Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx Axi Ethernet device driver
   4 *
   5 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   6 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   9 * Copyright (c) 2010 - 2011 PetaLogix
  10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
  11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  12 *
  13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  14 * and Spartan6.
  15 *
  16 * TODO:
  17 *  - Add Axi Fifo support.
  18 *  - Factor out Axi DMA code into separate driver.
  19 *  - Test and fix basic multicast filtering.
  20 *  - Add support for extended multicast filtering.
  21 *  - Test basic VLAN support.
  22 *  - Add support for extended VLAN support.
  23 */
  24
  25#include <linux/clk.h>
  26#include <linux/delay.h>
  27#include <linux/etherdevice.h>
  28#include <linux/module.h>
  29#include <linux/netdevice.h>
  30#include <linux/of.h>
  31#include <linux/of_mdio.h>
  32#include <linux/of_net.h>
 
  33#include <linux/of_irq.h>
  34#include <linux/of_address.h>
  35#include <linux/platform_device.h>
  36#include <linux/skbuff.h>
  37#include <linux/math64.h>
  38#include <linux/phy.h>
  39#include <linux/mii.h>
  40#include <linux/ethtool.h>
  41#include <linux/dmaengine.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/dma/xilinx_dma.h>
  44#include <linux/circ_buf.h>
  45#include <net/netdev_queues.h>
  46
  47#include "xilinx_axienet.h"
  48
  49/* Descriptors defines for Tx and Rx DMA */
  50#define TX_BD_NUM_DEFAULT		128
  51#define RX_BD_NUM_DEFAULT		1024
  52#define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
  53#define TX_BD_NUM_MAX			4096
  54#define RX_BD_NUM_MAX			4096
  55#define DMA_NUM_APP_WORDS		5
  56#define LEN_APP				4
  57#define RX_BUF_NUM_DEFAULT		128
  58
  59/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  60#define DRIVER_NAME		"xaxienet"
  61#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  62#define DRIVER_VERSION		"1.00a"
  63
  64#define AXIENET_REGS_N		40
  65
  66static void axienet_rx_submit_desc(struct net_device *ndev);
  67
  68/* Match table for of_platform binding */
  69static const struct of_device_id axienet_of_match[] = {
  70	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  71	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  72	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  73	{},
  74};
  75
  76MODULE_DEVICE_TABLE(of, axienet_of_match);
  77
  78/* Option table for setting up Axi Ethernet hardware options */
  79static struct axienet_option axienet_options[] = {
  80	/* Turn on jumbo packet support for both Rx and Tx */
  81	{
  82		.opt = XAE_OPTION_JUMBO,
  83		.reg = XAE_TC_OFFSET,
  84		.m_or = XAE_TC_JUM_MASK,
  85	}, {
  86		.opt = XAE_OPTION_JUMBO,
  87		.reg = XAE_RCW1_OFFSET,
  88		.m_or = XAE_RCW1_JUM_MASK,
  89	}, { /* Turn on VLAN packet support for both Rx and Tx */
  90		.opt = XAE_OPTION_VLAN,
  91		.reg = XAE_TC_OFFSET,
  92		.m_or = XAE_TC_VLAN_MASK,
  93	}, {
  94		.opt = XAE_OPTION_VLAN,
  95		.reg = XAE_RCW1_OFFSET,
  96		.m_or = XAE_RCW1_VLAN_MASK,
  97	}, { /* Turn on FCS stripping on receive packets */
  98		.opt = XAE_OPTION_FCS_STRIP,
  99		.reg = XAE_RCW1_OFFSET,
 100		.m_or = XAE_RCW1_FCS_MASK,
 101	}, { /* Turn on FCS insertion on transmit packets */
 102		.opt = XAE_OPTION_FCS_INSERT,
 103		.reg = XAE_TC_OFFSET,
 104		.m_or = XAE_TC_FCS_MASK,
 105	}, { /* Turn off length/type field checking on receive packets */
 106		.opt = XAE_OPTION_LENTYPE_ERR,
 107		.reg = XAE_RCW1_OFFSET,
 108		.m_or = XAE_RCW1_LT_DIS_MASK,
 109	}, { /* Turn on Rx flow control */
 110		.opt = XAE_OPTION_FLOW_CONTROL,
 111		.reg = XAE_FCC_OFFSET,
 112		.m_or = XAE_FCC_FCRX_MASK,
 113	}, { /* Turn on Tx flow control */
 114		.opt = XAE_OPTION_FLOW_CONTROL,
 115		.reg = XAE_FCC_OFFSET,
 116		.m_or = XAE_FCC_FCTX_MASK,
 117	}, { /* Turn on promiscuous frame filtering */
 118		.opt = XAE_OPTION_PROMISC,
 119		.reg = XAE_FMI_OFFSET,
 120		.m_or = XAE_FMI_PM_MASK,
 121	}, { /* Enable transmitter */
 122		.opt = XAE_OPTION_TXEN,
 123		.reg = XAE_TC_OFFSET,
 124		.m_or = XAE_TC_TX_MASK,
 125	}, { /* Enable receiver */
 126		.opt = XAE_OPTION_RXEN,
 127		.reg = XAE_RCW1_OFFSET,
 128		.m_or = XAE_RCW1_RX_MASK,
 129	},
 130	{}
 131};
 132
 133static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
 134{
 135	return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
 136}
 137
 138static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
 139{
 140	return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
 141}
 142
 143/**
 144 * axienet_dma_in32 - Memory mapped Axi DMA register read
 145 * @lp:		Pointer to axienet local structure
 146 * @reg:	Address offset from the base address of the Axi DMA core
 147 *
 148 * Return: The contents of the Axi DMA register
 149 *
 150 * This function returns the contents of the corresponding Axi DMA register.
 151 */
 152static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 153{
 154	return ioread32(lp->dma_regs + reg);
 155}
 156
 157static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
 158			       struct axidma_bd *desc)
 159{
 160	desc->phys = lower_32_bits(addr);
 161	if (lp->features & XAE_FEATURE_DMA_64BIT)
 162		desc->phys_msb = upper_32_bits(addr);
 163}
 164
 165static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
 166				     struct axidma_bd *desc)
 167{
 168	dma_addr_t ret = desc->phys;
 169
 170	if (lp->features & XAE_FEATURE_DMA_64BIT)
 171		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
 172
 173	return ret;
 174}
 175
 176/**
 177 * axienet_dma_bd_release - Release buffer descriptor rings
 178 * @ndev:	Pointer to the net_device structure
 179 *
 180 * This function is used to release the descriptors allocated in
 181 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 182 * driver stop api is called.
 183 */
 184static void axienet_dma_bd_release(struct net_device *ndev)
 185{
 186	int i;
 187	struct axienet_local *lp = netdev_priv(ndev);
 188
 189	/* If we end up here, tx_bd_v must have been DMA allocated. */
 190	dma_free_coherent(lp->dev,
 191			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 192			  lp->tx_bd_v,
 193			  lp->tx_bd_p);
 194
 195	if (!lp->rx_bd_v)
 196		return;
 197
 198	for (i = 0; i < lp->rx_bd_num; i++) {
 199		dma_addr_t phys;
 200
 201		/* A NULL skb means this descriptor has not been initialised
 202		 * at all.
 203		 */
 204		if (!lp->rx_bd_v[i].skb)
 205			break;
 206
 207		dev_kfree_skb(lp->rx_bd_v[i].skb);
 208
 209		/* For each descriptor, we programmed cntrl with the (non-zero)
 210		 * descriptor size, after it had been successfully allocated.
 211		 * So a non-zero value in there means we need to unmap it.
 212		 */
 213		if (lp->rx_bd_v[i].cntrl) {
 214			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
 215			dma_unmap_single(lp->dev, phys,
 216					 lp->max_frm_size, DMA_FROM_DEVICE);
 217		}
 218	}
 219
 220	dma_free_coherent(lp->dev,
 221			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 222			  lp->rx_bd_v,
 223			  lp->rx_bd_p);
 224}
 225
 226/**
 227 * axienet_usec_to_timer - Calculate IRQ delay timer value
 228 * @lp:		Pointer to the axienet_local structure
 229 * @coalesce_usec: Microseconds to convert into timer value
 230 */
 231static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
 232{
 233	u32 result;
 234	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
 235
 236	if (lp->axi_clk)
 237		clk_rate = clk_get_rate(lp->axi_clk);
 238
 239	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
 240	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
 241					 (u64)125000000);
 242	if (result > 255)
 243		result = 255;
 244
 245	return result;
 246}
 247
 248/**
 249 * axienet_dma_start - Set up DMA registers and start DMA operation
 250 * @lp:		Pointer to the axienet_local structure
 251 */
 252static void axienet_dma_start(struct axienet_local *lp)
 253{
 254	/* Start updating the Rx channel control register */
 255	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
 256			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
 257	/* Only set interrupt delay timer if not generating an interrupt on
 258	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
 259	 */
 260	if (lp->coalesce_count_rx > 1)
 261		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
 262					<< XAXIDMA_DELAY_SHIFT) |
 263				 XAXIDMA_IRQ_DELAY_MASK;
 264	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
 265
 266	/* Start updating the Tx channel control register */
 267	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
 268			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
 269	/* Only set interrupt delay timer if not generating an interrupt on
 270	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
 271	 */
 272	if (lp->coalesce_count_tx > 1)
 273		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
 274					<< XAXIDMA_DELAY_SHIFT) |
 275				 XAXIDMA_IRQ_DELAY_MASK;
 276	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 277
 278	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 279	 * halted state. This will make the Rx side ready for reception.
 280	 */
 281	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 282	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
 283	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
 284	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 285			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
 286
 287	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 288	 * Tx channel is now ready to run. But only after we write to the
 289	 * tail pointer register that the Tx channel will start transmitting.
 290	 */
 291	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 292	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
 293	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 294}
 295
 296/**
 297 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 298 * @ndev:	Pointer to the net_device structure
 299 *
 300 * Return: 0, on success -ENOMEM, on failure
 301 *
 302 * This function is called to initialize the Rx and Tx DMA descriptor
 303 * rings. This initializes the descriptors with required default values
 304 * and is called when Axi Ethernet driver reset is called.
 305 */
 306static int axienet_dma_bd_init(struct net_device *ndev)
 307{
 308	int i;
 309	struct sk_buff *skb;
 310	struct axienet_local *lp = netdev_priv(ndev);
 311
 312	/* Reset the indexes which are used for accessing the BDs */
 313	lp->tx_bd_ci = 0;
 314	lp->tx_bd_tail = 0;
 315	lp->rx_bd_ci = 0;
 316
 317	/* Allocate the Tx and Rx buffer descriptors. */
 318	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
 319					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 320					 &lp->tx_bd_p, GFP_KERNEL);
 321	if (!lp->tx_bd_v)
 322		return -ENOMEM;
 323
 324	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
 325					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 326					 &lp->rx_bd_p, GFP_KERNEL);
 327	if (!lp->rx_bd_v)
 328		goto out;
 329
 330	for (i = 0; i < lp->tx_bd_num; i++) {
 331		dma_addr_t addr = lp->tx_bd_p +
 332				  sizeof(*lp->tx_bd_v) *
 333				  ((i + 1) % lp->tx_bd_num);
 334
 335		lp->tx_bd_v[i].next = lower_32_bits(addr);
 336		if (lp->features & XAE_FEATURE_DMA_64BIT)
 337			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
 338	}
 339
 340	for (i = 0; i < lp->rx_bd_num; i++) {
 341		dma_addr_t addr;
 342
 343		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
 344			((i + 1) % lp->rx_bd_num);
 345		lp->rx_bd_v[i].next = lower_32_bits(addr);
 346		if (lp->features & XAE_FEATURE_DMA_64BIT)
 347			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
 348
 349		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 350		if (!skb)
 351			goto out;
 352
 353		lp->rx_bd_v[i].skb = skb;
 354		addr = dma_map_single(lp->dev, skb->data,
 355				      lp->max_frm_size, DMA_FROM_DEVICE);
 356		if (dma_mapping_error(lp->dev, addr)) {
 357			netdev_err(ndev, "DMA mapping error\n");
 358			goto out;
 359		}
 360		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
 361
 362		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 363	}
 364
 365	axienet_dma_start(lp);
 366
 367	return 0;
 368out:
 369	axienet_dma_bd_release(ndev);
 370	return -ENOMEM;
 371}
 372
 373/**
 374 * axienet_set_mac_address - Write the MAC address
 375 * @ndev:	Pointer to the net_device structure
 376 * @address:	6 byte Address to be written as MAC address
 377 *
 378 * This function is called to initialize the MAC address of the Axi Ethernet
 379 * core. It writes to the UAW0 and UAW1 registers of the core.
 380 */
 381static void axienet_set_mac_address(struct net_device *ndev,
 382				    const void *address)
 383{
 384	struct axienet_local *lp = netdev_priv(ndev);
 385
 386	if (address)
 387		eth_hw_addr_set(ndev, address);
 388	if (!is_valid_ether_addr(ndev->dev_addr))
 389		eth_hw_addr_random(ndev);
 390
 391	/* Set up unicast MAC address filter set its mac address */
 392	axienet_iow(lp, XAE_UAW0_OFFSET,
 393		    (ndev->dev_addr[0]) |
 394		    (ndev->dev_addr[1] << 8) |
 395		    (ndev->dev_addr[2] << 16) |
 396		    (ndev->dev_addr[3] << 24));
 397	axienet_iow(lp, XAE_UAW1_OFFSET,
 398		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 399		      ~XAE_UAW1_UNICASTADDR_MASK) |
 400		     (ndev->dev_addr[4] |
 401		     (ndev->dev_addr[5] << 8))));
 402}
 403
 404/**
 405 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 406 * @ndev:	Pointer to the net_device structure
 407 * @p:		6 byte Address to be written as MAC address
 408 *
 409 * Return: 0 for all conditions. Presently, there is no failure case.
 410 *
 411 * This function is called to initialize the MAC address of the Axi Ethernet
 412 * core. It calls the core specific axienet_set_mac_address. This is the
 413 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 414 */
 415static int netdev_set_mac_address(struct net_device *ndev, void *p)
 416{
 417	struct sockaddr *addr = p;
 418	axienet_set_mac_address(ndev, addr->sa_data);
 419	return 0;
 420}
 421
 422/**
 423 * axienet_set_multicast_list - Prepare the multicast table
 424 * @ndev:	Pointer to the net_device structure
 425 *
 426 * This function is called to initialize the multicast table during
 427 * initialization. The Axi Ethernet basic multicast support has a four-entry
 428 * multicast table which is initialized here. Additionally this function
 429 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 430 * means whenever the multicast table entries need to be updated this
 431 * function gets called.
 432 */
 433static void axienet_set_multicast_list(struct net_device *ndev)
 434{
 435	int i;
 436	u32 reg, af0reg, af1reg;
 437	struct axienet_local *lp = netdev_priv(ndev);
 438
 439	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 440	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 441		/* We must make the kernel realize we had to move into
 442		 * promiscuous mode. If it was a promiscuous mode request
 443		 * the flag is already set. If not we set it.
 444		 */
 445		ndev->flags |= IFF_PROMISC;
 446		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 447		reg |= XAE_FMI_PM_MASK;
 448		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 449		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 450	} else if (!netdev_mc_empty(ndev)) {
 451		struct netdev_hw_addr *ha;
 452
 453		i = 0;
 454		netdev_for_each_mc_addr(ha, ndev) {
 455			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 456				break;
 457
 458			af0reg = (ha->addr[0]);
 459			af0reg |= (ha->addr[1] << 8);
 460			af0reg |= (ha->addr[2] << 16);
 461			af0reg |= (ha->addr[3] << 24);
 462
 463			af1reg = (ha->addr[4]);
 464			af1reg |= (ha->addr[5] << 8);
 465
 466			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 467			reg |= i;
 468
 469			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 470			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 471			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 472			i++;
 473		}
 474	} else {
 475		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 476		reg &= ~XAE_FMI_PM_MASK;
 477
 478		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 479
 480		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 481			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 482			reg |= i;
 483
 484			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 485			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 486			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 487		}
 488
 489		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 490	}
 491}
 492
 493/**
 494 * axienet_setoptions - Set an Axi Ethernet option
 495 * @ndev:	Pointer to the net_device structure
 496 * @options:	Option to be enabled/disabled
 497 *
 498 * The Axi Ethernet core has multiple features which can be selectively turned
 499 * on or off. The typical options could be jumbo frame option, basic VLAN
 500 * option, promiscuous mode option etc. This function is used to set or clear
 501 * these options in the Axi Ethernet hardware. This is done through
 502 * axienet_option structure .
 503 */
 504static void axienet_setoptions(struct net_device *ndev, u32 options)
 505{
 506	int reg;
 507	struct axienet_local *lp = netdev_priv(ndev);
 508	struct axienet_option *tp = &axienet_options[0];
 509
 510	while (tp->opt) {
 511		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 512		if (options & tp->opt)
 513			reg |= tp->m_or;
 514		axienet_iow(lp, tp->reg, reg);
 515		tp++;
 516	}
 517
 518	lp->options |= options;
 519}
 520
 521static int __axienet_device_reset(struct axienet_local *lp)
 522{
 523	u32 value;
 524	int ret;
 525
 526	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 527	 * process of Axi DMA takes a while to complete as all pending
 528	 * commands/transfers will be flushed or completed during this
 529	 * reset process.
 530	 * Note that even though both TX and RX have their own reset register,
 531	 * they both reset the entire DMA core, so only one needs to be used.
 532	 */
 533	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
 534	ret = read_poll_timeout(axienet_dma_in32, value,
 535				!(value & XAXIDMA_CR_RESET_MASK),
 536				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
 537				XAXIDMA_TX_CR_OFFSET);
 538	if (ret) {
 539		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
 540		return ret;
 541	}
 542
 543	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
 544	ret = read_poll_timeout(axienet_ior, value,
 545				value & XAE_INT_PHYRSTCMPLT_MASK,
 546				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
 547				XAE_IS_OFFSET);
 548	if (ret) {
 549		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
 550		return ret;
 551	}
 552
 553	return 0;
 554}
 555
 556/**
 557 * axienet_dma_stop - Stop DMA operation
 558 * @lp:		Pointer to the axienet_local structure
 559 */
 560static void axienet_dma_stop(struct axienet_local *lp)
 561{
 562	int count;
 563	u32 cr, sr;
 564
 565	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 566	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
 567	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 568	synchronize_irq(lp->rx_irq);
 569
 570	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 571	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
 572	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 573	synchronize_irq(lp->tx_irq);
 574
 575	/* Give DMAs a chance to halt gracefully */
 576	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 577	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
 578		msleep(20);
 579		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 580	}
 581
 582	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 583	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
 584		msleep(20);
 585		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 586	}
 587
 588	/* Do a reset to ensure DMA is really stopped */
 589	axienet_lock_mii(lp);
 590	__axienet_device_reset(lp);
 591	axienet_unlock_mii(lp);
 592}
 593
 594/**
 595 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 596 * @ndev:	Pointer to the net_device structure
 597 *
 598 * This function is called to reset and initialize the Axi Ethernet core. This
 599 * is typically called during initialization. It does a reset of the Axi DMA
 600 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 601 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
 602 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 603 * core.
 604 * Returns 0 on success or a negative error number otherwise.
 605 */
 606static int axienet_device_reset(struct net_device *ndev)
 607{
 608	u32 axienet_status;
 609	struct axienet_local *lp = netdev_priv(ndev);
 610	int ret;
 611
 
 
 
 
 612	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 613	lp->options |= XAE_OPTION_VLAN;
 614	lp->options &= (~XAE_OPTION_JUMBO);
 615
 616	if ((ndev->mtu > XAE_MTU) &&
 617	    (ndev->mtu <= XAE_JUMBO_MTU)) {
 618		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 619					XAE_TRL_SIZE;
 620
 621		if (lp->max_frm_size <= lp->rxmem)
 622			lp->options |= XAE_OPTION_JUMBO;
 623	}
 624
 625	if (!lp->use_dmaengine) {
 626		ret = __axienet_device_reset(lp);
 627		if (ret)
 628			return ret;
 629
 630		ret = axienet_dma_bd_init(ndev);
 631		if (ret) {
 632			netdev_err(ndev, "%s: descriptor allocation failed\n",
 633				   __func__);
 634			return ret;
 635		}
 636	}
 637
 638	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 639	axienet_status &= ~XAE_RCW1_RX_MASK;
 640	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 641
 642	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 643	if (axienet_status & XAE_INT_RXRJECT_MASK)
 644		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 645	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
 646		    XAE_INT_RECV_ERROR_MASK : 0);
 647
 648	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 649
 650	/* Sync default options with HW but leave receiver and
 651	 * transmitter disabled.
 652	 */
 653	axienet_setoptions(ndev, lp->options &
 654			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 655	axienet_set_mac_address(ndev, NULL);
 656	axienet_set_multicast_list(ndev);
 657	axienet_setoptions(ndev, lp->options);
 658
 659	netif_trans_update(ndev);
 660
 661	return 0;
 662}
 663
 664/**
 665 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
 666 * @lp:		Pointer to the axienet_local structure
 667 * @first_bd:	Index of first descriptor to clean up
 668 * @nr_bds:	Max number of descriptors to clean up
 669 * @force:	Whether to clean descriptors even if not complete
 670 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
 671 *		in all cleaned-up descriptors. Ignored if NULL.
 672 * @budget:	NAPI budget (use 0 when not called from NAPI poll)
 673 *
 674 * Would either be called after a successful transmit operation, or after
 675 * there was an error when setting up the chain.
 676 * Returns the number of descriptors handled.
 677 */
 678static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
 679				 int nr_bds, bool force, u32 *sizep, int budget)
 680{
 681	struct axidma_bd *cur_p;
 682	unsigned int status;
 683	dma_addr_t phys;
 684	int i;
 685
 686	for (i = 0; i < nr_bds; i++) {
 687		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
 688		status = cur_p->status;
 689
 690		/* If force is not specified, clean up only descriptors
 691		 * that have been completed by the MAC.
 692		 */
 693		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
 694			break;
 695
 696		/* Ensure we see complete descriptor update */
 697		dma_rmb();
 698		phys = desc_get_phys_addr(lp, cur_p);
 699		dma_unmap_single(lp->dev, phys,
 700				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 701				 DMA_TO_DEVICE);
 702
 703		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
 704			napi_consume_skb(cur_p->skb, budget);
 705
 706		cur_p->app0 = 0;
 707		cur_p->app1 = 0;
 708		cur_p->app2 = 0;
 709		cur_p->app4 = 0;
 710		cur_p->skb = NULL;
 711		/* ensure our transmit path and device don't prematurely see status cleared */
 712		wmb();
 713		cur_p->cntrl = 0;
 714		cur_p->status = 0;
 715
 716		if (sizep)
 717			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 718	}
 719
 720	return i;
 721}
 722
 723/**
 724 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 725 * @lp:		Pointer to the axienet_local structure
 726 * @num_frag:	The number of BDs to check for
 727 *
 728 * Return: 0, on success
 729 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 730 *
 731 * This function is invoked before BDs are allocated and transmission starts.
 732 * This function returns 0 if a BD or group of BDs can be allocated for
 733 * transmission. If the BD or any of the BDs are not free the function
 734 * returns a busy status.
 735 */
 736static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 737					    int num_frag)
 738{
 739	struct axidma_bd *cur_p;
 740
 741	/* Ensure we see all descriptor updates from device or TX polling */
 742	rmb();
 743	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
 744			     lp->tx_bd_num];
 745	if (cur_p->cntrl)
 746		return NETDEV_TX_BUSY;
 747	return 0;
 748}
 749
 750/**
 751 * axienet_dma_tx_cb - DMA engine callback for TX channel.
 752 * @data:       Pointer to the axienet_local structure.
 753 * @result:     error reporting through dmaengine_result.
 754 * This function is called by dmaengine driver for TX channel to notify
 755 * that the transmit is done.
 756 */
 757static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
 758{
 759	struct skbuf_dma_descriptor *skbuf_dma;
 760	struct axienet_local *lp = data;
 761	struct netdev_queue *txq;
 762	int len;
 763
 764	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
 765	len = skbuf_dma->skb->len;
 766	txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
 767	u64_stats_update_begin(&lp->tx_stat_sync);
 768	u64_stats_add(&lp->tx_bytes, len);
 769	u64_stats_add(&lp->tx_packets, 1);
 770	u64_stats_update_end(&lp->tx_stat_sync);
 771	dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
 772	dev_consume_skb_any(skbuf_dma->skb);
 773	netif_txq_completed_wake(txq, 1, len,
 774				 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
 775				 2 * MAX_SKB_FRAGS);
 776}
 777
 778/**
 779 * axienet_start_xmit_dmaengine - Starts the transmission.
 780 * @skb:        sk_buff pointer that contains data to be Txed.
 781 * @ndev:       Pointer to net_device structure.
 782 *
 783 * Return: NETDEV_TX_OK on success or any non space errors.
 784 *         NETDEV_TX_BUSY when free element in TX skb ring buffer
 785 *         is not available.
 786 *
 787 * This function is invoked to initiate transmission. The
 788 * function sets the skbs, register dma callback API and submit
 789 * the dma transaction.
 790 * Additionally if checksum offloading is supported,
 791 * it populates AXI Stream Control fields with appropriate values.
 792 */
 793static netdev_tx_t
 794axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
 795{
 796	struct dma_async_tx_descriptor *dma_tx_desc = NULL;
 797	struct axienet_local *lp = netdev_priv(ndev);
 798	u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
 799	struct skbuf_dma_descriptor *skbuf_dma;
 800	struct dma_device *dma_dev;
 801	struct netdev_queue *txq;
 802	u32 csum_start_off;
 803	u32 csum_index_off;
 804	int sg_len;
 805	int ret;
 806
 807	dma_dev = lp->tx_chan->device;
 808	sg_len = skb_shinfo(skb)->nr_frags + 1;
 809	if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) {
 810		netif_stop_queue(ndev);
 811		if (net_ratelimit())
 812			netdev_warn(ndev, "TX ring unexpectedly full\n");
 813		return NETDEV_TX_BUSY;
 814	}
 815
 816	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
 817	if (!skbuf_dma)
 818		goto xmit_error_drop_skb;
 819
 820	lp->tx_ring_head++;
 821	sg_init_table(skbuf_dma->sgl, sg_len);
 822	ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
 823	if (ret < 0)
 824		goto xmit_error_drop_skb;
 825
 826	ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
 827	if (!ret)
 828		goto xmit_error_drop_skb;
 829
 830	/* Fill up app fields for checksum */
 831	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 832		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 833			/* Tx Full Checksum Offload Enabled */
 834			app_metadata[0] |= 2;
 835		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
 836			csum_start_off = skb_transport_offset(skb);
 837			csum_index_off = csum_start_off + skb->csum_offset;
 838			/* Tx Partial Checksum Offload Enabled */
 839			app_metadata[0] |= 1;
 840			app_metadata[1] = (csum_start_off << 16) | csum_index_off;
 841		}
 842	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 843		app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
 844	}
 845
 846	dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
 847			sg_len, DMA_MEM_TO_DEV,
 848			DMA_PREP_INTERRUPT, (void *)app_metadata);
 849	if (!dma_tx_desc)
 850		goto xmit_error_unmap_sg;
 851
 852	skbuf_dma->skb = skb;
 853	skbuf_dma->sg_len = sg_len;
 854	dma_tx_desc->callback_param = lp;
 855	dma_tx_desc->callback_result = axienet_dma_tx_cb;
 856	dmaengine_submit(dma_tx_desc);
 857	dma_async_issue_pending(lp->tx_chan);
 858	txq = skb_get_tx_queue(lp->ndev, skb);
 859	netdev_tx_sent_queue(txq, skb->len);
 860	netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
 861			     MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS);
 862
 863	return NETDEV_TX_OK;
 864
 865xmit_error_unmap_sg:
 866	dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
 867xmit_error_drop_skb:
 868	dev_kfree_skb_any(skb);
 869	return NETDEV_TX_OK;
 870}
 871
 872/**
 873 * axienet_tx_poll - Invoked once a transmit is completed by the
 874 * Axi DMA Tx channel.
 875 * @napi:	Pointer to NAPI structure.
 876 * @budget:	Max number of TX packets to process.
 877 *
 878 * Return: Number of TX packets processed.
 879 *
 880 * This function is invoked from the NAPI processing to notify the completion
 881 * of transmit operation. It clears fields in the corresponding Tx BDs and
 882 * unmaps the corresponding buffer so that CPU can regain ownership of the
 883 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 884 * required.
 885 */
 886static int axienet_tx_poll(struct napi_struct *napi, int budget)
 887{
 888	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
 889	struct net_device *ndev = lp->ndev;
 890	u32 size = 0;
 891	int packets;
 892
 893	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
 894
 895	if (packets) {
 896		lp->tx_bd_ci += packets;
 897		if (lp->tx_bd_ci >= lp->tx_bd_num)
 898			lp->tx_bd_ci %= lp->tx_bd_num;
 899
 900		u64_stats_update_begin(&lp->tx_stat_sync);
 901		u64_stats_add(&lp->tx_packets, packets);
 902		u64_stats_add(&lp->tx_bytes, size);
 903		u64_stats_update_end(&lp->tx_stat_sync);
 904
 905		/* Matches barrier in axienet_start_xmit */
 906		smp_mb();
 907
 908		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
 909			netif_wake_queue(ndev);
 910	}
 911
 912	if (packets < budget && napi_complete_done(napi, packets)) {
 913		/* Re-enable TX completion interrupts. This should
 914		 * cause an immediate interrupt if any TX packets are
 915		 * already pending.
 916		 */
 917		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 918	}
 919	return packets;
 920}
 921
 922/**
 923 * axienet_start_xmit - Starts the transmission.
 924 * @skb:	sk_buff pointer that contains data to be Txed.
 925 * @ndev:	Pointer to net_device structure.
 926 *
 927 * Return: NETDEV_TX_OK, on success
 928 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 929 *
 930 * This function is invoked from upper layers to initiate transmission. The
 931 * function uses the next available free BDs and populates their fields to
 932 * start the transmission. Additionally if checksum offloading is supported,
 933 * it populates AXI Stream Control fields with appropriate values.
 934 */
 935static netdev_tx_t
 936axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 937{
 938	u32 ii;
 939	u32 num_frag;
 940	u32 csum_start_off;
 941	u32 csum_index_off;
 942	skb_frag_t *frag;
 943	dma_addr_t tail_p, phys;
 944	u32 orig_tail_ptr, new_tail_ptr;
 945	struct axienet_local *lp = netdev_priv(ndev);
 946	struct axidma_bd *cur_p;
 947
 948	orig_tail_ptr = lp->tx_bd_tail;
 949	new_tail_ptr = orig_tail_ptr;
 950
 951	num_frag = skb_shinfo(skb)->nr_frags;
 952	cur_p = &lp->tx_bd_v[orig_tail_ptr];
 953
 954	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
 955		/* Should not happen as last start_xmit call should have
 956		 * checked for sufficient space and queue should only be
 957		 * woken when sufficient space is available.
 958		 */
 959		netif_stop_queue(ndev);
 960		if (net_ratelimit())
 961			netdev_warn(ndev, "TX ring unexpectedly full\n");
 962		return NETDEV_TX_BUSY;
 963	}
 964
 965	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 966		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 967			/* Tx Full Checksum Offload Enabled */
 968			cur_p->app0 |= 2;
 969		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
 970			csum_start_off = skb_transport_offset(skb);
 971			csum_index_off = csum_start_off + skb->csum_offset;
 972			/* Tx Partial Checksum Offload Enabled */
 973			cur_p->app0 |= 1;
 974			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 975		}
 976	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 977		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 978	}
 979
 980	phys = dma_map_single(lp->dev, skb->data,
 981			      skb_headlen(skb), DMA_TO_DEVICE);
 982	if (unlikely(dma_mapping_error(lp->dev, phys))) {
 983		if (net_ratelimit())
 984			netdev_err(ndev, "TX DMA mapping error\n");
 985		ndev->stats.tx_dropped++;
 986		return NETDEV_TX_OK;
 987	}
 988	desc_set_phys_addr(lp, phys, cur_p);
 989	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 990
 991	for (ii = 0; ii < num_frag; ii++) {
 992		if (++new_tail_ptr >= lp->tx_bd_num)
 993			new_tail_ptr = 0;
 994		cur_p = &lp->tx_bd_v[new_tail_ptr];
 995		frag = &skb_shinfo(skb)->frags[ii];
 996		phys = dma_map_single(lp->dev,
 997				      skb_frag_address(frag),
 998				      skb_frag_size(frag),
 999				      DMA_TO_DEVICE);
1000		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1001			if (net_ratelimit())
1002				netdev_err(ndev, "TX DMA mapping error\n");
1003			ndev->stats.tx_dropped++;
1004			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1005					      true, NULL, 0);
1006			return NETDEV_TX_OK;
1007		}
1008		desc_set_phys_addr(lp, phys, cur_p);
1009		cur_p->cntrl = skb_frag_size(frag);
1010	}
1011
1012	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1013	cur_p->skb = skb;
1014
1015	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1016	if (++new_tail_ptr >= lp->tx_bd_num)
1017		new_tail_ptr = 0;
1018	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1019
1020	/* Start the transfer */
1021	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1022
1023	/* Stop queue if next transmit may not have space */
1024	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1025		netif_stop_queue(ndev);
1026
1027		/* Matches barrier in axienet_tx_poll */
1028		smp_mb();
1029
1030		/* Space might have just been freed - check again */
1031		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1032			netif_wake_queue(ndev);
1033	}
1034
1035	return NETDEV_TX_OK;
1036}
1037
1038/**
1039 * axienet_dma_rx_cb - DMA engine callback for RX channel.
1040 * @data:       Pointer to the skbuf_dma_descriptor structure.
1041 * @result:     error reporting through dmaengine_result.
1042 * This function is called by dmaengine driver for RX channel to notify
1043 * that the packet is received.
1044 */
1045static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1046{
1047	struct skbuf_dma_descriptor *skbuf_dma;
1048	size_t meta_len, meta_max_len, rx_len;
1049	struct axienet_local *lp = data;
1050	struct sk_buff *skb;
1051	u32 *app_metadata;
1052
1053	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1054	skb = skbuf_dma->skb;
1055	app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1056						       &meta_max_len);
1057	dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1058			 DMA_FROM_DEVICE);
1059	/* TODO: Derive app word index programmatically */
1060	rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1061	skb_put(skb, rx_len);
1062	skb->protocol = eth_type_trans(skb, lp->ndev);
1063	skb->ip_summed = CHECKSUM_NONE;
1064
1065	__netif_rx(skb);
1066	u64_stats_update_begin(&lp->rx_stat_sync);
1067	u64_stats_add(&lp->rx_packets, 1);
1068	u64_stats_add(&lp->rx_bytes, rx_len);
1069	u64_stats_update_end(&lp->rx_stat_sync);
1070	axienet_rx_submit_desc(lp->ndev);
1071	dma_async_issue_pending(lp->rx_chan);
1072}
1073
1074/**
1075 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1076 * @napi:	Pointer to NAPI structure.
1077 * @budget:	Max number of RX packets to process.
1078 *
1079 * Return: Number of RX packets processed.
1080 */
1081static int axienet_rx_poll(struct napi_struct *napi, int budget)
1082{
1083	u32 length;
1084	u32 csumstatus;
1085	u32 size = 0;
1086	int packets = 0;
1087	dma_addr_t tail_p = 0;
1088	struct axidma_bd *cur_p;
1089	struct sk_buff *skb, *new_skb;
1090	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1091
1092	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1093
1094	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1095		dma_addr_t phys;
1096
1097		/* Ensure we see complete descriptor update */
1098		dma_rmb();
1099
1100		skb = cur_p->skb;
1101		cur_p->skb = NULL;
1102
1103		/* skb could be NULL if a previous pass already received the
1104		 * packet for this slot in the ring, but failed to refill it
1105		 * with a newly allocated buffer. In this case, don't try to
1106		 * receive it again.
1107		 */
1108		if (likely(skb)) {
1109			length = cur_p->app4 & 0x0000FFFF;
1110
1111			phys = desc_get_phys_addr(lp, cur_p);
1112			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1113					 DMA_FROM_DEVICE);
1114
1115			skb_put(skb, length);
1116			skb->protocol = eth_type_trans(skb, lp->ndev);
1117			/*skb_checksum_none_assert(skb);*/
1118			skb->ip_summed = CHECKSUM_NONE;
1119
1120			/* if we're doing Rx csum offload, set it up */
1121			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1122				csumstatus = (cur_p->app2 &
1123					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
1124				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1125				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1126					skb->ip_summed = CHECKSUM_UNNECESSARY;
1127				}
1128			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
1129				   skb->protocol == htons(ETH_P_IP) &&
1130				   skb->len > 64) {
1131				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1132				skb->ip_summed = CHECKSUM_COMPLETE;
1133			}
1134
1135			napi_gro_receive(napi, skb);
1136
1137			size += length;
1138			packets++;
1139		}
1140
1141		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1142		if (!new_skb)
1143			break;
1144
1145		phys = dma_map_single(lp->dev, new_skb->data,
1146				      lp->max_frm_size,
1147				      DMA_FROM_DEVICE);
1148		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1149			if (net_ratelimit())
1150				netdev_err(lp->ndev, "RX DMA mapping error\n");
1151			dev_kfree_skb(new_skb);
1152			break;
1153		}
1154		desc_set_phys_addr(lp, phys, cur_p);
1155
1156		cur_p->cntrl = lp->max_frm_size;
1157		cur_p->status = 0;
1158		cur_p->skb = new_skb;
1159
1160		/* Only update tail_p to mark this slot as usable after it has
1161		 * been successfully refilled.
1162		 */
1163		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1164
1165		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1166			lp->rx_bd_ci = 0;
1167		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1168	}
1169
1170	u64_stats_update_begin(&lp->rx_stat_sync);
1171	u64_stats_add(&lp->rx_packets, packets);
1172	u64_stats_add(&lp->rx_bytes, size);
1173	u64_stats_update_end(&lp->rx_stat_sync);
1174
1175	if (tail_p)
1176		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1177
1178	if (packets < budget && napi_complete_done(napi, packets)) {
1179		/* Re-enable RX completion interrupts. This should
1180		 * cause an immediate interrupt if any RX packets are
1181		 * already pending.
1182		 */
1183		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1184	}
1185	return packets;
1186}
1187
1188/**
1189 * axienet_tx_irq - Tx Done Isr.
1190 * @irq:	irq number
1191 * @_ndev:	net_device pointer
1192 *
1193 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1194 *
1195 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1196 * TX BD processing.
1197 */
1198static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1199{
1200	unsigned int status;
1201	struct net_device *ndev = _ndev;
1202	struct axienet_local *lp = netdev_priv(ndev);
1203
1204	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1205
1206	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1207		return IRQ_NONE;
1208
1209	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1210
1211	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1212		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1213		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1214			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1215			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1216		schedule_work(&lp->dma_err_task);
1217	} else {
1218		/* Disable further TX completion interrupts and schedule
1219		 * NAPI to handle the completions.
1220		 */
1221		u32 cr = lp->tx_dma_cr;
1222
1223		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1224		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1225
1226		napi_schedule(&lp->napi_tx);
1227	}
1228
1229	return IRQ_HANDLED;
1230}
1231
1232/**
1233 * axienet_rx_irq - Rx Isr.
1234 * @irq:	irq number
1235 * @_ndev:	net_device pointer
1236 *
1237 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1238 *
1239 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1240 * processing.
1241 */
1242static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1243{
1244	unsigned int status;
1245	struct net_device *ndev = _ndev;
1246	struct axienet_local *lp = netdev_priv(ndev);
1247
1248	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1249
1250	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1251		return IRQ_NONE;
1252
1253	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1254
1255	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1256		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1257		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1258			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1259			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1260		schedule_work(&lp->dma_err_task);
1261	} else {
1262		/* Disable further RX completion interrupts and schedule
1263		 * NAPI receive.
1264		 */
1265		u32 cr = lp->rx_dma_cr;
1266
1267		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1268		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1269
1270		napi_schedule(&lp->napi_rx);
1271	}
1272
1273	return IRQ_HANDLED;
1274}
1275
1276/**
1277 * axienet_eth_irq - Ethernet core Isr.
1278 * @irq:	irq number
1279 * @_ndev:	net_device pointer
1280 *
1281 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1282 *
1283 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1284 */
1285static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1286{
1287	struct net_device *ndev = _ndev;
1288	struct axienet_local *lp = netdev_priv(ndev);
1289	unsigned int pending;
1290
1291	pending = axienet_ior(lp, XAE_IP_OFFSET);
1292	if (!pending)
1293		return IRQ_NONE;
1294
1295	if (pending & XAE_INT_RXFIFOOVR_MASK)
1296		ndev->stats.rx_missed_errors++;
1297
1298	if (pending & XAE_INT_RXRJECT_MASK)
1299		ndev->stats.rx_frame_errors++;
1300
1301	axienet_iow(lp, XAE_IS_OFFSET, pending);
1302	return IRQ_HANDLED;
1303}
1304
1305static void axienet_dma_err_handler(struct work_struct *work);
1306
1307/**
1308 * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1309 * allocate skbuff, map the scatterlist and obtain a descriptor
1310 * and then add the callback information and submit descriptor.
1311 *
1312 * @ndev:	net_device pointer
1313 *
1314 */
1315static void axienet_rx_submit_desc(struct net_device *ndev)
1316{
1317	struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1318	struct axienet_local *lp = netdev_priv(ndev);
1319	struct skbuf_dma_descriptor *skbuf_dma;
1320	struct sk_buff *skb;
1321	dma_addr_t addr;
1322
1323	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1324	if (!skbuf_dma)
1325		return;
1326
1327	lp->rx_ring_head++;
1328	skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1329	if (!skb)
1330		return;
1331
1332	sg_init_table(skbuf_dma->sgl, 1);
1333	addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1334	if (unlikely(dma_mapping_error(lp->dev, addr))) {
1335		if (net_ratelimit())
1336			netdev_err(ndev, "DMA mapping error\n");
1337		goto rx_submit_err_free_skb;
1338	}
1339	sg_dma_address(skbuf_dma->sgl) = addr;
1340	sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1341	dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1342					      1, DMA_DEV_TO_MEM,
1343					      DMA_PREP_INTERRUPT);
1344	if (!dma_rx_desc)
1345		goto rx_submit_err_unmap_skb;
1346
1347	skbuf_dma->skb = skb;
1348	skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1349	skbuf_dma->desc = dma_rx_desc;
1350	dma_rx_desc->callback_param = lp;
1351	dma_rx_desc->callback_result = axienet_dma_rx_cb;
1352	dmaengine_submit(dma_rx_desc);
1353
1354	return;
1355
1356rx_submit_err_unmap_skb:
1357	dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1358rx_submit_err_free_skb:
1359	dev_kfree_skb(skb);
1360}
1361
1362/**
1363 * axienet_init_dmaengine - init the dmaengine code.
1364 * @ndev:       Pointer to net_device structure
1365 *
1366 * Return: 0, on success.
1367 *          non-zero error value on failure
1368 *
1369 * This is the dmaengine initialization code.
 
 
 
 
1370 */
1371static int axienet_init_dmaengine(struct net_device *ndev)
1372{
 
1373	struct axienet_local *lp = netdev_priv(ndev);
1374	struct skbuf_dma_descriptor *skbuf_dma;
1375	int i, ret;
1376
1377	lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1378	if (IS_ERR(lp->tx_chan)) {
1379		dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1380		return PTR_ERR(lp->tx_chan);
1381	}
1382
1383	lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1384	if (IS_ERR(lp->rx_chan)) {
1385		ret = PTR_ERR(lp->rx_chan);
1386		dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1387		goto err_dma_release_tx;
1388	}
1389
1390	lp->tx_ring_tail = 0;
1391	lp->tx_ring_head = 0;
1392	lp->rx_ring_tail = 0;
1393	lp->rx_ring_head = 0;
1394	lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1395				  GFP_KERNEL);
1396	if (!lp->tx_skb_ring) {
1397		ret = -ENOMEM;
1398		goto err_dma_release_rx;
1399	}
1400	for (i = 0; i < TX_BD_NUM_MAX; i++) {
1401		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1402		if (!skbuf_dma) {
1403			ret = -ENOMEM;
1404			goto err_free_tx_skb_ring;
1405		}
1406		lp->tx_skb_ring[i] = skbuf_dma;
1407	}
1408
1409	lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1410				  GFP_KERNEL);
1411	if (!lp->rx_skb_ring) {
1412		ret = -ENOMEM;
1413		goto err_free_tx_skb_ring;
1414	}
1415	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1416		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1417		if (!skbuf_dma) {
1418			ret = -ENOMEM;
1419			goto err_free_rx_skb_ring;
1420		}
1421		lp->rx_skb_ring[i] = skbuf_dma;
1422	}
1423	/* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1424	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1425		axienet_rx_submit_desc(ndev);
1426	dma_async_issue_pending(lp->rx_chan);
1427
1428	return 0;
1429
1430err_free_rx_skb_ring:
1431	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1432		kfree(lp->rx_skb_ring[i]);
1433	kfree(lp->rx_skb_ring);
1434err_free_tx_skb_ring:
1435	for (i = 0; i < TX_BD_NUM_MAX; i++)
1436		kfree(lp->tx_skb_ring[i]);
1437	kfree(lp->tx_skb_ring);
1438err_dma_release_rx:
1439	dma_release_channel(lp->rx_chan);
1440err_dma_release_tx:
1441	dma_release_channel(lp->tx_chan);
1442	return ret;
1443}
1444
1445/**
1446 * axienet_init_legacy_dma - init the dma legacy code.
1447 * @ndev:       Pointer to net_device structure
1448 *
1449 * Return: 0, on success.
1450 *          non-zero error value on failure
1451 *
1452 * This is the dma  initialization code. It also allocates interrupt
1453 * service routines, enables the interrupt lines and ISR handling.
1454 *
1455 */
1456static int axienet_init_legacy_dma(struct net_device *ndev)
1457{
1458	int ret;
1459	struct axienet_local *lp = netdev_priv(ndev);
1460
1461	/* Enable worker thread for Axi DMA error handling */
1462	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1463
1464	napi_enable(&lp->napi_rx);
1465	napi_enable(&lp->napi_tx);
1466
1467	/* Enable interrupts for Axi DMA Tx */
1468	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1469			  ndev->name, ndev);
1470	if (ret)
1471		goto err_tx_irq;
1472	/* Enable interrupts for Axi DMA Rx */
1473	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1474			  ndev->name, ndev);
1475	if (ret)
1476		goto err_rx_irq;
1477	/* Enable interrupts for Axi Ethernet core (if defined) */
1478	if (lp->eth_irq > 0) {
1479		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1480				  ndev->name, ndev);
1481		if (ret)
1482			goto err_eth_irq;
1483	}
1484
1485	return 0;
1486
1487err_eth_irq:
1488	free_irq(lp->rx_irq, ndev);
1489err_rx_irq:
1490	free_irq(lp->tx_irq, ndev);
1491err_tx_irq:
1492	napi_disable(&lp->napi_tx);
1493	napi_disable(&lp->napi_rx);
1494	cancel_work_sync(&lp->dma_err_task);
1495	dev_err(lp->dev, "request_irq() failed\n");
1496	return ret;
1497}
1498
1499/**
1500 * axienet_open - Driver open routine.
1501 * @ndev:	Pointer to net_device structure
1502 *
1503 * Return: 0, on success.
1504 *	    non-zero error value on failure
1505 *
1506 * This is the driver open routine. It calls phylink_start to start the
1507 * PHY device.
1508 * It also allocates interrupt service routines, enables the interrupt lines
1509 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1510 * descriptors are initialized.
1511 */
1512static int axienet_open(struct net_device *ndev)
1513{
1514	int ret;
1515	struct axienet_local *lp = netdev_priv(ndev);
1516
1517	dev_dbg(&ndev->dev, "%s\n", __func__);
1518
1519	/* When we do an Axi Ethernet reset, it resets the complete core
1520	 * including the MDIO. MDIO must be disabled before resetting.
1521	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1522	 */
1523	axienet_lock_mii(lp);
1524	ret = axienet_device_reset(ndev);
1525	axienet_unlock_mii(lp);
1526
1527	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1528	if (ret) {
1529		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1530		return ret;
1531	}
1532
1533	phylink_start(lp->phylink);
1534
1535	if (lp->use_dmaengine) {
1536		/* Enable interrupts for Axi Ethernet core (if defined) */
1537		if (lp->eth_irq > 0) {
1538			ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1539					  ndev->name, ndev);
1540			if (ret)
1541				goto err_phy;
1542		}
1543
1544		ret = axienet_init_dmaengine(ndev);
1545		if (ret < 0)
1546			goto err_free_eth_irq;
1547	} else {
1548		ret = axienet_init_legacy_dma(ndev);
1549		if (ret)
1550			goto err_phy;
1551	}
1552
1553	return 0;
1554
1555err_free_eth_irq:
1556	if (lp->eth_irq > 0)
1557		free_irq(lp->eth_irq, ndev);
1558err_phy:
1559	phylink_stop(lp->phylink);
1560	phylink_disconnect_phy(lp->phylink);
 
 
1561	return ret;
1562}
1563
1564/**
1565 * axienet_stop - Driver stop routine.
1566 * @ndev:	Pointer to net_device structure
1567 *
1568 * Return: 0, on success.
1569 *
1570 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1571 * device. It also removes the interrupt handlers and disables the interrupts.
1572 * The Axi DMA Tx/Rx BDs are released.
1573 */
1574static int axienet_stop(struct net_device *ndev)
1575{
1576	struct axienet_local *lp = netdev_priv(ndev);
1577	int i;
1578
1579	dev_dbg(&ndev->dev, "axienet_close()\n");
1580
1581	if (!lp->use_dmaengine) {
1582		napi_disable(&lp->napi_tx);
1583		napi_disable(&lp->napi_rx);
1584	}
1585
1586	phylink_stop(lp->phylink);
1587	phylink_disconnect_phy(lp->phylink);
1588
1589	axienet_setoptions(ndev, lp->options &
1590			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1591
1592	if (!lp->use_dmaengine) {
1593		axienet_dma_stop(lp);
1594		cancel_work_sync(&lp->dma_err_task);
1595		free_irq(lp->tx_irq, ndev);
1596		free_irq(lp->rx_irq, ndev);
1597		axienet_dma_bd_release(ndev);
1598	} else {
1599		dmaengine_terminate_sync(lp->tx_chan);
1600		dmaengine_synchronize(lp->tx_chan);
1601		dmaengine_terminate_sync(lp->rx_chan);
1602		dmaengine_synchronize(lp->rx_chan);
1603
1604		for (i = 0; i < TX_BD_NUM_MAX; i++)
1605			kfree(lp->tx_skb_ring[i]);
1606		kfree(lp->tx_skb_ring);
1607		for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1608			kfree(lp->rx_skb_ring[i]);
1609		kfree(lp->rx_skb_ring);
1610
1611		dma_release_channel(lp->rx_chan);
1612		dma_release_channel(lp->tx_chan);
1613	}
1614
1615	axienet_iow(lp, XAE_IE_OFFSET, 0);
1616
 
 
1617	if (lp->eth_irq > 0)
1618		free_irq(lp->eth_irq, ndev);
 
 
 
 
1619	return 0;
1620}
1621
1622/**
1623 * axienet_change_mtu - Driver change mtu routine.
1624 * @ndev:	Pointer to net_device structure
1625 * @new_mtu:	New mtu value to be applied
1626 *
1627 * Return: Always returns 0 (success).
1628 *
1629 * This is the change mtu driver routine. It checks if the Axi Ethernet
1630 * hardware supports jumbo frames before changing the mtu. This can be
1631 * called only when the device is not up.
1632 */
1633static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1634{
1635	struct axienet_local *lp = netdev_priv(ndev);
1636
1637	if (netif_running(ndev))
1638		return -EBUSY;
1639
1640	if ((new_mtu + VLAN_ETH_HLEN +
1641		XAE_TRL_SIZE) > lp->rxmem)
1642		return -EINVAL;
1643
1644	ndev->mtu = new_mtu;
1645
1646	return 0;
1647}
1648
1649#ifdef CONFIG_NET_POLL_CONTROLLER
1650/**
1651 * axienet_poll_controller - Axi Ethernet poll mechanism.
1652 * @ndev:	Pointer to net_device structure
1653 *
1654 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1655 * to polling the ISRs and are enabled back after the polling is done.
1656 */
1657static void axienet_poll_controller(struct net_device *ndev)
1658{
1659	struct axienet_local *lp = netdev_priv(ndev);
1660	disable_irq(lp->tx_irq);
1661	disable_irq(lp->rx_irq);
1662	axienet_rx_irq(lp->tx_irq, ndev);
1663	axienet_tx_irq(lp->rx_irq, ndev);
1664	enable_irq(lp->tx_irq);
1665	enable_irq(lp->rx_irq);
1666}
1667#endif
1668
1669static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1670{
1671	struct axienet_local *lp = netdev_priv(dev);
1672
1673	if (!netif_running(dev))
1674		return -EINVAL;
1675
1676	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1677}
1678
1679static void
1680axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1681{
1682	struct axienet_local *lp = netdev_priv(dev);
1683	unsigned int start;
1684
1685	netdev_stats_to_stats64(stats, &dev->stats);
1686
1687	do {
1688		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1689		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1690		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1691	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1692
1693	do {
1694		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1695		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1696		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1697	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1698}
1699
1700static const struct net_device_ops axienet_netdev_ops = {
1701	.ndo_open = axienet_open,
1702	.ndo_stop = axienet_stop,
1703	.ndo_start_xmit = axienet_start_xmit,
1704	.ndo_get_stats64 = axienet_get_stats64,
1705	.ndo_change_mtu	= axienet_change_mtu,
1706	.ndo_set_mac_address = netdev_set_mac_address,
1707	.ndo_validate_addr = eth_validate_addr,
1708	.ndo_eth_ioctl = axienet_ioctl,
1709	.ndo_set_rx_mode = axienet_set_multicast_list,
1710#ifdef CONFIG_NET_POLL_CONTROLLER
1711	.ndo_poll_controller = axienet_poll_controller,
1712#endif
1713};
1714
1715static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1716	.ndo_open = axienet_open,
1717	.ndo_stop = axienet_stop,
1718	.ndo_start_xmit = axienet_start_xmit_dmaengine,
1719	.ndo_get_stats64 = axienet_get_stats64,
1720	.ndo_change_mtu	= axienet_change_mtu,
1721	.ndo_set_mac_address = netdev_set_mac_address,
1722	.ndo_validate_addr = eth_validate_addr,
1723	.ndo_eth_ioctl = axienet_ioctl,
1724	.ndo_set_rx_mode = axienet_set_multicast_list,
1725};
1726
1727/**
1728 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1729 * @ndev:	Pointer to net_device structure
1730 * @ed:		Pointer to ethtool_drvinfo structure
1731 *
1732 * This implements ethtool command for getting the driver information.
1733 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1734 */
1735static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1736					 struct ethtool_drvinfo *ed)
1737{
1738	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1739	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1740}
1741
1742/**
1743 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1744 *				   AxiEthernet core.
1745 * @ndev:	Pointer to net_device structure
1746 *
1747 * This implements ethtool command for getting the total register length
1748 * information.
1749 *
1750 * Return: the total regs length
1751 */
1752static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1753{
1754	return sizeof(u32) * AXIENET_REGS_N;
1755}
1756
1757/**
1758 * axienet_ethtools_get_regs - Dump the contents of all registers present
1759 *			       in AxiEthernet core.
1760 * @ndev:	Pointer to net_device structure
1761 * @regs:	Pointer to ethtool_regs structure
1762 * @ret:	Void pointer used to return the contents of the registers.
1763 *
1764 * This implements ethtool command for getting the Axi Ethernet register dump.
1765 * Issue "ethtool -d ethX" to execute this function.
1766 */
1767static void axienet_ethtools_get_regs(struct net_device *ndev,
1768				      struct ethtool_regs *regs, void *ret)
1769{
1770	u32 *data = (u32 *)ret;
1771	size_t len = sizeof(u32) * AXIENET_REGS_N;
1772	struct axienet_local *lp = netdev_priv(ndev);
1773
1774	regs->version = 0;
1775	regs->len = len;
1776
1777	memset(data, 0, len);
1778	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1779	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1780	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1781	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1782	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1783	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1784	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1785	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1786	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1787	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1788	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1789	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1790	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1791	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1792	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1793	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1794	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1795	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1796	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1797	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1798	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1799	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1800	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1801	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1802	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1803	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1804	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1805	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1806	if (!lp->use_dmaengine) {
1807		data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1808		data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1809		data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1810		data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1811		data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1812		data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1813		data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1814		data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1815	}
1816}
1817
1818static void
1819axienet_ethtools_get_ringparam(struct net_device *ndev,
1820			       struct ethtool_ringparam *ering,
1821			       struct kernel_ethtool_ringparam *kernel_ering,
1822			       struct netlink_ext_ack *extack)
1823{
1824	struct axienet_local *lp = netdev_priv(ndev);
1825
1826	ering->rx_max_pending = RX_BD_NUM_MAX;
1827	ering->rx_mini_max_pending = 0;
1828	ering->rx_jumbo_max_pending = 0;
1829	ering->tx_max_pending = TX_BD_NUM_MAX;
1830	ering->rx_pending = lp->rx_bd_num;
1831	ering->rx_mini_pending = 0;
1832	ering->rx_jumbo_pending = 0;
1833	ering->tx_pending = lp->tx_bd_num;
1834}
1835
1836static int
1837axienet_ethtools_set_ringparam(struct net_device *ndev,
1838			       struct ethtool_ringparam *ering,
1839			       struct kernel_ethtool_ringparam *kernel_ering,
1840			       struct netlink_ext_ack *extack)
1841{
1842	struct axienet_local *lp = netdev_priv(ndev);
1843
1844	if (ering->rx_pending > RX_BD_NUM_MAX ||
1845	    ering->rx_mini_pending ||
1846	    ering->rx_jumbo_pending ||
1847	    ering->tx_pending < TX_BD_NUM_MIN ||
1848	    ering->tx_pending > TX_BD_NUM_MAX)
1849		return -EINVAL;
1850
1851	if (netif_running(ndev))
1852		return -EBUSY;
1853
1854	lp->rx_bd_num = ering->rx_pending;
1855	lp->tx_bd_num = ering->tx_pending;
1856	return 0;
1857}
1858
1859/**
1860 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1861 *				     Tx and Rx paths.
1862 * @ndev:	Pointer to net_device structure
1863 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1864 *
1865 * This implements ethtool command for getting axi ethernet pause frame
1866 * setting. Issue "ethtool -a ethX" to execute this function.
1867 */
1868static void
1869axienet_ethtools_get_pauseparam(struct net_device *ndev,
1870				struct ethtool_pauseparam *epauseparm)
1871{
1872	struct axienet_local *lp = netdev_priv(ndev);
1873
1874	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1875}
1876
1877/**
1878 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1879 *				     settings.
1880 * @ndev:	Pointer to net_device structure
1881 * @epauseparm:Pointer to ethtool_pauseparam structure
1882 *
1883 * This implements ethtool command for enabling flow control on Rx and Tx
1884 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1885 * function.
1886 *
1887 * Return: 0 on success, -EFAULT if device is running
1888 */
1889static int
1890axienet_ethtools_set_pauseparam(struct net_device *ndev,
1891				struct ethtool_pauseparam *epauseparm)
1892{
1893	struct axienet_local *lp = netdev_priv(ndev);
1894
1895	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1896}
1897
1898/**
1899 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1900 * @ndev:	Pointer to net_device structure
1901 * @ecoalesce:	Pointer to ethtool_coalesce structure
1902 * @kernel_coal: ethtool CQE mode setting structure
1903 * @extack:	extack for reporting error messages
1904 *
1905 * This implements ethtool command for getting the DMA interrupt coalescing
1906 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1907 * execute this function.
1908 *
1909 * Return: 0 always
1910 */
1911static int
1912axienet_ethtools_get_coalesce(struct net_device *ndev,
1913			      struct ethtool_coalesce *ecoalesce,
1914			      struct kernel_ethtool_coalesce *kernel_coal,
1915			      struct netlink_ext_ack *extack)
1916{
1917	struct axienet_local *lp = netdev_priv(ndev);
1918
1919	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1920	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1921	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1922	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1923	return 0;
1924}
1925
1926/**
1927 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1928 * @ndev:	Pointer to net_device structure
1929 * @ecoalesce:	Pointer to ethtool_coalesce structure
1930 * @kernel_coal: ethtool CQE mode setting structure
1931 * @extack:	extack for reporting error messages
1932 *
1933 * This implements ethtool command for setting the DMA interrupt coalescing
1934 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1935 * prompt to execute this function.
1936 *
1937 * Return: 0, on success, Non-zero error value on failure.
1938 */
1939static int
1940axienet_ethtools_set_coalesce(struct net_device *ndev,
1941			      struct ethtool_coalesce *ecoalesce,
1942			      struct kernel_ethtool_coalesce *kernel_coal,
1943			      struct netlink_ext_ack *extack)
1944{
1945	struct axienet_local *lp = netdev_priv(ndev);
1946
1947	if (netif_running(ndev)) {
1948		netdev_err(ndev,
1949			   "Please stop netif before applying configuration\n");
1950		return -EFAULT;
1951	}
1952
1953	if (ecoalesce->rx_max_coalesced_frames)
1954		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1955	if (ecoalesce->rx_coalesce_usecs)
1956		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1957	if (ecoalesce->tx_max_coalesced_frames)
1958		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1959	if (ecoalesce->tx_coalesce_usecs)
1960		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1961
1962	return 0;
1963}
1964
1965static int
1966axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1967				    struct ethtool_link_ksettings *cmd)
1968{
1969	struct axienet_local *lp = netdev_priv(ndev);
1970
1971	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1972}
1973
1974static int
1975axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1976				    const struct ethtool_link_ksettings *cmd)
1977{
1978	struct axienet_local *lp = netdev_priv(ndev);
1979
1980	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1981}
1982
1983static int axienet_ethtools_nway_reset(struct net_device *dev)
1984{
1985	struct axienet_local *lp = netdev_priv(dev);
1986
1987	return phylink_ethtool_nway_reset(lp->phylink);
1988}
1989
1990static const struct ethtool_ops axienet_ethtool_ops = {
1991	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1992				     ETHTOOL_COALESCE_USECS,
1993	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1994	.get_regs_len   = axienet_ethtools_get_regs_len,
1995	.get_regs       = axienet_ethtools_get_regs,
1996	.get_link       = ethtool_op_get_link,
1997	.get_ringparam	= axienet_ethtools_get_ringparam,
1998	.set_ringparam	= axienet_ethtools_set_ringparam,
1999	.get_pauseparam = axienet_ethtools_get_pauseparam,
2000	.set_pauseparam = axienet_ethtools_set_pauseparam,
2001	.get_coalesce   = axienet_ethtools_get_coalesce,
2002	.set_coalesce   = axienet_ethtools_set_coalesce,
2003	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
2004	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
2005	.nway_reset	= axienet_ethtools_nway_reset,
2006};
2007
2008static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2009{
2010	return container_of(pcs, struct axienet_local, pcs);
2011}
2012
2013static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2014				  struct phylink_link_state *state)
2015{
2016	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2017
2018	phylink_mii_c22_pcs_get_state(pcs_phy, state);
2019}
2020
2021static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2022{
2023	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2024
2025	phylink_mii_c22_pcs_an_restart(pcs_phy);
2026}
2027
2028static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2029			      phy_interface_t interface,
2030			      const unsigned long *advertising,
2031			      bool permit_pause_to_mac)
2032{
2033	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2034	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2035	struct axienet_local *lp = netdev_priv(ndev);
2036	int ret;
2037
2038	if (lp->switch_x_sgmii) {
2039		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2040				    interface == PHY_INTERFACE_MODE_SGMII ?
2041					XLNX_MII_STD_SELECT_SGMII : 0);
2042		if (ret < 0) {
2043			netdev_warn(ndev,
2044				    "Failed to switch PHY interface: %d\n",
2045				    ret);
2046			return ret;
2047		}
2048	}
2049
2050	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2051					 neg_mode);
2052	if (ret < 0)
2053		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2054
2055	return ret;
2056}
2057
2058static const struct phylink_pcs_ops axienet_pcs_ops = {
2059	.pcs_get_state = axienet_pcs_get_state,
2060	.pcs_config = axienet_pcs_config,
2061	.pcs_an_restart = axienet_pcs_an_restart,
2062};
2063
2064static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2065						  phy_interface_t interface)
2066{
2067	struct net_device *ndev = to_net_dev(config->dev);
2068	struct axienet_local *lp = netdev_priv(ndev);
2069
2070	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2071	    interface ==  PHY_INTERFACE_MODE_SGMII)
2072		return &lp->pcs;
2073
2074	return NULL;
2075}
2076
2077static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2078			       const struct phylink_link_state *state)
2079{
2080	/* nothing meaningful to do */
2081}
2082
2083static void axienet_mac_link_down(struct phylink_config *config,
2084				  unsigned int mode,
2085				  phy_interface_t interface)
2086{
2087	/* nothing meaningful to do */
2088}
2089
2090static void axienet_mac_link_up(struct phylink_config *config,
2091				struct phy_device *phy,
2092				unsigned int mode, phy_interface_t interface,
2093				int speed, int duplex,
2094				bool tx_pause, bool rx_pause)
2095{
2096	struct net_device *ndev = to_net_dev(config->dev);
2097	struct axienet_local *lp = netdev_priv(ndev);
2098	u32 emmc_reg, fcc_reg;
2099
2100	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2101	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2102
2103	switch (speed) {
2104	case SPEED_1000:
2105		emmc_reg |= XAE_EMMC_LINKSPD_1000;
2106		break;
2107	case SPEED_100:
2108		emmc_reg |= XAE_EMMC_LINKSPD_100;
2109		break;
2110	case SPEED_10:
2111		emmc_reg |= XAE_EMMC_LINKSPD_10;
2112		break;
2113	default:
2114		dev_err(&ndev->dev,
2115			"Speed other than 10, 100 or 1Gbps is not supported\n");
2116		break;
2117	}
2118
2119	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2120
2121	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2122	if (tx_pause)
2123		fcc_reg |= XAE_FCC_FCTX_MASK;
2124	else
2125		fcc_reg &= ~XAE_FCC_FCTX_MASK;
2126	if (rx_pause)
2127		fcc_reg |= XAE_FCC_FCRX_MASK;
2128	else
2129		fcc_reg &= ~XAE_FCC_FCRX_MASK;
2130	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2131}
2132
2133static const struct phylink_mac_ops axienet_phylink_ops = {
2134	.mac_select_pcs = axienet_mac_select_pcs,
2135	.mac_config = axienet_mac_config,
2136	.mac_link_down = axienet_mac_link_down,
2137	.mac_link_up = axienet_mac_link_up,
2138};
2139
2140/**
2141 * axienet_dma_err_handler - Work queue task for Axi DMA Error
2142 * @work:	pointer to work_struct
2143 *
2144 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2145 * Tx/Rx BDs.
2146 */
2147static void axienet_dma_err_handler(struct work_struct *work)
2148{
2149	u32 i;
2150	u32 axienet_status;
2151	struct axidma_bd *cur_p;
2152	struct axienet_local *lp = container_of(work, struct axienet_local,
2153						dma_err_task);
2154	struct net_device *ndev = lp->ndev;
2155
2156	napi_disable(&lp->napi_tx);
2157	napi_disable(&lp->napi_rx);
2158
2159	axienet_setoptions(ndev, lp->options &
2160			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2161
2162	axienet_dma_stop(lp);
2163
2164	for (i = 0; i < lp->tx_bd_num; i++) {
2165		cur_p = &lp->tx_bd_v[i];
2166		if (cur_p->cntrl) {
2167			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2168
2169			dma_unmap_single(lp->dev, addr,
2170					 (cur_p->cntrl &
2171					  XAXIDMA_BD_CTRL_LENGTH_MASK),
2172					 DMA_TO_DEVICE);
2173		}
2174		if (cur_p->skb)
2175			dev_kfree_skb_irq(cur_p->skb);
2176		cur_p->phys = 0;
2177		cur_p->phys_msb = 0;
2178		cur_p->cntrl = 0;
2179		cur_p->status = 0;
2180		cur_p->app0 = 0;
2181		cur_p->app1 = 0;
2182		cur_p->app2 = 0;
2183		cur_p->app3 = 0;
2184		cur_p->app4 = 0;
2185		cur_p->skb = NULL;
2186	}
2187
2188	for (i = 0; i < lp->rx_bd_num; i++) {
2189		cur_p = &lp->rx_bd_v[i];
2190		cur_p->status = 0;
2191		cur_p->app0 = 0;
2192		cur_p->app1 = 0;
2193		cur_p->app2 = 0;
2194		cur_p->app3 = 0;
2195		cur_p->app4 = 0;
2196	}
2197
2198	lp->tx_bd_ci = 0;
2199	lp->tx_bd_tail = 0;
2200	lp->rx_bd_ci = 0;
2201
2202	axienet_dma_start(lp);
2203
2204	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2205	axienet_status &= ~XAE_RCW1_RX_MASK;
2206	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2207
2208	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2209	if (axienet_status & XAE_INT_RXRJECT_MASK)
2210		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2211	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2212		    XAE_INT_RECV_ERROR_MASK : 0);
2213	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2214
2215	/* Sync default options with HW but leave receiver and
2216	 * transmitter disabled.
2217	 */
2218	axienet_setoptions(ndev, lp->options &
2219			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2220	axienet_set_mac_address(ndev, NULL);
2221	axienet_set_multicast_list(ndev);
2222	axienet_setoptions(ndev, lp->options);
2223	napi_enable(&lp->napi_rx);
2224	napi_enable(&lp->napi_tx);
2225}
2226
2227/**
2228 * axienet_probe - Axi Ethernet probe function.
2229 * @pdev:	Pointer to platform device structure.
2230 *
2231 * Return: 0, on success
2232 *	    Non-zero error value on failure.
2233 *
2234 * This is the probe routine for Axi Ethernet driver. This is called before
2235 * any other driver routines are invoked. It allocates and sets up the Ethernet
2236 * device. Parses through device tree and populates fields of
2237 * axienet_local. It registers the Ethernet device.
2238 */
2239static int axienet_probe(struct platform_device *pdev)
2240{
2241	int ret;
2242	struct device_node *np;
2243	struct axienet_local *lp;
2244	struct net_device *ndev;
2245	struct resource *ethres;
2246	u8 mac_addr[ETH_ALEN];
2247	int addr_width = 32;
2248	u32 value;
2249
2250	ndev = alloc_etherdev(sizeof(*lp));
2251	if (!ndev)
2252		return -ENOMEM;
2253
2254	platform_set_drvdata(pdev, ndev);
2255
2256	SET_NETDEV_DEV(ndev, &pdev->dev);
2257	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
2258	ndev->features = NETIF_F_SG;
 
2259	ndev->ethtool_ops = &axienet_ethtool_ops;
2260
2261	/* MTU range: 64 - 9000 */
2262	ndev->min_mtu = 64;
2263	ndev->max_mtu = XAE_JUMBO_MTU;
2264
2265	lp = netdev_priv(ndev);
2266	lp->ndev = ndev;
2267	lp->dev = &pdev->dev;
2268	lp->options = XAE_OPTION_DEFAULTS;
2269	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2270	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2271
2272	u64_stats_init(&lp->rx_stat_sync);
2273	u64_stats_init(&lp->tx_stat_sync);
2274
 
 
 
2275	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2276	if (!lp->axi_clk) {
2277		/* For backward compatibility, if named AXI clock is not present,
2278		 * treat the first clock specified as the AXI clock.
2279		 */
2280		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2281	}
2282	if (IS_ERR(lp->axi_clk)) {
2283		ret = PTR_ERR(lp->axi_clk);
2284		goto free_netdev;
2285	}
2286	ret = clk_prepare_enable(lp->axi_clk);
2287	if (ret) {
2288		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2289		goto free_netdev;
2290	}
2291
2292	lp->misc_clks[0].id = "axis_clk";
2293	lp->misc_clks[1].id = "ref_clk";
2294	lp->misc_clks[2].id = "mgt_clk";
2295
2296	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2297	if (ret)
2298		goto cleanup_clk;
2299
2300	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2301	if (ret)
2302		goto cleanup_clk;
2303
2304	/* Map device registers */
2305	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
2306	if (IS_ERR(lp->regs)) {
2307		ret = PTR_ERR(lp->regs);
2308		goto cleanup_clk;
2309	}
2310	lp->regs_start = ethres->start;
2311
2312	/* Setup checksum offload, but default to off if not specified */
2313	lp->features = 0;
2314
2315	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2316	if (!ret) {
2317		switch (value) {
2318		case 1:
2319			lp->csum_offload_on_tx_path =
2320				XAE_FEATURE_PARTIAL_TX_CSUM;
2321			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2322			/* Can checksum TCP/UDP over IPv4. */
2323			ndev->features |= NETIF_F_IP_CSUM;
2324			break;
2325		case 2:
2326			lp->csum_offload_on_tx_path =
2327				XAE_FEATURE_FULL_TX_CSUM;
2328			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2329			/* Can checksum TCP/UDP over IPv4. */
2330			ndev->features |= NETIF_F_IP_CSUM;
2331			break;
2332		default:
2333			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
2334		}
2335	}
2336	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2337	if (!ret) {
2338		switch (value) {
2339		case 1:
2340			lp->csum_offload_on_rx_path =
2341				XAE_FEATURE_PARTIAL_RX_CSUM;
2342			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2343			break;
2344		case 2:
2345			lp->csum_offload_on_rx_path =
2346				XAE_FEATURE_FULL_RX_CSUM;
2347			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2348			break;
2349		default:
2350			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
2351		}
2352	}
2353	/* For supporting jumbo frames, the Axi Ethernet hardware must have
2354	 * a larger Rx/Tx Memory. Typically, the size must be large so that
2355	 * we can enable jumbo option and start supporting jumbo frames.
2356	 * Here we check for memory allocated for Rx/Tx in the hardware from
2357	 * the device-tree and accordingly set flags.
2358	 */
2359	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2360
2361	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2362						   "xlnx,switch-x-sgmii");
2363
2364	/* Start with the proprietary, and broken phy_type */
2365	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2366	if (!ret) {
2367		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2368		switch (value) {
2369		case XAE_PHY_TYPE_MII:
2370			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2371			break;
2372		case XAE_PHY_TYPE_GMII:
2373			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2374			break;
2375		case XAE_PHY_TYPE_RGMII_2_0:
2376			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2377			break;
2378		case XAE_PHY_TYPE_SGMII:
2379			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2380			break;
2381		case XAE_PHY_TYPE_1000BASE_X:
2382			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2383			break;
2384		default:
2385			ret = -EINVAL;
2386			goto cleanup_clk;
2387		}
2388	} else {
2389		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2390		if (ret)
2391			goto cleanup_clk;
2392	}
2393	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2394	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2395		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2396		ret = -EINVAL;
2397		goto cleanup_clk;
2398	}
2399
2400	if (!of_find_property(pdev->dev.of_node, "dmas", NULL)) {
2401		/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2402		np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2403
2404		if (np) {
2405			struct resource dmares;
2406
2407			ret = of_address_to_resource(np, 0, &dmares);
2408			if (ret) {
2409				dev_err(&pdev->dev,
2410					"unable to get DMA resource\n");
2411				of_node_put(np);
2412				goto cleanup_clk;
2413			}
2414			lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2415							     &dmares);
2416			lp->rx_irq = irq_of_parse_and_map(np, 1);
2417			lp->tx_irq = irq_of_parse_and_map(np, 0);
2418			of_node_put(np);
2419			lp->eth_irq = platform_get_irq_optional(pdev, 0);
2420		} else {
2421			/* Check for these resources directly on the Ethernet node. */
2422			lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2423			lp->rx_irq = platform_get_irq(pdev, 1);
2424			lp->tx_irq = platform_get_irq(pdev, 0);
2425			lp->eth_irq = platform_get_irq_optional(pdev, 2);
2426		}
2427		if (IS_ERR(lp->dma_regs)) {
2428			dev_err(&pdev->dev, "could not map DMA regs\n");
2429			ret = PTR_ERR(lp->dma_regs);
2430			goto cleanup_clk;
2431		}
2432		if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2433			dev_err(&pdev->dev, "could not determine irqs\n");
2434			ret = -ENOMEM;
2435			goto cleanup_clk;
2436		}
2437
2438		/* Reset core now that clocks are enabled, prior to accessing MDIO */
2439		ret = __axienet_device_reset(lp);
2440		if (ret)
2441			goto cleanup_clk;
2442
2443		/* Autodetect the need for 64-bit DMA pointers.
2444		 * When the IP is configured for a bus width bigger than 32 bits,
2445		 * writing the MSB registers is mandatory, even if they are all 0.
2446		 * We can detect this case by writing all 1's to one such register
2447		 * and see if that sticks: when the IP is configured for 32 bits
2448		 * only, those registers are RES0.
2449		 * Those MSB registers were introduced in IP v7.1, which we check first.
2450		 */
2451		if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2452			void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2453
2454			iowrite32(0x0, desc);
2455			if (ioread32(desc) == 0) {	/* sanity check */
2456				iowrite32(0xffffffff, desc);
2457				if (ioread32(desc) > 0) {
2458					lp->features |= XAE_FEATURE_DMA_64BIT;
2459					addr_width = 64;
2460					dev_info(&pdev->dev,
2461						 "autodetected 64-bit DMA range\n");
2462				}
2463				iowrite32(0x0, desc);
2464			}
2465		}
2466		if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2467			dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2468			ret = -EINVAL;
2469			goto cleanup_clk;
2470		}
2471
2472		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2473		if (ret) {
2474			dev_err(&pdev->dev, "No suitable DMA available\n");
 
 
2475			goto cleanup_clk;
2476		}
2477		netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2478		netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
 
 
 
 
2479	} else {
2480		struct xilinx_vdma_config cfg;
2481		struct dma_chan *tx_chan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482
2483		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2484		if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
2485			ret = lp->eth_irq;
2486			goto cleanup_clk;
2487		}
2488		tx_chan = dma_request_chan(lp->dev, "tx_chan0");
2489		if (IS_ERR(tx_chan)) {
2490			ret = PTR_ERR(tx_chan);
2491			dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
2492			goto cleanup_clk;
2493		}
2494
2495		cfg.reset = 1;
2496		/* As name says VDMA but it has support for DMA channel reset */
2497		ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
2498		if (ret < 0) {
2499			dev_err(&pdev->dev, "Reset channel failed\n");
2500			dma_release_channel(tx_chan);
2501			goto cleanup_clk;
 
 
 
2502		}
 
 
 
 
 
 
2503
2504		dma_release_channel(tx_chan);
2505		lp->use_dmaengine = 1;
 
 
2506	}
2507
2508	if (lp->use_dmaengine)
2509		ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
2510	else
2511		ndev->netdev_ops = &axienet_netdev_ops;
2512	/* Check for Ethernet core IRQ (optional) */
2513	if (lp->eth_irq <= 0)
2514		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2515
2516	/* Retrieve the MAC address */
2517	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2518	if (!ret) {
2519		axienet_set_mac_address(ndev, mac_addr);
2520	} else {
2521		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2522			 ret);
2523		axienet_set_mac_address(ndev, NULL);
2524	}
2525
2526	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2527	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2528	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
 
2529	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2530
 
 
 
 
 
2531	ret = axienet_mdio_setup(lp);
2532	if (ret)
2533		dev_warn(&pdev->dev,
2534			 "error registering MDIO bus: %d\n", ret);
2535
2536	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2537	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2538		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2539		if (!np) {
2540			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2541			 * Falling back to "phy-handle" here is only for
2542			 * backward compatibility with old device trees.
2543			 */
2544			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2545		}
2546		if (!np) {
2547			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2548			ret = -EINVAL;
2549			goto cleanup_mdio;
2550		}
2551		lp->pcs_phy = of_mdio_find_device(np);
2552		if (!lp->pcs_phy) {
2553			ret = -EPROBE_DEFER;
2554			of_node_put(np);
2555			goto cleanup_mdio;
2556		}
2557		of_node_put(np);
2558		lp->pcs.ops = &axienet_pcs_ops;
2559		lp->pcs.neg_mode = true;
2560		lp->pcs.poll = true;
2561	}
2562
2563	lp->phylink_config.dev = &ndev->dev;
2564	lp->phylink_config.type = PHYLINK_NETDEV;
2565	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2566		MAC_10FD | MAC_100FD | MAC_1000FD;
2567
2568	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2569	if (lp->switch_x_sgmii) {
2570		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2571			  lp->phylink_config.supported_interfaces);
2572		__set_bit(PHY_INTERFACE_MODE_SGMII,
2573			  lp->phylink_config.supported_interfaces);
2574	}
2575
2576	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2577				     lp->phy_mode,
2578				     &axienet_phylink_ops);
2579	if (IS_ERR(lp->phylink)) {
2580		ret = PTR_ERR(lp->phylink);
2581		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2582		goto cleanup_mdio;
2583	}
2584
2585	ret = register_netdev(lp->ndev);
2586	if (ret) {
2587		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2588		goto cleanup_phylink;
2589	}
2590
2591	return 0;
2592
2593cleanup_phylink:
2594	phylink_destroy(lp->phylink);
2595
2596cleanup_mdio:
2597	if (lp->pcs_phy)
2598		put_device(&lp->pcs_phy->dev);
2599	if (lp->mii_bus)
2600		axienet_mdio_teardown(lp);
2601cleanup_clk:
2602	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2603	clk_disable_unprepare(lp->axi_clk);
2604
2605free_netdev:
2606	free_netdev(ndev);
2607
2608	return ret;
2609}
2610
2611static void axienet_remove(struct platform_device *pdev)
2612{
2613	struct net_device *ndev = platform_get_drvdata(pdev);
2614	struct axienet_local *lp = netdev_priv(ndev);
2615
2616	unregister_netdev(ndev);
2617
2618	if (lp->phylink)
2619		phylink_destroy(lp->phylink);
2620
2621	if (lp->pcs_phy)
2622		put_device(&lp->pcs_phy->dev);
2623
2624	axienet_mdio_teardown(lp);
2625
2626	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2627	clk_disable_unprepare(lp->axi_clk);
2628
2629	free_netdev(ndev);
 
 
2630}
2631
2632static void axienet_shutdown(struct platform_device *pdev)
2633{
2634	struct net_device *ndev = platform_get_drvdata(pdev);
2635
2636	rtnl_lock();
2637	netif_device_detach(ndev);
2638
2639	if (netif_running(ndev))
2640		dev_close(ndev);
2641
2642	rtnl_unlock();
2643}
2644
2645static int axienet_suspend(struct device *dev)
2646{
2647	struct net_device *ndev = dev_get_drvdata(dev);
2648
2649	if (!netif_running(ndev))
2650		return 0;
2651
2652	netif_device_detach(ndev);
2653
2654	rtnl_lock();
2655	axienet_stop(ndev);
2656	rtnl_unlock();
2657
2658	return 0;
2659}
2660
2661static int axienet_resume(struct device *dev)
2662{
2663	struct net_device *ndev = dev_get_drvdata(dev);
2664
2665	if (!netif_running(ndev))
2666		return 0;
2667
2668	rtnl_lock();
2669	axienet_open(ndev);
2670	rtnl_unlock();
2671
2672	netif_device_attach(ndev);
2673
2674	return 0;
2675}
2676
2677static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2678				axienet_suspend, axienet_resume);
2679
2680static struct platform_driver axienet_driver = {
2681	.probe = axienet_probe,
2682	.remove_new = axienet_remove,
2683	.shutdown = axienet_shutdown,
2684	.driver = {
2685		 .name = "xilinx_axienet",
2686		 .pm = &axienet_pm_ops,
2687		 .of_match_table = axienet_of_match,
2688	},
2689};
2690
2691module_platform_driver(axienet_driver);
2692
2693MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2694MODULE_AUTHOR("Xilinx");
2695MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx Axi Ethernet device driver
   4 *
   5 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   6 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   9 * Copyright (c) 2010 - 2011 PetaLogix
  10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
  11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  12 *
  13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  14 * and Spartan6.
  15 *
  16 * TODO:
  17 *  - Add Axi Fifo support.
  18 *  - Factor out Axi DMA code into separate driver.
  19 *  - Test and fix basic multicast filtering.
  20 *  - Add support for extended multicast filtering.
  21 *  - Test basic VLAN support.
  22 *  - Add support for extended VLAN support.
  23 */
  24
  25#include <linux/clk.h>
  26#include <linux/delay.h>
  27#include <linux/etherdevice.h>
  28#include <linux/module.h>
  29#include <linux/netdevice.h>
 
  30#include <linux/of_mdio.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <linux/of_irq.h>
  34#include <linux/of_address.h>
 
  35#include <linux/skbuff.h>
  36#include <linux/math64.h>
  37#include <linux/phy.h>
  38#include <linux/mii.h>
  39#include <linux/ethtool.h>
 
 
 
 
 
  40
  41#include "xilinx_axienet.h"
  42
  43/* Descriptors defines for Tx and Rx DMA */
  44#define TX_BD_NUM_DEFAULT		128
  45#define RX_BD_NUM_DEFAULT		1024
  46#define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
  47#define TX_BD_NUM_MAX			4096
  48#define RX_BD_NUM_MAX			4096
 
 
 
  49
  50/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  51#define DRIVER_NAME		"xaxienet"
  52#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  53#define DRIVER_VERSION		"1.00a"
  54
  55#define AXIENET_REGS_N		40
  56
 
 
  57/* Match table for of_platform binding */
  58static const struct of_device_id axienet_of_match[] = {
  59	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  60	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  61	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  62	{},
  63};
  64
  65MODULE_DEVICE_TABLE(of, axienet_of_match);
  66
  67/* Option table for setting up Axi Ethernet hardware options */
  68static struct axienet_option axienet_options[] = {
  69	/* Turn on jumbo packet support for both Rx and Tx */
  70	{
  71		.opt = XAE_OPTION_JUMBO,
  72		.reg = XAE_TC_OFFSET,
  73		.m_or = XAE_TC_JUM_MASK,
  74	}, {
  75		.opt = XAE_OPTION_JUMBO,
  76		.reg = XAE_RCW1_OFFSET,
  77		.m_or = XAE_RCW1_JUM_MASK,
  78	}, { /* Turn on VLAN packet support for both Rx and Tx */
  79		.opt = XAE_OPTION_VLAN,
  80		.reg = XAE_TC_OFFSET,
  81		.m_or = XAE_TC_VLAN_MASK,
  82	}, {
  83		.opt = XAE_OPTION_VLAN,
  84		.reg = XAE_RCW1_OFFSET,
  85		.m_or = XAE_RCW1_VLAN_MASK,
  86	}, { /* Turn on FCS stripping on receive packets */
  87		.opt = XAE_OPTION_FCS_STRIP,
  88		.reg = XAE_RCW1_OFFSET,
  89		.m_or = XAE_RCW1_FCS_MASK,
  90	}, { /* Turn on FCS insertion on transmit packets */
  91		.opt = XAE_OPTION_FCS_INSERT,
  92		.reg = XAE_TC_OFFSET,
  93		.m_or = XAE_TC_FCS_MASK,
  94	}, { /* Turn off length/type field checking on receive packets */
  95		.opt = XAE_OPTION_LENTYPE_ERR,
  96		.reg = XAE_RCW1_OFFSET,
  97		.m_or = XAE_RCW1_LT_DIS_MASK,
  98	}, { /* Turn on Rx flow control */
  99		.opt = XAE_OPTION_FLOW_CONTROL,
 100		.reg = XAE_FCC_OFFSET,
 101		.m_or = XAE_FCC_FCRX_MASK,
 102	}, { /* Turn on Tx flow control */
 103		.opt = XAE_OPTION_FLOW_CONTROL,
 104		.reg = XAE_FCC_OFFSET,
 105		.m_or = XAE_FCC_FCTX_MASK,
 106	}, { /* Turn on promiscuous frame filtering */
 107		.opt = XAE_OPTION_PROMISC,
 108		.reg = XAE_FMI_OFFSET,
 109		.m_or = XAE_FMI_PM_MASK,
 110	}, { /* Enable transmitter */
 111		.opt = XAE_OPTION_TXEN,
 112		.reg = XAE_TC_OFFSET,
 113		.m_or = XAE_TC_TX_MASK,
 114	}, { /* Enable receiver */
 115		.opt = XAE_OPTION_RXEN,
 116		.reg = XAE_RCW1_OFFSET,
 117		.m_or = XAE_RCW1_RX_MASK,
 118	},
 119	{}
 120};
 121
 
 
 
 
 
 
 
 
 
 
 122/**
 123 * axienet_dma_in32 - Memory mapped Axi DMA register read
 124 * @lp:		Pointer to axienet local structure
 125 * @reg:	Address offset from the base address of the Axi DMA core
 126 *
 127 * Return: The contents of the Axi DMA register
 128 *
 129 * This function returns the contents of the corresponding Axi DMA register.
 130 */
 131static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 132{
 133	return ioread32(lp->dma_regs + reg);
 134}
 135
 136static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
 137			       struct axidma_bd *desc)
 138{
 139	desc->phys = lower_32_bits(addr);
 140	if (lp->features & XAE_FEATURE_DMA_64BIT)
 141		desc->phys_msb = upper_32_bits(addr);
 142}
 143
 144static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
 145				     struct axidma_bd *desc)
 146{
 147	dma_addr_t ret = desc->phys;
 148
 149	if (lp->features & XAE_FEATURE_DMA_64BIT)
 150		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
 151
 152	return ret;
 153}
 154
 155/**
 156 * axienet_dma_bd_release - Release buffer descriptor rings
 157 * @ndev:	Pointer to the net_device structure
 158 *
 159 * This function is used to release the descriptors allocated in
 160 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 161 * driver stop api is called.
 162 */
 163static void axienet_dma_bd_release(struct net_device *ndev)
 164{
 165	int i;
 166	struct axienet_local *lp = netdev_priv(ndev);
 167
 168	/* If we end up here, tx_bd_v must have been DMA allocated. */
 169	dma_free_coherent(lp->dev,
 170			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 171			  lp->tx_bd_v,
 172			  lp->tx_bd_p);
 173
 174	if (!lp->rx_bd_v)
 175		return;
 176
 177	for (i = 0; i < lp->rx_bd_num; i++) {
 178		dma_addr_t phys;
 179
 180		/* A NULL skb means this descriptor has not been initialised
 181		 * at all.
 182		 */
 183		if (!lp->rx_bd_v[i].skb)
 184			break;
 185
 186		dev_kfree_skb(lp->rx_bd_v[i].skb);
 187
 188		/* For each descriptor, we programmed cntrl with the (non-zero)
 189		 * descriptor size, after it had been successfully allocated.
 190		 * So a non-zero value in there means we need to unmap it.
 191		 */
 192		if (lp->rx_bd_v[i].cntrl) {
 193			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
 194			dma_unmap_single(lp->dev, phys,
 195					 lp->max_frm_size, DMA_FROM_DEVICE);
 196		}
 197	}
 198
 199	dma_free_coherent(lp->dev,
 200			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 201			  lp->rx_bd_v,
 202			  lp->rx_bd_p);
 203}
 204
 205/**
 206 * axienet_usec_to_timer - Calculate IRQ delay timer value
 207 * @lp:		Pointer to the axienet_local structure
 208 * @coalesce_usec: Microseconds to convert into timer value
 209 */
 210static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
 211{
 212	u32 result;
 213	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
 214
 215	if (lp->axi_clk)
 216		clk_rate = clk_get_rate(lp->axi_clk);
 217
 218	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
 219	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
 220					 (u64)125000000);
 221	if (result > 255)
 222		result = 255;
 223
 224	return result;
 225}
 226
 227/**
 228 * axienet_dma_start - Set up DMA registers and start DMA operation
 229 * @lp:		Pointer to the axienet_local structure
 230 */
 231static void axienet_dma_start(struct axienet_local *lp)
 232{
 233	/* Start updating the Rx channel control register */
 234	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
 235			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
 236	/* Only set interrupt delay timer if not generating an interrupt on
 237	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
 238	 */
 239	if (lp->coalesce_count_rx > 1)
 240		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
 241					<< XAXIDMA_DELAY_SHIFT) |
 242				 XAXIDMA_IRQ_DELAY_MASK;
 243	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
 244
 245	/* Start updating the Tx channel control register */
 246	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
 247			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
 248	/* Only set interrupt delay timer if not generating an interrupt on
 249	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
 250	 */
 251	if (lp->coalesce_count_tx > 1)
 252		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
 253					<< XAXIDMA_DELAY_SHIFT) |
 254				 XAXIDMA_IRQ_DELAY_MASK;
 255	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 256
 257	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 258	 * halted state. This will make the Rx side ready for reception.
 259	 */
 260	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 261	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
 262	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
 263	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 264			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
 265
 266	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 267	 * Tx channel is now ready to run. But only after we write to the
 268	 * tail pointer register that the Tx channel will start transmitting.
 269	 */
 270	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 271	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
 272	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 273}
 274
 275/**
 276 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 277 * @ndev:	Pointer to the net_device structure
 278 *
 279 * Return: 0, on success -ENOMEM, on failure
 280 *
 281 * This function is called to initialize the Rx and Tx DMA descriptor
 282 * rings. This initializes the descriptors with required default values
 283 * and is called when Axi Ethernet driver reset is called.
 284 */
 285static int axienet_dma_bd_init(struct net_device *ndev)
 286{
 287	int i;
 288	struct sk_buff *skb;
 289	struct axienet_local *lp = netdev_priv(ndev);
 290
 291	/* Reset the indexes which are used for accessing the BDs */
 292	lp->tx_bd_ci = 0;
 293	lp->tx_bd_tail = 0;
 294	lp->rx_bd_ci = 0;
 295
 296	/* Allocate the Tx and Rx buffer descriptors. */
 297	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
 298					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 299					 &lp->tx_bd_p, GFP_KERNEL);
 300	if (!lp->tx_bd_v)
 301		return -ENOMEM;
 302
 303	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
 304					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 305					 &lp->rx_bd_p, GFP_KERNEL);
 306	if (!lp->rx_bd_v)
 307		goto out;
 308
 309	for (i = 0; i < lp->tx_bd_num; i++) {
 310		dma_addr_t addr = lp->tx_bd_p +
 311				  sizeof(*lp->tx_bd_v) *
 312				  ((i + 1) % lp->tx_bd_num);
 313
 314		lp->tx_bd_v[i].next = lower_32_bits(addr);
 315		if (lp->features & XAE_FEATURE_DMA_64BIT)
 316			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
 317	}
 318
 319	for (i = 0; i < lp->rx_bd_num; i++) {
 320		dma_addr_t addr;
 321
 322		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
 323			((i + 1) % lp->rx_bd_num);
 324		lp->rx_bd_v[i].next = lower_32_bits(addr);
 325		if (lp->features & XAE_FEATURE_DMA_64BIT)
 326			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
 327
 328		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 329		if (!skb)
 330			goto out;
 331
 332		lp->rx_bd_v[i].skb = skb;
 333		addr = dma_map_single(lp->dev, skb->data,
 334				      lp->max_frm_size, DMA_FROM_DEVICE);
 335		if (dma_mapping_error(lp->dev, addr)) {
 336			netdev_err(ndev, "DMA mapping error\n");
 337			goto out;
 338		}
 339		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
 340
 341		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 342	}
 343
 344	axienet_dma_start(lp);
 345
 346	return 0;
 347out:
 348	axienet_dma_bd_release(ndev);
 349	return -ENOMEM;
 350}
 351
 352/**
 353 * axienet_set_mac_address - Write the MAC address
 354 * @ndev:	Pointer to the net_device structure
 355 * @address:	6 byte Address to be written as MAC address
 356 *
 357 * This function is called to initialize the MAC address of the Axi Ethernet
 358 * core. It writes to the UAW0 and UAW1 registers of the core.
 359 */
 360static void axienet_set_mac_address(struct net_device *ndev,
 361				    const void *address)
 362{
 363	struct axienet_local *lp = netdev_priv(ndev);
 364
 365	if (address)
 366		eth_hw_addr_set(ndev, address);
 367	if (!is_valid_ether_addr(ndev->dev_addr))
 368		eth_hw_addr_random(ndev);
 369
 370	/* Set up unicast MAC address filter set its mac address */
 371	axienet_iow(lp, XAE_UAW0_OFFSET,
 372		    (ndev->dev_addr[0]) |
 373		    (ndev->dev_addr[1] << 8) |
 374		    (ndev->dev_addr[2] << 16) |
 375		    (ndev->dev_addr[3] << 24));
 376	axienet_iow(lp, XAE_UAW1_OFFSET,
 377		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 378		      ~XAE_UAW1_UNICASTADDR_MASK) |
 379		     (ndev->dev_addr[4] |
 380		     (ndev->dev_addr[5] << 8))));
 381}
 382
 383/**
 384 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 385 * @ndev:	Pointer to the net_device structure
 386 * @p:		6 byte Address to be written as MAC address
 387 *
 388 * Return: 0 for all conditions. Presently, there is no failure case.
 389 *
 390 * This function is called to initialize the MAC address of the Axi Ethernet
 391 * core. It calls the core specific axienet_set_mac_address. This is the
 392 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 393 */
 394static int netdev_set_mac_address(struct net_device *ndev, void *p)
 395{
 396	struct sockaddr *addr = p;
 397	axienet_set_mac_address(ndev, addr->sa_data);
 398	return 0;
 399}
 400
 401/**
 402 * axienet_set_multicast_list - Prepare the multicast table
 403 * @ndev:	Pointer to the net_device structure
 404 *
 405 * This function is called to initialize the multicast table during
 406 * initialization. The Axi Ethernet basic multicast support has a four-entry
 407 * multicast table which is initialized here. Additionally this function
 408 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 409 * means whenever the multicast table entries need to be updated this
 410 * function gets called.
 411 */
 412static void axienet_set_multicast_list(struct net_device *ndev)
 413{
 414	int i;
 415	u32 reg, af0reg, af1reg;
 416	struct axienet_local *lp = netdev_priv(ndev);
 417
 418	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 419	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 420		/* We must make the kernel realize we had to move into
 421		 * promiscuous mode. If it was a promiscuous mode request
 422		 * the flag is already set. If not we set it.
 423		 */
 424		ndev->flags |= IFF_PROMISC;
 425		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 426		reg |= XAE_FMI_PM_MASK;
 427		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 428		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 429	} else if (!netdev_mc_empty(ndev)) {
 430		struct netdev_hw_addr *ha;
 431
 432		i = 0;
 433		netdev_for_each_mc_addr(ha, ndev) {
 434			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 435				break;
 436
 437			af0reg = (ha->addr[0]);
 438			af0reg |= (ha->addr[1] << 8);
 439			af0reg |= (ha->addr[2] << 16);
 440			af0reg |= (ha->addr[3] << 24);
 441
 442			af1reg = (ha->addr[4]);
 443			af1reg |= (ha->addr[5] << 8);
 444
 445			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 446			reg |= i;
 447
 448			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 449			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 450			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 451			i++;
 452		}
 453	} else {
 454		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 455		reg &= ~XAE_FMI_PM_MASK;
 456
 457		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 458
 459		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 460			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 461			reg |= i;
 462
 463			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 464			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 465			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 466		}
 467
 468		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 469	}
 470}
 471
 472/**
 473 * axienet_setoptions - Set an Axi Ethernet option
 474 * @ndev:	Pointer to the net_device structure
 475 * @options:	Option to be enabled/disabled
 476 *
 477 * The Axi Ethernet core has multiple features which can be selectively turned
 478 * on or off. The typical options could be jumbo frame option, basic VLAN
 479 * option, promiscuous mode option etc. This function is used to set or clear
 480 * these options in the Axi Ethernet hardware. This is done through
 481 * axienet_option structure .
 482 */
 483static void axienet_setoptions(struct net_device *ndev, u32 options)
 484{
 485	int reg;
 486	struct axienet_local *lp = netdev_priv(ndev);
 487	struct axienet_option *tp = &axienet_options[0];
 488
 489	while (tp->opt) {
 490		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 491		if (options & tp->opt)
 492			reg |= tp->m_or;
 493		axienet_iow(lp, tp->reg, reg);
 494		tp++;
 495	}
 496
 497	lp->options |= options;
 498}
 499
 500static int __axienet_device_reset(struct axienet_local *lp)
 501{
 502	u32 value;
 503	int ret;
 504
 505	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 506	 * process of Axi DMA takes a while to complete as all pending
 507	 * commands/transfers will be flushed or completed during this
 508	 * reset process.
 509	 * Note that even though both TX and RX have their own reset register,
 510	 * they both reset the entire DMA core, so only one needs to be used.
 511	 */
 512	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
 513	ret = read_poll_timeout(axienet_dma_in32, value,
 514				!(value & XAXIDMA_CR_RESET_MASK),
 515				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
 516				XAXIDMA_TX_CR_OFFSET);
 517	if (ret) {
 518		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
 519		return ret;
 520	}
 521
 522	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
 523	ret = read_poll_timeout(axienet_ior, value,
 524				value & XAE_INT_PHYRSTCMPLT_MASK,
 525				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
 526				XAE_IS_OFFSET);
 527	if (ret) {
 528		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
 529		return ret;
 530	}
 531
 532	return 0;
 533}
 534
 535/**
 536 * axienet_dma_stop - Stop DMA operation
 537 * @lp:		Pointer to the axienet_local structure
 538 */
 539static void axienet_dma_stop(struct axienet_local *lp)
 540{
 541	int count;
 542	u32 cr, sr;
 543
 544	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 545	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
 546	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 547	synchronize_irq(lp->rx_irq);
 548
 549	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 550	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
 551	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 552	synchronize_irq(lp->tx_irq);
 553
 554	/* Give DMAs a chance to halt gracefully */
 555	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 556	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
 557		msleep(20);
 558		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 559	}
 560
 561	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 562	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
 563		msleep(20);
 564		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 565	}
 566
 567	/* Do a reset to ensure DMA is really stopped */
 568	axienet_lock_mii(lp);
 569	__axienet_device_reset(lp);
 570	axienet_unlock_mii(lp);
 571}
 572
 573/**
 574 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 575 * @ndev:	Pointer to the net_device structure
 576 *
 577 * This function is called to reset and initialize the Axi Ethernet core. This
 578 * is typically called during initialization. It does a reset of the Axi DMA
 579 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 580 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
 581 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 582 * core.
 583 * Returns 0 on success or a negative error number otherwise.
 584 */
 585static int axienet_device_reset(struct net_device *ndev)
 586{
 587	u32 axienet_status;
 588	struct axienet_local *lp = netdev_priv(ndev);
 589	int ret;
 590
 591	ret = __axienet_device_reset(lp);
 592	if (ret)
 593		return ret;
 594
 595	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 596	lp->options |= XAE_OPTION_VLAN;
 597	lp->options &= (~XAE_OPTION_JUMBO);
 598
 599	if ((ndev->mtu > XAE_MTU) &&
 600	    (ndev->mtu <= XAE_JUMBO_MTU)) {
 601		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 602					XAE_TRL_SIZE;
 603
 604		if (lp->max_frm_size <= lp->rxmem)
 605			lp->options |= XAE_OPTION_JUMBO;
 606	}
 607
 608	ret = axienet_dma_bd_init(ndev);
 609	if (ret) {
 610		netdev_err(ndev, "%s: descriptor allocation failed\n",
 611			   __func__);
 612		return ret;
 
 
 
 
 
 
 613	}
 614
 615	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 616	axienet_status &= ~XAE_RCW1_RX_MASK;
 617	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 618
 619	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 620	if (axienet_status & XAE_INT_RXRJECT_MASK)
 621		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 622	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
 623		    XAE_INT_RECV_ERROR_MASK : 0);
 624
 625	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 626
 627	/* Sync default options with HW but leave receiver and
 628	 * transmitter disabled.
 629	 */
 630	axienet_setoptions(ndev, lp->options &
 631			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 632	axienet_set_mac_address(ndev, NULL);
 633	axienet_set_multicast_list(ndev);
 634	axienet_setoptions(ndev, lp->options);
 635
 636	netif_trans_update(ndev);
 637
 638	return 0;
 639}
 640
 641/**
 642 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
 643 * @lp:		Pointer to the axienet_local structure
 644 * @first_bd:	Index of first descriptor to clean up
 645 * @nr_bds:	Max number of descriptors to clean up
 646 * @force:	Whether to clean descriptors even if not complete
 647 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
 648 *		in all cleaned-up descriptors. Ignored if NULL.
 649 * @budget:	NAPI budget (use 0 when not called from NAPI poll)
 650 *
 651 * Would either be called after a successful transmit operation, or after
 652 * there was an error when setting up the chain.
 653 * Returns the number of descriptors handled.
 654 */
 655static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
 656				 int nr_bds, bool force, u32 *sizep, int budget)
 657{
 658	struct axidma_bd *cur_p;
 659	unsigned int status;
 660	dma_addr_t phys;
 661	int i;
 662
 663	for (i = 0; i < nr_bds; i++) {
 664		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
 665		status = cur_p->status;
 666
 667		/* If force is not specified, clean up only descriptors
 668		 * that have been completed by the MAC.
 669		 */
 670		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
 671			break;
 672
 673		/* Ensure we see complete descriptor update */
 674		dma_rmb();
 675		phys = desc_get_phys_addr(lp, cur_p);
 676		dma_unmap_single(lp->dev, phys,
 677				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 678				 DMA_TO_DEVICE);
 679
 680		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
 681			napi_consume_skb(cur_p->skb, budget);
 682
 683		cur_p->app0 = 0;
 684		cur_p->app1 = 0;
 685		cur_p->app2 = 0;
 686		cur_p->app4 = 0;
 687		cur_p->skb = NULL;
 688		/* ensure our transmit path and device don't prematurely see status cleared */
 689		wmb();
 690		cur_p->cntrl = 0;
 691		cur_p->status = 0;
 692
 693		if (sizep)
 694			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 695	}
 696
 697	return i;
 698}
 699
 700/**
 701 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 702 * @lp:		Pointer to the axienet_local structure
 703 * @num_frag:	The number of BDs to check for
 704 *
 705 * Return: 0, on success
 706 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 707 *
 708 * This function is invoked before BDs are allocated and transmission starts.
 709 * This function returns 0 if a BD or group of BDs can be allocated for
 710 * transmission. If the BD or any of the BDs are not free the function
 711 * returns a busy status.
 712 */
 713static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 714					    int num_frag)
 715{
 716	struct axidma_bd *cur_p;
 717
 718	/* Ensure we see all descriptor updates from device or TX polling */
 719	rmb();
 720	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
 721			     lp->tx_bd_num];
 722	if (cur_p->cntrl)
 723		return NETDEV_TX_BUSY;
 724	return 0;
 725}
 726
 727/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728 * axienet_tx_poll - Invoked once a transmit is completed by the
 729 * Axi DMA Tx channel.
 730 * @napi:	Pointer to NAPI structure.
 731 * @budget:	Max number of TX packets to process.
 732 *
 733 * Return: Number of TX packets processed.
 734 *
 735 * This function is invoked from the NAPI processing to notify the completion
 736 * of transmit operation. It clears fields in the corresponding Tx BDs and
 737 * unmaps the corresponding buffer so that CPU can regain ownership of the
 738 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 739 * required.
 740 */
 741static int axienet_tx_poll(struct napi_struct *napi, int budget)
 742{
 743	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
 744	struct net_device *ndev = lp->ndev;
 745	u32 size = 0;
 746	int packets;
 747
 748	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
 749
 750	if (packets) {
 751		lp->tx_bd_ci += packets;
 752		if (lp->tx_bd_ci >= lp->tx_bd_num)
 753			lp->tx_bd_ci %= lp->tx_bd_num;
 754
 755		u64_stats_update_begin(&lp->tx_stat_sync);
 756		u64_stats_add(&lp->tx_packets, packets);
 757		u64_stats_add(&lp->tx_bytes, size);
 758		u64_stats_update_end(&lp->tx_stat_sync);
 759
 760		/* Matches barrier in axienet_start_xmit */
 761		smp_mb();
 762
 763		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
 764			netif_wake_queue(ndev);
 765	}
 766
 767	if (packets < budget && napi_complete_done(napi, packets)) {
 768		/* Re-enable TX completion interrupts. This should
 769		 * cause an immediate interrupt if any TX packets are
 770		 * already pending.
 771		 */
 772		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
 773	}
 774	return packets;
 775}
 776
 777/**
 778 * axienet_start_xmit - Starts the transmission.
 779 * @skb:	sk_buff pointer that contains data to be Txed.
 780 * @ndev:	Pointer to net_device structure.
 781 *
 782 * Return: NETDEV_TX_OK, on success
 783 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 784 *
 785 * This function is invoked from upper layers to initiate transmission. The
 786 * function uses the next available free BDs and populates their fields to
 787 * start the transmission. Additionally if checksum offloading is supported,
 788 * it populates AXI Stream Control fields with appropriate values.
 789 */
 790static netdev_tx_t
 791axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 792{
 793	u32 ii;
 794	u32 num_frag;
 795	u32 csum_start_off;
 796	u32 csum_index_off;
 797	skb_frag_t *frag;
 798	dma_addr_t tail_p, phys;
 799	u32 orig_tail_ptr, new_tail_ptr;
 800	struct axienet_local *lp = netdev_priv(ndev);
 801	struct axidma_bd *cur_p;
 802
 803	orig_tail_ptr = lp->tx_bd_tail;
 804	new_tail_ptr = orig_tail_ptr;
 805
 806	num_frag = skb_shinfo(skb)->nr_frags;
 807	cur_p = &lp->tx_bd_v[orig_tail_ptr];
 808
 809	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
 810		/* Should not happen as last start_xmit call should have
 811		 * checked for sufficient space and queue should only be
 812		 * woken when sufficient space is available.
 813		 */
 814		netif_stop_queue(ndev);
 815		if (net_ratelimit())
 816			netdev_warn(ndev, "TX ring unexpectedly full\n");
 817		return NETDEV_TX_BUSY;
 818	}
 819
 820	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 821		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 822			/* Tx Full Checksum Offload Enabled */
 823			cur_p->app0 |= 2;
 824		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 825			csum_start_off = skb_transport_offset(skb);
 826			csum_index_off = csum_start_off + skb->csum_offset;
 827			/* Tx Partial Checksum Offload Enabled */
 828			cur_p->app0 |= 1;
 829			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 830		}
 831	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 832		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 833	}
 834
 835	phys = dma_map_single(lp->dev, skb->data,
 836			      skb_headlen(skb), DMA_TO_DEVICE);
 837	if (unlikely(dma_mapping_error(lp->dev, phys))) {
 838		if (net_ratelimit())
 839			netdev_err(ndev, "TX DMA mapping error\n");
 840		ndev->stats.tx_dropped++;
 841		return NETDEV_TX_OK;
 842	}
 843	desc_set_phys_addr(lp, phys, cur_p);
 844	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 845
 846	for (ii = 0; ii < num_frag; ii++) {
 847		if (++new_tail_ptr >= lp->tx_bd_num)
 848			new_tail_ptr = 0;
 849		cur_p = &lp->tx_bd_v[new_tail_ptr];
 850		frag = &skb_shinfo(skb)->frags[ii];
 851		phys = dma_map_single(lp->dev,
 852				      skb_frag_address(frag),
 853				      skb_frag_size(frag),
 854				      DMA_TO_DEVICE);
 855		if (unlikely(dma_mapping_error(lp->dev, phys))) {
 856			if (net_ratelimit())
 857				netdev_err(ndev, "TX DMA mapping error\n");
 858			ndev->stats.tx_dropped++;
 859			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
 860					      true, NULL, 0);
 861			return NETDEV_TX_OK;
 862		}
 863		desc_set_phys_addr(lp, phys, cur_p);
 864		cur_p->cntrl = skb_frag_size(frag);
 865	}
 866
 867	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 868	cur_p->skb = skb;
 869
 870	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
 871	if (++new_tail_ptr >= lp->tx_bd_num)
 872		new_tail_ptr = 0;
 873	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
 874
 875	/* Start the transfer */
 876	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 877
 878	/* Stop queue if next transmit may not have space */
 879	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
 880		netif_stop_queue(ndev);
 881
 882		/* Matches barrier in axienet_tx_poll */
 883		smp_mb();
 884
 885		/* Space might have just been freed - check again */
 886		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
 887			netif_wake_queue(ndev);
 888	}
 889
 890	return NETDEV_TX_OK;
 891}
 892
 893/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
 895 * @napi:	Pointer to NAPI structure.
 896 * @budget:	Max number of RX packets to process.
 897 *
 898 * Return: Number of RX packets processed.
 899 */
 900static int axienet_rx_poll(struct napi_struct *napi, int budget)
 901{
 902	u32 length;
 903	u32 csumstatus;
 904	u32 size = 0;
 905	int packets = 0;
 906	dma_addr_t tail_p = 0;
 907	struct axidma_bd *cur_p;
 908	struct sk_buff *skb, *new_skb;
 909	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
 910
 911	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 912
 913	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 914		dma_addr_t phys;
 915
 916		/* Ensure we see complete descriptor update */
 917		dma_rmb();
 918
 919		skb = cur_p->skb;
 920		cur_p->skb = NULL;
 921
 922		/* skb could be NULL if a previous pass already received the
 923		 * packet for this slot in the ring, but failed to refill it
 924		 * with a newly allocated buffer. In this case, don't try to
 925		 * receive it again.
 926		 */
 927		if (likely(skb)) {
 928			length = cur_p->app4 & 0x0000FFFF;
 929
 930			phys = desc_get_phys_addr(lp, cur_p);
 931			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
 932					 DMA_FROM_DEVICE);
 933
 934			skb_put(skb, length);
 935			skb->protocol = eth_type_trans(skb, lp->ndev);
 936			/*skb_checksum_none_assert(skb);*/
 937			skb->ip_summed = CHECKSUM_NONE;
 938
 939			/* if we're doing Rx csum offload, set it up */
 940			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 941				csumstatus = (cur_p->app2 &
 942					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 943				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
 944				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
 945					skb->ip_summed = CHECKSUM_UNNECESSARY;
 946				}
 947			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 948				   skb->protocol == htons(ETH_P_IP) &&
 949				   skb->len > 64) {
 950				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 951				skb->ip_summed = CHECKSUM_COMPLETE;
 952			}
 953
 954			napi_gro_receive(napi, skb);
 955
 956			size += length;
 957			packets++;
 958		}
 959
 960		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
 961		if (!new_skb)
 962			break;
 963
 964		phys = dma_map_single(lp->dev, new_skb->data,
 965				      lp->max_frm_size,
 966				      DMA_FROM_DEVICE);
 967		if (unlikely(dma_mapping_error(lp->dev, phys))) {
 968			if (net_ratelimit())
 969				netdev_err(lp->ndev, "RX DMA mapping error\n");
 970			dev_kfree_skb(new_skb);
 971			break;
 972		}
 973		desc_set_phys_addr(lp, phys, cur_p);
 974
 975		cur_p->cntrl = lp->max_frm_size;
 976		cur_p->status = 0;
 977		cur_p->skb = new_skb;
 978
 979		/* Only update tail_p to mark this slot as usable after it has
 980		 * been successfully refilled.
 981		 */
 982		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 983
 984		if (++lp->rx_bd_ci >= lp->rx_bd_num)
 985			lp->rx_bd_ci = 0;
 986		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 987	}
 988
 989	u64_stats_update_begin(&lp->rx_stat_sync);
 990	u64_stats_add(&lp->rx_packets, packets);
 991	u64_stats_add(&lp->rx_bytes, size);
 992	u64_stats_update_end(&lp->rx_stat_sync);
 993
 994	if (tail_p)
 995		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 996
 997	if (packets < budget && napi_complete_done(napi, packets)) {
 998		/* Re-enable RX completion interrupts. This should
 999		 * cause an immediate interrupt if any RX packets are
1000		 * already pending.
1001		 */
1002		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1003	}
1004	return packets;
1005}
1006
1007/**
1008 * axienet_tx_irq - Tx Done Isr.
1009 * @irq:	irq number
1010 * @_ndev:	net_device pointer
1011 *
1012 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1013 *
1014 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1015 * TX BD processing.
1016 */
1017static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1018{
1019	unsigned int status;
1020	struct net_device *ndev = _ndev;
1021	struct axienet_local *lp = netdev_priv(ndev);
1022
1023	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1024
1025	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1026		return IRQ_NONE;
1027
1028	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1029
1030	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1031		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1032		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1033			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1034			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1035		schedule_work(&lp->dma_err_task);
1036	} else {
1037		/* Disable further TX completion interrupts and schedule
1038		 * NAPI to handle the completions.
1039		 */
1040		u32 cr = lp->tx_dma_cr;
1041
1042		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1043		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1044
1045		napi_schedule(&lp->napi_tx);
1046	}
1047
1048	return IRQ_HANDLED;
1049}
1050
1051/**
1052 * axienet_rx_irq - Rx Isr.
1053 * @irq:	irq number
1054 * @_ndev:	net_device pointer
1055 *
1056 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1057 *
1058 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1059 * processing.
1060 */
1061static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1062{
1063	unsigned int status;
1064	struct net_device *ndev = _ndev;
1065	struct axienet_local *lp = netdev_priv(ndev);
1066
1067	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1068
1069	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1070		return IRQ_NONE;
1071
1072	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1073
1074	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1075		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1076		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1077			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1078			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1079		schedule_work(&lp->dma_err_task);
1080	} else {
1081		/* Disable further RX completion interrupts and schedule
1082		 * NAPI receive.
1083		 */
1084		u32 cr = lp->rx_dma_cr;
1085
1086		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1087		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1088
1089		napi_schedule(&lp->napi_rx);
1090	}
1091
1092	return IRQ_HANDLED;
1093}
1094
1095/**
1096 * axienet_eth_irq - Ethernet core Isr.
1097 * @irq:	irq number
1098 * @_ndev:	net_device pointer
1099 *
1100 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1101 *
1102 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1103 */
1104static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1105{
1106	struct net_device *ndev = _ndev;
1107	struct axienet_local *lp = netdev_priv(ndev);
1108	unsigned int pending;
1109
1110	pending = axienet_ior(lp, XAE_IP_OFFSET);
1111	if (!pending)
1112		return IRQ_NONE;
1113
1114	if (pending & XAE_INT_RXFIFOOVR_MASK)
1115		ndev->stats.rx_missed_errors++;
1116
1117	if (pending & XAE_INT_RXRJECT_MASK)
1118		ndev->stats.rx_frame_errors++;
1119
1120	axienet_iow(lp, XAE_IS_OFFSET, pending);
1121	return IRQ_HANDLED;
1122}
1123
1124static void axienet_dma_err_handler(struct work_struct *work);
1125
1126/**
1127 * axienet_open - Driver open routine.
1128 * @ndev:	Pointer to net_device structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129 *
1130 * Return: 0, on success.
1131 *	    non-zero error value on failure
1132 *
1133 * This is the driver open routine. It calls phylink_start to start the
1134 * PHY device.
1135 * It also allocates interrupt service routines, enables the interrupt lines
1136 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1137 * descriptors are initialized.
1138 */
1139static int axienet_open(struct net_device *ndev)
1140{
1141	int ret;
1142	struct axienet_local *lp = netdev_priv(ndev);
 
 
 
 
 
 
 
 
1143
1144	dev_dbg(&ndev->dev, "axienet_open()\n");
 
 
 
 
 
1145
1146	/* When we do an Axi Ethernet reset, it resets the complete core
1147	 * including the MDIO. MDIO must be disabled before resetting.
1148	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1149	 */
1150	axienet_lock_mii(lp);
1151	ret = axienet_device_reset(ndev);
1152	axienet_unlock_mii(lp);
 
 
 
 
 
 
 
 
 
 
 
1153
1154	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1155	if (ret) {
1156		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1157		return ret;
 
 
 
 
 
 
 
 
 
1158	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	phylink_start(lp->phylink);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162	/* Enable worker thread for Axi DMA error handling */
1163	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1164
1165	napi_enable(&lp->napi_rx);
1166	napi_enable(&lp->napi_tx);
1167
1168	/* Enable interrupts for Axi DMA Tx */
1169	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1170			  ndev->name, ndev);
1171	if (ret)
1172		goto err_tx_irq;
1173	/* Enable interrupts for Axi DMA Rx */
1174	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1175			  ndev->name, ndev);
1176	if (ret)
1177		goto err_rx_irq;
1178	/* Enable interrupts for Axi Ethernet core (if defined) */
1179	if (lp->eth_irq > 0) {
1180		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1181				  ndev->name, ndev);
1182		if (ret)
1183			goto err_eth_irq;
1184	}
1185
1186	return 0;
1187
1188err_eth_irq:
1189	free_irq(lp->rx_irq, ndev);
1190err_rx_irq:
1191	free_irq(lp->tx_irq, ndev);
1192err_tx_irq:
1193	napi_disable(&lp->napi_tx);
1194	napi_disable(&lp->napi_rx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	phylink_stop(lp->phylink);
1196	phylink_disconnect_phy(lp->phylink);
1197	cancel_work_sync(&lp->dma_err_task);
1198	dev_err(lp->dev, "request_irq() failed\n");
1199	return ret;
1200}
1201
1202/**
1203 * axienet_stop - Driver stop routine.
1204 * @ndev:	Pointer to net_device structure
1205 *
1206 * Return: 0, on success.
1207 *
1208 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1209 * device. It also removes the interrupt handlers and disables the interrupts.
1210 * The Axi DMA Tx/Rx BDs are released.
1211 */
1212static int axienet_stop(struct net_device *ndev)
1213{
1214	struct axienet_local *lp = netdev_priv(ndev);
 
1215
1216	dev_dbg(&ndev->dev, "axienet_close()\n");
1217
1218	napi_disable(&lp->napi_tx);
1219	napi_disable(&lp->napi_rx);
 
 
1220
1221	phylink_stop(lp->phylink);
1222	phylink_disconnect_phy(lp->phylink);
1223
1224	axienet_setoptions(ndev, lp->options &
1225			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1226
1227	axienet_dma_stop(lp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229	axienet_iow(lp, XAE_IE_OFFSET, 0);
1230
1231	cancel_work_sync(&lp->dma_err_task);
1232
1233	if (lp->eth_irq > 0)
1234		free_irq(lp->eth_irq, ndev);
1235	free_irq(lp->tx_irq, ndev);
1236	free_irq(lp->rx_irq, ndev);
1237
1238	axienet_dma_bd_release(ndev);
1239	return 0;
1240}
1241
1242/**
1243 * axienet_change_mtu - Driver change mtu routine.
1244 * @ndev:	Pointer to net_device structure
1245 * @new_mtu:	New mtu value to be applied
1246 *
1247 * Return: Always returns 0 (success).
1248 *
1249 * This is the change mtu driver routine. It checks if the Axi Ethernet
1250 * hardware supports jumbo frames before changing the mtu. This can be
1251 * called only when the device is not up.
1252 */
1253static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1254{
1255	struct axienet_local *lp = netdev_priv(ndev);
1256
1257	if (netif_running(ndev))
1258		return -EBUSY;
1259
1260	if ((new_mtu + VLAN_ETH_HLEN +
1261		XAE_TRL_SIZE) > lp->rxmem)
1262		return -EINVAL;
1263
1264	ndev->mtu = new_mtu;
1265
1266	return 0;
1267}
1268
1269#ifdef CONFIG_NET_POLL_CONTROLLER
1270/**
1271 * axienet_poll_controller - Axi Ethernet poll mechanism.
1272 * @ndev:	Pointer to net_device structure
1273 *
1274 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1275 * to polling the ISRs and are enabled back after the polling is done.
1276 */
1277static void axienet_poll_controller(struct net_device *ndev)
1278{
1279	struct axienet_local *lp = netdev_priv(ndev);
1280	disable_irq(lp->tx_irq);
1281	disable_irq(lp->rx_irq);
1282	axienet_rx_irq(lp->tx_irq, ndev);
1283	axienet_tx_irq(lp->rx_irq, ndev);
1284	enable_irq(lp->tx_irq);
1285	enable_irq(lp->rx_irq);
1286}
1287#endif
1288
1289static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1290{
1291	struct axienet_local *lp = netdev_priv(dev);
1292
1293	if (!netif_running(dev))
1294		return -EINVAL;
1295
1296	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1297}
1298
1299static void
1300axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1301{
1302	struct axienet_local *lp = netdev_priv(dev);
1303	unsigned int start;
1304
1305	netdev_stats_to_stats64(stats, &dev->stats);
1306
1307	do {
1308		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1309		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1310		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1311	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1312
1313	do {
1314		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1315		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1316		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1317	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1318}
1319
1320static const struct net_device_ops axienet_netdev_ops = {
1321	.ndo_open = axienet_open,
1322	.ndo_stop = axienet_stop,
1323	.ndo_start_xmit = axienet_start_xmit,
1324	.ndo_get_stats64 = axienet_get_stats64,
1325	.ndo_change_mtu	= axienet_change_mtu,
1326	.ndo_set_mac_address = netdev_set_mac_address,
1327	.ndo_validate_addr = eth_validate_addr,
1328	.ndo_eth_ioctl = axienet_ioctl,
1329	.ndo_set_rx_mode = axienet_set_multicast_list,
1330#ifdef CONFIG_NET_POLL_CONTROLLER
1331	.ndo_poll_controller = axienet_poll_controller,
1332#endif
1333};
1334
 
 
 
 
 
 
 
 
 
 
 
 
1335/**
1336 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1337 * @ndev:	Pointer to net_device structure
1338 * @ed:		Pointer to ethtool_drvinfo structure
1339 *
1340 * This implements ethtool command for getting the driver information.
1341 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1342 */
1343static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1344					 struct ethtool_drvinfo *ed)
1345{
1346	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1347	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1348}
1349
1350/**
1351 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1352 *				   AxiEthernet core.
1353 * @ndev:	Pointer to net_device structure
1354 *
1355 * This implements ethtool command for getting the total register length
1356 * information.
1357 *
1358 * Return: the total regs length
1359 */
1360static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1361{
1362	return sizeof(u32) * AXIENET_REGS_N;
1363}
1364
1365/**
1366 * axienet_ethtools_get_regs - Dump the contents of all registers present
1367 *			       in AxiEthernet core.
1368 * @ndev:	Pointer to net_device structure
1369 * @regs:	Pointer to ethtool_regs structure
1370 * @ret:	Void pointer used to return the contents of the registers.
1371 *
1372 * This implements ethtool command for getting the Axi Ethernet register dump.
1373 * Issue "ethtool -d ethX" to execute this function.
1374 */
1375static void axienet_ethtools_get_regs(struct net_device *ndev,
1376				      struct ethtool_regs *regs, void *ret)
1377{
1378	u32 *data = (u32 *)ret;
1379	size_t len = sizeof(u32) * AXIENET_REGS_N;
1380	struct axienet_local *lp = netdev_priv(ndev);
1381
1382	regs->version = 0;
1383	regs->len = len;
1384
1385	memset(data, 0, len);
1386	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1387	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1388	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1389	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1390	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1391	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1392	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1393	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1394	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1395	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1396	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1397	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1398	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1399	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1400	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1401	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1402	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1403	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1404	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1405	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1406	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1407	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1408	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1409	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1410	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1411	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1412	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1413	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1414	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1415	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1416	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1417	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1418	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1419	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1420	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1421	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
 
 
1422}
1423
1424static void
1425axienet_ethtools_get_ringparam(struct net_device *ndev,
1426			       struct ethtool_ringparam *ering,
1427			       struct kernel_ethtool_ringparam *kernel_ering,
1428			       struct netlink_ext_ack *extack)
1429{
1430	struct axienet_local *lp = netdev_priv(ndev);
1431
1432	ering->rx_max_pending = RX_BD_NUM_MAX;
1433	ering->rx_mini_max_pending = 0;
1434	ering->rx_jumbo_max_pending = 0;
1435	ering->tx_max_pending = TX_BD_NUM_MAX;
1436	ering->rx_pending = lp->rx_bd_num;
1437	ering->rx_mini_pending = 0;
1438	ering->rx_jumbo_pending = 0;
1439	ering->tx_pending = lp->tx_bd_num;
1440}
1441
1442static int
1443axienet_ethtools_set_ringparam(struct net_device *ndev,
1444			       struct ethtool_ringparam *ering,
1445			       struct kernel_ethtool_ringparam *kernel_ering,
1446			       struct netlink_ext_ack *extack)
1447{
1448	struct axienet_local *lp = netdev_priv(ndev);
1449
1450	if (ering->rx_pending > RX_BD_NUM_MAX ||
1451	    ering->rx_mini_pending ||
1452	    ering->rx_jumbo_pending ||
1453	    ering->tx_pending < TX_BD_NUM_MIN ||
1454	    ering->tx_pending > TX_BD_NUM_MAX)
1455		return -EINVAL;
1456
1457	if (netif_running(ndev))
1458		return -EBUSY;
1459
1460	lp->rx_bd_num = ering->rx_pending;
1461	lp->tx_bd_num = ering->tx_pending;
1462	return 0;
1463}
1464
1465/**
1466 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1467 *				     Tx and Rx paths.
1468 * @ndev:	Pointer to net_device structure
1469 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1470 *
1471 * This implements ethtool command for getting axi ethernet pause frame
1472 * setting. Issue "ethtool -a ethX" to execute this function.
1473 */
1474static void
1475axienet_ethtools_get_pauseparam(struct net_device *ndev,
1476				struct ethtool_pauseparam *epauseparm)
1477{
1478	struct axienet_local *lp = netdev_priv(ndev);
1479
1480	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1481}
1482
1483/**
1484 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1485 *				     settings.
1486 * @ndev:	Pointer to net_device structure
1487 * @epauseparm:Pointer to ethtool_pauseparam structure
1488 *
1489 * This implements ethtool command for enabling flow control on Rx and Tx
1490 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1491 * function.
1492 *
1493 * Return: 0 on success, -EFAULT if device is running
1494 */
1495static int
1496axienet_ethtools_set_pauseparam(struct net_device *ndev,
1497				struct ethtool_pauseparam *epauseparm)
1498{
1499	struct axienet_local *lp = netdev_priv(ndev);
1500
1501	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1502}
1503
1504/**
1505 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1506 * @ndev:	Pointer to net_device structure
1507 * @ecoalesce:	Pointer to ethtool_coalesce structure
1508 * @kernel_coal: ethtool CQE mode setting structure
1509 * @extack:	extack for reporting error messages
1510 *
1511 * This implements ethtool command for getting the DMA interrupt coalescing
1512 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1513 * execute this function.
1514 *
1515 * Return: 0 always
1516 */
1517static int
1518axienet_ethtools_get_coalesce(struct net_device *ndev,
1519			      struct ethtool_coalesce *ecoalesce,
1520			      struct kernel_ethtool_coalesce *kernel_coal,
1521			      struct netlink_ext_ack *extack)
1522{
1523	struct axienet_local *lp = netdev_priv(ndev);
1524
1525	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1526	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1527	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1528	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1529	return 0;
1530}
1531
1532/**
1533 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1534 * @ndev:	Pointer to net_device structure
1535 * @ecoalesce:	Pointer to ethtool_coalesce structure
1536 * @kernel_coal: ethtool CQE mode setting structure
1537 * @extack:	extack for reporting error messages
1538 *
1539 * This implements ethtool command for setting the DMA interrupt coalescing
1540 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1541 * prompt to execute this function.
1542 *
1543 * Return: 0, on success, Non-zero error value on failure.
1544 */
1545static int
1546axienet_ethtools_set_coalesce(struct net_device *ndev,
1547			      struct ethtool_coalesce *ecoalesce,
1548			      struct kernel_ethtool_coalesce *kernel_coal,
1549			      struct netlink_ext_ack *extack)
1550{
1551	struct axienet_local *lp = netdev_priv(ndev);
1552
1553	if (netif_running(ndev)) {
1554		netdev_err(ndev,
1555			   "Please stop netif before applying configuration\n");
1556		return -EFAULT;
1557	}
1558
1559	if (ecoalesce->rx_max_coalesced_frames)
1560		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1561	if (ecoalesce->rx_coalesce_usecs)
1562		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1563	if (ecoalesce->tx_max_coalesced_frames)
1564		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1565	if (ecoalesce->tx_coalesce_usecs)
1566		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1567
1568	return 0;
1569}
1570
1571static int
1572axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1573				    struct ethtool_link_ksettings *cmd)
1574{
1575	struct axienet_local *lp = netdev_priv(ndev);
1576
1577	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1578}
1579
1580static int
1581axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1582				    const struct ethtool_link_ksettings *cmd)
1583{
1584	struct axienet_local *lp = netdev_priv(ndev);
1585
1586	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1587}
1588
1589static int axienet_ethtools_nway_reset(struct net_device *dev)
1590{
1591	struct axienet_local *lp = netdev_priv(dev);
1592
1593	return phylink_ethtool_nway_reset(lp->phylink);
1594}
1595
1596static const struct ethtool_ops axienet_ethtool_ops = {
1597	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1598				     ETHTOOL_COALESCE_USECS,
1599	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1600	.get_regs_len   = axienet_ethtools_get_regs_len,
1601	.get_regs       = axienet_ethtools_get_regs,
1602	.get_link       = ethtool_op_get_link,
1603	.get_ringparam	= axienet_ethtools_get_ringparam,
1604	.set_ringparam	= axienet_ethtools_set_ringparam,
1605	.get_pauseparam = axienet_ethtools_get_pauseparam,
1606	.set_pauseparam = axienet_ethtools_set_pauseparam,
1607	.get_coalesce   = axienet_ethtools_get_coalesce,
1608	.set_coalesce   = axienet_ethtools_set_coalesce,
1609	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1610	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1611	.nway_reset	= axienet_ethtools_nway_reset,
1612};
1613
1614static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1615{
1616	return container_of(pcs, struct axienet_local, pcs);
1617}
1618
1619static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1620				  struct phylink_link_state *state)
1621{
1622	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1623
1624	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1625}
1626
1627static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1628{
1629	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1630
1631	phylink_mii_c22_pcs_an_restart(pcs_phy);
1632}
1633
1634static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1635			      phy_interface_t interface,
1636			      const unsigned long *advertising,
1637			      bool permit_pause_to_mac)
1638{
1639	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1640	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1641	struct axienet_local *lp = netdev_priv(ndev);
1642	int ret;
1643
1644	if (lp->switch_x_sgmii) {
1645		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1646				    interface == PHY_INTERFACE_MODE_SGMII ?
1647					XLNX_MII_STD_SELECT_SGMII : 0);
1648		if (ret < 0) {
1649			netdev_warn(ndev,
1650				    "Failed to switch PHY interface: %d\n",
1651				    ret);
1652			return ret;
1653		}
1654	}
1655
1656	ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
 
1657	if (ret < 0)
1658		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1659
1660	return ret;
1661}
1662
1663static const struct phylink_pcs_ops axienet_pcs_ops = {
1664	.pcs_get_state = axienet_pcs_get_state,
1665	.pcs_config = axienet_pcs_config,
1666	.pcs_an_restart = axienet_pcs_an_restart,
1667};
1668
1669static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1670						  phy_interface_t interface)
1671{
1672	struct net_device *ndev = to_net_dev(config->dev);
1673	struct axienet_local *lp = netdev_priv(ndev);
1674
1675	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1676	    interface ==  PHY_INTERFACE_MODE_SGMII)
1677		return &lp->pcs;
1678
1679	return NULL;
1680}
1681
1682static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1683			       const struct phylink_link_state *state)
1684{
1685	/* nothing meaningful to do */
1686}
1687
1688static void axienet_mac_link_down(struct phylink_config *config,
1689				  unsigned int mode,
1690				  phy_interface_t interface)
1691{
1692	/* nothing meaningful to do */
1693}
1694
1695static void axienet_mac_link_up(struct phylink_config *config,
1696				struct phy_device *phy,
1697				unsigned int mode, phy_interface_t interface,
1698				int speed, int duplex,
1699				bool tx_pause, bool rx_pause)
1700{
1701	struct net_device *ndev = to_net_dev(config->dev);
1702	struct axienet_local *lp = netdev_priv(ndev);
1703	u32 emmc_reg, fcc_reg;
1704
1705	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1706	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1707
1708	switch (speed) {
1709	case SPEED_1000:
1710		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1711		break;
1712	case SPEED_100:
1713		emmc_reg |= XAE_EMMC_LINKSPD_100;
1714		break;
1715	case SPEED_10:
1716		emmc_reg |= XAE_EMMC_LINKSPD_10;
1717		break;
1718	default:
1719		dev_err(&ndev->dev,
1720			"Speed other than 10, 100 or 1Gbps is not supported\n");
1721		break;
1722	}
1723
1724	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1725
1726	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1727	if (tx_pause)
1728		fcc_reg |= XAE_FCC_FCTX_MASK;
1729	else
1730		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1731	if (rx_pause)
1732		fcc_reg |= XAE_FCC_FCRX_MASK;
1733	else
1734		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1735	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1736}
1737
1738static const struct phylink_mac_ops axienet_phylink_ops = {
1739	.mac_select_pcs = axienet_mac_select_pcs,
1740	.mac_config = axienet_mac_config,
1741	.mac_link_down = axienet_mac_link_down,
1742	.mac_link_up = axienet_mac_link_up,
1743};
1744
1745/**
1746 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1747 * @work:	pointer to work_struct
1748 *
1749 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1750 * Tx/Rx BDs.
1751 */
1752static void axienet_dma_err_handler(struct work_struct *work)
1753{
1754	u32 i;
1755	u32 axienet_status;
1756	struct axidma_bd *cur_p;
1757	struct axienet_local *lp = container_of(work, struct axienet_local,
1758						dma_err_task);
1759	struct net_device *ndev = lp->ndev;
1760
1761	napi_disable(&lp->napi_tx);
1762	napi_disable(&lp->napi_rx);
1763
1764	axienet_setoptions(ndev, lp->options &
1765			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1766
1767	axienet_dma_stop(lp);
1768
1769	for (i = 0; i < lp->tx_bd_num; i++) {
1770		cur_p = &lp->tx_bd_v[i];
1771		if (cur_p->cntrl) {
1772			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1773
1774			dma_unmap_single(lp->dev, addr,
1775					 (cur_p->cntrl &
1776					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1777					 DMA_TO_DEVICE);
1778		}
1779		if (cur_p->skb)
1780			dev_kfree_skb_irq(cur_p->skb);
1781		cur_p->phys = 0;
1782		cur_p->phys_msb = 0;
1783		cur_p->cntrl = 0;
1784		cur_p->status = 0;
1785		cur_p->app0 = 0;
1786		cur_p->app1 = 0;
1787		cur_p->app2 = 0;
1788		cur_p->app3 = 0;
1789		cur_p->app4 = 0;
1790		cur_p->skb = NULL;
1791	}
1792
1793	for (i = 0; i < lp->rx_bd_num; i++) {
1794		cur_p = &lp->rx_bd_v[i];
1795		cur_p->status = 0;
1796		cur_p->app0 = 0;
1797		cur_p->app1 = 0;
1798		cur_p->app2 = 0;
1799		cur_p->app3 = 0;
1800		cur_p->app4 = 0;
1801	}
1802
1803	lp->tx_bd_ci = 0;
1804	lp->tx_bd_tail = 0;
1805	lp->rx_bd_ci = 0;
1806
1807	axienet_dma_start(lp);
1808
1809	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1810	axienet_status &= ~XAE_RCW1_RX_MASK;
1811	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1812
1813	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1814	if (axienet_status & XAE_INT_RXRJECT_MASK)
1815		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1816	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1817		    XAE_INT_RECV_ERROR_MASK : 0);
1818	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1819
1820	/* Sync default options with HW but leave receiver and
1821	 * transmitter disabled.
1822	 */
1823	axienet_setoptions(ndev, lp->options &
1824			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1825	axienet_set_mac_address(ndev, NULL);
1826	axienet_set_multicast_list(ndev);
1827	axienet_setoptions(ndev, lp->options);
1828	napi_enable(&lp->napi_rx);
1829	napi_enable(&lp->napi_tx);
1830}
1831
1832/**
1833 * axienet_probe - Axi Ethernet probe function.
1834 * @pdev:	Pointer to platform device structure.
1835 *
1836 * Return: 0, on success
1837 *	    Non-zero error value on failure.
1838 *
1839 * This is the probe routine for Axi Ethernet driver. This is called before
1840 * any other driver routines are invoked. It allocates and sets up the Ethernet
1841 * device. Parses through device tree and populates fields of
1842 * axienet_local. It registers the Ethernet device.
1843 */
1844static int axienet_probe(struct platform_device *pdev)
1845{
1846	int ret;
1847	struct device_node *np;
1848	struct axienet_local *lp;
1849	struct net_device *ndev;
1850	struct resource *ethres;
1851	u8 mac_addr[ETH_ALEN];
1852	int addr_width = 32;
1853	u32 value;
1854
1855	ndev = alloc_etherdev(sizeof(*lp));
1856	if (!ndev)
1857		return -ENOMEM;
1858
1859	platform_set_drvdata(pdev, ndev);
1860
1861	SET_NETDEV_DEV(ndev, &pdev->dev);
1862	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1863	ndev->features = NETIF_F_SG;
1864	ndev->netdev_ops = &axienet_netdev_ops;
1865	ndev->ethtool_ops = &axienet_ethtool_ops;
1866
1867	/* MTU range: 64 - 9000 */
1868	ndev->min_mtu = 64;
1869	ndev->max_mtu = XAE_JUMBO_MTU;
1870
1871	lp = netdev_priv(ndev);
1872	lp->ndev = ndev;
1873	lp->dev = &pdev->dev;
1874	lp->options = XAE_OPTION_DEFAULTS;
1875	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1876	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1877
1878	u64_stats_init(&lp->rx_stat_sync);
1879	u64_stats_init(&lp->tx_stat_sync);
1880
1881	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1882	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1883
1884	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1885	if (!lp->axi_clk) {
1886		/* For backward compatibility, if named AXI clock is not present,
1887		 * treat the first clock specified as the AXI clock.
1888		 */
1889		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1890	}
1891	if (IS_ERR(lp->axi_clk)) {
1892		ret = PTR_ERR(lp->axi_clk);
1893		goto free_netdev;
1894	}
1895	ret = clk_prepare_enable(lp->axi_clk);
1896	if (ret) {
1897		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1898		goto free_netdev;
1899	}
1900
1901	lp->misc_clks[0].id = "axis_clk";
1902	lp->misc_clks[1].id = "ref_clk";
1903	lp->misc_clks[2].id = "mgt_clk";
1904
1905	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1906	if (ret)
1907		goto cleanup_clk;
1908
1909	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1910	if (ret)
1911		goto cleanup_clk;
1912
1913	/* Map device registers */
1914	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1915	if (IS_ERR(lp->regs)) {
1916		ret = PTR_ERR(lp->regs);
1917		goto cleanup_clk;
1918	}
1919	lp->regs_start = ethres->start;
1920
1921	/* Setup checksum offload, but default to off if not specified */
1922	lp->features = 0;
1923
1924	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1925	if (!ret) {
1926		switch (value) {
1927		case 1:
1928			lp->csum_offload_on_tx_path =
1929				XAE_FEATURE_PARTIAL_TX_CSUM;
1930			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1931			/* Can checksum TCP/UDP over IPv4. */
1932			ndev->features |= NETIF_F_IP_CSUM;
1933			break;
1934		case 2:
1935			lp->csum_offload_on_tx_path =
1936				XAE_FEATURE_FULL_TX_CSUM;
1937			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1938			/* Can checksum TCP/UDP over IPv4. */
1939			ndev->features |= NETIF_F_IP_CSUM;
1940			break;
1941		default:
1942			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1943		}
1944	}
1945	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1946	if (!ret) {
1947		switch (value) {
1948		case 1:
1949			lp->csum_offload_on_rx_path =
1950				XAE_FEATURE_PARTIAL_RX_CSUM;
1951			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1952			break;
1953		case 2:
1954			lp->csum_offload_on_rx_path =
1955				XAE_FEATURE_FULL_RX_CSUM;
1956			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1957			break;
1958		default:
1959			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1960		}
1961	}
1962	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1963	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1964	 * we can enable jumbo option and start supporting jumbo frames.
1965	 * Here we check for memory allocated for Rx/Tx in the hardware from
1966	 * the device-tree and accordingly set flags.
1967	 */
1968	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1969
1970	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1971						   "xlnx,switch-x-sgmii");
1972
1973	/* Start with the proprietary, and broken phy_type */
1974	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1975	if (!ret) {
1976		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1977		switch (value) {
1978		case XAE_PHY_TYPE_MII:
1979			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1980			break;
1981		case XAE_PHY_TYPE_GMII:
1982			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1983			break;
1984		case XAE_PHY_TYPE_RGMII_2_0:
1985			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1986			break;
1987		case XAE_PHY_TYPE_SGMII:
1988			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1989			break;
1990		case XAE_PHY_TYPE_1000BASE_X:
1991			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1992			break;
1993		default:
1994			ret = -EINVAL;
1995			goto cleanup_clk;
1996		}
1997	} else {
1998		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1999		if (ret)
2000			goto cleanup_clk;
2001	}
2002	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2003	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2004		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2005		ret = -EINVAL;
2006		goto cleanup_clk;
2007	}
2008
2009	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2010	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2011	if (np) {
2012		struct resource dmares;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013
2014		ret = of_address_to_resource(np, 0, &dmares);
2015		if (ret) {
2016			dev_err(&pdev->dev,
2017				"unable to get DMA resource\n");
2018			of_node_put(np);
2019			goto cleanup_clk;
2020		}
2021		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2022						     &dmares);
2023		lp->rx_irq = irq_of_parse_and_map(np, 1);
2024		lp->tx_irq = irq_of_parse_and_map(np, 0);
2025		of_node_put(np);
2026		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2027	} else {
2028		/* Check for these resources directly on the Ethernet node. */
2029		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2030		lp->rx_irq = platform_get_irq(pdev, 1);
2031		lp->tx_irq = platform_get_irq(pdev, 0);
2032		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2033	}
2034	if (IS_ERR(lp->dma_regs)) {
2035		dev_err(&pdev->dev, "could not map DMA regs\n");
2036		ret = PTR_ERR(lp->dma_regs);
2037		goto cleanup_clk;
2038	}
2039	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2040		dev_err(&pdev->dev, "could not determine irqs\n");
2041		ret = -ENOMEM;
2042		goto cleanup_clk;
2043	}
2044
2045	/* Autodetect the need for 64-bit DMA pointers.
2046	 * When the IP is configured for a bus width bigger than 32 bits,
2047	 * writing the MSB registers is mandatory, even if they are all 0.
2048	 * We can detect this case by writing all 1's to one such register
2049	 * and see if that sticks: when the IP is configured for 32 bits
2050	 * only, those registers are RES0.
2051	 * Those MSB registers were introduced in IP v7.1, which we check first.
2052	 */
2053	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2054		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
 
2055
2056		iowrite32(0x0, desc);
2057		if (ioread32(desc) == 0) {	/* sanity check */
2058			iowrite32(0xffffffff, desc);
2059			if (ioread32(desc) > 0) {
2060				lp->features |= XAE_FEATURE_DMA_64BIT;
2061				addr_width = 64;
2062				dev_info(&pdev->dev,
2063					 "autodetected 64-bit DMA range\n");
2064			}
2065			iowrite32(0x0, desc);
2066		}
2067	}
2068	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2069		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2070		ret = -EINVAL;
2071		goto cleanup_clk;
2072	}
2073
2074	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2075	if (ret) {
2076		dev_err(&pdev->dev, "No suitable DMA available\n");
2077		goto cleanup_clk;
2078	}
2079
 
 
 
 
2080	/* Check for Ethernet core IRQ (optional) */
2081	if (lp->eth_irq <= 0)
2082		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2083
2084	/* Retrieve the MAC address */
2085	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2086	if (!ret) {
2087		axienet_set_mac_address(ndev, mac_addr);
2088	} else {
2089		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2090			 ret);
2091		axienet_set_mac_address(ndev, NULL);
2092	}
2093
2094	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
 
2095	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2096	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2097	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2098
2099	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2100	ret = __axienet_device_reset(lp);
2101	if (ret)
2102		goto cleanup_clk;
2103
2104	ret = axienet_mdio_setup(lp);
2105	if (ret)
2106		dev_warn(&pdev->dev,
2107			 "error registering MDIO bus: %d\n", ret);
2108
2109	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2110	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2111		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2112		if (!np) {
2113			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2114			 * Falling back to "phy-handle" here is only for
2115			 * backward compatibility with old device trees.
2116			 */
2117			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2118		}
2119		if (!np) {
2120			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2121			ret = -EINVAL;
2122			goto cleanup_mdio;
2123		}
2124		lp->pcs_phy = of_mdio_find_device(np);
2125		if (!lp->pcs_phy) {
2126			ret = -EPROBE_DEFER;
2127			of_node_put(np);
2128			goto cleanup_mdio;
2129		}
2130		of_node_put(np);
2131		lp->pcs.ops = &axienet_pcs_ops;
 
2132		lp->pcs.poll = true;
2133	}
2134
2135	lp->phylink_config.dev = &ndev->dev;
2136	lp->phylink_config.type = PHYLINK_NETDEV;
2137	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2138		MAC_10FD | MAC_100FD | MAC_1000FD;
2139
2140	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2141	if (lp->switch_x_sgmii) {
2142		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2143			  lp->phylink_config.supported_interfaces);
2144		__set_bit(PHY_INTERFACE_MODE_SGMII,
2145			  lp->phylink_config.supported_interfaces);
2146	}
2147
2148	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2149				     lp->phy_mode,
2150				     &axienet_phylink_ops);
2151	if (IS_ERR(lp->phylink)) {
2152		ret = PTR_ERR(lp->phylink);
2153		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2154		goto cleanup_mdio;
2155	}
2156
2157	ret = register_netdev(lp->ndev);
2158	if (ret) {
2159		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2160		goto cleanup_phylink;
2161	}
2162
2163	return 0;
2164
2165cleanup_phylink:
2166	phylink_destroy(lp->phylink);
2167
2168cleanup_mdio:
2169	if (lp->pcs_phy)
2170		put_device(&lp->pcs_phy->dev);
2171	if (lp->mii_bus)
2172		axienet_mdio_teardown(lp);
2173cleanup_clk:
2174	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2175	clk_disable_unprepare(lp->axi_clk);
2176
2177free_netdev:
2178	free_netdev(ndev);
2179
2180	return ret;
2181}
2182
2183static int axienet_remove(struct platform_device *pdev)
2184{
2185	struct net_device *ndev = platform_get_drvdata(pdev);
2186	struct axienet_local *lp = netdev_priv(ndev);
2187
2188	unregister_netdev(ndev);
2189
2190	if (lp->phylink)
2191		phylink_destroy(lp->phylink);
2192
2193	if (lp->pcs_phy)
2194		put_device(&lp->pcs_phy->dev);
2195
2196	axienet_mdio_teardown(lp);
2197
2198	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2199	clk_disable_unprepare(lp->axi_clk);
2200
2201	free_netdev(ndev);
2202
2203	return 0;
2204}
2205
2206static void axienet_shutdown(struct platform_device *pdev)
2207{
2208	struct net_device *ndev = platform_get_drvdata(pdev);
2209
2210	rtnl_lock();
2211	netif_device_detach(ndev);
2212
2213	if (netif_running(ndev))
2214		dev_close(ndev);
2215
2216	rtnl_unlock();
2217}
2218
2219static int axienet_suspend(struct device *dev)
2220{
2221	struct net_device *ndev = dev_get_drvdata(dev);
2222
2223	if (!netif_running(ndev))
2224		return 0;
2225
2226	netif_device_detach(ndev);
2227
2228	rtnl_lock();
2229	axienet_stop(ndev);
2230	rtnl_unlock();
2231
2232	return 0;
2233}
2234
2235static int axienet_resume(struct device *dev)
2236{
2237	struct net_device *ndev = dev_get_drvdata(dev);
2238
2239	if (!netif_running(ndev))
2240		return 0;
2241
2242	rtnl_lock();
2243	axienet_open(ndev);
2244	rtnl_unlock();
2245
2246	netif_device_attach(ndev);
2247
2248	return 0;
2249}
2250
2251static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2252				axienet_suspend, axienet_resume);
2253
2254static struct platform_driver axienet_driver = {
2255	.probe = axienet_probe,
2256	.remove = axienet_remove,
2257	.shutdown = axienet_shutdown,
2258	.driver = {
2259		 .name = "xilinx_axienet",
2260		 .pm = &axienet_pm_ops,
2261		 .of_match_table = axienet_of_match,
2262	},
2263};
2264
2265module_platform_driver(axienet_driver);
2266
2267MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2268MODULE_AUTHOR("Xilinx");
2269MODULE_LICENSE("GPL");