Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
  4 *
  5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
  6 */
  7
  8#include <linux/bits.h>
  9#include <linux/kernel.h>
 10#include <linux/clk.h>
 11#include <linux/iopoll.h>
 12#include <linux/clk-provider.h>
 13#include <linux/delay.h>
 14#include <linux/init.h>
 15#include <linux/mfd/syscon.h>
 16#include <linux/module.h>
 17#include <linux/of.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/time64.h>
 22
 23#include <linux/phy/phy.h>
 24#include <linux/phy/phy-mipi-dphy.h>
 25
 26#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
 27
 28/*
 29 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
 30 * is the first address, the other from the bit4 to bit0 is the second address.
 31 * when you configure the registers, you must set both of them. The Clock Lane
 32 * and Data Lane use the same registers with the same second address, but the
 33 * first address is different.
 34 */
 35#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
 36#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
 37#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
 38					 SECOND_ADDRESS(second))
 39
 40/* Analog Register Part: reg00 */
 41#define BANDGAP_POWER_MASK			BIT(7)
 42#define BANDGAP_POWER_DOWN			BIT(7)
 43#define BANDGAP_POWER_ON			0
 44#define LANE_EN_MASK				GENMASK(6, 2)
 45#define LANE_EN_CK				BIT(6)
 46#define LANE_EN_3				BIT(5)
 47#define LANE_EN_2				BIT(4)
 48#define LANE_EN_1				BIT(3)
 49#define LANE_EN_0				BIT(2)
 50#define POWER_WORK_MASK				GENMASK(1, 0)
 51#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
 52#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
 53/* Analog Register Part: reg01 */
 54#define REG_SYNCRST_MASK			BIT(2)
 55#define REG_SYNCRST_RESET			BIT(2)
 56#define REG_SYNCRST_NORMAL			0
 57#define REG_LDOPD_MASK				BIT(1)
 58#define REG_LDOPD_POWER_DOWN			BIT(1)
 59#define REG_LDOPD_POWER_ON			0
 60#define REG_PLLPD_MASK				BIT(0)
 61#define REG_PLLPD_POWER_DOWN			BIT(0)
 62#define REG_PLLPD_POWER_ON			0
 63/* Analog Register Part: reg03 */
 64#define REG_FBDIV_HI_MASK			BIT(5)
 65#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
 66#define REG_PREDIV_MASK				GENMASK(4, 0)
 67#define REG_PREDIV(x)				UPDATE(x, 4, 0)
 68/* Analog Register Part: reg04 */
 69#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
 70#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
 71/* Analog Register Part: reg05 */
 72#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
 73#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
 74#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
 75#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 76/* Analog Register Part: reg06 */
 77#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
 78#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 79#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
 80#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 81/* Analog Register Part: reg07 */
 82#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
 83#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 84#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
 85#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 86/* Analog Register Part: reg08 */
 87#define PLL_POST_DIV_ENABLE_MASK		BIT(5)
 88#define PLL_POST_DIV_ENABLE			BIT(5)
 89#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
 90#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
 91#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
 92#define LOWFRE_EN_MASK				BIT(5)
 93#define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
 94#define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
 95/* Analog Register Part: reg0b */
 96#define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
 97#define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
 98#define VOD_MIN_RANGE				0x1
 99#define VOD_MID_RANGE				0x3
100#define VOD_BIG_RANGE				0x7
101#define VOD_MAX_RANGE				0xf
102/* Analog Register Part: reg1E */
103#define PLL_MODE_SEL_MASK			GENMASK(6, 5)
104#define PLL_MODE_SEL_LVDS_MODE			0
105#define PLL_MODE_SEL_MIPI_MODE			BIT(5)
106/* Digital Register Part: reg00 */
107#define REG_DIG_RSTN_MASK			BIT(0)
108#define REG_DIG_RSTN_NORMAL			BIT(0)
109#define REG_DIG_RSTN_RESET			0
110/* Digital Register Part: reg01 */
111#define INVERT_TXCLKESC_MASK			BIT(1)
112#define INVERT_TXCLKESC_ENABLE			BIT(1)
113#define INVERT_TXCLKESC_DISABLE			0
114#define INVERT_TXBYTECLKHS_MASK			BIT(0)
115#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
116#define INVERT_TXBYTECLKHS_DISABLE		0
117/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
118#define T_LPX_CNT_MASK				GENMASK(5, 0)
119#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
120/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
121#define T_HS_ZERO_CNT_HI_MASK			BIT(7)
122#define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
123#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
124#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
125/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
126#define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
127#define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
128/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
129#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
130#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
131/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
132#define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
133#define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
134/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
135#define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
136#define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
137/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
138#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
139#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
140#define LPDT_TX_PPI_SYNC_DISABLE		0
141#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
142#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
143/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
144#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
145#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
146/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
147#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
148#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
149/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
150#define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
151#define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
152#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
153#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
154/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
155#define T_HS_EXIT_CNT_HI_MASK			BIT(6)
156#define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
157#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
158#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
159/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
160#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
161#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
162/* LVDS Register Part: reg00 */
163#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
164#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
165#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
166/* LVDS Register Part: reg01 */
167#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
168#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
169#define LVDS_DIGITAL_INTERNAL_DISABLE		0
170/* LVDS Register Part: reg03 */
171#define MODE_ENABLE_MASK			GENMASK(2, 0)
172#define TTL_MODE_ENABLE				BIT(2)
173#define LVDS_MODE_ENABLE			BIT(1)
174#define MIPI_MODE_ENABLE			BIT(0)
175/* LVDS Register Part: reg0b */
176#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
177#define LVDS_DATA_LANE0_EN			BIT(7)
178#define LVDS_DATA_LANE1_EN			BIT(6)
179#define LVDS_DATA_LANE2_EN			BIT(5)
180#define LVDS_DATA_LANE3_EN			BIT(4)
181#define LVDS_CLK_LANE_EN			BIT(3)
182#define LVDS_PLL_POWER_MASK			BIT(2)
183#define LVDS_PLL_POWER_OFF			BIT(2)
184#define LVDS_PLL_POWER_ON			0
185#define LVDS_BANDGAP_POWER_MASK			BIT(0)
186#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
187#define LVDS_BANDGAP_POWER_ON			0
188
189#define DSI_PHY_RSTZ		0xa0
190#define PHY_ENABLECLK		BIT(2)
191#define DSI_PHY_STATUS		0xb0
192#define PHY_LOCK		BIT(0)
193
194enum phy_max_rate {
195	MAX_1GHZ,
196	MAX_2_5GHZ,
197};
198
199struct inno_video_phy_plat_data {
200	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
201	const unsigned int num_timings;
202	enum phy_max_rate max_rate;
203};
204
205struct inno_dsidphy {
206	struct device *dev;
207	struct clk *ref_clk;
208	struct clk *pclk_phy;
209	struct clk *pclk_host;
210	const struct inno_video_phy_plat_data *pdata;
211	void __iomem *phy_base;
212	void __iomem *host_base;
213	struct reset_control *rst;
214	enum phy_mode mode;
215	struct phy_configure_opts_mipi_dphy dphy_cfg;
216
217	struct clk *pll_clk;
218	struct {
219		struct clk_hw hw;
220		u8 prediv;
221		u16 fbdiv;
222		unsigned long rate;
223	} pll;
224};
225
226enum {
227	REGISTER_PART_ANALOG,
228	REGISTER_PART_DIGITAL,
229	REGISTER_PART_CLOCK_LANE,
230	REGISTER_PART_DATA0_LANE,
231	REGISTER_PART_DATA1_LANE,
232	REGISTER_PART_DATA2_LANE,
233	REGISTER_PART_DATA3_LANE,
234	REGISTER_PART_LVDS,
235};
236
237struct inno_mipi_dphy_timing {
238	unsigned long rate;
239	u8 lpx;
240	u8 hs_prepare;
241	u8 clk_lane_hs_zero;
242	u8 data_lane_hs_zero;
243	u8 hs_trail;
244};
245
246static const
247struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
248	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
249	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
250	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
251	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
252	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
253	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
254	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
255	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
256	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
257	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
258	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
259};
260
261static const
262struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
263	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
264	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
265	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
266	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
267	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
268	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
269	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
270	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
271	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
272	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
273	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
274	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
275	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
276	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
277	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
278	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
279	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
280	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
281	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
282};
283
 
 
 
 
 
284static void phy_update_bits(struct inno_dsidphy *inno,
285			    u8 first, u8 second, u8 mask, u8 val)
286{
287	u32 reg = PHY_REG(first, second) << 2;
288	unsigned int tmp, orig;
289
290	orig = readl(inno->phy_base + reg);
291	tmp = orig & ~mask;
292	tmp |= val & mask;
293	writel(tmp, inno->phy_base + reg);
294}
295
296static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
297						unsigned long rate)
298{
299	unsigned long prate = clk_get_rate(inno->ref_clk);
300	unsigned long best_freq = 0;
301	unsigned long fref, fout;
302	u8 min_prediv, max_prediv;
303	u8 _prediv, best_prediv = 1;
304	u16 _fbdiv, best_fbdiv = 1;
305	u32 min_delta = UINT_MAX;
306
307	/*
308	 * The PLL output frequency can be calculated using a simple formula:
309	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
310	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
311	 */
312	fref = prate / 2;
313	if (rate > 1000000000UL)
314		fout = 1000000000UL;
315	else
316		fout = rate;
317
318	/* 5Mhz < Fref / prediv < 40MHz */
319	min_prediv = DIV_ROUND_UP(fref, 40000000);
320	max_prediv = fref / 5000000;
321
322	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
323		u64 tmp;
324		u32 delta;
325
326		tmp = (u64)fout * _prediv;
327		do_div(tmp, fref);
328		_fbdiv = tmp;
329
330		/*
331		 * The possible settings of feedback divider are
332		 * 12, 13, 14, 16, ~ 511
333		 */
334		if (_fbdiv == 15)
335			continue;
336
337		if (_fbdiv < 12 || _fbdiv > 511)
338			continue;
339
340		tmp = (u64)_fbdiv * fref;
341		do_div(tmp, _prediv);
342
343		delta = abs(fout - tmp);
344		if (!delta) {
345			best_prediv = _prediv;
346			best_fbdiv = _fbdiv;
347			best_freq = tmp;
348			break;
349		} else if (delta < min_delta) {
350			best_prediv = _prediv;
351			best_fbdiv = _fbdiv;
352			best_freq = tmp;
353			min_delta = delta;
354		}
355	}
356
357	if (best_freq) {
358		inno->pll.prediv = best_prediv;
359		inno->pll.fbdiv = best_fbdiv;
360		inno->pll.rate = best_freq;
361	}
362
363	return best_freq;
364}
365
366static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
367{
368	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
369	const struct inno_mipi_dphy_timing *timings;
370	u32 t_txbyteclkhs, t_txclkesc;
371	u32 txbyteclkhs, txclkesc, esc_clk_div;
372	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
373	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
374	unsigned int i;
375
376	timings = inno->pdata->inno_mipi_dphy_timing_table;
377
378	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
379
380	/* Select MIPI mode */
381	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
382			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
383	/* Configure PLL */
384	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
385			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
386	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
387			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
388	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
389			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
390	if (inno->pdata->max_rate == MAX_2_5GHZ) {
391		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
392				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
393		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
394				CLOCK_LANE_VOD_RANGE_SET_MASK,
395				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
396	}
397	/* Enable PLL and LDO */
398	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
399			REG_LDOPD_MASK | REG_PLLPD_MASK,
400			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
401	/* Reset analog */
402	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
403			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
404	udelay(1);
405	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
406			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
407	/* Reset digital */
408	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
409			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
410	udelay(1);
411	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
412			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
413
414	txbyteclkhs = inno->pll.rate / 8;
415	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
416
417	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
418	txclkesc = txbyteclkhs / esc_clk_div;
419	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
420
421	/*
422	 * The value of counter for HS Ths-exit
423	 * Ths-exit = Tpin_txbyteclkhs * value
424	 */
425	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
426	/*
427	 * The value of counter for HS Tclk-post
428	 * Tclk-post = Tpin_txbyteclkhs * value
429	 */
430	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
431	/*
432	 * The value of counter for HS Tclk-pre
433	 * Tclk-pre = Tpin_txbyteclkhs * value
434	 */
435	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
436
437	/*
438	 * The value of counter for HS Tta-go
439	 * Tta-go for turnaround
440	 * Tta-go = Ttxclkesc * value
441	 */
442	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
443	/*
444	 * The value of counter for HS Tta-sure
445	 * Tta-sure for turnaround
446	 * Tta-sure = Ttxclkesc * value
447	 */
448	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
449	/*
450	 * The value of counter for HS Tta-wait
451	 * Tta-wait for turnaround
452	 * Tta-wait = Ttxclkesc * value
453	 */
454	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
455
456	for (i = 0; i < inno->pdata->num_timings; i++)
457		if (inno->pll.rate <= timings[i].rate)
458			break;
459
460	if (i == inno->pdata->num_timings)
461		--i;
462
463	/*
464	 * The value of counter for HS Tlpx Time
465	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
466	 */
467	if (inno->pdata->max_rate == MAX_1GHZ) {
468		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
469		if (lpx >= 2)
470			lpx -= 2;
471	} else
472		lpx = timings[i].lpx;
473
474	hs_prepare = timings[i].hs_prepare;
475	hs_trail = timings[i].hs_trail;
476	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
477	data_lane_hs_zero = timings[i].data_lane_hs_zero;
478	wakeup = 0x3ff;
479
480	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
481		if (i == REGISTER_PART_CLOCK_LANE)
482			hs_zero = clk_lane_hs_zero;
483		else
484			hs_zero = data_lane_hs_zero;
485
486		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
487				T_LPX_CNT(lpx));
488		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
489				T_HS_PREPARE_CNT(hs_prepare));
490		if (inno->pdata->max_rate == MAX_2_5GHZ)
491			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
492					T_HS_ZERO_CNT_HI(hs_zero >> 6));
493		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
494				T_HS_ZERO_CNT_LO(hs_zero));
495		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
496				T_HS_TRAIL_CNT(hs_trail));
497		if (inno->pdata->max_rate == MAX_2_5GHZ)
498			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
499					T_HS_EXIT_CNT_HI(hs_exit >> 5));
500		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
501				T_HS_EXIT_CNT_LO(hs_exit));
502		if (inno->pdata->max_rate == MAX_2_5GHZ)
503			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
504					T_CLK_POST_CNT_HI(clk_post >> 4));
505		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
506				T_CLK_POST_CNT_LO(clk_post));
507		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
508				T_CLK_PRE_CNT(clk_pre));
509		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
510				T_WAKEUP_CNT_HI(wakeup >> 8));
511		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
512				T_WAKEUP_CNT_LO(wakeup));
513		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
514				T_TA_GO_CNT(ta_go));
515		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
516				T_TA_SURE_CNT(ta_sure));
517		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
518				T_TA_WAIT_CNT(ta_wait));
519	}
520
521	/* Enable all lanes on analog part */
522	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
523			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
524			LANE_EN_1 | LANE_EN_0);
525}
526
527static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
528{
529	u8 prediv = 2;
530	u16 fbdiv = 28;
531
532	/* Sample clock reverse direction */
533	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
534			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
535			SAMPLE_CLOCK_DIRECTION_REVERSE |
536			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
537
538	/* Select LVDS mode */
539	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
540			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
541	/* Configure PLL */
542	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
543			REG_PREDIV_MASK, REG_PREDIV(prediv));
544	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
545			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
546	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
547			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
548	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
549	/* Enable PLL and Bandgap */
550	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
551			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
552			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
553
554	msleep(20);
555
556	/* Select PLL mode */
557	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
558			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
559
560	/* Reset LVDS digital logic */
561	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
562			LVDS_DIGITAL_INTERNAL_RESET_MASK,
563			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
564	udelay(1);
565	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
566			LVDS_DIGITAL_INTERNAL_RESET_MASK,
567			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
568	/* Enable LVDS digital logic */
569	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
570			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
571			LVDS_DIGITAL_INTERNAL_ENABLE);
572	/* Enable LVDS analog driver */
573	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
574			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
575			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
576			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
577}
578
579static int inno_dsidphy_power_on(struct phy *phy)
580{
581	struct inno_dsidphy *inno = phy_get_drvdata(phy);
582
583	clk_prepare_enable(inno->pclk_phy);
584	clk_prepare_enable(inno->ref_clk);
585	pm_runtime_get_sync(inno->dev);
586
587	/* Bandgap power on */
588	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
589			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
590	/* Enable power work */
591	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
592			POWER_WORK_MASK, POWER_WORK_ENABLE);
593
594	switch (inno->mode) {
595	case PHY_MODE_MIPI_DPHY:
596		inno_dsidphy_mipi_mode_enable(inno);
597		break;
598	case PHY_MODE_LVDS:
599		inno_dsidphy_lvds_mode_enable(inno);
600		break;
601	default:
602		return -EINVAL;
603	}
604
605	return 0;
606}
607
608static int inno_dsidphy_power_off(struct phy *phy)
609{
610	struct inno_dsidphy *inno = phy_get_drvdata(phy);
611
612	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
613	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
614			REG_LDOPD_MASK | REG_PLLPD_MASK,
615			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
616	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
617			POWER_WORK_MASK, POWER_WORK_DISABLE);
618	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
619			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
620
621	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
622	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
623			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
624			LVDS_DIGITAL_INTERNAL_DISABLE);
625	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
626			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
627			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
628
629	pm_runtime_put(inno->dev);
630	clk_disable_unprepare(inno->ref_clk);
631	clk_disable_unprepare(inno->pclk_phy);
632
633	return 0;
634}
635
636static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
637				   int submode)
638{
639	struct inno_dsidphy *inno = phy_get_drvdata(phy);
640
641	switch (mode) {
642	case PHY_MODE_MIPI_DPHY:
643	case PHY_MODE_LVDS:
644		inno->mode = mode;
645		break;
646	default:
647		return -EINVAL;
648	}
649
650	return 0;
651}
652
653static int inno_dsidphy_configure(struct phy *phy,
654				  union phy_configure_opts *opts)
655{
656	struct inno_dsidphy *inno = phy_get_drvdata(phy);
657	int ret;
658
659	if (inno->mode != PHY_MODE_MIPI_DPHY)
660		return -EINVAL;
661
662	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
663	if (ret)
664		return ret;
665
666	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
667
668	return 0;
669}
670
671static const struct phy_ops inno_dsidphy_ops = {
672	.configure = inno_dsidphy_configure,
673	.set_mode = inno_dsidphy_set_mode,
674	.power_on = inno_dsidphy_power_on,
675	.power_off = inno_dsidphy_power_off,
676	.owner = THIS_MODULE,
677};
678
679static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
680	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
681	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
682	.max_rate = MAX_1GHZ,
683};
684
685static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
686	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
687	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
688	.max_rate = MAX_2_5GHZ,
689};
690
691static int inno_dsidphy_probe(struct platform_device *pdev)
692{
693	struct device *dev = &pdev->dev;
694	struct inno_dsidphy *inno;
695	struct phy_provider *phy_provider;
696	struct phy *phy;
697	int ret;
698
699	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
700	if (!inno)
701		return -ENOMEM;
702
703	inno->dev = dev;
704	inno->pdata = of_device_get_match_data(inno->dev);
705	platform_set_drvdata(pdev, inno);
706
707	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
708	if (IS_ERR(inno->phy_base))
709		return PTR_ERR(inno->phy_base);
710
711	inno->ref_clk = devm_clk_get(dev, "ref");
712	if (IS_ERR(inno->ref_clk)) {
713		ret = PTR_ERR(inno->ref_clk);
714		dev_err(dev, "failed to get ref clock: %d\n", ret);
715		return ret;
716	}
717
718	inno->pclk_phy = devm_clk_get(dev, "pclk");
719	if (IS_ERR(inno->pclk_phy)) {
720		ret = PTR_ERR(inno->pclk_phy);
721		dev_err(dev, "failed to get phy pclk: %d\n", ret);
722		return ret;
723	}
724
725	inno->rst = devm_reset_control_get(dev, "apb");
726	if (IS_ERR(inno->rst)) {
727		ret = PTR_ERR(inno->rst);
728		dev_err(dev, "failed to get system reset control: %d\n", ret);
729		return ret;
730	}
731
732	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
733	if (IS_ERR(phy)) {
734		ret = PTR_ERR(phy);
735		dev_err(dev, "failed to create phy: %d\n", ret);
736		return ret;
737	}
738
739	phy_set_drvdata(phy, inno);
740
741	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
742	if (IS_ERR(phy_provider)) {
743		ret = PTR_ERR(phy_provider);
744		dev_err(dev, "failed to register phy provider: %d\n", ret);
745		return ret;
746	}
747
748	pm_runtime_enable(dev);
749
750	return 0;
751}
752
753static void inno_dsidphy_remove(struct platform_device *pdev)
754{
755	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
756
757	pm_runtime_disable(inno->dev);
 
 
758}
759
760static const struct of_device_id inno_dsidphy_of_match[] = {
761	{
762		.compatible = "rockchip,px30-dsi-dphy",
763		.data = &max_1ghz_video_phy_plat_data,
764	}, {
765		.compatible = "rockchip,rk3128-dsi-dphy",
766		.data = &max_1ghz_video_phy_plat_data,
767	}, {
768		.compatible = "rockchip,rk3368-dsi-dphy",
769		.data = &max_1ghz_video_phy_plat_data,
770	}, {
771		.compatible = "rockchip,rk3568-dsi-dphy",
772		.data = &max_2_5ghz_video_phy_plat_data,
773	}, {
774		.compatible = "rockchip,rv1126-dsi-dphy",
775		.data = &max_2_5ghz_video_phy_plat_data,
776	},
777	{}
778};
779MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
780
781static struct platform_driver inno_dsidphy_driver = {
782	.driver = {
783		.name = "inno-dsidphy",
784		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
785	},
786	.probe = inno_dsidphy_probe,
787	.remove_new = inno_dsidphy_remove,
788};
789module_platform_driver(inno_dsidphy_driver);
790
791MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
792MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
793MODULE_LICENSE("GPL v2");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
  4 *
  5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
  6 */
  7
  8#include <linux/bits.h>
  9#include <linux/kernel.h>
 10#include <linux/clk.h>
 11#include <linux/iopoll.h>
 12#include <linux/clk-provider.h>
 13#include <linux/delay.h>
 14#include <linux/init.h>
 15#include <linux/mfd/syscon.h>
 16#include <linux/module.h>
 17#include <linux/of_device.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/time64.h>
 22
 23#include <linux/phy/phy.h>
 24#include <linux/phy/phy-mipi-dphy.h>
 25
 26#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
 27
 28/*
 29 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
 30 * is the first address, the other from the bit4 to bit0 is the second address.
 31 * when you configure the registers, you must set both of them. The Clock Lane
 32 * and Data Lane use the same registers with the same second address, but the
 33 * first address is different.
 34 */
 35#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
 36#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
 37#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
 38					 SECOND_ADDRESS(second))
 39
 40/* Analog Register Part: reg00 */
 41#define BANDGAP_POWER_MASK			BIT(7)
 42#define BANDGAP_POWER_DOWN			BIT(7)
 43#define BANDGAP_POWER_ON			0
 44#define LANE_EN_MASK				GENMASK(6, 2)
 45#define LANE_EN_CK				BIT(6)
 46#define LANE_EN_3				BIT(5)
 47#define LANE_EN_2				BIT(4)
 48#define LANE_EN_1				BIT(3)
 49#define LANE_EN_0				BIT(2)
 50#define POWER_WORK_MASK				GENMASK(1, 0)
 51#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
 52#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
 53/* Analog Register Part: reg01 */
 54#define REG_SYNCRST_MASK			BIT(2)
 55#define REG_SYNCRST_RESET			BIT(2)
 56#define REG_SYNCRST_NORMAL			0
 57#define REG_LDOPD_MASK				BIT(1)
 58#define REG_LDOPD_POWER_DOWN			BIT(1)
 59#define REG_LDOPD_POWER_ON			0
 60#define REG_PLLPD_MASK				BIT(0)
 61#define REG_PLLPD_POWER_DOWN			BIT(0)
 62#define REG_PLLPD_POWER_ON			0
 63/* Analog Register Part: reg03 */
 64#define REG_FBDIV_HI_MASK			BIT(5)
 65#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
 66#define REG_PREDIV_MASK				GENMASK(4, 0)
 67#define REG_PREDIV(x)				UPDATE(x, 4, 0)
 68/* Analog Register Part: reg04 */
 69#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
 70#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
 71/* Analog Register Part: reg05 */
 72#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
 73#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
 74#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
 75#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 76/* Analog Register Part: reg06 */
 77#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
 78#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 79#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
 80#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 81/* Analog Register Part: reg07 */
 82#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
 83#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 84#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
 85#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 86/* Analog Register Part: reg08 */
 87#define PLL_POST_DIV_ENABLE_MASK		BIT(5)
 88#define PLL_POST_DIV_ENABLE			BIT(5)
 89#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
 90#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
 91#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
 92#define LOWFRE_EN_MASK				BIT(5)
 93#define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
 94#define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
 95/* Analog Register Part: reg0b */
 96#define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
 97#define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
 98#define VOD_MIN_RANGE				0x1
 99#define VOD_MID_RANGE				0x3
100#define VOD_BIG_RANGE				0x7
101#define VOD_MAX_RANGE				0xf
102/* Analog Register Part: reg1E */
103#define PLL_MODE_SEL_MASK			GENMASK(6, 5)
104#define PLL_MODE_SEL_LVDS_MODE			0
105#define PLL_MODE_SEL_MIPI_MODE			BIT(5)
106/* Digital Register Part: reg00 */
107#define REG_DIG_RSTN_MASK			BIT(0)
108#define REG_DIG_RSTN_NORMAL			BIT(0)
109#define REG_DIG_RSTN_RESET			0
110/* Digital Register Part: reg01 */
111#define INVERT_TXCLKESC_MASK			BIT(1)
112#define INVERT_TXCLKESC_ENABLE			BIT(1)
113#define INVERT_TXCLKESC_DISABLE			0
114#define INVERT_TXBYTECLKHS_MASK			BIT(0)
115#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
116#define INVERT_TXBYTECLKHS_DISABLE		0
117/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
118#define T_LPX_CNT_MASK				GENMASK(5, 0)
119#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
120/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
121#define T_HS_ZERO_CNT_HI_MASK			BIT(7)
122#define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
123#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
124#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
125/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
126#define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
127#define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
128/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
129#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
130#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
131/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
132#define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
133#define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
134/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
135#define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
136#define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
137/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
138#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
139#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
140#define LPDT_TX_PPI_SYNC_DISABLE		0
141#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
142#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
143/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
144#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
145#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
146/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
147#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
148#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
149/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
150#define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
151#define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
152#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
153#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
154/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
155#define T_HS_EXIT_CNT_HI_MASK			BIT(6)
156#define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
157#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
158#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
159/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
160#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
161#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
162/* LVDS Register Part: reg00 */
163#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
164#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
165#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
166/* LVDS Register Part: reg01 */
167#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
168#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
169#define LVDS_DIGITAL_INTERNAL_DISABLE		0
170/* LVDS Register Part: reg03 */
171#define MODE_ENABLE_MASK			GENMASK(2, 0)
172#define TTL_MODE_ENABLE				BIT(2)
173#define LVDS_MODE_ENABLE			BIT(1)
174#define MIPI_MODE_ENABLE			BIT(0)
175/* LVDS Register Part: reg0b */
176#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
177#define LVDS_DATA_LANE0_EN			BIT(7)
178#define LVDS_DATA_LANE1_EN			BIT(6)
179#define LVDS_DATA_LANE2_EN			BIT(5)
180#define LVDS_DATA_LANE3_EN			BIT(4)
181#define LVDS_CLK_LANE_EN			BIT(3)
182#define LVDS_PLL_POWER_MASK			BIT(2)
183#define LVDS_PLL_POWER_OFF			BIT(2)
184#define LVDS_PLL_POWER_ON			0
185#define LVDS_BANDGAP_POWER_MASK			BIT(0)
186#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
187#define LVDS_BANDGAP_POWER_ON			0
188
189#define DSI_PHY_RSTZ		0xa0
190#define PHY_ENABLECLK		BIT(2)
191#define DSI_PHY_STATUS		0xb0
192#define PHY_LOCK		BIT(0)
193
194enum phy_max_rate {
195	MAX_1GHZ,
196	MAX_2_5GHZ,
197};
198
199struct inno_video_phy_plat_data {
200	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
201	const unsigned int num_timings;
202	enum phy_max_rate max_rate;
203};
204
205struct inno_dsidphy {
206	struct device *dev;
207	struct clk *ref_clk;
208	struct clk *pclk_phy;
209	struct clk *pclk_host;
210	const struct inno_video_phy_plat_data *pdata;
211	void __iomem *phy_base;
212	void __iomem *host_base;
213	struct reset_control *rst;
214	enum phy_mode mode;
215	struct phy_configure_opts_mipi_dphy dphy_cfg;
216
217	struct clk *pll_clk;
218	struct {
219		struct clk_hw hw;
220		u8 prediv;
221		u16 fbdiv;
222		unsigned long rate;
223	} pll;
224};
225
226enum {
227	REGISTER_PART_ANALOG,
228	REGISTER_PART_DIGITAL,
229	REGISTER_PART_CLOCK_LANE,
230	REGISTER_PART_DATA0_LANE,
231	REGISTER_PART_DATA1_LANE,
232	REGISTER_PART_DATA2_LANE,
233	REGISTER_PART_DATA3_LANE,
234	REGISTER_PART_LVDS,
235};
236
237struct inno_mipi_dphy_timing {
238	unsigned long rate;
239	u8 lpx;
240	u8 hs_prepare;
241	u8 clk_lane_hs_zero;
242	u8 data_lane_hs_zero;
243	u8 hs_trail;
244};
245
246static const
247struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
248	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
249	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
250	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
251	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
252	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
253	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
254	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
255	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
256	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
257	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
258	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
259};
260
261static const
262struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
263	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
264	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
265	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
266	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
267	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
268	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
269	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
270	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
271	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
272	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
273	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
274	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
275	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
276	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
277	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
278	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
279	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
280	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
281	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
282};
283
284static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
285{
286	return container_of(hw, struct inno_dsidphy, pll.hw);
287}
288
289static void phy_update_bits(struct inno_dsidphy *inno,
290			    u8 first, u8 second, u8 mask, u8 val)
291{
292	u32 reg = PHY_REG(first, second) << 2;
293	unsigned int tmp, orig;
294
295	orig = readl(inno->phy_base + reg);
296	tmp = orig & ~mask;
297	tmp |= val & mask;
298	writel(tmp, inno->phy_base + reg);
299}
300
301static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
302						unsigned long rate)
303{
304	unsigned long prate = clk_get_rate(inno->ref_clk);
305	unsigned long best_freq = 0;
306	unsigned long fref, fout;
307	u8 min_prediv, max_prediv;
308	u8 _prediv, best_prediv = 1;
309	u16 _fbdiv, best_fbdiv = 1;
310	u32 min_delta = UINT_MAX;
311
312	/*
313	 * The PLL output frequency can be calculated using a simple formula:
314	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
315	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
316	 */
317	fref = prate / 2;
318	if (rate > 1000000000UL)
319		fout = 1000000000UL;
320	else
321		fout = rate;
322
323	/* 5Mhz < Fref / prediv < 40MHz */
324	min_prediv = DIV_ROUND_UP(fref, 40000000);
325	max_prediv = fref / 5000000;
326
327	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
328		u64 tmp;
329		u32 delta;
330
331		tmp = (u64)fout * _prediv;
332		do_div(tmp, fref);
333		_fbdiv = tmp;
334
335		/*
336		 * The possible settings of feedback divider are
337		 * 12, 13, 14, 16, ~ 511
338		 */
339		if (_fbdiv == 15)
340			continue;
341
342		if (_fbdiv < 12 || _fbdiv > 511)
343			continue;
344
345		tmp = (u64)_fbdiv * fref;
346		do_div(tmp, _prediv);
347
348		delta = abs(fout - tmp);
349		if (!delta) {
350			best_prediv = _prediv;
351			best_fbdiv = _fbdiv;
352			best_freq = tmp;
353			break;
354		} else if (delta < min_delta) {
355			best_prediv = _prediv;
356			best_fbdiv = _fbdiv;
357			best_freq = tmp;
358			min_delta = delta;
359		}
360	}
361
362	if (best_freq) {
363		inno->pll.prediv = best_prediv;
364		inno->pll.fbdiv = best_fbdiv;
365		inno->pll.rate = best_freq;
366	}
367
368	return best_freq;
369}
370
371static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
372{
373	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
374	const struct inno_mipi_dphy_timing *timings;
375	u32 t_txbyteclkhs, t_txclkesc;
376	u32 txbyteclkhs, txclkesc, esc_clk_div;
377	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
378	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
379	unsigned int i;
380
381	timings = inno->pdata->inno_mipi_dphy_timing_table;
382
383	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
384
385	/* Select MIPI mode */
386	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
387			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
388	/* Configure PLL */
389	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
390			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
391	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
392			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
393	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
394			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
395	if (inno->pdata->max_rate == MAX_2_5GHZ) {
396		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
397				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
398		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
399				CLOCK_LANE_VOD_RANGE_SET_MASK,
400				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
401	}
402	/* Enable PLL and LDO */
403	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
404			REG_LDOPD_MASK | REG_PLLPD_MASK,
405			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
406	/* Reset analog */
407	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
408			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
409	udelay(1);
410	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
411			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
412	/* Reset digital */
413	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
414			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
415	udelay(1);
416	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
417			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
418
419	txbyteclkhs = inno->pll.rate / 8;
420	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
421
422	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
423	txclkesc = txbyteclkhs / esc_clk_div;
424	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
425
426	/*
427	 * The value of counter for HS Ths-exit
428	 * Ths-exit = Tpin_txbyteclkhs * value
429	 */
430	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
431	/*
432	 * The value of counter for HS Tclk-post
433	 * Tclk-post = Tpin_txbyteclkhs * value
434	 */
435	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
436	/*
437	 * The value of counter for HS Tclk-pre
438	 * Tclk-pre = Tpin_txbyteclkhs * value
439	 */
440	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
441
442	/*
443	 * The value of counter for HS Tta-go
444	 * Tta-go for turnaround
445	 * Tta-go = Ttxclkesc * value
446	 */
447	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
448	/*
449	 * The value of counter for HS Tta-sure
450	 * Tta-sure for turnaround
451	 * Tta-sure = Ttxclkesc * value
452	 */
453	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
454	/*
455	 * The value of counter for HS Tta-wait
456	 * Tta-wait for turnaround
457	 * Tta-wait = Ttxclkesc * value
458	 */
459	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
460
461	for (i = 0; i < inno->pdata->num_timings; i++)
462		if (inno->pll.rate <= timings[i].rate)
463			break;
464
465	if (i == inno->pdata->num_timings)
466		--i;
467
468	/*
469	 * The value of counter for HS Tlpx Time
470	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
471	 */
472	if (inno->pdata->max_rate == MAX_1GHZ) {
473		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
474		if (lpx >= 2)
475			lpx -= 2;
476	} else
477		lpx = timings[i].lpx;
478
479	hs_prepare = timings[i].hs_prepare;
480	hs_trail = timings[i].hs_trail;
481	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
482	data_lane_hs_zero = timings[i].data_lane_hs_zero;
483	wakeup = 0x3ff;
484
485	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
486		if (i == REGISTER_PART_CLOCK_LANE)
487			hs_zero = clk_lane_hs_zero;
488		else
489			hs_zero = data_lane_hs_zero;
490
491		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
492				T_LPX_CNT(lpx));
493		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
494				T_HS_PREPARE_CNT(hs_prepare));
495		if (inno->pdata->max_rate == MAX_2_5GHZ)
496			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
497					T_HS_ZERO_CNT_HI(hs_zero >> 6));
498		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
499				T_HS_ZERO_CNT_LO(hs_zero));
500		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
501				T_HS_TRAIL_CNT(hs_trail));
502		if (inno->pdata->max_rate == MAX_2_5GHZ)
503			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
504					T_HS_EXIT_CNT_HI(hs_exit >> 5));
505		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
506				T_HS_EXIT_CNT_LO(hs_exit));
507		if (inno->pdata->max_rate == MAX_2_5GHZ)
508			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
509					T_CLK_POST_CNT_HI(clk_post >> 4));
510		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
511				T_CLK_POST_CNT_LO(clk_post));
512		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
513				T_CLK_PRE_CNT(clk_pre));
514		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
515				T_WAKEUP_CNT_HI(wakeup >> 8));
516		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
517				T_WAKEUP_CNT_LO(wakeup));
518		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
519				T_TA_GO_CNT(ta_go));
520		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
521				T_TA_SURE_CNT(ta_sure));
522		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
523				T_TA_WAIT_CNT(ta_wait));
524	}
525
526	/* Enable all lanes on analog part */
527	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
528			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
529			LANE_EN_1 | LANE_EN_0);
530}
531
532static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
533{
534	u8 prediv = 2;
535	u16 fbdiv = 28;
536
537	/* Sample clock reverse direction */
538	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
539			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
540			SAMPLE_CLOCK_DIRECTION_REVERSE |
541			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
542
543	/* Select LVDS mode */
544	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
545			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
546	/* Configure PLL */
547	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
548			REG_PREDIV_MASK, REG_PREDIV(prediv));
549	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
550			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
551	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
552			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
553	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
554	/* Enable PLL and Bandgap */
555	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
556			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
557			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
558
559	msleep(20);
560
561	/* Select PLL mode */
562	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
563			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
564
565	/* Reset LVDS digital logic */
566	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
567			LVDS_DIGITAL_INTERNAL_RESET_MASK,
568			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
569	udelay(1);
570	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
571			LVDS_DIGITAL_INTERNAL_RESET_MASK,
572			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
573	/* Enable LVDS digital logic */
574	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
575			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
576			LVDS_DIGITAL_INTERNAL_ENABLE);
577	/* Enable LVDS analog driver */
578	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
579			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
580			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
581			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
582}
583
584static int inno_dsidphy_power_on(struct phy *phy)
585{
586	struct inno_dsidphy *inno = phy_get_drvdata(phy);
587
588	clk_prepare_enable(inno->pclk_phy);
589	clk_prepare_enable(inno->ref_clk);
590	pm_runtime_get_sync(inno->dev);
591
592	/* Bandgap power on */
593	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
594			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
595	/* Enable power work */
596	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
597			POWER_WORK_MASK, POWER_WORK_ENABLE);
598
599	switch (inno->mode) {
600	case PHY_MODE_MIPI_DPHY:
601		inno_dsidphy_mipi_mode_enable(inno);
602		break;
603	case PHY_MODE_LVDS:
604		inno_dsidphy_lvds_mode_enable(inno);
605		break;
606	default:
607		return -EINVAL;
608	}
609
610	return 0;
611}
612
613static int inno_dsidphy_power_off(struct phy *phy)
614{
615	struct inno_dsidphy *inno = phy_get_drvdata(phy);
616
617	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
618	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
619			REG_LDOPD_MASK | REG_PLLPD_MASK,
620			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
621	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
622			POWER_WORK_MASK, POWER_WORK_DISABLE);
623	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
624			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
625
626	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
627	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
628			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
629			LVDS_DIGITAL_INTERNAL_DISABLE);
630	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
631			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
632			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
633
634	pm_runtime_put(inno->dev);
635	clk_disable_unprepare(inno->ref_clk);
636	clk_disable_unprepare(inno->pclk_phy);
637
638	return 0;
639}
640
641static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
642				   int submode)
643{
644	struct inno_dsidphy *inno = phy_get_drvdata(phy);
645
646	switch (mode) {
647	case PHY_MODE_MIPI_DPHY:
648	case PHY_MODE_LVDS:
649		inno->mode = mode;
650		break;
651	default:
652		return -EINVAL;
653	}
654
655	return 0;
656}
657
658static int inno_dsidphy_configure(struct phy *phy,
659				  union phy_configure_opts *opts)
660{
661	struct inno_dsidphy *inno = phy_get_drvdata(phy);
662	int ret;
663
664	if (inno->mode != PHY_MODE_MIPI_DPHY)
665		return -EINVAL;
666
667	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
668	if (ret)
669		return ret;
670
671	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
672
673	return 0;
674}
675
676static const struct phy_ops inno_dsidphy_ops = {
677	.configure = inno_dsidphy_configure,
678	.set_mode = inno_dsidphy_set_mode,
679	.power_on = inno_dsidphy_power_on,
680	.power_off = inno_dsidphy_power_off,
681	.owner = THIS_MODULE,
682};
683
684static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
685	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
686	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
687	.max_rate = MAX_1GHZ,
688};
689
690static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
691	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
692	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
693	.max_rate = MAX_2_5GHZ,
694};
695
696static int inno_dsidphy_probe(struct platform_device *pdev)
697{
698	struct device *dev = &pdev->dev;
699	struct inno_dsidphy *inno;
700	struct phy_provider *phy_provider;
701	struct phy *phy;
702	int ret;
703
704	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
705	if (!inno)
706		return -ENOMEM;
707
708	inno->dev = dev;
709	inno->pdata = of_device_get_match_data(inno->dev);
710	platform_set_drvdata(pdev, inno);
711
712	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
713	if (IS_ERR(inno->phy_base))
714		return PTR_ERR(inno->phy_base);
715
716	inno->ref_clk = devm_clk_get(dev, "ref");
717	if (IS_ERR(inno->ref_clk)) {
718		ret = PTR_ERR(inno->ref_clk);
719		dev_err(dev, "failed to get ref clock: %d\n", ret);
720		return ret;
721	}
722
723	inno->pclk_phy = devm_clk_get(dev, "pclk");
724	if (IS_ERR(inno->pclk_phy)) {
725		ret = PTR_ERR(inno->pclk_phy);
726		dev_err(dev, "failed to get phy pclk: %d\n", ret);
727		return ret;
728	}
729
730	inno->rst = devm_reset_control_get(dev, "apb");
731	if (IS_ERR(inno->rst)) {
732		ret = PTR_ERR(inno->rst);
733		dev_err(dev, "failed to get system reset control: %d\n", ret);
734		return ret;
735	}
736
737	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
738	if (IS_ERR(phy)) {
739		ret = PTR_ERR(phy);
740		dev_err(dev, "failed to create phy: %d\n", ret);
741		return ret;
742	}
743
744	phy_set_drvdata(phy, inno);
745
746	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
747	if (IS_ERR(phy_provider)) {
748		ret = PTR_ERR(phy_provider);
749		dev_err(dev, "failed to register phy provider: %d\n", ret);
750		return ret;
751	}
752
753	pm_runtime_enable(dev);
754
755	return 0;
756}
757
758static int inno_dsidphy_remove(struct platform_device *pdev)
759{
760	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
761
762	pm_runtime_disable(inno->dev);
763
764	return 0;
765}
766
767static const struct of_device_id inno_dsidphy_of_match[] = {
768	{
769		.compatible = "rockchip,px30-dsi-dphy",
770		.data = &max_1ghz_video_phy_plat_data,
771	}, {
772		.compatible = "rockchip,rk3128-dsi-dphy",
773		.data = &max_1ghz_video_phy_plat_data,
774	}, {
775		.compatible = "rockchip,rk3368-dsi-dphy",
776		.data = &max_1ghz_video_phy_plat_data,
777	}, {
778		.compatible = "rockchip,rk3568-dsi-dphy",
779		.data = &max_2_5ghz_video_phy_plat_data,
 
 
 
780	},
781	{}
782};
783MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
784
785static struct platform_driver inno_dsidphy_driver = {
786	.driver = {
787		.name = "inno-dsidphy",
788		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
789	},
790	.probe = inno_dsidphy_probe,
791	.remove = inno_dsidphy_remove,
792};
793module_platform_driver(inno_dsidphy_driver);
794
795MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
796MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
797MODULE_LICENSE("GPL v2");