Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Device tree based initialization code for reserved memory.
  4 *
  5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7 *		http://www.samsung.com
  8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9 * Author: Josh Cartwright <joshc@codeaurora.org>
 10 */
 11
 12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
 13
 14#include <linux/err.h>
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 17#include <linux/of_platform.h>
 18#include <linux/mm.h>
 19#include <linux/sizes.h>
 20#include <linux/of_reserved_mem.h>
 21#include <linux/sort.h>
 22#include <linux/slab.h>
 23#include <linux/memblock.h>
 24#include <linux/kmemleak.h>
 25#include <linux/cma.h>
 26
 27#include "of_private.h"
 28
 29#define MAX_RESERVED_REGIONS	64
 30static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 31static int reserved_mem_count;
 32
 33static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 34	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 35	phys_addr_t *res_base)
 36{
 37	phys_addr_t base;
 38	int err = 0;
 39
 40	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 41	align = !align ? SMP_CACHE_BYTES : align;
 42	base = memblock_phys_alloc_range(size, align, start, end);
 43	if (!base)
 44		return -ENOMEM;
 45
 46	*res_base = base;
 47	if (nomap) {
 48		err = memblock_mark_nomap(base, size);
 49		if (err)
 50			memblock_phys_free(base, size);
 51	}
 52
 53	kmemleak_ignore_phys(base);
 54
 55	return err;
 56}
 57
 58/*
 59 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
 60 */
 61void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 62				      phys_addr_t base, phys_addr_t size)
 63{
 64	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 65
 66	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 67		pr_err("not enough space for all defined regions.\n");
 68		return;
 69	}
 70
 71	rmem->fdt_node = node;
 72	rmem->name = uname;
 73	rmem->base = base;
 74	rmem->size = size;
 75
 76	reserved_mem_count++;
 77	return;
 78}
 79
 80/*
 81 * __reserved_mem_alloc_in_range() - allocate reserved memory described with
 82 *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
 83 *	reserved regions to keep the reserved memory contiguous if possible.
 84 */
 85static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
 86	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 87	phys_addr_t *res_base)
 88{
 89	bool prev_bottom_up = memblock_bottom_up();
 90	bool bottom_up = false, top_down = false;
 91	int ret, i;
 92
 93	for (i = 0; i < reserved_mem_count; i++) {
 94		struct reserved_mem *rmem = &reserved_mem[i];
 95
 96		/* Skip regions that were not reserved yet */
 97		if (rmem->size == 0)
 98			continue;
 99
100		/*
101		 * If range starts next to an existing reservation, use bottom-up:
102		 *	|....RRRR................RRRRRRRR..............|
103		 *	       --RRRR------
104		 */
105		if (start >= rmem->base && start <= (rmem->base + rmem->size))
106			bottom_up = true;
107
108		/*
109		 * If range ends next to an existing reservation, use top-down:
110		 *	|....RRRR................RRRRRRRR..............|
111		 *	              -------RRRR-----
112		 */
113		if (end >= rmem->base && end <= (rmem->base + rmem->size))
114			top_down = true;
115	}
116
117	/* Change setting only if either bottom-up or top-down was selected */
118	if (bottom_up != top_down)
119		memblock_set_bottom_up(bottom_up);
120
121	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
122			start, end, nomap, res_base);
123
124	/* Restore old setting if needed */
125	if (bottom_up != top_down)
126		memblock_set_bottom_up(prev_bottom_up);
127
128	return ret;
129}
130
131/*
132 * __reserved_mem_alloc_size() - allocate reserved memory described by
133 *	'size', 'alignment'  and 'alloc-ranges' properties.
134 */
135static int __init __reserved_mem_alloc_size(unsigned long node,
136	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
137{
138	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
139	phys_addr_t start = 0, end = 0;
140	phys_addr_t base = 0, align = 0, size;
141	int len;
142	const __be32 *prop;
143	bool nomap;
144	int ret;
145
146	prop = of_get_flat_dt_prop(node, "size", &len);
147	if (!prop)
148		return -EINVAL;
149
150	if (len != dt_root_size_cells * sizeof(__be32)) {
151		pr_err("invalid size property in '%s' node.\n", uname);
152		return -EINVAL;
153	}
154	size = dt_mem_next_cell(dt_root_size_cells, &prop);
155
156	prop = of_get_flat_dt_prop(node, "alignment", &len);
157	if (prop) {
158		if (len != dt_root_addr_cells * sizeof(__be32)) {
159			pr_err("invalid alignment property in '%s' node.\n",
160				uname);
161			return -EINVAL;
162		}
163		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
164	}
165
166	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
167
168	/* Need adjust the alignment to satisfy the CMA requirement */
169	if (IS_ENABLED(CONFIG_CMA)
170	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
171	    && of_get_flat_dt_prop(node, "reusable", NULL)
172	    && !nomap)
173		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
174
175	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
176	if (prop) {
177
178		if (len % t_len != 0) {
179			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
180			       uname);
181			return -EINVAL;
182		}
183
184		base = 0;
185
186		while (len > 0) {
187			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
188			end = start + dt_mem_next_cell(dt_root_size_cells,
189						       &prop);
190
191			ret = __reserved_mem_alloc_in_range(size, align,
192					start, end, nomap, &base);
193			if (ret == 0) {
194				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
195					uname, &base,
196					(unsigned long)(size / SZ_1M));
197				break;
198			}
199			len -= t_len;
200		}
201
202	} else {
203		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
204							0, 0, nomap, &base);
205		if (ret == 0)
206			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
207				uname, &base, (unsigned long)(size / SZ_1M));
208	}
209
210	if (base == 0) {
211		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
212		       uname, (unsigned long)(size / SZ_1M));
213		return -ENOMEM;
214	}
215
216	*res_base = base;
217	*res_size = size;
218
219	return 0;
220}
221
222static const struct of_device_id __rmem_of_table_sentinel
223	__used __section("__reservedmem_of_table_end");
224
225/*
226 * __reserved_mem_init_node() - call region specific reserved memory init code
227 */
228static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
229{
230	extern const struct of_device_id __reservedmem_of_table[];
231	const struct of_device_id *i;
232	int ret = -ENOENT;
233
234	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
235		reservedmem_of_init_fn initfn = i->data;
236		const char *compat = i->compatible;
237
238		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
239			continue;
240
241		ret = initfn(rmem);
242		if (ret == 0) {
243			pr_info("initialized node %s, compatible id %s\n",
244				rmem->name, compat);
245			break;
246		}
247	}
248	return ret;
249}
250
251static int __init __rmem_cmp(const void *a, const void *b)
252{
253	const struct reserved_mem *ra = a, *rb = b;
254
255	if (ra->base < rb->base)
256		return -1;
257
258	if (ra->base > rb->base)
259		return 1;
260
261	/*
262	 * Put the dynamic allocations (address == 0, size == 0) before static
263	 * allocations at address 0x0 so that overlap detection works
264	 * correctly.
265	 */
266	if (ra->size < rb->size)
267		return -1;
268	if (ra->size > rb->size)
269		return 1;
270
271	if (ra->fdt_node < rb->fdt_node)
272		return -1;
273	if (ra->fdt_node > rb->fdt_node)
274		return 1;
275
276	return 0;
277}
278
279static void __init __rmem_check_for_overlap(void)
280{
281	int i;
282
283	if (reserved_mem_count < 2)
284		return;
285
286	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
287	     __rmem_cmp, NULL);
288	for (i = 0; i < reserved_mem_count - 1; i++) {
289		struct reserved_mem *this, *next;
290
291		this = &reserved_mem[i];
292		next = &reserved_mem[i + 1];
293
294		if (this->base + this->size > next->base) {
295			phys_addr_t this_end, next_end;
296
297			this_end = this->base + this->size;
298			next_end = next->base + next->size;
299			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
300			       this->name, &this->base, &this_end,
301			       next->name, &next->base, &next_end);
302		}
303	}
304}
305
306/**
307 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
308 */
309void __init fdt_init_reserved_mem(void)
310{
311	int i;
312
313	/* check for overlapping reserved regions */
314	__rmem_check_for_overlap();
315
316	for (i = 0; i < reserved_mem_count; i++) {
317		struct reserved_mem *rmem = &reserved_mem[i];
318		unsigned long node = rmem->fdt_node;
319		int len;
320		const __be32 *prop;
321		int err = 0;
322		bool nomap;
323
324		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
325		prop = of_get_flat_dt_prop(node, "phandle", &len);
326		if (!prop)
327			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
328		if (prop)
329			rmem->phandle = of_read_number(prop, len/4);
330
331		if (rmem->size == 0)
332			err = __reserved_mem_alloc_size(node, rmem->name,
333						 &rmem->base, &rmem->size);
334		if (err == 0) {
335			err = __reserved_mem_init_node(rmem);
336			if (err != 0 && err != -ENOENT) {
337				pr_info("node %s compatible matching fail\n",
338					rmem->name);
339				if (nomap)
340					memblock_clear_nomap(rmem->base, rmem->size);
341				else
342					memblock_phys_free(rmem->base,
343							   rmem->size);
344			} else {
345				phys_addr_t end = rmem->base + rmem->size - 1;
346				bool reusable =
347					(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
348
349				pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
350					&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
351					nomap ? "nomap" : "map",
352					reusable ? "reusable" : "non-reusable",
353					rmem->name ? rmem->name : "unknown");
354			}
355		}
356	}
357}
358
359static inline struct reserved_mem *__find_rmem(struct device_node *node)
360{
361	unsigned int i;
362
363	if (!node->phandle)
364		return NULL;
365
366	for (i = 0; i < reserved_mem_count; i++)
367		if (reserved_mem[i].phandle == node->phandle)
368			return &reserved_mem[i];
369	return NULL;
370}
371
372struct rmem_assigned_device {
373	struct device *dev;
374	struct reserved_mem *rmem;
375	struct list_head list;
376};
377
378static LIST_HEAD(of_rmem_assigned_device_list);
379static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
380
381/**
382 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
383 *					  given device
384 * @dev:	Pointer to the device to configure
385 * @np:		Pointer to the device_node with 'reserved-memory' property
386 * @idx:	Index of selected region
387 *
388 * This function assigns respective DMA-mapping operations based on reserved
389 * memory region specified by 'memory-region' property in @np node to the @dev
390 * device. When driver needs to use more than one reserved memory region, it
391 * should allocate child devices and initialize regions by name for each of
392 * child device.
393 *
394 * Returns error code or zero on success.
395 */
396int of_reserved_mem_device_init_by_idx(struct device *dev,
397				       struct device_node *np, int idx)
398{
399	struct rmem_assigned_device *rd;
400	struct device_node *target;
401	struct reserved_mem *rmem;
402	int ret;
403
404	if (!np || !dev)
405		return -EINVAL;
406
407	target = of_parse_phandle(np, "memory-region", idx);
408	if (!target)
409		return -ENODEV;
410
411	if (!of_device_is_available(target)) {
412		of_node_put(target);
413		return 0;
414	}
415
416	rmem = __find_rmem(target);
417	of_node_put(target);
418
419	if (!rmem || !rmem->ops || !rmem->ops->device_init)
420		return -EINVAL;
421
422	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
423	if (!rd)
424		return -ENOMEM;
425
426	ret = rmem->ops->device_init(rmem, dev);
427	if (ret == 0) {
428		rd->dev = dev;
429		rd->rmem = rmem;
430
431		mutex_lock(&of_rmem_assigned_device_mutex);
432		list_add(&rd->list, &of_rmem_assigned_device_list);
433		mutex_unlock(&of_rmem_assigned_device_mutex);
434
435		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
436	} else {
437		kfree(rd);
438	}
439
440	return ret;
441}
442EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
443
444/**
445 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
446 *					   to given device
447 * @dev: pointer to the device to configure
448 * @np: pointer to the device node with 'memory-region' property
449 * @name: name of the selected memory region
450 *
451 * Returns: 0 on success or a negative error-code on failure.
452 */
453int of_reserved_mem_device_init_by_name(struct device *dev,
454					struct device_node *np,
455					const char *name)
456{
457	int idx = of_property_match_string(np, "memory-region-names", name);
458
459	return of_reserved_mem_device_init_by_idx(dev, np, idx);
460}
461EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
462
463/**
464 * of_reserved_mem_device_release() - release reserved memory device structures
465 * @dev:	Pointer to the device to deconfigure
466 *
467 * This function releases structures allocated for memory region handling for
468 * the given device.
469 */
470void of_reserved_mem_device_release(struct device *dev)
471{
472	struct rmem_assigned_device *rd, *tmp;
473	LIST_HEAD(release_list);
474
475	mutex_lock(&of_rmem_assigned_device_mutex);
476	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
477		if (rd->dev == dev)
478			list_move_tail(&rd->list, &release_list);
479	}
480	mutex_unlock(&of_rmem_assigned_device_mutex);
481
482	list_for_each_entry_safe(rd, tmp, &release_list, list) {
483		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
484			rd->rmem->ops->device_release(rd->rmem, dev);
485
486		kfree(rd);
487	}
488}
489EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
490
491/**
492 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
493 * @np:		node pointer of the desired reserved-memory region
494 *
495 * This function allows drivers to acquire a reference to the reserved_mem
496 * struct based on a device node handle.
497 *
498 * Returns a reserved_mem reference, or NULL on error.
499 */
500struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
501{
502	const char *name;
503	int i;
504
505	if (!np->full_name)
506		return NULL;
507
508	name = kbasename(np->full_name);
509	for (i = 0; i < reserved_mem_count; i++)
510		if (!strcmp(reserved_mem[i].name, name))
511			return &reserved_mem[i];
512
513	return NULL;
514}
515EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Device tree based initialization code for reserved memory.
  4 *
  5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7 *		http://www.samsung.com
  8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9 * Author: Josh Cartwright <joshc@codeaurora.org>
 10 */
 11
 12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
 13
 14#include <linux/err.h>
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 17#include <linux/of_platform.h>
 18#include <linux/mm.h>
 19#include <linux/sizes.h>
 20#include <linux/of_reserved_mem.h>
 21#include <linux/sort.h>
 22#include <linux/slab.h>
 23#include <linux/memblock.h>
 24#include <linux/kmemleak.h>
 25#include <linux/cma.h>
 26
 27#include "of_private.h"
 28
 29#define MAX_RESERVED_REGIONS	64
 30static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 31static int reserved_mem_count;
 32
 33static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 34	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 35	phys_addr_t *res_base)
 36{
 37	phys_addr_t base;
 38	int err = 0;
 39
 40	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 41	align = !align ? SMP_CACHE_BYTES : align;
 42	base = memblock_phys_alloc_range(size, align, start, end);
 43	if (!base)
 44		return -ENOMEM;
 45
 46	*res_base = base;
 47	if (nomap) {
 48		err = memblock_mark_nomap(base, size);
 49		if (err)
 50			memblock_phys_free(base, size);
 51	}
 52
 53	kmemleak_ignore_phys(base);
 54
 55	return err;
 56}
 57
 58/*
 59 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
 60 */
 61void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 62				      phys_addr_t base, phys_addr_t size)
 63{
 64	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 65
 66	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 67		pr_err("not enough space for all defined regions.\n");
 68		return;
 69	}
 70
 71	rmem->fdt_node = node;
 72	rmem->name = uname;
 73	rmem->base = base;
 74	rmem->size = size;
 75
 76	reserved_mem_count++;
 77	return;
 78}
 79
 80/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81 * __reserved_mem_alloc_size() - allocate reserved memory described by
 82 *	'size', 'alignment'  and 'alloc-ranges' properties.
 83 */
 84static int __init __reserved_mem_alloc_size(unsigned long node,
 85	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
 86{
 87	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 88	phys_addr_t start = 0, end = 0;
 89	phys_addr_t base = 0, align = 0, size;
 90	int len;
 91	const __be32 *prop;
 92	bool nomap;
 93	int ret;
 94
 95	prop = of_get_flat_dt_prop(node, "size", &len);
 96	if (!prop)
 97		return -EINVAL;
 98
 99	if (len != dt_root_size_cells * sizeof(__be32)) {
100		pr_err("invalid size property in '%s' node.\n", uname);
101		return -EINVAL;
102	}
103	size = dt_mem_next_cell(dt_root_size_cells, &prop);
104
105	prop = of_get_flat_dt_prop(node, "alignment", &len);
106	if (prop) {
107		if (len != dt_root_addr_cells * sizeof(__be32)) {
108			pr_err("invalid alignment property in '%s' node.\n",
109				uname);
110			return -EINVAL;
111		}
112		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
113	}
114
115	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
116
117	/* Need adjust the alignment to satisfy the CMA requirement */
118	if (IS_ENABLED(CONFIG_CMA)
119	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
120	    && of_get_flat_dt_prop(node, "reusable", NULL)
121	    && !nomap)
122		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
123
124	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
125	if (prop) {
126
127		if (len % t_len != 0) {
128			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
129			       uname);
130			return -EINVAL;
131		}
132
133		base = 0;
134
135		while (len > 0) {
136			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
137			end = start + dt_mem_next_cell(dt_root_size_cells,
138						       &prop);
139
140			ret = early_init_dt_alloc_reserved_memory_arch(size,
141					align, start, end, nomap, &base);
142			if (ret == 0) {
143				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
144					uname, &base,
145					(unsigned long)(size / SZ_1M));
146				break;
147			}
148			len -= t_len;
149		}
150
151	} else {
152		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
153							0, 0, nomap, &base);
154		if (ret == 0)
155			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
156				uname, &base, (unsigned long)(size / SZ_1M));
157	}
158
159	if (base == 0) {
160		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
161		       uname, (unsigned long)(size / SZ_1M));
162		return -ENOMEM;
163	}
164
165	*res_base = base;
166	*res_size = size;
167
168	return 0;
169}
170
171static const struct of_device_id __rmem_of_table_sentinel
172	__used __section("__reservedmem_of_table_end");
173
174/*
175 * __reserved_mem_init_node() - call region specific reserved memory init code
176 */
177static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
178{
179	extern const struct of_device_id __reservedmem_of_table[];
180	const struct of_device_id *i;
181	int ret = -ENOENT;
182
183	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
184		reservedmem_of_init_fn initfn = i->data;
185		const char *compat = i->compatible;
186
187		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
188			continue;
189
190		ret = initfn(rmem);
191		if (ret == 0) {
192			pr_info("initialized node %s, compatible id %s\n",
193				rmem->name, compat);
194			break;
195		}
196	}
197	return ret;
198}
199
200static int __init __rmem_cmp(const void *a, const void *b)
201{
202	const struct reserved_mem *ra = a, *rb = b;
203
204	if (ra->base < rb->base)
205		return -1;
206
207	if (ra->base > rb->base)
208		return 1;
209
210	/*
211	 * Put the dynamic allocations (address == 0, size == 0) before static
212	 * allocations at address 0x0 so that overlap detection works
213	 * correctly.
214	 */
215	if (ra->size < rb->size)
216		return -1;
217	if (ra->size > rb->size)
218		return 1;
219
 
 
 
 
 
220	return 0;
221}
222
223static void __init __rmem_check_for_overlap(void)
224{
225	int i;
226
227	if (reserved_mem_count < 2)
228		return;
229
230	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
231	     __rmem_cmp, NULL);
232	for (i = 0; i < reserved_mem_count - 1; i++) {
233		struct reserved_mem *this, *next;
234
235		this = &reserved_mem[i];
236		next = &reserved_mem[i + 1];
237
238		if (this->base + this->size > next->base) {
239			phys_addr_t this_end, next_end;
240
241			this_end = this->base + this->size;
242			next_end = next->base + next->size;
243			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
244			       this->name, &this->base, &this_end,
245			       next->name, &next->base, &next_end);
246		}
247	}
248}
249
250/**
251 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
252 */
253void __init fdt_init_reserved_mem(void)
254{
255	int i;
256
257	/* check for overlapping reserved regions */
258	__rmem_check_for_overlap();
259
260	for (i = 0; i < reserved_mem_count; i++) {
261		struct reserved_mem *rmem = &reserved_mem[i];
262		unsigned long node = rmem->fdt_node;
263		int len;
264		const __be32 *prop;
265		int err = 0;
266		bool nomap;
267
268		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
269		prop = of_get_flat_dt_prop(node, "phandle", &len);
270		if (!prop)
271			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
272		if (prop)
273			rmem->phandle = of_read_number(prop, len/4);
274
275		if (rmem->size == 0)
276			err = __reserved_mem_alloc_size(node, rmem->name,
277						 &rmem->base, &rmem->size);
278		if (err == 0) {
279			err = __reserved_mem_init_node(rmem);
280			if (err != 0 && err != -ENOENT) {
281				pr_info("node %s compatible matching fail\n",
282					rmem->name);
283				if (nomap)
284					memblock_clear_nomap(rmem->base, rmem->size);
285				else
286					memblock_phys_free(rmem->base,
287							   rmem->size);
 
 
 
 
 
 
 
 
 
 
288			}
289		}
290	}
291}
292
293static inline struct reserved_mem *__find_rmem(struct device_node *node)
294{
295	unsigned int i;
296
297	if (!node->phandle)
298		return NULL;
299
300	for (i = 0; i < reserved_mem_count; i++)
301		if (reserved_mem[i].phandle == node->phandle)
302			return &reserved_mem[i];
303	return NULL;
304}
305
306struct rmem_assigned_device {
307	struct device *dev;
308	struct reserved_mem *rmem;
309	struct list_head list;
310};
311
312static LIST_HEAD(of_rmem_assigned_device_list);
313static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
314
315/**
316 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
317 *					  given device
318 * @dev:	Pointer to the device to configure
319 * @np:		Pointer to the device_node with 'reserved-memory' property
320 * @idx:	Index of selected region
321 *
322 * This function assigns respective DMA-mapping operations based on reserved
323 * memory region specified by 'memory-region' property in @np node to the @dev
324 * device. When driver needs to use more than one reserved memory region, it
325 * should allocate child devices and initialize regions by name for each of
326 * child device.
327 *
328 * Returns error code or zero on success.
329 */
330int of_reserved_mem_device_init_by_idx(struct device *dev,
331				       struct device_node *np, int idx)
332{
333	struct rmem_assigned_device *rd;
334	struct device_node *target;
335	struct reserved_mem *rmem;
336	int ret;
337
338	if (!np || !dev)
339		return -EINVAL;
340
341	target = of_parse_phandle(np, "memory-region", idx);
342	if (!target)
343		return -ENODEV;
344
345	if (!of_device_is_available(target)) {
346		of_node_put(target);
347		return 0;
348	}
349
350	rmem = __find_rmem(target);
351	of_node_put(target);
352
353	if (!rmem || !rmem->ops || !rmem->ops->device_init)
354		return -EINVAL;
355
356	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
357	if (!rd)
358		return -ENOMEM;
359
360	ret = rmem->ops->device_init(rmem, dev);
361	if (ret == 0) {
362		rd->dev = dev;
363		rd->rmem = rmem;
364
365		mutex_lock(&of_rmem_assigned_device_mutex);
366		list_add(&rd->list, &of_rmem_assigned_device_list);
367		mutex_unlock(&of_rmem_assigned_device_mutex);
368
369		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
370	} else {
371		kfree(rd);
372	}
373
374	return ret;
375}
376EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
377
378/**
379 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
380 *					   to given device
381 * @dev: pointer to the device to configure
382 * @np: pointer to the device node with 'memory-region' property
383 * @name: name of the selected memory region
384 *
385 * Returns: 0 on success or a negative error-code on failure.
386 */
387int of_reserved_mem_device_init_by_name(struct device *dev,
388					struct device_node *np,
389					const char *name)
390{
391	int idx = of_property_match_string(np, "memory-region-names", name);
392
393	return of_reserved_mem_device_init_by_idx(dev, np, idx);
394}
395EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
396
397/**
398 * of_reserved_mem_device_release() - release reserved memory device structures
399 * @dev:	Pointer to the device to deconfigure
400 *
401 * This function releases structures allocated for memory region handling for
402 * the given device.
403 */
404void of_reserved_mem_device_release(struct device *dev)
405{
406	struct rmem_assigned_device *rd, *tmp;
407	LIST_HEAD(release_list);
408
409	mutex_lock(&of_rmem_assigned_device_mutex);
410	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
411		if (rd->dev == dev)
412			list_move_tail(&rd->list, &release_list);
413	}
414	mutex_unlock(&of_rmem_assigned_device_mutex);
415
416	list_for_each_entry_safe(rd, tmp, &release_list, list) {
417		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
418			rd->rmem->ops->device_release(rd->rmem, dev);
419
420		kfree(rd);
421	}
422}
423EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
424
425/**
426 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
427 * @np:		node pointer of the desired reserved-memory region
428 *
429 * This function allows drivers to acquire a reference to the reserved_mem
430 * struct based on a device node handle.
431 *
432 * Returns a reserved_mem reference, or NULL on error.
433 */
434struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
435{
436	const char *name;
437	int i;
438
439	if (!np->full_name)
440		return NULL;
441
442	name = kbasename(np->full_name);
443	for (i = 0; i < reserved_mem_count; i++)
444		if (!strcmp(reserved_mem[i].name, name))
445			return &reserved_mem[i];
446
447	return NULL;
448}
449EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);