Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1// SPDX-License-Identifier: GPL-2.0+
   2#include <linux/bitfield.h>
   3#include <linux/bitmap.h>
   4#include <linux/mfd/syscon.h>
   5#include <linux/module.h>
   6#include <linux/nvmem-consumer.h>
   7#include <linux/pinctrl/consumer.h>
   8#include <linux/phy.h>
   9#include <linux/regmap.h>
  10
  11#define MTK_GPHY_ID_MT7981			0x03a29461
  12#define MTK_GPHY_ID_MT7988			0x03a29481
  13
  14#define MTK_EXT_PAGE_ACCESS			0x1f
  15#define MTK_PHY_PAGE_STANDARD			0x0000
  16#define MTK_PHY_PAGE_EXTENDED_3			0x0003
  17
  18#define MTK_PHY_LPI_REG_14			0x14
  19#define MTK_PHY_LPI_WAKE_TIMER_1000_MASK	GENMASK(8, 0)
  20
  21#define MTK_PHY_LPI_REG_1c			0x1c
  22#define MTK_PHY_SMI_DET_ON_THRESH_MASK		GENMASK(13, 8)
  23
  24#define MTK_PHY_PAGE_EXTENDED_2A30		0x2a30
  25#define MTK_PHY_PAGE_EXTENDED_52B5		0x52b5
  26
  27#define ANALOG_INTERNAL_OPERATION_MAX_US	20
  28#define TXRESERVE_MIN				0
  29#define TXRESERVE_MAX				7
  30
  31#define MTK_PHY_ANARG_RG			0x10
  32#define   MTK_PHY_TCLKOFFSET_MASK		GENMASK(12, 8)
  33
  34/* Registers on MDIO_MMD_VEND1 */
  35#define MTK_PHY_TXVLD_DA_RG			0x12
  36#define   MTK_PHY_DA_TX_I2MPB_A_GBE_MASK	GENMASK(15, 10)
  37#define   MTK_PHY_DA_TX_I2MPB_A_TBT_MASK	GENMASK(5, 0)
  38
  39#define MTK_PHY_TX_I2MPB_TEST_MODE_A2		0x16
  40#define   MTK_PHY_DA_TX_I2MPB_A_HBT_MASK	GENMASK(15, 10)
  41#define   MTK_PHY_DA_TX_I2MPB_A_TST_MASK	GENMASK(5, 0)
  42
  43#define MTK_PHY_TX_I2MPB_TEST_MODE_B1		0x17
  44#define   MTK_PHY_DA_TX_I2MPB_B_GBE_MASK	GENMASK(13, 8)
  45#define   MTK_PHY_DA_TX_I2MPB_B_TBT_MASK	GENMASK(5, 0)
  46
  47#define MTK_PHY_TX_I2MPB_TEST_MODE_B2		0x18
  48#define   MTK_PHY_DA_TX_I2MPB_B_HBT_MASK	GENMASK(13, 8)
  49#define   MTK_PHY_DA_TX_I2MPB_B_TST_MASK	GENMASK(5, 0)
  50
  51#define MTK_PHY_TX_I2MPB_TEST_MODE_C1		0x19
  52#define   MTK_PHY_DA_TX_I2MPB_C_GBE_MASK	GENMASK(13, 8)
  53#define   MTK_PHY_DA_TX_I2MPB_C_TBT_MASK	GENMASK(5, 0)
  54
  55#define MTK_PHY_TX_I2MPB_TEST_MODE_C2		0x20
  56#define   MTK_PHY_DA_TX_I2MPB_C_HBT_MASK	GENMASK(13, 8)
  57#define   MTK_PHY_DA_TX_I2MPB_C_TST_MASK	GENMASK(5, 0)
  58
  59#define MTK_PHY_TX_I2MPB_TEST_MODE_D1		0x21
  60#define   MTK_PHY_DA_TX_I2MPB_D_GBE_MASK	GENMASK(13, 8)
  61#define   MTK_PHY_DA_TX_I2MPB_D_TBT_MASK	GENMASK(5, 0)
  62
  63#define MTK_PHY_TX_I2MPB_TEST_MODE_D2		0x22
  64#define   MTK_PHY_DA_TX_I2MPB_D_HBT_MASK	GENMASK(13, 8)
  65#define   MTK_PHY_DA_TX_I2MPB_D_TST_MASK	GENMASK(5, 0)
  66
  67#define MTK_PHY_RXADC_CTRL_RG7			0xc6
  68#define   MTK_PHY_DA_AD_BUF_BIAS_LP_MASK	GENMASK(9, 8)
  69
  70#define MTK_PHY_RXADC_CTRL_RG9			0xc8
  71#define   MTK_PHY_DA_RX_PSBN_TBT_MASK		GENMASK(14, 12)
  72#define   MTK_PHY_DA_RX_PSBN_HBT_MASK		GENMASK(10, 8)
  73#define   MTK_PHY_DA_RX_PSBN_GBE_MASK		GENMASK(6, 4)
  74#define   MTK_PHY_DA_RX_PSBN_LP_MASK		GENMASK(2, 0)
  75
  76#define MTK_PHY_LDO_OUTPUT_V			0xd7
  77
  78#define MTK_PHY_RG_ANA_CAL_RG0			0xdb
  79#define   MTK_PHY_RG_CAL_CKINV			BIT(12)
  80#define   MTK_PHY_RG_ANA_CALEN			BIT(8)
  81#define   MTK_PHY_RG_ZCALEN_A			BIT(0)
  82
  83#define MTK_PHY_RG_ANA_CAL_RG1			0xdc
  84#define   MTK_PHY_RG_ZCALEN_B			BIT(12)
  85#define   MTK_PHY_RG_ZCALEN_C			BIT(8)
  86#define   MTK_PHY_RG_ZCALEN_D			BIT(4)
  87#define   MTK_PHY_RG_TXVOS_CALEN		BIT(0)
  88
  89#define MTK_PHY_RG_ANA_CAL_RG5			0xe0
  90#define   MTK_PHY_RG_REXT_TRIM_MASK		GENMASK(13, 8)
  91
  92#define MTK_PHY_RG_TX_FILTER			0xfe
  93
  94#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120	0x120
  95#define   MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK	GENMASK(12, 8)
  96#define   MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK	GENMASK(4, 0)
  97
  98#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122	0x122
  99#define   MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK	GENMASK(7, 0)
 100
 101#define MTK_PHY_RG_TESTMUX_ADC_CTRL		0x144
 102#define   MTK_PHY_RG_TXEN_DIG_MASK		GENMASK(5, 5)
 103
 104#define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B		0x172
 105#define   MTK_PHY_CR_TX_AMP_OFFSET_A_MASK	GENMASK(13, 8)
 106#define   MTK_PHY_CR_TX_AMP_OFFSET_B_MASK	GENMASK(6, 0)
 107
 108#define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D		0x173
 109#define   MTK_PHY_CR_TX_AMP_OFFSET_C_MASK	GENMASK(13, 8)
 110#define   MTK_PHY_CR_TX_AMP_OFFSET_D_MASK	GENMASK(6, 0)
 111
 112#define MTK_PHY_RG_AD_CAL_COMP			0x17a
 113#define   MTK_PHY_AD_CAL_COMP_OUT_SHIFT		(8)
 114
 115#define MTK_PHY_RG_AD_CAL_CLK			0x17b
 116#define   MTK_PHY_DA_CAL_CLK			BIT(0)
 117
 118#define MTK_PHY_RG_AD_CALIN			0x17c
 119#define   MTK_PHY_DA_CALIN_FLAG			BIT(0)
 120
 121#define MTK_PHY_RG_DASN_DAC_IN0_A		0x17d
 122#define   MTK_PHY_DASN_DAC_IN0_A_MASK		GENMASK(9, 0)
 123
 124#define MTK_PHY_RG_DASN_DAC_IN0_B		0x17e
 125#define   MTK_PHY_DASN_DAC_IN0_B_MASK		GENMASK(9, 0)
 126
 127#define MTK_PHY_RG_DASN_DAC_IN0_C		0x17f
 128#define   MTK_PHY_DASN_DAC_IN0_C_MASK		GENMASK(9, 0)
 129
 130#define MTK_PHY_RG_DASN_DAC_IN0_D		0x180
 131#define   MTK_PHY_DASN_DAC_IN0_D_MASK		GENMASK(9, 0)
 132
 133#define MTK_PHY_RG_DASN_DAC_IN1_A		0x181
 134#define   MTK_PHY_DASN_DAC_IN1_A_MASK		GENMASK(9, 0)
 135
 136#define MTK_PHY_RG_DASN_DAC_IN1_B		0x182
 137#define   MTK_PHY_DASN_DAC_IN1_B_MASK		GENMASK(9, 0)
 138
 139#define MTK_PHY_RG_DASN_DAC_IN1_C		0x183
 140#define   MTK_PHY_DASN_DAC_IN1_C_MASK		GENMASK(9, 0)
 141
 142#define MTK_PHY_RG_DASN_DAC_IN1_D		0x184
 143#define   MTK_PHY_DASN_DAC_IN1_D_MASK		GENMASK(9, 0)
 144
 145#define MTK_PHY_RG_DEV1E_REG19b			0x19b
 146#define   MTK_PHY_BYPASS_DSP_LPI_READY		BIT(8)
 147
 148#define MTK_PHY_RG_LP_IIR2_K1_L			0x22a
 149#define MTK_PHY_RG_LP_IIR2_K1_U			0x22b
 150#define MTK_PHY_RG_LP_IIR2_K2_L			0x22c
 151#define MTK_PHY_RG_LP_IIR2_K2_U			0x22d
 152#define MTK_PHY_RG_LP_IIR2_K3_L			0x22e
 153#define MTK_PHY_RG_LP_IIR2_K3_U			0x22f
 154#define MTK_PHY_RG_LP_IIR2_K4_L			0x230
 155#define MTK_PHY_RG_LP_IIR2_K4_U			0x231
 156#define MTK_PHY_RG_LP_IIR2_K5_L			0x232
 157#define MTK_PHY_RG_LP_IIR2_K5_U			0x233
 158
 159#define MTK_PHY_RG_DEV1E_REG234			0x234
 160#define   MTK_PHY_TR_OPEN_LOOP_EN_MASK		GENMASK(0, 0)
 161#define   MTK_PHY_LPF_X_AVERAGE_MASK		GENMASK(7, 4)
 162#define   MTK_PHY_TR_LP_IIR_EEE_EN		BIT(12)
 163
 164#define MTK_PHY_RG_LPF_CNT_VAL			0x235
 165
 166#define MTK_PHY_RG_DEV1E_REG238			0x238
 167#define   MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK	GENMASK(8, 0)
 168#define   MTK_PHY_LPI_SLV_SEND_TX_EN		BIT(12)
 169
 170#define MTK_PHY_RG_DEV1E_REG239			0x239
 171#define   MTK_PHY_LPI_SEND_LOC_TIMER_MASK	GENMASK(8, 0)
 172#define   MTK_PHY_LPI_TXPCS_LOC_RCV		BIT(12)
 173
 174#define MTK_PHY_RG_DEV1E_REG27C			0x27c
 175#define   MTK_PHY_VGASTATE_FFE_THR_ST1_MASK	GENMASK(12, 8)
 176#define MTK_PHY_RG_DEV1E_REG27D			0x27d
 177#define   MTK_PHY_VGASTATE_FFE_THR_ST2_MASK	GENMASK(4, 0)
 178
 179#define MTK_PHY_RG_DEV1E_REG2C7			0x2c7
 180#define   MTK_PHY_MAX_GAIN_MASK			GENMASK(4, 0)
 181#define   MTK_PHY_MIN_GAIN_MASK			GENMASK(12, 8)
 182
 183#define MTK_PHY_RG_DEV1E_REG2D1			0x2d1
 184#define   MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK	GENMASK(7, 0)
 185#define   MTK_PHY_LPI_SKIP_SD_SLV_TR		BIT(8)
 186#define   MTK_PHY_LPI_TR_READY			BIT(9)
 187#define   MTK_PHY_LPI_VCO_EEE_STG0_EN		BIT(10)
 188
 189#define MTK_PHY_RG_DEV1E_REG323			0x323
 190#define   MTK_PHY_EEE_WAKE_MAS_INT_DC		BIT(0)
 191#define   MTK_PHY_EEE_WAKE_SLV_INT_DC		BIT(4)
 192
 193#define MTK_PHY_RG_DEV1E_REG324			0x324
 194#define   MTK_PHY_SMI_DETCNT_MAX_MASK		GENMASK(5, 0)
 195#define   MTK_PHY_SMI_DET_MAX_EN		BIT(8)
 196
 197#define MTK_PHY_RG_DEV1E_REG326			0x326
 198#define   MTK_PHY_LPI_MODE_SD_ON		BIT(0)
 199#define   MTK_PHY_RESET_RANDUPD_CNT		BIT(1)
 200#define   MTK_PHY_TREC_UPDATE_ENAB_CLR		BIT(2)
 201#define   MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF	BIT(4)
 202#define   MTK_PHY_TR_READY_SKIP_AFE_WAKEUP	BIT(5)
 203
 204#define MTK_PHY_LDO_PUMP_EN_PAIRAB		0x502
 205#define MTK_PHY_LDO_PUMP_EN_PAIRCD		0x503
 206
 207#define MTK_PHY_DA_TX_R50_PAIR_A		0x53d
 208#define MTK_PHY_DA_TX_R50_PAIR_B		0x53e
 209#define MTK_PHY_DA_TX_R50_PAIR_C		0x53f
 210#define MTK_PHY_DA_TX_R50_PAIR_D		0x540
 211
 212/* Registers on MDIO_MMD_VEND2 */
 213#define MTK_PHY_LED0_ON_CTRL			0x24
 214#define MTK_PHY_LED1_ON_CTRL			0x26
 215#define   MTK_PHY_LED_ON_MASK			GENMASK(6, 0)
 216#define   MTK_PHY_LED_ON_LINK1000		BIT(0)
 217#define   MTK_PHY_LED_ON_LINK100		BIT(1)
 218#define   MTK_PHY_LED_ON_LINK10			BIT(2)
 219#define   MTK_PHY_LED_ON_LINKDOWN		BIT(3)
 220#define   MTK_PHY_LED_ON_FDX			BIT(4) /* Full duplex */
 221#define   MTK_PHY_LED_ON_HDX			BIT(5) /* Half duplex */
 222#define   MTK_PHY_LED_ON_FORCE_ON		BIT(6)
 223#define   MTK_PHY_LED_ON_POLARITY		BIT(14)
 224#define   MTK_PHY_LED_ON_ENABLE			BIT(15)
 225
 226#define MTK_PHY_LED0_BLINK_CTRL			0x25
 227#define MTK_PHY_LED1_BLINK_CTRL			0x27
 228#define   MTK_PHY_LED_BLINK_1000TX		BIT(0)
 229#define   MTK_PHY_LED_BLINK_1000RX		BIT(1)
 230#define   MTK_PHY_LED_BLINK_100TX		BIT(2)
 231#define   MTK_PHY_LED_BLINK_100RX		BIT(3)
 232#define   MTK_PHY_LED_BLINK_10TX		BIT(4)
 233#define   MTK_PHY_LED_BLINK_10RX		BIT(5)
 234#define   MTK_PHY_LED_BLINK_COLLISION		BIT(6)
 235#define   MTK_PHY_LED_BLINK_RX_CRC_ERR		BIT(7)
 236#define   MTK_PHY_LED_BLINK_RX_IDLE_ERR		BIT(8)
 237#define   MTK_PHY_LED_BLINK_FORCE_BLINK		BIT(9)
 238
 239#define MTK_PHY_LED1_DEFAULT_POLARITIES		BIT(1)
 240
 241#define MTK_PHY_RG_BG_RASEL			0x115
 242#define   MTK_PHY_RG_BG_RASEL_MASK		GENMASK(2, 0)
 243
 244/* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
 245#define RG_GPIO_MISC_TPBANK0			0x6f0
 246#define   RG_GPIO_MISC_TPBANK0_BOOTMODE		GENMASK(11, 8)
 247
 248/* These macro privides efuse parsing for internal phy. */
 249#define EFS_DA_TX_I2MPB_A(x)			(((x) >> 0) & GENMASK(5, 0))
 250#define EFS_DA_TX_I2MPB_B(x)			(((x) >> 6) & GENMASK(5, 0))
 251#define EFS_DA_TX_I2MPB_C(x)			(((x) >> 12) & GENMASK(5, 0))
 252#define EFS_DA_TX_I2MPB_D(x)			(((x) >> 18) & GENMASK(5, 0))
 253#define EFS_DA_TX_AMP_OFFSET_A(x)		(((x) >> 24) & GENMASK(5, 0))
 254
 255#define EFS_DA_TX_AMP_OFFSET_B(x)		(((x) >> 0) & GENMASK(5, 0))
 256#define EFS_DA_TX_AMP_OFFSET_C(x)		(((x) >> 6) & GENMASK(5, 0))
 257#define EFS_DA_TX_AMP_OFFSET_D(x)		(((x) >> 12) & GENMASK(5, 0))
 258#define EFS_DA_TX_R50_A(x)			(((x) >> 18) & GENMASK(5, 0))
 259#define EFS_DA_TX_R50_B(x)			(((x) >> 24) & GENMASK(5, 0))
 260
 261#define EFS_DA_TX_R50_C(x)			(((x) >> 0) & GENMASK(5, 0))
 262#define EFS_DA_TX_R50_D(x)			(((x) >> 6) & GENMASK(5, 0))
 263
 264#define EFS_RG_BG_RASEL(x)			(((x) >> 4) & GENMASK(2, 0))
 265#define EFS_RG_REXT_TRIM(x)			(((x) >> 7) & GENMASK(5, 0))
 266
 267enum {
 268	NO_PAIR,
 269	PAIR_A,
 270	PAIR_B,
 271	PAIR_C,
 272	PAIR_D,
 273};
 274
 275enum calibration_mode {
 276	EFUSE_K,
 277	SW_K
 278};
 279
 280enum CAL_ITEM {
 281	REXT,
 282	TX_OFFSET,
 283	TX_AMP,
 284	TX_R50,
 285	TX_VCM
 286};
 287
 288enum CAL_MODE {
 289	EFUSE_M,
 290	SW_M
 291};
 292
 293#define MTK_PHY_LED_STATE_FORCE_ON	0
 294#define MTK_PHY_LED_STATE_FORCE_BLINK	1
 295#define MTK_PHY_LED_STATE_NETDEV	2
 296
 297struct mtk_socphy_priv {
 298	unsigned long		led_state;
 299};
 300
 301struct mtk_socphy_shared {
 302	u32			boottrap;
 303	struct mtk_socphy_priv	priv[4];
 304};
 305
 306static int mtk_socphy_read_page(struct phy_device *phydev)
 307{
 308	return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
 309}
 310
 311static int mtk_socphy_write_page(struct phy_device *phydev, int page)
 312{
 313	return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
 314}
 315
 316/* One calibration cycle consists of:
 317 * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
 318 *   until AD_CAL_COMP is ready to output calibration result.
 319 * 2.Wait until DA_CAL_CLK is available.
 320 * 3.Fetch AD_CAL_COMP_OUT.
 321 */
 322static int cal_cycle(struct phy_device *phydev, int devad,
 323		     u32 regnum, u16 mask, u16 cal_val)
 324{
 325	int reg_val;
 326	int ret;
 327
 328	phy_modify_mmd(phydev, devad, regnum,
 329		       mask, cal_val);
 330	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
 331			 MTK_PHY_DA_CALIN_FLAG);
 332
 333	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
 334					MTK_PHY_RG_AD_CAL_CLK, reg_val,
 335					reg_val & MTK_PHY_DA_CAL_CLK, 500,
 336					ANALOG_INTERNAL_OPERATION_MAX_US, false);
 337	if (ret) {
 338		phydev_err(phydev, "Calibration cycle timeout\n");
 339		return ret;
 340	}
 341
 342	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
 343			   MTK_PHY_DA_CALIN_FLAG);
 344	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
 345			   MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
 346	phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
 347
 348	return ret;
 349}
 350
 351static int rext_fill_result(struct phy_device *phydev, u16 *buf)
 352{
 353	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
 354		       MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
 355	phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
 356		       MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
 357
 358	return 0;
 359}
 360
 361static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
 362{
 363	u16 rext_cal_val[2];
 364
 365	rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
 366	rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
 367	rext_fill_result(phydev, rext_cal_val);
 368
 369	return 0;
 370}
 371
 372static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
 373{
 374	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
 375		       MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
 376	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
 377		       MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
 378	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
 379		       MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
 380	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
 381		       MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
 382
 383	return 0;
 384}
 385
 386static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
 387{
 388	u16 tx_offset_cal_val[4];
 389
 390	tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
 391	tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
 392	tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
 393	tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
 394
 395	tx_offset_fill_result(phydev, tx_offset_cal_val);
 396
 397	return 0;
 398}
 399
 400static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
 401{
 402	int i;
 403	int bias[16] = {};
 404	const int vals_9461[16] = { 7, 1, 4, 7,
 405				    7, 1, 4, 7,
 406				    7, 1, 4, 7,
 407				    7, 1, 4, 7 };
 408	const int vals_9481[16] = { 10, 6, 6, 10,
 409				    10, 6, 6, 10,
 410				    10, 6, 6, 10,
 411				    10, 6, 6, 10 };
 412	switch (phydev->drv->phy_id) {
 413	case MTK_GPHY_ID_MT7981:
 414		/* We add some calibration to efuse values
 415		 * due to board level influence.
 416		 * GBE: +7, TBT: +1, HBT: +4, TST: +7
 417		 */
 418		memcpy(bias, (const void *)vals_9461, sizeof(bias));
 419		break;
 420	case MTK_GPHY_ID_MT7988:
 421		memcpy(bias, (const void *)vals_9481, sizeof(bias));
 422		break;
 423	}
 424
 425	/* Prevent overflow */
 426	for (i = 0; i < 12; i++) {
 427		if (buf[i >> 2] + bias[i] > 63) {
 428			buf[i >> 2] = 63;
 429			bias[i] = 0;
 430		}
 431	}
 432
 433	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
 434		       MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
 435	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
 436		       MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
 437	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
 438		       MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
 439	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
 440		       MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
 441
 442	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
 443		       MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
 444	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
 445		       MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
 446	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
 447		       MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
 448	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
 449		       MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
 450
 451	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
 452		       MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
 453	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
 454		       MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
 455	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
 456		       MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
 457	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
 458		       MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
 459
 460	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
 461		       MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
 462	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
 463		       MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
 464	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
 465		       MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
 466	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
 467		       MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
 468
 469	return 0;
 470}
 471
 472static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
 473{
 474	u16 tx_amp_cal_val[4];
 475
 476	tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
 477	tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
 478	tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
 479	tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
 480	tx_amp_fill_result(phydev, tx_amp_cal_val);
 481
 482	return 0;
 483}
 484
 485static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
 486			      u8 txg_calen_x)
 487{
 488	int bias = 0;
 489	u16 reg, val;
 490
 491	if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
 492		bias = -1;
 493
 494	val = clamp_val(bias + tx_r50_cal_val, 0, 63);
 495
 496	switch (txg_calen_x) {
 497	case PAIR_A:
 498		reg = MTK_PHY_DA_TX_R50_PAIR_A;
 499		break;
 500	case PAIR_B:
 501		reg = MTK_PHY_DA_TX_R50_PAIR_B;
 502		break;
 503	case PAIR_C:
 504		reg = MTK_PHY_DA_TX_R50_PAIR_C;
 505		break;
 506	case PAIR_D:
 507		reg = MTK_PHY_DA_TX_R50_PAIR_D;
 508		break;
 509	default:
 510		return -EINVAL;
 511	}
 512
 513	phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
 514
 515	return 0;
 516}
 517
 518static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
 519			    u8 txg_calen_x)
 520{
 521	u16 tx_r50_cal_val;
 522
 523	switch (txg_calen_x) {
 524	case PAIR_A:
 525		tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
 526		break;
 527	case PAIR_B:
 528		tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
 529		break;
 530	case PAIR_C:
 531		tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
 532		break;
 533	case PAIR_D:
 534		tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
 535		break;
 536	default:
 537		return -EINVAL;
 538	}
 539	tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
 540
 541	return 0;
 542}
 543
 544static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
 545{
 546	u8 lower_idx, upper_idx, txreserve_val;
 547	u8 lower_ret, upper_ret;
 548	int ret;
 549
 550	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 551			 MTK_PHY_RG_ANA_CALEN);
 552	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 553			   MTK_PHY_RG_CAL_CKINV);
 554	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 555			 MTK_PHY_RG_TXVOS_CALEN);
 556
 557	switch (rg_txreserve_x) {
 558	case PAIR_A:
 559		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 560				   MTK_PHY_RG_DASN_DAC_IN0_A,
 561				   MTK_PHY_DASN_DAC_IN0_A_MASK);
 562		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 563				   MTK_PHY_RG_DASN_DAC_IN1_A,
 564				   MTK_PHY_DASN_DAC_IN1_A_MASK);
 565		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 566				 MTK_PHY_RG_ANA_CAL_RG0,
 567				 MTK_PHY_RG_ZCALEN_A);
 568		break;
 569	case PAIR_B:
 570		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 571				   MTK_PHY_RG_DASN_DAC_IN0_B,
 572				   MTK_PHY_DASN_DAC_IN0_B_MASK);
 573		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 574				   MTK_PHY_RG_DASN_DAC_IN1_B,
 575				   MTK_PHY_DASN_DAC_IN1_B_MASK);
 576		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 577				 MTK_PHY_RG_ANA_CAL_RG1,
 578				 MTK_PHY_RG_ZCALEN_B);
 579		break;
 580	case PAIR_C:
 581		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 582				   MTK_PHY_RG_DASN_DAC_IN0_C,
 583				   MTK_PHY_DASN_DAC_IN0_C_MASK);
 584		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 585				   MTK_PHY_RG_DASN_DAC_IN1_C,
 586				   MTK_PHY_DASN_DAC_IN1_C_MASK);
 587		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 588				 MTK_PHY_RG_ANA_CAL_RG1,
 589				 MTK_PHY_RG_ZCALEN_C);
 590		break;
 591	case PAIR_D:
 592		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 593				   MTK_PHY_RG_DASN_DAC_IN0_D,
 594				   MTK_PHY_DASN_DAC_IN0_D_MASK);
 595		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 596				   MTK_PHY_RG_DASN_DAC_IN1_D,
 597				   MTK_PHY_DASN_DAC_IN1_D_MASK);
 598		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 599				 MTK_PHY_RG_ANA_CAL_RG1,
 600				 MTK_PHY_RG_ZCALEN_D);
 601		break;
 602	default:
 603		ret = -EINVAL;
 604		goto restore;
 605	}
 606
 607	lower_idx = TXRESERVE_MIN;
 608	upper_idx = TXRESERVE_MAX;
 609
 610	phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
 611	while ((upper_idx - lower_idx) > 1) {
 612		txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
 613		ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 614				MTK_PHY_DA_RX_PSBN_TBT_MASK |
 615				MTK_PHY_DA_RX_PSBN_HBT_MASK |
 616				MTK_PHY_DA_RX_PSBN_GBE_MASK |
 617				MTK_PHY_DA_RX_PSBN_LP_MASK,
 618				txreserve_val << 12 | txreserve_val << 8 |
 619				txreserve_val << 4 | txreserve_val);
 620		if (ret == 1) {
 621			upper_idx = txreserve_val;
 622			upper_ret = ret;
 623		} else if (ret == 0) {
 624			lower_idx = txreserve_val;
 625			lower_ret = ret;
 626		} else {
 627			goto restore;
 628		}
 629	}
 630
 631	if (lower_idx == TXRESERVE_MIN) {
 632		lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
 633				      MTK_PHY_RXADC_CTRL_RG9,
 634				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
 635				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
 636				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
 637				      MTK_PHY_DA_RX_PSBN_LP_MASK,
 638				      lower_idx << 12 | lower_idx << 8 |
 639				      lower_idx << 4 | lower_idx);
 640		ret = lower_ret;
 641	} else if (upper_idx == TXRESERVE_MAX) {
 642		upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
 643				      MTK_PHY_RXADC_CTRL_RG9,
 644				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
 645				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
 646				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
 647				      MTK_PHY_DA_RX_PSBN_LP_MASK,
 648				      upper_idx << 12 | upper_idx << 8 |
 649				      upper_idx << 4 | upper_idx);
 650		ret = upper_ret;
 651	}
 652	if (ret < 0)
 653		goto restore;
 654
 655	/* We calibrate TX-VCM in different logic. Check upper index and then
 656	 * lower index. If this calibration is valid, apply lower index's result.
 657	 */
 658	ret = upper_ret - lower_ret;
 659	if (ret == 1) {
 660		ret = 0;
 661		/* Make sure we use upper_idx in our calibration system */
 662		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 663			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
 664			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
 665			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
 666			  MTK_PHY_DA_RX_PSBN_LP_MASK,
 667			  upper_idx << 12 | upper_idx << 8 |
 668			  upper_idx << 4 | upper_idx);
 669		phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
 670	} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
 671		   lower_ret == 1) {
 672		ret = 0;
 673		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 674			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
 675			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
 676			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
 677			  MTK_PHY_DA_RX_PSBN_LP_MASK,
 678			  lower_idx << 12 | lower_idx << 8 |
 679			  lower_idx << 4 | lower_idx);
 680		phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
 681			    lower_idx);
 682	} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
 683		   lower_ret == 0) {
 684		ret = 0;
 685		phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
 686			    upper_idx);
 687	} else {
 688		ret = -EINVAL;
 689	}
 690
 691restore:
 692	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 693			   MTK_PHY_RG_ANA_CALEN);
 694	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 695			   MTK_PHY_RG_TXVOS_CALEN);
 696	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 697			   MTK_PHY_RG_ZCALEN_A);
 698	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 699			   MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
 700			   MTK_PHY_RG_ZCALEN_D);
 701
 702	return ret;
 703}
 704
 705static void mt798x_phy_common_finetune(struct phy_device *phydev)
 706{
 707	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 708	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
 709	__phy_write(phydev, 0x11, 0xc71);
 710	__phy_write(phydev, 0x12, 0xc);
 711	__phy_write(phydev, 0x10, 0x8fae);
 712
 713	/* EnabRandUpdTrig = 1 */
 714	__phy_write(phydev, 0x11, 0x2f00);
 715	__phy_write(phydev, 0x12, 0xe);
 716	__phy_write(phydev, 0x10, 0x8fb0);
 717
 718	/* NormMseLoThresh = 85 */
 719	__phy_write(phydev, 0x11, 0x55a0);
 720	__phy_write(phydev, 0x12, 0x0);
 721	__phy_write(phydev, 0x10, 0x83aa);
 722
 723	/* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
 724	__phy_write(phydev, 0x11, 0x240);
 725	__phy_write(phydev, 0x12, 0x0);
 726	__phy_write(phydev, 0x10, 0x9680);
 727
 728	/* TrFreeze = 0 (mt7988 default) */
 729	__phy_write(phydev, 0x11, 0x0);
 730	__phy_write(phydev, 0x12, 0x0);
 731	__phy_write(phydev, 0x10, 0x9686);
 732
 733	/* SSTrKp100 = 5 */
 734	/* SSTrKf100 = 6 */
 735	/* SSTrKp1000Mas = 5 */
 736	/* SSTrKf1000Mas = 6 */
 737	/* SSTrKp1000Slv = 5 */
 738	/* SSTrKf1000Slv = 6 */
 739	__phy_write(phydev, 0x11, 0xbaef);
 740	__phy_write(phydev, 0x12, 0x2e);
 741	__phy_write(phydev, 0x10, 0x968c);
 742	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 743}
 744
 745static void mt7981_phy_finetune(struct phy_device *phydev)
 746{
 747	u16 val[8] = { 0x01ce, 0x01c1,
 748		       0x020f, 0x0202,
 749		       0x03d0, 0x03c0,
 750		       0x0013, 0x0005 };
 751	int i, k;
 752
 753	/* 100M eye finetune:
 754	 * Keep middle level of TX MLT3 shapper as default.
 755	 * Only change TX MLT3 overshoot level here.
 756	 */
 757	for (k = 0, i = 1; i < 12; i++) {
 758		if (i % 3 == 0)
 759			continue;
 760		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
 761	}
 762
 763	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 764	/* ResetSyncOffset = 6 */
 765	__phy_write(phydev, 0x11, 0x600);
 766	__phy_write(phydev, 0x12, 0x0);
 767	__phy_write(phydev, 0x10, 0x8fc0);
 768
 769	/* VgaDecRate = 1 */
 770	__phy_write(phydev, 0x11, 0x4c2a);
 771	__phy_write(phydev, 0x12, 0x3e);
 772	__phy_write(phydev, 0x10, 0x8fa4);
 773
 774	/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
 775	 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
 776	 */
 777	__phy_write(phydev, 0x11, 0xd10a);
 778	__phy_write(phydev, 0x12, 0x34);
 779	__phy_write(phydev, 0x10, 0x8f82);
 780
 781	/* VcoSlicerThreshBitsHigh */
 782	__phy_write(phydev, 0x11, 0x5555);
 783	__phy_write(phydev, 0x12, 0x55);
 784	__phy_write(phydev, 0x10, 0x8ec0);
 785	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 786
 787	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
 788	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
 789		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
 790		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
 791
 792	/* rg_tr_lpf_cnt_val = 512 */
 793	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
 794
 795	/* IIR2 related */
 796	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
 797	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
 798	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
 799	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
 800	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
 801	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
 802	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
 803	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
 804	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
 805	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
 806
 807	/* FFE peaking */
 808	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
 809		       MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
 810	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
 811		       MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
 812
 813	/* Disable LDO pump */
 814	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
 815	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
 816	/* Adjust LDO output voltage */
 817	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
 818}
 819
 820static void mt7988_phy_finetune(struct phy_device *phydev)
 821{
 822	u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
 823			0x020d, 0x0206, 0x0384, 0x03d0,
 824			0x03c6, 0x030a, 0x0011, 0x0005 };
 825	int i;
 826
 827	/* Set default MLT3 shaper first */
 828	for (i = 0; i < 12; i++)
 829		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
 830
 831	/* TCT finetune */
 832	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
 833
 834	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 835	/* ResetSyncOffset = 5 */
 836	__phy_write(phydev, 0x11, 0x500);
 837	__phy_write(phydev, 0x12, 0x0);
 838	__phy_write(phydev, 0x10, 0x8fc0);
 839
 840	/* VgaDecRate is 1 at default on mt7988 */
 841
 842	/* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
 843	 * MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
 844	 */
 845	__phy_write(phydev, 0x11, 0xb90a);
 846	__phy_write(phydev, 0x12, 0x6f);
 847	__phy_write(phydev, 0x10, 0x8f82);
 848
 849	/* RemAckCntLimitCtrl = 1 */
 850	__phy_write(phydev, 0x11, 0xfbba);
 851	__phy_write(phydev, 0x12, 0xc3);
 852	__phy_write(phydev, 0x10, 0x87f8);
 853
 854	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 855
 856	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
 857	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
 858		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
 859		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
 860
 861	/* rg_tr_lpf_cnt_val = 1023 */
 862	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
 863}
 864
 865static void mt798x_phy_eee(struct phy_device *phydev)
 866{
 867	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 868		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
 869		       MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
 870		       MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
 871		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
 872		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
 873
 874	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 875		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
 876		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 877		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 878				  0xff));
 879
 880	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 881			   MTK_PHY_RG_TESTMUX_ADC_CTRL,
 882			   MTK_PHY_RG_TXEN_DIG_MASK);
 883
 884	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 885			 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
 886
 887	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 888			   MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
 889
 890	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
 891		       MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
 892		       MTK_PHY_LPI_SLV_SEND_TX_EN,
 893		       FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
 894
 895	/* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
 896	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
 897			   MTK_PHY_LPI_TXPCS_LOC_RCV);
 898
 899	/* This also fixes some IoT issues, such as CH340 */
 900	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
 901		       MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
 902		       FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
 903		       FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
 904
 905	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
 906		       MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
 907		       FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
 908				  0x33) |
 909		       MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
 910		       MTK_PHY_LPI_VCO_EEE_STG0_EN);
 911
 912	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
 913			 MTK_PHY_EEE_WAKE_MAS_INT_DC |
 914			 MTK_PHY_EEE_WAKE_SLV_INT_DC);
 915
 916	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
 917		       MTK_PHY_SMI_DETCNT_MAX_MASK,
 918		       FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
 919		       MTK_PHY_SMI_DET_MAX_EN);
 920
 921	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
 922			 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
 923			 MTK_PHY_TREC_UPDATE_ENAB_CLR |
 924			 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
 925			 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
 926
 927	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 928	/* Regsigdet_sel_1000 = 0 */
 929	__phy_write(phydev, 0x11, 0xb);
 930	__phy_write(phydev, 0x12, 0x0);
 931	__phy_write(phydev, 0x10, 0x9690);
 932
 933	/* REG_EEE_st2TrKf1000 = 2 */
 934	__phy_write(phydev, 0x11, 0x114f);
 935	__phy_write(phydev, 0x12, 0x2);
 936	__phy_write(phydev, 0x10, 0x969a);
 937
 938	/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
 939	__phy_write(phydev, 0x11, 0x3028);
 940	__phy_write(phydev, 0x12, 0x0);
 941	__phy_write(phydev, 0x10, 0x969e);
 942
 943	/* RegEEE_slv_wake_int_timer_tar = 8 */
 944	__phy_write(phydev, 0x11, 0x5010);
 945	__phy_write(phydev, 0x12, 0x0);
 946	__phy_write(phydev, 0x10, 0x96a0);
 947
 948	/* RegEEE_trfreeze_timer2 = 586 */
 949	__phy_write(phydev, 0x11, 0x24a);
 950	__phy_write(phydev, 0x12, 0x0);
 951	__phy_write(phydev, 0x10, 0x96a8);
 952
 953	/* RegEEE100Stg1_tar = 16 */
 954	__phy_write(phydev, 0x11, 0x3210);
 955	__phy_write(phydev, 0x12, 0x0);
 956	__phy_write(phydev, 0x10, 0x96b8);
 957
 958	/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
 959	__phy_write(phydev, 0x11, 0x1463);
 960	__phy_write(phydev, 0x12, 0x0);
 961	__phy_write(phydev, 0x10, 0x96ca);
 962
 963	/* DfeTailEnableVgaThresh1000 = 27 */
 964	__phy_write(phydev, 0x11, 0x36);
 965	__phy_write(phydev, 0x12, 0x0);
 966	__phy_write(phydev, 0x10, 0x8f80);
 967	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 968
 969	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
 970	__phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
 971		     FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
 972
 973	__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
 974		     FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
 975	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 976
 977	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 978		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
 979		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 980		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
 981}
 982
 983static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
 984		  u8 start_pair, u8 end_pair)
 985{
 986	u8 pair_n;
 987	int ret;
 988
 989	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
 990		/* TX_OFFSET & TX_AMP have no SW calibration. */
 991		switch (cal_item) {
 992		case TX_VCM:
 993			ret = tx_vcm_cal_sw(phydev, pair_n);
 994			break;
 995		default:
 996			return -EINVAL;
 997		}
 998		if (ret)
 999			return ret;
1000	}
1001	return 0;
1002}
1003
1004static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
1005		     u8 start_pair, u8 end_pair, u32 *buf)
1006{
1007	u8 pair_n;
1008	int ret;
1009
1010	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1011		/* TX_VCM has no efuse calibration. */
1012		switch (cal_item) {
1013		case REXT:
1014			ret = rext_cal_efuse(phydev, buf);
1015			break;
1016		case TX_OFFSET:
1017			ret = tx_offset_cal_efuse(phydev, buf);
1018			break;
1019		case TX_AMP:
1020			ret = tx_amp_cal_efuse(phydev, buf);
1021			break;
1022		case TX_R50:
1023			ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1024			break;
1025		default:
1026			return -EINVAL;
1027		}
1028		if (ret)
1029			return ret;
1030	}
1031
1032	return 0;
1033}
1034
1035static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1036		     enum CAL_MODE cal_mode, u8 start_pair,
1037		     u8 end_pair, u32 *buf)
1038{
1039	int ret;
1040
1041	switch (cal_mode) {
1042	case EFUSE_M:
1043		ret = cal_efuse(phydev, cal_item, start_pair,
1044				end_pair, buf);
1045		break;
1046	case SW_M:
1047		ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1048		break;
1049	default:
1050		return -EINVAL;
1051	}
1052
1053	if (ret) {
1054		phydev_err(phydev, "cal %d failed\n", cal_item);
1055		return -EIO;
1056	}
1057
1058	return 0;
1059}
1060
1061static int mt798x_phy_calibration(struct phy_device *phydev)
1062{
1063	int ret = 0;
1064	u32 *buf;
1065	size_t len;
1066	struct nvmem_cell *cell;
1067
1068	cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1069	if (IS_ERR(cell)) {
1070		if (PTR_ERR(cell) == -EPROBE_DEFER)
1071			return PTR_ERR(cell);
1072		return 0;
1073	}
1074
1075	buf = (u32 *)nvmem_cell_read(cell, &len);
1076	if (IS_ERR(buf))
1077		return PTR_ERR(buf);
1078	nvmem_cell_put(cell);
1079
1080	if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1081		phydev_err(phydev, "invalid efuse data\n");
1082		ret = -EINVAL;
1083		goto out;
1084	}
1085
1086	ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1087	if (ret)
1088		goto out;
1089	ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1090	if (ret)
1091		goto out;
1092	ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1093	if (ret)
1094		goto out;
1095	ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1096	if (ret)
1097		goto out;
1098	ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1099	if (ret)
1100		goto out;
1101
1102out:
1103	kfree(buf);
1104	return ret;
1105}
1106
1107static int mt798x_phy_config_init(struct phy_device *phydev)
1108{
1109	switch (phydev->drv->phy_id) {
1110	case MTK_GPHY_ID_MT7981:
1111		mt7981_phy_finetune(phydev);
1112		break;
1113	case MTK_GPHY_ID_MT7988:
1114		mt7988_phy_finetune(phydev);
1115		break;
1116	}
1117
1118	mt798x_phy_common_finetune(phydev);
1119	mt798x_phy_eee(phydev);
1120
1121	return mt798x_phy_calibration(phydev);
1122}
1123
1124static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1125				    bool on)
1126{
1127	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1128	struct mtk_socphy_priv *priv = phydev->priv;
1129	bool changed;
1130
1131	if (on)
1132		changed = !test_and_set_bit(bit_on, &priv->led_state);
1133	else
1134		changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1135
1136	changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1137					(index ? 16 : 0), &priv->led_state);
1138	if (changed)
1139		return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1140				      MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1141				      MTK_PHY_LED_ON_MASK,
1142				      on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1143	else
1144		return 0;
1145}
1146
1147static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1148				       bool blinking)
1149{
1150	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1151	struct mtk_socphy_priv *priv = phydev->priv;
1152	bool changed;
1153
1154	if (blinking)
1155		changed = !test_and_set_bit(bit_blink, &priv->led_state);
1156	else
1157		changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1158
1159	changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1160			      (index ? 16 : 0), &priv->led_state);
1161	if (changed)
1162		return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1163				     MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1164				     blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1165	else
1166		return 0;
1167}
1168
1169static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1170				    unsigned long *delay_on,
1171				    unsigned long *delay_off)
1172{
1173	bool blinking = false;
1174	int err = 0;
1175
1176	if (index > 1)
1177		return -EINVAL;
1178
1179	if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1180		blinking = true;
1181		*delay_on = 50;
1182		*delay_off = 50;
1183	}
1184
1185	err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1186	if (err)
1187		return err;
1188
1189	return mt798x_phy_hw_led_on_set(phydev, index, false);
1190}
1191
1192static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1193					 u8 index, enum led_brightness value)
1194{
1195	int err;
1196
1197	err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1198	if (err)
1199		return err;
1200
1201	return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1202}
1203
1204static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1205						 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1206						 BIT(TRIGGER_NETDEV_LINK)        |
1207						 BIT(TRIGGER_NETDEV_LINK_10)     |
1208						 BIT(TRIGGER_NETDEV_LINK_100)    |
1209						 BIT(TRIGGER_NETDEV_LINK_1000)   |
1210						 BIT(TRIGGER_NETDEV_RX)          |
1211						 BIT(TRIGGER_NETDEV_TX));
1212
1213static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1214					  unsigned long rules)
1215{
1216	if (index > 1)
1217		return -EINVAL;
1218
1219	/* All combinations of the supported triggers are allowed */
1220	if (rules & ~supported_triggers)
1221		return -EOPNOTSUPP;
1222
1223	return 0;
1224};
1225
1226static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1227					 unsigned long *rules)
1228{
1229	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1230	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1231	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1232	struct mtk_socphy_priv *priv = phydev->priv;
1233	int on, blink;
1234
1235	if (index > 1)
1236		return -EINVAL;
1237
1238	on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1239			  index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1240
1241	if (on < 0)
1242		return -EIO;
1243
1244	blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1245			     index ? MTK_PHY_LED1_BLINK_CTRL :
1246				     MTK_PHY_LED0_BLINK_CTRL);
1247	if (blink < 0)
1248		return -EIO;
1249
1250	if ((on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 |
1251		   MTK_PHY_LED_ON_LINK10)) ||
1252	    (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX |
1253		      MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_1000TX |
1254		      MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX)))
1255		set_bit(bit_netdev, &priv->led_state);
1256	else
1257		clear_bit(bit_netdev, &priv->led_state);
1258
1259	if (on & MTK_PHY_LED_ON_FORCE_ON)
1260		set_bit(bit_on, &priv->led_state);
1261	else
1262		clear_bit(bit_on, &priv->led_state);
1263
1264	if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1265		set_bit(bit_blink, &priv->led_state);
1266	else
1267		clear_bit(bit_blink, &priv->led_state);
1268
1269	if (!rules)
1270		return 0;
1271
1272	if (on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10))
1273		*rules |= BIT(TRIGGER_NETDEV_LINK);
1274
1275	if (on & MTK_PHY_LED_ON_LINK10)
1276		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
1277
1278	if (on & MTK_PHY_LED_ON_LINK100)
1279		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
1280
1281	if (on & MTK_PHY_LED_ON_LINK1000)
1282		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1283
1284	if (on & MTK_PHY_LED_ON_FDX)
1285		*rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1286
1287	if (on & MTK_PHY_LED_ON_HDX)
1288		*rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1289
1290	if (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX))
1291		*rules |= BIT(TRIGGER_NETDEV_RX);
1292
1293	if (blink & (MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX))
1294		*rules |= BIT(TRIGGER_NETDEV_TX);
1295
1296	return 0;
1297};
1298
1299static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1300					 unsigned long rules)
1301{
1302	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1303	struct mtk_socphy_priv *priv = phydev->priv;
1304	u16 on = 0, blink = 0;
1305	int ret;
1306
1307	if (index > 1)
1308		return -EINVAL;
1309
1310	if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1311		on |= MTK_PHY_LED_ON_FDX;
1312
1313	if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1314		on |= MTK_PHY_LED_ON_HDX;
1315
1316	if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1317		on |= MTK_PHY_LED_ON_LINK10;
1318
1319	if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1320		on |= MTK_PHY_LED_ON_LINK100;
1321
1322	if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1323		on |= MTK_PHY_LED_ON_LINK1000;
1324
1325	if (rules & BIT(TRIGGER_NETDEV_RX)) {
1326		blink |= MTK_PHY_LED_BLINK_10RX  |
1327			 MTK_PHY_LED_BLINK_100RX |
1328			 MTK_PHY_LED_BLINK_1000RX;
1329	}
1330
1331	if (rules & BIT(TRIGGER_NETDEV_TX)) {
1332		blink |= MTK_PHY_LED_BLINK_10TX  |
1333			 MTK_PHY_LED_BLINK_100TX |
1334			 MTK_PHY_LED_BLINK_1000TX;
1335	}
1336
1337	if (blink || on)
1338		set_bit(bit_netdev, &priv->led_state);
1339	else
1340		clear_bit(bit_netdev, &priv->led_state);
1341
1342	ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1343				MTK_PHY_LED1_ON_CTRL :
1344				MTK_PHY_LED0_ON_CTRL,
1345			     MTK_PHY_LED_ON_FDX     |
1346			     MTK_PHY_LED_ON_HDX     |
1347			     MTK_PHY_LED_ON_LINK10  |
1348			     MTK_PHY_LED_ON_LINK100 |
1349			     MTK_PHY_LED_ON_LINK1000,
1350			     on);
1351
1352	if (ret)
1353		return ret;
1354
1355	return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1356				MTK_PHY_LED1_BLINK_CTRL :
1357				MTK_PHY_LED0_BLINK_CTRL, blink);
1358};
1359
1360static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1361{
1362	struct mtk_socphy_shared *priv = phydev->shared->priv;
1363	u32 polarities;
1364
1365	if (led_num == 0)
1366		polarities = ~(priv->boottrap);
1367	else
1368		polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1369
1370	if (polarities & BIT(phydev->mdio.addr))
1371		return true;
1372
1373	return false;
1374}
1375
1376static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1377{
1378	struct pinctrl *pinctrl;
1379	int index;
1380
1381	/* Setup LED polarity according to bootstrap use of LED pins */
1382	for (index = 0; index < 2; ++index)
1383		phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1384				MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1385			       MTK_PHY_LED_ON_POLARITY,
1386			       mt7988_phy_led_get_polarity(phydev, index) ?
1387				MTK_PHY_LED_ON_POLARITY : 0);
1388
1389	/* Only now setup pinctrl to avoid bogus blinking */
1390	pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1391	if (IS_ERR(pinctrl))
1392		dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1393
1394	return 0;
1395}
1396
1397static int mt7988_phy_probe_shared(struct phy_device *phydev)
1398{
1399	struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1400	struct mtk_socphy_shared *shared = phydev->shared->priv;
1401	struct regmap *regmap;
1402	u32 reg;
1403	int ret;
1404
1405	/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1406	 * LED_C and LED_D respectively. At the same time those pins are used to
1407	 * bootstrap configuration of the reference clock source (LED_A),
1408	 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1409	 * In practise this is done using a LED and a resistor pulling the pin
1410	 * either to GND or to VIO.
1411	 * The detected value at boot time is accessible at run-time using the
1412	 * TPBANK0 register located in the gpio base of the pinctrl, in order
1413	 * to read it here it needs to be referenced by a phandle called
1414	 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1415	 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1416	 * set LED polarity for each of the LED0.
1417	 */
1418	regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1419	if (IS_ERR(regmap))
1420		return PTR_ERR(regmap);
1421
1422	ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
1423	if (ret)
1424		return ret;
1425
1426	shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1427
1428	return 0;
1429}
1430
1431static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1432{
1433	int i;
1434
1435	for (i = 0; i < 2; ++i)
1436		mt798x_phy_led_hw_control_get(phydev, i, NULL);
1437}
1438
1439static int mt7988_phy_probe(struct phy_device *phydev)
1440{
1441	struct mtk_socphy_shared *shared;
1442	struct mtk_socphy_priv *priv;
1443	int err;
1444
1445	if (phydev->mdio.addr > 3)
1446		return -EINVAL;
1447
1448	err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1449				    sizeof(struct mtk_socphy_shared));
1450	if (err)
1451		return err;
1452
1453	if (phy_package_probe_once(phydev)) {
1454		err = mt7988_phy_probe_shared(phydev);
1455		if (err)
1456			return err;
1457	}
1458
1459	shared = phydev->shared->priv;
1460	priv = &shared->priv[phydev->mdio.addr];
1461
1462	phydev->priv = priv;
1463
1464	mt798x_phy_leds_state_init(phydev);
1465
1466	err = mt7988_phy_fix_leds_polarities(phydev);
1467	if (err)
1468		return err;
1469
1470	/* Disable TX power saving at probing to:
1471	 * 1. Meet common mode compliance test criteria
1472	 * 2. Make sure that TX-VCM calibration works fine
1473	 */
1474	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
1475		       MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
1476
1477	return mt798x_phy_calibration(phydev);
1478}
1479
1480static int mt7981_phy_probe(struct phy_device *phydev)
1481{
1482	struct mtk_socphy_priv *priv;
1483
1484	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1485			    GFP_KERNEL);
1486	if (!priv)
1487		return -ENOMEM;
1488
1489	phydev->priv = priv;
1490
1491	mt798x_phy_leds_state_init(phydev);
1492
1493	return mt798x_phy_calibration(phydev);
1494}
1495
1496static struct phy_driver mtk_socphy_driver[] = {
1497	{
1498		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1499		.name		= "MediaTek MT7981 PHY",
1500		.config_init	= mt798x_phy_config_init,
1501		.config_intr	= genphy_no_config_intr,
1502		.handle_interrupt = genphy_handle_interrupt_no_ack,
1503		.probe		= mt7981_phy_probe,
1504		.suspend	= genphy_suspend,
1505		.resume		= genphy_resume,
1506		.read_page	= mtk_socphy_read_page,
1507		.write_page	= mtk_socphy_write_page,
1508		.led_blink_set	= mt798x_phy_led_blink_set,
1509		.led_brightness_set = mt798x_phy_led_brightness_set,
1510		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1511		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1512		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1513	},
1514	{
1515		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1516		.name		= "MediaTek MT7988 PHY",
1517		.config_init	= mt798x_phy_config_init,
1518		.config_intr	= genphy_no_config_intr,
1519		.handle_interrupt = genphy_handle_interrupt_no_ack,
1520		.probe		= mt7988_phy_probe,
1521		.suspend	= genphy_suspend,
1522		.resume		= genphy_resume,
1523		.read_page	= mtk_socphy_read_page,
1524		.write_page	= mtk_socphy_write_page,
1525		.led_blink_set	= mt798x_phy_led_blink_set,
1526		.led_brightness_set = mt798x_phy_led_brightness_set,
1527		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1528		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1529		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1530	},
1531};
1532
1533module_phy_driver(mtk_socphy_driver);
1534
1535static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1536	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1537	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1538	{ }
1539};
1540
1541MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1542MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1543MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1544MODULE_LICENSE("GPL");
1545
1546MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);