
 910	zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
 911	zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 912	if (xqspi->mode == GQSPI_MODE_DMA) {
 913		config_reg = zynqmp_gqspi_read(xqspi,
 914					       GQSPI_CONFIG_OFST);
 915		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 916		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 917				   config_reg);
 918		xqspi->mode = GQSPI_MODE_IO;
 919	}
 920}
 921
 922/**
 923 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
 924 *				RX DMA operation.
 925 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 926 * @rx_nbits:	Receive buswidth.
 927 * @genfifoentry:	genfifoentry is pointer to the variable in which
 928 *			GENFIFO	mask is returned to calling function
 929 *
 930 * Return:	0 on success; error value otherwise.
 931 */
 932static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
 933				u32 genfifoentry)
 934{
 935	int ret;
 936
 937	ret = zynqmp_qspi_setuprxdma(xqspi);
 938	if (ret)
 939		return ret;
 940	zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
 941
 942	return 0;
 943}
 944
 945/**
 946 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
 947 * @dev:	Address of the platform_device structure
 948 *
 949 * This function stops the QSPI driver queue and disables the QSPI controller
 950 *
 951 * Return:	Always 0
 952 */
 953static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 954{
 955	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 956	struct spi_controller *ctlr = xqspi->ctlr;
 957	int ret;
 958
 959	ret = spi_controller_suspend(ctlr);
 960	if (ret)
 961		return ret;
 962
 963	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 964
 965	return 0;
 966}
 967
 968/**
 969 * zynqmp_qspi_resume - Resume method for the QSPI driver
 970 * @dev:	Address of the platform_device structure
 971 *
 972 * The function starts the QSPI driver queue and initializes the QSPI
 973 * controller
 974 *
 975 * Return:	0 on success; error value otherwise
 976 */
 977static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 978{
 979	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 980	struct spi_controller *ctlr = xqspi->ctlr;
 981
 982	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 983
 984	spi_controller_resume(ctlr);
 985
 986	return 0;
 987}
 988
 989/**
 990 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
 991 * @dev:	Address of the platform_device structure
 992 *
 993 * This function disables the clocks
 994 *
 995 * Return:	Always 0
 996 */
 997static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
 998{
 999	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1000
1001	clk_disable_unprepare(xqspi->refclk);
1002	clk_disable_unprepare(xqspi->pclk);
1003
1004	return 0;
1005}
1006
1007/**
1008 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1009 * @dev:	Address of the platform_device structure
1010 *
1011 * This function enables the clocks
1012 *
1013 * Return:	0 on success and error value on error
1014 */
1015static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1016{
1017	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1018	int ret;
1019
1020	ret = clk_prepare_enable(xqspi->pclk);
1021	if (ret) {
1022		dev_err(dev, "Cannot enable APB clock.\n");
1023		return ret;
1024	}
1025
1026	ret = clk_prepare_enable(xqspi->refclk);
1027	if (ret) {
1028		dev_err(dev, "Cannot enable device clock.\n");
1029		clk_disable_unprepare(xqspi->pclk);
1030		return ret;
1031	}
1032
1033	return 0;
1034}
1035
1036/**
1037 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1038 * @mem: The SPI memory
1039 * @op: The memory operation to execute
1040 *
1041 * Executes a memory operation.
1042 *
1043 * This function first selects the chip and starts the memory operation.
1044 *
1045 * Return: 0 in case of success, a negative error code otherwise.
1046 */
1047static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1048			       const struct spi_mem_op *op)
1049{
1050	struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1051				    (mem->spi->controller);
1052	int err = 0, i;
1053	u32 genfifoentry = 0;
1054	u16 opcode = op->cmd.opcode;
1055	u64 opaddr;
1056
1057	dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1058		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1059		op->dummy.buswidth, op->data.buswidth);
1060
1061	mutex_lock(&xqspi->op_lock);
1062	zynqmp_qspi_config_op(xqspi, mem->spi);
1063	zynqmp_qspi_chipselect(mem->spi, false);
1064	genfifoentry |= xqspi->genfifocs;
1065	genfifoentry |= xqspi->genfifobus;
1066
1067	if (op->cmd.opcode) {
1068		reinit_completion(&xqspi->data_completion);
1069		xqspi->txbuf = &opcode;
1070		xqspi->rxbuf = NULL;
1071		xqspi->bytes_to_transfer = op->cmd.nbytes;
1072		xqspi->bytes_to_receive = 0;
1073		zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1074		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1075				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1076				   GQSPI_CFG_START_GEN_FIFO_MASK);
1077		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1078				   GQSPI_IER_GENFIFOEMPTY_MASK |
1079				   GQSPI_IER_TXNOT_FULL_MASK);
1080		if (!wait_for_completion_timeout
1081		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1082			err = -ETIMEDOUT;
1083			goto return_err;
1084		}
1085	}
1086
1087	if (op->addr.nbytes) {
1088		xqspi->txbuf = &opaddr;
1089		for (i = 0; i < op->addr.nbytes; i++) {
1090			*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1091					(8 * (op->addr.nbytes - i - 1));
1092		}
1093
1094		reinit_completion(&xqspi->data_completion);
1095		xqspi->rxbuf = NULL;
1096		xqspi->bytes_to_transfer = op->addr.nbytes;
1097		xqspi->bytes_to_receive = 0;
1098		zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1099		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1100				   zynqmp_gqspi_read(xqspi,
1101						     GQSPI_CONFIG_OFST) |
1102				   GQSPI_CFG_START_GEN_FIFO_MASK);
1103		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1104				   GQSPI_IER_TXEMPTY_MASK |
1105				   GQSPI_IER_GENFIFOEMPTY_MASK |
1106				   GQSPI_IER_TXNOT_FULL_MASK);
1107		if (!wait_for_completion_timeout
1108		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1109			err = -ETIMEDOUT;
1110			goto return_err;
1111		}
1112	}
1113
1114	if (op->dummy.nbytes) {
1115		xqspi->txbuf = NULL;
1116		xqspi->rxbuf = NULL;
1117		/*
1118		 * xqspi->bytes_to_transfer here represents the dummy circles
1119		 * which need to be sent.
1120		 */
1121		xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1122		xqspi->bytes_to_receive = 0;
1123		/*
1124		 * Using op->data.buswidth instead of op->dummy.buswidth here because
1125		 * we need to use it to configure the correct SPI mode.
1126		 */
1127		zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1128				     genfifoentry);
1129		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1130				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1131				   GQSPI_CFG_START_GEN_FIFO_MASK);
1132	}
1133
1134	if (op->data.nbytes) {
1135		reinit_completion(&xqspi->data_completion);
1136		if (op->data.dir == SPI_MEM_DATA_OUT) {
1137			xqspi->txbuf = (u8 *)op->data.buf.out;
1138			xqspi->rxbuf = NULL;
1139			xqspi->bytes_to_transfer = op->data.nbytes;
1140			xqspi->bytes_to_receive = 0;
1141			zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1142					     genfifoentry);
1143			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1144					   zynqmp_gqspi_read
1145					   (xqspi, GQSPI_CONFIG_OFST) |
1146					   GQSPI_CFG_START_GEN_FIFO_MASK);
1147			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1148					   GQSPI_IER_TXEMPTY_MASK |
1149					   GQSPI_IER_GENFIFOEMPTY_MASK |
1150					   GQSPI_IER_TXNOT_FULL_MASK);
1151		} else {
1152			xqspi->txbuf = NULL;
1153			xqspi->rxbuf = (u8 *)op->data.buf.in;
1154			xqspi->bytes_to_receive = op->data.nbytes;
1155			xqspi->bytes_to_transfer = 0;
1156			err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1157					    genfifoentry);
1158			if (err)
1159				goto return_err;
1160
1161			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1162					   zynqmp_gqspi_read
1163					   (xqspi, GQSPI_CONFIG_OFST) |
1164					   GQSPI_CFG_START_GEN_FIFO_MASK);
1165			if (xqspi->mode == GQSPI_MODE_DMA) {
1166				zynqmp_gqspi_write
1167					(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1168					 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1169			} else {
1170				zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1171						   GQSPI_IER_GENFIFOEMPTY_MASK |
1172						   GQSPI_IER_RXNEMPTY_MASK |
1173						   GQSPI_IER_RXEMPTY_MASK);
1174			}
1175		}
1176		if (!wait_for_completion_timeout
1177		    (&xqspi->data_completion, msecs_to_jiffies(1000)))
1178			err = -ETIMEDOUT;
1179	}
1180
1181return_err:
1182
1183	zynqmp_qspi_chipselect(mem->spi, true);
1184	mutex_unlock(&xqspi->op_lock);
1185
1186	return err;
1187}
1188
1189static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1190	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1191			   zynqmp_runtime_resume, NULL)
1192	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1193};
1194
1195static const struct qspi_platform_data versal_qspi_def = {
1196	.quirks = QSPI_QUIRK_HAS_TAPDELAY,
1197};
1198
1199static const struct of_device_id zynqmp_qspi_of_match[] = {
1200	{ .compatible = "xlnx,zynqmp-qspi-1.0"},
1201	{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1202	{ /* End of table */ }
1203};
1204
1205static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1206	.exec_op = zynqmp_qspi_exec_op,
1207};
1208
1209/**
1210 * zynqmp_qspi_probe - Probe method for the QSPI driver
1211 * @pdev:	Pointer to the platform_device structure
1212 *
1213 * This function initializes the driver data structures and the hardware.
1214 *
1215 * Return:	0 on success; error value otherwise
1216 */
1217static int zynqmp_qspi_probe(struct platform_device *pdev)
1218{
1219	int ret = 0;
1220	struct spi_controller *ctlr;
1221	struct zynqmp_qspi *xqspi;
1222	struct device *dev = &pdev->dev;
1223	struct device_node *np = dev->of_node;
1224	u32 num_cs;
1225	const struct qspi_platform_data *p_data;
1226
1227	ctlr = spi_alloc_host(&pdev->dev, sizeof(*xqspi));
1228	if (!ctlr)
1229		return -ENOMEM;
1230
1231	xqspi = spi_controller_get_devdata(ctlr);
1232	xqspi->dev = dev;
1233	xqspi->ctlr = ctlr;
1234	platform_set_drvdata(pdev, xqspi);
1235
1236	p_data = of_device_get_match_data(&pdev->dev);
1237	if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1238		xqspi->has_tapdelay = true;
1239
1240	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1241	if (IS_ERR(xqspi->regs)) {
1242		ret = PTR_ERR(xqspi->regs);
1243		goto remove_ctlr;
1244	}
1245
1246	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1247	if (IS_ERR(xqspi->pclk)) {
1248		dev_err(dev, "pclk clock not found.\n");
1249		ret = PTR_ERR(xqspi->pclk);
1250		goto remove_ctlr;
1251	}
1252
1253	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1254	if (IS_ERR(xqspi->refclk)) {
1255		dev_err(dev, "ref_clk clock not found.\n");
1256		ret = PTR_ERR(xqspi->refclk);
1257		goto remove_ctlr;
1258	}
1259
1260	ret = clk_prepare_enable(xqspi->pclk);
1261	if (ret) {
1262		dev_err(dev, "Unable to enable APB clock.\n");
1263		goto remove_ctlr;
1264	}
1265
1266	ret = clk_prepare_enable(xqspi->refclk);
1267	if (ret) {
1268		dev_err(dev, "Unable to enable device clock.\n");
1269		goto clk_dis_pclk;
1270	}
1271
1272	init_completion(&xqspi->data_completion);
1273
1274	mutex_init(&xqspi->op_lock);
1275
1276	pm_runtime_use_autosuspend(&pdev->dev);
1277	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1278	pm_runtime_set_active(&pdev->dev);
1279	pm_runtime_enable(&pdev->dev);
1280
1281	ret = pm_runtime_get_sync(&pdev->dev);
1282	if (ret < 0) {
1283		dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1284		goto clk_dis_all;
1285	}
1286
1287	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1288		SPI_TX_DUAL | SPI_TX_QUAD;
1289	ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1290	xqspi->speed_hz = ctlr->max_speed_hz;
1291
1292	/* QSPI controller initializations */
1293	zynqmp_qspi_init_hw(xqspi);
1294
1295	xqspi->irq = platform_get_irq(pdev, 0);
1296	if (xqspi->irq < 0) {
1297		ret = xqspi->irq;
1298		goto clk_dis_all;
1299	}
1300	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1301			       0, pdev->name, xqspi);
1302	if (ret != 0) {
1303		ret = -ENXIO;
1304		dev_err(dev, "request_irq failed\n");
1305		goto clk_dis_all;
1306	}
1307
1308	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1309	if (ret)
1310		goto clk_dis_all;
1311
1312	ret = of_property_read_u32(np, "num-cs", &num_cs);
1313	if (ret < 0) {
1314		ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1315	} else if (num_cs > GQSPI_MAX_NUM_CS) {
1316		ret = -EINVAL;
1317		dev_err(&pdev->dev, "only %d chip selects are available\n",
1318			GQSPI_MAX_NUM_CS);
1319		goto clk_dis_all;
1320	} else {
1321		ctlr->num_chipselect = num_cs;
1322	}
1323
1324	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1325	ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1326	ctlr->setup = zynqmp_qspi_setup_op;
1327	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1328	ctlr->dev.of_node = np;
1329	ctlr->auto_runtime_pm = true;
1330
1331	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1332	if (ret) {
1333		dev_err(&pdev->dev, "spi_register_controller failed\n");
1334		goto clk_dis_all;
1335	}
1336
1337	pm_runtime_mark_last_busy(&pdev->dev);
1338	pm_runtime_put_autosuspend(&pdev->dev);
1339
1340	return 0;
1341
1342clk_dis_all:
1343	pm_runtime_disable(&pdev->dev);
1344	pm_runtime_put_noidle(&pdev->dev);
1345	pm_runtime_set_suspended(&pdev->dev);
 
1346	clk_disable_unprepare(xqspi->refclk);
1347clk_dis_pclk:
1348	clk_disable_unprepare(xqspi->pclk);
1349remove_ctlr:
1350	spi_controller_put(ctlr);
1351
1352	return ret;
1353}
1354
1355/**
1356 * zynqmp_qspi_remove - Remove method for the QSPI driver
1357 * @pdev:	Pointer to the platform_device structure
1358 *
1359 * This function is called if a device is physically removed from the system or
1360 * if the driver module is being unloaded. It frees all resources allocated to
1361 * the device.
1362 *
1363 * Return:	0 Always
1364 */
1365static void zynqmp_qspi_remove(struct platform_device *pdev)
1366{
1367	struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
1368
1369	pm_runtime_get_sync(&pdev->dev);
1370
1371	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1372
1373	pm_runtime_disable(&pdev->dev);
1374	pm_runtime_put_noidle(&pdev->dev);
1375	pm_runtime_set_suspended(&pdev->dev);
1376	clk_disable_unprepare(xqspi->refclk);
1377	clk_disable_unprepare(xqspi->pclk);
 
 
 
 
1378}
1379
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383	.probe = zynqmp_qspi_probe,
1384	.remove_new = zynqmp_qspi_remove,
1385	.driver = {
1386		.name = "zynqmp-qspi",
1387		.of_match_table = zynqmp_qspi_of_match,
1388		.pm = &zynqmp_qspi_dev_pm_ops,
1389	},
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   4 * (master mode only)
   5 *
   6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/firmware/xlnx-zynqmp.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_address.h>
  19#include <linux/of_device.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/spi/spi.h>
  23#include <linux/spinlock.h>
  24#include <linux/workqueue.h>
  25#include <linux/spi/spi-mem.h>
  26
  27/* Generic QSPI register offsets */
  28#define GQSPI_CONFIG_OFST		0x00000100
  29#define GQSPI_ISR_OFST			0x00000104
  30#define GQSPI_IDR_OFST			0x0000010C
  31#define GQSPI_IER_OFST			0x00000108
  32#define GQSPI_IMASK_OFST		0x00000110
  33#define GQSPI_EN_OFST			0x00000114
  34#define GQSPI_TXD_OFST			0x0000011C
  35#define GQSPI_RXD_OFST			0x00000120
  36#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  37#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
  38#define IOU_TAPDLY_BYPASS_OFST		0x0000003C
  39#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  40#define GQSPI_GEN_FIFO_OFST		0x00000140
  41#define GQSPI_SEL_OFST			0x00000144
  42#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  43#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  44#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  45#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  46#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  47#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  48#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  49#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  50#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  51#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  52#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
  53#define GQSPI_DATA_DLY_ADJ_OFST         0x000001F8
  54
  55/* GQSPI register bit masks */
  56#define GQSPI_SEL_MASK				0x00000001
  57#define GQSPI_EN_MASK				0x00000001
  58#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  59#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  60#define GQSPI_IDR_ALL_MASK			0x00000FBE
  61#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  62#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  63#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  64#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  65#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  66#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  67#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  68#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  69#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  70#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  71#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  72#define GQSPI_GENFIFO_EXP			0x00000200
  73#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  74#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  75#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  76#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  77#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  78#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  79#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  80#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  81#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  82#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  83#define GQSPI_GENFIFO_TX			0x00010000
  84#define GQSPI_GENFIFO_RX			0x00020000
  85#define GQSPI_GENFIFO_STRIPE			0x00040000
  86#define GQSPI_GENFIFO_POLL			0x00080000
  87#define GQSPI_GENFIFO_EXP_START			0x00000100
  88#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  89#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  90#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  91#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  92#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  93#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  94#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  95#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  96#define GQSPI_ISR_RXFULL_MASK			0x00000020
  97#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  98#define GQSPI_ISR_TXFULL_MASK			0x00000008
  99#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
 100#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
 101#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
 102#define GQSPI_IER_RXEMPTY_MASK			0x00000800
 103#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 104#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 105#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 106#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 107#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 108#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 109#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 110#define GQSPI_ISR_IDR_MASK			0x00000994
 111#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 112#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 113#define GQSPI_IRQ_MASK				0x00000980
 114
 115#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 116#define GQSPI_GENFIFO_CS_SETUP			0x4
 117#define GQSPI_GENFIFO_CS_HOLD			0x3
 118#define GQSPI_TXD_DEPTH				64
 119#define GQSPI_RX_FIFO_THRESHOLD			32
 120#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 121#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 122#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 123				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 124#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 125#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 126#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 127#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 128#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 129#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 130#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 131#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 132#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 133#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 134#define GQSPI_SELECT_MODE_SPI		0x1
 135#define GQSPI_SELECT_MODE_DUALSPI	0x2
 136#define GQSPI_SELECT_MODE_QUADSPI	0x4
 137#define GQSPI_DMA_UNALIGN		0x3
 138#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 139
 140#define GQSPI_MAX_NUM_CS	2	/* Maximum number of chip selects */
 141
 142#define GQSPI_USE_DATA_DLY		0x1
 143#define GQSPI_USE_DATA_DLY_SHIFT	31
 144#define GQSPI_DATA_DLY_ADJ_VALUE	0x2
 145#define GQSPI_DATA_DLY_ADJ_SHIFT	28
 146#define GQSPI_LPBK_DLY_ADJ_DLY_1	0x1
 147#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT	0x3
 148#define TAP_DLY_BYPASS_LQSPI_RX_VALUE	0x1
 149#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT	0x2
 150
 151/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
 152#define QSPI_QUIRK_HAS_TAPDELAY		BIT(0)
 153
 154#define GQSPI_FREQ_37_5MHZ	37500000
 155#define GQSPI_FREQ_40MHZ	40000000
 156#define GQSPI_FREQ_100MHZ	100000000
 157#define GQSPI_FREQ_150MHZ	150000000
 158
 159#define SPI_AUTOSUSPEND_TIMEOUT		3000
 160enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 161
 162/**
 163 * struct qspi_platform_data - zynqmp qspi platform data structure
 164 * @quirks:    Flags is used to identify the platform
 165 */
 166struct qspi_platform_data {
 167	u32 quirks;
 168};
 169
 170/**
 171 * struct zynqmp_qspi - Defines qspi driver instance
 172 * @ctlr:		Pointer to the spi controller information
 173 * @regs:		Virtual address of the QSPI controller registers
 174 * @refclk:		Pointer to the peripheral clock
 175 * @pclk:		Pointer to the APB clock
 176 * @irq:		IRQ number
 177 * @dev:		Pointer to struct device
 178 * @txbuf:		Pointer to the TX buffer
 179 * @rxbuf:		Pointer to the RX buffer
 180 * @bytes_to_transfer:	Number of bytes left to transfer
 181 * @bytes_to_receive:	Number of bytes left to receive
 182 * @genfifocs:		Used for chip select
 183 * @genfifobus:		Used to select the upper or lower bus
 184 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 185 * @dma_addr:		DMA address after mapping the kernel buffer
 186 * @genfifoentry:	Used for storing the genfifoentry instruction.
 187 * @mode:		Defines the mode in which QSPI is operating
 188 * @data_completion:	completion structure
 189 * @op_lock:		Operational lock
 190 * @speed_hz:          Current SPI bus clock speed in hz
 191 * @has_tapdelay:	Used for tapdelay register available in qspi
 192 */
 193struct zynqmp_qspi {
 194	struct spi_controller *ctlr;
 195	void __iomem *regs;
 196	struct clk *refclk;
 197	struct clk *pclk;
 198	int irq;
 199	struct device *dev;
 200	const void *txbuf;
 201	void *rxbuf;
 202	int bytes_to_transfer;
 203	int bytes_to_receive;
 204	u32 genfifocs;
 205	u32 genfifobus;
 206	u32 dma_rx_bytes;
 207	dma_addr_t dma_addr;
 208	u32 genfifoentry;
 209	enum mode_type mode;
 210	struct completion data_completion;
 211	struct mutex op_lock;
 212	u32 speed_hz;
 213	bool has_tapdelay;
 214};
 215
 216/**
 217 * zynqmp_gqspi_read - For GQSPI controller read operation
 218 * @xqspi:	Pointer to the zynqmp_qspi structure
 219 * @offset:	Offset from where to read
 220 * Return:      Value at the offset
 221 */
 222static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 223{
 224	return readl_relaxed(xqspi->regs + offset);
 225}
 226
 227/**
 228 * zynqmp_gqspi_write - For GQSPI controller write operation
 229 * @xqspi:	Pointer to the zynqmp_qspi structure
 230 * @offset:	Offset where to write
 231 * @val:	Value to be written
 232 */
 233static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 234				      u32 val)
 235{
 236	writel_relaxed(val, (xqspi->regs + offset));
 237}
 238
 239/**
 240 * zynqmp_gqspi_selectslave - For selection of slave device
 241 * @instanceptr:	Pointer to the zynqmp_qspi structure
 242 * @slavecs:	For chip select
 243 * @slavebus:	To check which bus is selected- upper or lower
 244 */
 245static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
 246				     u8 slavecs, u8 slavebus)
 247{
 248	/*
 249	 * Bus and CS lines selected here will be updated in the instance and
 250	 * used for subsequent GENFIFO entries during transfer.
 251	 */
 252
 253	/* Choose slave select line */
 254	switch (slavecs) {
 255	case GQSPI_SELECT_FLASH_CS_BOTH:
 256		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 257			GQSPI_GENFIFO_CS_UPPER;
 258		break;
 259	case GQSPI_SELECT_FLASH_CS_UPPER:
 260		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 261		break;
 262	case GQSPI_SELECT_FLASH_CS_LOWER:
 263		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 264		break;
 265	default:
 266		dev_warn(instanceptr->dev, "Invalid slave select\n");
 267	}
 268
 269	/* Choose the bus */
 270	switch (slavebus) {
 271	case GQSPI_SELECT_FLASH_BUS_BOTH:
 272		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 273			GQSPI_GENFIFO_BUS_UPPER;
 274		break;
 275	case GQSPI_SELECT_FLASH_BUS_UPPER:
 276		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 277		break;
 278	case GQSPI_SELECT_FLASH_BUS_LOWER:
 279		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 280		break;
 281	default:
 282		dev_warn(instanceptr->dev, "Invalid slave bus\n");
 283	}
 284}
 285
 286/**
 287 * zynqmp_qspi_set_tapdelay:   To configure qspi tap delays
 288 * @xqspi:             Pointer to the zynqmp_qspi structure
 289 * @baudrateval:       Buadrate to configure
 290 */
 291static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
 292{
 293	u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
 294	u32 reqhz = 0;
 295
 296	clk_rate = clk_get_rate(xqspi->refclk);
 297	reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
 298
 299	if (!xqspi->has_tapdelay) {
 300		if (reqhz <= GQSPI_FREQ_40MHZ) {
 301			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 302						      PM_TAPDELAY_BYPASS_ENABLE);
 303		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 304			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 305						      PM_TAPDELAY_BYPASS_ENABLE);
 306			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 307			datadlyadj |= ((GQSPI_USE_DATA_DLY <<
 308					GQSPI_USE_DATA_DLY_SHIFT)
 309					| (GQSPI_DATA_DLY_ADJ_VALUE <<
 310						GQSPI_DATA_DLY_ADJ_SHIFT));
 311		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 312			lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
 313		}
 314	} else {
 315		if (reqhz <= GQSPI_FREQ_37_5MHZ) {
 316			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 317					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 318		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 319			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 320					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 321			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 322			datadlyadj |= (GQSPI_USE_DATA_DLY <<
 323					GQSPI_USE_DATA_DLY_SHIFT);
 324		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 325			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
 326				       | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
 327					       GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
 328		}
 329		zynqmp_gqspi_write(xqspi,
 330				   IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
 331	}
 332	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
 333	zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
 334}
 335
 336/**
 337 * zynqmp_qspi_init_hw - Initialize the hardware
 338 * @xqspi:	Pointer to the zynqmp_qspi structure
 339 *
 340 * The default settings of the QSPI controller's configurable parameters on
 341 * reset are
 342 *	- Master mode
 343 *	- TX threshold set to 1
 344 *	- RX threshold set to 1
 345 *	- Flash memory interface mode enabled
 346 * This function performs the following actions
 347 *	- Disable and clear all the interrupts
 348 *	- Enable manual slave select
 349 *	- Enable manual start
 350 *	- Deselect all the chip select lines
 351 *	- Set the little endian mode of TX FIFO
 352 *	- Set clock phase
 353 *	- Set clock polarity and
 354 *	- Enable the QSPI controller
 355 */
 356static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 357{
 358	u32 config_reg, baud_rate_val = 0;
 359	ulong clk_rate;
 360
 361	/* Select the GQSPI mode */
 362	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 363	/* Clear and disable interrupts */
 364	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 365			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 366			   GQSPI_ISR_WR_TO_CLR_MASK);
 367	/* Clear the DMA STS */
 368	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 369			   zynqmp_gqspi_read(xqspi,
 370					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 371	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 372			   zynqmp_gqspi_read(xqspi,
 373					     GQSPI_QSPIDMA_DST_STS_OFST) |
 374					     GQSPI_QSPIDMA_DST_STS_WTC);
 375	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 376	zynqmp_gqspi_write(xqspi,
 377			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 378			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 379	/* Disable the GQSPI */
 380	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 381	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 382	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 383	/* Manual start */
 384	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 385	/* Little endian by default */
 386	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 387	/* Disable poll time out */
 388	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 389	/* Set hold bit */
 390	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 391	/* Clear pre-scalar by default */
 392	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 393	/* Set CPHA */
 394	if (xqspi->ctlr->mode_bits & SPI_CPHA)
 395		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 396	else
 397		config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 398	/* Set CPOL */
 399	if (xqspi->ctlr->mode_bits & SPI_CPOL)
 400		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 401	else
 402		config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 403
 404	/* Set the clock frequency */
 405	clk_rate = clk_get_rate(xqspi->refclk);
 406	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 407	       (clk_rate /
 408		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
 409		baud_rate_val++;
 410
 411	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 412	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 413
 414	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 415
 416	/* Set the tapdelay for clock frequency */
 417	zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 418
 419	/* Clear the TX and RX FIFO */
 420	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 421			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 422			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 423			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 424	/* Reset thresholds */
 425	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 426			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 427	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 428			   GQSPI_RX_FIFO_THRESHOLD);
 429	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 430			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 431	zynqmp_gqspi_selectslave(xqspi,
 432				 GQSPI_SELECT_FLASH_CS_LOWER,
 433				 GQSPI_SELECT_FLASH_BUS_LOWER);
 434	/* Initialize DMA */
 435	zynqmp_gqspi_write(xqspi,
 436			   GQSPI_QSPIDMA_DST_CTRL_OFST,
 437			   GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 438
 439	/* Enable the GQSPI */
 440	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 441}
 442
 443/**
 444 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
 445 * @xqspi:	Pointer to the zynqmp_qspi structure
 446 * @data:	The variable where data is stored
 447 * @size:	Number of bytes to be copied from data to RX buffer
 448 */
 449static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 450				       ulong data, u8 size)
 451{
 452	memcpy(xqspi->rxbuf, &data, size);
 453	xqspi->rxbuf += size;
 454	xqspi->bytes_to_receive -= size;
 455}
 456
 457/**
 458 * zynqmp_qspi_chipselect - Select or deselect the chip select line
 459 * @qspi:	Pointer to the spi_device structure
 460 * @is_high:	Select(0) or deselect (1) the chip select line
 461 */
 462static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 463{
 464	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 465	ulong timeout;
 466	u32 genfifoentry = 0, statusreg;
 467
 468	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 469
 470	if (!is_high) {
 471		if (!qspi->chip_select) {
 472			xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 473			xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 474		} else {
 475			xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 476			xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 477		}
 478		genfifoentry |= xqspi->genfifobus;
 479		genfifoentry |= xqspi->genfifocs;
 480		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 481	} else {
 482		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 483	}
 484
 485	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 486
 487	/* Manually start the generic FIFO command */
 488	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 489			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 490			   GQSPI_CFG_START_GEN_FIFO_MASK);
 491
 492	timeout = jiffies + msecs_to_jiffies(1000);
 493
 494	/* Wait until the generic FIFO command is empty */
 495	do {
 496		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 497
 498		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 499		    (statusreg & GQSPI_ISR_TXEMPTY_MASK))
 500			break;
 501		cpu_relax();
 502	} while (!time_after_eq(jiffies, timeout));
 503
 504	if (time_after_eq(jiffies, timeout))
 505		dev_err(xqspi->dev, "Chip select timed out\n");
 506}
 507
 508/**
 509 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
 510 * @xqspi:	xqspi is a pointer to the GQSPI instance
 511 * @spimode:	spimode - SPI or DUAL or QUAD.
 512 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 513 */
 514static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 515					    u8 spimode)
 516{
 517	u32 mask = 0;
 518
 519	switch (spimode) {
 520	case GQSPI_SELECT_MODE_DUALSPI:
 521		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 522		break;
 523	case GQSPI_SELECT_MODE_QUADSPI:
 524		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 525		break;
 526	case GQSPI_SELECT_MODE_SPI:
 527		mask = GQSPI_GENFIFO_MODE_SPI;
 528		break;
 529	default:
 530		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 531	}
 532
 533	return mask;
 534}
 535
 536/**
 537 * zynqmp_qspi_config_op - Configure QSPI controller for specified
 538 *				transfer
 539 * @xqspi:	Pointer to the zynqmp_qspi structure
 540 * @qspi:	Pointer to the spi_device structure
 541 *
 542 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 543 * sets the requested clock frequency.
 544 *
 545 * Return:	Always 0
 546 *
 547 * Note:
 548 *	If the requested frequency is not an exact match with what can be
 549 *	obtained using the pre-scalar value, the driver sets the clock
 550 *	frequency which is lower than the requested frequency (maximum lower)
 551 *	for the transfer.
 552 *
 553 *	If the requested frequency is higher or lower than that is supported
 554 *	by the QSPI controller the driver will set the highest or lowest
 555 *	frequency supported by controller.
 556 */
 557static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
 558				 struct spi_device *qspi)
 559{
 560	ulong clk_rate;
 561	u32 config_reg, req_speed_hz, baud_rate_val = 0;
 562
 563	req_speed_hz = qspi->max_speed_hz;
 564
 565	if (xqspi->speed_hz != req_speed_hz) {
 566		xqspi->speed_hz = req_speed_hz;
 567
 568		/* Set the clock frequency */
 569		/* If req_speed_hz == 0, default to lowest speed */
 570		clk_rate = clk_get_rate(xqspi->refclk);
 571
 572		while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 573		       (clk_rate /
 574			(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
 575		       req_speed_hz)
 576			baud_rate_val++;
 577
 578		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 579
 580		config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 581		config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 582		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 583		zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 584	}
 585	return 0;
 586}
 587
 588/**
 589 * zynqmp_qspi_setup_op - Configure the QSPI controller
 590 * @qspi:	Pointer to the spi_device structure
 591 *
 592 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 593 * baud rate and divisor value to setup the requested qspi clock.
 594 *
 595 * Return:	0 on success; error value otherwise.
 596 */
 597static int zynqmp_qspi_setup_op(struct spi_device *qspi)
 598{
 599	struct spi_controller *ctlr = qspi->master;
 600	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
 601
 602	if (ctlr->busy)
 603		return -EBUSY;
 604
 605	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 606
 607	return 0;
 608}
 609
 610/**
 611 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
 612 *				the FIFO or the bytes required to be
 613 *				transmitted.
 614 * @xqspi:	Pointer to the zynqmp_qspi structure
 615 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 616 */
 617static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 618{
 619	u32 count = 0, intermediate;
 620
 621	while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
 622		if (xqspi->bytes_to_transfer >= 4) {
 623			memcpy(&intermediate, xqspi->txbuf, 4);
 624			xqspi->txbuf += 4;
 625			xqspi->bytes_to_transfer -= 4;
 626			count += 4;
 627		} else {
 628			memcpy(&intermediate, xqspi->txbuf,
 629			       xqspi->bytes_to_transfer);
 630			xqspi->txbuf += xqspi->bytes_to_transfer;
 631			xqspi->bytes_to_transfer = 0;
 632			count += xqspi->bytes_to_transfer;
 633		}
 634		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 635	}
 636}
 637
 638/**
 639 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
 640 *				the FIFO.
 641 * @xqspi:	Pointer to the zynqmp_qspi structure
 642 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 643 */
 644static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 645{
 646	ulong data;
 647	int count = 0;
 648
 649	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 650		if (xqspi->bytes_to_receive >= 4) {
 651			(*(u32 *)xqspi->rxbuf) =
 652			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 653			xqspi->rxbuf += 4;
 654			xqspi->bytes_to_receive -= 4;
 655			count += 4;
 656		} else {
 657			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 658			count += xqspi->bytes_to_receive;
 659			zynqmp_qspi_copy_read_data(xqspi, data,
 660						   xqspi->bytes_to_receive);
 661			xqspi->bytes_to_receive = 0;
 662		}
 663	}
 664}
 665
 666/**
 667 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
 668 * @xqspi:	Pointer to the zynqmp_qspi structure
 669 * @nbits:	Transfer/Receive buswidth.
 670 * @genfifoentry:       Variable in which GENFIFO mask is saved
 671 */
 672static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
 673				    u32 genfifoentry)
 674{
 675	u32 transfer_len = 0;
 676
 677	if (xqspi->txbuf) {
 678		genfifoentry &= ~GQSPI_GENFIFO_RX;
 679		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 680		genfifoentry |= GQSPI_GENFIFO_TX;
 681		transfer_len = xqspi->bytes_to_transfer;
 682	} else if (xqspi->rxbuf) {
 683		genfifoentry &= ~GQSPI_GENFIFO_TX;
 684		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 685		genfifoentry |= GQSPI_GENFIFO_RX;
 686		if (xqspi->mode == GQSPI_MODE_DMA)
 687			transfer_len = xqspi->dma_rx_bytes;
 688		else
 689			transfer_len = xqspi->bytes_to_receive;
 690	} else {
 691		/* Sending dummy circles here */
 692		genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
 693		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 694		transfer_len = xqspi->bytes_to_transfer;
 695	}
 696	genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
 697	xqspi->genfifoentry = genfifoentry;
 698
 699	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 700		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 701		genfifoentry |= transfer_len;
 702		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 703	} else {
 704		int tempcount = transfer_len;
 705		u32 exponent = 8;	/* 2^8 = 256 */
 706		u8 imm_data = tempcount & 0xFF;
 707
 708		tempcount &= ~(tempcount & 0xFF);
 709		/* Immediate entry */
 710		if (tempcount != 0) {
 711			/* Exponent entries */
 712			genfifoentry |= GQSPI_GENFIFO_EXP;
 713			while (tempcount != 0) {
 714				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 715					genfifoentry &=
 716						~GQSPI_GENFIFO_IMM_DATA_MASK;
 717					genfifoentry |= exponent;
 718					zynqmp_gqspi_write(xqspi,
 719							   GQSPI_GEN_FIFO_OFST,
 720							   genfifoentry);
 721				}
 722				tempcount = tempcount >> 1;
 723				exponent++;
 724			}
 725		}
 726		if (imm_data != 0) {
 727			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 728			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 729			genfifoentry |= (u8)(imm_data & 0xFF);
 730			zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
 731					   genfifoentry);
 732		}
 733	}
 734	if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
 735		/* Dummy generic FIFO entry */
 736		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 737	}
 738}
 739
 740/**
 741 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
 742 *				controller
 743 * @xqspi:	zynqmp_qspi instance pointer
 744 *
 745 * This function handles DMA interrupt only.
 746 */
 747static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 748{
 749	u32 config_reg, genfifoentry;
 750
 751	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 752			 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 753	xqspi->rxbuf += xqspi->dma_rx_bytes;
 754	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 755	xqspi->dma_rx_bytes = 0;
 756
 757	/* Disabling the DMA interrupts */
 758	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 759			   GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 760
 761	if (xqspi->bytes_to_receive > 0) {
 762		/* Switch to IO mode,for remaining bytes to receive */
 763		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 764		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 765		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 766
 767		/* Initiate the transfer of remaining bytes */
 768		genfifoentry = xqspi->genfifoentry;
 769		genfifoentry |= xqspi->bytes_to_receive;
 770		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 771
 772		/* Dummy generic FIFO entry */
 773		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 774
 775		/* Manual start */
 776		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 777				   (zynqmp_gqspi_read(xqspi,
 778						      GQSPI_CONFIG_OFST) |
 779				   GQSPI_CFG_START_GEN_FIFO_MASK));
 780
 781		/* Enable the RX interrupts for IO mode */
 782		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 783				   GQSPI_IER_GENFIFOEMPTY_MASK |
 784				   GQSPI_IER_RXNEMPTY_MASK |
 785				   GQSPI_IER_RXEMPTY_MASK);
 786	}
 787}
 788
 789/**
 790 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
 791 * @irq:	IRQ number
 792 * @dev_id:	Pointer to the xqspi structure
 793 *
 794 * This function handles TX empty only.
 795 * On TX empty interrupt this function reads the received data from RX FIFO
 796 * and fills the TX FIFO if there is any data remaining to be transferred.
 797 *
 798 * Return:	IRQ_HANDLED when interrupt is handled
 799 *		IRQ_NONE otherwise.
 800 */
 801static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 802{
 803	struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
 804	irqreturn_t ret = IRQ_NONE;
 805	u32 status, mask, dma_status = 0;
 806
 807	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 808	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 809	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 810
 811	/* Read and clear DMA status */
 812	if (xqspi->mode == GQSPI_MODE_DMA) {
 813		dma_status =
 814			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 815		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 816				   dma_status);
 817	}
 818
 819	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 820		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 821		ret = IRQ_HANDLED;
 822	}
 823
 824	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 825		zynqmp_process_dma_irq(xqspi);
 826		ret = IRQ_HANDLED;
 827	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 828			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 829		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 830		ret = IRQ_HANDLED;
 831	}
 832
 833	if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
 834	    ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 835		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 836		complete(&xqspi->data_completion);
 837		ret = IRQ_HANDLED;
 838	}
 839	return ret;
 840}
 841
 842/**
 843 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
 844 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 845 *
 846 * Return:	0 on success; error value otherwise.
 847 */
 848static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 849{
 850	u32 rx_bytes, rx_rem, config_reg;
 851	dma_addr_t addr;
 852	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 853
 854	if (xqspi->bytes_to_receive < 8 ||
 855	    ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 856		/* Setting to IO mode */
 857		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 858		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 859		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 860		xqspi->mode = GQSPI_MODE_IO;
 861		xqspi->dma_rx_bytes = 0;
 862		return 0;
 863	}
 864
 865	rx_rem = xqspi->bytes_to_receive % 4;
 866	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 867
 868	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 869			      rx_bytes, DMA_FROM_DEVICE);
 870	if (dma_mapping_error(xqspi->dev, addr)) {
 871		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 872		return -ENOMEM;
 873	}
 874
 875	xqspi->dma_rx_bytes = rx_bytes;
 876	xqspi->dma_addr = addr;
 877	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 878			   (u32)(addr & 0xffffffff));
 879	addr = ((addr >> 16) >> 16);
 880	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 881			   ((u32)addr) & 0xfff);
 882
 883	/* Enabling the DMA mode */
 884	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 885	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 886	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 887	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 888
 889	/* Switch to DMA mode */
 890	xqspi->mode = GQSPI_MODE_DMA;
 891
 892	/* Write the number of bytes to transfer */
 893	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 894
 895	return 0;
 896}
 897
 898/**
 899 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
 900 *			TX FIFO, and fills the TX FIFO with as many
 901 *			bytes as possible.
 902 * @xqspi:	Pointer to the GQSPI instance.
 903 * @tx_nbits:	Transfer buswidth.
 904 * @genfifoentry:	Variable in which GENFIFO mask is returned
 905 *			to calling function
 906 */
 907static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
 908				 u32 genfifoentry)
 909{
 910	u32 config_reg;
 911
 912	zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
 913	zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 914	if (xqspi->mode == GQSPI_MODE_DMA) {
 915		config_reg = zynqmp_gqspi_read(xqspi,
 916					       GQSPI_CONFIG_OFST);
 917		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 918		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 919				   config_reg);
 920		xqspi->mode = GQSPI_MODE_IO;
 921	}
 922}
 923
 924/**
 925 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
 926 *				RX DMA operation.
 927 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 928 * @rx_nbits:	Receive buswidth.
 929 * @genfifoentry:	genfifoentry is pointer to the variable in which
 930 *			GENFIFO	mask is returned to calling function
 931 *
 932 * Return:	0 on success; error value otherwise.
 933 */
 934static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
 935				u32 genfifoentry)
 936{
 937	int ret;
 938
 939	ret = zynqmp_qspi_setuprxdma(xqspi);
 940	if (ret)
 941		return ret;
 942	zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
 943
 944	return 0;
 945}
 946
 947/**
 948 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
 949 * @dev:	Address of the platform_device structure
 950 *
 951 * This function stops the QSPI driver queue and disables the QSPI controller
 952 *
 953 * Return:	Always 0
 954 */
 955static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 956{
 957	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 958	struct spi_controller *ctlr = xqspi->ctlr;
 959	int ret;
 960
 961	ret = spi_controller_suspend(ctlr);
 962	if (ret)
 963		return ret;
 964
 965	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 966
 967	return 0;
 968}
 969
 970/**
 971 * zynqmp_qspi_resume - Resume method for the QSPI driver
 972 * @dev:	Address of the platform_device structure
 973 *
 974 * The function starts the QSPI driver queue and initializes the QSPI
 975 * controller
 976 *
 977 * Return:	0 on success; error value otherwise
 978 */
 979static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 980{
 981	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 982	struct spi_controller *ctlr = xqspi->ctlr;
 983
 984	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 985
 986	spi_controller_resume(ctlr);
 987
 988	return 0;
 989}
 990
 991/**
 992 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
 993 * @dev:	Address of the platform_device structure
 994 *
 995 * This function disables the clocks
 996 *
 997 * Return:	Always 0
 998 */
 999static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
1000{
1001	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1002
1003	clk_disable_unprepare(xqspi->refclk);
1004	clk_disable_unprepare(xqspi->pclk);
1005
1006	return 0;
1007}
1008
1009/**
1010 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1011 * @dev:	Address of the platform_device structure
1012 *
1013 * This function enables the clocks
1014 *
1015 * Return:	0 on success and error value on error
1016 */
1017static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1018{
1019	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1020	int ret;
1021
1022	ret = clk_prepare_enable(xqspi->pclk);
1023	if (ret) {
1024		dev_err(dev, "Cannot enable APB clock.\n");
1025		return ret;
1026	}
1027
1028	ret = clk_prepare_enable(xqspi->refclk);
1029	if (ret) {
1030		dev_err(dev, "Cannot enable device clock.\n");
1031		clk_disable_unprepare(xqspi->pclk);
1032		return ret;
1033	}
1034
1035	return 0;
1036}
1037
1038/**
1039 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1040 * @mem: The SPI memory
1041 * @op: The memory operation to execute
1042 *
1043 * Executes a memory operation.
1044 *
1045 * This function first selects the chip and starts the memory operation.
1046 *
1047 * Return: 0 in case of success, a negative error code otherwise.
1048 */
1049static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1050			       const struct spi_mem_op *op)
1051{
1052	struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1053				    (mem->spi->master);
1054	int err = 0, i;
1055	u32 genfifoentry = 0;
1056	u16 opcode = op->cmd.opcode;
1057	u64 opaddr;
1058
1059	dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1060		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1061		op->dummy.buswidth, op->data.buswidth);
1062
1063	mutex_lock(&xqspi->op_lock);
1064	zynqmp_qspi_config_op(xqspi, mem->spi);
1065	zynqmp_qspi_chipselect(mem->spi, false);
1066	genfifoentry |= xqspi->genfifocs;
1067	genfifoentry |= xqspi->genfifobus;
1068
1069	if (op->cmd.opcode) {
1070		reinit_completion(&xqspi->data_completion);
1071		xqspi->txbuf = &opcode;
1072		xqspi->rxbuf = NULL;
1073		xqspi->bytes_to_transfer = op->cmd.nbytes;
1074		xqspi->bytes_to_receive = 0;
1075		zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1076		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1077				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1078				   GQSPI_CFG_START_GEN_FIFO_MASK);
1079		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1080				   GQSPI_IER_GENFIFOEMPTY_MASK |
1081				   GQSPI_IER_TXNOT_FULL_MASK);
1082		if (!wait_for_completion_timeout
1083		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1084			err = -ETIMEDOUT;
1085			goto return_err;
1086		}
1087	}
1088
1089	if (op->addr.nbytes) {
1090		xqspi->txbuf = &opaddr;
1091		for (i = 0; i < op->addr.nbytes; i++) {
1092			*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1093					(8 * (op->addr.nbytes - i - 1));
1094		}
1095
1096		reinit_completion(&xqspi->data_completion);
1097		xqspi->rxbuf = NULL;
1098		xqspi->bytes_to_transfer = op->addr.nbytes;
1099		xqspi->bytes_to_receive = 0;
1100		zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1101		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1102				   zynqmp_gqspi_read(xqspi,
1103						     GQSPI_CONFIG_OFST) |
1104				   GQSPI_CFG_START_GEN_FIFO_MASK);
1105		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1106				   GQSPI_IER_TXEMPTY_MASK |
1107				   GQSPI_IER_GENFIFOEMPTY_MASK |
1108				   GQSPI_IER_TXNOT_FULL_MASK);
1109		if (!wait_for_completion_timeout
1110		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1111			err = -ETIMEDOUT;
1112			goto return_err;
1113		}
1114	}
1115
1116	if (op->dummy.nbytes) {
1117		xqspi->txbuf = NULL;
1118		xqspi->rxbuf = NULL;
1119		/*
1120		 * xqspi->bytes_to_transfer here represents the dummy circles
1121		 * which need to be sent.
1122		 */
1123		xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1124		xqspi->bytes_to_receive = 0;
1125		/*
1126		 * Using op->data.buswidth instead of op->dummy.buswidth here because
1127		 * we need to use it to configure the correct SPI mode.
1128		 */
1129		zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1130				     genfifoentry);
1131		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1132				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1133				   GQSPI_CFG_START_GEN_FIFO_MASK);
1134	}
1135
1136	if (op->data.nbytes) {
1137		reinit_completion(&xqspi->data_completion);
1138		if (op->data.dir == SPI_MEM_DATA_OUT) {
1139			xqspi->txbuf = (u8 *)op->data.buf.out;
1140			xqspi->rxbuf = NULL;
1141			xqspi->bytes_to_transfer = op->data.nbytes;
1142			xqspi->bytes_to_receive = 0;
1143			zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1144					     genfifoentry);
1145			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1146					   zynqmp_gqspi_read
1147					   (xqspi, GQSPI_CONFIG_OFST) |
1148					   GQSPI_CFG_START_GEN_FIFO_MASK);
1149			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1150					   GQSPI_IER_TXEMPTY_MASK |
1151					   GQSPI_IER_GENFIFOEMPTY_MASK |
1152					   GQSPI_IER_TXNOT_FULL_MASK);
1153		} else {
1154			xqspi->txbuf = NULL;
1155			xqspi->rxbuf = (u8 *)op->data.buf.in;
1156			xqspi->bytes_to_receive = op->data.nbytes;
1157			xqspi->bytes_to_transfer = 0;
1158			err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1159					    genfifoentry);
1160			if (err)
1161				goto return_err;
1162
1163			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1164					   zynqmp_gqspi_read
1165					   (xqspi, GQSPI_CONFIG_OFST) |
1166					   GQSPI_CFG_START_GEN_FIFO_MASK);
1167			if (xqspi->mode == GQSPI_MODE_DMA) {
1168				zynqmp_gqspi_write
1169					(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1170					 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1171			} else {
1172				zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1173						   GQSPI_IER_GENFIFOEMPTY_MASK |
1174						   GQSPI_IER_RXNEMPTY_MASK |
1175						   GQSPI_IER_RXEMPTY_MASK);
1176			}
1177		}
1178		if (!wait_for_completion_timeout
1179		    (&xqspi->data_completion, msecs_to_jiffies(1000)))
1180			err = -ETIMEDOUT;
1181	}
1182
1183return_err:
1184
1185	zynqmp_qspi_chipselect(mem->spi, true);
1186	mutex_unlock(&xqspi->op_lock);
1187
1188	return err;
1189}
1190
1191static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1192	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1193			   zynqmp_runtime_resume, NULL)
1194	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1195};
1196
1197static const struct qspi_platform_data versal_qspi_def = {
1198	.quirks = QSPI_QUIRK_HAS_TAPDELAY,
1199};
1200
1201static const struct of_device_id zynqmp_qspi_of_match[] = {
1202	{ .compatible = "xlnx,zynqmp-qspi-1.0"},
1203	{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1204	{ /* End of table */ }
1205};
1206
1207static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1208	.exec_op = zynqmp_qspi_exec_op,
1209};
1210
1211/**
1212 * zynqmp_qspi_probe - Probe method for the QSPI driver
1213 * @pdev:	Pointer to the platform_device structure
1214 *
1215 * This function initializes the driver data structures and the hardware.
1216 *
1217 * Return:	0 on success; error value otherwise
1218 */
1219static int zynqmp_qspi_probe(struct platform_device *pdev)
1220{
1221	int ret = 0;
1222	struct spi_controller *ctlr;
1223	struct zynqmp_qspi *xqspi;
1224	struct device *dev = &pdev->dev;
1225	struct device_node *np = dev->of_node;
1226	u32 num_cs;
1227	const struct qspi_platform_data *p_data;
1228
1229	ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1230	if (!ctlr)
1231		return -ENOMEM;
1232
1233	xqspi = spi_controller_get_devdata(ctlr);
1234	xqspi->dev = dev;
1235	xqspi->ctlr = ctlr;
1236	platform_set_drvdata(pdev, xqspi);
1237
1238	p_data = of_device_get_match_data(&pdev->dev);
1239	if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1240		xqspi->has_tapdelay = true;
1241
1242	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1243	if (IS_ERR(xqspi->regs)) {
1244		ret = PTR_ERR(xqspi->regs);
1245		goto remove_master;
1246	}
1247
1248	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1249	if (IS_ERR(xqspi->pclk)) {
1250		dev_err(dev, "pclk clock not found.\n");
1251		ret = PTR_ERR(xqspi->pclk);
1252		goto remove_master;
1253	}
1254
1255	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1256	if (IS_ERR(xqspi->refclk)) {
1257		dev_err(dev, "ref_clk clock not found.\n");
1258		ret = PTR_ERR(xqspi->refclk);
1259		goto remove_master;
1260	}
1261
1262	ret = clk_prepare_enable(xqspi->pclk);
1263	if (ret) {
1264		dev_err(dev, "Unable to enable APB clock.\n");
1265		goto remove_master;
1266	}
1267
1268	ret = clk_prepare_enable(xqspi->refclk);
1269	if (ret) {
1270		dev_err(dev, "Unable to enable device clock.\n");
1271		goto clk_dis_pclk;
1272	}
1273
1274	init_completion(&xqspi->data_completion);
1275
1276	mutex_init(&xqspi->op_lock);
1277
1278	pm_runtime_use_autosuspend(&pdev->dev);
1279	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1280	pm_runtime_set_active(&pdev->dev);
1281	pm_runtime_enable(&pdev->dev);
1282
1283	ret = pm_runtime_get_sync(&pdev->dev);
1284	if (ret < 0) {
1285		dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1286		goto clk_dis_all;
1287	}
1288
1289	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1290		SPI_TX_DUAL | SPI_TX_QUAD;
1291	ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1292	xqspi->speed_hz = ctlr->max_speed_hz;
1293
1294	/* QSPI controller initializations */
1295	zynqmp_qspi_init_hw(xqspi);
1296
1297	xqspi->irq = platform_get_irq(pdev, 0);
1298	if (xqspi->irq <= 0) {
1299		ret = -ENXIO;
1300		goto clk_dis_all;
1301	}
1302	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1303			       0, pdev->name, xqspi);
1304	if (ret != 0) {
1305		ret = -ENXIO;
1306		dev_err(dev, "request_irq failed\n");
1307		goto clk_dis_all;
1308	}
1309
1310	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1311	if (ret)
1312		goto clk_dis_all;
1313
1314	ret = of_property_read_u32(np, "num-cs", &num_cs);
1315	if (ret < 0) {
1316		ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1317	} else if (num_cs > GQSPI_MAX_NUM_CS) {
1318		ret = -EINVAL;
1319		dev_err(&pdev->dev, "only %d chip selects are available\n",
1320			GQSPI_MAX_NUM_CS);
1321		goto clk_dis_all;
1322	} else {
1323		ctlr->num_chipselect = num_cs;
1324	}
1325
1326	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1327	ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1328	ctlr->setup = zynqmp_qspi_setup_op;
1329	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1330	ctlr->dev.of_node = np;
1331	ctlr->auto_runtime_pm = true;
1332
1333	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1334	if (ret) {
1335		dev_err(&pdev->dev, "spi_register_controller failed\n");
1336		goto clk_dis_all;
1337	}
1338
1339	pm_runtime_mark_last_busy(&pdev->dev);
1340	pm_runtime_put_autosuspend(&pdev->dev);
1341
1342	return 0;
1343
1344clk_dis_all:
1345	pm_runtime_put_sync(&pdev->dev);
 
1346	pm_runtime_set_suspended(&pdev->dev);
1347	pm_runtime_disable(&pdev->dev);
1348	clk_disable_unprepare(xqspi->refclk);
1349clk_dis_pclk:
1350	clk_disable_unprepare(xqspi->pclk);
1351remove_master:
1352	spi_controller_put(ctlr);
1353
1354	return ret;
1355}
1356
1357/**
1358 * zynqmp_qspi_remove - Remove method for the QSPI driver
1359 * @pdev:	Pointer to the platform_device structure
1360 *
1361 * This function is called if a device is physically removed from the system or
1362 * if the driver module is being unloaded. It frees all resources allocated to
1363 * the device.
1364 *
1365 * Return:	0 Always
1366 */
1367static int zynqmp_qspi_remove(struct platform_device *pdev)
1368{
1369	struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
1370
 
 
1371	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 
 
 
 
1372	clk_disable_unprepare(xqspi->refclk);
1373	clk_disable_unprepare(xqspi->pclk);
1374	pm_runtime_set_suspended(&pdev->dev);
1375	pm_runtime_disable(&pdev->dev);
1376
1377	return 0;
1378}
1379
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383	.probe = zynqmp_qspi_probe,
1384	.remove = zynqmp_qspi_remove,
1385	.driver = {
1386		.name = "zynqmp-qspi",
1387		.of_match_table = zynqmp_qspi_of_match,
1388		.pm = &zynqmp_qspi_dev_pm_ops,
1389	},
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");